#### Sample records for pneumatic vibration isolation

1. Static and dynamic stability of pneumatic vibration isolators and systems of isolators

Science.gov (United States)

Ryaboy, Vyacheslav M.

2014-01-01

Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.

2. Dynamics of vibration isolation system with rubber-cord-pneumatic spring with damping throttle

Science.gov (United States)

Burian, Yu A.; Silkov, M. V.

2017-06-01

The study refers to the important area of applied mechanics; it is the theory of vibration isolation of vibroactive facilities. The design and the issues of mathematical modeling of pneumatic spring perspective design made on the basis of rubber-cord shell with additional volume connected with its primary volume by means of throttle passageway are considered in the text. Damping at the overflow of air through the hole limits the amplitude of oscillation at resonance. But in contrast to conventional systems with viscous damping it does not increase transmission ratio at high frequencies. The mathematical model of suspension allowing selecting options to reduce the power transmission ratio on the foundation, especially in the high frequency range is obtained

3. Control of input delayed pneumatic vibration isolation table using adaptive fuzzy sliding mode

Directory of Open Access Journals (Sweden)

Mostafa Khazaee

Full Text Available AbstractPneumatic isolators are promising candidates for increasing the quality of accurate instruments. For this purpose, higher performance of such isolators is a prerequisite. In particular, the time-delay due to the air transmission is an inherent issue with pneumatic systems, which needs to be overcome using modern control methods. In this paper an adaptive fuzzy sliding mode controller is proposed to improve the performance of a pneumatic isolator in the low frequency range, i.e., where the passive techniques have obvious shortcomings. The main idea is to combine the adaptive fuzzy controller with adaptive predictor as a new time delay control technique. The adaptive fuzzy sliding mode control and the adaptive fuzzy predictor help to circumvent the input delay and nonlinearities in such isolators. The main advantage of the proposed method is that the closed-loop system stability is guaranteed under certain conditions. Simulation results reveal the effectiveness of the proposed method, compared with other existing time -delay control methods.

4. Vibration and recoil control of pneumatic hammers. [by air flow pressure regulation

Science.gov (United States)

Constantinescu, I. N.; Darabont, A. V.

1974-01-01

Vibration sources are described for pneumatic hammers used in the mining industry (pick hammers), in boiler shops (riveting hammers), etc., bringing to light the fact that the principal vibration source is the variation in air pressure inside the cylinder. The present state of the art of vibration control of pneumatic hammers as it is practiced abroad, and the solutions adopted for this purpose, are discussed. A new type of pneumatic hammer with a low noise and vibration level is presented.

5. Improvement of the vibration isolation system for TAMA300

CERN Document Server

Takahashi, R

2002-01-01

The vibration isolation system for TAMA300 has a vibration isolation ratio large enough to achieve the requirement in the observation band around 300 Hz. At a lower frequency range, it is necessary to reduce the large fluctuation of mirrors for stable operation of the interferometer. With this aim, the mirror suspension systems were modified and an active vibration isolation system using pneumatic actuators was installed. These improvements contributed to the realization of a continuous interferometer lock for more than 24 h.

6. Analysis of vibroprotection characteristics of pneumatic relaxation seat suspension with capability of vibration energy recuperation

Directory of Open Access Journals (Sweden)

Lyashenko Mikhail

2017-01-01

Full Text Available This paper proposes mechanism and control algorithm for pneumatic relaxation system of suspension with vibration energy recuperation applied to standard vehicle operator seat (“Sibeko” company. Mathematical model of the seat pneumatic relaxation suspension with two additional air volumes was created. Pneumatic motor – recuperator activated by means of air flow from the one additional volume to another is installed in air piping between additional volumes. Computational research was made in Matlab/Simulink. Amplitude-frequency characteristics of transmission coefficient for standard and proposed suspensions were plotted for preliminary evaluation of vibration protection properties of seat suspension. Performed comparative analysis of amplitude-frequency characteristics shows that noticeable improvement of vibration protection properties of pneumatic relaxation suspension system with vibration energy recuperation in comparison with standard system both in region of resonance disturbances and in above-resonance region. Main ways for further improvement of vibration protection properties of proposed system were marked out.

7. The qualitative assessment of pneumatic actuators operation in terms of vibration criteria

Science.gov (United States)

Hetmanczyk, M. P.; Michalski, P.

2015-11-01

The work quality of pneumatic actuators can be assessed in terms of multiple criteria. In the case of complex systems with pneumatic actuators retained at end positions (with occurrence of piston impact in cylinder covers) the vibration criteria constitute the most reliable indicators. The paper presents an impact assessment on the operating condition of the rodless pneumatic cylinder regarding to selected vibrational symptoms. On the basis of performed analysis the authors had shown meaningful premises allowing an evaluation of the performance and tuning of end position damping piston movement with usage the most common diagnostic tools (portable vibration analyzers). The presented method is useful in tuning of parameters in industrial conditions.

8. Multistage position-stabilized vibration isolation system for neutron interferometry

Science.gov (United States)

Arif, Muhammad; Brown, Dennis E.; Greene, Geoffrey L.; Clothier, R.; Littrell, K.

1994-10-01

A two stage, position stabilized vibration isolation system has been constructed and is now in operation at the Cold Neutron Research Facility of the National Institute of Standards and Technology, Gaithersburg, MD. The system employs pneumatic isolators with a multiple input/multiple output pneumatic servo system based upon pulse width modulation control loops. The first stage consists of a 40,000 kg reinforced concrete table supported by pneumatic isolators. A large environmentally isolated laboratory enclosure rests on the concrete table. The second stage consists of a 3000 kg granite optical table located within the enclosure and supported by another set of pneumatic isolators. The position of the two stages is monitored by proximity sensors and inclinometers with 12 degrees of freedom. The system controls 12 independent pneumatic airsprings. The signals from these sensors are fed into a personal computer based control system. The control system has maintained the position of the two stages to better than 1 micrometers in translation and 5 (mu) rad in orientation for a period of a few months. A description of the system and its characteristics is given.

9. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

Directory of Open Access Journals (Sweden)

2012-10-01

Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

10. 3-D pneumatic seismic isolation of nuclear power plants

International Nuclear Information System (INIS)

Beliaev, V.S.; Vinogradov, V.V.; Kostarev, V.V.; Kuzmitchev, V.P.; Privalov, S.A.; Siro, V.A.; Krylova, I.N.; Dolgaya, A.A.; Uzdin, A.M.; Vasiliev, A.V.

2002-01-01

This paper describes the work carried at the Russian Federation Research Center of Fundamental Engineering (RCFE), in development of innovative pneumatic multicomponent low-frequency seismic isolation bearings for advanced nuclear power plants.This device incorporates both supporting spherical elements, which provide displacements in the horizontal direction, and pneumatic dampers with rubber diaphragms for displacement in the vertical direction. To decrease the relative displacements of the isolated object the system uses viscoelastic dampers. Damping devices had been specially elaborated for the reactor building seismic isolation system as a result of substantial advances in the design and operation of the HD-type hydrodampers, created at the CKTI VIBROSEISM. The procedures developed have been used for comparison of the test and computer data on model isolated steel structure (MISS) and isolated rigid mass (IRM) isolators produced by ENEA and KAERI. Most recent work has concentrated on the development of mathematical models of isolators and isolated nuclear structures. Force-deformation characteristics of the HDRB model had been calculated on the basis of a special method of non-linear elastic theory using the continual transformations method. (author)

11. Test–Retest Reliability and Concurrent Validity of an fMRI-Compatible Pneumatic Vibrator to Stimulate Muscle Proprioceptors.

Science.gov (United States)

Goossens, Nina; Janssens, Lotte; Pijnenburg, Madelon; Caeyenberghs, Karen; Van Rompuy, Charlotte; Meugens, Paul; Sunaert, Stefan; Brumagne, Simon

Processing proprioceptive information in the brain is essential for optimal postural control and can be studied with proprioceptive stimulation, provided by muscle vibration, during functional magnetic resonance imaging (fMRI). Classic electromagnetic muscle vibrators, however, cannot be used in the high-strength magnetic field of the fMRI scanner. Pneumatic vibrators offer an fMRI-compatible alternative. However, whether these devices produce reliable and valid proprioceptive stimuli has not been investigated, although this is essential for these devices to be used in longitudinal research. Test–retest reliability and concurrent validity of the postural response to muscle vibration, provided by custom-made fMRI-compatible pneumatic vibrators, were assessed in a repeated-measures design. Mean center of pressure (CoP) displacements during, respectively, ankle muscle and back muscle vibration (45–60 Hz, 0.5 mm) provided by an electromagnetic and a pneumatic vibrator were measured in ten young healthy subjects. The test was repeated on the same day and again within one week. Intraclass correlation coefficients (ICC) were calculated to assess (a) intra- and interday reliability of the postural responses to, respectively, pneumatic and electromagnetic vibration, and (b) concurrent validity of the response to pneumatic compared to electromagnetic vibration. Test–retest reliability of mean CoP displacements during pneumatic vibration was good to excellent (ICCs = 0.64–0.90) and resembled that of responses to electromagnetic vibration (ICCs = 0.64–0.94). Concurrent validity of the postural effect of pneumatic vibration was good to excellent (ICCs = 0.63–0.95). In conclusion, the proposed fMRI-compatible pneumatic vibrator can be used with confidence to stimulate muscle spindles during fMRI to study central processing of proprioception.

12. A Role of Base Plate Jerk Feedback Scheme for Suppression of the Self Vibration in a Pneumatic Positioning Stage

Science.gov (United States)

Wali, Mohebullah; Nakamura, Yukinori; Wakui, Shinji

In this study, a positioning stage is considered, which is actuated by four pneumatic cylinders and vertically supported by four coil-type spring isolators. Previously, we realized the base plate jerk feedback (BPJFB) to be analogues to a Master-Slave system which can synchronize the motion of the stage as a Slave to the motion of the base plate as a Master. However, in the case of real positioning, the stage had slightly self oscillation with higher frequency due to the higher gains set to the outer feedback loop controller besides its oscillation due to the natural vibration of the base plate. The self oscillation of stage was misunderstood to be the natural vibration of base plate due to the reaction force. However, according to the experimental results, the BPJFB scheme was able to control both of the mentioned vibrations. Suppression of the self vibration of stage is an interesting phenomenon, which should be experimentally investigated. Therefore, the current study focuses on the suppression of the self vibration of stage by using the BPJFB scheme. The experimental results show that besides operating as a Master-Slave synchronizing system, the PBJFB scheme is able to increase the damping ratio and stiffness of stage against its self vibration. This newly recognized phenomenon contributes to further increase the proportional gain of the outer feedback loop controller. As a result, the positioning speed and stability can be improved.

13. Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system

Science.gov (United States)

Palomares, E.; Nieto, A. J.; Morales, A. L.; Chicharro, J. M.; Pintado, P.

2018-02-01

This paper presents a Negative Stiffness System (NSS) based on a set of two double-acting pneumatic linear actuators (PLA). The NSS is added to a system with a single degree of freedom, which consists of a sprung mass and a pneumatic spring. One end of each PLA is jointed to the sprung mass while the other end is jointed to the vibrating frame. In addition, the PLAs are symmetrically arranged so that they remain horizontal while the sprung mass is in static conditions. When the rear chamber is pressurised, the vertical component of the force applied by the PLAs will work against the pneumatic spring reducing the dynamic resonance frequency of the overall system. Experimental tests and simulations showed improvements regarding sprung mass isolation in comparison to the passive system without NSS, decreasing the resonance frequency by up to 58 % and improving the vibration attenuation for different experimental excitations.

14. THE REDUCTION OF VIBRATIONS IN A CAR – THE PRINCIPLE OF PNEUMATIC DUAL MASS FLYWHEEL

Directory of Open Access Journals (Sweden)

Robert GREGA

2014-09-01

Full Text Available The dual-mass flywheel replaces the classic flywheel in such way that it is divided into two masses (the primary mass and the secondary mass, which are jointed together by means of a flexible interconnection. This kind of the flywheel solution enables to change resonance areas of the engine with regard to the engine dynamic behaviour what leads to a reduction of vibrations consequently. However, there is also a disadvantage of the dualmass flywheels. The disadvantage is its short-time durability. There was projected a new type of the dual-mass flywheel in the framework of our workplace in order to eliminate disadvantages of the present dual-mass flywheels, i.e. we projected the pneumatic dual-mass flywheel, taking into consideration our experiences obtained during investigation of vibrations.

15. Recent advances in micro-vibration isolation

Science.gov (United States)

Liu, Chunchuan; Jing, Xingjian; Daley, Steve; Li, Fengming

2015-05-01

Micro-vibration caused by disturbance sources onboard spacecraft can severely degrade the working environment of sensitive payloads. Some notable vibration control methods have been developed particularly for the suppression or isolation of micro-vibration over recent decades. Usually, passive isolation techniques are deployed in aerospace engineering. Active isolators, however, are often proposed to deal with the low frequency vibration that is common in spacecraft. Active/passive hybrid isolation has also been effectively used in some spacecraft structures for a number of years. In semi-active isolation systems, the inherent structural performance can be adjusted to deal with variation in the aerospace environment. This latter approach is potentially one of the most practical isolation techniques for micro-vibration isolation tasks. Some emerging advanced vibration isolation methods that exploit the benefits of nonlinearity have also been reported in the literature. This represents an interesting and highly promising approach for solving some challenging problems in the area. This paper serves as a state-of-the-art review of the vibration isolation theory and/or methods which were developed, mainly over the last decade, specifically for or potentially could be used for, micro-vibration control.

16. Genetic algorithm based active vibration control for a moving flexible smart beam driven by a pneumatic rod cylinder

Science.gov (United States)

Qiu, Zhi-cheng; Shi, Ming-li; Wang, Bin; Xie, Zhuo-wei

2012-05-01

A rod cylinder based pneumatic driving scheme is proposed to suppress the vibration of a flexible smart beam. Pulse code modulation (PCM) method is employed to control the motion of the cylinder's piston rod for simultaneous positioning and vibration suppression. Firstly, the system dynamics model is derived using Hamilton principle. Its standard state-space representation is obtained for characteristic analysis, controller design, and simulation. Secondly, a genetic algorithm (GA) is applied to optimize and tune the control gain parameters adaptively based on the specific performance index. Numerical simulations are performed on the pneumatic driving elastic beam system, using the established model and controller with tuned gains by GA optimization process. Finally, an experimental setup for the flexible beam driven by a pneumatic rod cylinder is constructed. Experiments for suppressing vibrations of the flexible beam are conducted. Theoretical analysis, numerical simulation and experimental results demonstrate that the proposed pneumatic drive scheme and the adopted control algorithms are feasible. The large amplitude vibration of the first bending mode can be suppressed effectively.

17. Using Euler buckling springs for vibration isolation

CERN Document Server

Winterflood, J; Blair, D G

2002-01-01

Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance.

18. Using Euler buckling springs for vibration isolation

International Nuclear Information System (INIS)

Winterflood, J; Barber, T; Blair, D G

2002-01-01

Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance

19. Experimental chaos in nonlinear vibration isolation system

International Nuclear Information System (INIS)

Lou Jingjun; Zhu Shijian; He Lin; He Qiwei

2009-01-01

The chaotic vibration isolation method was studied thoroughly from an experimental perspective. The nonlinear load-deflection characteristic of the conical coil spring used in the experiment was surveyed. Chaos and subharmonic responses including period-2 and period-6 motions were observed. The line spectrum reduction and the drop of the acceleration vibration level in chaotic state and that in non-chaotic state were compared, respectively. It was concluded from the experiment that the nonlinear vibration isolation system in chaotic state has strong ability in line spectrum reduction.

20. Adaptive vibration isolation system for diesel engine

Institute of Scientific and Technical Information of China (English)

YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

2004-01-01

An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

1. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

Directory of Open Access Journals (Sweden)

The M. Nguyen

2008-01-01

Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

2. ENIDINE: Vibration and seismic isolation technologies for power generation station applications

International Nuclear Information System (INIS)

Zemanek, T.A.

1994-01-01

ENIDINE Inc. is a world leader in the design and manufacture of shock and vibration mounts. Founded in 1966, the company has two manufacturing facilities, employs over 300 people and supports a worldwide network of distributors and representatives. ENIDINE Inc. is part of the ENIDINE Corporate Group which owns a number of companies that design and manufacture Hydraulic/Pneumatic cylinders, Electromechanical devices, Hydraulic Control Valves and a number of Industrial Distribution companies throughout Europe. In total, the ENIDINE Corporate Group has over 900 employees with annual sales of over \$100 million. ENIDINE shock and vibration mounts are used to isolate the vibration of missiles from their guidance systems, pumps from hospital operating equipment and off shore oil rigs, from the shock energy of waves in the North Sea. ENIDINE products can be found on all Boeing and McDonnell Douglas aircraft, as well as many electronic and weapons systems on board Navy ships

3. Fuzzy sliding mode controller of a pneumatic active isolating system using negative stiffness structure

International Nuclear Information System (INIS)

Le, Thanh Danh; Ahn, Kyoung Kwan

2012-01-01

A novel active vibration isolation system using negative stiffness structure (active system with NSS) for low excitation frequency ranges (< 5 Hz) is developed successfully. Here, the negative stiffness structure (NSS) is used to minimize the attraction of vibration. Then, the fuzzy sliding mode controller (FSMC) is designed to improve the vibration isolation performance of the active system with NSS. Based on Lyapunov stability theorem, the fuzzy control rules are constructed. Next, the experimental apparatus is built for evaluating the isolation efficiency of the proposed system controlled by the FSMC corresponding to various excitation conditions. In addition, the isolation performance of the active system with NSS, the active system without NSS and the passive the system with NSS is compared. The experimental results confirmed that the active system with NSS gives better isolation efficiency than the active system without NSS and the passive system with NSS in low excitation frequency areas

4. Accelerometer-based estimation and modal velocity feedback vibration control of a stress-ribbon bridge with pneumatic muscles

Science.gov (United States)

Liu, Xiaohan; Schauer, Thomas; Goldack, Arndt; Bleicher, Achim; Schlaich, Mike

2016-09-01

Lightweight footbridges are very elegant but also prone to vibration. By employing active vibration control, smart footbridges could accomplish not only the architectural concept but also the required serviceability and comfort. Inertial sensors such as accelerometers allow the estimation of nodal velocities and displacements. A Kalman filter together with a band-limited multiple Fourier linear combiner (BMFLC) is applied to enable a drift-free estimation of these signals for the quasi-periodic motion under pedestrian excitation without extra information from other kinds of auxiliary sensors. The modal velocities of the structure are determined by using a second Kalman filter with the known applied actuator forces as inputs and the estimated nodal displacement and velocities as measurements. The obtained multi-modal velocities are then used for feedback control. An ultra-lightweight stress-ribbon footbridge built in the Peter-Behrens- Halle at the Technische Universitat Berlin served as the research object. Using two inertial sensors in optimal points we can estimate the dominant modal characteristics of this bridge. Real-time implementation and evaluation results of the proposed estimator will be presented in comparison to signals derived from classical displacement encoders. The real-time estimated modal velocities were applied in a multi-modal velocity feedback vibration control scheme with lightweight pneumatic muscle actuators. Experimental results demonstrate the feasibility of using inertial sensors for active vibration control of lightweight footbridges.

5. Accelerometer-based estimation and modal velocity feedback vibration control of a stress-ribbon bridge with pneumatic muscles

International Nuclear Information System (INIS)

Liu, Xiaohan; Goldack, Arndt; Schlaich, Mike; Schauer, Thomas; Bleicher, Achim

2016-01-01

Lightweight footbridges are very elegant but also prone to vibration. By employing active vibration control, smart footbridges could accomplish not only the architectural concept but also the required serviceability and comfort. Inertial sensors such as accelerometers allow the estimation of nodal velocities and displacements. A Kalman filter together with a band-limited multiple Fourier linear combiner (BMFLC) is applied to enable a drift-free estimation of these signals for the quasi-periodic motion under pedestrian excitation without extra information from other kinds of auxiliary sensors. The modal velocities of the structure are determined by using a second Kalman filter with the known applied actuator forces as inputs and the estimated nodal displacement and velocities as measurements. The obtained multi-modal velocities are then used for feedback control. An ultra-lightweight stress-ribbon footbridge built in the Peter-Behrens- Halle at the Technische Universitat Berlin served as the research object. Using two inertial sensors in optimal points we can estimate the dominant modal characteristics of this bridge. Real-time implementation and evaluation results of the proposed estimator will be presented in comparison to signals derived from classical displacement encoders. The real-time estimated modal velocities were applied in a multi-modal velocity feedback vibration control scheme with lightweight pneumatic muscle actuators. Experimental results demonstrate the feasibility of using inertial sensors for active vibration control of lightweight footbridges. (paper)

6. Active vibration isolation of a rigidly mounted turbo pump

NARCIS (Netherlands)

Basten, T.G.H.; Doppenberg, E.J.J.

2006-01-01

Manufacturers of precision equipment are constantly aiming at increased accuracy. Elimination of disturbing vibrations is therefore getting more and more important. The technical limitations of passive isolation methods require alternative strategies for vibration reduction, such as active

7. EFFECTOF ISOLATION WALL USING SCRAP TIRE ON GROUND VIBRATION REDUCTION

Science.gov (United States)

Kashimoto, Takahiko; Kashimoto, Yusuke; Hayakawa, Kiyoshi; Matsui, Tamotsu; Fujimoto, Hiroaki

Some countermeasure methods against the environmental ground vibration caused by some traffic vibrations have been proposed so far. The authors have developed a new type ground vibration isolation wall using scrap tire, and evaluated its effectiveness on the ground vibration reduction by full scale field tests. In this paper, the authors discussed and examined the effectiveness of the developed countermeasure method by two field tests. The one concerns on the effect of scrap tire as soft material of vibration isolation wall, and the other on the effect of the developed countermeasure method practically applied in a residential area close to monorail traffic. As the results, it was elucidated that the ground vibration of 2-3 dB was reduced in case of two times volume of the soft material, the conversion ratio of the vibration energy of the soft material to the kinetic energy was higher than that of the core material of PHC pile, the vibration acceleration of 0.19 - 1.26 gal was reduced by the developed countermeasure method in case of the monorail traffic, and the vibration reduction measured behind the isolation wall agreed well with the proposed theoretical value, together with confirming the effectiveness of the ground vibration isolation wall using scrap tire as the countermeasure method against the environmental ground vibration.

8. Sensor fusion for active vibration isolation in precision equipment

NARCIS (Netherlands)

Tjepkema, D.; van Dijk, Johannes; Soemers, Herman

2012-01-01

Sensor fusion is a promising control strategy to improve the performance of active vibration isolation systems that are used in precision equipment. Normally, those vibration isolation systems are only capable of realizing a low transmissibility. Additional objectives are to increase the damping

9. Vibration isolation of a ship's seat

Science.gov (United States)

2005-05-01

Different factors cause vibration. These vibrations make the voyages difficult and reduce comfort and convenience in passenger ships. In this paper, the creating factors of vibration have discussed first, then with mathematical modelling it will be attempted to minimize the vibration over the crew's seat. The modelling consists of a system with two degrees of freedom and by using vibrationisolation with passive method of Tuned Mass Damper (TMD) it will be tried to reduce the vibration over personnel. Moreover using active control systems will be compared with passive systems.

10. Synthesis of Optimal Isolation Systems of Hand-Transmitted Vibration

Directory of Open Access Journals (Sweden)

Marek Książek

1997-01-01

Full Text Available In this article a procedure is presented for the analytical synthesis of optimal vibration isolation for a hand-arm system subjected to stochastic excitation. A general approach is discussed for a selected vibration isolation criterion. The general procedure is illustrated by analytical examples for different hand-arm systems described by their driving-point impedances. The influence of particular forms of excitation and the structure of the vibroisolated hand-arm systems on the resultant vibration isolation is then discussed. Some numerical examples illustrating the procedure have also been included.

11. Research on Vibration Isolation Systems Used in Laser and Nanotechnologies

Directory of Open Access Journals (Sweden)

Justinas Kuncė

2012-12-01

Full Text Available The paper discusses the efficiency of a vibration isolation system made of the optical table and two negative-stiffness tables and considers excitation referring to harmonic and nonharmonic methods in the frequency range of 0,2–110 Hz. The article reviews the types and sources of vibrations and types of vibration isolation systems, including those of negative-stiffness. The paper also presents the methodology of experimental tests and proposes research on vibration transmissibility. A composite system consisting of two vibration isolation table having negative stiffness and an air table has been tested. The results and conclusions of experimental analysis are suggested at the end of the article.Article in Lithuanian

12. Passive and active vibration isolation systems using inerter

Science.gov (United States)

Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.

2018-03-01

This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.

13. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

NARCIS (Netherlands)

Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.

2011-01-01

This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

14. Active vibration isolation platform on base of magnetorheological elastomers

Energy Technology Data Exchange (ETDEWEB)

Mikhailov, Valery P., E-mail: mikhailov@bmstu.ru; Bazinenkov, Alexey M.

2017-06-01

The article describes the active vibration isolation platform on base of magnetorheological (MR) elastomers. An active damper based on the MR elastomers can be used as an actuator of micro- or nanopositioning for a vibroinsulated object. The MR elastomers give such advantages for active control of vibration as large range of displacements (up to 1 mm), more efficient absorption of the vibration energy, possibility of active control of amplitude-frequency characteristics and positioning with millisecond response speed and nanometer running accuracy. The article presents the results of experimental studies of the most important active damper parameters. Those are starting current, transient time for stepping, transmission coefficient of the vibration displacement amplitude.

15. Experimental investigation of torsional vibration isolation using Magneto Rheological Elastomer

Directory of Open Access Journals (Sweden)

Praveen Shenoy K

2018-01-01

Full Text Available Rotating systems suffer from lateral and torsional vibrations which have detrimental effect on the roto-dynamic performance. Many available technologies such as vibration isolators and vibration absorbers deal with the torsional vibrations to a certain extent, however passive isolators and absorbers find less application when the input conditions are dynamic. The present work discusses use of a smart material called as Magneto Rheological Elastomer (MRE, whose properties can be changed based on magnetic field input, as a potential isolator for torsional vibrations under dynamic loading conditions. Carbonyl Iron Particles (CIP of average size 5 μm were mixed with RTV Silicone rubber to form the MRE. The effect of magnetic field on the system parameters was comprehended under impulse loading conditions using a custom built in-house system. Series arrangement of accelerometers were used to differentiate between the torsional and the bending modes of vibration of the system. Impact hammer tests were carried out on the torsional system to study its response, in the presence and absence of magnetic field. The tests revealed a shift in torsional frequency in the presence of magnetic field which elucidates the ability of MRE to work as a potential vibration isolator for torsional systems.

16. Analytical stiffness calculations of a cone-shaped magnetic vibration isolator for a micro balance

NARCIS (Netherlands)

Casteren, van D.T.E.H.; Paulides, J.J.H.; Janssen, J.L.G.; Lomonova, E.A.

2013-01-01

The accuracy of a micro balance is highly dependent on the level of floor vibrations. One strategy to reduce floor vibrations is a magnetic vibration isolator. Magnetic vibration isolators have the possibility to obtain a zero-stiffness region, which is beneficial for attenuating vibrations. In this

17. Combined Euler column vibration isolation and energy harvesting

Science.gov (United States)

Davis, R. B.; McDowell, M. D.

2017-05-01

A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

18. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

Science.gov (United States)

Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

2006-03-01

This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

19. Experimental Study of Vibration Isolation Characteristics of a Geometric Anti-Spring Isolator

Directory of Open Access Journals (Sweden)

Lixun Yan

2017-07-01

Full Text Available In order to realize low-frequency vibration isolation, a novel geometric anti-spring isolator consisting of several cantilever blade springs are developed in this paper. The optimal design parameters of the geometric anti-spring isolator for different nonlinear geometric parameters are theoretically obtained. The transmissibility characteristic of the geometric anti-spring isolator is investigated through mathematical simulation. A geometric anti-spring isolator with a nonlinear geometric parameter of 0.92 is designed and its vibration isolation performance and nonlinearity characteristic is experimentally studied. The experiment results show that the designed isolator has good low-frequency vibration isolation performance, of which the initial isolation frequency is less than 3.6 Hz when the load weight is 21 kg. The jump phenomena of the response of the isolator under linear frequency sweep excitation are observed, and this result demonstrates that the geometric anti-spring isolator has a complex nonlinearity characteristics with the increment of excitation amplitude. This research work provides a theoretical and experimental basis for the application of the nonlinear geometric anti-spring low-frequency passive vibration isolation technology in engineering practice.

20. Marshak Lectureship: Vibrational properties of isolated color centers in diamond

Science.gov (United States)

Alkauskas, Audrius

In this talk we review our recent work on first-principles calculations of vibrational properties of isolated defect spin qubits and single photon emitters in diamond. These properties include local vibrational spectra, luminescence lineshapes, and electron-phonon coupling. They are key in understanding physical mechanisms behind spin-selective optical initialization and read-out, quantum efficiency of single-photon emitters, as well as in the experimental identification of as yet unknown centers. We first present the methodology to calculate and analyze vibrational properties of effectively isolated defect centers. We then apply the methodology to the nitrogen-vacancy and the silicon-vacancy centers in diamond. First-principles calculations yield important new insights about these important defects. Work performed in collaboration with M. W. Doherty, A. Gali, E. Londero, L. Razinkovas, and C. G. Van de Walle. Supported by the Research Council of Lithuania (Grant M-ERA.NET-1/2015).

1. Microgravity Active Vibration Isolation System on Parabolic Flights

Science.gov (United States)

Dong, Wenbo; Pletser, Vladimir; Yang, Yang

2016-07-01

The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the

2. Wire rope isolators for vibration isolation of equipment and structures – A review

International Nuclear Information System (INIS)

Balaji, P S; Rahman, M E; Lau, H H; Moussa, Leblouba

2015-01-01

Vibrations and shocks are studied using various techniques and analyzed to predict their detrimental effect on the equipment and structures. In cases, where the effects of vibration become unacceptable, it may cause structural damage and affect the operation of the equipment. Hence, adding a discrete system to isolate the vibration from source becomes necessary. The Wire Rope Isolator (WRI) can be used to effectively isolate the system from disturbing vibrations. The WRI is a type of passive isolator that exhibits nonlinear behavior. It consists of stranded wire rope held between two metal retainer bars and the metal wire rope is made up of individual wire strands that are in frictional contact with each other, hence, it is a kind of friction-type isolator. This paper compiles the research work on wire rope isolators. This paper presents the research work under two categories, namely monotonic and cyclic loading behaviors of WRI. The review also discusses the different terminologies associated with vibration isolation system and highlights the comparison between various isolation systems. (paper)

3. Active vibration isolation of high precision machines

CERN Document Server

Collette, C; Artoos, K; Hauviller, C

2010-01-01

This paper provides a review of active control strategies used to isolate high precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.

4. A Sub-Hertz, Low-Frequency Vibration Isolation Platform

Science.gov (United States)

Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio

2011-01-01

One of the major technical problems deep-space optical communication (DSOC) systems need to solve is the isolation of the optical terminal from vibrations produced by the spacecraft navigational control system and by the moving parts of onboard instruments. Even under these vibration perturbations, the DSOC transceivers (telescopes) need to be pointed l000 fs of times more accurately than an RF communication system (parabolic antennas). Mechanical resonators have been extensively used to provide vibration isolation for groundbased, airborne, and spaceborne payloads. The effectiveness of these isolation systems is determined mainly by the ability of designing a mechanical oscillator with the lowest possible resonant frequency. The Low-Frequency Vibration Isolation Platform (LFVIP), developed during this effort, aims to reduce the resonant frequency of the mechanical oscillators into the sub-Hertz region in order to maximize the passive isolation afforded by the 40 dB/decade roll-off response of the resonator. The LFVIP also provides tip/tilt functionality for acquisition and tracking of a beacon signal. An active control system is used for platform positioning and for dampening of the mechanical oscillator. The basic idea in the design of the isolation platform is to use a passive isolation strut with an approximately equal to 100-mHz resonance frequency. This will extend the isolation range to lower frequencies. The harmonic oscillator is a second-order lowpass filter for mechanical disturbances. The resonance quality depends on the dissipation mechanisms, which are mainly hysteretic because of the low resonant frequency and the absence of any viscous medium. The LFVIP system is configured using the well-established Stewart Platform, which consists of a top platform connected to a base with six extensible struts (see figure). The struts are attached to the base and to the platform via universal joints, which permit the extension and contraction of the struts. The

5. Two-sensor control in active vibration isolation using hard mounts

NARCIS (Netherlands)

Beijen, M.A.; Tjepkema, D.; van Dijk, J.

To isolate precision machines from floor vibrations, active vibration isolators are often applied. In this paper, a two-sensor control strategy, based on acceleration feedback and force feedback, is proposed for an active vibration isolator using a single-axis active hard mount. The hard mount

6. Two-sensor control in active vibration isolation using hard mounts

NARCIS (Netherlands)

Beijen, M.A.; Tjepkema, D.; van Dijk, Johannes

2014-01-01

To isolate precision machines from floor vibrations, active vibration isolators are often applied. In this paper, a two-sensor control strategy, based on acceleration feedback and force feedback, is proposed for an active vibration isolator using a single-axis active hard mount. The hard mount

7. Vibration isolation of cable tray hangers

International Nuclear Information System (INIS)

Pearce, B.K.; Dixon, M.W.; Jackson, J.E.

1984-01-01

Analytical and experimental investigations have been performed to partially evaluate the feasibility of using much more flexible support systems than those presently used to support electrical and control cables in nuclear power plants. This approach, which entails introducing a flexible element between the support and the component being supported, could apply to many types of support systems, such as for piping, HVAC or even bridges. However, this paper addresses the specific case of cable tray hangers only. It was found that, for appropriate stiffness and damping characteristics, this concept could be used effectively to isolate cable trays from hanger motion caused by seismic excitation and to significantly reduce hanger loads while maintaining reasonable displacements. This was found to be true for all variations in system parameters investigated. Thus, the flexible hanger concept appears to offer much potential. However, additional study including full-scale testing and more detailed analysis must be completed before the concept can be validated for plant use

8. Vibration isolation and damping in high precision equipment

Science.gov (United States)

Bukkems, B.; Ruijl, T.; Simons, J.

2017-06-01

All systems located in a laboratory environment or factory are subject to disturbances. These disturbances can either come from the surroundings, e.g. floor-induced vibrations, or from the system itself, e.g. stage-induced vibrations. In many cases it is needed to minimize the effect of these disturbances. This can either be done by isolating the system from its disturbance source or by applying damping to the system. In this paper we present various cases in which we have effectively reduced the impact of disturbances on the system's performance, either by improving its isolation system, by minimizing the impact of stage reaction forces, or by designing polymer damping into the system.

9. Research on typical topologies of a tubular horizontal-gap passive magnetic levitation vibration isolator

Directory of Open Access Journals (Sweden)

Zhou Yiheng

2017-01-01

Full Text Available Magnetic levitation vibration isolators have attracted more and more attention in the field of high-precision measuring and machining equipment. In this paper, we describe a tubular horizontal-gap passive magnetic levitation vibration isolator. Four typical topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are proposed. The analytical expression of magnetic force is derived. The relationship between levitation force, force density, force ripple and major structural parameters are analysed by finite element method, which is conductive to the design and optimization of the tubular horizontal-gap passive magnetic levitation vibration isolator. The force characteristics of different topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are compared and evaluated from the aspect of force density, force ripple and manufacturability. In comparison with conventional passive magnetic levitation vibration isolators, the proposed tubular horizontal-gap passive magnetic levitation vibration isolator shows advantage in higher force density.

10. Integrated hybrid vibration isolator with feedforward compensation for fast high-precision positioning X/Y tables

International Nuclear Information System (INIS)

Yan, T H; Li, Q; Xu, C; Pu, H Y; Chen, X D

2010-01-01

The design, realization and control technologies of a high-performance hybrid microvibration isolator for ultra-high-precision high-speed moving X/Y tables are presented in this paper—the novel isolator with integrated passive–active high level of damping. The passive damping was implemented using air-springs in both vertical and horizontal directions, with parallel linear motors in two directions to realize the active damping and the positioning functions. It is an actual hybrid isolation system because its air-spring can also be controlled through the pneumatic loop. The isolation servo system also has fast positioning capability via the feedforward compensation for the moving tables. Compared with the conventional filtered reference type control algorithms that rely on the assumption for the adaptive filter and the controlled system, in which the disturbance is estimated from the residual signal, the feedforward compensation here shows high effectiveness of vibration isolation and high-precision positioning performance for its platform. The performance of feedforward compensation has been enhanced via an efficient state estimation adaptive algorithm, the fast Kalman filter. Finally, experimental demonstration has been shown for the prototype system and the results have verified the effectiveness of the proposed isolator system design and the adaptive control algorithm for substantially enhanced damping of the platform system with the moving X/Y tables

11. Vibration Isolation System Using Negative Stiffness(Advances in Motion and Vibration Control Technology)

OpenAIRE

水野, 毅; 高崎, 正也

2003-01-01

A new vibration isolation system using negative stiffness realized by active control technique is proposed in this paper. The serial connection of a normal spring and a suspension system with negative stiffness enables the isolation system to have low stiffness for vibration from the ground and high (theoretically infinite) stiffness against direct disturbance acting on the isolation table. A control method of realizing negative stiffness with a linear actuator is presented in an analytical f...

12. Study of the Mechanical Properties and Vibration Isolation Performance of a Molecular Spring Isolator

Directory of Open Access Journals (Sweden)

Muchun Yu

2016-01-01

Full Text Available Molecular Spring Isolator (MSI is a novel passive vibration isolation technique, providing High-Static-Low-Dynamic (HSLD stiffness based on the use of molecular spring material. The molecular spring material is a solid-liquid mixture consisting of water and hydrophobic nanoporous materials. Under a certain level of external pressure, water molecules can intrude into the hydrophobic pores of nanoporous materials, developing an additional solid-liquid interface. Such interfaces are able to store, release, and transform mechanical energy, providing properties like mechanical spring. Having been only recently developed, the basic mechanic properties of a MSI have not been studied in depth. This paper focuses on the stiffness influence factors, the dynamic frequency response, and the vibration isolation performance of a MSI; these properties help engineers to design MSIs for different engineering applications. First, the working mechanism of a MSI is introduced from a three-dimensional general view of the water infiltration massive hydrophobic nanoporous pores. Next, a wide range of influence factors on the stiffness properties of MSI are studied. In addition, the frequency response functions (FRFs of the MSI vibration isolation system are studied utilizing the matching method based on equivalent piecewise linear (EPL system. Finally, the vibration isolation properties of MSI are evaluated by force transmissibility.

13. Supports for shock, vibration and seismic isolation for tube networks

International Nuclear Information System (INIS)

Prisecaru, Ilie; Serban, Viorel; Sandrea Madalina

2005-01-01

The paper presents a solution for diminishing the shocks, vibrations and seismic movements in pipe networks, with a simultaneous reduction in the general stress conditions in piping and supports. Total removal or reduction of vibrations is a hard problem which was not yet tackled either theoretically, in the sense of an analytical procedure for the analysis of occurrence and development of shocks and vibrations in complex systems, or practically, since the current supports and dampers cannot provide enough damping within all the frequency ranges met in the technical domain. Stiffness of classical supports do not allow always satisfactory source isolation to prevent propagation from environment of shocks and vibrations, Considering the actual condition met in the nuclear power plants, power plants and thermal power plants, etc. this paper represents a major practical aid because it provides new solutions for diminishing shocks, vibrations and seismic movements. Aiming at diminishing the effects of vibrations in pipe networks, this paper presents the results obtained in the design, construction and testing of new types of supports that include sandwich type components made up of elastic blade packages with controlled distortion provided by the central and peripheral stiff parts called SERB. With the new type of supports, the control of the distortion at static and dynamic loads and the thermal displacements is achieved by the relative movement among the sandwich structure subassemblies and by the sandwich structure distortion controlled by the central and peripheral distorting parts that generate a non - linear geometric response which has an easily controllable stiffness and damping, due to their non - linear geometric behavior. The supports of the new type are adjustable to the load and distortion level without overstressing the component material, due to a non - linear geometric behavior while the contact pressure among the blades is limited to pre-set values. Due

14. Pneumatic control technology

International Nuclear Information System (INIS)

Tae, Seong Gil; Kim, Won Hoe; Nam, Dae Hyun

1993-03-01

This book contains property of pneumatic pressure drive, pneumatic pressure device like air cleaning, pressure control, lubricators, air pressure pipe, kinds and function of pneumatic pressure equipment like pneumatic cylinders, pneumatic motor, flow control valve, direction control valve, design of pneumatic control circuit, pneumatic system design, cause and measurement of pneumatic circuit failure, PLC and pneumatic control like introduction and system application and method of PLC programing.

15. Discrete optimization of isolator locations for vibration isolation systems: An analytical and experimental investigation

Energy Technology Data Exchange (ETDEWEB)

Ponslet, E.R.; Eldred, M.S. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.

1996-05-17

An analytical and experimental study is conducted to investigate the effect of isolator locations on the effectiveness of vibration isolation systems. The study uses isolators with fixed properties and evaluates potential improvements to the isolation system that can be achieved by optimizing isolator locations. Because the available locations for the isolators are discrete in this application, a Genetic Algorithm (GA) is used as the optimization method. The system is modeled in MATLAB{trademark} and coupled with the GA available in the DAKOTA optimization toolkit under development at Sandia National Laboratories. Design constraints dictated by hardware and experimental limitations are implemented through penalty function techniques. A series of GA runs reveal difficulties in the search on this heavily constrained, multimodal, discrete problem. However, the GA runs provide a variety of optimized designs with predicted performance from 30 to 70 times better than a baseline configuration. An alternate approach is also tested on this problem: it uses continuous optimization, followed by rounding of the solution to neighboring discrete configurations. Results show that this approach leads to either infeasible or poor designs. Finally, a number of optimized designs obtained from the GA searches are tested in the laboratory and compared to the baseline design. These experimental results show a 7 to 46 times improvement in vibration isolation from the baseline configuration.

16. A Novel Dual–Parallelogram Passive Rocking Vibration Isolator: A Theoretical Investigation and Experiment

Directory of Open Access Journals (Sweden)

Shuai Wang

2017-04-01

Full Text Available Vibration isolators with quasi-zero stiffness (QZS perform well for low- or ultra-low-frequency vibration isolation. This paper proposes a novel dual-parallelogram passive rocking vibration isolator with QZS that could effectively attenuate in-plane disturbances with low-frequency vibration. First, a kinematic model of the proposed vibration isolator was established and four linear spring configuration schemes were developed to implement the QZS. Next, an optimal scheme with good high-static-low-dynamic stiffness (HSLDS performance was obtained through comparison and analysis, and used as a focus for the QZS model. Subsequently, a dynamic model-based Lagrangian equation that considered the spring stiffness and damping and the influence of the payload gravity center on the vibration isolation system was developed, and an average approach was used to analyze the vibration transmissibility. Finally, the prototype and test system were constructed. A comparison of the simulation and experimental results showed that this novel passive rocking vibration isolator could bolster a heavy payload. Experimentally, the vibration amplitude decreased by 53% and 86% under harmonic disturbances of 0.08 Hz and 0.35 Hz, respectively, suggesting the great practical applicability of this presented vibration isolator.

17. Impact of a single session of intermittent pneumatic leg compressions on skeletal muscle and isolated artery gene expression in rats.

Science.gov (United States)

Roseguini, Bruno T; Arce-Esquivel, Arturo A; Newcomer, Sean C; Laughlin, M H

2011-12-01

Intermittent pneumatic leg compressions (IPC) have proven to be an effective noninvasive approach for treatment of patients with claudication, but the mechanisms underlying the clinical benefits remain elusive. In the present study, a rodent model of claudication produced by bilateral ligation of the femoral artery was used to investigate the acute impact of a single session of IPC (150 min) on hemodynamics, skeletal muscle (tibialis anterior), and isolated collateral artery (perforating artery) expression of a subset of genes associated with inflammation and vascular remodeling. In addition, the effect of compression frequency (15 vs. 3 compressions/min) on the expression of these factors was studied. In ligated animals, IPC evoked an increase of monocyte chemoattractant protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant 1 (CXCL1) mRNA (P < 0.01) and immunostaining (P < 0.05), as well as a minor increase in VEGF immunostaining in the muscle endomysium 150 min postintervention. Further, collateral arteries from these animals showed an increased expression of MCP-1 (approximately twofold, P = 0.02). These effects were most evident in the group exposed to the high-frequency protocol (15 compressions/min). In contrast, IPC in sham-operated control animals evoked a modest initial upregulation of VEGF (P = 0.01), MCP-1 (P = 0.02), and CXCL1 (P = 0.03) mRNA in the muscle without concomitant changes in protein levels. No changes in gene expression were observed in arteries isolated from sham animals. In conclusion, IPC acutely up-regulates the expression of important factors involved in vascular remodeling in the compressed muscle and collateral arteries in a model of hindlimb ischemia. These effects appear to be dependent on the compression frequency, such that a high compression frequency (15 compressions/min) evokes more consistent and robust effects compared with the frequency commonly employed clinically to treat patients with claudication (3

18. Active Vibration Isolation Devices with Inertial Servo Actuators

Science.gov (United States)

Melik-Shakhnazarov, V. A.; Strelov, V. I.; Sofiyanchuk, D. V.; Tregubenko, A. A.

2018-03-01

The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2-2.5 times smaller than that of devices with support actuators.

19. Viscoelasticity of new generation thermoplastic polyurethane vibration isolators

Science.gov (United States)

Bek, Marko; Betjes, Joris; von Bernstorff, Bernd-Steffen; Emri, Igor

2017-12-01

This paper presents the analysis of pressure dependence of three thermoplastic polyurethane (TPU) materials on vibration isolation. The three TPU Elastollan® materials are 1190A, 1175A, and 1195D. The aim of this investigation was to analyze how much the performance of isolation can be enhanced using patented Dissipative bulk and granular systems technology. The technology uses granular polymeric materials to enhance materials properties (without changing its chemical or molecular composition) by exposing them to "self-pressurization," which shifts material energy absorption maxima toward lower frequencies, to match the excitation frequency of dynamic loading to which a mechanical system is exposed. Relaxation experiments on materials were performed at different isobaric and isothermal states to construct mastercurves, the time-temperature-pressure interrelation was modeled using the Fillers-Moonan-Tschoegl model. Dynamic material functions, related to isolation stiffness and energy absorption, were determined with the Schwarzl approximation. An increase in stiffness and energy absorption at selected hydrostatic pressure, compared to its stiffness and energy absorption at ambient conditions, is represented with κk(p, ω), defining the increase in stiffness and κd(p, ω), defining the increase in energy absorption. The study showed that close to the glassy state, moduli of 1190A and 1195D are about 6-9 times higher compared to 1175A, whereas their properties at ambient conditions are, for all practical purposes, the same. TPU 1190A turns out to be most sensitive to pressure: at 300 MPa its properties are shifted for 5.5 decades, while for 1195D and 1175A this shift is only 3.5 and 1.5 decades, respectively. In conclusion, the stiffness and energy absorption of isolation may be increased with pressure for about 100 times for 1190A and 1195D and for about 10 times for 1175A.

20. Active Low-frequency Vertical Vibration Isolation System for Precision Measurements

Institute of Scientific and Technical Information of China (English)

WU Kang; LI Gang; HU Hua; WANG Lijun

2017-01-01

Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise.Several types of active vibration isolation systems have been developed.However,few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility.An active low-frequency vertical vibration isolation system based on an earlier instrument,the Super Spring,is designed and implemented.The system,which is simple and compact,consists of two stages:a parallelogram-shaped linkage to ensure vertical motion,and a simple spring-mass system.The theoretical analysis of the vibration isolation system is presented,including terms erroneously ignored before.By carefully choosing the mechanical parameters according to the above analysis and using feedback control,the resonance frequency of the system is reduced from 2.3 to 0.03 Hz,a reduction by a factor of more than 75.The vibration isolation system is installed as an inertial reference in an absolute gravimeter,where it improved the scatter of the absolute gravity values by a factor of 5.The experimental results verifies the improved performance of the isolation system,making it particularly suitable for precision experiments.The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems.An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed,providing fundamental guidelines for vibration isolator design and assembling.

1. Practical pneumatics

CERN Document Server

Stacey, Chris

2012-01-01

Pneumatic power is ideal for the ever increasing range of 'light' applications in which a cheap, clean, adaptable source of power is needed. Used in conjunction with microprocessor control it forms the basis of manufacturing automation from basic conveying and handling lines to complex robotic assembly systems. Training courses and books aimed at the technician have not kept pace with these developments. This book is written to cover the British Fluid Power Association Pneumatics Certificate, which is also awarded as part of CGLI scheme 2340, and is in the process of NVQ accreditation at level

2. Vibration isolation of a building against earthquake, airplane crash and blast

International Nuclear Information System (INIS)

Mischke, J.; Hilpert, H.J.; Henkel, F.O.

1986-01-01

The influence of three different support concepts on the vibration responses of a building to the load cases earthquake, airplane crash and blast is numerically investigated. Compared are the three concepts: the standard version of a double shell structure with a combined base for inner and outer building without isolation system; the same building with isolation system between foundation slab and soil, as vibration isolation known so far; and as a third concept a double shell structure with completely separated inner and outer building, where the isolation system is placed between the two parts of the building. The results show that, compared to the standard concept, the third concept leads to a nearly complete isolation of shock-induced vibrations, and to a reduction of the vibrations caused by an earthquake, comparable to the reduction in the isolation concept known so far. (orig.)

3. Nonlinear dynamic analysis of 2-DOF nonlinear vibration isolation floating raft systems with feedback control

International Nuclear Information System (INIS)

Li Yingli; Xu Daolin; Fu Yiming; Zhou Jiaxi

2012-01-01

In this paper, the average method is adopted to analysis dynamic characteristics of nonlinear vibration isolation floating raft system with feedback control. The analytic results show that the purposes of reducing amplitude of oscillation and complicating the motion can be achieved by adjusting properly the system parameters, exciting frequency and control gain. The conclusions can provide some available evidences for the design and improvement of both the passive and active control of the vibration isolation systems. By altering the exciting frequency and control gain, complex motion of the system can be obtained. Numerical simulations show the system exhibits period vibration, double period vibration and quasi-period motion.

4. Near-Source Error Sensor Strategies for Active Vibration Isolation of Machines

NARCIS (Netherlands)

Beijers, C.A.J.; Basten, T.G.H.; de Boer, Andries; van den Brink, D.R.; Verheij, J.W.; Sas, P; de Munck, M.

2004-01-01

Due to lightweight construction of vehicles and ships, the reduction of structure borne interior noise problems with passive isolation of engine vibrations might be not sufficient. To improve the isolation, a combination of passive and active isolation techniques can be used (so-called hybrid

5. Self-tuning MIMO disturbance feedforward control for active hard-mounted vibration isolators

NARCIS (Netherlands)

Beijen, M.A.; Heertjes, M.F.; Van Dijk, J.; Hakvoort, W. B.J.

2018-01-01

© 2017 Elsevier Ltd This paper proposes a multi-input multi-output (MIMO) disturbance feedforward controller to improve the rejection of floor vibrations in active vibration isolation systems for high-precision machinery. To minimize loss of performance due to model uncertainties, the feedforward

6. Self-tuning MIMO disturbance feedforward control for active hard-mounted vibration isolators

NARCIS (Netherlands)

Beijen, M.A.; Heertjes, M.F.; van Dijk, J.W.; Hakvoort, W.B.J.

2018-01-01

This paper proposes a multi-input multi-output (MIMO) disturbance feedforward controller to improve the rejection of floor vibrations in active vibration isolation systems for high-precision machinery. To minimize loss of performance due to model uncertainties, the feedforward controller is

7. Vibration Isolation Study in Scanning Probe Microscopy Part I: Low Frequency

International Nuclear Information System (INIS)

Oliva, A.I.; Espinosa-Faller, F.J.; Aguilar, M.

1998-01-01

A study of a low frequency isolation device based in a pneumatic system is presented. It consists of four cylinders which are closed and sealed with an elastic membrane on which the load is applied. Each cylinder made of PVC is formed by two chambers divided by a plate with a small hole for communication and damping. Air contained into chambers acts, in combination with the the elastic membranes, as a damper. Scanning probe techniques can be supported by this device in order to reduce the low frequency noises that affects them. Advantages of this isolator are discussed and compared. A theoretical approximation for this model is presented and compared with the experimental results obtained and show that it can isolate noises up to ∼ 2 Hz. The low frequency isolator has stability and fast response to external perturbations. This simple and economical low frequency isolator can be reproduced easily and its design depends on the work specific requirements. (Author) 9 refs

8. Magnetorheological elastomer vibration isolation of tunable three-dimensional locally resonant acoustic metamaterial

Science.gov (United States)

Xu, Zhenlong; Tong, Jie; Wu, Fugen

2018-03-01

Magnetorheological elastomers (MREs) are used as cladding in three-dimensional locally resonant acoustic metamaterial (LRAM) cores. The metamaterial units are combined into a vibration isolator. Two types of LRAMs, namely, cubic and spherical kernels, are constructed. The finite element method is used to analyze the elastic band structures, transmittances, and vibration modes of the incident elastic waves. Results show that the central position and width of the LRAM elastic bandgap can be controlled by the application of an external magnetic field; furthermore, they can be adjusted by changing the MRE cladding thickness. These methods contribute to the design of metamaterial MRE vibration isolators.

9. Isolation of I and C cabinets against shocks, vibrations and seismic movements

International Nuclear Information System (INIS)

Ciocan, George; Zamfir, Madalina; Florea, Ioana; Androne, Marian; Serban, Viorel; Prisecaru, Ilie

2007-01-01

This paper presents SERB-CITON solution to isolate the I and C cabinets against shocks, vibrations and seismic movements. The seismic qualification is required because the I and C components installed inside the cabinets are generally sensitive to shocks, vibrations and seismic movements and many times, the manufacturer does not guarantee them for a level of shocks, vibrations and seismic movements higher and equal to the level corresponding to the location where they are installed. The document also presents the solution to isolate such I and C cabinets associated to the hydrogen sulfide compressors located in ROMAG-PROD Drobeta Turnu-Severin. (authors)

10. An adaptive left–right eigenvector evolution algorithm for vibration isolation control

International Nuclear Information System (INIS)

Wu, T Y

2009-01-01

The purpose of this research is to investigate the feasibility of utilizing an adaptive left and right eigenvector evolution (ALREE) algorithm for active vibration isolation. As depicted in the previous paper presented by Wu and Wang (2008 Smart Mater. Struct. 17 015048), the structural vibration behavior depends on both the disturbance rejection capability and mode shape distributions, which correspond to the left and right eigenvector distributions of the system, respectively. In this paper, a novel adaptive evolution algorithm is developed for finding the optimal combination of left–right eigenvectors of the vibration isolator, which is an improvement over the simultaneous left–right eigenvector assignment (SLREA) method proposed by Wu and Wang (2008 Smart Mater. Struct. 17 015048). The isolation performance index used in the proposed algorithm is defined by combining the orthogonality index of left eigenvectors and the modal energy ratio index of right eigenvectors. Through the proposed ALREE algorithm, both the left and right eigenvectors evolve such that the isolation performance index decreases, and therefore one can find the optimal combination of left–right eigenvectors of the closed-loop system for vibration isolation purposes. The optimal combination of left–right eigenvectors is then synthesized to determine the feedback gain matrix of the closed-loop system. The result of the active isolation control shows that the proposed method can be utilized to improve the vibration isolation performance compared with the previous approaches

11. Seismic isolation floor and vibration control equipment for nuclear power plant

International Nuclear Information System (INIS)

Niwa, H.; Fujimoto, S.; Aida, Y.; Miyano, H.

1996-01-01

We have developed a seismic isolation floor to improve protection against earthquakes for process computer systems, and a magnetic dynamic damper to reduce the mechanical vibrations of piping systems and pumps in nuclear power plants. Seismic excitation tests of the seismic isolation floor, on which process computer systems were installed, were performed using large earthquake simulators. The test results proved that the seismic isolation floor significantly reduced seismic forces. To control mechanical vibrations, a magnetic dynamic damper was designed using permanent magnets. This magnetic dynamic damper does not require mechanical springs, dampers and supports in the floors and walls of the building. Vibration tests using a rotating machine model confirmed that the magnetic dynamic damper effectively controlled vibrations in such a rotating machine model. (author)

12. Design and Analysis of Shock and Random Vibration Isolation of Operating Hard Disk Drive in Harsh Environment

Directory of Open Access Journals (Sweden)

Hendri Harmoko

2009-01-01

Full Text Available An effective vibration isolation system is important for hard disk drives (HDD used in a harsh mechanical environment. This paper describes how to design, simulate, test and evaluate vibration isolation systems for operating HDD subjected to severe shock and random vibrations based on military specifications MIL-STD-810E. The well-defined evaluation criteria proposed in this paper can be used to effectively assess the performance of HDD vibration isolation system. Design concepts on how to achieve satisfactory shock and vibration isolation for HDD are described. The concepts are tested and further enhanced by the two design case studies presented here. It is shown that an effective vibration isolation system, that will allow a HDD to operate well when subjected to severe shock and random vibration, is feasible.

13. A new vibration isolation bed stage with magnetorheological dampers for ambulance vehicles

International Nuclear Information System (INIS)

Chae, Hee Dong; Choi, Seung-Bok

2015-01-01

The vibration experienced in an ambulance can lead to secondary injury to a patient and discourage a paramedic from providing emergency care. In this study, with the goal of resolving this problem, a new vibration isolation bed stage associated with magnetorheological (MR) dampers is proposed to ensure ride quality as well as better care for the patient while he/she is being transported. The bed stage proposed in this work can isolate vibrations in the vertical, rolling and pitching directions to reflect the reality that occurs in the ambulance. Firstly, an appropriate-sized MR damper is designed based on the field-dependent rheological properties of MR fluid, and the damping force characteristics of a MR damper are evaluated as a function of the current. A mechanical model of the proposed vibration isolation bed stage is then established to derive the governing equations of motion. Subsequently, a sliding mode controller is formulated to control the vibrations caused from the imposed excitation signals; those signals are directly measured using a real ambulance subjected to bump-and-curve road conditions. Using the controller based on the dynamic motion of the bed stage, the vibration control performance is evaluated in both the vertical and pitch directions. It is demonstrated that the magnitude of the vibration in the patient compartment of the ambulance can be significantly reduced by applying an input current to the MR dampers installed for the new bed stage. (technical note)

14. A novel magnetorheological elastomer isolator with negative changing stiffness for vibration reduction

International Nuclear Information System (INIS)

Yang, J; Sun, S S; Li, W H; Alici, G; Du, H; Deng, H X

2014-01-01

Magneto-rheological elastomers (MREs) have attracted notable credits in the development of smart isolators and absorbers due to their controllable stiffness and damping properties. For the purpose of mitigating unwanted structural and/or machinery vibrations, the traditional MRE-based isolators have been generally proven effective because the MR effect can increase the stiffness when the magnetic field is strengthened. This study presents a novel MRE isolator that experienced reduced stiffness when the applied current was increased. This innovative work was accomplished by applying a hybrid magnet (electromagnet and permanent magnets) onto a multilayered MRE structure. To characterise this negative changing stiffness concept, a multilayered MRE isolator with a hybrid magnet was first designed, fabricated and then tested to measure its properties. An obvious reduction of the effective stiffness and natural frequency of the proposed MRE isolator occurred when the current was continuously adjusted. This device could also work as a conventional MRE isolator as its effective stiffness and natural frequency also increased when a negative current was applied. Further testing was carried out on a one-degree-of-freedom system to assess how effectively this device could isolate vibration. In this experiment, two cases were considered; in each case, the vibration of the primary system was obviously attenuated under ON-OFF control logic, thus demonstrating the feasibility of this novel design as an alternative adaptive vibration isolator. (paper)

15. Active and passive vibration isolation in piezoelectric phononic rods with external voltage excitation

Directory of Open Access Journals (Sweden)

Qicheng Zhang

2017-05-01

Full Text Available Active piezoelectric materials are applied to one-dimensional phononic crystals, for the control of longitudinal vibration propagation both in active and passive modes. Based on the electromechanical coupling between the acoustical vibration and electric field, the electromechanical equivalent method is taken to theoretically predict the transmission spectrum of the longitudinal vibration. It is shown that the phononic rod can suppress the vibration efficiently at the frequencies of interest, by actively optimizing the motions of piezoelectric elements. In an illustrated phononic rod of 11.2cm long, active tunable isolations of more than 20dB at low frequencies (500Hz-14kHz are generated by controlling the excitation voltages of piezoelectric elements. Meanwhile, passive fixed isolation at high frequencies (14k-63kHz are presented by its periodicity characteristics. Finite element simulations and vibration experiments on the rod demonstrate the effectiveness of the approach in terms of its vibration isolation capabilities and tunable characteristics. This phononic rod can be manufactured easily and provides numerous potential applications in designing isolation mounts and platforms.

16. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration

Science.gov (United States)

Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Chun-yu

2017-10-01

A hybrid isolator consisting of maglev actuator and air spring is proposed and developed for application in active-passive vibration isolation system of ship machinery. The dynamic characteristics of this hybrid isolator are analyzed and tested. The stability and adaptability of this hybrid isolator to shock and swing in the marine environment are improved by a compliant gap protection technique and a disengageable suspended structure. The functions of these new engineering designs are proved by analytical verification and experimental validation of the designed stiffness of such a hybrid isolator, and also by shock adaptability testing of the hybrid isolator. Finally, such hybrid isolators are installed in an engineering mounting loaded with a 200-kW ship diesel generator, and the broadband and low-frequency sinusoidal isolation performance is tested.

17. Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams

Energy Technology Data Exchange (ETDEWEB)

Zhang, Xiaoyong, E-mail: zhangxy@buaa.edu.cn, E-mail: yanxiaojun@buaa.edu.cn; Yan, Xiaojun, E-mail: zhangxy@buaa.edu.cn, E-mail: yanxiaojun@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Ding, Xin; Wu, Di; Qi, Junlei; Wang, Ruixin; Lu, Siwei [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

2016-06-15

This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young’s modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz–97 Hz by applying different heating strategies. Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.

18. Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams

International Nuclear Information System (INIS)

Zhang, Xiaoyong; Yan, Xiaojun; Ding, Xin; Wu, Di; Qi, Junlei; Wang, Ruixin; Lu, Siwei

2016-01-01

This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young’s modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz–97 Hz by applying different heating strategies. Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.

19. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator

International Nuclear Information System (INIS)

Du, Haiping; Li, Weihua; Zhang, Nong

2011-01-01

This paper presents a study on continuously variable stiffness control of vehicle seat suspension using a magnetorheological elastomer (MRE) isolator. A concept design for an MRE isolator is proposed in the paper and its behavior is experimentally evaluated. An integrated seat suspension model, which includes a quarter-car suspension and a seat suspension with a driver body model, is used to design a sub-optimal H ∞ controller for an active isolator. The desired control force generated by this active isolator is then emulated by the MRE isolator through its continuously variable stiffness property when the actuating condition is met. The vibration control effect of the MRE isolator is evaluated in terms of driver body acceleration responses under both bump and random road conditions. The results show that the proposed control strategy achieves better vibration reduction performance than conventional on–off control

20. Vibration isolation using nonlinear damping implemented by a feedback-controlled MR damper

International Nuclear Information System (INIS)

Ho, C; Lang, Z Q; Billings, S A; Sapiński, B

2013-01-01

The main problem of using a conventional linear damper on a vibration isolation system is that the reduction of the resonant peak in many cases inevitably results in the degradation of the high-frequency transmissibility. Instead of using active control methods which normally depend on the model of the controlled plant and where unmodelled dynamics may induce stability concerns, recent studies have revealed that optimal vibration isolation over a wide frequency range can be achieved by using nonlinear damping. The present study is concerned with the realization of the ideal nonlinear damping characteristic using a feedback-controlled MR damper. Both simulation and experimental studies are conducted to demonstrate the advantages of the simple but effective vibration control strategy. This research work has significant implications for the effective use of MR dampers in the vibration control of a wide range of engineering systems. (paper)

1. The study and analysis of point-to-point vibration isolation and its utility to seismic base isolator

International Nuclear Information System (INIS)

Mehboob, M.; Qureshi, A.S.

2001-01-01

This paper presents systematic approach to regarding the piece wise vibration isolation generally termed as point-to-point vibration isolation system, and its broad spectrum-utilities to an economic seismic base isolation. Transfer of curves for coulomb damped i.e. softening damper flexible mountings are presented and the utility has been proved equally good for both rigidly and elastically coupled damping. It is clearly shown that the very closest solutions are easily obtainable for both slipping and sticking nature of phases of the motion. This eliminates the conventional and conceptual approximations based on the linearization of the damping. This new concept will not endanger-super-structure if mounted on such isolation systems. (author)

2. Experimental and Theoretical Vibrational Spectra of Sideridiol Isolated from Sideritis Species

Science.gov (United States)

Kilic, Turgut; Sagir, Züleyha Ozer; Carikci, Sema; Azizoğlu, Akın

2017-12-01

Sideridiol ( ent-7α,18β-dihydroxykaur-15-ene) one of the ent-kaurene diterpenoid, is isolated from the genus Sideritis L. belongs to the family of Lamiaceae. The vibrational frequencies of sideridiol in the ground state have been calculated using the Density Functional Theory (DFT) method with the 6-31G( d) and 6 31+G( d, p) basis sets. The calculated vibrational frequencies have been compared with that of obtained experimental IR spectrum.

3. Recent results of seismic isolation study in CRIEPI: Tests on seismic isolation elements, vibration tests and observations

Energy Technology Data Exchange (ETDEWEB)

Ishida, Katsuhiko; Shiojiri, Hiroo; Mazda, Taiji; Ohtori, Yasuki [Abiko Research Laboratory, Central Research Institute of Electric Power Industry (Japan); Aoyagi, Sakae [Central Research Institute of Electric Power Industry (Japan)

1992-07-01

Seismic isolation is expected to be effective in raising reliability during earthquake, reducing cost, enlarging and promoting the design standardization of electric power facilities. In Japan, it has been applied to several buildings. However it is considered that more research is needed to verify the reliability and effectiveness of seismic isolation for fast breeder reactors. In the preliminary study of isolation concepts for FBRs the horizontal base isolation of buildings was investigated in detail. The laminated rubber bearings were considered to be most suitable isolation system. Tests on large scale models of rubber bearing and vibration test of base isolation system have been conducted as well as the earthquake response observation of isolated buildings were conducted.

4. Recent results of seismic isolation study in CRIEPI: Tests on seismic isolation elements, vibration tests and observations

International Nuclear Information System (INIS)

Ishida, Katsuhiko; Shiojiri, Hiroo; Mazda, Taiji; Ohtori, Yasuki; Aoyagi, Sakae

1992-01-01

Seismic isolation is expected to be effective in raising reliability during earthquake, reducing cost, enlarging and promoting the design standardization of electric power facilities. In Japan, it has been applied to several buildings. However it is considered that more research is needed to verify the reliability and effectiveness of seismic isolation for fast breeder reactors. In the preliminary study of isolation concepts for FBRs the horizontal base isolation of buildings was investigated in detail. The laminated rubber bearings were considered to be most suitable isolation system. Tests on large scale models of rubber bearing and vibration test of base isolation system have been conducted as well as the earthquake response observation of isolated buildings were conducted

5. Adaptive active vibration isolation – A control perspective

Directory of Open Access Journals (Sweden)

Landau Ioan Doré

2015-01-01

The paper will review a number of recent developments for adaptive feedback compensation of multiple unknown and time-varying narrow band disturbances and for adaptive feedforward compensation of broad band disturbances in the presence of the inherent internal positive feedback caused by the coupling between the compensator system and the measurement of the image of the disturbance. Some experimental results obtained on a relevant active vibration control system will illustrate the performance of the various algorithms presented.

6. Mounting Systems for Structural Members, Fastening Assemblies Thereof, and Vibration Isolation Systems Including the Same

Science.gov (United States)

Young, Ken (Inventor); Hindle, Timothy (Inventor); Barber, Tim Daniel (Inventor)

2016-01-01

Mounting systems for structural members, fastening assemblies thereof, and vibration isolation systems including the same are provided. Mounting systems comprise a pair of mounting brackets, each clamped against a fastening assembly forming a mounting assembly. Fastening assemblies comprise a spherical rod end comprising a spherical member having a through opening and an integrally threaded shaft, first and second seating members on opposite sides of the spherical member and each having a through opening that is substantially coaxial with the spherical member through opening, and a partially threaded fastener that threadably engages each mounting bracket forming the mounting assembly. Structural members have axial end portions, each releasably coupled to a mounting bracket by the integrally threaded shaft. Axial end portions are threaded in opposite directions for permitting structural member rotation to adjust a length thereof to a substantially zero strain position. Structural members may be vibration isolator struts in vibration isolation systems.

7. Accelerated lifetime test of vibration isolator made of Metal Rubber material

Science.gov (United States)

Ao, Hongrui; Ma, Yong; Wang, Xianbiao; Chen, Jianye; Jiang, Hongyuan

2017-01-01

The Metal Rubber material (MR) is a kind of material with nonlinear damping characteristics for its application in the field of aerospace, petrochemical industry and so on. The study on the lifetime of MR material is impendent to its application in engineering. Based on the dynamic characteristic of MR, the accelerated lifetime experiments of vibration isolators made of MR working under random vibration load were conducted. The effects of structural parameters of MR components on the lifetime of isolators were studied and modelled with the fitting curves of degradation data. The lifetime prediction methods were proposed based on the models.

8. Experimental Investigations on the Dynamic Behaviour of O-Type Wire-Cable Vibration Isolators

Directory of Open Access Journals (Sweden)

Hong-Xia Wang

2015-01-01

Full Text Available A series of periodic loading experiments were carried out on the O-type wire-cable vibration isolators. The isolators were loaded under shear, roll, and tension-compression loadings. When subjected to shear and roll loads, the restoring force-deformation curves generated by the isolators formed symmetric hysteresis loops. However, when the isolators were loaded with tension-compression loads, the isolator produced asymmetric hysteresis loops. It is found through the experiment that the dynamic characteristics of the isolator are determined by the loading amplitude as well as the geometric parameters of the isolator while they are almost independent of loading frequency within the testing frequency range. Based on the experimental data, the dynamic response of the isolator was modeled by a modified normalized Bouc-Wen model. The parameters of this model were identified through an identification procedure that does not involve any nonlinear iterative algorithms. Comparison between the identification results and the experimental data suggests that the identification method is effective. With the model and the identified parameters, the frequency response of an O-type wire-cable vibration isolator-mass system was evaluated. Typical nonlinear response behaviors were found when the isolator was used in tension-compression mode while the response appears to be similar to that of a linear system when the isolator was used in shear and roll mode.

9. Parametric Design and Multiobjective Optimization of Maglev Actuators for Active Vibration Isolation System

Directory of Open Access Journals (Sweden)

Qianqian Wu

2014-05-01

Full Text Available The microvibration has a serious impact on science experiments on the space station and on image quality of high resolution satellites. As an important component of the active vibration isolation platform, the maglev actuator has a large stroke and exhibits excellent isolating performance benefiting from its noncontact characteristic. A maglev actuator with good linearity was designed in this paper. Fundamental features of the maglev actuator were obtained by finite element simulation. In order to minimize the coil weight and the heat dissipation of the maglev actuator, parametric design was carried out and multiobjective optimization based on the genetic algorithm was adopted. The optimized actuator has better mechanical properties than the initial one. Active vibration isolation platforms for different-scale payload were designed by changing the arrangement of the maglev actuators. The prototype to isolate vibration for small-scale payload was manufactured and the experiments for verifying the characteristics of the actuators were set up. The linearity of the actuator and the mechanical dynamic response of the vibration isolation platform were obtained. The experimental results highlight the effectiveness of the proposed design.

10. Vibration isolation by compliant sensor mounting applied to a coriolis mass-flow meter

NARCIS (Netherlands)

van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes

2014-01-01

In this paper a vibration isolated design of the Coriolis Mass-Flow Meter (CMFM) is proposed, by introducing a compliant connection between the casing and the tube displacement sensors with the intention to obtain a relative displacement measurement of the fluid conveying tube, dependent on the tube

11. Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting

Science.gov (United States)

Pei, Yalu; Liu, Yilun; Zuo, Lei

2018-06-01

This paper investigates multi-resonant electromagnetic shunts applied to base isolation for dual-function vibration damping and energy harvesting. Two multi-mode shunt circuit configurations, namely parallel and series, are proposed and optimized based on the H2 criteria. The root-mean-square (RMS) value of the relative displacement between the base and the primary structure is minimized. Practically, this will improve the safety of base-isolated buildings subjected the broad bandwidth ground acceleration. Case studies of a base-isolated building are conducted in both the frequency and time domains to investigate the effectiveness of multi-resonant electromagnetic shunts under recorded earthquake signals. It shows that both multi-mode shunt circuits outperform traditional single mode shunt circuits by suppressing the first and the second vibration modes simultaneously. Moreover, for the same stiffness ratio, the parallel shunt circuit is more effective at harvesting energy and suppressing vibration, and can more robustly handle parameter mistuning than the series shunt circuit. Furthermore, this paper discusses experimental validation of the effectiveness of multi-resonant electromagnetic shunts for vibration damping and energy harvesting on a scaled-down base isolation system.

12. The interior working mechanism and temperature characteristics of a fluid based micro-vibration isolator

Science.gov (United States)

Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian

2016-01-01

Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.

13. Vibration Isolation by an Actively Compliantly Mounted Sensor Applied to a Coriolis Mass-Flow Meter

NARCIS (Netherlands)

van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries

2016-01-01

In this paper, a vibration isolated design of a Coriolis mass-flow meter (CMFM) is proposed by introducing a compliant connection between the casing and the tube displacement sensors, with the objective to obtain a relative displacement measurement of the fluid conveying tube, dependent on the tube

14. A combined dynamic analysis method for geometrically nonlinear vibration isolators with elastic rings

Science.gov (United States)

Hu, Zhan; Zheng, Gangtie

2016-08-01

A combined analysis method is developed in the present paper for studying the dynamic properties of a type of geometrically nonlinear vibration isolator, which is composed of push-pull configuration rings. This method combines the geometrically nonlinear theory of curved beams and the Harmonic Balance Method to overcome the difficulty in calculating the vibration and vibration transmissibility under large deformations of the ring structure. Using the proposed method, nonlinear dynamic behaviors of this isolator, such as the lock situation due to the coulomb damping and the usual jump resulting from the nonlinear stiffness, can be investigated. Numerical solutions based on the primary harmonic balance are first verified by direct integration results. Then, the whole procedure of this combined analysis method is demonstrated and validated by slowly sinusoidal sweeping experiments with different amplitudes of the base excitation. Both numerical and experimental results indicate that this type of isolator behaves as a hardening spring with increasing amplitude of the base excitation, which makes it suitable for isolating both steady-state vibrations and transient shocks.

15. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators

Science.gov (United States)

Wang, Chaoxin; Xie, Xiling; Chen, Yanhao; Zhang, Zhiyi

2016-11-01

A Stewart platform with piezoelectric actuators is presented for micro-vibration isolation. The Jacobi matrix of the Stewart platform, which reveals the relationship between the position/pointing of the payload and the extensions of the six struts, is derived by kinematic analysis. The dynamic model of the Stewart platform is established by the FRF (frequency response function) synthesis method. In the active control loop, the direct feedback of integrated forces is combined with the FxLMS based adaptive feedback to dampen vibration of inherent modes and suppress transmission of periodic vibrations. Numerical simulations were conducted to prove vibration isolation performance of the Stewart platform under random and periodical disturbances, respectively. In the experiment, the output consistencies of the six piezoelectric actuators were measured at first and the theoretical Jacobi matrix as well as the feedback gain of each piezoelectric actuator was subsequently modified according to the measured consistencies. The direct feedback loop was adjusted to achieve sufficient active damping and the FxLMS based adaptive feedback control was adopted to suppress vibration transmission in the six struts. Experimental results have demonstrated that the Stewart platform can achieve 30 dB attenuation of periodical disturbances and 10-20 dB attenuation of random disturbances in the frequency range of 5-200 Hz.

16. Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

Science.gov (United States)

Whorton, Mark

2003-01-01

Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

17. Analysis and wafer-level design of a high-order silicon vibration isolator for resonating MEMS devices

International Nuclear Information System (INIS)

Yoon, Sang Won; Lee, Sangwoo; Najafi, Khalil; Perkins, Noel C

2011-01-01

This paper presents the analysis and preliminary design, fabrication, and measurement for mechanical vibration-isolation platforms especially designed for resonating MEMS devices including gyroscopes. Important parameters for designing isolation platforms are specified and the first platform (in designs with cascaded multiple platforms) is crucial for improving vibration-isolation performance and minimizing side-effects on integrated gyroscopes. This isolation platform, made from a thick silicon wafer substrate for an environment-resistant MEMS package, incorporates the functionalities of a previous design including vacuum packaging and thermal resistance with no additional resources. This platform consists of platform mass, isolation beams, vertical feedthroughs, and bonding pads. Two isolation platform designs follow from two isolation beam designs: lateral clamped–clamped beams and vertical torsion beams. The beams function simultaneously as mechanical springs and electrical interconnects. The vibration-isolation platform can yield a multi-dimensional, high-order mechanical low pass filter. The isolation platform possesses eight interconnects within a 12.2 × 12.2 mm 2 footprint. The contact resistance ranges from 4–11 Ω depending on the beam design. Vibration measurements using a laser-Doppler vibrometer demonstrate that the lateral vibration-isolation platform suppresses external vibration having frequencies exceeding 2.1 kHz.

18. Nonlinear damping for vibration isolation of microsystems using shear thickening fluid

Science.gov (United States)

Iyer, S. S.; Vedad-Ghavami, R.; Lee, H.; Liger, M.; Kavehpour, H. P.; Candler, R. N.

2013-06-01

This work reports the measurement and analysis of nonlinear damping of micro-scale actuators immersed in shear thickening fluids (STFs). A power-law damping term is added to the linear second-order model to account for the shear-dependent viscosity of the fluid. This nonlinear model is substantiated by measurements of oscillatory motion of a torsional microactuator. At high actuation forces, the vibration velocity amplitude saturates. The model accurately predicts the nonlinear damping characteristics of the STF using a power-law index extracted from independent rheology experiments. This result reveals the potential to use STFs as adaptive, passive dampers for vibration isolation of microelectromechanical systems.

19. Six-degree-of-freedom active vibration isolation using a Stewart platform mechanism

Science.gov (United States)

Geng, Zheng; Haynes, Leonard S.

1993-01-01

The design and control problems of a class of multidegree-of-freedom vibration isolation systems (VISs) based on a Stewart platform mechanism are studied. A prototype of a six-degree-of-freedom VIS for precision control of a wide range of space-based structures implemented in Intelligent Automation, Inc. is described. The feasibility of using a Stewart platform to achieve 6-degree-of-freedom vibration control in space applications is shown. A new Terfenol-D actuator characterized by significantly longer stroke than any commercially available Terfenol-D actuator and direct flux and strain sensors integral to the actuator is described.

20. Modeling of vibrations isolation and arrest by shape memory parts and permanent magnets

Science.gov (United States)

Belyaev, Fedor S.; Volkov, Aleksandr E.; Evard, Margarita E.; Vikulenkov, Andrey V.; Uspenskiy, Evgeniy S.

2018-05-01

A vibration protection system under consideration consists of a payload connected to a vibrating housing by shape memory alloy (SMA) slotted springs. To provide an arrest function two permanent magnets are inserted into the system. The slotted SMA elements are preliminary deformed in the martensitic state. Activation of one element by heating initiates force and displacement generation, which provide an arrest of the payload by magnets. The magnets also secure the arrest mode after cooling of the SMA element. Activation of the other element results in uncaging of the payload and switching to the vibration isolation mode. Computer simulations of arrest and uncaging when the housing is quiescent or producing sine-wave displacements were carried out. Functional-mechanical behavior of SMA parts was described by means of a microstructural model.

1. Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight

Science.gov (United States)

Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang

2017-12-01

The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.

2. Improving of the operation efficiency of the vehicle due to using of the neodymium magnets inside the vibration isolation devices

Science.gov (United States)

Gurova, E. G.

2015-09-01

In this paper the isolation suspension with stiffness compensator based on neodymium magnets is suggested. It was found that the passive vibration isolators not completely sufficient of modern requirement of the vibration isolation. It was determined that the neodymium magnets with the same initial parameters are most effective in comparison with DC current electromagnets. The mathematical model of the vibration isolation suspension has been developed. In this research the traction characteristics for given magnets are presented. Also the design of the vibration isolation suspension with compensator of the stiffness based on neodymium magnets has been developed. This research has been performed under support of the President scholarship for young scientists under the order of Russian Federation Ministry of the education and science No 184 from 10th of March 2015.

3. Vibration isolation/suppression: research experience for undergraduates in mechatronics and smart structures

Science.gov (United States)

Fonda, James; Rao, Vittal S.; Sana, Sridhar

2001-08-01

This paper provides an account of a student research project conducted under the sponsoring of the National Science Foundation (NSF) program on Research Experience for Undergraduates (REU) in Mechatronics and Smart Strictures in the summer of 2000. The objective of the research is to design and test a stand-alone controller for a vibration isolation/suppression system. The design specification for the control system is to suppress the vibrations induced by the external disturbances by at least fiver times and hence to achieve vibration isolation. Piezo-electric sensors and actuators are utilized for suppression of unwanted vibrations. Various steps such as modeling of the system, controller design, simulation, closed-loop testing using d- Space rapid prototyping system, and analog control implementation are discussed in the paper. Procedures for data collection, the trade-offs carried out in the design, and analog controller implementation issues are also presented in the paper. The performances of various controllers are compared. The experiences of an undergraduate student are summarized in the conclusion of the paper.

4. The Characteristics of Vibration Isolation System with Damping and Stiffness Geometrically Nonlinear

Science.gov (United States)

Lu, Ze-Qi; Chen, Li-Qun; Brennan, Michael J.; Li, Jue-Ming; Ding, Hu

2016-09-01

The paper concerns an investigation into the use of both stiffness and damping nonlinearity in the vibration isolator to improve its effectiveness. The nonlinear damping and nonlinear stiffness are both achieved by horizontal damping and stiffness as the way of the geometrical nonlinearity. The harmonic balance method is used to analyze the force transmissibility of such vibration isolation system. It is found that as the horizontal damping increasing, the height of the force transmissibility peak is decreased and the high-frequency force transmissibility is almost the same. The results are also validated by some numerical method. Then the RMS of transmissibility under Gaussian white noise is calculated numerically, the results demonstrate that the beneficial effects of the damping nonlinearity can be achieved under random excitation.

5. Vibration Isolation and Trajectory Following Control of a Cable Suspended Stewart Platform

Directory of Open Access Journals (Sweden)

Xuechao Duan

2016-10-01

Full Text Available To achieve high-quality vibration isolation and trajectory following control of a cable driven parallel robot based Stewart platform in the five hundred meter aperture spherical radio telescope (FAST design, the integrated dynamic model of the Stewart platform including the electric cylinder is established in this paper, the globally feedback linearization of the dynamic model is implemented based on the control law partitioning approach. To overcome the disadvantages of the external disturbance on the base and unmodeled flexibility of the mechanism, a PID (Proportional-Derivative-Integral controller with base acceleration feedforward is designed in the operational space of the Stewart platform. Experiments of the vibration isolation and trajectory following control of the cable suspended Stewart platform with presence of the base disturbance is carried out. The experimental results show that the presented control scheme has the advantage of stable dynamics, high accuracy and strong robustness.

6. A tubular dielectric elastomer actuator: Fabrication, characterization and active vibration isolation

DEFF Research Database (Denmark)

Sarban, R.; Jones, R. W.; Mace, B. R.

2011-01-01

This contribution reviews the fabrication, characterization and active vibration isolation performance of a core-free rolled tubular dielectric elastomer (DE) actuator, which has been designed and developed by Danfoss PolyPower A/S. PolyPower DE material, PolyPower (TM), is produced in thin sheets...... of 80 mu m thickness with corrugated metallic electrodes on both sides. Tubular actuators are manufactured by rolling the DE sheets in a cylindrical shape. The electromechanical characteristics of such actuators are modeled based on equilibrium pressure equation. The model is validated with experimental...... the dominant dynamic characteristics of the core-free tubular actuator. It has been observed that all actuators have similar dynamic characteristics in a frequency range up to 1 kHz. A tubular actuator is then used to provide active vibration isolation (AVI) of a 250 g mass subject to shaker generated 'ground...

7. Bifurcations and chaos of a vibration isolation system with magneto-rheological damper

Energy Technology Data Exchange (ETDEWEB)

Zhang, Hailong [Magneto-electronics Lab, School of Physics and Technology, Nanjing Normal University, Nanjing 210046 (China); Vibration Control Lab, School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042 (China); Zhang, Ning [Magneto-electronics Lab, School of Physics and Technology, Nanjing Normal University, Nanjing 210046 (China); Min, Fuhong; Yan, Wei; Wang, Enrong, E-mail: erwang@njnu.edu.cn [Vibration Control Lab, School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042 (China)

2016-03-15

Magneto-rheological (MR) damper possesses inherent hysteretic characteristics. We investigate the resulting nonlinear behaviors of a two degree-of-freedom (2-DoF) MR vibration isolation system under harmonic external excitation. A MR damper is identified by employing the modified Bouc-wen hysteresis model. By numerical simulation, we characterize the nonlinear dynamic evolution of period-doubling, saddle node bifurcating and inverse period-doubling using bifurcation diagrams of variations in frequency with a fixed amplitude of the harmonic excitation. The strength of chaos is determined by the Lyapunov exponent (LE) spectrum. Semi-physical experiment on the 2-DoF MR vibration isolation system is proposed. We trace the time history and phase trajectory under certain values of frequency of the harmonic excitation to verify the nonlinear dynamical evolution of period-doubling bifurcations to chaos. The largest LEs computed with the experimental data are also presented, confirming the chaotic motion in the experiment. We validate the chaotic motion caused by the hysteresis of the MR damper, and show the transitions between distinct regimes of stable motion and chaotic motion of the 2-DoF MR vibration isolation system for variations in frequency of external excitation.

8. Bifurcations and chaos of a vibration isolation system with magneto-rheological damper

Directory of Open Access Journals (Sweden)

Hailong Zhang

2016-03-01

Full Text Available Magneto-rheological (MR damper possesses inherent hysteretic characteristics. We investigate the resulting nonlinear behaviors of a two degree-of-freedom (2-DoF MR vibration isolation system under harmonic external excitation. A MR damper is identified by employing the modified Bouc-wen hysteresis model. By numerical simulation, we characterize the nonlinear dynamic evolution of period-doubling, saddle node bifurcating and inverse period-doubling using bifurcation diagrams of variations in frequency with a fixed amplitude of the harmonic excitation. The strength of chaos is determined by the Lyapunov exponent (LE spectrum. Semi-physical experiment on the 2-DoF MR vibration isolation system is proposed. We trace the time history and phase trajectory under certain values of frequency of the harmonic excitation to verify the nonlinear dynamical evolution of period-doubling bifurcations to chaos. The largest LEs computed with the experimental data are also presented, confirming the chaotic motion in the experiment. We validate the chaotic motion caused by the hysteresis of the MR damper, and show the transitions between distinct regimes of stable motion and chaotic motion of the 2-DoF MR vibration isolation system for variations in frequency of external excitation.

9. The effect of beam inclination on the performance of a passive vibration isolator using buckled beams

International Nuclear Information System (INIS)

Mori, H; Waters, T; Saotome, N; Nagamine, T; Sato, Y

2016-01-01

Passive vibration isolators are desired to have both high static stiffness to support large static load and low local stiffness to reduce the displacement transmissibility at frequencies greater than resonance. Utilization of a vertical buckled beam as a spring component is one way to realize such a stiffness characteristic since it exhibits a smaller ratio of local stiffness to static stiffness than that of a linear spring. This paper investigates the behaviour of a vibration isolator using inclined beams as well as vertical ones and examines the effect of beam inclination for the purpose of improving the isolation performance. The experimental system investigated has an isolated mass which is supported by a combination of two types of beams: buckled beams and constraining beams. The buckled beams can be inclined from the vertical by attachment devices, and the constraining beams are employed to prevent off-axis motion of the isolated mass. The results demonstrate that the inclination of the buckled beams reduces the resonance frequency and improves the displacement transmissibility at frequencies greater than resonance. (paper)

10. Linear pneumatic actuator

Directory of Open Access Journals (Sweden)

Avram Mihai

2017-01-01

Full Text Available The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber, two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation accomplished.

11. Linear pneumatic actuator

OpenAIRE

Avram Mihai; Niţu Constantin; Bucşan Constantin; Grămescu Bogdan

2017-01-01

The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber), two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation) accomplished.

12. Laser-cutting pneumatics

OpenAIRE

Groenhuis, Vincent; Stramigioli, Stefano

2016-01-01

Pneumatic devices require tight tolerances to keep them leak-free. Specialized companies offer various off-the-shelf devices, while these work well for many applications, there are also situations where custom design and production of pneumatic parts are desired. Cost efficiency, design flexibility, rapid prototyping, and MRI compatibility requirements are reasons why we investigated a method to design and produce different pneumatic devices using a laser cutter from acrylic, acetal, and rubb...

13. Vibrational relaxation and energy transfer of matrix isolated HCl and DCl

Energy Technology Data Exchange (ETDEWEB)

Wiesenfeld, J.M.

1977-12-01

Vibrational kinetic and spectroscopic studies have been performed on matrix-isolated HCl and DCl between 9 and 20 K. Vibrational relaxation rates for v = 2 and v = 1 were measured by a tunable infrared laser-induced, time-resolved fluorescence technique. In an Ar matrix, vibrational decay times are faster than radiative and it is found that HCl relaxes about 35 times more rapidly than CCl, in spite of the fact that HCl must transfer more energy to the lattice than DCl. This result is explained by postulating that the rate-determining step for vibrational relaxation produces a highly rotationally excited guest in a V yield R step; rotational relaxation into lattice phonons follows rapidly. HCl v = 1, but not v = 2, excitation rapidly diffuses through the sample by a resonant dipole-dipole vibrational energy transfer process. Molecular complexes, and in particular the HCl dimer, relax too rapidly for direct observation, less than or approximately 1 ..mu..s, and act as energy sinks in the energy diffusion process. The temperature dependence for all these processes is weak--less than a factor of two between 9 and 20 K. Vibrational relaxation of HCl in N/sub 2/ and O/sub 2/ matrices is unobservable, presumably due to rapid V yield V transfer to the host. A V yield R binary collision model for relaxation in solids is successful in explaining the HCl(DCl)/Ar results as well as results of other experimenters. The model considers relaxation to be the result of ''collisions'' due to molecular motion in quantized lattice normal modes--gas phase potential parameters can fit the matrix kinetic data.

14. Vibrational relaxation and energy transfer of matrix isolated HCl and DCl

International Nuclear Information System (INIS)

Wiesenfeld, J.M.

1977-12-01

Vibrational kinetic and spectroscopic studies have been performed on matrix-isolated HCl and DCl between 9 and 20 K. Vibrational relaxation rates for v = 2 and v = 1 were measured by a tunable infrared laser-induced, time-resolved fluorescence technique. In an Ar matrix, vibrational decay times are faster than radiative and it is found that HCl relaxes about 35 times more rapidly than CCl, in spite of the fact that HCl must transfer more energy to the lattice than DCl. This result is explained by postulating that the rate-determining step for vibrational relaxation produces a highly rotationally excited guest in a V yield R step; rotational relaxation into lattice phonons follows rapidly. HCl v = 1, but not v = 2, excitation rapidly diffuses through the sample by a resonant dipole-dipole vibrational energy transfer process. Molecular complexes, and in particular the HCl dimer, relax too rapidly for direct observation, less than or approximately 1 μs, and act as energy sinks in the energy diffusion process. The temperature dependence for all these processes is weak--less than a factor of two between 9 and 20 K. Vibrational relaxation of HCl in N 2 and O 2 matrices is unobservable, presumably due to rapid V yield V transfer to the host. A V yield R binary collision model for relaxation in solids is successful in explaining the HCl(DCl)/Ar results as well as results of other experimenters. The model considers relaxation to be the result of ''collisions'' due to molecular motion in quantized lattice normal modes--gas phase potential parameters can fit the matrix kinetic data

15. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system

Science.gov (United States)

Dai, Honghua; Jing, Xingjian; Wang, Yu; Yue, Xiaokui; Yuan, Jianping

2018-05-01

Inspired by the smooth motions of a running kangaroo, a bio-inspired quadrilateral shape (BIQS) structure is proposed to suppress the vibrations of a free-floating spacecraft subject to periodic or impulsive forces, which may be encountered during on-orbit servicing missions. In particular, the BIQS structure is installed between the satellite platform and the capture mechanism. The dynamical model of the BIQS isolation system, i.e. a BIQS structure connecting the platform and the capture mechanism at each side, is established by Lagrange's equations to simulate the post-capture dynamical responses. The BIQS system suffering an impulsive force is dealt with by means of a modified version of Lagrange's equations. Furthermore, the classical harmonic balance method is used to solve the nonlinear dynamical system subject to periodic forces, while for the case under impulsive forces the numerical integration method is adopted. Due to the weightless environment in space, the present BIQS system is essentially an under-constrained dynamical system with one of its natural frequencies being identical to zero. The effects of system parameters, such as the number of layers in BIQS, stiffness, assembly angle, rod length, damping coefficient, masses of satellite platform and capture mechanism, on the isolation performance of the present system are thoroughly investigated. In addition, comparisons between the isolation performances of the presently proposed BIQS isolator and the conventional spring-mass-damper (SMD) isolator are conducted to demonstrate the advantages of the present isolator. Numerical simulations show that the BIQS system has a much better performance than the SMD system under either periodic or impulsive forces. Overall, the present BIQS isolator offers a highly efficient passive way for vibration suppressions of free-floating spacecraft.

16. Compact vibration isolation and suspension for Australian International Gravitational Observatory: local control system.

Science.gov (United States)

Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G

2009-11-01

High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

17. Compact vibration isolation and suspension for Australian International Gravitational Observatory: Local control system

Science.gov (United States)

Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G.

2009-11-01

High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

18. Rotary pneumatic valve

Science.gov (United States)

Hardee, Harry C.

1991-01-01

A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

19. Laser-cutting pneumatics

NARCIS (Netherlands)

Groenhuis, Vincent; Stramigioli, Stefano

Pneumatic devices require tight tolerances to keep them leak-free. Specialized companies offer various off-the-shelf devices, while these work well for many applications, there are also situations where custom design and production of pneumatic parts are desired. Cost efficiency, design flexibility,

20. Investigation of a bistable dual-stage vibration isolator under harmonic excitation

International Nuclear Information System (INIS)

Yang, Kai; Huang, Hai; Harne, R L; Wang, K W

2014-01-01

This study explores the steady-state performance of a dual-stage vibration isolator, which is configured by a bistable oscillator and a linear oscillator. The potential force of the bistable stage comprises negative linear and positive cubic nonlinear stiffnesses such that the two restoring force contributions may counterbalance to minimize dynamic force transmission. By applying a first-order harmonic balance, it is predicted that the bistable dual-stage isolator may significantly outperform an equivalent pure linear dual-stage isolator. This conclusion is verified through a series of numerical investigations. Following a parametric study, design guidelines are detailed to achieve performance improvements. Then, the ‘valley’ response, which is the special phenomenon of the bistable dual-stage isolator due to the counterbalance of the negative linear and positive nonlinear potential forces, is revealed and quantitatively explained. Numerical studies demonstrate the role of initial conditions, and it is shown that the likelihood of beneficial single periodic valley and intra-well responses for isolation purposes can be increased by greater bistable stage damping. Finally, a bistable dual-stage isolator prototype is developed and tested, and the numerical and experimental results verify the theoretical predictions. (paper)

1. Damping control of micromachined lowpass mechanical vibration isolation filters using electrostatic actuation with electronic signal processing

Science.gov (United States)

Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael

2005-05-01

Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.

2. Pneumatic conveying design guide

CERN Document Server

Mills, David

1990-01-01

Pneumatic Conveying Design Guide is a guide for the design of pneumatic conveying systems and includes detailed data and information on the conveying characteristics of a number of materials with a wide range of properties. This book includes logic diagrams for design procedures and scaling parameters for the conveying line configuration. It also explains how to improve the performance of pneumatic conveyors by optimizing, uprating, and extending the system or adapting it for a change of material. This book consists of 15 chapters divided into three sections and opens with an overview of the s

3. Vibration isolation analysis of new design OEM damper for malaysia vehicle suspension system featuring MR fluid

Science.gov (United States)

Unuh, M. H.; Muhamad, P.; Norfazrina, H. M. Y.; Ismail, M. A.; Tanasta, Z.

2018-01-01

The applications of semi-active damper employing magnetorheological (MR) fluids keep increasing in fulfilling the demand to control undesired vibration effect. The aim of this study is to introduce the new design of damper for Malaysian vehicle model as well to evaluate its effectiveness in promoting comfort. The vibration isolation performance of the OEM damper featuring MR fluid was analysed physically under real road profile excitation experimentally. An experiment using quarter car rig suspension and LMS SCADAS Mobile was conducted to demonstrate the influence of current in controlling the characteristics of MR fluid in alter the damping behaviour under 5 cm bump impact. Subsequently, the displacement values were measured with respect to time. The new design OEM damper featuring MR fluid was validated by comparing the data with original equipment manufacturer (OEM) passive damper results under the same approach of testing. Comparison of numerical data of the new design OEM damper shown that it can reduce the excitation amplitude up to 40% compared to those obtained by OEM passive damper. Finally, the new design OEM damper featuring MR fluid has effectively isolated the disturbance from the road profile and control the output force.

4. Vibration isolation and dual-stage actuation pointing system for space precision payloads

Science.gov (United States)

Kong, Yongfang; Huang, Hai

2018-02-01

Pointing and stability requirements for future space missions are becoming more and more stringent. This work follows the pointing control method which consists of a traditional spacecraft attitude control system and a payload active pointing loop, further proposing a vibration isolation and dual-stage actuation pointing system for space precision payloads based on a soft Stewart platform. Central to the concept is using the dual-stage actuator instead of the traditional voice coil motor single-stage actuator to improve the payload active pointing capability. Based on a specified payload, the corresponding platform was designed to be installed between the spacecraft bus and the payload. The performance of the proposed system is demonstrated by preliminary closed-loop control investigations in simulations. With the ordinary spacecraft bus, the line-of-sight pointing accuracy can be controlled to below a few milliarcseconds in tip and tilt. Meanwhile, utilizing the voice coil motor with the softening spring in parallel, which is a portion of the dual-stage actuator, the system effectively achieves low-frequency motion transmission and high-frequency vibration isolation along the other four degree-of-freedom directions.

5. Pneumatic Muscle Actuator Control

National Research Council Canada - National Science Library

Lilly, John

2000-01-01

This research is relevant to the Air Fore mission because pneumatic muscle actuation devices arc advantageous for certain types of robotics as well as for strength and/or mobility assistance for humans...

6. Pneumatic transfer systems

International Nuclear Information System (INIS)

Bichler, H.; Boeck, H.; Hammer, J.; Buchtela, K.

1988-11-01

A pneumatic transfer system for research reactors, including a sample changer system and to be used for neutron activation analysis, is described. The system can be obtained commercially from the Atominstitut. 2 figs. (qui)

7. Response analysis and energy transmissibility of a vibration isolation system with real-power nonlinearities under a NMPPF controller

International Nuclear Information System (INIS)

Huang, Dongmei; Xu, Wei; Shi, Lingling

2016-01-01

Highlights: • The nonlinear modified positive position feedback (NMPPF) scheme and the real-power form of restoring and damping forces are combined to improve the response performance of a vibration isolation system. • The primary resonance, dynamical stability and energy transmissibility of the real-power vibration isolation system are studied. • The sensitivity of the controller parameters on the responses has been analyzed. • In order to suppress the amplitude peak, the feedback parameters have been determined by the frequency response. • The energy transmissibility is investigated. - Abstract: In this paper, the nonlinear modified positive position feedback (NMPPF) scheme and the real-power form of restoring and damping forces are combined to improve the response performance of a vibration isolation system. Based on the method of multiple scales, the frequency response, the stability and the energy transmissibility of the real-power vibration isolation system are studied. It is found that the controlled isolation system exhibits a softening behavior for sub-linear restoring force, while it exhibits the two peak response characteristic rather than a hardening behavior for over-linear restoring force. Further, the sensitivity of the feedback parameters on the responses is discussed. The results, compared to the conventional PPF and IRC methods, show that the proposed method is significantly more effective in controlling the steady-state response, and slightly advantageous for the steady-state dynamics control. The effectiveness of this method is also verified by time domain analysis. Then, the suitable feedback and controller parameters are derived by simulation results in which the amplitude peak is suppressed and the resonance stability is maintained. Finally, the energy transmissibility of the vibration isolation system is investigated. The results show that the feedback gain can reduce the whole transmissibility level and greatly suppress vibration

8. Vibration isolation design for periodically stiffened shells by the wave finite element method

Science.gov (United States)

Hong, Jie; He, Xueqing; Zhang, Dayi; Zhang, Bing; Ma, Yanhong

2018-04-01

Periodically stiffened shell structures are widely used due to their excellent specific strength, in particular for aeronautical and astronautical components. This paper presents an improved Wave Finite Element Method (FEM) that can be employed to predict the band-gap characteristics of stiffened shell structures efficiently. An aero-engine casing, which is a typical periodically stiffened shell structure, was employed to verify the validation and efficiency of the Wave FEM. Good agreement has been found between the Wave FEM and the classical FEM for different boundary conditions. One effective wave selection method based on the Wave FEM has thus been put forward to filter the radial modes of a shell structure. Furthermore, an optimisation strategy by the combination of the Wave FEM and genetic algorithm was presented for periodically stiffened shell structures. The optimal out-of-plane band gap and the mass of the whole structure can be achieved by the optimisation strategy under an aerodynamic load. Results also indicate that geometric parameters of stiffeners can be properly selected that the out-of-plane vibration attenuates significantly in the frequency band of interest. This study can provide valuable references for designing the band gaps of vibration isolation.

9. A THEORETICAL STUDY AND 3D MODELING OF NONLINEAR PASSIVE VIBRATION ISOLATOR

OpenAIRE

Sabyasachi Mukherjee

2017-01-01

The study of sound and vibration are closely related. Sound or "pressure waves" are generated by vibrating structures (e.g. vocal cords); these pressure waves can also induce the vibration of structures (e.g. ear drum). Hence, when trying to reduce noise it is often a problem in trying to reduce vibration. The high speed engines and machines when mounted on foundations and supports cause vibrations of excessive amplitude because of unbalance forces setup during their working. These are the di...

10. Pneumatic soil removal tool

International Nuclear Information System (INIS)

Neuhaus, J.E.

1992-01-01

A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs

11. Pneumatic soil removal tool

Science.gov (United States)

Neuhaus, John E.

1992-01-01

A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

12. Hydraulics and pneumatics

CERN Document Server

Parr, Andrew

2006-01-01

Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

13. A multi-reference filtered-x-Newton narrowband algorithm for active isolation of vibration and experimental investigations

Science.gov (United States)

Wang, Chun-yu; He, Lin; Li, Yan; Shuai, Chang-geng

2018-01-01

In engineering applications, ship machinery vibration may be induced by multiple rotational machines sharing a common vibration isolation platform and operating at the same time, and multiple sinusoidal components may be excited. These components may be located at frequencies with large differences or at very close frequencies. A multi-reference filtered-x Newton narrowband (MRFx-Newton) algorithm is proposed to control these multiple sinusoidal components in an MIMO (multiple input and multiple output) system, especially for those located at very close frequencies. The proposed MRFx-Newton algorithm can decouple and suppress multiple sinusoidal components located in the same narrow frequency band even though such components cannot be separated from each other by a narrowband-pass filter. Like the Fx-Newton algorithm, good real-time performance is also achieved by the faster convergence speed brought by the 2nd-order inverse secondary-path filter in the time domain. Experiments are also conducted to verify the feasibility and test the performance of the proposed algorithm installed in an active-passive vibration isolation system in suppressing the vibration excited by an artificial source and air compressor/s. The results show that the proposed algorithm not only has comparable convergence rate as the Fx-Newton algorithm but also has better real-time performance and robustness than the Fx-Newton algorithm in active control of the vibration induced by multiple sound sources/rotational machines working on a shared platform.

14. Three-Dimensional Vibration Isolator for Suppressing High-Frequency Responses for Sage III Contamination Monitoring Package (CMP)

Science.gov (United States)

Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.

2015-01-01

The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination

15. Evaluation of a Treadmill with Vibration Isolation and Stabilization (TVIS) for Use on the International Space Station

Science.gov (United States)

McCrory, Jean L.; Lemmon, David R.; Sommer, H. Joseph; Prout, Brian; Smith, Damon; Korth, Deborah W.; Lucero, Javier; Greenisen, Michael; Moore, Jim

1999-01-01

A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 deg, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.

16. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

Directory of Open Access Journals (Sweden)

Qianqian Wu

2015-08-01

Full Text Available High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

17. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

Science.gov (United States)

Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

2015-08-14

High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

18. Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control

International Nuclear Information System (INIS)

Zhang Jing; Xu Daolin; Zhou Jiaxi; Li Yingli

2012-01-01

Highlights: ► A chaotification method based on nonlinear time-delay feedback control is present. ► An analytical function of nonlinear time-delay feedback control is derived. ► A large range of parametric domain for chaotification is obtained. ► The approach allows using small control gain. ► Design of chaotification becomes a standard process without uncertainty. - Abstract: This paper presents a chaotification method based on nonlinear time-delay feedback control for a two-dimensional vibration isolation floating raft system (VIFRS). An analytical function of nonlinear time-delay feedback control is derived. This approach can theoretically provide a systematic design of chaotification for nonlinear VIFRS and completely avoid blind and inefficient numerical search on the basis of trials and errors. Numerical simulations show that with a proper setting of control parameters the method holds the favorable aspects including the capability of chaotifying across a large range of parametric domain, the advantage of using small control and the flexibility of designing control feedback forms. The effects on chaotification performance are discussed in association with the configuration of the control parameters.

19. Compact vibration isolation and suspension for Australian International Gravitational Observatory: Performance in a 72 m Fabry Perot cavity

Science.gov (United States)

Barriga, P.; Dumas, J. C.; Woolley, A. A.; Zhao, C.; Blair, D. G.

2009-11-01

This paper describes the first demonstration of vibration isolation and suspension systems, which have been developed with view to application in the proposed Australian International Gravitational Observatory. In order to achieve optimal performance at low frequencies new components and techniques have been combined to create a compact advanced vibration isolator structure. The design includes two stages of horizontal preisolation and one stage of vertical preisolation with resonant frequencies ˜100 mHz. The nested structure facilitates a compact design and enables horizontal preisolation stages to be configured to create a superspring configuration, where active feedback can enable performance close to the limit set by seismic tilt coupling. The preisolation stages are combined with multistage three-dimensional (3D) pendulums. Two isolators suspending mirror test masses have been developed to form a 72 m optical cavity with finesse ˜700 in order to test their performance. The suitability of the isolators for use in suspended optical cavities is demonstrated through their ease of locking, long term stability, and low residual motion. An accompanying paper presents the local control system and shows how simple upgrades can substantially improve residual motion performance.

20. Dreams of pneumatic servo and rail way cars in 2010; 2010 nen noyume kukiatsu servo to tetsudo sharyo

Energy Technology Data Exchange (ETDEWEB)

Sasaki, K. [Tokyo Precision Instruments Co. Ltd., Kanagawa (Japan)

2000-01-15

This paper describes pneumatic servo and railway cars. The comfort of railway cars is improved by reducing excess transverse centrifugal force, and longitudinal, transverse and vertical vibration. Pneumatic system plays a large role in the comfort. Pneumatic system is used for doors because of certain open/shut operation and protecting a hand caught in a door from excess tightening pressure. Pneumatic system is also used for mechanical brakes. Pneumatic spring for car suspensions improves the comfort considerably. The orifice and auxiliary tank of a pneumatic spring reduce a spring constant, and give damping to the vibration system of car bodies and springs. To reduce an outward excess centrifugal force by tilting a car body inward at curve, a body tilting equipment is used which is adopted for a pendulum car with pneumatic servo control, and a tilting car with height control of both side pneumatic springs. For transverse damping, semi-active equipment using oil damper is in wide use, while that using pneumatic servo is also in rial use. (NEDO)

1. Vibration mechanism's isolation installed on the compliant base (Part I: Question State)

International Nuclear Information System (INIS)

Djuma, R.

2001-01-01

The main reason of noise and vibration aggravation in houses is the considerable increase of the number of sources because of building being equipped with engineering, sanitary, technical and other mechanical equipment (lifts, pumps, ventilation, conditioner, systems and others). Very often the equipment installed on the building's coverings, is not favorable from the acoustics point of view, in comparison with equipment that is installed on separate foundation or in the basement. Vibrations that appear on the coverings in the mechanism work through the joints and transfer to the joining buildings that in their part while vibration will take the sound of the adjacent buildings. Working in the mean time normative documents on projecting of machine's vibroisolation and equipment that guide projectors and builder's, recommend to make calculations of vibroisolation on the dynamic loading that is created by working equipment only on the basic vibration frequency. (author)

2. Vibration characteristics of the seismically isolated building supported by the elastomers and the elasto-plastic dampers

International Nuclear Information System (INIS)

1989-01-01

Recently, the seismic isolation has become one of the popular methods in the design of important structures or equipment against the earthquakes. However, the demonstration data on reliability of seismically isolated structures are not enough, therefore it is expected to accumulate such data. Based on the above recognition, the vibration tests of a base isolated building were carried out in Tsukuba Science City. After that, many earthquake records have been obtained at the building, and they made clear the dynamic characteristics of the structure. In order to make clear the dynamic behavior of the building, furthermore, seismic response analyses were executed by using Lumped Mass model, and the results of the analyses roughly agreed with the observed results. (author)

3. Rigidified pneumatic composites

Science.gov (United States)

van Dessel, Steven

2000-10-01

The overall objective of the research presented in this dissertation was to address global issues of adequate housing for all and the need for more sustainable human settlement. In order to address these, the emerging technology of rigidified pneumatic composites was investigated. Rigidified pneumatic composites (RPC) are defined as thin flexible membrane structures that are pneumatically deployed. After deployment, these structures harden due to chemical or physical change of the membrane. Because of this change, these structures do no longer require pneumatic pressure to maintain their shape. For the first time, a systematic listing of the various means available to develop polymeric materials useful in RPC technology is presented. With the aim to reduce the cost of RPC structures, a new material was proposed, developed, and evaluated. This material involved the formation of a semi-interpenetrating polymer network based on poly vinyl chloride and an acrylate based reactive plasticizer. The economical and environmental performances of RPC structures using this new material were assessed by means of a case study. In this study, the performance of RPC technology was compared with that of a typical wood light frame structure in the application of a small single-family house. The study indicated that the cost of ownership in present day value for the RPC structure was approximately 33% less than the cost of a comparable wood light frame structure. The study also indicated that significant environmental benefits exist with the use of RPC structures. It was found that the RPC structure used significantly less resources compared to the wood light frame structure. About 3.5 times less materials coming from non-renewable fossil resources, about 2.5 times less materials coming from trees, and about 19 times less materials coming from inorganic resources was used in the RPC structure relative to the wood light frame structure. The study concluded with pointing out various

4. Maximizing semi-active vibration isolation utilizing a magnetorheological damper with an inner bypass configuration

Energy Technology Data Exchange (ETDEWEB)

Bai, Xian-Xu, E-mail: bai@hfut.edu.cn [Department of Vehicle Engineering, Hefei University of Technology, Hefei 230009 (China); Wereley, Norman M.; Hu, Wei [Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 (United States)

2015-05-07

A single-degree-of-freedom (SDOF) semi-active vibration control system based on a magnetorheological (MR) damper with an inner bypass is investigated in this paper. The MR damper employing a pair of concentric tubes, between which the key structure, i.e., the inner bypass, is formed and MR fluids are energized, is designed to provide large dynamic range (i.e., ratio of field-on damping force to field-off damping force) and damping force range. The damping force performance of the MR damper is modeled using phenomenological model and verified by the experimental tests. In order to assess its feasibility and capability in vibration control systems, the mathematical model of a SDOF semi-active vibration control system based on the MR damper and skyhook control strategy is established. Using an MTS 244 hydraulic vibration exciter system and a dSPACE DS1103 real-time simulation system, experimental study for the SDOF semi-active vibration control system is also conducted. Simulation results are compared to experimental measurements.

5. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

Energy Technology Data Exchange (ETDEWEB)

Sasaki, S., E-mail: s.sasaki@ecei.tohoku.ac.j [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T. [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kawai, N.; Yasui, K. [Okumura Corporation, 5-6-1 Shiba, Minato-ku, Tokyo 180-8381 (Japan)

2010-11-01

We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

6. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

International Nuclear Information System (INIS)

Sasaki, S.; Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T.; Kawai, N.; Yasui, K.

2010-01-01

We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

7. Soft, Rotating Pneumatic Actuator.

Science.gov (United States)

Ainla, Alar; Verma, Mohit S; Yang, Dian; Whitesides, George M

2017-09-01

This article describes a soft pneumatic actuator that generates cyclical motion. The actuator consists of several (three, four, or five) chambers (arranged around the circumference of a circle surrounding a central rod) that can be actuated independently using negative pressure (or partial vacuum). Sequential actuation of the four-chamber device using reduced pressure moves the central rod cyclically in an approximately square path. We characterize the trajectory of the actuator and the force exerted by it, as we vary the material used for fabrication, the number of chambers, and the size of the actuator. We demonstrate two applications of this actuator: to deliver fluid while stirring (by replacing the central rod with a needle) and for locomotion that mimics a reptilian gait (by combining four actuators together).

8. Soft Pneumatic Actuators for Rehabilitation

Directory of Open Access Journals (Sweden)

Guido Belforte

2014-05-01

Full Text Available Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and evolution lines are presented. Then, the use of Pneumatic Muscles (PAM in rehabilitation apparatus is described and the general characteristics required in different applications are considered, analyzing the use of proper soft actuators with various technical properties. Therefore, research activity carried out in the Department of Mechanical and Aerospace Engineering in the field of soft and textile actuators is presented here. In particular, pneumatic textile muscles useful for active suits design are described. These components are made of a tubular structure, with an inner layer of latex coated with a deformable outer fabric sewn along the edge. In order to increase pneumatic muscles forces and contractions Braided Pneumatic Muscles are studied. In this paper, new prototypes are presented, based on a fabric construction and various kinds of geometry. Pressure-force-deformation tests results are carried out and analyzed. These actuators are useful for rehabilitation applications. In order to reproduce the whole upper limb movements, new kind of soft actuators are studied, based on the same principle of planar membranes deformation. As an example, the bellows muscle model and worm muscle model are developed and described. In both cases, wide deformations are expected. Another issue for soft actuators is the pressure therapy. Some textile sleeve prototypes developed for massage therapy on patients suffering of lymph edema are analyzed. Different types of fabric and assembly techniques have been tested. In general, these Pressure Soft Actuators are useful for upper/lower limbs treatments

9. The Shock and Vibration Bulletin. Part 4. Prediction and Experimental Techniques, Isolation and Damping

Science.gov (United States)

1973-06-01

D. 0. Smallwood , Sandia Laboratories, Albuquerque, New Mexico and A. F. Witte, Kaman Sciences, Colorado Springs, Colorado fi TRANSIENT VIBRATION...TEST TECHNIQUE USING LEAST FAVORABLE RESPONSES D. O. Smallwood , Sandia Laboratories, Albuquerque, New Mexico PAPERS APPEARING IN PART 2 Structural...Dynamic Systems, Measure- ments and Control, March 1971. 12. Favour, John D., Maclom C. Mitchell, and Norman L. Olson, "Transient Test Techniques for

10. Preparing isolated vibrational wave packets with light-induced molecular potentials by chirped laser pulses

Science.gov (United States)

Vatasescu, Mihaela

2012-05-01

We consider a specific wave packet preparation arising from the control of tunneling in the 0g-(6s,6p3/2) double well potential of a Cs2 cold molecule with chirped laser pulses. Such a possibility to manipulate the population dynamics in the 0g-(6s,6p3/2) potential appears in a pump-dump scheme designed to form cold molecules by photoassociation of two cold cesium atoms. The initial population in the 0g-(6s,6p3/2) double well is a wave packet prepared in the outer well at large interatomic distances (94 a0) by a photoassociation step with a first chirped pulse, being a superposition of several vibrational states whose energies surround the energy of a tunneling resonance. Our present work is focused on a second delayed chirped pulse, coupling the 0g-(6s,6p3/2) surface with the a3Σu+(6s,6s) one in the zone of the double well barrier (15 a0) and creating deeply bound cold molecules in the a3Σu+(6s,6s) state. We explore the parameters choice (intensity, duration, chirp rate and sign) for this second pulse, showing that picoseconds pulses with a negative chirp can lead to trapping of population in the inner well in strongly bound vibrational states, out of the resonant tunneling able to transfer it back to the outer well.

11. Vibrational modes of isolated substitution impurities in twelve compounds AN B8-N with the blende structure

International Nuclear Information System (INIS)

Plumelle, Pierre

1979-01-01

We have studied a particular point defect, the isolated substitution in twelve compounds CuCl, CuBr, CuI, ZnTe, CdTe, ZnS, ZnSe, GaAs, GaP, InSb, InP and GaSb. The model of the perfect lattice is a rigid ion model with eleven parameters. Infrared localized vibrational modes of impurities are observed in a series of samples. By comparison of these experimental results with the calculated values it is possible to determine the perturbation for each particular case. A relation obtained between a force constant of the perfect crystal and the force constant of the impurity suggests that no change is introduced by the isoelectronic impurities. (author) [fr

12. Vibrational relaxation of matrix-isolated CH3F and HCl

International Nuclear Information System (INIS)

Young, L.

1981-08-01

Kinetic and spectroscopic studies have been performed on CH 3 F and HCl as a function of host matrix and temperature. Temporally and spectrally resolved infrared fluorescence was used to monitor the populations of both the initially excited state and the lower lying levels which participate in the relaxation process. For CH 3 F, relaxation from any of the levels near 3.5 μ, i.e. the CH stretching fundamentals or bend overtones, occurs via rapid ( 3 with subsequent relaxation of the ν 3 (CF stretch) manifold. Lifetimes of 2ν 3 and ν 3 were determined through overtone, ΔV = 2, and fundamental fluorescence. These lifetimes show a dramatic dependence on host lattice, an increase of two orders of magnitude in going from Xe and Ar matrices. Lifetimes depend only weakly on temperature. The relaxation of 2ν 3 and ν 3 is consistent with a model in which production of a highly rotationally excited guest via collisions with the repulsive wall of the host is the rate limiting step. For HCl, lifetimes of v = 1,2,3 have been determined. In all hosts, the relaxation is non-radiative. For a given vibrational state, v, the relaxation rate increases in the series k(Ar) < k(Kr) < k(Xe). The dependence of the relaxation rate; on v is superlinear in all matrices, the deviation from linearity increasng in the order Ar < Kr < Xe. The relaxation rates become more strongly temperature dependent with increasing vibrational excitation. The results are consistent with a mechanism in which complex formation introduces the anisotropy necessary to induce a near resonant V → R transition in the rate limiting step

13. Evaluating performance of multivariable vibration isolators : a frequency domain identification approach applied to an industrial AVIS : A frequency domain identification approach applied to an industrial AVIS

NARCIS (Netherlands)

Beijen, M.A.; Heertjes, M.A.; Voorhoeve, R.J.; Oomen, T.A.E.

2017-01-01

Vibration isolation is essential for industrial high-precision systems in suppressing the influence of external disturbances. The aim of this paper is to develop an identification method to estimate the transmissibility matrix for such systems. The transmissibility matrix is a key performance

14. The characteristics of a pneumatic muscle

OpenAIRE

Pietrala Dawid

2017-01-01

The article presents static and dynamic characteristics of pneumatic muscles. It presents the structure of the laboratory stand used to test pneumatic muscles. It discusses the methodology for determination of static and dynamic characteristics. The paper also illustrates characteristics showing the relationship of pneumatic muscles length and operating pressure, at a constant loading force (isotonic characteristics). It presents characteristics showing the relationship of pneumatic muscles s...

15. Theory of vibration protection

CERN Document Server

Karnovsky, Igor A

2016-01-01

This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

16. Influence of Chair Vibrations on Indoor Sonic Boom Annoyance

Science.gov (United States)

Rathsam, Jonathan; Klos, Jacob; Loubeau, Alexandra

2015-01-01

One goal of NASA’s Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.

17. Complications of occipital bone pneumatization

International Nuclear Information System (INIS)

Moss, Mary; Roche, Jim; Biggs, Michael; Forer, Martin; Fagan, Paul; Davis, Martin

2004-01-01

Four cases of occipital bone pneumatization and subsequent complications are described, which include a pathological fracture of C 1 and the occipital bone, spontaneous subcutaneous emphysema and pneumatocele formation. Reviews of the published literature and possible aetiological factors have been discussed Copyright (2004) Blackwell Publishing Asia Pty Ltd

18. The characteristics of a pneumatic muscle

Directory of Open Access Journals (Sweden)

Pietrala Dawid

2017-01-01

Full Text Available The article presents static and dynamic characteristics of pneumatic muscles. It presents the structure of the laboratory stand used to test pneumatic muscles. It discusses the methodology for determination of static and dynamic characteristics. The paper also illustrates characteristics showing the relationship of pneumatic muscles length and operating pressure, at a constant loading force (isotonic characteristics. It presents characteristics showing the relationship of pneumatic muscles shortening and values of loading forces, at a constant operational pressure (isobaric characteristics. It also shows the dependence of force generated by the muscle on the operating pressure, at a constant value of pneumatic muscles shortening (isometric characteristics. The paper also presents dynamic characteristics of a pneumatic muscle showing the response of an object to a gradual change in the operating pressure, at a constant loading force acting on the pneumatic muscle.

19. The characteristics of a pneumatic muscle

Science.gov (United States)

Pietrala, Dawid

The article presents static and dynamic characteristics of pneumatic muscles. It presents the structure of the laboratory stand used to test pneumatic muscles. It discusses the methodology for determination of static and dynamic characteristics. The paper also illustrates characteristics showing the relationship of pneumatic muscles length and operating pressure, at a constant loading force (isotonic characteristics). It presents characteristics showing the relationship of pneumatic muscles shortening and values of loading forces, at a constant operational pressure (isobaric characteristics). It also shows the dependence of force generated by the muscle on the operating pressure, at a constant value of pneumatic muscles shortening (isometric characteristics). The paper also presents dynamic characteristics of a pneumatic muscle showing the response of an object to a gradual change in the operating pressure, at a constant loading force acting on the pneumatic muscle.

20. Portable vibration-assisted filtration device for on-site isolation of blood cells or pathogenic bacteria from whole human blood.

Science.gov (United States)

Kim, Yong Tae; Park, Kyun Joo; Kim, Seyl; Kim, Soon Ae; Lee, Seok Jae; Kim, Do Hyun; Lee, Tae Jae; Lee, Kyoung G

2018-03-01

Isolation of specific cells from whole blood is important to monitor disease prognosis and diagnosis. In this study, a vibration-assisted filtration (VF) device has been developed for isolation and recovery of specific cells such as leukocytes and pathogenic bacteria from human whole blood. The VF device is composed of three layers which was fabricated using injection molding with cyclic olefin copolymer (COC) pellets consisting of: a top layer with coin-type vibration motor (Ф = 10mm), a middle plate with a 1μm or 3μm-pore filter membrane to separate of Staphylococcus aureus (S. aureus) cells or leukocytes (i.e. white blood cells) respectively, and a bottom chamber with conical-shaped microstructure. One milliliter of human whole blood was injected into a sample loading chamber using a 3μm-pore filter equipped in the VF device and the coin-type vibration motor applied external vibration force by generating a rotational fluid which enhances the filtration velocity due to the prevention of the cell clogging on the filter membrane. The effluent blood such as erythrocytes, platelet, and plasma was collected at the bottom chamber while the leukocytes were sieved by the filter membrane. The vibration-assisted leukocyte separation was able to finish within 200s while leukocyte separation took 1200s without vibration. Moreover, we successfully separated S. aureus from human whole blood using a 1μm-pore filter equipped VF device and it was further confirmed by genetic analysis. The proposed VF device provides an advanced cell separation platform in terms of simplicity, fast separation, and portability in the fields of point-of-care diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

1. Sliding pressure control valve for pneumatic hammer drill

Science.gov (United States)

Polsky, Yarom [Albuquerque, NM

2011-08-30

A pneumatic device control apparatus and method comprising a ported valve slidably fitted over a feed tube of the pneumatic device, and using a compliant biasing device to constrain motion of the valve to provide asymmetric timing for extended pressurization of a power chamber and reduced pressurization of a return chamber of the pneumatic device. The pneumatic device can be a pneumatic hammer drill.

2. Pneumatic tourniquets in extremity surgery.

LENUS (Irish Health Repository)

Wakai, A

2012-02-03

Pneumatic tourniquets maintain a relatively bloodless field during extremity surgery, minimize blood loss, aid identification of vital structures, and expedite the procedure. However, they may induce an ischemia-reperfusion injury with potentially harmful local and systemic consequences. Modern pneumatic tourniquets are designed with mechanisms to regulate and maintain pressure. Routine maintenance helps ensure that these systems are working properly. The complications of tourniquet use include postoperative swelling, delay of recovery of muscle power, compression neurapraxia, wound hematoma with the potential for infection, vascular injury, tissue necrosis, and compartment syndrome. Systemic complications can also occur. The incidence of complications can be minimized by use of wider tourniquets, careful preoperative patient evaluation, and adherence to accepted principles of tourniquet use.

3. Model for pneumatic pellet injection

International Nuclear Information System (INIS)

Hogan, J.T.; Milora, S.L.; Schuresko, D.D.

1983-07-01

A hydrodynamic code has been developed to model the performance of pneumatic pellet injection systems. The code describes one dimensional, unsteady compressible gas dynamics, including gas friction and heat transfer to the walls in a system with variable area. The mass, momentum, and energy equations are solved with an iterated Lax-Wendroff scheme with additional numerical viscosity. The code is described and comparisons with experimental data are presented

4. Linear pneumatic motors – a comparative study

Directory of Open Access Journals (Sweden)

Deaconescu Tudor

2017-01-01

Full Text Available The paper presents a comparative study of the performance of single-acting cylinders, diaphragm cylinders and pneumatic muscles, and offers users information that allows the selection of an optimum technical solution. Such a study was necessary, in view of the numerous papers on pneumatic muscle applications found in literature, that assert the superiority of pneumatic muscles over other pneumatic linear motors in relation to quantities like dimensions, mass, developed force or energy-to-mass ratios, however without offering concrete data.

5. Liquid-metal dip seal with pneumatic spring

International Nuclear Information System (INIS)

Poindexter, A.M.

1977-01-01

An improved liquid-metal dip seal for sealing the annulus between rotating plugs in the reactor vessel head of a liquid-metal fast-breeder nuclear reactor has two legs of differing widths communicating under a seal blade; the wide leg is also in communication with cover gas of the reactor and the narrow leg is also in communication with an isolated plug annulus above the seal. The annulus contains inert gas which acts as a pneumatic spring. Upon increasing cover gas pressure which depresses the level in the wide leg and greatly increases the level in the narrow leg, the pneumatic spring is compressed, and resists further level changes, thus preventing radioactive cover gas from bubbling through the seal

6. Buckling Pneumatic Linear Actuators Inspired by Muscle

OpenAIRE

Yang, Dian; Verma, Mohit Singh; So, Ju-Hee; Mosadegh, Bobak; Keplinger, Christoph; Lee, Benjamin; Khashai, Fatemeh; Lossner, Elton Garret; Suo, Zhigang; Whitesides, George McClelland

2016-01-01

The mechanical features of biological muscles are difficult to reproduce completely in synthetic systems. A new class of soft pneumatic structures (vacuum-actuated muscle-inspired pneumatic structures) is described that combines actuation by negative pressure (vacuum), with cooperative buckling of beams fabricated in a slab of elastomer, to achieve motion and demonstrate many features that are similar to that of mammalian muscle.

7. Pneumatic pellet injector for JET

International Nuclear Information System (INIS)

Andelfinger, C.; Buechl, K.; Jacobi, D.; Sandmann, W.; Schiedeck, J.; Schilling, H.B.; Weber, G.

1983-07-01

Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

8. A Study of Gas Economizing Pneumatic Cylinder

International Nuclear Information System (INIS)

Li, T C; Wu, H W; Kuo, M J

2006-01-01

The pneumatic cylinder is the most typical actuator in the pneumatic equipment, and its mechanism is so simple that it is often used to operate point to point driving without the feedback loop in various automatic machines. But, the energy efficiency of pneumatic system is very poor compared with electrical systems and hydraulic systems. So, it is very important to discuss the energy saving for the pneumatic cylinder systems. In this thesis, we proposed three methods to apply the reduction in the air consumed for pneumatic cylinder systems. An air charge accumulator is used to absorb the exhausted compress air and a boost valve boosted the air to the higher pressure for used again. From the experiments, the direct used cylinder exhaust air may save about 40% of compress air

9. Pneumatic automation systems in coal mines

Energy Technology Data Exchange (ETDEWEB)

Shmatkov, N.A.; Kiklevich, Yu.N.

1981-04-01

Giprougleavtomatizatsiya, Avtomatgormash, Dongiprouglemash, VNIIGD and other plants develop 30 new pneumatic systems for mine machines and equipment control each year. The plants produce about 200 types of pneumatic systems. Major pneumatic systems for face systems, machines and equipment are reviewed: Sirena system for remote control of ANShch and AShchM face systems for steep coal seams, UPS control systems for pump stations, PAUZA control system for stowing machines, remote control system of B100-200 drilling machines, PUSK control system for coal cutter loaders with pneumatic drive (A-70, Temp), PUVSh control system for ventilation barriers activated from moving electric locomotives, PAZ control system for skip hoist loading. Specifications of the systems are given. Economic benefit produced by the pneumatic control systems are evaluated (from 1,500 to 40,000 rubles/year). Using the systems increases productivity of face machines and other machines used in black coal mines by 5 to 30%.

10. A novel triple-actuating mechanism of an active air mount for vibration control of precision manufacturing machines: experimental work

International Nuclear Information System (INIS)

Kim, Hyung-Tae; Kim, Cheol-Ho; Choi, Seung-Bok; Moon, Seok-Jun; Song, Won-Gil

2014-01-01

With the goal of vibration control and isolation in a clean room, we propose a new type of air mount which consists of pneumatic, electromagnetic (EM), and magnetorheological (MR) actuators. The air mount is installed below a semiconductor manufacturing machine to reduce the adverse effects caused by unwanted vibration. The proposed mechanism integrates the forces in a parallel connection of the three actuators. The MR part is designed to operate in an air spring in which the EM part is installed. The control logic is developed with a classical method and a switching mode to avoid operational mismatch among the forces developed. Based on extended microprocessors, a portable, embedded controller is installed to execute both nonlinear logic and digital communication with the peripherals. The pneumatic forces constantly support the heavy weight of an upper structure and maintain the level of the air mount. The MR damper handles the transient response, while the EM controller reduces the resonance response, which is switched mutually with a threshold. Vibration is detected by laser displacement sensors which have submicron resolution. The impact test results of three tons load weight demonstrate practical feasibility by showing that the proposed triple-actuating mechanism can reduce the transient response as well as the resonance in the air mount, resulting in accurate motion of the semiconductor manufacturing machine. (technical note)

11. Synthesis of pneumatic controll systems

Directory of Open Access Journals (Sweden)

D. Nowak

2011-04-01

Full Text Available Currently, the basic tool for automating the production processes are the PLCs. However, in many areas application of the pneumaticcontrol systems may be more reasonable. The main factor determining choice of the control technology are costs. In the case of pneumaticsystems, the costs shall be determined by the number of elements used. Therefore, during the design works it is important to choose anappropriate method for the pneumatic control systems synthesis. The article presents the MTS method, which may be used for a discretetechnological processes modeling and PLC programming, as well as for a pneumatic control systems designing. An important element ofthe MTS method is the network of actions, which graphically presents an algorithm of the implemented process. Based on the actionnetwork and operating machine’s functional diagram, the diagram of different states is determinated, which graphically shows changes ofthe control system’s input and output signals. Analysis of the diagram of different states, makes it easy to determine a schematic equation, which shall be the basis for the control system implementation. Advantage of the MTS method is the lack of restrictions on the number of the control system’s input and output signals. The resulting solution is characterized by a minimum number of elements needed to implement the control system.

12. Pneumatic Variable Series Elastic Actuator.

Science.gov (United States)

Zheng, Hao; Wu, Molei; Shen, Xiangrong

2016-08-01

Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

13. Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus.

Directory of Open Access Journals (Sweden)

Mathew J Wedel

Full Text Available Skeletal pneumaticity is found in the presacral vertebrae of most sauropod dinosaurs, but pneumaticity is much less common in the vertebrae of the tail. We describe previously unrecognized pneumatic fossae in the mid-caudal vertebrae of specimens of Giraffatitan and Apatosaurus. In both taxa, the most distal pneumatic vertebrae are separated from other pneumatic vertebrae by sequences of three to seven apneumatic vertebrae. Caudal pneumaticity is not prominent in most individuals of either of these taxa, and its unpredictable development means that it may be more widespread than previously recognised within Sauropoda and elsewhere in Saurischia. The erratic patterns of caudal pneumatization in Giraffatitan and Apatosaurus, including the pneumatic hiatuses, show that pneumatic diverticula were more broadly distributed in the bodies of the living animals than are their traces in the skeleton. Together with recently published evidence of cryptic diverticula--those that leave few or no skeletal traces--in basal sauropodomorphs and in pterosaurs, this is further evidence that pneumatic diverticula were widespread in ornithodirans, both across phylogeny and throughout anatomy.

14. Direct adaptive fuzzy control of a translating piezoelectric flexible manipulator driven by a pneumatic rodless cylinder

Science.gov (United States)

Qiu, Zhi-cheng; Wang, Bin; Zhang, Xian-min; Han, Jian-da

2013-04-01

This study presents a novel translating piezoelectric flexible manipulator driven by a rodless cylinder. Simultaneous positioning control and vibration suppression of the flexible manipulator is accomplished by using a hybrid driving scheme composed of the pneumatic cylinder and a piezoelectric actuator. Pulse code modulation (PCM) method is utilized for the cylinder. First, the system dynamics model is derived, and its standard multiple input multiple output (MIMO) state-space representation is provided. Second, a composite proportional derivative (PD) control algorithms and a direct adaptive fuzzy control method are designed for the MIMO system. Also, a time delay compensation algorithm, bandstop and low-pass filters are utilized, under consideration of the control hysteresis and the caused high-frequency modal vibration due to the long stroke of the cylinder, gas compression and nonlinear factors of the pneumatic system. The convergence of the closed loop system is analyzed. Finally, experimental apparatus is constructed and experiments are conducted. The effectiveness of the designed controllers and the hybrid driving scheme is verified through simulation and experimental comparison studies. The numerical simulation and experimental results demonstrate that the proposed system scheme of employing the pneumatic drive and piezoelectric actuator can suppress the vibration and achieve the desired positioning location simultaneously. Furthermore, the adopted adaptive fuzzy control algorithms can significantly enhance the control performance.

15. Synthesis of Servo Pneumatic/Hydraulic Drive

Directory of Open Access Journals (Sweden)

K D. Efremova

2017-01-01

Full Text Available Servo pneumatic and / or hydraulic drives are widely used in modern engineering and process control. The efficiency of using pneumatic / hydraulic drives depends on their parameters and characteristics. To select the optimal drive parameters, various methods are used, based on finding the minimum of the target (target or criteria function.The objective of this paper was to apply one crucial criterion (target function that provides determination of optimal parameters of the pneumatic / hydraulic drive with the translational motion of the end-effector as well as its use in the synthesis of the servo pneumatic cylinder. The article shows the form of the target function representing a set of drive parameters that do not have direct relationships with each other in a dimensionless form for the pneumatic / hydraulic drive with the translational motion of the end-effector. To calculate the parameters of the servo drive close to the optimal ones, a two-criteria LPτ search was used. As criteria, were used the decisive criterion - the proposed target function, and the power developed by the actuator of the pneumatic / hydraulic drive, which were presented in a dimensionless form. It is shown that the criterion for solution optimality is the minimum distance of the selected point in the space of the normalized criteria from the origin. This point was determined. In addition to the proposed criteria, non-formalised requirements were taken into account: actual and mass-produced components of drive, in terms of which its parameters close to the optimal ones were determined, and the maximum relative error of the obtained useful power value of the servo pneumatic drive was estimated. The paper presents design features of two types of the servo pneumatic drive created, taking into account the proposed target function, implemented according to the schemes "hidden" and "spaced apart". The experimental static characteristic of the servo pneumatic drive is

16. EVALUATION AND MEASUREMENT OF HAND-TRANSMITTED VIBRATIONS

Directory of Open Access Journals (Sweden)

Iveta MARKOVÁ

2017-12-01

Full Text Available The goal of this work is the effect of vibrations on selected professionals through questionnaire survey and implementation of experimental vibration measurements on a hand of employee. The observation of vibration effects was chosen in a company, where products are being shaped with pneumatic instruments and there is a risk of an exposure of vibrations on the employees. In experimental part are described and evaluated questionnaire surveys conducted on selected risk factors. The reason is the realization of work with vibrating tools for a longer time, where some parts do wear-out and therefore there is a higher exposure to oscillation.

17. Research on Dynamic Parameters and Position Accuracy of Pneumatics Muscles

Directory of Open Access Journals (Sweden)

2012-12-01

Full Text Available The article deals with pneumatic muscle MAS-20-200N-AA-MC-O, its dynamic properties and positioning accuracy as well as overviews experimental and theoretical works. The paper introduces the diagrams of vibration acceleration, discusses displacement dependence on pressure and load and presents a diagram of speed dependence on operating pressure. Vibroacceleration has been measured employing two accelerometers. Measurements have been carried out in three mutually perpendicular directions: x, y and z. The most important one is direction z, because this way the muscle performs a valuable displacement along the axis of the muscle, since this direction is the movement of the working muscle.Article in Lithuanian

18. Research on Dynamic Parameters and Position Accuracy of Pneumatics Muscles

Directory of Open Access Journals (Sweden)

2013-02-01

Full Text Available The article deals with pneumatic muscle MAS-20-200N-AA-MC-O, its dynamic properties and positioning accuracy as well as overviews experimental and theoretical works. The paper introduces the diagrams of vibration acceleration, discusses displacement dependence on pressure and load and presents a diagram of speed dependence on operating pressure. Vibroacceleration has been measured employing two accelerometers. Measurements have been carried out in three mutually perpendicular directions: x, y and z. The most important one is direction z, because this way the muscle performs a valuable displacement along the axis of the muscle, since this direction is the movement of the working muscle.Article in Lithuanian

19. Pneumatic and hydraulic microactuators: a review

International Nuclear Information System (INIS)

De Volder, Michaël; Reynaerts, Dominiek

2010-01-01

The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston–cylinder and drag-based microdevices. (topical review)

20. A survey on pneumatic muscle actuators modeling

OpenAIRE

Kelasidi, Eleni; Andrikopoulos, Georgios; Nikolakopoulos, George; Manesis, Stamatis

2012-01-01

The aim of this article is to provide a survey on the most popular modeling approaches for Pneumatic Muscle Actuators (PMAs). PMAs are highly non-linear pneumatic actuators where their elongation is proportional to the interval pressure. During the last decade, there has been an increase in the industrial and scientific utilization of PMAs, due to their advantages such as high strength and small weight, while various types of PMAs with different technical characteristics have been appeared in...

1. Dust emissions eliminated in pneumatic harvesting

International Nuclear Information System (INIS)

Kallio, M.

1998-01-01

Pneumatic harvesting is the most efficient milled peat production method in unsteady weather conditions. In good summers, the best contractors harvest more than 1 000 m 3 /ha milled peat from suitable production fields. The greatest problem of the method is caused by dust emissions, in particular in fields close to settled areas. About 15 % of Finland's present peat production is collected using pneumatic harvesters. A pneumatic harvester with smaller dust emissions has been developed by VTT Energy and Vapo Oy. The wagon is based on two-stage separation of peat. The main part of the coarser milled peat is first separated, e.g. in a settling chamber, and fine dry peat dust in correctly dimensioned side by side cyclones. The first series of pneumatic harvesters based on the new separation technology was employed in summer 1996. Besides decreasing the dust emissions the harvesting capacity of the new equipment was increased. The collection capacity of the pneumatic harvester can be made more effective by enlarging the container size, be decreasing the weight, by increasing the driving speed and by developing the suction capacity. Using lighter and durable construction materials combined with advanced design lighter and stronger pneumatic harvesters have been constructed. Nozzles and their mounting have also been developed. In the improvement of nozzles, the former studies with pneumatic simulator of VTT Energy, have been of great help. Studies with the pneumatic simulator and field conditions have been made in collaboration with Turveruukki Oy, Turvemetalli Oy, Raussin Metalli Oy and Vapo Oy, as well as VNIITP of St. Petersburg, Russia

2. Fractional Order Models of Industrial Pneumatic Controllers

Directory of Open Access Journals (Sweden)

Abolhassan Razminia

2014-01-01

Full Text Available This paper addresses a new approach for modeling of versatile controllers in industrial automation and process control systems such as pneumatic controllers. Some fractional order dynamical models are developed for pressure and pneumatic systems with bellows-nozzle-flapper configuration. In the light of fractional calculus, a fractional order derivative-derivative (FrDD controller and integral-derivative (FrID are remodeled. Numerical simulations illustrate the application of the obtained theoretical results in simple examples.

3. High-pressure portable pneumatic drive unit.

Science.gov (United States)

Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

1989-12-01

The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

4. Pneumatic pellet injectors for TFTR and JET

International Nuclear Information System (INIS)

Combs, S.K.; Milora, S.L.

1986-01-01

This paper describes the development of pneumatic hydrogen pellet injectors for plasma fueling applications on the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET). The performance parameters of these injectors represent an extension of previous experience and include pellet sizes in the range 2-6 mm in diameter and speeds approaching 2 km/s. Design features and operating characteristics of these pneumatic injectors are presented

5. Proposal and experimental validation of analytical models for seismic and vibration isolation devices in nuclear and non-nuclear facilities

International Nuclear Information System (INIS)

Serino, G.; Bonacina, G.; Bettinali, F.

1993-01-01

Two analytical-experimental models of HDLRBs having different levels of approximations are presented. Comparison with available experimental data shows that a non-linear hysteretic model, defined by three rubber parameters only, allows a very good complete simulation of the dynamic behavior of the isolation devices. A simpler equivalent linear viscous model reproduces less exactly the experimental behavior, but permits a good prediction of peak response values in the earthquake analysis of an isolated structure, if bearing stiffness and damping parameters are properly selected. The models have been used in preliminary design and subsequent check of the isolation system of two different types of Gas-Insulated Electric Substations (GIS), in view of possible future installation of isolated GISes in areas of high seismic risk. (author)

6. Numerical simulation of lead devices for seismic isolation and vibration control on their damping characteristics. Development of lead material model under cyclic large deformation

International Nuclear Information System (INIS)

Matsuda, Akihiro; Yabana, Shuichi; Borst, Rene de

2004-01-01

In order to predict the mechanical properties of lead devices for seismic isolation and vibration control, especially damping behavior under cyclic loading using numerical simulation, cyclic shear loading tests and uniaxial tensile loading tests were performed, and a new material model was proposed with the use of the both test results. Until now, it has been difficult to evaluate mechanical properties of lead material under cyclic loading by uniaxial tensile loading test because local deformations appeared with the small tensile strain. Our shear cyclic loading tests for lead material enabled practical evaluation of its mechanical properties under cyclic large strain which makes it difficult to apply uniaxial test. The proposed material model was implemented into a finite element program, and it was applied to numerical simulation of mechanical properties of lead dampers and rubber bearings with a lead plug. The numerical simulations and the corresponding laboratory loading tests showed good agreement, which proved the applicability of the proposed model. (author)

7. The relationship between presbycusis and mastoid pneumatization.

Science.gov (United States)

Pata, Yavuz Selim; Akbaş, Yucel; Unal, Murat; Duce, Meltem Nass; Akbaş, Tugana; Micozkadioğlu, Deniz

2004-02-29

Presbycusis is defined as the natural hearing loss accompanying aging, caused by degenerative changes in the inner ear. The etiology of presbycusis is uncertain. However, it would appear that a complex genetic cause is most likely. The determinants of mastoid size continue to be controversial. One of the pneumatization theories is the hereditary theory. In this study, the possible relationship between presbycusis and the extent of mastoid pneumatization was investigated. This study was carried out on 21 patients with presbycusis and 21 normal subjects of similar ages. The pneumatized volume was measured by computerized tomography. The temporal bone was scanned at 2 mm thickness intervals. Exposure (kV 130, mA105). The scan plane was parallel to the orbitomeatal line and the CT images covered the entire mastoid region. The average mastoid pneumatization in presbycusis group was 6.08 +/- 2.52 cm(3) in the right ear and 6.19 +/- 2.93 cm(3) in the left ear. However, in the control group it was 4.69 +/- 3.17 cm(3) in the right ear (p=0.12) and 5.10 +/- 3.49 cm(3) in the left ear (p=0.28). No significant difference was found between the presbycusis patients and normal subjects in terms of the volume of mastoid pneumatization.

8. Design, Development and Evaluation of a Pneumatic Seeder for Automatic Planting of Seeds in Cellular Trays

Directory of Open Access Journals (Sweden)

E Movahedi

2014-04-01

Full Text Available For planting fine seeds in cellular trays, an automatic pneumatic seeder was designed, constructed and evaluated. CATIA software was used to design and analysis the system parts of the seeder. Different parts of the seeder, including vibrating seed hopper, vacuum boom, seed picking nozzles, seed tube, pneumatic system and electronic control unit for automation of the seeder, were designed and constructed. The area of nozzle orifice was used to calculate the required pressure of nozzle tip. The seeder was evaluated using two sizes of trays. Experiments were performed with five replications and the error of planting the seeds in the 105 and 390-cellular trays were 1.9 and 0.46 percent, respectively. The time of planting for 105 and 390 cellular trays reduced from 20 min (for manual seeding to 35 s and from 90 min to 160 s, respectively.

9. Pneumatic wrench retains or discharges nuts or bolts as desired

Science.gov (United States)

Bouille, J. R.

1966-01-01

Pneumatic wrench grips, screws or unscrews, and discharges a nut or bolt as desired. The device consists of a standard pneumatic wrench modified with a special hex bolt head socket assembly and a diaphragm air cylinder.

10. A pneumatic Bionic Voice prosthesis-Pre-clinical trials of controlling the voice onset and offset.

Directory of Open Access Journals (Sweden)

Full Text Available Despite emergent progress in many fields of bionics, a functional Bionic Voice prosthesis for laryngectomy patients (larynx amputees has not yet been achieved, leading to a lifetime of vocal disability for these patients. This study introduces a novel framework of Pneumatic Bionic Voice Prostheses as an electronic adaptation of the Pneumatic Artificial Larynx (PAL device. The PAL is a non-invasive mechanical voice source, driven exclusively by respiration with an exceptionally high voice quality, comparable to the existing gold standard of Tracheoesophageal (TE voice prosthesis. Following PAL design closely as the reference, Pneumatic Bionic Voice Prostheses seem to have a strong potential to substitute the existing gold standard by generating a similar voice quality while remaining non-invasive and non-surgical. This paper designs the first Pneumatic Bionic Voice prosthesis and evaluates its onset and offset control against the PAL device through pre-clinical trials on one laryngectomy patient. The evaluation on a database of more than five hours of continuous/isolated speech recordings shows a close match between the onset/offset control of the Pneumatic Bionic Voice and the PAL with an accuracy of 98.45 ±0.54%. When implemented in real-time, the Pneumatic Bionic Voice prosthesis controller has an average onset/offset delay of 10 milliseconds compared to the PAL. Hence it addresses a major disadvantage of previous electronic voice prostheses, including myoelectric Bionic Voice, in meeting the short time-frames of controlling the onset/offset of the voice in continuous speech.

11. A pneumatic Bionic Voice prosthesis-Pre-clinical trials of controlling the voice onset and offset.

Science.gov (United States)

2018-01-01

Despite emergent progress in many fields of bionics, a functional Bionic Voice prosthesis for laryngectomy patients (larynx amputees) has not yet been achieved, leading to a lifetime of vocal disability for these patients. This study introduces a novel framework of Pneumatic Bionic Voice Prostheses as an electronic adaptation of the Pneumatic Artificial Larynx (PAL) device. The PAL is a non-invasive mechanical voice source, driven exclusively by respiration with an exceptionally high voice quality, comparable to the existing gold standard of Tracheoesophageal (TE) voice prosthesis. Following PAL design closely as the reference, Pneumatic Bionic Voice Prostheses seem to have a strong potential to substitute the existing gold standard by generating a similar voice quality while remaining non-invasive and non-surgical. This paper designs the first Pneumatic Bionic Voice prosthesis and evaluates its onset and offset control against the PAL device through pre-clinical trials on one laryngectomy patient. The evaluation on a database of more than five hours of continuous/isolated speech recordings shows a close match between the onset/offset control of the Pneumatic Bionic Voice and the PAL with an accuracy of 98.45 ±0.54%. When implemented in real-time, the Pneumatic Bionic Voice prosthesis controller has an average onset/offset delay of 10 milliseconds compared to the PAL. Hence it addresses a major disadvantage of previous electronic voice prostheses, including myoelectric Bionic Voice, in meeting the short time-frames of controlling the onset/offset of the voice in continuous speech.

12. A pneumatic Bionic Voice prosthesis—Pre-clinical trials of controlling the voice onset and offset

Science.gov (United States)

Noorian, Farzad; Novakovic, Daniel; van Schaik, André

2018-01-01

Despite emergent progress in many fields of bionics, a functional Bionic Voice prosthesis for laryngectomy patients (larynx amputees) has not yet been achieved, leading to a lifetime of vocal disability for these patients. This study introduces a novel framework of Pneumatic Bionic Voice Prostheses as an electronic adaptation of the Pneumatic Artificial Larynx (PAL) device. The PAL is a non-invasive mechanical voice source, driven exclusively by respiration with an exceptionally high voice quality, comparable to the existing gold standard of Tracheoesophageal (TE) voice prosthesis. Following PAL design closely as the reference, Pneumatic Bionic Voice Prostheses seem to have a strong potential to substitute the existing gold standard by generating a similar voice quality while remaining non-invasive and non-surgical. This paper designs the first Pneumatic Bionic Voice prosthesis and evaluates its onset and offset control against the PAL device through pre-clinical trials on one laryngectomy patient. The evaluation on a database of more than five hours of continuous/isolated speech recordings shows a close match between the onset/offset control of the Pneumatic Bionic Voice and the PAL with an accuracy of 98.45 ±0.54%. When implemented in real-time, the Pneumatic Bionic Voice prosthesis controller has an average onset/offset delay of 10 milliseconds compared to the PAL. Hence it addresses a major disadvantage of previous electronic voice prostheses, including myoelectric Bionic Voice, in meeting the short time-frames of controlling the onset/offset of the voice in continuous speech. PMID:29466455

13. Forming the stress state of a vibroisolated building in the process of mounting rubber steel vibration isolator

Directory of Open Access Journals (Sweden)

Dashevskiy Mikhail Aronovich

2015-12-01

Full Text Available The necessity to specificate the formation process of stress-strain state of buildings in the construction process is a new problem which requires including real production characteristics going beyond calculation models into calculation methods. Today the construction process lacks this specification. When mounting vibroisolators the stress-strein of a structure state is changing. The mounting method of vibroisolators is patented and consists in multistage successive compression loading of each vibroisolator with the constant speed and following fixation of this displacement. The specified engineering method of rubber-steel pads calculation in view of change of their form during deformation, nonlinearity, rheological processes is offered. Resilient pads look like rubber plates rectangular in plane reinforced on the basic surfaces with metal sheets. The influence of a time-variable static load and free vibrations of loaded pads are considered.

14. 21 CFR 882.4370 - Pneumatic cranial drill motor.

Science.gov (United States)

2010-04-01

... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pneumatic cranial drill motor. 882.4370 Section 882.4370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated power...

15. Identification and Partial Structural Characterization of Mass Isolated Valsartan and Its Metabolite with Messenger Tagging Vibrational Spectroscopy

Science.gov (United States)

Gorlova, Olga; Colvin, Sean M.; Brathwaite, Antonio; Menges, Fabian S.; Craig, Stephanie M.; Miller, Scott J.; Johnson, Mark A.

2017-08-01

Recent advances in the coupling of vibrational spectroscopy with mass spectrometry create new opportunities for the structural characterization of metabolites with great sensitivity. Previous studies have demonstrated this scheme on 300 K ions using very high power free electron lasers in the fingerprint region of the infrared. Here we extend the scope of this approach to a single investigator scale as well as extend the spectral range to include the OH stretching fundamentals. This is accomplished by detecting the IR absorptions in a linear action regime by photodissociation of weakly bound N2 molecules, which are attached to the target ions in a cryogenically cooled, rf ion trap. We consider the specific case of the widely used drug Valsartan and two isomeric forms of its metabolite. Advantages and challenges of the cold ion approach are discussed, including disentangling the role of conformers and the strategic choices involved in the selection of the charging mechanism that optimize spectral differentiation among candidate structural isomers. In this case, the Na+ complexes are observed to yield sharp resonances in the high frequency NH and OH stretching regions, which can be used to easily differentiate between two isomers of the metabolite. [Figure not available: see fulltext.

16. Modeling and Analysis of a Novel Pneumatic Artificial Muscle and Pneumatic Arm Exoskeleton

OpenAIRE

Yang, Hee Doo

2017-01-01

The soft robotics field is developing rapidly and is poised to have a wide impact in a variety of applications. Soft robots have intrinsic compliance, offering a number of benefits as compared to traditional rigid robots. Compliance can provide compatibility with biological systems such as the human body and can provide some benefits for human safety and control. Further research into soft robots can be advanced by further development of pneumatic actuators. Pneumatic actuators are a ...

17. Vertebral Pneumaticity in the Ornithomimosaur Archaeornithomimus (Dinosauria: Theropoda Revealed by Computed Tomography Imaging and Reappraisal of Axial Pneumaticity in Ornithomimosauria.

Directory of Open Access Journals (Sweden)

Akinobu Watanabe

Full Text Available Among extant vertebrates, pneumatization of postcranial bones is unique to birds, with few known exceptions in other groups. Through reduction in bone mass, this feature is thought to benefit flight capacity in modern birds, but its prevalence in non-avian dinosaurs of variable sizes has generated competing hypotheses on the initial adaptive significance of postcranial pneumaticity. To better understand the evolutionary history of postcranial pneumaticity, studies have surveyed its distribution among non-avian dinosaurs. Nevertheless, the degree of pneumaticity in the basal coelurosaurian group Ornithomimosauria remains poorly known, despite their potential to greatly enhance our understanding of the early evolution of pneumatic bones along the lineage leading to birds. Historically, the identification of postcranial pneumaticity in non-avian dinosaurs has been based on examination of external morphology, and few studies thus far have focused on the internal architecture of pneumatic structures inside the bones. Here, we describe the vertebral pneumaticity of the ornithomimosaur Archaeornithomimus with the aid of X-ray computed tomography (CT imaging. Complementary examination of external and internal osteology reveals (1 highly pneumatized cervical vertebrae with an elaborate configuration of interconnected chambers within the neural arch and the centrum; (2 anterior dorsal vertebrae with pneumatic chambers inside the neural arch; (3 apneumatic sacral vertebrae; and (4 a subset of proximal caudal vertebrae with limited pneumatic invasion into the neural arch. Comparisons with other theropod dinosaurs suggest that ornithomimosaurs primitively exhibited a plesiomorphic theropod condition for axial pneumaticity that was extended among later taxa, such as Archaeornithomimus and large bodied Deinocheirus. This finding corroborates the notion that evolutionary increases in vertebral pneumaticity occurred in parallel among independent lineages of bird

18. Enhancing in situ bioremediation with pneumatic fracturing

International Nuclear Information System (INIS)

Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

1994-04-01

A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

19. Endoscopic Pneumatic Dilation for Esophageal Achalasia.

Science.gov (United States)

Markar, Sheraz; Zaninotto, Giovanni

2018-04-01

Pneumatic dilation is a well-established treatment modality that has withstood the test of time. Prospective and randomized trials have shown that in expert hands, it provides results similar to a laparoscopic Heller myotomy with fundoplication. In addition, it should be considered the primary form of treatment in patients who experience recurrence of symptoms after a surgical myotomy.

20. Pneumatic pellet injector for JT-60

International Nuclear Information System (INIS)

Onozuka, Masanori; Hiratsuka, Hajime; Kawasaki, Kouzo.

1990-01-01

The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proven that the device provides high speed pellets as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 2.3km/s at 100 bar propellant gas. (author)

1. Pneumatic pellet injector for JT-60

Energy Technology Data Exchange (ETDEWEB)

Onozuka, Masanori (Mitsubishi Heavy Industries Ltd., Tokyo (Japan)); Hiratsuka, Hajime; Kawasaki, Kouzo

1990-11-01

The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proven that the device provides high speed pellets as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 2.3km/s at 100 bar propellant gas. (author).

2. Pneumatic devices in isotope technology. Pt. 1

International Nuclear Information System (INIS)

Egri, B.; Csoeke, A.

1974-01-01

A detailed survey has been given about the following pneumatic devices used in the isotope technology: working cylinders, membrane motors, valves, detectors, hydropneumatic units. The characteristics of the units of various control systems have been described in tables. (K.A.)

3. Soft pneumatic grippers embedded with stretchable electroadhesion

Science.gov (United States)

Guo, J.; Elgeneidy, K.; Xiang, C.; Lohse, N.; Justham, L.; Rossiter, J.

2018-05-01

Current soft pneumatic grippers cannot robustly grasp flat materials and flexible objects on curved surfaces without distorting them. Current electroadhesive grippers, on the other hand, are difficult to actively deform to complex shapes to pick up free-form surfaces or objects. An easy-to-implement PneuEA gripper is proposed by the integration of an electroadhesive gripper and a two-fingered soft pneumatic gripper. The electroadhesive gripper was fabricated by segmenting a soft conductive silicon sheet into a two-part electrode design and embedding it in a soft dielectric elastomer. The two-fingered soft pneumatic gripper was manufactured using a standard soft lithography approach. This novel integration has combined the benefits of both the electroadhesive and soft pneumatic grippers. As a result, the proposed PneuEA gripper was not only able to pick-and-place flat and flexible materials such as a porous cloth but also delicate objects such as a light bulb. By combining two soft touch sensors with the electroadhesive, an intelligent and shape-adaptive PneuEA material handling system has been developed. This work is expected to widen the applications of both soft gripper and electroadhesion technologies.

4. Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit.

Science.gov (United States)

Taghizadeh, Mostafa; Ghaffari, Ali; Najafi, Farid

2009-10-01

In this paper, the effect of pneumatic circuit design on the input-output behavior of PWM-driven servo-pneumatic systems is investigated and their control performances are improved using linear controllers instead of complex and costly nonlinear ones. Generally, servo-pneumatic systems are well known for their nonlinear behavior. However, PWM-driven servo-pneumatic systems have the advantage of flexibility in the design of pneumatic circuits which affects the input-output linearity of the whole system. A simple pneumatic circuit with only one fast switching valve is designed which leads to a quasi-linear input-output relation. The quasi-linear behavior of the proposed circuit is verified both experimentally and by simulations. Closed loop position control experiments are then carried out using linear P- and PD-controllers. Since the output position is noisy and cannot be directly differentiated, a Kalman filter is designed to estimate the velocity of the cylinder. Highly improved tracking performances are obtained using these linear controllers, compared to previous works with nonlinear controllers.

5. Pneumatic probe with laser interferometer

International Nuclear Information System (INIS)

Wilkens, P.H.

1978-01-01

Improvements to upgrade the accuracy of Rotacon probes by a complete redesign of probe to include a Michelson interferometer to replace the existing long-range capacity transducer are described. This has resulted in a compact and interchangeable probe cartridge with a 3 μin. resolution and accuracy; the cartridge can be installed and replaced in the Rotacon gauge with the minimum of realignment, which should reduce our dependence on operator skill. In addition, the stylus contact force can be reduced to 750 mg for the contacting types, but an alternative feature, which we are still developing, will use a gas jet cushion in place of the stylus to provide a noncontacting version of the same basic probe cartridge. This device is very sensitive to external vibration effects because it is virtually frictionless

6. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

Science.gov (United States)

Woods, Benjamin K. S.; Kothera, Curt S.; Wang, Gang; Wereley, Norman M.

2014-09-01

This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi.

7. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

International Nuclear Information System (INIS)

Woods, Benjamin K S; Kothera, Curt S; Wang, Gang; Wereley, Norman M

2014-01-01

This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi. (paper)

8. Slit Tubes for Semisoft Pneumatic Actuators.

Science.gov (United States)

Belding, Lee; Baytekin, Bilge; Baytekin, Hasan Tarik; Rothemund, Philipp; Verma, Mohit S; Nemiroski, Alex; Sameoto, Dan; Grzybowski, Bartosz A; Whitesides, George M

2018-03-01

This article describes a new principle for designing soft or 'semisoft' pneumatic actuators: SLiT (for SLit-in-Tube) actuators. Inflating an elastomeric balloon, when enclosed by an external shell (a material with higher Young's modulus) containing slits of different directions and lengths, produces a variety of motions, including bending, twisting, contraction, and elongation. The requisite pressure for actuation depends on the length of the slits, and this dependence allows sequential actuation by controlling the applied pressure. Different actuators can also be controlled using external "sliders" that act as reprogrammable "on-off" switches. A pneumatic arm and a walker constructed from SLiT actuators demonstrate their ease of fabrication and the range of motions they can achieve. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

9. Design of the Modular Pneumatic Valve Terminal

Directory of Open Access Journals (Sweden)

Jakub E. TAKOSOGLU

2015-11-01

Full Text Available The paper presents design of the modular pneumatic valve terminal, which was made on the basis of the patent application No A1 402905 „A valve for controlling fluid power drives, specially for pneumatic actuators, and the control system for fluid power drives valves”. The authors describe a method of operation of the system with double-acting valve and 5/2 (five ways and two position valve. Functions of the valve, and an example of application of the valve terminal in the production process were presented. 3D solid models of all the components of the valve were made. The paper presents a complete 3D model of the valve in various configurations. Using CAD-embedded SOLIDWORKS Flow Simulation computational fluid dynamics CFD analysis was also carried out of compressed air flow in the ways of the valve elements

10. A pneumatic cylinder driving polyhedron mobile mechanism

Science.gov (United States)

Ding, Wan; Kim, Sung-Chan; Yao, Yan-An

2012-03-01

A novel pneumatic cylinder driving polyhedron mobile mechanism is proposed in this paper. The mechanism is comprised of 5 tetrahedrons which includes a pneumatic cylinder in each edge. It locomotes by rolling and the rolling principle refers to the center of mass (CM) of the mechanism moved out of the supporting area and let it tip over through the controlling of the motion sequence of these cylinders. Firstly, the mathematical model is built to analysis the relation between the configuration and the CM of the mechanism. Then, a binary control strategy is developed to simplify and improve the control of this mobile mechanism. After that, dynamic simulation is performed to testify the analytical validity and feasibility of the rolling gaits. At last, a prototype is fabricated to achieve the rolling successfully to demonstrate the proposed concept.

11. Pneumatic Muscle Actuated Compliant Gripper Systems

Directory of Open Access Journals (Sweden)

Deaconescu Andrea

2016-01-01

Full Text Available The paper presents the stages of developing new, light, eco-friendly and bionic gripper systems. Gripping is achieved by means of original, self adaptive, bio-inspired systems, with a pneumatic muscle as motion generator. The method underlying the development of these new gripping systems is based on the creation of concepts by analogy, an instrument aimed at widening the inspiration horizon in designing by using models from nature.

12. Pneumatic Muscle Actuated Compliant Gripper Systems

OpenAIRE

Deaconescu Andrea

2016-01-01

The paper presents the stages of developing new, light, eco-friendly and bionic gripper systems. Gripping is achieved by means of original, self adaptive, bio-inspired systems, with a pneumatic muscle as motion generator. The method underlying the development of these new gripping systems is based on the creation of concepts by analogy, an instrument aimed at widening the inspiration horizon in designing by using models from nature.

13. Design evaluaion: pneumatic transport and classification

International Nuclear Information System (INIS)

McNair, J.M.

1979-10-01

This report describes the evaluation of selected design features of the cold engineering scale pneumatic transport and classification subsystems used in the development of the head-end equipment for HTGR fuel reprocessing. The report identifies areas that require further design effort and evaluation of alternatives prior to the design of the HTGR reference recycle facility (HRRF). Seven areas in the transport subsystem and three in the classification subsystem were selected for evaluation. Seventeen specific recommendations are presented for further design effort

14. Predictors of treatment failure for pneumatic retinopexy.

Science.gov (United States)

Rootman, Dan B; Luu, Shelly; M Conti, Stephen; Mandell, Mark; Devenyi, Robert; Lam, Wai-Ching; Kertes, Peter J

2013-12-01

The purpose of this study was to define the overall anatomic success rate in pneumatic retinopexy and to identify morphologic features that may be predictive of treatment failure in pneumatic retinopexy. Prospective consecutive interventional case series of patients with new-onset primary rhegmatogenous retinal detachments treated with pneumatic retinopexy. In this interventional case series, consecutive patients with new-onset primary rhegmatogenous retinal detachments were treated with pneumatic retinopexy and followed prospectively. Morphologic data were collected on 3-colour fundus drawings. The primary outcome measure was treatment failure, defined as requirement for scleral buckle or vitrectomy within the follow-up period. Rates of failure for each morphologic feature were compared and a logistic regression model was fit. A total of 113 eyes were included in the study. Anatomic success was achieved in 69.6% of patients. Morphologic criteria including the position and number of breaks, position and extent of lattice degeneration, size of the detached area, and macular status were all found not to be significantly related to failure. In multivariate analysis, only 3 predictors, pseudophakic status (p < 0.05, odds ratio [OR] 2.9, 95% CI, 1.06-7.88), presence of retinal break greater than 1 clock-hour (p < 0.05, OR 3.41, 1.06-11.02), and presence of grade C or D proliferative vitreoretinopathy (PVR) (p < 0.01, OR 31.83, 95% CI, 3.59-282.24), gained statistical significance. Only pseudophakia, a large retinal break, and/or PVR was associated with an increased likelihood of failure. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

15. Characterization of vibratory turning in cutting zone using a pneumatic quick-stop device

Directory of Open Access Journals (Sweden)

Saeid Amini

2017-04-01

Full Text Available Shear angle and sticking length are two crucial parameters in mechanics of metal cutting. These two parameters directly influence machinability factors such as cutting forces. Thus, shear angle and sticking length were investigated in vibratory turning process by using a pneumatic quick-stop device which was designed and fabricated, in this study. After preparation of ultrasonic assisted turning set-up, experimental tests have been carried out on two types of steel: AISI-1060 and AISI 304. Accordingly, the process of chip formation in each particular cutting test was quickly stopped when deformed chip was still in contact with workpiece. As a result, it was revealed that added linear vibration leads the turning operation to be improved by increase of shear angle and decrease of sticking length. Moreover, the effect of ultrasonic vibration on cutting force and chip micro-hardness is evaluated.

16. Deep sedation during pneumatic reduction of intussusception.

Science.gov (United States)

Ilivitzki, Anat; Shtark, Luda Glozman; Arish, Karin; Engel, Ahuva

2012-05-01

Pneumatic reduction of intussusception under fluoroscopic guidance is a routine procedure. The unsedated child may resist the procedure, which may lengthen its duration and increase the radiation dose. We use deep sedation during the procedure to overcome these difficulties. The purpose of this study was to summarize our experience with deep sedation during fluoroscopic reduction of intussusception and assess the added value and complication rate of deep sedation. All children with intussusception who underwent pneumatic reduction in our hospital between January 2004 and June 2011 were included in this retrospective study. Anesthetists sedated the children using propofol. The fluoroscopic studies, ultrasound (US) studies and the childrens' charts were reviewed. One hundred thirty-one attempted reductions were performed in 119 children, of which 121 (92%) were successful and 10 (8%) failed. Two perforations (1.5%) occurred during attempted reduction. Average fluoroscopic time was 1.5 minutes. No complication to sedation was recorded. Deep sedation with propofol did not add any complication to the pneumatic reduction. The fluoroscopic time was short. The success rate of reduction was high,raising the possibility that sedation is beneficial, possibly by smooth muscle relaxation.

17. Fractional-Order Control of Pneumatic Position Servosystems

OpenAIRE

Junyi, Cao; Binggang, Cao

2011-01-01

A fractional-order control strategy for pneumatic position servosystem is presented in this paper. The idea of the fractional calculus application to control theory was introduced in many works, and its advantages were proved. However, the realization of fractional-order controllers for pneumatic position servosystems has not been investigated. Based on the relationship between the pressure in cylinder and the rate of mass flow into the cylinder, the dynamic model of pneumatic position servo ...

18. Comparison of Pneumatic Dilation with Pneumatic Dilation Plus Botulinum Toxin for Treatment of Achalasia

Directory of Open Access Journals (Sweden)

Alireza Bakhshipour

2010-03-01

Full Text Available Among the therapeutic options for achalasia are pneumatic dilatation (PD, an appropriate long-term therapy, and botulinum toxin injection (BT that is a relatively short-term therapy. This study aimed to compare therapeutic effect of repetitive pneumatic dilation with a combined method (botulinum toxin injection and pneumatic dilation in a group of achalasia patients who are low responder to two initial pneumatic dilations. Thirty- four patients with documented primary achalasia that had low response to two times PD (<50% decrease in symptom score and barium height at 5 minute in timed esophagogram after 3month of late PD were randomized to receive pneumatic dilation (n=18 or botulinum toxin injection and pneumatic dilation by four weeks interval (n=16, PD and BT+PD groups respectively. Symptom scores were evaluated before and at 1, 6 and 12 months after treatment. Clinical remission was defined as a decrease in symptom score ≥ 50% of baseline. There were no significant differences between the two groups in gender, age and achalasia type. Remission rate of patients in BT-PD group in comparison with PD group were 87.5% vs. 67.1% (P = 0.7, 87.5% vs. 61.1% (P = 0.59 and 87.5% vs. 55.5% (P = 0.53 at 1, 6 and 12 months respectively .There were no major complications in either group. The mean symptom score decreased by 62.71% in the BT-PD group (P < 0.002 and 50.77% in the PD group (P < 0.01 at the end of the first year. Despite a better response rate in BT+PD group, a difference was not statistically significant. A difference may be meaningful if a large numbers of patients are included in the study.

19. Physics-Based Pneumatic Hammer Instability Model, Phase I

Data.gov (United States)

National Aeronautics and Space Administration — Florida Turbine Technologies (FTT) proposes to conduct research necessary to develop a physics-based pneumatic hammer instability model for hydrostatic bearings...

20. Vibration mixer

Energy Technology Data Exchange (ETDEWEB)

Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

1983-01-01

The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

1. Pneumatic stepper motor and device comprising at least one such pneumatic stepper motor

NARCIS (Netherlands)

Groenhuis, Vincent; Siepel, Françoise Jeanette; Stramigioli, Stefano

2018-01-01

The invention relates to a pneumatic stepper motor, comprising: - a housing, said housing accommodating at least part of: - a rack or geared axle comprising a plurality of gear elements; and - two pistons, each comprising at least two teeth, said pistons being arranged to cooperate with said rack or

2. Pneumatic Artificial Muscle Actuation and Modeling

Science.gov (United States)

Leephakpreeda, Thananchai; Wickramatunge, Kanchana C.

2009-10-01

A Pneumatic Artificial Muscle (PAM) yields a natural muscle-like actuator with a high force to weight ratio, a soft and flexible structure, and adaptable compliance for a humanoid robot, rehabilitation and prosthetic appliances to the disabled, etc. To obtain optimum design and usage, the mechanical behavior of the PAM need to be understood. In this study, observations of experimental results reveal an empirical model for relations of physical variables, contraction and air pressure within the PAM, as compared to mechanical characteristics, such as stiffness or/and pulling forces of the PAM available now in market.

3. A pneumatic muscle hand therapy device.

Science.gov (United States)

Koeneman, E J; Schultz, R S; Wolf, S L; Herring, D E; Koeneman, J B

2004-01-01

Intensive repetitive therapy improves function and quality of life for stroke patients. Intense therapies to overcome upper extremity impairment are beneficial, however, they are expensive because, in part, they rely on individualized interaction between the patient and rehabilitation specialist. The development of a pneumatic muscle driven hand therapy device, the Mentortrade mark, reinforces the need for volitional activation of joint movement while concurrently offering knowledge of results about range of motion, muscle activity or resistance to movement. The device is well tolerated and has received favorable comments from stroke survivors, their caregivers, and therapists.

4. Blood Sample Transportation by Pneumatic Transportation Systems

DEFF Research Database (Denmark)

2018-01-01

BACKGROUND: Pneumatic transportation systems (PTSs) are increasingly used for transportation of blood samples to the core laboratory. Many studies have investigated the impact of these systems on different types of analyses, but to elucidate whether PTSs in general are safe for transportation...... analysis, and the hemolysis index). CONCLUSIONS: Owing to their high degree of heterogeneity, the retrieved studies were unable to supply evidence for the safety of using PTSs for blood sample transportation. In consequence, laboratories need to measure and document the actual acceleration forces...

5. Repeating pneumatic pellet injector in JAERI

International Nuclear Information System (INIS)

Kasai, Satoshi; Hasegawa, Kouichi; Suzuki, Sadaaki; Miura, Yukitoshi; Oda, Yasushi; Onozuka, Masanori; Tsujimura, Seiichi.

1992-09-01

A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author)

6. Development of repeating pneumatic pellet injector

Energy Technology Data Exchange (ETDEWEB)

Oda, Y.; Onozuka, M.; Shimomura, T. (Mitsubishi Heavy Industries Ltd., Kobe (Japan)) (and others)

1990-01-01

A repeating pneumatic pellet injector has been constructed to experiment with the technique of continuous injection for fueling fusion reactors. This device is composed of a cryogenic extruder and a gun assembly in (among others) a high-vacuum vessel, diagnostic vessels, LHe, fuel-gas and propellant-gas supply systems, control and data acquisition systems, etc. The performance tests, using hydrogen, have proved that the device provides the function of extruding frozen hydrogen ribbons at the speed of 6 mm s{sup -1}, chambering pellet at the rate of 5 Hz, and injecting pellet at the speed of 900 m s{sup -1}, as planned. (author).

7. Development of repeating pneumatic pellet injector

International Nuclear Information System (INIS)

Oda, Y.; Onozuka, M.; Shimomura, T.

1990-01-01

A repeating pneumatic pellet injector has been constructed to experiment with the technique of continuous injection for fueling fusion reactors. This device is composed of a cryogenic extruder and a gun assembly in (among others) a high-vacuum vessel, diagnostic vessels, LHe, fuel-gas and propellant-gas supply systems, control and data acquisition systems, etc. The performance tests, using hydrogen, have proved that the device provides the function of extruding frozen hydrogen ribbons at the speed of 6 mm s -1 , chambering pellet at the rate of 5 Hz, and injecting pellet at the speed of 900 m s -1 , as planned. (author)

8. Particle segregation in pneumatic conveying lines

Energy Technology Data Exchange (ETDEWEB)

McGlinchey, D.; Marjanovic, P.; Cook, S.; Jones, M.G. [Glasgow Caledonian University, Glasgow (United Kingdom). Centre for Industrial Bulk Solids Handling

2000-07-01

This investigation studied segregation of particles during pneumatic transport from a theoretical and experimental perspective. Dilute phase or suspension flow and dense phase (non-suspension flow) were both considered. A computer model was generated based on the conservation equations to investigate dilute phase conditions; an initial qualitative investigation of material behaviour being conveyed in dense phase was made with plastic pellets and salt as a segregating mixture in a small test rig and the results from a full scale test rig conveying two grades of coal of different size distributions are discussed. 11 refs., 9 figs., 1 tab.

9. Robust PID Controller for a Pneumatic Actuator

Directory of Open Access Journals (Sweden)

Skarpetis Michael G.

2016-01-01

Full Text Available In this paper the position control pneumatic actuator using a robust PID controller is presented. The parameters of the PID controller are computed using a Hurwitz invariability technique enriched with a Simulated Annealing Algorithm. The nonlinear model involves uncertain parameters due to linearization of the servo valve, variations of the initial volume of the cylinder and variation of the external load. The problem is proven to be solvable and the controller parameters are chosen to provide a suboptimal solution for tracking error minimization. Simulation results are presented for the nonlinear model.

10. Repeating pneumatic pellet injector in JAERI

Energy Technology Data Exchange (ETDEWEB)

Kasai, Satoshi; Hasegawa, Kouichi; Suzuki, Sadaaki; Miura, Yukitoshi (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment); Oda, Yasushi; Onozuka, Masanori; Tsujimura, Seiichi.

1992-09-01

A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author).

11. Mathematical Modeling of Diaphragm Pneumatic Motors

Directory of Open Access Journals (Sweden)

Fojtášek Kamil

2014-03-01

Full Text Available Pneumatic diaphragm motors belong to the group of motors with elastic working parts. This part is usually made of rubber with a textile insert and it is deformed under the pressure of a compressed air or from the external mass load. This is resulting in a final working effect. In this type of motors are in contact two different elastic environments – the compressed air and the esaltic part. These motors are mainly the low-stroke and working with relatively large forces. This paper presents mathematical modeling static properties of diaphragm motors.

12. Variable camber wing based on pneumatic artificial muscles

Science.gov (United States)

Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

2009-07-01

As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

13. Development of the pneumatic service robot with a hybrid type

International Nuclear Information System (INIS)

Choi, Cheol U; Choi, Hyeun Seok; Han, Chang Soo

2001-01-01

In this paper, the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantage of good compliance, high payload-to-weight and payload-to-volume ratios, high speed and force capabilities. Using pneumatic actuators which have low stiffness, the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory, the pneumatic service robot is evaluated and verified

14. Fractional-Order Control of Pneumatic Position Servosystems

Directory of Open Access Journals (Sweden)

Cao Junyi

2011-01-01

Full Text Available A fractional-order control strategy for pneumatic position servosystem is presented in this paper. The idea of the fractional calculus application to control theory was introduced in many works, and its advantages were proved. However, the realization of fractional-order controllers for pneumatic position servosystems has not been investigated. Based on the relationship between the pressure in cylinder and the rate of mass flow into the cylinder, the dynamic model of pneumatic position servo system is established. The fractional-order controller for pneumatic position servo and its implementation in industrial computer is designed. The experiments with fractional-order controller are carried out under various conditions, which include sine position signal with different frequency and amplitude, step position signal, and variety inertial load. The results show the effectiveness of the proposed scheme and verify their fine control performance for pneumatic position servo system.

15. Transforming insect electromyograms into pneumatic muscle control

Science.gov (United States)

Rutter, Brandon; Mu, Laiyong; Ritzmann, Roy; Quinn, Roger

2006-05-01

Robots can serve as hardware models for testing biological hypotheses. Both for this reason and to improve the state of the art of robotics, we strive to incorporate biological principles of insect locomotion into robotic designs. Previous research has resulted in a line of robots with leg designs based on walking and climbing movements of the cockroach Blaberus discoidalis. The current version, Robot V, uses muscle-like Braided Pneumatic Actuators (BPAs). In this paper, we use recorded electromyograms (EMGs) to drive robot joint motion. A muscle activation model was developed that transforms EMGs recorded from behaving cockroaches into appropriate commands for the robot. The transform is implemented by multiplying the EMG by an input gain thus generating an input pressure signal, which is used to drive a one-way closed loop pressure controller. The actuator then can be modeled as a capacitance with input rectification. The actuator exhaust valve is given a leak rate, making the transform a leaky integrator for air pressure, which drives the output force of the actuator. We find parameters of this transform by minimizing the difference between the robot motion produced and that observed in the cockroach. Although we have not reproduced full-amplitude cockroach motion using this robot, results from evaluation on reduced-amplitude cockroach angle data strongly suggest that braided pneumatic actuators can be used as part of a physical model of a biological system.

16. Orthopaedic Rehabilitation Device Actuated with Pneumatic Muscles

Directory of Open Access Journals (Sweden)

Ioana Petre

2014-07-01

Full Text Available Year after year recovery clinics worldwide report significant numbers of lower limb bearing joint disabilities. An effective method for the speedy rehabilitation of patients with such afflictions is Continuous Passive Motion (CPM, drawing upon a range of specific equipment. This paper presents an innovative constructive solution for such orthopaedic rehabilitation equipment, designed to ensure a swift reintegration of patients at as low a cost as possible. The absolute novelty consists in the utilization of the linear pneumatic muscle as actuator of the orthopaedic rehabilitation equipment, thus achieving a light and highly compliant construction that satisfies safety requirements related to man-machine interaction. Pneumatic muscles are bio-inspired actuation systems characterized by a passive variable compliant behaviour. This property, deployed in rehabilitation systems, enables the development of human friendly devices, which are comfortable for the patients, and capable of safe interaction. This paper presents the constructive schematic of the orthopaedic rehabilitation equipment, the structure of the actuation and positioning system, and several of its functional characteristics.

17. Pneumatic load compensating or controlling system

Science.gov (United States)

Rogers, J. R. (Inventor)

1975-01-01

A pneumatic load compensating or controlling system for restraining a load with a predetermined force or applying a predetermined force to the load is described; it includes a source of pressurized air, a one-way pneumatic actuator operatively connected to a load, and a fluid conduit fluidically connecting the actuator with the source of pressurized air. The actuator is of the piston and cylinder type, and the end of the fluid conduit is connected to the upper or lower portion of the cylinder whereby the actuator alternatively and selectively restrains the load with a predetermined force or apply a predetermined force to the load. Pressure regulators are included within the system for variably selectively adjusting the pressurized fluid to predetermined values as desired or required; a pressure amplifier is included within the system for multiplying the pressurized values so as to achieve greater load forces. An accumulator is incorporated within the system as a failsafe operating mechanism, and visual and aural alarm devices, operatively associated with pressure detecting apparatus, readily indicate the proper or improper functioning of the system.

18. Flowfield Analysis of a Pneumatic Solenoid Valve

Directory of Open Access Journals (Sweden)

Sheam-Chyun Lin

2018-07-01

Full Text Available Pneumatic solenoid valve has been widely used in the vehicle control systems for meeting the rapid-reaction demand triggered by the dynamic conditions encountered during the driving course of vehicle. For ensuring the safety of human being, the reliable and effective solenoid valve is in great demand to shorten the reaction time and thus becomes the topic of this research. This numerical study chooses a commercial 3/2-way solenoid valve as the reference valve for analysing its performance. At first, CFD software Fluent is adopted to simulate the flow field associated with the valve configuration. Then, the comprehensive flow visualization is implemented to identify the locations of adverse flow patterns. Accordingly, it is found that a high-pressure region exists in the zone between the nozzle exit and the top of iron core. Thereafter, the nozzle diameter and the distance between nozzle and spool are identified as the important design parameters for improving the pressure response characteristics of valve. In conclusion, this work establishes a rigorous and systematic CFD scheme to evaluate the performance of pneumatic solenoid valve.

19. Ship Vibrations

DEFF Research Database (Denmark)

Sørensen, Herman

1997-01-01

Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...

20. Experience and prospects of using the pneumatic designs in underground mining

Energy Technology Data Exchange (ETDEWEB)

Rakhutin, V.S. [National Mining University of Ukraine, Dnipropetrovsk (Ukraine)

1999-07-01

The article reviews the experience of application of pneumatic designs ('flexible shells') in coal mines (pneumatic cogs and supports), ore mines (pneumatic cofferdams and partitions in filling), and in the construction of mines and underground constructions (pneumatic casings, temporary (pilot) supports). 2 refs.

1. The effect of pneumatic dilation in management of postfundoplication dysphagia.

Science.gov (United States)

Sunjaya, D; Podboy, A; Blackmon, S H; Katzka, D; Halland, M

2017-06-01

Fundoplication surgery is a commonly performed procedure for gastro-esophageal reflux disease or hiatal hernia repair. Up to 10% of patients develop persistent postoperative dysphagia after surgery. Data on the effectiveness of pneumatic dilation for treatment are limited. The aim of this study was to evaluate clinical outcomes and identify clinical factors associated with successful response to pneumatic dilation among patients with persistent postfundoplication dysphagia (PPFD). We retrospectively evaluated patients who had undergone pneumatic dilation for PPFD between 1999 and 2016. Patients with dysphagia or achalasia prior to fundoplication were excluded. Demographic information, surgical history, severity of dysphagia, and clinical outcomes were collected. Data pertaining to esophagram, manometry, endoscopy, and pneumatic dilation were also collected. We identified 38 patients (82% female, 95% Caucasian, and median age 59 years) with PPFD who completed pneumatic dilation. The median postfundoplication dysphagia score was 2. Eleven patients had abnormal peristalsis on manometry. Seventeen patients reported response (seven complete) with an average decrease of 1 in their dysphagia score. Fifteen patients underwent reoperation due to PPFD. Hiatal hernia repair was the only factor that predicts a higher response rate to pneumatic dilation. Only one patient in our study developed complication (pneumoperitoneum) from pneumatic dilation. We found that pneumatic dilation to be a safe treatment option for PPFD with moderate efficacy. Patients who developed PPFD after a hiatal hernia repair may gain the greatest benefit after pneumatic dilation. We were not able to identify additional clinical, radiological, endoscopic, or manometric parameters that were predictive of response. © 2017 John Wiley & Sons Ltd.

2. Designed pneumatic valve actuators for controlled droplet breakup and generation.

Science.gov (United States)

Choi, Jae-Hoon; Lee, Seung-Kon; Lim, Jong-Min; Yang, Seung-Man; Yi, Gi-Ra

2010-02-21

The dynamic breakup of emulsion droplets was demonstrated in double-layered microfluidic devices equipped with designed pneumatic actuators. Uniform emulsion droplets, produced by shearing at a T-junction, were broken into smaller droplets when they passed downstream through constrictions formed by a pneumatically actuated valve in the upper control layer. The valve-assisted droplet breakup was significantly affected by the shape and layout of the control valves on the emulsion flow channel. Interestingly, by actuating the pneumatic valve immediately above the T-junction, the sizes of the emulsion droplets were controlled precisely in a programmatic manner that produced arrays of uniform emulsion droplets in various sizes and dynamic patterns.

3. Hydraulics and pneumatics a technician's and engineer's guide

CERN Document Server

Parr, Andrew

1991-01-01

Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

4. Hydraulics and pneumatics a technician's and engineer's guide

CERN Document Server

Parr, Andrew

2011-01-01

Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. Such movements and manipulations are frequently accomplished by means of devices driven by liquids (hydraulics) or air (pneumatics), the subject of this book. Hydraulics and Pneumatics is written by a practicing process control engineer as a guide to the successful operation of hydraulic and pneumatic systems for all engineers and technicians working with them. Keeping mathematics and theory to a minimum, this practical guide is thorough but accessible to technicians without a

5. On the Development of Fuel-Free Power Supply Sources on Pneumatic Energy Conversion Principles

Science.gov (United States)

Son, E. E.; Nikolaev, V. G.; Kudryashov, Yu. I.; Nikolaev, V. V.

2017-12-01

The article is devoted to the evaluation of capabilities and problems of creation of fuel-free power supply of isolated and autonomous Russian consumers of low (up to several hundreds kW) power based on the joint use of wind power plants and progressive systems of pneumatic accumulation and conversion of energy. The basic and functional schemes and component structure of the system prototype are developed and proposed, the evaluations of the expected technical and economic indicators of system are presented, and the ways of its further practical implementation are planned.

6. Revisiting the Closed-Loop Pneumatic Drive Design

Directory of Open Access Journals (Sweden)

K D. Efremova

2017-01-01

Full Text Available Compressibility of air used as a working medium in pneumatic control systems raise certain difficulties in calculating dynamic characteristics of the pneumatic drive and solving problems of its regulation. These difficulties are due to a number of factors:   - flow of compressed air through the narrow working splits of distributive and throttling devices of pneumatic control;   - filling in and discharging the pneumatic actuator cavities of variable volume (piston and rod cavities of the air-cylinder under conditions of heat and mass transfer;   - simultaneous filling in and discharging a pneumatic cavity of permanent volume (receiver;   - pneumatic cylinder piston end positioning alteration under variable loading and at the moment of shutdown;A number of factors have a significant impact on the piston end positioning alteration value, namely an initial positioning of the piston at the moment of its shutdown, which determines the volume of the pneumatic cylinder cavity; a value of the permanent component of the load at the moment the piston shuts down and its change during keeping time period; transmission coefficient of the positioning component of the load; a working area of the air-cylinder piston and also an atmospheric pressure reduction, which can significantly affect the operation of control systems of a small aircraft at high altitudes.With a view to deepening the problem of calculation and design of pneumatic actuators, it is shown that the relationship between the parameters of compressed air and their changes is determined by the properties of thermodynamic processes under conditions of heat and mass transfer. In pneumatic actuators for general industrial use, the pressure of compressed air does not exceed a value equal to 1 MPa. In this case, the working medium can be regarded as an ideal gas in simplified calculations.Based on the general equation of thermodynamics, the paper considers the particular cases of a changing gas

7. Practical controller design for ultra-precision positioning of stages with a pneumatic artificial muscle actuator

Science.gov (United States)

Tang, T. F.; Chong, S. H.

2017-06-01

This paper presents a practical controller design method for ultra-precision positioning of pneumatic artificial muscle actuator stages. Pneumatic artificial muscle (PAM) actuators are safe to use and have numerous advantages which have brought these actuators to wide applications. However, PAM exhibits strong non-linear characteristics, and these limitations lead to low controllability and limit its application. In practice, the non-linear characteristics of PAM mechanism are difficult to be precisely modeled, and time consuming to model them accurately. The purpose of the present study is to clarify a practical controller design method that emphasizes a simple design procedure that does not acquire plants parameters modeling, and yet is able to demonstrate ultra-precision positioning performance for a PAM driven stage. The practical control approach adopts continuous motion nominal characteristic trajectory following (CM NCTF) control as the feedback controller. The constructed PAM driven stage is in low damping characteristic and causes severe residual vibration that deteriorates motion accuracy of the system. Therefore, the idea to increase the damping characteristic by having an acceleration feedback compensation to the plant has been proposed. The effectiveness of the proposed controller was verified experimentally and compared with a classical PI controller in point-to-point motion. The experiment results proved that the CM NCTF controller demonstrates better positioning performance in smaller motion error than the PI controller. Overall, the CM NCTF controller has successfully to reduce motion error to 3µm, which is 88.7% smaller than the PI controller.

8. Control performance of pneumatic artificial muscle

Science.gov (United States)

Saga, Norihiko; Chonan, Seiji

2007-01-01

The robot in the future will be lightened and, in addition, the complex tasks will be done by the consumption of less energy. To achieve this, the development of an artificial muscle actuator which is as soft as a human-being becomes indispensable. At present, the artificial muscle actuator used is the McKibben type, but the heat and mechanical loss of this actuator are large because of the friction caused by the expansion and contraction of the sleeve. Therefore, we developed the artificial muscle tube where the Carbon fiber of the high intensity had been built into the silicon tube. In this report, the results of the examined the mechanical property of silicone rubber is reported, and the shrinking characteristics, response characteristics, and control performance as a pneumatic actuator are reported.

9. A fluidic/pneumatic interface amplifier

Science.gov (United States)

Limbert, D. E.; Kegel, T. M.

The development of a low cost, reliable, linear pressure amplifier to interface Laminar Proportional Amplifiers (LPA) to pneumatic controllers is presented. The amplifier consists of an LPA input stage and an output stage consisting of a venturi in series with a bellows nozzle valve. The LPA output drives the bellows nozzle valve thereby altering the flowrate through the venturi. The pressure within the venturi throat region, which is the amplifier output, changes with the flowrate. Non-linear characteristics, due to supersonic flow within the venturi, are altered through the use of feedback to the LPA input. A computer based model, to aid in optimizing the amplifier design, is developed. This model incorporates the effects of shock waves and boundary layers within the venturi. Good correspondence between the model and an experimental prototype is shown.

10. Inductance position sensor for pneumatic cylinder

Directory of Open Access Journals (Sweden)

Pavel Ripka

2018-04-01

Full Text Available The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

11. Inductance position sensor for pneumatic cylinder

Science.gov (United States)

Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan

2018-04-01

The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

12. Pneumatic transport systems for TRIGA reactors

International Nuclear Information System (INIS)

Bolton, John A.

1970-01-01

Main parameters and advantages of pneumatically operated systems, primarily those operated by gas pressure are discussed. The special irradiation ends for the TRIGA reactor are described. To give some idea of the complexity of some modern systems, the author presents the large system currently operating at the National Bureau of Standards in Washington. In this system, 13 stations are located throughout the radiochemistry laboratories and three irradiation ends are located in the reactor, which is a 14-megawatt unit. The system incorporates practically every fail-safe device possible, including ball valves located on all capsule lines entering the reactor area, designed to close automatically in the event of a reactor scram, and at that time capsules within the reactor would be diverted by means of switches located on the inside of the reactor wall. The whole system is under final control of a permission control panel located in the reactor control room. Many other safety accessories of the system are described

13. Urban vibrations

DEFF Research Database (Denmark)

Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

2012-01-01

In   this   paper   we   describe   a   field   study   conducted   with   a   wearable   vibration   belt   where   we   test   to   determine   the   vibration   intensity   sensitivity   ranges   on   a   large   diverse   group   of   participants   with   evenly   distributed  ages  and...

14. Physics-Based Pneumatic Hammer Instability Model, Phase II

Data.gov (United States)

National Aeronautics and Space Administration — The objective of this project is to develop a physics-based pneumatic hammer instability model that accurately predicts the stability of hydrostatic bearings...

15. The Photo-Pneumatic CO2 Analyzer, Phase I

Data.gov (United States)

National Aeronautics and Space Administration — We are proposing to build a new technology, the photo-pneumatic analyzer. It is small, solid-state, inexpensive, and appropriate for observations of atmospheric...

16. Design and experiment of pneumatic EPB test platform

Directory of Open Access Journals (Sweden)

Jianshi GONG

2017-02-01

Full Text Available In order to verify the accuracy and reliability of the function and control strategy of the pneumatic electronic parking brake(EPB system, a test platform of the pneumatic EPB system is designed. The working principle of the air pressure type EPB test platform is introduced, the composition of the platform is confirmed, including air press storage module, braking module, man-machine interaction module, signal imitation module, data collection module, and fault diagnosis module, and the function of rapid charging and discharging of the pneumatic EPB system is carried out. The results show that, compared with manual control valve, the air pressure EPB braking process is more sensitive, and the test platform can meet the test requirements of the pneumatic electronic brake system.

17. TOPICAL REVIEW: Pneumatic and hydraulic microactuators: a review

Science.gov (United States)

De Volder, Michaël; Reynaerts, Dominiek

2010-04-01

The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston-cylinder and drag-based microdevices.

18. Spot-Welding Gun With Adjustable Pneumatic Spring

Science.gov (United States)

Burley, Richard K.

1990-01-01

Proposed spot-welding gun equipped with pneumatic spring, which could be bellows or piston and cylinder, exerts force independent of position along stroke. Applies accurate controlled force to joint welded, without precise positioning at critical position within stroke.

19. Analytical Solution to the Pneumatic Transient Rod System at ACRR

International Nuclear Information System (INIS)

Fehr, Brandon Michael

2016-01-01

The ACRR pulse is pneumatically driven by nitrogen in a system of pipes, valves and hoses up to the connection of the pneumatic system and mechanical linkages of the transient rod (TR). The main components of the TR pneumatic system are the regulator, accumulator, solenoid valve and piston-cylinder assembly. The purpose of this analysis is to analyze the flow of nitrogen through the TR pneumatic system in order to develop a motion profile of the piston during the pulse and be able to predict the pressure distributions inside both the cylinder and accumulators. The predicted pressure distributions will be validated against pressure transducer data, while the motion profile will be compared to proximity switch data. By predicting the motion of the piston, pulse timing will be determined and provided to the engineers/operators for verification. The motion profile will provide an acceleration distribution to be used in Razorback to more accurately predict reactivity insertion into the system.

20. Analytical Solution to the Pneumatic Transient Rod System at ACRR

Energy Technology Data Exchange (ETDEWEB)

Fehr, Brandon Michael [Georgia Inst. of Technology, Atlanta, GA (United States)

2016-01-08

The ACRR pulse is pneumatically driven by nitrogen in a system of pipes, valves and hoses up to the connection of the pneumatic system and mechanical linkages of the transient rod (TR). The main components of the TR pneumatic system are the regulator, accumulator, solenoid valve and piston-cylinder assembly. The purpose of this analysis is to analyze the flow of nitrogen through the TR pneumatic system in order to develop a motion profile of the piston during the pulse and be able to predict the pressure distributions inside both the cylinder and accumulators. The predicted pressure distributions will be validated against pressure transducer data, while the motion profile will be compared to proximity switch data. By predicting the motion of the piston, pulse timing will be determined and provided to the engineers/operators for verification. The motion profile will provide an acceleration distribution to be used in Razorback to more accurately predict reactivity insertion into the system.

1. Intelligent Switching Control of Pneumatic Artificial Muscle Manipulator

Science.gov (United States)

Ahn, Kyoung Kwan; Thanh, Tu Diep Cong; Ahn, Young Kong

Problems with the control, oscillatory motion and compliance of pneumatic systems have prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio, ease of maintenance and inherent safety are the factors that could potentially be exploited in sophisticated dexterous manipulator designs. These advantages have led to the development of novel actuators such as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle Manipulators. However, some limitations still exist, such as deterioration of the performance of transient response due to the change of the external inertia load in the pneumatic artificial muscle manipulator. To overcome this problem, switching algorithm of control parameter using learning vector quantization neural network (LVQNN) is newly proposed, which estimates the external inertia load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external inertia loads.

2. NK-1 Removable Cryogenic Shroud (A Study of the Bimba Pneumatic Cylinder)

International Nuclear Information System (INIS)

Anderson, K.; Stefanescu, D.

2003-01-01

The Mark 1 Cryostat requires a cryogenic shroud that must be retracted immediately before firing the NIF laser. This paper evaluates a pneumatic cylinder that has been chosen to open and close the shroud. After a variety of motion control and vacuum compatibility experiments, we concluded that the Bimba feedback control cylinder may be used to retract the shroud with certain modifications to its control system and additional rod seals. The Mark I Cryostat is a system that allows fielding of a wide range of targets on the National Ignition Facility (NIF). The purpose is to have a system with the capability of controlling the target temperature between ∼10 and 300 K. While in the Target Chamber, a shroud must cover the cooled targets. This shroud allows the cold target to be shielded from condensable residual gasses in the target chamber. The removable shroud may be cooled to 80 K to provide a radiant shield for the target from the room temperature target chamber. The shroud must remain over the target until approximately one second before shot time, and then retract on command, without inducing vibration into the target. An actuation system design, which removes the shroud, is constrained by the size limitations of the MK-1, the need to build from low-activation materials, the need to operate in a vacuum, and the need for high reliability. The scheme for retracting the shroud that they investigated was a pressurized air cylinder. The pneumatic cylinder tested in our experiments was built by the Bimba Manufacturing Company. We thought it would be suitable for shroud retraction because its manufacturer claimed that its motion was smooth, highly accurate, controllable and the appropriate size for our needs. The pneumatic cylinder moves a piston by changing the gas pressure in the two sections of the cylinder on either side of the piston. The cylinder also uses the piston as a voltage potentiometer to determine the current position of the piston. This voltage is then

3. Second Order Sliding Mode Controller Design for Pneumatic Artificial Muscle

OpenAIRE

Ammar Al-Jodah; Laith Khames

2018-01-01

In this paper, first and second order sliding mode controllers are designed for a single link robotic arm actuated by two Pneumatic Artificial Muscles (PAMs). A new mathematical model for the arm has been developed based on the model of large scale pneumatic muscle actuator model. Uncertainty in parameters has been presented and tested for the two controllers. The simulation results of the second-order sliding mode controller proves to have a low tracking error and chattering effect as compar...

4. Electric-Pneumatic Actuator: A New Muscle for Locomotion

OpenAIRE

Ahmad Sharbafi, Maziar; Shin, Hirofumi; Zhao, Guoping; Hosoda, Koh; Seyfarth, Andre

2017-01-01

A better understanding of how actuator design supports locomotor function may help develop novel and more functional powered assistive devices or robotic legged systems. Legged robots comprise passive parts (e.g., segments, joints and connections) which are moved in a coordinated manner by actuators. In this study, we propose a novel concept of a hybrid electric-pneumatic actuator (EPA) as an enhanced variable impedance actuator (VIA). EPA is consisted of a pneumatic artificial muscle (PAM) a...

5. Design and experiment of pneumatic EPB test platform

OpenAIRE

Jianshi GONG; Tianle JIA; Dali TIAN; Hongliang WANG; Di HUANG

2017-01-01

In order to verify the accuracy and reliability of the function and control strategy of the pneumatic electronic parking brake(EPB) system, a test platform of the pneumatic EPB system is designed. The working principle of the air pressure type EPB test platform is introduced, the composition of the platform is confirmed, including air press storage module, braking module, man-machine interaction module, signal imitation module, data collection module, and fault diagnosis module, and the funct...

6. Safe-geometry pneumatic nuclear fuel powder blender

International Nuclear Information System (INIS)

Lyon, W.L.

1980-01-01

A safe geometry nuclear fuel powder is claimed blender of a pneumatic type having a plurality of narrow flat-walled blending chambers or ''slab tanks'' extending radially outward from a pneumatic spouting tube having an inlet and an outlet at bottom and top, respectively, open to each slab tank or blending chamber and contained within a cylindrical cone-bottomed shell filled with neutron-absorbing material between the blending chambers

7. Design and Experiment of 1LFQ-325 Pneumatic Reversible Plough

OpenAIRE

Zheng, Xuan; Chen, Xuefeng; Qin, Chaomin; Jia, Libo

2013-01-01

A pneumatic reversible plough is developed, which complements to the tractor of 25.7-36.8 kW. The plough adopts the cylinder as reversing mechanism between the right and left plough bodies, and the cylinder can substitute the mechanical reversing mechanism. The pneumatic turnover allows the plough to be operated easily and turned over flexibly. Field experiment results show that indicators of plough performance meet the requirements of the relevant national standards.

8. Development of pneumatic actuator with low-wave reflection characteristics

Science.gov (United States)

Chang, H.; Tsung, T. T.; Jwo, C. S.; Chiang, J. C.

2010-08-01

This study aims at the development of a less reflective electromagnetic pneumatic actuator often used in the anechoic chamber. Because a pneumatic actuator on the market is not appropriate for use in such a chamber and a metallic one has high dielectric constant which generates reflective electromagnetic waves to influence test parameters in the chamber. The newly developed pneumatic actuator is made from low dielectric constant plastics with less reflective of electromagnetic. A turbine-type air motor is used to develop the pneumatic actuator and a employ Prony tester is used to run the brake horsepower test for the performance test of pneumatic actuator. Test results indicate that the pneumatic actuator in the minimal starting flow is 17 l/min, and it generates a brake horsepower of 48 mW; in the maximum flow is 26 l/min, it generates a brake horsepower of 108 mW. Therefore, it works with a torque between 0.24 N-m and 0.55 N-m, and such a torque will be sufficient to drive the target button.

9. Treatments for pediatric achalasia: Heller myotomy or pneumatic dilatation?

Science.gov (United States)

Jung, C; Michaud, L; Mougenot, J-F; Lamblin, M-D; Philippe-Chomette, P; Cargill, G; Bonnevalle, M; Boige, N; Bellaïche, M; Viala, J; Hugot, J-P; Gottrand, F; Cezard, J-P

2010-03-01

The treatment of achalasia consists of reducing distal esophageal obstruction by either Heller myotomy surgery or endoscopic pneumatic dilatation. The aim of the present study was to evaluate the short- and middle-term results of these procedures in children. For technical reasons, children under six years old (n=8) were treated by surgery only, whereas patients over six years old (n=14) were treated by either Heller myotomy or pneumatic dilatation. Of the children aged under six years, 75% were symptom-free at six months and 83% at 24 months of follow-up. Of the patients aged over six years, complete remission was achieved by Heller myotomy in 44.5% vs. 55.5% by pneumatic dilatation after six months, and in 40% vs. 65%, respectively, after 24 months. Both pneumatic dilatation and Heller myotomy showed significant rates of failure. These results suggest that pneumatic dilatation may be considered a primary treatment in children over six years old. Also, where necessary, Heller myotomy and pneumatic dilatation may be used as complementary treatments.

10. Method of sections in analytical calculations of pneumatic tires

Science.gov (United States)

Tarasov, V. N.; Boyarkina, I. V.

2018-01-01

Analytical calculations in the pneumatic tire theory are more preferable in comparison with experimental methods. The method of section of a pneumatic tire shell allows to obtain equations of intensities of internal forces in carcass elements and bead rings. Analytical dependencies of intensity of distributed forces have been obtained in tire equator points, on side walls (poles) and pneumatic tire bead rings. Along with planes in the capacity of secant surfaces cylindrical surfaces are used for the first time together with secant planes. The tire capacity equation has been obtained using the method of section, by means of which a contact body is cut off from the tire carcass along the contact perimeter by the surface which is normal to the bearing surface. It has been established that the Laplace equation for the solution of tasks of this class of pneumatic tires contains two unknown values that requires the generation of additional equations. The developed computational schemes of pneumatic tire sections and new equations allow to accelerate the pneumatic tire structure improvement process during engineering.

11. [Morphine self-administration by rats using a pneumatic syringe].

Science.gov (United States)

Akiyama, Y; Takayama, S

1988-06-01

An apparatus for drug self-administration by rats using a pneumatic syringe was developed by Weeks. A microliter syringe operated by a pneumatic cylinder supplies an accurate volume of drug solution within one second. When coefficient of variation of infusion volume was compared among pneumatic syringe, infusion pump, and peristaltic pump, pneumatic syringe showed higher accuracy in infusion volume than the other two pumps. Since the infusion speed by a pneumatic syringe is very rapid (less than one second per infusion), the effect of infusion speed on reinforcing property of morphine was investigated. When rats self-administered 0.1, 0.3, 1.0, and 3.0 mg/kg/infusion of morphine by pneumatic syringes, the patterns of self-infusion were more stable, the number of self-infusions and the amount self-administered were larger, and a dose-response relationship was clearer in comparison with those self-infused the same doses of morphine for 5.6 seconds by infusion pumps or peristaltic pumps.

12. Key issues in theoretical and functional pneumatic design

Science.gov (United States)

Xu, Z. G.; Yang, D. Y.; Liu, W. M.; Liu, T. T.

2017-10-01

This paper studies the energy release of the pneumatic engine in different thermodynamic processes, the isothermal process is the highest power output process, while adiabatic process is the lowest energy output process, and the energy release of the pneumatic engine is a multi-state thermodynamic process between them. Therefore heat exchanging should be increased between the pneumatic engine and the outer space, the gas expansion process in the cylinder should be as close as possible to the isothermal process. Heat exchange should be increased between the cylinder and the external spaces. Secondly, the fin structure is studied to increase the heat exchanging between the cylinder body and the outside space. The upper part has fin structures and the lower cylinder has no fin structure, this structure improved the working efficiency of pneumatic engine. Finally the cam and the hydraulic bottle of pneumatic engines are designed. Simulation and theoretical calculation are used to the analysis of the whole structure, which lay the foundation for the manufacturing and design of the pneumatic engines.

13. A high resolution pneumatic stepping actuator for harsh reactor environments

Science.gov (United States)

Tippetts, Thomas B.; Evans, Paul S.; Riffle, George K.

1993-01-01

A reactivity control actuator for a high-power density nuclear propulsion reactor must be installed in close proximity to the reactor core. The energy input from radiation to the actuator structure could exceed hundreds of W/cc unless low-cross section, low-absorptivity materials are chosen. Also, for post-test handling and subsequent storage, materials should not be used that are activated into long half-life isotopes. Pneumatic actuators can be constructed from various reactor-compatible materials, but conventional pneumatic piston actuators generally lack the stiffness required for high resolution reactivity control unless electrical position sensors and compensated electronic control systems are used. To overcome these limitations, a pneumatic actuator is under development that positions an output shaft in response to a series of pneumatic pulses, comprising a pneumatic analog of an electrical stepping motor. The pneumatic pulses are generated remotely, beyond the strong radiation environment, and transmitted to the actuator through tubing. The mechanically simple actuator uses a nutating gear harmonic drive to convert motion of small pistons directly to high-resolution angular motion of the output shaft. The digital nature of this actuator is suitable for various reactor control algorithms but is especially compatible with the three bean salad algorithm discussed by Ball et al. (1991).

14. Characteristic analysis and experiment of pneumatic servo valve

International Nuclear Information System (INIS)

Kim, Dong Soo; Lee, Won Hee; Choi, Byung Oh

2004-01-01

Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve

15. Evaluation of the structural, electronic, topological and vibrational properties of N-(3,4-dimethoxybenzyl)-hexadecanamide isolated from Maca (Lepidium meyenii) using different spectroscopic techniques

Science.gov (United States)

Chain, Fernando; Iramain, Maximiliano Alberto; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia

2017-01-01

N-(3,4-dimethoxybenzyl)-hexadecanamide (DMH) was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet- Visible (UV-Visible) and Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) spectroscopies. The structural, electronic, topological and vibrational properties were evaluated in gas phase and in n-hexane employing ONIOM and self-consistent force field (SCRF) calculations. The atomic charges, molecular electrostatic potentials, stabilization energies and topological properties of DMH were analyzed and compared with those calculated for N-(3,4-dimethoxybenzyl)-acetamide (DMA) in order to evaluate the effect of the side chain on the properties of DMH. The reactivity and behavior of this alkamide were predicted by using the gap energies and some descriptors. Force fields and the corresponding force constants were reported for DMA only in gas phase and n-hexane due to the high number of vibration normal modes showed by DMH, while the complete vibrational assignments are presented for DMA and both forms of DMH. The comparisons between the experimental FTIR, FT-Raman, UV-Visible and 1H and 13C NMR spectra with the corresponding theoretical ones showed a reasonable concordance.

16. Electro-Pneumatic Control System with Hydraulically Positioning Actuator Motor

Directory of Open Access Journals (Sweden)

V. N. Pilgunov

2016-01-01

Full Text Available A compressibility of the actuating fluid of a pneumatic drive (compressed air leads to significant landing of the pneumatic cylinder piston at the time of stop and hold of the load, a constant component of which can fluctuate significantly for the holding period.There are a lot of factors, which have a significant impact on the landing value of piston. Those are: an initial position of the piston at its stop, which determines the volume of the an active area of the piston, a value of the constant load component at the time of stop and its variation for the holding period, a transfer coefficient of the position component of the load, an active area of the pneumatic cylinder piston, as well as reduction in atmospheric pressure, which can significantly affect the operation of the control systems of small aircrafts flying at high altitudes.To reduce the landing value of piston due to changing value of the constant load component for its holding period, it is proposed to use a hydraulic positioner, which comprises a hydraulic cylinder the rod of which is rigidly connected to the rod of the pneumatic cylinder through the traverse, a cross-feed valve of the hydro-cylinder cavities with discrete electro-magnetic control, and adjustable chokes.A programmable logic controller provides the hydraulic positioner control. At the moment the piston stops and the load is held the cross-feed valve overlaps the hydro-cylinder cavities thereby locking the pneumatic cylinder piston and preventing its landing. With available pneumatic cylinder-controlled signal the cross-feed valve connects the piston and rod cavities of the positioner hydro-cylinder, the pneumatic cylinder piston is released and becomes capable of moving.A numerical estimate of landing of the pneumatic cylinder piston and its positioning quality is of essential interest. For this purpose, a technique to calculate the landing of piston has been developed taking into consideration that different

17. Dynamic contraction behaviour of pneumatic artificial muscle

Science.gov (United States)

Doumit, Marc D.; Pardoel, Scott

2017-07-01

The development of a dynamic model for the Pneumatic Artificial Muscle (PAM) is an imperative undertaking for understanding and analyzing the behaviour of the PAM as a function of time. This paper proposes a Newtonian based dynamic PAM model that includes the modeling of the muscle geometry, force, inertia, fluid dynamic, static and dynamic friction, heat transfer and valve flow while ignoring the effect of bladder elasticity. This modeling contribution allows the designer to predict, analyze and optimize PAM performance prior to its development. Thus advancing successful implementations of PAM based powered exoskeletons and medical systems. To date, most muscle dynamic properties are determined experimentally, furthermore, no analytical models that can accurately predict the muscle's dynamic behaviour are found in the literature. Most developed analytical models adequately predict the muscle force in static cases but neglect the behaviour of the system in the transient response. This could be attributed to the highly challenging task of deriving such a dynamic model given the number of system elements that need to be identified and the system's highly non-linear properties. The proposed dynamic model in this paper is successfully simulated through MATLAB programing and validated the pressure, contraction distance and muscle temperature with experimental testing that is conducted with in-house built prototype PAM's.

18. Design of flat pneumatic artificial muscles

Science.gov (United States)

Wirekoh, Jackson; Park, Yong-Lae

2017-03-01

Pneumatic artificial muscles (PAMs) have gained wide use in the field of robotics due to their ability to generate linear forces and motions with a simple mechanism, while remaining lightweight and compact. However, PAMs are limited by their traditional cylindrical form factors, which must increase radially to improve contraction force generation. Additionally, this form factor results in overly complicated fabrication processes when embedded fibers and sensor elements are required to provide efficient actuation and control of the PAMs while minimizing the bulkiness of the overall robotic system. In order to overcome these limitations, a flat two-dimensional PAM capable of being fabricated using a simple layered manufacturing process was created. Furthermore, a theoretical model was developed using Von Karman’s formulation for large deformations and the energy methods. Experimental characterizations of two different types of PAMs, a single-cell unit and a multi-cell unit, were performed to measure the maximum contraction lengths and forces at input pressures ranging from 0 to 150 kPa. Experimental data were then used to verify the fidelity of the theoretical model.

19. Thermo-pneumatic canning; Le gainage thermopneumatique

Energy Technology Data Exchange (ETDEWEB)

Gauthron, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

1958-07-01

In the thermo-pneumatic canning, the fuel is enclosed in its can with a clearance that must be reduced by external heated gas pressure. The principal applications are: a) binding magnesium cans on to uranium in fuel elements of reactors cooled by CO{sub 2} under pressure, b) application of a can to a hollow bar of uranium too thin to resist the pressure of cold hydraulic canning, c) application of an aluminium can to a bar, with an initial diametrical clearance between uranium and can too great to sustain cold hydraulic canning without buckling, d) detection of major leakage in the slugs. (author) [French] Ce procede consiste a appliquer une gaine sur une barre d'uranium par pression hydrostatique d'un gaz chaud. Les principales applications sont: a) le frettage des gaines de magnesium des elements combustibles des piles refroidies au CO{sub 2} sous pression, b) le gainage d'un barreau creux qui serait ecrase a froid, c) le gainage avec un jeu initial trop fort pour etre effectue a froid sans plisser, d) la detection des fuites de cartouches. (auteur)

20. Vibrational measurements in 3-ID-B

International Nuclear Information System (INIS)

Sutter, J.; Alp, E.; Barraza, J.; Shu, D.

1998-04-01

The authors have undertaken a series of vibrational measurements in hutch 3-ID-B. Their motivation was to compare two different methods of mounting an interferometer for effectiveness in vibrational isolation and stability. In addition they were able to compare the stability of the optical table with and without its eight large bolts inserted

1. Vibrating minds

CERN Multimedia

2009-01-01

Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

2. Vibrational spectroscopy

Science.gov (United States)

Umesh P. Agarwal; Rajai Atalla

2010-01-01

Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

3. Achalasia: pneumatic Dilation. Experience in a reference hospital

International Nuclear Information System (INIS)

Garzon, Martin; Farfan, Yezid; Molano, Juan; Rey, Mario; Martinez, Julian; Marulanda, Juan

2005-01-01

Chalasia has an incidence of 1:100.000. The therapy for achalasia, focus on reducing the pressure gradient across the LES, which can be achieved by forceful pneumatic dilation of the gastroesophageal junction, surgical myotomy or by pharmacological agents, injected endoscopically or taken orally. Pneumatic balloon dilation is regarded as the first-Line treatment, with an initial success rate of 85% to 90%. The objective of this study is to show our experience with pneumatic balloon dilation in the patients with diagnosis of achalasia from the hospital La Samaritana during a period from February 2002 to February 2005. Patients diagnosed with achalasia from the department of gastroenterology and endoscopy of the Hospital La Samaritana during period of February 2002 to February 2005 was included. Procedures were made in fluoroscopy room. The patients received intravenous sedation and analgesia. We used a Regiflex balloon, 3.5 cm diameter. Balloons were inflated with saline water and water-soluble contrast during one minute. We diagnosed 19 patients with achalasia during period from February 2002 to February 2005, 14 were females and 5 males (26%); we made pneumatic dilation in 11 patients (60%), 9 were females (82%) with mean age 38.9 years (ranged from 16 to 13 years). Three patients (21%) underwent once pneumatic dilation and the rest (8 patients) underwent twice (73%). We don't report any perforation. So far we have followed the patients ambulatory during period from 6 months to 2 years. We find recurrence one year after of the pneumatic dilation in a female patient 22 years old (9%). The pneumatic dilation as cost-effective therapy, with a good initial success, but in the longer the follow-up lower the success rate and low morbidity (4). We suggest making only two pneumatic dilations. Today, there isn't consensus on the optimal endoscopic dilation technique and we believe that the sedation must be included in this procedure. In the future, we need more comparative

4. Mechanical implications of pneumatic neck vertebrae in sauropod dinosaurs

Science.gov (United States)

Schwarz-Wings, Daniela; Meyer, Christian A.; Frey, Eberhard; Manz-Steiner, Hans-Rudolf; Schumacher, Ralf

2010-01-01

The pre-sacral vertebrae of most sauropod dinosaurs were surrounded by interconnected, air-filled diverticula, penetrating into the bones and creating an intricate internal cavity system within the vertebrae. Computational finite-element models of two sauropod cervical vertebrae now demonstrate the mechanical reason for vertebral pneumaticity. The analyses show that the structure of the cervical vertebrae leads to an even distribution of all occurring stress fields along the vertebrae, concentrated mainly on their external surface and the vertebral laminae. The regions between vertebral laminae and the interior part of the vertebral body including thin bony struts and septa are mostly unloaded and pneumatic structures are positioned in these regions of minimal stress. The morphology of sauropod cervical vertebrae was influenced by strongly segmented axial neck muscles, which require only small attachment areas on each vertebra, and pneumatic epithelia that are able to resorb bone that is not mechanically loaded. The interaction of these soft tissues with the bony tissue of the vertebrae produced lightweight, air-filled vertebrae in which most stresses were borne by the external cortical bone. Cervical pneumaticity was therefore an important prerequisite for neck enlargement in sauropods. Thus, we expect that vertebral pneumaticity in other parts of the body to have a similar role in enabling gigantism. PMID:19801376

5. A new pneumatic suspension system with independent stiffness and ride height tuning capabilities

Science.gov (United States)

Yin, Zhihong; Khajepour, Amir; Cao, Dongpu; Ebrahimi, Babak; Guo, Konghui

2012-12-01

This paper introduces a new pneumatic spring for vehicle suspension systems, allowing independent tuning of stiffness and ride height according to different vehicle operating conditions and driver preferences. The proposed pneumatic spring comprises a double-acting pneumatic cylinder, two accumulators and a tuning subsystem. This paper presents a detailed description of the pneumatic spring and its working principle. The mathematical model is established based on principles of thermo and fluid dynamics. An experimental setup has been designed and fabricated for testing and evaluating the proposed pneumatic spring. The analytical and experimental results confirm the capability of the new pneumatic spring system for independent tuning of stiffness and ride height. The mathematical model is verified and the capabilities of the pneumatic spring are further proved. It is concluded that this new pneumatic spring provides a more flexible suspension design alternative for meeting various conflicting suspension requirements for ride comfort and performance.

6. Modeling the dynamic characteristics of pneumatic muscle.

Science.gov (United States)

Reynolds, D B; Repperger, D W; Phillips, C A; Bandry, G

2003-03-01

A pneumatic muscle (PM) system was studied to determine whether a three-element model could describe its dynamics. As far as the authors are aware, this model has not been used to describe the dynamics of PM. A new phenomenological model consists of a contractile (force-generating) element, spring element, and damping element in parallel. The PM system was investigated using an apparatus that allowed precise and accurate actuation pressure (P) control by a linear servo-valve. Length change of the PM was measured by a linear potentiometer. Spring and damping element functions of P were determined by a static perturbation method at several constant P values. These results indicate that at constant P, PM behaves as a spring and damper in parallel. The contractile element function of P was determined by the response to a step input in P, using values of spring and damping elements from the perturbation study. The study showed that the resulting coefficient functions of the three-element model describe the dynamic response to the step input of P accurately, indicating that the static perturbation results can be applied to the dynamic case. This model is further validated by accurately predicting the contraction response to a triangular P waveform. All three elements have pressure-dependent coefficients for pressure P in the range 207 < or = P < or = 621 kPa (30 < or = P < or = 90 psi). Studies with a step decrease in P (relaxation of the PM) indicate that the damping element coefficient is smaller during relaxation than contraction.

7. A Pneumatic Actuated Microfluidic Beads-Trapping Device

Energy Technology Data Exchange (ETDEWEB)

Shao, Guocheng; Cai, Ziliang; Wang, Jun; Wang, Wanjun; Lin, Yuehe

2011-08-20

The development of a polydimethylsiloxane (PDMS) microfluidic microbeads trapping device is reported in this paper. Besides fluid channels, the proposed device includes a pneumatic control chamber and a beads-trapping chamber with a filter array structure. The pneumatic flow control chamber and the beads-trapping chamber are vertically stacked and separated by a thin membrane. By adjusting the pressure in the pneumatic control chamber, the membrane can either be pushed against the filter array to set the device in trapping mode or be released to set the device in releasing mode. In this paper, a computational fluid dynamics simulation was conducted to optimize the geometry design of the filter array structure; the device fabrication was also carried out. The prototype device was tested and the preliminary experimental results showed that it can be used as a beads-trapping unit for various biochemistry and analytical chemistry applications, especially for flow injection analysis systems.

Science.gov (United States)

Ferris, Daniel P; Czerniecki, Joseph M; Hannaford, Blake

2005-05-01

We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury.

9. Model analysis of mechanisms controlling pneumatic soil vapor extraction

DEFF Research Database (Denmark)

Høier, Camilla Kruse; Sonnenborg, Torben Obel; Jensen, Karsten Høgh

2009-01-01

of heterogeneous soils by enforcing large fluctuating pressure fronts through the contaminated area. Laboratory experiments have suggested that pneumatic SVE considerably improves the recovery rate from low-permeable units. We have analyzed the experimental results using a numerical code and quantified......The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency...... level the pneumatic venting technology is superior to the traditional technique, and that the method is particularly efficient in cases where large permeability contrasts exist between soil units in the subsurface....

10. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

Science.gov (United States)

2010-10-01

... detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... exposed in the space. (c) A pneumatic fire detection system must be set to activate after approximately a...

11. Second Order Sliding Mode Controller Design for Pneumatic Artificial Muscle

Directory of Open Access Journals (Sweden)

Ammar Al-Jodah

2018-01-01

Full Text Available In this paper, first and second order sliding mode controllers are designed for a single link robotic arm actuated by two Pneumatic Artificial Muscles (PAMs. A new mathematical model for the arm has been developed based on the model of large scale pneumatic muscle actuator model. Uncertainty in parameters has been presented and tested for the two controllers. The simulation results of the second-order sliding mode controller proves to have a low tracking error and chattering effect as compared to the first order one. The verification has been done by using MATLAB and Simulink software.

12. Nonlinear Disturbance Observer Based Robust Tracking Control of Pneumatic Muscle

Directory of Open Access Journals (Sweden)

Youssif Mohamed Toum Elobaid

2014-01-01

Full Text Available Presently pneumatic muscles (PMs are used in various applications due to their simple construction, lightweight, and high force-to-weight ratio. However, pneumatic muscles are facing various problems due to their nonlinear characteristics and various uncertainties in real applications. To cope with the uncertainties and strong nonlinearity of a PM model, a nonlinear disturbance observer (NDO is designed to estimate the lumped disturbance. Based on the disturbance observer, the tracking control of PM is studied. Stability analysis based on Lyapunov method with respect to our proposed control law is discussed. The simulation results show the validity, effectiveness, and enhancing robustness of the proposed methods.

13. An artificial flexible robot arm based on pneumatic muscle actuators

Directory of Open Access Journals (Sweden)

Renn Jyh-Chyang

2017-01-01

Full Text Available The purpose of this paper is to develop a novel human-friendly artificial flexible robot arm using four parallel-connected pneumatic muscle actuators (PMAs. The PMA is a flexible silicone rubber actuator which has some behaviors nearest to the real biological muscle including translational and rotational motions. An inverse kinematic model for the motion control is also developed. Finally, from experiment results, it is proved that not only the axial contraction control of a single PMA but also the attitude control of the whole pneumatic flexible robot arm using PID controller are satisfactory.

14. Control of pneumatic transfer system for neutron activation analysis

Energy Technology Data Exchange (ETDEWEB)

Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

2000-06-01

Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

15. Empirical Analysis of Pneumatic Tire Friction on Ice

OpenAIRE

Holley, Troy Nigel

2010-01-01

Pneumatic tire friction on ice is an under-researched area of tire mechanics. This study covers the design and analysis of a series of pneumatic tire tests on a flat-level ice road surface. The terramechanics rig of the Advanced Vehicle Dynamics Lab (AVDL) is a single-wheel test rig that allows for the experimental analysis of the forces and moments on a tire, providing directly the data for the drawbar pull of said tire, thus supporting the calculation of friction based on this data. This...

16. Electro-Pneumatic Control System with Hydraulically Positioning Actuator Motor

OpenAIRE

V. N. Pilgunov; K. D. Efremova

2016-01-01

A compressibility of the actuating fluid of a pneumatic drive (compressed air) leads to significant landing of the pneumatic cylinder piston at the time of stop and hold of the load, a constant component of which can fluctuate significantly for the holding period.There are a lot of factors, which have a significant impact on the landing value of piston. Those are: an initial position of the piston at its stop, which determines the volume of the an active area of the piston, a value of the con...

17. Control of pneumatic transfer system for neutron activation analysis

International Nuclear Information System (INIS)

Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y.

2000-06-01

Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading

18. On the sample transport time of a pneumatic transfer system

International Nuclear Information System (INIS)

Kondo, Yoshihide

1983-01-01

The counts accumulated in measuring system are affected by the variations in transport time of the sample on cyclic activation experiments with a mechanical sample transfer system. In use of the pneumatic transfer system, which has been set up, the transport time is variable according to the differences as follows: The form, size and weight of samples, the pneumatic pressure and so on. Comprehending the relationships between the transpot time and these variable factors is essentially important to make experiments with this transfer system. (author)

19. Hydraulic elements in reduction of vibrations in mechanical systems

Science.gov (United States)

Białas, K.; Buchacz, A.

2017-08-01

This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

20. Design considerations for single-stage and two-stage pneumatic pellet injectors

International Nuclear Information System (INIS)

Gouge, M.J.; Combs, S.K.; Fisher, P.W.; Milora, S.L.

1988-09-01

Performance of single-stage pneumatic pellet injectors is compared with several models for one-dimensional, compressible fluid flow. Agreement is quite good for models that reflect actual breech chamber geometry and incorporate nonideal effects such as gas friction. Several methods of improving the performance of single-stage pneumatic pellet injectors in the near term are outlined. The design and performance of two-stage pneumatic pellet injectors are discussed, and initial data from the two-stage pneumatic pellet injector test facility at Oak Ridge National Laboratory are presented. Finally, a concept for a repeating two-stage pneumatic pellet injector is described. 27 refs., 8 figs., 3 tabs

1. Análisis de la eficiencia del sistema de aislamiento de vibraciones de grupos electrógenos MAN 18 V48/60 B // Efficiency analysis of vibration isolation system installed on engine generator sets type MAN 18 V48/60 b

Directory of Open Access Journals (Sweden)

Evelio Palomino‐Marín

2011-01-01

Full Text Available Todo sistema de aislamiento de vibraciones está encaminado en primera instancia a aislarvibraciones como su propio nombre lo indica. En ocasiones es menester que a la máquina no laperturben vibraciones procedentes del entorno, como lo puede ser por ejemplo, el caso de unarectificadora en un taller de mecanizado. Así mismo, en otras ocasiones resulta necesario aislar lamáquina para evitar que las vibraciones producidas por ella misma afecten al entorno. Tal es el casode los grupos electrógenos MAN 18 V48/60 B, cuyos motores de combustión interna responden a undiseño de 18 cilindros en “V” distribuidos en 13 metros de longitud. El sistema de aislamiento deestos motores consta de 14 paquetes de ocho resortes cada uno, incluyendo un amortiguadorviscoso por cada calzo. Se efectuaron mediciones espectrales de vibraciones en cada uno de estoscalzos antivibratorios, sobre y debajo de estos respectivamente y se evaluó la eficiencia de estoscalzos en todo el espectro, determinándose aquellas frecuencias que por determinadas razones noalcanzan los niveles de eficiencia en el aislamiento establecidos a tales efectos. De esta manera, sepresenta una metodología para conducir este análisis.Palabras claves: calzos antivibratorios, aislamiento de vibraciones, grupos electrógenos.___________________________________________________________________AbstractA vibroisolation system has a priority goal which is isolate vibrations. Such vibrations can come fromthe environment and could affect the machine behavior and could affect its technological functionstoo. That’s the case of a machine tool, for instance. However, it is also possible that vibrations comefrom the own machine and in this case the main goal of vibroisolation system is to avoid thatvibrations go to machine foundations. This is the case on which this paper is focused. Twelvevibration isolators with eight springs each one including a viscous damper are mounted asvibroisolation system on

2. Molecular Structure, Vibrational Spectra, Quantum Chemical Calculations and Photochemistry of Picolinamide and Isonicotinamide Isolated in Cryogenic Inert Matrixes and in the Neat Low-Temperature Solid Phases

OpenAIRE

Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, R.

2007-01-01

Picolinamide (PA) and isonicotinamide (INA), two structural isomers of pyridinecarboxamide, have been investigated by matrix isolation and low-temperature solid-state infrared spectroscopy, combined with UV (λ > 235 nm) photoexcitation and density functional theory and ab initio (MP2) theoretical studies. In consonance with the theoretical data, both PA and INA were found to exist in a single conformation in cryogenic rare gas matrixes. Comparison between the experimental spectra of the matri...

3. Controlling pneumatic artificial muscles in exoskeletons with surface electromyography

NARCIS (Netherlands)

Groenhuis, Vincent; Chandrapal, Mervin; Stramigioli, Stefano; Chen, XiaoQi

2014-01-01

Powered exoskeletons are gaining more interest in the last few years, as useful devices to provide assistance to elderly and disabled people. Many different types of powered exoskeletons have been studied in the past. In this research paper, a soft lower limb exoskeleton driven by pneumatic

4. Pneumatic conveying of sensitive compounds during nuclear fuel fabrication

Energy Technology Data Exchange (ETDEWEB)

Sielck, Franz-Christian; Braehler, Georg [NUKEM Technologies GmbH (Germany)

2009-07-01

Any transport of nuclear material is associated with the risk of contamination after release into working areas or environment. stationary installed safe geometry vessels with pneumatic transfer between them offer unique safety features and reduce operating costs. The article describes the case of HTR fuel spheres, where a specially designed conveying system has been developed and the prototype conveyor has been tested.

5. Pneumatic conveying of sensitive compounds during nuclear fuel fabrication

International Nuclear Information System (INIS)

Sielck, Franz-Christian; Braehler, Georg

2009-01-01

Any transport of nuclear material is associated with the risk of contamination after release into working areas or environment. stationary installed safe geometry vessels with pneumatic transfer between them offer unique safety features and reduce operating costs. The article describes the case of HTR fuel spheres, where a specially designed conveying system has been developed and the prototype conveyor has been tested.

6. Systems of pneumatic transportation of cement and other fine ...

African Journals Online (AJOL)

Therefore, the operational reliability of such equipment decreases and the process of cleaning of the exhaust air becomes complicated. The solution of the problem of ... of the air expense and pressure during the design of the systems. Keywords: pneumatic transportation, fine materials. dust removal equipment, pape line.

7. Rapid Prototyping High-Performance MR Safe Pneumatic Stepper Motors

NARCIS (Netherlands)

Groenhuis, Vincent; Stramigioli, Stefano

2018-01-01

In this paper we show that pneumatic stepper motors for MR safe robots can be constructed using rapid prototyping techniques such as 3-D printing and laser-cutting. The designs are lightweight, completely metal-free and fully customizable. Besides MR safe robotic systems, other potential

8. Considerations of several real effects in pneumatic pellet injection processes

International Nuclear Information System (INIS)

Ming-Lun Xue.

1987-10-01

Several real effects that take place in a pneumatic pellet injector are examined. These are the heat transfer between a high-temperature propellent gas and the metal wall of the injector, and the frictional loss between the propellent and wall. (author)

9. Pneumatic Dilation versus Laparoscopic Heller's Myotomy for Idiopathic Achalasia

NARCIS (Netherlands)

Boeckxstaens, Guy E.; Annese, Vito; des Varannes, Stanislas Bruley; Chaussade, Stanislas; Costantini, Mario; Cuttitta, Antonello; Elizalde, J. Ignasi; Fumagalli, Uberto; Gaudric, Marianne; Rohof, Wout O.; Smout, André J.; Tack, Jan; Zwinderman, Aeilko H.; Zaninotto, Giovanni; Busch, Olivier R.; Lei, A.; Bartelsman, J.; Hirsch, D.; Klinkenberg-Knol, E. C.; Cuesta, M. A.; Simmermacher, R. K. J.; Kuipers, E. J.; Bonjer, H. J.; Masclee, A. A. M.; Ringers, J.; Lerut, A.; Metman, E. H.; Huten, N.; Letessier, E.; Dousset, B.; Pera, M.; Perez de la Serna, J.; Malesci, Alberto; Andriulli, A.; Scaramuzzi, G.; de Santo, E.

2011-01-01

Background Many experts consider laparoscopic Heller's myotomy (LHM) to be superior to pneumatic dilation for the treatment of achalasia, and LHM is increasingly considered to be the treatment of choice for this disorder. Methods We randomly assigned patients with newly diagnosed achalasia to

10. Intra-operative pneumatic tourniquet - perceptions of use and ...

African Journals Online (AJOL)

applied pressure alone or excessive applied pressure caused by use of faulty equipment. It needs to be emphasised to these surgeons that regular checking of the pneumatic tourniquet apparatus is necessary in order. MRC/UCT Bioenergetics of Exercise Research Unit, Department of. Physiology. University of Cape Town.

11. Intra-operative pneumatic tourniquet - perceptions of use and ...

African Journals Online (AJOL)

Fifty-four per cent of respondents personally checked the calibration of the pneumatic tourniquet, although 76% of respondents believe that the apparatus needs to be checked at least once per month. More respondents who did not check the tourniquet apparatus than respondents who did check it believe that applied ...

12. Pneumatic Actuation of a 2-Link Robotic System

African Journals Online (AJOL)

2012r

2014-10-16

Oct 16, 2014 ... are appropriate for “mixing, dumping, intermittent feeding, screw clamping ..... Let Aext be Area on which air is applied for extension. Let Aret ... Fext and Fret are the forces provided by the source of the pneumatic compressor.

13. Transport Velocities of Different Particulate Materials in Pneumatic Conveying

Czech Academy of Sciences Publication Activity Database

Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

2006-01-01

Roč. 60, č. 1 (2006), s. 74-77 ISSN 0366-6352 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidization * particle processing * pneumatic conveying Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.360, year: 2006

14. Embedded Triboelectric Active Sensors for Real-Time Pneumatic Monitoring.

Science.gov (United States)

Fu, Xian Peng; Bu, Tian Zhao; Xi, Feng Ben; Cheng, Ting Hai; Zhang, Chi; Wang, Zhong Lin

2017-09-20

Pneumatic monitoring sensors have great demands for power supply in cylinder systems. Here, we present an embedded sliding triboelectric nanogenerator (TENG) in air cylinder as active sensors for position and velocity monitoring. The embedded TENG is composed of a circular poly(tetrafluoroethylene) polymer and a triangular copper electrode. The working mechanism as triboelectric active sensors and electric output performance are systematically investigated. By integrating into the pneumatic system, the embedded triboelectric active sensors have been used for real-time air pressure/flow monitoring and energy storage. Air pressures are measured from 0.04 to 0.12 MPa at a step of 0.02 MPa with a sensitivity of 49.235 V/MPa, as well as airflow from 50 to 250 L/min at a step of 50 L/min with a sensitivity of 0.002 μA·min/L. This work has first demonstrated triboelectric active sensors for pneumatic monitoring and may promote the development of TENG in intelligent pneumatic system.

15. High Efficiency Pneumatic Systems Compressors Hydrodynamics and Termodynamics Process Research

Directory of Open Access Journals (Sweden)

Paulius Bogdevičius

2016-12-01

Full Text Available The paper analyzes pneumatic system, which consists of three piston compressors, pipes and reciever. Designed two cylinder piston compressor with an asynchronous electric motor mathematical model. In the mathematical model has been estimated rod mechanism geometry and kinematic parameters also hudrodynamics and thermodynamic processes going in the cylinders. Also there were made mathematical experiment and presented the results of it.

16. Pneumatic motor speed control by trajectory tracking fuzzy logic

In this study, trajectory tracking fuzzy logic controller (TTFLC) is proposed for the speed control of a pneumatic motor (PM). A third order trajectory is deﬁned to determine the trajectory function that has to be tracked by the PM speed. Genetic algorithm (GA) is used to ﬁnd the TTFLC boundary values of membership functions ...

17. Integration of Pneumatic Technology in Powered Mobility Devices.

Science.gov (United States)

Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G; Schneider, Urs; Cooper, Rory A

2017-01-01

Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately \$1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs.

18. Pneumatic fractures in Confined Granular Media

Science.gov (United States)

Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik; Turkaya, Semih

2016-04-01

We will present our ongoing study of the patterns formed when air flows into a dry, non-cohesive porous medium confined in a horizontal Hele-Shaw cell. This is an optically transparent system consisting of two glass plates separated by 0.5 to 1 mm, containing a packing of dry 80 micron beads in between. The cell is rectangular and has an air-permeable boundary (blocking beads) at one short edge, while the other three edges are completely sealed. The granular medium is loosely packed against the semi-permeable boundary and fills about 80 % of the cell volume. This leaves an empty region at the sealed side, where an inlet allows us to set and maintain the air at a constant overpressure (0.1 - 2 bar). For the air trapped inside the cell to relax its overpressure it has to move through the deformable granular medium. Depending on the applied overpressure and initial density of the medium, we observe a range of different behaviors such as seepage through the pore-network with or without an initial compaction of the solid, formation of low density bubbles with rearrangement of particles, granular fingering/fracturing, and erosion inside formed channels/fractures. The experiments are recorded with a high-speed camera at a framerate of 1000 images/s and a resolution of 1024x1024 pixels. We use various image processing techniques to characterize the evolution of the air invasion patterns and the deformations in the surrounding material. The experiments are similar to deformation processes in porous media which are driven by pore fluid overpressure, such as mud volcanoes and hydraulic or pneumatic (gas-induced) fracturing, and the motivation is to increase the understanding of such processes by optical observations. In addition, this setup is an experimental version of the numerical models analyzed by Niebling et al. [1,2], and is useful for comparison with their results. In a directly related project [3], acoustic emissions from the cell plate are recorded during

19. Hot Ground Vibration Tests

Data.gov (United States)

National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

20. An Application of a Pneumatic Muscles Actuator for a Delta Pneumatic Manipulator

Directory of Open Access Journals (Sweden)

2014-12-01

Full Text Available The main aim of this study was to use pneumatic muscle actuators in the construction of the delta manipulator with a closed kinematic chain. The paper presents a solid models of the manipulator and the kinematic diagram. Based on the kinematic diagram and using DH notation (Denavit-Hartenberg manipulator kinematic models was determined. On the basis of developed solid model simulation studies were conducted and the shape and size of the workspace determined. On the basis of 3D models prototype of the manipulator was constructed. Experimental studies were performed to select the regulators settings P, PI, PID for one of the pair of BMDS (Bi-Muscular Driving System muscle-type drives. Based on integral quality indicators the used types of regulators were compared and proposed final controller. Performed experimental studies confirm the possibility of muscle control in the BMDS (Bi-Muscular Driving System type system drives and tuning controller settings using the Ziegler-Nichols method.

1. Design and Dynamic Model of a Frog-inspired Swimming Robot Powered by Pneumatic Muscles

Science.gov (United States)

Fan, Ji-Zhuang; Zhang, Wei; Kong, Peng-Cheng; Cai, He-Gao; Liu, Gang-Feng

2017-09-01

Pneumatic muscles with similar characteristics to biological muscles have been widely used in robots, and thus are promising drivers for frog inspired robots. However, the application and nonlinearity of the pneumatic system limit the advance. On the basis of the swimming mechanism of the frog, a frog-inspired robot based on pneumatic muscles is developed. To realize the independent tasks by the robot, a pneumatic system with internal chambers, micro air pump, and valves is implemented. The micro pump is used to maintain the pressure difference between the source and exhaust chambers. The pneumatic muscles are controlled by high-speed switch valves which can reduce the robot cost, volume, and mass. A dynamic model of the pneumatic system is established for the simulation to estimate the system, including the chamber, muscle, and pneumatic circuit models. The robot design is verified by the robot swimming experiments and the dynamic model is verified through the experiments and simulations of the pneumatic system. The simulation results are compared to analyze the functions of the source pressure, internal volume of the muscle, and circuit flow rate which is proved the main factor that limits the response of muscle pressure. The proposed research provides the application of the pneumatic muscles in the frog inspired robot and the pneumatic model to study muscle controller.

2. Do Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs use vibrational communication?

Science.gov (United States)

Chuche, Julien; Thiéry, Denis; Mazzoni, Valerio

2011-07-01

Small Auchenorrhyncha use substrate-borne vibrations to communicate. Although this behaviour is well known in adult leafhoppers, so far no studies have been published on nymphs. Here we checked the occurrence of vibrational communication in Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs as a possible explanation of their aggregative distributions on host plants. We studied possible vibratory emissions of isolated and grouped nymphs, as well as their behavioural responses to vibration stimuli that simulated presence of conspecifics, to disturbance noise, white noise and predator spiders. None of our synthetic stimuli or pre-recorded substrate vibrations from nymphs elicited specific vibration responses and only those due to grooming or mechanical contacts of the insect with the leaf were recorded. Thus, S. titanus nymphs showed to not use species-specific vibrations neither for intra- nor interspecific communication and also did not produce alarm vibrations when facing potential predators. We conclude that their aggregative behaviour is independent from a vibrational communication.

3. Density-Gradient Mediated Band Extraction of Leukocytes from Whole Blood Using Centrifugo-Pneumatic Siphon Valving on Centrifugal Microfluidic Discs

Science.gov (United States)

Kearney, Sinéad M.; Kilcawley, Niamh A.; Early, Philip L.; Glynn, Macdara T.; Ducrée, Jens

2016-01-01

Here we present retrieval of Peripheral Blood Mononuclear Cells by density-gradient medium based centrifugation for subsequent analysis of the leukocytes on an integrated microfluidic “Lab-on-a-Disc” cartridge. Isolation of white blood cells constitutes a critical sample preparation step for many bioassays. Centrifugo-pneumatic siphon valves are particularly suited for blood processing as they function without need of surface treatment and are ‘low-pass’, i.e., holding at high centrifugation speeds and opening upon reduction of the spin rate. Both ‘hydrostatically’ and ‘hydrodynamically’ triggered centrifugo-pneumatic siphon valving schemes are presented. Firstly, the geometry of the pneumatic chamber of hydrostatically primed centrifugo-pneumatic siphon valves is optimised to enable smooth and uniform layering of blood on top of the density-gradient medium; this feature proves to be key for efficient Peripheral Blood Mononuclear Cell extraction. A theoretical analysis of hydrostatically primed valves is also presented which determines the optimum priming pressure for the individual valves. Next, ‘dual siphon’ configurations for both hydrostatically and hydrodynamically primed centrifugo-pneumatic siphon valves are introduced; here plasma and Peripheral Blood Mononuclear Cells are extracted through a distinct siphon valve. This work represents a first step towards enabling on disc multi-parameter analysis. Finally, the efficiency of Peripheral Blood Mononuclear Cells extraction in these structures is characterised using a simplified design. A microfluidic mechanism, which we termed phase switching, is identified which affects the efficiency of Peripheral Blood Mononuclear Cell extraction. PMID:27167376

4. Vibration control of an artificial muscle manipulator with a magnetorheological fluid brake

Science.gov (United States)

Tomori, H.; Midorikawa, Y.; Nakamura, T.

2013-02-01

Recently, proposed applications of robots require them to contact human safely. Therefore, we focus on pneumatic rubber artificial muscle. This actuator is flexible, light, and has high-power density. However, because the artificial muscle is flexible, it vibrates when there is a high load. Therefore, we paid attention to the magnetorheological (MR) fluid. We propose a control method of the MR brake considering energy of the manipulator system. By this control method, MR brake dissipates energy leading to vibration of the manipulator. In this paper, we calculated the energy and controlled the MR brake. And, we deliberated the proposal method by simulation using the dynamic model of the manipulator, and experiment.

5. Simulation of biomass pneumatic drying with ascending swirling movement

International Nuclear Information System (INIS)

Bombino Matos, Eugenio F.; Pineda Revilla, Edel

2017-01-01

Considering the layer form acquired by the particles during the studying process it was necessary to define the relation cheap between the heat and mass transfer area and particles flow to simulate with more precision this kind of drying. The simulations results were compared, by a statistical analysis based in Statgraphics-Centurion V15 program, with the results obtained in others pneumatic bagasse dryers studies and were similar and for that reason it was categorical that is correct the definition made about the relation cheap area/material flow defined in this work and it’s possible to reduce pneumatic dryer height by using this method. This reduction that can be seen by the Height Reduction Sing (HRS) of the drying column, defined in the work, will permit more compact dryers. (author)

6. Performance characterization of pneumatic single pellet injection system

International Nuclear Information System (INIS)

Schuresko, D.D.; Milora, S.L.; Hogan, J.T.; Foster, C.A.; Combs, S.K.

1983-01-01

The Oak Ridge National Laboratory single-shot pellet injector, which has been used in plasma fueling experiments on ISX and PDX, has been upgraded and extensively instrumented in order to study the gas dyamics of pneumatic pellet injection. An improved pellet transport line was developed which utilizes a 0.3-cm-diam by 100-cm-long guide tube. Pellet gun performance was characterized by measurements of breech and muzzle dynamic pressures and by pellet velocity and mass determinations. Velocities of up to 1.4 km/s were achieved for intact hydrogen pellets using hydrogen propellant at 5-MPa breech pressure. These data have been compared with new pellet acceleration calculations which include the effects of propellant friction, heat transfer, time-dependent boundary conditions, and finite gun geometry. These results provide a basis for the extrapolation of present-day pneumatic injection system performance to velocities in excess of 2 km/s

7. The Influence of Shaping Air Pressure of Pneumatic Spray Gun

Science.gov (United States)

Chen, Wenzhuo; Chen, Yan; Pan, Haiwei; Zhang, Weiming; Li, Bo

2018-02-01

The shaping air pressure is a very important parameter in the application of pneumatic spray gun, and studying its influence on spray flow field and film thickness distribution has practical values. In this paper, Euler-Lagrangian method is adopted to describe the two-phase spray flow of pneumatic painting process, and the air flow fields, spray patterns and dynamic film thickness distributions were obtained with the help of the computational fluid dynamics code—ANSYS Fluent. Results show that with the increase of the shaping air pressure, the air phase flow field spreads in the plane perpendicular to the shaping air hole plane, the spray pattern becomes narrower and flatter, and the width of the dynamic film increases with the reduced maximum value of the film thickness. But the film thickness distribution seems to change little with the shaping air pressure decreasing from 0.6bar to 0.9bar.

8. Elbow joint rehabilitation equipment actuated by pneumatic muscles

Directory of Open Access Journals (Sweden)

Vetrice Georgiana

2017-01-01

Full Text Available The mobility of the limbs is an essential prerequisite for the individual’s physical autonomy. For persons suffering from post-traumatic affections of the elbow joint such limited mobility results in barriers in fulfilling personal or professional tasks. Passive motion has certain specific advantages and beneficial effects, thus being highly recommended for the recovery of injured joints. The paper presents a model of rehabilitation equipment that induces continuous passive motion of the elbow, as part of a recovery programme. The equipment is actuated by pneumatic muscles, using compressed air as the source of energy that generates force and motion. The main benefits of the pneumatic actuation system compared to other driving systems are its low cost, simple and robust construction and swift response to commands. Its constructive simplicity and reduced cost adds to the system’s eligibility for deployment in medical units.

9. Performance characterization of pneumatic single pellet injection system

International Nuclear Information System (INIS)

Schuresko, D.D.; Milora, S.L.; Hogan, J.T.; Foster, C.A.; Combs, S.K.

1982-01-01

The Oak Ridge National Laboratory single-shot pellet injector, which has been used in plasma fueling experiments on ISX and PDX, has been upgraded and extensively instrumented in order to study the gas dynamics of pneumatic pellet injection. An improved pellet transport line was developed which utilizes a 0.3-cm-diam by 100-cm-long guide tube. Pellet gun performance was characterized by measurements of breech and muzzle dynamic pressures and by pellet velocity and mass determinations. Velocities up to 1.4 km/s were achieved for intact hydrogen pellets using hydrogen propellant at 5-MPa breech pressure. These data have been compared with new pellet acceleration calculations which include the effects of propellant friction, heat transfer, time-dependent boundary conditions, and finite gun geometry. These results provide a basis for the extrapolation of present-day pneumatic injection system performance to velocities in excess of 2 km/s

10. Research of pneumatic control transmission system for small irradiation samples

International Nuclear Information System (INIS)

Bai Zhongxiong; Zhang Haibing; Rong Ru; Zhang Tao

2008-01-01

In order to reduce the absorbed dose damage for the operator, pneumatic control has been adopted to realize the rapid transmission of small irradiation samples. On/off of pneumatic circuit and directions for the rapid transmission system are controlled by the electrical control part. The main program initializes the system and detects the location of the manual/automatic change-over switch, and call for the corresponding subprogram to achieve the automatic or manual operation. Automatic subprogram achieves the automatic sample transmission; Manual subprogram completes the deflation, and back and forth movement of the radiation samples. This paper introduces in detail the implementation of the system, in terms of both hardware and software design. (authors)

11. Dielectric elastomer actuators used for pneumatic valve technology

International Nuclear Information System (INIS)

Giousouf, Metin; Kovacs, Gabor

2013-01-01

Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications. (paper)

12. Microcomputer-based pneumatic controller for neutron activation analysis

International Nuclear Information System (INIS)

Byrd, J.S.; Sand, R.J.

1976-10-01

A microcomputer-based pneumatic controller for neutron activation analysis was designed and built at the Savannah River Laboratory for analysis of large numbers of geologic samples for locating potential supplies of uranium ore for the National Uranium Resource Evaluation program. In this system, commercially available microcomputer logic modules are used to transport sample capsules through a network of pressurized air lines. The logic modules are interfaced to pneumatic valves, solenoids, and photo-optical detectors. The system operates from programs stored in firmware (permanent software). It also commands a minicomputer and a hard-wired pulse height analyzer for data collection and bookkeeping tasks. The advantage of the system is that major system changes can be implemented in the firmware with no hardware changes. This report describes the hardware, firmware, and software for the electronics system

13. Pneumatic dilatation in achalasia cardia results and follow-up.

Directory of Open Access Journals (Sweden)

Supe A

1990-10-01

Full Text Available Pneumatic dilatation is one of the more recent methods in the management of achalasia cardia. Fifty dilatations were done in 42 patients with achalasia cardia over 5 years. There was a significant decrease in the maximum diameter of the oesophagus and a significant increase in diameter in the narrowed lower oesophageal segment in all the patients. Of the patients studied, 95.23% were relieved of their symptoms after only one to two sessions. There were no immediate complications. Out of the 38 patients on long term follow up, 8 (21.05% had recurrence of symptoms. On repeat dilatations, 4 (50% of them had good response. Late complication like reflux oesophagitis was observed in only 1 patient over a median follow up period of 22 months. It was thus concluded that pneumatic dilatation is a safe, simple and effective procedure in managing patients with achalasia cardia.

14. Pneumatic Muscle Actuated Equipment for Continuous Passive Motion

Science.gov (United States)

Deaconescu, Tudor T.; Deaconescu, Andrea I.

2009-10-01

Applying continuous passive rehabilitation movements as part of the recovery programme of patients with post-traumatic disabilities of the bearing joints of the inferior limbs requires the development of new high performance equipment. This chapter discusses a study of the kinematics and performance of such a new, continuous passive motion based rehabilitation system actuated by pneumatic muscles. The utilized energy source is compressed air ensuring complete absorption of the end of stroke shocks, thus minimizing user discomfort.

15. Pneumatic Muscle Actuated Rehabilitation Equipment of the Upper Limb Joints

Science.gov (United States)

Deaconescu dr. eng. habil., Andrea, Prof.

2017-06-01

Rehabilitation equipment of the upper limb joints holds a key role in passive physical therapy. Within this framework, the paper presents two such pieces of equipment developed for the rehabilitation of elbow and of wrist and knuckles, respectively. The presented and discussed equipment is actuated by pneumatic muscles, its benefits being a low cost, simple and robust construction, as well as short response time to commands.

16. Measurement of Static Characteristics Pneumatic Motors with Elastic Working Elements

Directory of Open Access Journals (Sweden)

Kamil FOJTÁŠEK

2012-06-01

Full Text Available Into a category of pneumatic motors with elastic working parts belong air bellows, diaphragm motors and fluid muscles. All three types of these motors have some elastic part usually made of rubber. This part is deformed under the pressure of a compressed air or a mass load resulting in a final working effect. This paper deals with measuring of static characteristics of these motors.

17. Dynamic Analysis of Sounding Rocket Pneumatic System Revision

Science.gov (United States)

Armen, Jerald

2010-01-01

The recent fusion of decades of advancements in mathematical models, numerical algorithms and curve fitting techniques marked the beginning of a new era in the science of simulation. It is becoming indispensable to the study of rockets and aerospace analysis. In pneumatic system, which is the main focus of this paper, particular emphasis will be placed on the efforts of compressible flow in Attitude Control System of sounding rocket.

18. Quantification of dynamic property of pneumatic muscle actuator for design of therapeutic robot control.

Science.gov (United States)

Balasubramanian, Sivakumar; Huang, He; He, Jiping

2006-01-01

Robot-assisted therapy has shown potential in neuromotor rehabilitation. A therapeutic robot driven by pneumatic muscle actuators has been developed in our research group. However, the design of fine and real-time feedback robot control is a challenge. One of the difficulties is the lack of a general dynamic model of the pneumatic muscle actuator. In this study, a phenomenological model has been developed to quantify the dynamic behavior of pneumatic muscle actuator by fitting the experimental length response of the pneumatic muscle, to a step pressure input. In addition, comparison of the dynamic responses of two pneumatic muscles of different dimensions has also been studied. Several control strategies for the pneumatic muscle actuator are discussed based on the results from this study.

19. A study on the design of a low-friction, high-speed pneumatic cylinder

International Nuclear Information System (INIS)

Kim, Do Tae; Kim, Dong Soo; Ju, Min Jin

2008-01-01

Of all of pneumatic components utilized in the make up of pneumatic circuits on either automatic assembly machine or industrial equipment, the pneumatic cylinder is more oriented toward being a structural as well as a pneumatic member. The structural design must be based to a large degree on the end of application of the cylinder on the equipment it is operating. In this paper, design studies of a double-acting pneumatic cushion type cylinder with low-friction and high-speed driving have been developed. Of interest here is to investigate the structural analysis of cylinder tube, piston rod, end cover, and to analyze the buckling of piston rod. Also, a relief valve type cushion mechanism is considered. This cushion mechanism is found to be adequate under a high-speed driving of pneumatic cylinders

20. Electric-Pneumatic Actuator: A New Muscle for Locomotion

Directory of Open Access Journals (Sweden)

2017-10-01

Full Text Available A better understanding of how actuator design supports locomotor function may help develop novel and more functional powered assistive devices or robotic legged systems. Legged robots comprise passive parts (e.g., segments, joints and connections which are moved in a coordinated manner by actuators. In this study, we propose a novel concept of a hybrid electric-pneumatic actuator (EPA as an enhanced variable impedance actuator (VIA. EPA is consisted of a pneumatic artificial muscle (PAM and an electric motor (EM. In contrast to other VIAs, the pneumatic artificial muscle (PAM within the EPA provides not only adaptable compliance, but also an additional powerful actuator with muscle-like properties, which can be arranged in different combinations (e.g., in series or parallel to the EM. The novel hybrid actuator shares the advantages of both integrated actuator types combining precise control of EM with compliant energy storage of PAM, which are required for efficient and adjustable locomotion. Experimental and simulation results based on the new dynamic model of PAM support the hypothesis that combination of the two actuators can improve efficiency (energy and peak power and performance, while does not increase control complexity and weight, considerably. Finally, the experiments on EPA adapted bipedal robot (knee joint of the BioBiped3 robot show improved efficiency of the actuator at different frequencies.

1. Design and control of a pneumatic musculoskeletal biped robot.

Science.gov (United States)

Zang, Xizhe; Liu, Yixiang; Liu, Xinyu; Zhao, Jie

2016-04-29

Pneumatic artificial muscles are quite promising actuators for humanoid robots owing to their similar characteristics with human muscles. Moreover, biologically inspired musculoskeletal systems are particularly important for humanoid robots to perform versatile dynamic tasks. This study aims to develop a pneumatic musculoskeletal biped robot, and its controller, to realize human-like walking. According to the simplified musculoskeletal structure of human lower limbs, each leg of the biped robot is driven by nine muscles, including three pairs of monoarticular muscles which are arranged in the flexor-extensor form, as well as three biarticular muscles which span two joints. To lower cost, high-speed on/off solenoid valves rather than proportional valves are used to control the muscles. The joint trajectory tracking controller based on PID control method is designed to achieve the desired motion. Considering the complex characteristics of pneumatic artificial muscles, the control model is obtained through parameter identification experiments. Preliminary experimental results demonstrate that the biped robot is able to walk with this control strategy. The proposed musculoskeletal structure and control strategy are effective for the biped robot to achieve human-like walking.

2. Soft Pneumatic Bending Actuator with Integrated Carbon Nanotube Displacement Sensor

Directory of Open Access Journals (Sweden)

Tim Giffney

2016-02-01

Full Text Available The excellent compliance and large range of motion of soft actuators controlled by fluid pressure has lead to strong interest in applying devices of this type for biomimetic and human-robot interaction applications. However, in contrast to soft actuators fabricated from stretchable silicone materials, conventional technologies for position sensing are typically rigid or bulky and are not ideal for integration into soft robotic devices. Therefore, in order to facilitate the use of soft pneumatic actuators in applications where position sensing or closed loop control is required, a soft pneumatic bending actuator with an integrated carbon nanotube position sensor has been developed. The integrated carbon nanotube position sensor presented in this work is flexible and well suited to measuring the large displacements frequently encountered in soft robotics. The sensor is produced by a simple soft lithography process during the fabrication of the soft pneumatic actuator, with a greater than 30% resistance change between the relaxed state and the maximum displacement position. It is anticipated that integrated resistive position sensors using a similar design will be useful in a wide range of soft robotic systems.

3. Design and Control of a Pneumatically Actuated Transtibial Prosthesis.

Science.gov (United States)

Zheng, Hao; Shen, Xiangrong

2015-04-01

This paper presents the design and control of a pneumatically actuated transtibial prosthesis, which utilizes a pneumatic cylinder-type actuator to power the prosthetic ankle joint to support the user's locomotion. The pneumatic actuator has multiple advantages over the traditional electric motor, such as light weight, low cost, and high power-to-weight ratio. The objective of this work is to develop a compact and lightweight transtibial prosthesis, leveraging the multiple advantages provided by this highly competitive actuator. In this paper, the design details of the prosthesis are described, including the determination of performance specifications, the layout of the actuation mechanism, and the calculation of the torque capacity. Through the authors' design calculation, the prosthesis is able to provide sufficient range of motion and torque capacity to support the locomotion of a 75 kg individual. The controller design is also described, including the underlying biomechanical analysis and the formulation of the finite-state impedance controller. Finally, the human subject testing results are presented, with the data indicating that the prosthesis is able to generate a natural walking gait and sufficient power output for its amputee user.

4. Homogeneity of blended nuclear fuel powders after pneumatic transport

International Nuclear Information System (INIS)

Smeltzer, E.E.; Skriba, M.C.; Lyon, W.L.

1982-01-01

A study of the pneumatic transport of fine (approx. 1μm) cohesive nuclear fuel powders was conducted for the U.S. Department of Energy to demonstrate the feasibility of this method of transport and to develop a design data base for use in a large scale nuclear fuel production facility. As part of this program, a considerable effort was directed at following the homogeneity of blended powders. Since different reactors require different enrichments, blending and subsequent transport are critical parts of the fabrication sequence. The various materials used represented analogs of a wide range of powders and blends that could be expected in a commercial mixed oxide fabrication facility. All UO 2 powders used were depleted and a co-precipitated master mix of (U, Th)O 2 was made specifically for this program, using thorium as an analog for plutonium. In order to determine the effect of pneumatic transport on a blended powder, samples were taken from a feeder vessel before each test, and from a receiver vessel and a few line sections after each transfer test. The average difference between the before and after degree of non-homogeneity was < 1%, for the 21 tests considered. This shows that overall, the pneumatic transport of blended, fine nuclear fuel powders is possible, with only minor unblending occurring

5. Vibration of machine

International Nuclear Information System (INIS)

Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo

2001-09-01

This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.

6. Force Control for a Pneumatic Cylinder Using Generalized Predictive Controller Approach

OpenAIRE

Mohd Faudzi, Ahmad ’Athif; Mustafa, Nu’man Din; Osman, Khairuddin

2014-01-01

Pneumatic cylinder is a well-known device because of its high power to weight ratio, easy use, and environmental safety. Pneumatic cylinder uses air as its power source and converts it to a possible movement such as linear and rotary movement. In order to control the pneumatic cylinder, controller algorithm is needed to control the on-off solenoid valve with encoder and pressure sensor as the feedback inputs. In this paper, generalized predictive controller (GPC) is proposed as the control st...

7. Enhancement of the vibration stability of a microdiffraction goniometer

International Nuclear Information System (INIS)

Lee, S. H.; Preissner, C.; Lai, B.; Cai, Z.; Shu, D.

2002-01-01

High-precision instrumentation, such as that for x-ray diffraction, electron microscopy, scanning probe microscopy, and other optical micropositioning systems, requires the stability that comes from vibration-isolated support structures. Structure-born vibrations impede the acquisition of accurate experimental data through such high-precision instruments. At the Advanced Photon Source, a multiaxis goniometer is installed in the 2-ID-D station for synchrotron microdiffraction investigations. However, ground vibration can excite the kinematic movements of the goniometer linkages, resulting in critically contaminated experimental data. In this paper, the vibration behavior of the goniometer has been considered. Experimental vibration measurements were conducted to define the present vibration levels and determine the threshold sensitivity of the equipment. In addition, experimental modal tests were conducted and used to guide an analytical finite element analysis. Both results were used for finding the best way to reduce the vibration levels and to develop a vibration damping/isolation structure for the 2-ID-D goniometer. The device that was designed and tested could be used to reduce local vibration levels for the vibration isolation of similar high-precision instruments

8. Analysis of micro vibration in gas film of aerostatic guide way based on molecule collision theory

Directory of Open Access Journals (Sweden)

Yang Shao Hua

2016-01-01

Full Text Available Micro vibration of the aerostatic guide way has a significant impact on its dynamic characteristics and stability, which limits the development of pneumatic component. High pressure gas molecules have been collided with the supporting surface and the internal surface of the throttle during the flow process. Variable impulse of the surfaces aside for the gas film are affected by the changes of impulse which formed irregular impact force in horizontal and vertical direction. Micro-vibration takes place based on the natural frequency of the system and its frequency doubling. In this paper, the vibration model was established to describe the dynamic characteristics of the gas film, and the formation mechanism of micro vibration in the film is defined. Through the simulation analysis and experimental comparison, formation mechanism of the micro vibration in the gas film is confirmed. It was proposed that the micro vibration of gas film can be produced no matter whether there is a gas chamber or not in the throttle. Under the same conditions, the micro vibration of the guide way with air chamber is greater than that without any chamber. The frequency points of the vibration peaks are almost the same, as well as the vibration pattern in the frequency domain.

9. Enhanced vibration diagnostics using vibration signature analysis

International Nuclear Information System (INIS)

Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.

2001-01-01

Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)

10. Pneumatic artificial muscle and its application on driving variable trailing-edge camber wing

Science.gov (United States)

Yin, Weilong; Liu, Libo; Chen, Yijin; Liu, Yanju; Leng, Jinsong

2010-04-01

As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, the experimental setup to measure the static output force of pneumatic artificial muscle was designed and the relationship between the static output force and the air pressure was investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. A variable camber wing based on the pneumatic artificial muscle was developed and the variable camber wing model was manufactured to validate the variable camber concept. Wind tunnel tests were conducted in the low speed wind tunnel. Experimental result shows that the wing camber increases with increasing air pressure.

11. Development of a pneumatic transfer system for HTGR recycle fuel particles

International Nuclear Information System (INIS)

Mack, J.E.; Johnson, D.R.

1978-02-01

In support of the High-Temperature Gas-Cooled Reactor (HTGR) Fuel Refabrication Development Program, an experimental pneumatic transfer system was constructed to determine the feasibility of pneumatically conveying pyrocarbon-coated fuel particles of Triso and Biso designs. Tests were conducted with these particles in each of their nonpyrophoric forms to determine pressure drops, particle velocities, and gas flow requirements during pneumatic transfer as well as to evaluate particle wear and breakage. Results indicated that the material can be pneumatically conveyed at low pressures without excessive damage to the particles or their coatings

12. Radionuclide esophageal emptying study before and after pneumatic dilatation in achalasia

Energy Technology Data Exchange (ETDEWEB)

Ujiie, Hiroaki; Hongo, Michio; Lin, Yih-Fong; Satake, Kenzo; Asaki, Shigeru; Goto, Yoshio; Okuyama, Shinichi

1987-11-01

The therapeutic effect of pneumatic dilatation was evaluated quantitatively by radionuclide transit study in 11 achalasia patients. Before pneumatic dilatation, marked retention with more than 80 % of isotope in the esophagus at 15 minutes after ingestion was noted in all patients. Marked improvement in emptying was shown after pneumatic dilatation. Pneumatic dilatation is a safe and effective therapeutic aid for achalasia treatment, and radionuclide transit study is not only noninvasive and physiologic but also its procedure is easily performed. We conclude that radionuclide transit study is a good method to evaluate the result of the treatment quantitatively in achalasia patients.

13. Application of Model Based Prognostics to Pneumatic Valves in a Cryogenic Propellant Loading Testbed

Data.gov (United States)

National Aeronautics and Space Administration — Pneumatic-actuated valves are critical components in many applications, including cryogenic propellant loading for space operations. For these components, failures...

14. Utilization of pneumatic energy in industries and Nuclear Energy Unit - a brief review

International Nuclear Information System (INIS)

Muhd Noor Muhd Yunus

1984-01-01

The purpose of this paper is to evaluate the extent of utilisation of pneumatic energy in UTN, besides depicting the capabilities of pneumatics in various field, especially in nuclear industry. Thus, a few examples of the usage of this energy in industry and UTN are explained and listed briefly. Comparisons and advantages of the pneumatics with respect to other forms of energy also discussed briefly. It is hoped that this pneumatic technology will advanced in UTN and becoming one of the alternatives of offered apart from other form of energy like hyrdaulics and electricity. (author)

15. DETERMINATION OF CHARACTERISTICS OF THROTTLING DEVICE FOR PNEUMATIC SPRING

Directory of Open Access Journals (Sweden)

O. H. Reidemeister

2018-02-01

Full Text Available Purpose. This paper focuses on determination of the dependence of the working medium flow on the capacity of the throttling device, its geometric features and the pressure difference in the pneumatic spring cylinder and in the auxiliary reservoir. Methodology. Calculation of the dependence of the working medium and pressure drop is performed in two ways: 1 by numerical simulation of a stationary gas flow through a throttling element; 2 its analytical calculation expression using empirical relationships (control calculation to evaluate the reliability of numerical simulation results. For the calculation, three models of throttling devices were chosen. Dependence of the flow rate of the working medium on the capacity of the throttling device and its geometric features was determined based on the approximation of the dependency graphs of the pressure drop against the mass flow rate of the working medium. Findings. We obtained graphical dependencies between the pressure drop and the mass flow rate of the working medium from the two calculation options. Based on the results of calculations performed with the help of a software package with visualization of the results, we calculated a proportionality coefficient that describes the dependence of the working medium flow on the throttling device capacity and its geometric features for each of the throttling elements considered, with three degrees of closure. The air flow values, obtained by numerical simulation, are greater than the flow rates obtained from semi-empirical formulas. At the same time, they are in good qualitative agreement, and the quantitative difference averages 25%, which can be regarded as confirmation of the reliability of the nu-merical model. Based on the calculation results, we plotted the proportionality coefficient graphs against the degree of closure of the throttling device. Originality. The work allows determining the degree of influence of the frictio-nal component on the

16. [Occupational standing vibration rate and vibrational diseases].

Science.gov (United States)

Karnaukh, N G; Vyshchipan, V F; Haumenko, B S

2003-12-01

Occupational standing vibration rate is proposed in evaluating a degree of impairment of an organism activity. It will allow more widely to introduce specification of quality and quantity in assessment of the development of vibrational disease. According out-patient and inpatient obtained data we have established criterial values of functional changes in accordance with accumulated occupational standing vibration rate. The nomogram was worked out for defining a risk of the development of vibrational disease in mine workers. This nomogram more objectively can help in diagnostics of the disease.

17. Application of system concept in vibration and noise reduction

Directory of Open Access Journals (Sweden)

SHENG Meiping

2017-08-01

Full Text Available Although certain vibration and noise control technologies are maturing, such as vibration absorption, vibration isolation, sound absorption and sound insulation, and new methods for specific frequency bands or special environments have been proposed unceasingly, there is still no guarantee that practical effective vibration and noise reduction can be obtained. An important constraint for vibration and noise reduction is the lack of a system concept, and the integrity and relevance of such practical systems as ship structure have not obtained enough attention. We have tried to use the system engineering theory in guiding vibration and noise reduction, and have already achieved certain effects. Based on the system concept, the noise control of a petroleum pipeline production workshop has been completed satisfactorily, and the abnormal noise source identification of an airplane has been accomplished successfully. We want to share our experience and suggestions to promote the popularization of the system engineering theory in vibration and noise control.

18. Broadband Vibration Attenuation Using Hybrid Periodic Rods

Directory of Open Access Journals (Sweden)

S. Asiri

2008-12-01

Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

19. Portable vibration exciter

Science.gov (United States)

Beecher, L. C.; Williams, F. T.

1970-01-01

Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

20. Muscle- and pneumatic-powered counterpulsating LVADs: a pilot study.

Science.gov (United States)

Wilde, J C; van Loon, J; Bishop, N D; Shelton, A D; Marten, C; Kolff, W J; Stephenson, L; Baciewicz, F; Nakajima, H; Thomas, G

1994-03-01

There is a worldwide interest in supporting the failing heart with a skeletal muscle by either wrapping it around the natural heart (dynamic cardiomyoplasty) or by constructing a skeletal muscle ventricle (SMV) used for counterpulsation. Conventional cardiomyoplasty in many clinics carries an operative mortality rate of 15-20% partly because it requires 6 weeks to train the muscle to contract continually. A flexible, pear-shaped blood pump with an inflatable air chamber was designed and made around which a muscle can be wrapped. The advantage of our design is that it can also be driven by pneumatic power, immediately supporting the circulation of a seriously ill patient while that patient is still on the operating table. After a period of time to allow for revascularization and the subsequent training of the muscle, the external pneumatic power can be gradually discontinued. Then the assisted patient becomes tether-free. If, at any time, the muscle power fails, the pneumatic-powered mechanism can be reactivated. In the preferred approach, the blood pump is connected to the aorta for diastolic counterpulsation. A muscle can either be wrapped around the blood pump directly, or around one of two separate muscle pouches connected to the blood pump. To facilitate surgery, a large pouch is inserted under the musculus latissimus dorsi, which is connected to a blood pump. When stimulated, the muscle will contract over the pouch compressing it and providing power to the blood pump. If it is found that the pressure generated in the pouch cannot meet the aortic blood pressure, it can be augmented by using a pressure amplifier.(ABSTRACT TRUNCATED AT 250 WORDS)

1. Statistical model estimating the occurrence of otitis media from temporal bone pneumatization

DEFF Research Database (Denmark)

Homøe, P; Lynnerup, N; Rasmussen, N

1994-01-01

In order to investigate the relationship between the pneumatization of temporal bones and the occurrence of otitis media in Greenlandic Inuit, 36 Greenlandic Inuit were examined by radiography of the temporal bones. The pneumatized cell area was measured planimetrically. All subjects answered...

2. Pneumatization of the Temporal Bones in a Greenlandic Inuit Anthropological Material

DEFF Research Database (Denmark)

Homøe, P; Lynnerup, N

1991-01-01

The degree of pneumatization of the temporal bones correlates with exposure during childhood and adolescence to infectious middle ear diseases (IMED), both acute and chronic. The pneumatized area as seen on cranial X-rays can be measured. This was applied to an anthropological material in order...

3. Electric and pneumatic drives in an exact comparison; Elektrische und pneumatische Antriebe im exakten Vergleich

Energy Technology Data Exchange (ETDEWEB)

Volk, Roland [Festo AG und Co. KG, Esslingen (Germany)

2013-04-01

The question, whether a pneumatic drive is more energy efficient than an electric drive, is very difficult to answer straightaway. In the automation technology, the energy efficiency always depends on the respective industrial application. Only the direct comparison of an electric and pneumatic drive having the same dimension in different conceptual formulations clears up with prejudices.

4. Efﬁcient control of servo pneumatic actuator system utilizing by-pass ...

The issue of energy saving nowadays is very crucial. Pneumatic systems, constituting an important segment of almost every industry, represent large energy consumers. Also, a signiﬁcant problem with servo pneumatic actuators is achieving accuracy in positioning. The higher the positioning accuracy, the higher the ...

5. Introducing PneuAct: Parametrically-Designed MRI-Compatible Pneumatic Stepper Actuator

NARCIS (Netherlands)

Sojoodi Farimani, F.; Misra, Sarthak

2018-01-01

Pneumatic stepper motors are one of the promising alternative actuation methods for motion control in environments where electromagnetic (EM) motors cannot be used. Due to the lack of commercial off-the-shelf products, researchers working on MR compatible robotics have to develop their own pneumatic

6. Seismic isolation structure for pool-type LMFBR - isolation building with vertically isolated floor for NSSS

International Nuclear Information System (INIS)

Sakurai, A.; Shiojiri, H.; Aoyagi, S.; Matsuda, T.; Fujimoto, S.; Sasaki, Y.; Hirayama, H.

1987-01-01

The NSSS isolation floor vibration characteristics were made clear. Especially, the side support bearing (rubber bearing) is effective for horizontal floor motion restraint and rocking motion control. Seismic isolation effects for responses of the reactor components can be sufficiently expected, using the vertical seismic isolation floor. From the analytical and experimental studies, the following has been concluded: (1) Seismic isolation structure, which is suitable for large pool-type LMFBR, were proposed. (2) Seismic response characteristics of the seismic isolation structure were investigated. It was made clear that the proposed seismic isolation (Combination of the isolated building and the isolated NSSS floor) was effective. (orig./HP)

7. Static Modeling for Commercial Braided Pneumatic Muscle Actuators

Directory of Open Access Journals (Sweden)

Jun Zhong

2014-05-01

Full Text Available An enhanced model is proposed to describe static property of commercial braided pneumatic muscle actuators by including several important influencing factors. Elasticity of elastomer tube is considered and Ogden strain energy function is employed to describe its strain energy density. During pressurized process, small deformation of fiber occurs and is calculated using force balancing principle. Frictional forces within muscles are studied, which consist of friction within braid and that between bladder and braid. Isobaric experiments are performed and results verify the validity of the model.

8. Comparison of contractile and extensile pneumatic artificial muscles

Science.gov (United States)

Pillsbury, Thomas E.; Wereley, Norman M.; Guan, Qinghua

2017-09-01

Pneumatic artificial muscles (PAMs) are used in robotic and prosthetic applications due to their high power to weight ratio, controllable compliance, and simple design. Contractile PAMs are typically used in traditional hard robotics in place of heavy electric motors. As the field of soft robotics grows, extensile PAMs are beginning to have increased usage. This work experimentally tests, models, and compares contractile and extensile PAMs to demonstrate the advantages and disadvantages of each type of PAM and applications for which they are best suited.

9. Investigating the grindability effect of loose material conveyed pneumatically

Energy Technology Data Exchange (ETDEWEB)

Bandrowski, J.; Fitka, H.; Krajzel, J.; Raczek, J.; Kaczmarzyk, G.

1979-10-01

Presents a mathematical analysis of the grindability effect during pneumatic conveying of coal, coke breeze and ash. Mathematical grindability models are shown. The dependence of the grindability effect of the transported material on the following factors is analyzed: diameter of the grains, speed of their flow, concentration of grains in the air within the conveying system and the conveying time. It is noted that the results of the analysis are identical with the results of investigations described in the literature. (7 refs.) (In Polish)

10. Adaptive Tracking Control of an Electro-Pneumatic Clutch Actuator

Directory of Open Access Journals (Sweden)

Glenn-Ole Kaasa

2003-10-01

Full Text Available This paper deals with the application of a simple adaptive algorithm for robust tracking control of an electro-pneumatic clutch actuator with output feedback. We present a mathematical model of the strongly nonlinear system, and implement an adaptive algorithm, based on a parallel feedforward compensator (PFC to remove the relative-degree-1 restriction. We propose a practical method of constructing the PFC, and introduce a simple modification that removes an inherent restriction on bandwidth of the nonlinear system. We show that the adaptive algorithm deals well with nonlinearities, and we achieve tracking corresponding to a settling-time of 150 ms.

11. Micro Tools with Pneumatic Actuators for Desktop Factories

Directory of Open Access Journals (Sweden)

Björn HOXHOLD

2009-10-01

Full Text Available This paper presents the design, the simulation and the fabrication process of two novel pneumatically driven auxiliary micro tools that can be used to improve and to speed up assembling processes in desktop factories. The described micro systems are designed to function as centrifugal feeders for small glass balls or active clamping devices with small external dimensions. They are able to deliver more than six balls per second on demand to a gripper and align and clamp single chips in a fixed position.

12. Pneumatic rupture of the esophagus caused by carbonated drinks

International Nuclear Information System (INIS)

Meyerovitch, J.; Barzilay, Z.; Tel Aviv Univ.; Ben Ami, T.; Rozenman, J.; Tel Aviv Univ.

1988-01-01

Pneumatic rupture of the esophagus occurs when gas under pressure is accidentally delivered into the oral cavity. To the 4 cases previously described we add 2 pediatric patients and in both the source of the offending gas was a bottle of carbonated drink. The mild initial symptoms were followed in both by physical and radiographic findings suggesting pharyngoesophageal perforation. Early radiologic findings included free subcutaneous and mediastinal air, followed later by hydropneumothorax and mediastinal widening as well as leak of contrast material on gastrografin swallow. CT findings contributed to patient evaluation and management. (orig.)

13. Flow Rate Analysis of 3/2 Directional Pneumatic Valve by Means Of Ansys Cfx Software

Directory of Open Access Journals (Sweden)

Slawomir BLASIAK

2014-12-01

Full Text Available The main purpose of this paper was to develop a selection method of the pneumatic connectors for directional 3/2 valve. The method was established to minimize resistance and loss of pressure in the valve with mounted pneumatic connections for the selected pipe diameters. Directional valve was modeled in 3D CAD software SolidWorks while 3D models of the air connections have been downloaded from the website of one of the leading suppliers of pneumatic. Based on developed solid model the simulation of compressed air flow in the software for computational fluid dynamics Ansys CFX was conducted. The studies using CFD methods helped to determine which air connections best meet the assumptions. Performed numerical tests enable proper selection of items to the newly designed pneumatic systems for a particular group of valves. As a consequence, this translates into a reduction in energy consumption and improve the efficiency of the entire pneumatic complex system.

14. Frictional properties of lubrication greases with the addition of nickel nanoparticles in pneumatic cylinder

Science.gov (United States)

Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin

2011-12-01

This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces

15. Vibrations and Eigenvalues

We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

16. Shock and vibration technology with applications to electrical systems

Science.gov (United States)

Eshleman, R. L.

1972-01-01

A survey is presented of shock and vibration technology for electrical systems developed by the aerospace programs. The shock environment is surveyed along with new techniques for modeling, computer simulation, damping, and response analysis. Design techniques based on the use of analog computers, shock spectra, optimization, and nonlinear isolation are discussed. Shock mounting of rotors for performance and survival, and vibration isolation techniques are reviewed.

17. [Hand-arm vibration syndrome in caisson miners].

Science.gov (United States)

Kákosy, T; Németh, L; Hazay, B; Posgay, M; Diner, J

1997-07-06

Authors examined 43 caisson-miners with symptoms of the upper extremities because of suspicion of hand-arm vibration syndrome. Also vibration measurements were performed on the pneumatic hammer used by the workers. The acceleration of the vibration exceeded 2.5-3.5 times the maximum allowable level according to the ISO 5349. Symptoms and signs of hand-arm vibration syndrome were found in 39 cases (90.7%). The vascular, peripheral neurological and locomotor system of the upper extremities were affected in similar frequency: 54.8; 51.6 and 51.2%, respectively. The most common angiological alteration was the Raynaud's phenomenon. Neurologically predominated the tunnel syndromes. Among the osteoarticular lesions the degenerative phenomena were the most frequent. In most cases more than one pathological alteration occurred. Fatigue fracture of the spinous process of vertebra D. I. appeared in one single case, degenerative changes of cervical spine in 34 patients (79.1%). The very common occurrence of the locomotor alterations and tunnel syndromes respectively can be explained probably also by the high physical stress required by this profession. The detailed examination of the locomotor system is very important by the periodical screening of the caisson-miners.

18. ANALYSIS OF VIBRATORY PROTECTION SYSTEM VIBRATION DURING HARMONIC AND POLYHARMONIC EXCITATIONS

Directory of Open Access Journals (Sweden)

T. N. Mikulik

2011-01-01

Full Text Available The paper considers a mathematical model of local «driver-seat» system and an algorithm for vibratory loading formation at external actions. Results of the investigations on the system vibration according to minimum vibration acceleration depending on transfer force factor acting on the seat and a vibration isolation factor are presented in the paper.

19. Pneumatic dilation and botulinum toxin: when and why?

Science.gov (United States)

Bozzi, Rosamaria; Di Martino, Vincenzo; Inzirillo, Antonio; D'Avenia, Eugenio; Inzirillo, Maurizio; Cattaneo, Fabio; Cattaneo, Domenico

2013-01-01

Pneumatic dilation and botulinum toxin:when and why? The endoscopic treatment options of achalasia include botulinum toxin (BT) injection and pneumatic dilation (PD) of the lower esophageal sphincter (LES). BT can reduce the LES pressure by blocking the release of acetylcoline from presynaptic cholinergic nerve terminals in the myenteric plexus. Although the procedure is safe and good initial response is reported, there is a wide variability in the duration of the response and the effect tends to decrease over time. BT is usually recommended for elderly patients or patients with comorbid illnesses, who are poor candidates for more invasive procedures. PD aims at tearing the muscle fibers of the LES and is considered the most effective nonsurgical treatment for achalasia. Technical details of the procedure vary in different institutions and in many clinical settings the choice between PD or minimally invasive surgical myotomy depends upon local expertise in the procedures. Further endoscopic treatment options such as submucosal esophageal myotomy or self-expanding metallic stents are being studied.

20. Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators.

Science.gov (United States)

Wickramatunge, Kanchana Crishan; Leephakpreeda, Thananchai

2013-11-01

Pneumatic Artificial Muscle (PAM) actuators yield muscle-like mechanical actuation with high force to weight ratio, soft and flexible structure, and adaptable compliance for rehabilitation and prosthetic appliances to the disabled as well as humanoid robots or machines. The present study is to develop empirical models of the PAM actuators, that is, a PAM coupled with pneumatic control valves, in order to describe their dynamic behaviors for practical control design and usage. Empirical modeling is an efficient approach to computer-based modeling with observations of real behaviors. Different characteristics of dynamic behaviors of each PAM actuator are due not only to the structures of the PAM actuators themselves, but also to the variations of their material properties in manufacturing processes. To overcome the difficulties, the proposed empirical models are experimentally derived from real physical behaviors of the PAM actuators, which are being implemented. In case studies, the simulated results with good agreement to experimental results, show that the proposed methodology can be applied to describe the dynamic behaviors of the real PAM actuators. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Development of an Air Pneumatic Suspension System for Transtibial Prostheses

Directory of Open Access Journals (Sweden)

Gholamhossein Pirouzi

2014-09-01

Full Text Available The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS for total-contact sockets was designed and developed. Pistoning and pressure distribution in the socket-stump interface were tested for the new APSS. More than 95% of the area between each prosthetic socket and liner was measured using a Tekscan F-Scan pressure measurement which has developed matrix-based pressure sensing systems. The variance in pressure around the stump was 8.76 kPa. APSS exhibits less pressure concentration around the stump, improved pressure distribution, easy donning and doffing, adjustability to remain fitted to the socket during daily activities, and more adaptability to the changes in stump volume. The volume changes were adjusted by utility of air pressure sensor. The vertical displacement point and reliability of suspension were assessed using a photographic method. The optimum pressure in every level of loading weight was 55 kPa, and the maximum displacement was 6 mm when 90 N of weight was loaded.

2. Repeating pneumatic hydrogen pellet injector for plasma fueling

International Nuclear Information System (INIS)

Combs, S.K.; Milora, S.L.; Foust, C.R.; Foster, C.A.; Schuresko, D.D.

1985-01-01

A repeating pneumatic pellet injector has been developed for plasma fueling applications. The repetitive device extends pneumatic injector operation to steady state. The active mechanism consists of an extruder and a gun assembly that are cooled by flowing liquid-helium refrigerant. The extruder provides a continuous supply of solid hydrogen to the gun assembly, where a reciprocating gun barrel forms and chambers cylindrical pellet from the extrusion; pellets are then accelerated with compressed hydrogen gas (pressures up to 125 bar) to velocities -1 have been obtained with 2.1- , 3.4- , and 4.0-mm-diameter pellets. The present apparatus operates at higher firing rates in short bursts; for example, a rate of 6 s -1 for 2 s with the larger pellets. These pellet parameters are in the range applicable for fueling large present-day fusion devices such as the Tokamak Fusion Test Reactor (TFTR). Experimental results are presented, including effects of propellant pressure and barrel length on gun performance

3. MarsVac: Pneumatic Sampling System for Planetary Exploration

Science.gov (United States)

Zacny, K.; Mungas, G.; Chu, P.; Craft, J.; Davis, K.

2008-12-01

We are proposing a Mars Sample Return scheme whereby a sample of regolith is acquired directly into a Mars Ascent Vehicle using a pneumatic system. Unlike prior developments that used suction to collect fines, the proposed system uses positive pressure to move the regolith. We envisage 3 pneumatic tubes to be embedded inside the 3 legs of the lander. Upon landing, the legs will burry themselves into the regolith and the tubes will fill up with regolith. With one puff of gas, the regolith can be lifted into a sampling chamber onboard of the Mars Ascent Vehicle. An additional chamber can be opened to acquire atmospheric gas and dust. The entire MSR will require 1) an actuator to open/close sampling chamber and 2) a valve to open gas cylinder. In the most recent study related to lunar excavation and funded under the NASA SBIR program we have shown that it is possible lift over 3000 grams of soil with only 1 gram of gas at 1atm. Tests conducted under Mars atmospheric pressure conditions (5 torr). In September of 2008, we will be performing tests at 1/6thg (Moon) and 1/3g (Mars) to determine mass lifting efficiencies in reduced gravities.

4. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

Science.gov (United States)

Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

2013-11-05

Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.

5. Multi Objective Optimization Using Genetic Algorithm of a Pneumatic Connector

Science.gov (United States)

Salaam, HA; Taha, Zahari; Ya, TMYS Tuan

2018-03-01

The concept of sustainability was first introduced by Dr Harlem Brutland in the 1980’s promoting the need to preserve today’s natural environment for the sake of future generations. Based on this concept, John Elkington proposed an approach to measure sustainability known as Triple Bottom Line (TBL). There are three evaluation criteria’s involved in the TBL approach; namely economics, environmental integrity and social equity. In manufacturing industry the manufacturing costs measure the economic sustainability of a company in a long term. Environmental integrity is a measure of the impact of manufacturing activities on the environment. Social equity is complicated to evaluate; but when the focus is at the production floor level, the production operator health can be considered. In this paper, the TBL approach is applied in the manufacturing of a pneumatic nipple hose. The evaluation criteria used are manufacturing costs, environmental impact, ergonomics impact and also energy used for manufacturing. This study involves multi objective optimization by using genetic algorithm of several possible alternatives for material used in the manufacturing of the pneumatic nipple.

6. Pneumatic distension of ventricular mural architecture validated histologically

Energy Technology Data Exchange (ETDEWEB)

Burg, M.C.; Heindel, W. [University Hospital Muenster (Germany). Dept. of Clinical Radiology; Lunkenheimer, P. [University Hospital Muenster (Germany). Dept. of Experimental Thoraco-vascular Surgery; Niederer, P. [ETH and University of Zuerich (Switzerland). Inst. for Biomedical Engineering; Brune, C. [Twente Univ. (Netherlands). Dept. of Applied Mathematics; Redmann, K. [University Hospital Muenster (Germany). Center for Reproductive Medicine and Andrology; Smerup, M. [Aarhus University Hospital (Denmark). Dept. of Cardiothoracic and Vascular Surgery; Spiegel, U.; Becker, F. [University Hospital Muenster (Germany). Dept. Surgical Research; Maintz, D. [University Hospital Muenster (Germany). Dept. of Clinical Radiology; Cologne Univ. (Germany). Dept. of Radiology; Anderson, R.H. [Newcastle Univ., London (United Kingdom). Inst. of Genetic Medicine

2016-11-15

There are ongoing arguments as to how cardiomyocytes are aggregated together within the ventricular walls. We used pneumatic distension through the coronary arteries to exaggerate the gaps between the aggregated cardiomyocytes, analyzing the pattern revealed using computed tomography, and validating our findings by histology. We distended 10 porcine hearts, arresting 4 in diastole by infusion of cardioplegic solutions, and 4 in systole by injection of barium chloride. Mural architecture was revealed by computed tomography, measuring also the angulations of the long chains of cardiomyocytes. We prepared the remaining 2 hearts for histology by perfusion with formaldehyde. Increasing pressures of pneumatic distension elongated the ventricular walls, but produced insignificant changes in mural thickness. The distension exaggerated the spaces between the aggregated cardiomyocytes, compartmenting the walls into epicardial, central, and endocardial regions, with a feathered arrangement of transitions between them. Marked variation was noted in the thicknesses of the parts in the different ventricular segments, with no visible anatomical boundaries between them. Measurements of angulations revealed intruding and extruding populations of cardiomyocytes that deviated from a surface-parallel alignment. Scrolling through the stacks of tomographic images revealed marked spiraling of the aggregated cardiomyocytes when traced from base to apex. Our findings call into question the current assumption that cardiomyocytes are uniformly aggregated together in a tangential fashion. There is marked heterogeneity in the architecture of the different ventricular segments, with the aggregated units never extending in a fully transmural fashion.

7. Pneumatic distension of ventricular mural architecture validated histologically

International Nuclear Information System (INIS)

Burg, M.C.; Heindel, W.; Lunkenheimer, P.; Niederer, P.; Brune, C.; Redmann, K.; Smerup, M.; Spiegel, U.; Becker, F.; Maintz, D.; Cologne Univ.; Anderson, R.H.

2016-01-01

There are ongoing arguments as to how cardiomyocytes are aggregated together within the ventricular walls. We used pneumatic distension through the coronary arteries to exaggerate the gaps between the aggregated cardiomyocytes, analyzing the pattern revealed using computed tomography, and validating our findings by histology. We distended 10 porcine hearts, arresting 4 in diastole by infusion of cardioplegic solutions, and 4 in systole by injection of barium chloride. Mural architecture was revealed by computed tomography, measuring also the angulations of the long chains of cardiomyocytes. We prepared the remaining 2 hearts for histology by perfusion with formaldehyde. Increasing pressures of pneumatic distension elongated the ventricular walls, but produced insignificant changes in mural thickness. The distension exaggerated the spaces between the aggregated cardiomyocytes, compartmenting the walls into epicardial, central, and endocardial regions, with a feathered arrangement of transitions between them. Marked variation was noted in the thicknesses of the parts in the different ventricular segments, with no visible anatomical boundaries between them. Measurements of angulations revealed intruding and extruding populations of cardiomyocytes that deviated from a surface-parallel alignment. Scrolling through the stacks of tomographic images revealed marked spiraling of the aggregated cardiomyocytes when traced from base to apex. Our findings call into question the current assumption that cardiomyocytes are uniformly aggregated together in a tangential fashion. There is marked heterogeneity in the architecture of the different ventricular segments, with the aggregated units never extending in a fully transmural fashion.

8. Effect of low-frequency vibrations on speckle interferometry fringes

International Nuclear Information System (INIS)

Vikram, C.S.; Pechersky, M.J.

1998-01-01

The effects of low-frequency vibrations on speckle correlation fringes have been investigated. The relatively short capture time of the camera in the low-frequency case may yield usable fringe contrast in spite of vibration. It has been shown that the fringes also shift due to the vibration. The study is in agreement with experimental observations of good-contrast correlation fringes even if the object is not on a vibration-isolated table. Some such experimental observations are also presented. copyright 1998 Society of Photo-Optical Instrumentation Engineers

9. Vibration of hydraulic machinery

CERN Document Server

Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

2013-01-01

Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

10. Anti-vibration gloves?

Science.gov (United States)

Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

2015-03-01

For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.

11. Cranial base morphology and temporal bone pneumatization in Asian Homo erectus.

Science.gov (United States)

Balzeau, Antoine; Grimaud-Hervé, Dominique

2006-10-01

The external morphological features of the temporal bone are used frequently to determine taxonomic affinities of fossils of the genus Homo. Temporal bone pneumatization has been widely studied in great apes and in early hominids. However, this feature is rarely examined in the later hominids, particularly in Asian Homo erectus. We provide a comparative morphological and quantitative analysis of Asian Homo erectus from the sites of Ngandong, Sambungmacan, and Zhoukoudian, and of Neandertals and anatomically modern Homo sapiens in order to discuss causes and modalities of temporal bone pneumatization during hominid evolution. The evolution of temporal bone pneumatization in the genus Homo is more complex than previously described. Indeed, the Zhoukoudian fossils have a unique pattern of temporal bone pneumatization, whereas Ngandong and Sambungmacan fossils, as well as the Neandertals, more closely resemble the modern human pattern. Moreover, these Chinese fossils are characterized by a wide midvault and a relatively narrow occipital bone. Our results support the point of view that cell development does not play an active role in determining cranial base morphology. Instead, pneumatization is related to available space and to temporal bone morphology, and its development is related to correlated morphology and the relative disposition of the bones and cerebral lobes. Because variation in pneumatization is extensive within the same species, the phyletic implications of pneumatization are limited in the taxa considered here.

12. Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.

Science.gov (United States)

Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian

2015-11-01

A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.

13. Suspension system vibration analysis with regard to variable type ability to smooth road irregularities

Science.gov (United States)

Rykov, S. P.; Rykova, O. A.; Koval, V. S.; Makhno, D. E.; Fedotov, K. V.

2018-03-01

The paper aims to analyze vibrations of the dynamic system equivalent of the suspension system with regard to tyre ability to smooth road irregularities. The research is based on static dynamics for linear systems of automated control, methods of correlation, spectral and numerical analysis. Input of new data on the smoothing effect of the pneumatic tyre reflecting changes of a contact area between the wheel and road under vibrations of the suspension makes the system non-linear which requires using numerical analysis methods. Taking into account the variable smoothing ability of the tyre when calculating suspension vibrations, one can approximate calculation and experimental results and improve the constant smoothing ability of the tyre.

14. The influence of flywheel micro vibration on space camera and vibration suppression

Science.gov (United States)

Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo

2018-02-01

Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

15. Bandshapes in vibrational spectroscopy

International Nuclear Information System (INIS)

Dijkman, F.G.

1978-01-01

A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)

16. Transfer vibration through spine

OpenAIRE

2012-01-01

Transfer Vibration through Spine Abstract In the bachelor project we deal with the topic of Transfer Vibration through Spine. The problem of TVS is trying to be solved by the critical review method. We analyse some diagnostic methods and methods of treatment based on this principle. Close attention is paid to the method of Transfer Vibration through Spine that is being currently solved by The Research Institute of Thermomechanics in The Czech Academy of Sciences in cooperation with Faculty of...

17. A novel dynamic cardiac simulator utilizing pneumatic artificial muscle.

Science.gov (United States)

Liu, Hao; Yan, Jie; Zhou, Yuanyuan; Li, Hongyi; Li, Changji

2013-01-01

With the development of methods and skills of minimally invasive surgeries, equipments for doctors' training and practicing are in high demands. Especially for the cardiovascular surgeries, operators are requested to be familiar with the surgical environment of a beating heart. In this paper, we present a new dynamic cardiac simulator utilizing pneumatic artificial muscle to realize heartbeat. It's an artificial left ventricular of which the inner chamber is made of thermoplastic elastomers (TPE) with an anatomical structure of the real human heart. It is covered by another layer of material forming the artificial muscle which actuates the systole and diastole uniformly and omnidirectionally as the cardiac muscle does. Preliminary experiments were conducted to evaluate the performance of the simulator. The results indicated that the pressure at the terminal of the aorta could be controlled within the range of normal human systolic pressure, which quantitatively validated the new actuating mode of the heart-beating is effective.

18. Design of a biped robot actuated by pneumatic artificial muscles.

Science.gov (United States)

Liu, Yixiang; Zang, Xizhe; Liu, Xinyu; Wang, Lin

2015-01-01

High compliant legs are essential for the efficient versatile locomotion and shock absorbency of humans. This study proposes a biped robot actuated by pneumatic artificial muscles to mimic human locomotion. On the basis of the musculoskeletal architecture of human lower limbs, each leg of the biped robot is modeled as a system of three segments, namely, hip joint, knee joint, and ankle joint, and eleven muscles, including both monoarticular and biarticular muscles. Each rotational joint is driven by a pair of antagonistic muscles, enabling joint compliance to be tuned by operating the pressure inside the muscles. Biarticular muscles play an important role in transferring power between joints. Walking simulations verify that biarticular muscles contribute to joint compliance and can absorb impact energy when the robot makes an impact upon ground contact.

19. Preliminary measurements on heat balance in pneumatic tires

Science.gov (United States)

Nybakken, G. H.; Collart, D. Y.; Staples, R. J.; Lackey, J. I.; Clark, S. K.; Dodge, R. N.

1973-01-01

A variety of tests was undertaken to determine the nature of heat generation associated with a pneumatic tire operating under various conditions. Tests were conducted to determine the magnitude and distribution of internally generated heat caused by hysteresis in the rubber and ply fabric in an automobile tire operating under conditions of load, pressure, and velocity representative of normal operating conditions. These included tests at various yaw angles and tests with braking applied. In other tests, temperature sensors were mounted on a road to measure the effect of a tire rolling over and an attempt was made to deduce the magnitude and nature of interfacial friction from the resulting information. In addition, tests were performed using the scratch plate technique to determine the nature of the motion between the tire and road. Finally, a model tire was tested on a roadwheel, the surface covering which could be changed, and an optical pyrometer was used to measure rubber surface temperatures.

20. Endoscope-guided pneumatic dilation for treatment of esophageal achalasia

Science.gov (United States)

Chuah, Seng-Kee; Wu, Keng-Liang; Hu, Tsung-Hui; Tai, Wei-Chen; Changchien, Chi-Sin

2010-01-01

Pneumatic dilation (PD) is considered to be the first line nonsurgical therapy for achalasia. The principle of the procedure is to weaken the lower esophageal sphincter by tearing its muscle fibers by generating radial force. The endoscope-guided procedure is done without fluoroscopic control. Clinicians usually use a low-compliance balloon such as Rigiflex dilator to perform endoscope-guided PD for the treatment of esophageal achalasia. It has the advantage of determining mucosal injury during the dilation process, so that a repeat endoscopy is not needed to assess the mucosal tearing. Previous studies have shown that endoscope-guided PD is an efficient and safe nonsurgical therapy with results that compare well with other treatment modalities. Although the results may be promising, long-term follow-up is required in the near future. PMID:20101764

1. Design of pneumatic proportional flow valve type 5/3

Science.gov (United States)

Laski, P. A.; Pietrala, D. S.; Zwierzchowski, J.; Czarnogorski, K.

2017-08-01

In this paper the 5/3-way pneumatic, proportional flow valve was designed and made. Stepper linear actuator was used to move the spool. The valve is controlled by the controlled based on a AVR microcontroller. Virtual model of the valve was created in CAD. The real element was made based on a standard 5/3-way manually actuated valve with hand lever, which was dismounted and replaced by linear stepper motor. All the elements was mounted in a specially made housing. The controller consists of microcontroller Atmega16, integrated circuit L293D, display, two potentiometers, three LEDs and six buttons. Series of research was also conducted. Simulation research were performed using CFD by the Flow Simulation addition to SolidWorks. During the experiments the valve characteristics of flow and pressure was determined.

2. Bubble inductors: Pneumatic tuning of a stretchable inductor

Science.gov (United States)

Lazarus, Nathan; Bedair, Sarah S.

2018-05-01

From adaptive matching networks in power systems to channel selectable RF filters and circuitry, tunable inductors are fundamental components for circuits requiring reconfigurability. Here we demonstrate a new continuously tunable inductor based on physically stretching the inductor traces themselves. Liquid-metal-based stretchable conductors are wrapped around a pneumatic bubble actuator, allowing the inductor to be collapsed or expanded by application of pressure. In vacuum the bubble collapses, bringing the loop area to nearly zero, while positive pressure brings a dramatic increase in area and loop inductance. Using this approach, the inductor demonstrated in this work was able to achieve a tuning ratio of 2.6 with 1-2 second response time. With conductors available that can stretch by hundreds of percent, this technique is promising for very large tuning ratios in continuously tunable inductors.

3. Functional design of heat exchange for pneumatic vehicles

Science.gov (United States)

Xu, Z. G.; Yang, D. Y.; Shen, W. D.; Liu, T. T.

2017-10-01

With the increasingly serious environmental problems, especially the impact of fog and haze, the development of air powered vehicles has become an important research direction of new energy vehicles. Quadrature test was done with different materials, i.e. stainless steel and aluminum alloy, at different inlet pressures, using different expansion gases, i.e. air, CO2, for heat exchanging properties for pneumatic vehicles. The mathematics as well as simulation methods are used to analyze the different heat exchanging effects in the multistage cylinder. The research results showed that the stainless steel has better effects in heat exchanging than Aluminum Alloy; the intake pressure has little effect on CO2 than the air in heat exchanging effect. CO2 is better in heat exchanging than air.

4. Pneumatic injector of deuterium macroparticles for TORE-SUPRA tokamak

International Nuclear Information System (INIS)

Vinyar, I.V.; Umov, A.P.; Lukin, A.Ya.; Skoblikov, S.V.; Reznichenko, P.V.; Krasil'nikov, I.A.

2006-01-01

The pneumatic injector for periodic injection of fuel-solid-deuterium pellets into the plasma of the TORE-SUPRA tokamak in a steady-state mode is described. The deuterium pellet injection with an unlimited duration is ensured by a screw extruder in which gaseous deuterium is frozen and squeezed outwards in the form of a rod with a rectangular cross section. A cutter installed on the injector's barrel cuts a cylinder with a diameter of 2 mm and a length of 1.0-3.5 mm out from this rod. The movement of the cutter is controlled by a pulsed electromagnetic drive at a pulse repetition rate of 10 Hz. In the injector's barrel, a compressed gas accelerates a deuterium pellet to a velocity of 100-650 m/s [ru

5. Evaluation of Effective Diaphragm Area for Pneumatic Actuator

International Nuclear Information System (INIS)

Ryu, Hogeun; Han, Bongsub; Seon, Juhyoung

2016-01-01

The purpose of this study is to develop a methodology to calculate the exact effective diaphragm area using the results of diagnostic test to be performed in the evaluation of air operated valve performance. By using this developed methodology in pneumatic actuator performance evaluation, it can be reduce the possible errors arising from effective diaphragm area in the evaluation of performance of air operated valves. The performance assessment for the operability and structural integrity of air operated valves for the domestic nuclear power plant is in progress. One of the important parameters that determine the performance of the air operated valves is the effective diaphragm area of diaphragm type actuator. The effective diaphragm area is the actual area which the air pressure acting on the diaphragm. In general, the effective diaphragm area used for the performance evaluation of pneumatic actuator is provided by the manufacture or the actuator drawing. Flat type diaphragm was showed the difference between the measured value of EDA and the manufacture’s value, in the case of convoluted type diaphragm has showed that the measured value of EDA and manufacture’s value is almost the same. When evaluate a performance of a diaphragm actuator, accurate EDA is to be used because it is an important variable affecting the actuator performance. Particularly in the case of flat type diaphragm which EDA is changed in accordance with the stroke position, by using the EDA evaluation methodology developed in this study to minimize a possible error due to EDA when evaluating the performance of the air actuator

6. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

Science.gov (United States)

Hocking, Erica G.; Wereley, Norman M.

2013-01-01

Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.

7. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

International Nuclear Information System (INIS)

Hocking, Erica G; Wereley, Norman M

2013-01-01

Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30–80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible. (paper)

8. Comparison of Pneumatic, Ultrasonic and Combination Lithotripters in Percutaneous Nephrolithotripsy

Directory of Open Access Journals (Sweden)

2014-10-01

Full Text Available Purpose We aimed to compare the outcomes of pneumatic (PL, ultrasonic (UL and combined (PL/UL lithotripsy performed in percutaneous lithotripsy (PNL according to success rates and stone clearence. Materials and Methods The medical records of 512 patients treated with PNL between April 2010 and April 2013 were evaluated. Postoperative stone analysis revealed as calcium oxalate in 408 of these patients. The operation notes of 355 patients recorded in detail with complete parameters were reviewed. According to stone disintegration method, patients were divided into three groups: PL only in Group I, UL only in Group II, and UL/PL combination in Group III. Number of patients was 155, 110 and 90, respectively. Results Fluoroscopy screening time was significantly shorter in group II, and III compared to group I (p<0.001. The failure rates were 13.5% (21 patients for group I, 3.6% (4 patients for group II, and 3.3% (3 patients for group III. There was a significant statistical difference in favor of group II and III by means of success (p=0.023. Group II and III had larger FSA, and this was statistically significant (p=0.032. Stone disintegration time (SDT was 64.0±41.92 minutes for group I, 49.5±34.63 for group II, and 37.7±16.89 for group III. Group III has a statistically significant shorter SDT (p=0.011. Conclusions We concluded that, in cases with high stone burden, where faster and efficient lithotripsy is needed, combined ultrasonic / pneumatic lithotripter may be the ideal choice and in suitable cases ultrasonic lithotripter usage provides important advantages to the surgeon.

9. A pneumatic transfer system for special form 252Cf

International Nuclear Information System (INIS)

Gehrke, R.J.; Berry, S.M.; Grafwallner, E.G.; Hoggan, J.M.

1996-09-01

A pneumatic transfer system has been developed for use with series 100 Special Form 252 Cf. It was developed to reduce the exposure to personnel handling sources of 252 Cf with masses up to 150 microg by permitting remotely activated two-way transfer between the storage container and the irradiation position. The pneumatic transfer system also permits transfers for reproducible repetitive irradiation periods. In addition to the storage container equipped with quick-release fittings, the transfer system consists of an irradiation station, a control box with momentary contact switches to activate the air-pressure control valves and indicators to identify the location of the source, and connecting air hose and electrical wire. A source of 20 psig air and 110 volt electrical power are required for operation of the transfer system which can be easily moved and set up by one individual in 5 to 10 minutes. Tests have shown that rarely does a source become lodged in the transfer tubing, but two methods have been developed to handle incomplete transfers of the 252 Cf source. The first method consists of closing one air vent to allow a pressure impulse to propel the source to the opposite side. The second method applies to those 252 Cf capsules with a threaded or tapped end to which a small ferromagnetic piece can be attached; an incompletely transferred source in the transfer tube can then be guided to a position of safety by surrounding the transfer tubing containing the capsule with a horseshoe magnet attached to the end of a long pole

10. Validity and reliability of a controlled pneumatic resistance exercise device.

Science.gov (United States)

Paulus, David C; Reynolds, Michael C; Schilling, Brian K

2008-01-01

During the concentric portion of the free-weight squat exercise, accelerating the mass from rest results in a fluctuation in ground reaction force. It is characterized by an initial period of force greater than the load while accelerating from rest followed by a period of force lower than the external load during negative acceleration. During the deceleration phase, less force is exerted and muscles are loaded sub-optimally. Thus, using a reduced inertia form of resistance such as pneumatics has the capability to minimize these inertial effects as well as control the force in real time to maximize the force exerted over the exercise cycle. To improve the system response of a preliminary design, a squat device was designed with a reduced mass barbell and two smaller pneumatic cylinders. The resistance was controlled by regulating cylinder pressure such that it is capable of adjusting force within a repetition to maximize force exerted during the lift. The resistance force production of the machine was statically validated with the input voltage and output force R2 =0.9997 for at four increments of the range of motion, and the intraclass correlation coefficient (ICC) between trials at the different heights equaled 0.999. The slew rate at three forces was 749.3 N/s +/- 252.3. Dynamic human subject testing showed the desired input force correlated with average and peak ground reaction force with R2 = 0.9981 and R2 = 0.9315, respectively. The ICC between desired force and average and peak ground reaction force was 0.963. Thus, the system is able to deliver constant levels of static and dynamic force with validity and reliability. Future work will be required to develop the control strategy required for real-time control, and performance testing is required to determine its efficacy.

11. Pneumatic strength assessment device: design and isometric measurement.

Science.gov (United States)

Paulus, David C; Reiser, Raoul F; Troxell, Wade O

2004-01-01

In order to load a muscle optimally during resistance exercise, it should be heavily taxed throughout the entire range of motion for that exercise. However, traditional constant resistance squats only tax the lower-extremity muscles to their limits at the "sticking region" or a critical joint configuration of the exercise cycle. Therefore, a linear motion (Smith) exercise machine was modified with pneumatics and appropriate computer control so that it could be capable of adjusting force to control velocity within a repetition of the squat exercise or other exercise performed with the device. Prior to application of this device in a dynamic squat setting, the maximum voluntary isometric force (MVIF) produced over a spectrum of knee angles is needed. This would reveal the sticking region and overall variation in strength capacity. Five incremental knee angles (90, 110, 130, 150, and 170 degrees, where 180 degrees defined full extension) were examined. After obtaining university-approved informed consent, 12 men and 12 women participated in the study. The knee angle was set, and the pneumatic cylinder was pressurized such that the subject could move the barbell slightly but no more than two-centimeters. The peak pressure exerted over a five-second maximum effort interval was recorded at each knee angle in random order and then repeated. The average of both efforts was then utilized for further analysis. The sticking region occurred consistently at a 90 degrees knee angle, however, the maximum force produced varied between 110 degrees and 170 degrees with the greatest frequency at 150 degrees for both men and women. The percent difference between the maximum and minimum MVIF was 46% for men and 57% for women.

12. Characterization of graphite dust produced by pneumatic lift

Energy Technology Data Exchange (ETDEWEB)

Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

2016-08-15

Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

13. Effective dose at pneumatic reduction of paediatric intussusception

International Nuclear Information System (INIS)

Heenan, S.D.; Kyriou, J.; Fitzgerald, M.; Adam, E.J.

2000-01-01

AIM: The purpose of this study was to assess screening times and resulting dose implication at pneumatic reduction of intussusception in the paediatric age group and to examine the relationship with the outcome of the procedure. MATERIALS AND METHODS: We retrospectively reviewed the case notes and departmental records of 143 children who had undergone a total of 153 pneumatic reductions in our department over a 4-year period. Success rates, screening times and available dose-area products (DAP) were recorded. The DAPs were converted to effective dose (ED) for 77 procedures. RESULTS: A 76.5% (117/153) success rate was achieved with a recurrence rate of 6.5% and only one complication: a perforation. Screening times were recorded in 137 reductions and ranged from 15 s to 22.6 min. Although the longest screening time was associated with an unsuccessful outcome, the second longest time of 21 min was successful. This gave a DAP of 1278 cGy cm 2 and an ED of 12.73 mSv, which is equivalent to approximately 400 abdominal films for a 1-year-old. A lifetime risk of fatal cancer of one in 1000 was achieved, assuming the worst case, after a screening time of 30 min on our conventional fluoroscopy unit. CONCLUSION: Our success rate compares well with other centres. Our institution is a tertiary referral centre and the occasional long screening time may reflect the delay and complex nature of the patients referred. Persistence at air reduction may be successful and the success rate increases with delayed attempts but the risks of the increasing radiation burden must be weighed against the risks of emergency surgery and anaesthesia. Heenan, S.D. (2000)

14. Evaluation of Effective Diaphragm Area for Pneumatic Actuator

Energy Technology Data Exchange (ETDEWEB)

Ryu, Hogeun; Han, Bongsub; Seon, Juhyoung [SOOSAN INDUSTRIES, Seoul (Korea, Republic of)

2016-10-15

The purpose of this study is to develop a methodology to calculate the exact effective diaphragm area using the results of diagnostic test to be performed in the evaluation of air operated valve performance. By using this developed methodology in pneumatic actuator performance evaluation, it can be reduce the possible errors arising from effective diaphragm area in the evaluation of performance of air operated valves. The performance assessment for the operability and structural integrity of air operated valves for the domestic nuclear power plant is in progress. One of the important parameters that determine the performance of the air operated valves is the effective diaphragm area of diaphragm type actuator. The effective diaphragm area is the actual area which the air pressure acting on the diaphragm. In general, the effective diaphragm area used for the performance evaluation of pneumatic actuator is provided by the manufacture or the actuator drawing. Flat type diaphragm was showed the difference between the measured value of EDA and the manufacture’s value, in the case of convoluted type diaphragm has showed that the measured value of EDA and manufacture’s value is almost the same. When evaluate a performance of a diaphragm actuator, accurate EDA is to be used because it is an important variable affecting the actuator performance. Particularly in the case of flat type diaphragm which EDA is changed in accordance with the stroke position, by using the EDA evaluation methodology developed in this study to minimize a possible error due to EDA when evaluating the performance of the air actuator.

15. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles

Science.gov (United States)

Miller, Jonathan I.; Cebon, David

2013-01-01

Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance.

16. Pneumatic pressure wave generator provides economical, simple testing of pressure transducers

Science.gov (United States)

Gaal, A. E.; Weldon, T. P.

1967-01-01

Testing device utilizes the change in pressure about a bias or reference pressure level produced by displacement of a center-driven piston in a closed cylinder. Closely controlled pneumatic pressure waves allow testing under dynamic conditions.

17. Force Control for a Pneumatic Cylinder Using Generalized Predictive Controller Approach

Directory of Open Access Journals (Sweden)

2014-01-01

Full Text Available Pneumatic cylinder is a well-known device because of its high power to weight ratio, easy use, and environmental safety. Pneumatic cylinder uses air as its power source and converts it to a possible movement such as linear and rotary movement. In order to control the pneumatic cylinder, controller algorithm is needed to control the on-off solenoid valve with encoder and pressure sensor as the feedback inputs. In this paper, generalized predictive controller (GPC is proposed as the control strategy for the pneumatic cylinder force control. To validate and compare the performance, proportional-integral (PI controller is also presented. Both controllers algorithms GPC and PI are developed using existing linear model of the cylinder from previous research. Results are presented in simulation and experimental approach using MATLAB-Simulink as the platform. The results show that the GPC is capable of fast response with low steady state error and percentage overshoot compared to PI.

18. Costs and benefits of pneumatic collection in three specific New York City cases

International Nuclear Information System (INIS)

Miller, Benjamin; Spertus, Juliette; Kamga, Camille

2014-01-01

Highlights: • Pneumatic and truck collection were compared in three New York City locations. • Relative costs, energy use, and greenhouse gas emissions varied significantly. • Variations were due to location-specific factors (e.g., route density, truck type). • Under appropriate conditions, pneumatic collection reduces TMT, BTU, and GHG. • Pneumatic capex may be offset by operating savings and externality benefits. - Abstract: Truck-based collection of municipal solid waste imposes significant negative externalities on cities and constrains the efficiency of separate collection of recyclables and organics and of unit-price-based waste-reduction systems. In recent decades, hundreds of municipal-scale pneumatic collection systems have been installed in Europe and Asia. Relatively few prior studies have compared the economic or environmental impacts of these systems to those of truck collection. A critical factor to consider when making this comparison is the extent to which the findings reflect the specific geographic, demographic, and operational characteristics of the systems considered. This paper is based on three case studies that consider the specific characteristics of three locations, comparing pneumatic systems with conventional collection on the basis of actual waste tonnages, composition, sources, collection routes, truck trips, and facility locations. In one case, alternative upgrades to an existing pneumatic system are compared to a potential truck-collection operation. In the other cases, existing truck operations are compared to proposed pneumatic systems which, to reduce capital costs, would be installed without new trenching or tunneling through the use of existing linear infrastructure. For the two proposed retrofit pneumatic systems, up to 48,000 truck kilometers travelled would be avoided and energy use would be reduced by up to 60% at an incremental cost of up to \$400,000 USD per year over the total operating-plus-capital cost of

19. Costs and benefits of pneumatic collection in three specific New York City cases

Energy Technology Data Exchange (ETDEWEB)

Miller, Benjamin, E-mail: BenjaminMiller@nyc.rr.com [University Transportation Research Center, Region 2, 910 Marshak Hall, The City College of New York, New York, NY 10031 (United States); Spertus, Juliette, E-mail: Juliette.Spertus@gmail.com [19 Clifton Place, Brooklyn, NY 11238 (United States); Kamga, Camille, E-mail: CKamga@UTRC2.org [University Transportation Research Center, Region 2, 910 Marshak Hall, The City College of New York, New York, NY 10031 (United States)

2014-11-15

Highlights: • Pneumatic and truck collection were compared in three New York City locations. • Relative costs, energy use, and greenhouse gas emissions varied significantly. • Variations were due to location-specific factors (e.g., route density, truck type). • Under appropriate conditions, pneumatic collection reduces TMT, BTU, and GHG. • Pneumatic capex may be offset by operating savings and externality benefits. - Abstract: Truck-based collection of municipal solid waste imposes significant negative externalities on cities and constrains the efficiency of separate collection of recyclables and organics and of unit-price-based waste-reduction systems. In recent decades, hundreds of municipal-scale pneumatic collection systems have been installed in Europe and Asia. Relatively few prior studies have compared the economic or environmental impacts of these systems to those of truck collection. A critical factor to consider when making this comparison is the extent to which the findings reflect the specific geographic, demographic, and operational characteristics of the systems considered. This paper is based on three case studies that consider the specific characteristics of three locations, comparing pneumatic systems with conventional collection on the basis of actual waste tonnages, composition, sources, collection routes, truck trips, and facility locations. In one case, alternative upgrades to an existing pneumatic system are compared to a potential truck-collection operation. In the other cases, existing truck operations are compared to proposed pneumatic systems which, to reduce capital costs, would be installed without new trenching or tunneling through the use of existing linear infrastructure. For the two proposed retrofit pneumatic systems, up to 48,000 truck kilometers travelled would be avoided and energy use would be reduced by up to 60% at an incremental cost of up to \$400,000 USD per year over the total operating-plus-capital cost of

20. Intermittent pneumatic compression of legs increases microcirculation in distant skeletal muscle.

Science.gov (United States)

Liu, K; Chen, L E; Seaber, A V; Johnson, G W; Urbaniak, J R

1999-01-01

Intermittent pneumatic compression has been established as a method of clinically preventing deep vein thrombosis, but the mechanism has not been documented. This study observed the effects of intermittent pneumatic compression of legs on the microcirculation of distant skeletal muscle. The cremaster muscles of 80 male rats were exposed, a specially designed intermittent pneumatic-compression device was applied to both legs for 60 minutes, and the microcirculation of the muscles was assessed by measurement of the vessel diameter in three categories (10-20, 21-40, and 41-70 microm) for 120 minutes. The results showed significant vasodilation in arterial and venous vessels during the application of intermittent pneumatic compression, which disappeared after termination of the compression. The vasodilation reached a maximum 30 minutes after initiation of the compression and could be completely blocked by an inhibitor of nitric oxide synthase, NG-monomethyl-L-arginine (10 micromol/min). A 120-minute infusion of NG-monomethyl-L-arginine, beginning coincident with 60 minutes of intermittent pneumatic compression, resulted in a significant decrease in arterial diameter that remained at almost the same level after termination of the compression. The magnitude of the decrease in diameter in the group treated with intermittent pneumatic compression and NG-monomethyl-L-arginine was comparable with that in the group treated with NG-monomethyl-L-arginine alone. The results imply that the production of nitric oxide is involved in the positive influence of intermittent pneumatic compression on circulation. It is postulated that the rapid increase in venous velocity induced by intermittent pneumatic compression produces strong shear stress on the vascular endothelium, which stimulates an increased release of nitric oxide and thereby causes systemic vasodilation.

1. Sliding mode control of a "Soft" 2-DOF Planar Pneumatic Manipulator

Science.gov (United States)

Van Damme, M.; Vanderborght, B.; Beyl, P.; Versluys, R.; Vanderniepen, I.; Van Ham, R.; Cherelle, P.; Daerden, F.; Lefeber, D.

2008-10-01

This paper presents a sliding mode controller for a "Soft" 2-DOF Planar Pneumatic Manipulator actuated by pleated pneumatic artificial muscle actuators. Since actuator dynamics is not negligible, an approximate model for pressure dynamics was taken into account, which made it necessary to perform full input-output feedback linearization in order to design a sliding mode controller. The design of the controller is presented in detail, and experimental results obtained by implementing the controller are discussed

2. Pneumatic control system for rapid vertical rectangular movements of heavy loads

Energy Technology Data Exchange (ETDEWEB)

Huettel, G; Krause, H [Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic)

1975-01-01

A new control system has been developed in order to realize the physically necessary short transition times between the dead points of a pneumatic oscillator even for heavy loads and high working speeds. Integral element of this system is the external control of braking process provided for in addition to the end position brake installed in the working cylinder. This control system is applicable not only to pile oscillators, but also universally applicable to pneumatic apparatuses.

3. Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees

OpenAIRE

Zhang, Ya; Lamarque, Laurent J.; Torres-Ruiz, José Manuel; Schuldt, Bernhard; Karimi, Zohreh; Li, Shan; Qin, De-Wen; Bittencourt, Paulo; Burlett, Régis; Cao, Kun-Fang; Delzon, Sylvain; Oliveira, Rafael; Pereira, Luciano; Jansen, Steven

2018-01-01

Methods to estimate xylem embolism resistance generally rely on hydraulic measurements, which can be far from straightforward. Recently, a pneumatic method based on air flow measurements of terminal branch ends was proposed to construct vulnerability curves by linking the amount of air extracted from a branch with the degree of embolism. We applied this novel technique for 10 temperate tree species, including six diffuse, two ring-porous and two gymnosperm species, and compared the pneumatic ...

4. Study of a Pneumatic Hybrid aided by a FPGA Controlled Free Valve Technology System

OpenAIRE

Trajkovic, Sasa

2008-01-01

Urban traffic involves frequent acceleration and deceleration. During deceleration, the energy previously used to accelerate the vehicle is mainly wasted on heat generated by the friction brakes. If this energy that is wasted in traditional IC engines could be saved, the fuel economy would improve. Today there are several solutions to meet the demand for better fuel economy and one of them is the pneumatic hybrids. The idea with pneumatic hybridization is to reduce the fuel con...

5. Pneumatic Compression, But Not Exercise, Can Avoid Intradialytic Hypotension: A Randomized Trial.

Science.gov (United States)

Álvares, Valeria R C; Ramos, Camila D; Pereira, Benedito J; Pinto, Ana Lucia; Moysés, Rosa M A; Gualano, Bruno; Elias, Rosilene M

2017-01-01

Conventional hemodialysis (HD) is associated with dialysis-induced hypotension (DIH) and ineffective phosphate removal. As the main source of extracellular fluid removed during HD are the legs, we sought to reduce DIH and increase phosphate removal by using cycling and pneumatic compression, which would potentially provide higher venous return, preserving central blood flow and also offering more phosphate to the dialyzer. We evaluated 21 patients in a randomized crossover fashion in which each patient underwent 3 different HD: control; cycling exercise during the first 60 min; and pneumatic compression during the first 60 min. Data obtained included bioelectrical impedance, hourly blood pressure measurement, biochemical parameters, and direct quantification of phosphate through the dialysate. DIH was defined as a drop in mean arterial pressure (MAP) ≥20 mm Hg. There was no difference in the ultrafiltration rate (p = 0.628), delta weight (p = 0.415), delta of total, intra and extracellular body water among the control, cycling, and pneumatic compression (p = 0.209, p = 0.348, and p = 0.467 respectively). Delta MAP was less changed by pneumatic compression when compared to control, cycling, and pneumatic compression respectively (-4.7 [-17.2, 8.2], -4.7 [-20.5, -0.2], and -2.3 [-8.1, 9.0] mm Hg; p = 0.021). DIH occurred in 43, 38, and 24% of patients in control, cycling, and pneumatic compression respectively (p = 0.014). Phosphate removal did not increase in any intervention (p = 0.486). Higher phosphate removal was dependent on ultrafiltration, pre dialysis serum phosphate, and higher parathyroid hormone. Pneumatic compression during the first hour of dialysis was associated with less DIH, albeit there was no effect on fluid parameters. Neither exercise nor pneumatic compression increased phosphate removal. © 2017 S. Karger AG, Basel.

6. A study on modelling of a butterfly-type control valve by a pneumatic actuator

International Nuclear Information System (INIS)

Hwang, I Cheol; Park, Cheol Jae

2009-01-01

This paper studies on the modelling of a butterfly-type control valve actuating by an on-off pneumatic solenoid valve. The mathematical model is composed of nonlinear differential equations three parts: (i) a solenoid valve, (ii) a pneumatic cylinder, (iii) a rotary-type butterfly valve. The flow characteristics of the butterfly control valve is analysed by a computer simulator, then its simple transfer function is identified from the step responses.

7. Innovation-Prototype. Making hydraulic and/or pneumatic plates using 3D printing technology

Science.gov (United States)

Alexa, V.; Rațiu, S. A.; Kiss, I.; Cioată, V. G.; Rackov, M.

2018-01-01

Start 3D printing allows hydraulic and/or pneumatic plates to be obtained from a single technological process without requiring further post-production operations. 3D printing with innovative materials in a rich colour range has several advantages such as: time-saving, cost is the same for any type of plate and its reported just to volume, fast and impossible realization of hydraulic and/or pneumatic links compared to traditional and high accuracy technologies.

8. A pneumatic control system for rapid vertical rectangular movements of heavy loads

International Nuclear Information System (INIS)

Huettel, G.; Krause, H.

1975-01-01

A new control system has been developed in order to realize the physically necessary short transition times between the dead points of a pneumatic oscillator even for heavy loads and high working speeds. Integral element of this system is the external control of braking process provided for in addition to the end position brake installed in the working cylinder. This control system is applicable not only to pile oscillators, but also universally applicable to pneumatic apparatuses working like that. (author)

9. Determining the most suitable frequency and shaking time for olive harvesting by a pneumatic branch shaker

Directory of Open Access Journals (Sweden)

A Rezaei

2016-09-01

Full Text Available Introduction Olive (Oleo europaea includes about 20 species of small trees from Oleaceae family. This point should be considered that Iran has allocated only a small universal market to its olive products in spite of having high production potentials; so that about 23 provinces of this country can produce olive products. Therefore mechanizing of olive production and encouraging to develop olive trade are among the effective methods for development of this market. On the basis of IOOC report, the production of olive oil in 2008-2009 in Iran and all over the world has been 3 and 2866.5 thousand tons, respectively. Currently, harvesting olive product is done by hand in Iran. The expensiveness of work force and providing the needed workers are considered as the biggest problem in olive harvesting. While harvesting the tall trees, the workers use beating method by wood sticks which causes the fruits to be damaged and their quality to be decreased. The harvesting method which the quality and quantity of the olive final products is under its effect and also high expenses of harvesting by hand are considered as the two important factors in developing the mechanical harvesting of olive. For this purpose, the mechanized harvesting of olive should be considered for producing olive conserve and olive oil and decreasing expenses of harvesting. Considering the conducted studies on one hand and shortage of informational resources in the country on the other hand, a research was designed and performed with the following purposes: Designing and fabricating of a portable pneumatic branch shaking system. Determining the best frequency and oscillation duration for harvesting olive by the constructed system. Materials and Methods The branch shaking system is made of two general parts: (a The set of branch shaker driving unit. (b The portable vibration arm. For constructing the set of vibrating arm, two experiments “elasticity and inflectionˮ of tree branches were

10. Mechanical vibration and shock analysis, sinusoidal vibration

CERN Document Server

Lalanne, Christian

2014-01-01

Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

11. Vibration Based Sun Gear Damage Detection

Science.gov (United States)

Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

2013-01-01

Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

12. Hydroelastic Vibrations of Ships

DEFF Research Database (Denmark)

Jensen, Jørgen Juncher; Folsø, Rasmus

2002-01-01

A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

13. Surface vibrational spectroscopy

International Nuclear Information System (INIS)

Erskine, J.L.

1984-01-01

A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations

14. Gearbox vibration diagnostic analyzer

Science.gov (United States)

1992-01-01

This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

15. Handbook Of Noise And Vibration

International Nuclear Information System (INIS)

1995-12-01

This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.

16. Evaluation of Models of Pneumatic Tourniquet in Simulated Out-of-Hospital Use.

Science.gov (United States)

Kragh, John F; Aden, James K; Dubick, Michael A

2016-01-01

Pneumatic field tourniquets have been recommended for Military medics to stop bleeding from limb wounds, but no comparison of commercially available pneumatic models of tourniquet has been reported. The purpose of this study is to provide laboratory data on the differential performance of models of pneumatic tourniquets to inform decision-making of potential field assessment by military users. Models included the Emergency and Military Tourniquet (EMT), Tactical Pneumatic Tourniquet 2-inch (TPT2), and Tactical Pneumatic Tourniquet 3-inch (TPT3). One user tested the three tourniquet models 30 times each on a manikin to collect data on effectiveness (yes-no bleeding control), pulse cessation, time to stop bleeding, total time of application, after time (after bleeding was stopped), pressure applied, blood loss volume, composite outcome (whether all individual outcomes were good or not), and pump count of the bulb used to inflate the tourniquet. Neither tourniquet effectiveness nor pulse cessation (ρ = 1; likelihood ratio, 0 for both) differed among tourniquet models: all three models had 100% (30 of 30 tests) for both outcomes. The EMT had the best or tied for best performance in time to stop bleeding, total time, after time, pressure blood loss, composite outcome, and pump count. Each of the three models of pneumatic field tourniquet was 100% effective in stopping simulated bleeding. Among the three models, the EMT showed the best or tied for best performance in time to stop bleeding, blood loss, and composite outcomes. All models are suitable for future field assessment among military users. 2016.

17. [The forensic medical characteristics of the entrance bullet holes created by the shots from pneumatic rifles].

Science.gov (United States)

Legin, G A; Bondarchuk, A O; Perebetjuk, A N

2015-01-01

The objective of the present study was to compare the injurious action of three types of the bullets for the pneumatic weapons shot from different distances using the Gamo pump air pistol and the BAM B22-1 pneumatic rifle. The following four kinds of the bullets were tested: "the fireball", "Luman cap 0.3", "Luman Field Target 0.68" and "DIABOLO". It was experimentally shown that the injurious action of the bullets fired from the same distance from the pneumatic weapons depends on the type of both the bullet and the weapon, as well as the properties of the target material. Specifically, the action of bullets fired from the piston pneumatic rifle remained stable whereas that of the bullets shot from the gas-balloon air pistol decreased as the gas was exhausted. The studies by the contact-diffusion method have demonstrated that the entrance bullet holes created by the shots from pneumatic weapons are surrounded by dispersed metal particles which makes it possible to estimate the shooting distance. Moreover, the bullets fired from the pneumatic weapons leave the muzzle face imprint on certain target materials.

18. Development of Pneumatic Robot Hand and Construction of Master-Slave System

Science.gov (United States)

Tsujiuchi, Nobutaka; Koizumi, Takayuki; Nishino, Shinya; Komatsubara, Hiroyuki; Kudawara, Tatsuwo; Hirano, Masanori

Recently, research and development has focused on robots that work in place of people. It is necessary for robots to perform the same flexible motions as people. Additionally, such robots need to incorporate high-level safety features in order not to injure people. For creation of such robots, we need to develop a robot hand that functions like a human hand. At the same time, this type of robot hand can be used as an artificial hand. Here, we present artificial muscle-type pneumatic actuators as the driving source of a robot hand that is both safe and flexible. Some development of robot hands using pneumatic actuators has already taken place. But, until now, when a pneumatic actuator is used, a big compressor is needed. So, the driving system also needs to be big; enlargement of the driving system is a major problem. Consequently, in this research, we develop a low-pressure, low-volume pneumatic actuator for driving a robot hand that works flexibly and safely on the assumption that it will be in contact with people. We develop a five-fingered robot hand with pneumatic actuators. And, we construct a master-slave system to enable the robot hand to perform the same operations as a human hand. We make a 1-link arm that has one degree of freedom using a pneumatic actuator, and construct a control system for the 1-link arm and verify its control performance.

19. Development of myopia as a hazard for workers in pneumatic caissons

Science.gov (United States)

Onoo, A; Kiyosawa, M; Takase, H; Mano, Y

2002-01-01

Background/aim: Pneumatic caisson engineering has been developed for large civil engineering constructions. Because of complaints of blurred vision by personnel working in pneumatic caissons, the development of myopia was suspected. The aim of this study was to determine the cause of the blurred vision and the mechanism underlying the changes. Methods: 12 caisson workers underwent a complete ophthalmological examination after completing up to 11 weeks of work (4 days/week) in a pneumatic caisson. Six months later, nine of the workers were examined again. Results: Nine subjects were myopic at the initial examination, and seven of these were considered to have developed the myopia after starting to work in the pneumatic caisson. Six months after completion of the work, the mean refractive change was significantly towards hyperopia. Conclusions: The blurred vision in pneumatic caisson workers was in all likelihood due to the development of myopia. The refractive shift towards hyperopia after completion of work in the pneumatic caisson supports this and demonstrates that the changes were temporary. The myopia is similar to the myopia seen in patients treated by hyperbaric oxygen. Careful monitoring of the refraction of caisson workers should be performed for industrial health control. PMID:12386088

20. Use of the PZK system for pneumatic stowing along mine workings

Energy Technology Data Exchange (ETDEWEB)

Makarevich, Yu S; Buzhin, N K; Churakov, V N

1983-07-01

The utilization of waste rock for pneumatic stowing in the Komsomolets Donbassa mine with coal seams to 1 m thick and dip angles from 3 to 11/sup 0/ is evaluated. Gate roads used for mine haulage by belt conveyors are controlled by cribbings made of timber and of concrete blocks, particularly at junction of working facese by belt conveyors are controlled by cribbings made of timber and of concrete blocks, particularly at junction of working faces with gate goads. Effects of pneumatic stowing on strata control cost and environmental protection are analyzed. Waste rock which has been dumped at spoil banks on the ground surface is crushed by the PZK system developed by Dongiproshakht. The PZK system is installed underground close to haulage roadways. Crushed rock material with size from 0 to 80 mm and compression strength coefficient from 3 to 5 degrees on the Protod'yakonov scale is hauled by mine cars to working faces and stowed by the DZM-2 pneumatic system. Strips of pneumatic stowing at each side of a gate road are from 12 to 15 m wide. Design of the PZM system and of a rock hopper used for accumulation of crushed rock as well as design of the DZM-2 system are shown in schemes. Economic analysis shows that use of pneumatic stowing reduces roof subsidence in the haulage gate road to 20% and eliminates cribbings. Use of pneumatic stowing for strata control in haulage gate roads economizes 65 rubles per 1 m of gate road.

1. Vibration insensitive interferometry

Science.gov (United States)

Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.

2017-11-01

The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.

2. Vibrations of rotating machinery

CERN Document Server

Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

2017-01-01

This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

3. Variable stiffness and damping MR isolator

Energy Technology Data Exchange (ETDEWEB)

Zhang, X Z; Wang, X Y; Li, W H; Kostidis, K [University of Wollongong, School of Mechanical, Materials and Mechatronic Engineering, NSW 2522 (Australia)], E-mail: weihuali@uow.edu.au

2009-02-01

This paper presents the development of a magnetorheological (MR) fluid-based variable stiffness and damping isolator for vibration suppressions. The MR fluid isolator used a sole MR control unit to achieve the variable stiffness and damping in stepless and relative large scope. A mathematical model of the isolator was derived, and a prototype of the MR fluid isolator was fabricated and its dynamic behavior was measured in vibration under various applied magnetic fields. The parameters of the model under various magnetic fields were identified and the dynamic performances of isolator were evaluated.

4. Determination of vibrational parameters of methanol from matrix-isolation infrared spectroscopy and ab initio calculations. Part 1 - Spectral analysis in the domain 11 000-200 cm{sup -1}

Energy Technology Data Exchange (ETDEWEB)

Perchard, J.P. [Universite Pierre et Marie Curie, CNRS, Laboratoire de Dynamique, Interactions et Reactivite, UMR 7075, Case 49, 4 Place Jussieu, 75252 Paris (France)], E-mail: jpp@spmol.jussieu.fr; Romain, F. [Universite Pierre et Marie Curie, CNRS, Laboratoire de Dynamique, Interactions et Reactivite, UMR 7075, Case 49, 4 Place Jussieu, 75252 Paris (France); Bouteiller, Y. [Universite Paris-Nord, CNRS, Laboratoire de Physique des Lasers, UMR 7538, 93430 Villetaneuse (France)

2008-01-22

Infrared spectra of three isotopic species of methanol ({sup 12}CH{sub 3}{sup 16}OH, {sup 13}CH{sub 3}{sup 16}OH, {sup 12}CH{sub 3}{sup 18}OH) trapped in neon and nitrogen matrices have been recorded between 11 000 and 200 cm{sup -1}. Their analysis is based on the isotopic effects which slightly modify the frequencies without significantly changing the nature of vibrations nor the band intensities. From the assignment of most of the two quanta transitions 45 out of the 78 anharmonicity coefficients have been deduced. The value of some of them has been confirmed by the identification of three quanta transitions mainly involving the OH stretching mode. The problem of vibrational resonances between methyl bending and stretching modes has been tackled by performing complementary experiments: use of other isotopic species (CH{sub 3}OD, CH{sub 2}DOH) and acquisition of Raman spectra in the gas phase.

5. Pneumatic artificial muscle actuators for compliant robotic manipulators

Science.gov (United States)

Robinson, Ryan Michael

Robotic systems are increasingly being utilized in applications that require interaction with humans. In order to enable safe physical human-robot interaction, light weight and compliant manipulation are desirable. These requirements are problematic for many conventional actuation systems, which are often heavy, and typically use high stiffness to achieve high performance, leading to large impact forces upon collision. However, pneumatic artificial muscles (PAMs) are actuators that can satisfy these safety requirements while offering power-to-weight ratios comparable to those of conventional actuators. PAMs are extremely lightweight actuators that produce force in response to pressurization. These muscles demonstrate natural compliance, but have a nonlinear force-contraction profile that complicates modeling and control. This body of research presents solutions to the challenges associated with the implementation of PAMs as actuators in robotic manipulators, particularly with regard to modeling, design, and control. An existing PAM force balance model was modified to incorporate elliptic end geometry and a hyper-elastic constitutive relationship, dramatically improving predictions of PAM behavior at high contraction. Utilizing this improved model, two proof-of-concept PAM-driven manipulators were designed and constructed; design features included parallel placement of actuators and a tendon-link joint design. Genetic algorithm search heuristics were employed to determine an optimal joint geometry; allowing a manipulator to achieve a desired torque profile while minimizing the required PAM pressure. Performance of the manipulators was evaluated in both simulation and experiment employing various linear and nonlinear control strategies. These included output feedback techniques, such as proportional-integral-derivative (PID) and fuzzy logic, a model-based control for computed torque, and more advanced controllers, such as sliding mode, adaptive sliding mode, and

6. Object-Oriented Approach to Modeling Units of Pneumatic Systems

Directory of Open Access Journals (Sweden)

Yu. V. Kyurdzhiev

2014-01-01

Full Text Available The article shows the relevance of the approaches to the object-oriented programming when modeling the pneumatic units (PU.Based on the analysis of the calculation schemes of aggregates pneumatic systems two basic objects, namely a cavity flow and a material point were highlighted.Basic interactions of objects are defined. Cavity-cavity interaction: ex-change of matter and energy with the flows of mass. Cavity-point interaction: force interaction, exchange of energy in the form of operation. Point-point in-teraction: force interaction, elastic interaction, inelastic interaction, and inter-vals of displacement.The authors have developed mathematical models of basic objects and interactions. Models and interaction of elements are implemented in the object-oriented programming.Mathematical models of elements of PU design scheme are implemented in derived from the base class. These classes implement the models of flow cavity, piston, diaphragm, short channel, diaphragm to be open by a given law, spring, bellows, elastic collision, inelastic collision, friction, PU stages with a limited movement, etc.A numerical integration of differential equations for the mathematical models of PU design scheme elements is based on the Runge-Kutta method of the fourth order. On request each class performs a tact of integration i.e. calcu-lation of the coefficient method.The paper presents an integration algorithm of the system of differential equations. All objects of the PU design scheme are placed in a unidirectional class list. Iterator loop cycle initiates the integration tact of all the objects in the list. One in four iteration makes a transition to the next step of integration. Calculation process stops when any object shows a shutdowns flag.The proposed approach was tested in the calculation of a number of PU designs. With regard to traditional approaches to modeling, the authors-proposed method features in easy enhancement, code reuse, high reliability

7. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

Science.gov (United States)

2015-08-21

Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the

8. Modelling of pneumatic muscle actuator using Hill's model with different approximations of static characteristics of artificial muscle

OpenAIRE

Piteľ Ján; Tóthová Mária

2016-01-01

For modelling and simulation of pneumatic muscle actuators the mathematical dependence of the muscle force on the muscle contraction at different pressures in the muscles is necessary to know. For this purpose the static characteristics of the pneumatic artificial muscle type FESTO MAS-20-250N used in the experiments were approximated. In the paper there are shown some simulation results of the pneumatic muscle actuator dynamics using modified Hill's muscle model, in which four different appr...

9. Silicon micromachined vibrating gyroscopes

Science.gov (United States)

Voss, Ralf

1997-09-01

This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.

10. System Detects Vibrational Instabilities

Science.gov (United States)

Bozeman, Richard J., Jr.

1990-01-01

Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.

11. Coherent vibrational dynamics

CERN Document Server

Lanzani, Guglielmo; De Silvestri, Sandro

2007-01-01

Vibrational spectroscopy is a powerful investigation tool for a wide class of materials covering diverse areas in physics, chemistry and biology. The continuous development in the laser field regarding ultrashort pulse generation has led to the possibility of producing light pulses that can follow vibrational motion coupled to the electronic transitions in molecules and solids in real time. Aimed at researchers and graduate students using vibrational spectroscopy, this book provides both introductory chapters as well as more advanced contents reporting on recent progress. It also provides a good starting point for scientists seeking a sound introduction to ultrafast optics and spectroscopic techniques.

12. Fingers' vibration transmission and grip strength preservation performance of vibration reducing gloves.

Science.gov (United States)

Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P

2018-01-01

The vibration isolation performances of vibration reducing (VR) gloves are invariably assessed in terms of power tools' handle vibration transmission to the palm of the hand using the method described in ISO 10819 (2013), while the nature of vibration transmitted to the fingers is ignored. Moreover, the VR gloves with relatively low stiffness viscoelastic materials affect the grip strength in an adverse manner. This study is aimed at performance assessments of 12 different VR gloves on the basis of handle vibration transmission to the palm and the fingers of the gloved hand, together with reduction in the grip strength. The gloves included 3 different air bladder, 3 gel, 3 hybrid, and 2 gel-foam gloves in addition to a leather glove. Two Velcro finger adapters, each instrumented with a three-axis accelerometer, were used to measure vibration responses of the index and middle fingers near the mid-phalanges. Vibration transmitted to the palm was measured using the standardized palm adapter. The vibration transmissibility responses of the VR gloves were measured in the laboratory using the instrumented cylindrical handle, also described in the standard, mounted on a vibration exciter. A total of 12 healthy male subjects participated in the study. The instrumented handle was also used to measure grip strength of the subjects with and without the VR gloves. The results of the study showed that the VR gloves, with only a few exceptions, attenuate handle vibration transmitted to the fingers only in the 10-200 Hz and amplify middle finger vibration at frequencies exceeding 200 Hz. Many of the gloves, however, provided considerable reduction in vibration transmitted to the palm, especially at higher frequencies. These suggest that the characteristics of vibration transmitted to fingers differ considerably from those at the palm. Four of the test gloves satisfied the screening criteria of the ISO 10819 (2013) based on the palm vibration alone, even though these caused

13. Flow induced vibrations of piping

International Nuclear Information System (INIS)

Gibert, R.J.; Axisa, F.

1977-01-01

In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fluid mass to the structure. This may lead to serious errors. This paper presents a method to take into account these effects, by solving a coupled mechanical-acoustical problem: the computer code TEDEL of the C.E.A /D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. By this way the mechanical-acoustical coupled eigenmodes of any piping system can be obtained. These eigenmodes are used to determine the response of the system to various sources. Equations have been written in the hypohesis that acoustical wave lengths remain large compared to the diameter of the pipe. The method has been checked by an experiment performed on the GASCOGNE loop at D.E.M.T. The piping system under test consists of a tube with four elbows. The circuit is ended at each extremity by a large vessel which performs acoustical isolation by generating modes for the pressure. Excitation of the circuit is caused by a valve located near the downstream vessel. This provides an efficient localised broad band acoustical source. The comparison between the test results and the calculations has shown that the low frequency resonant characteristics of the pipe and the vibrational amplitude at various flow-rates can be correctly predicted

14. Pneumatic Adaptive Absorber: Mathematical Modelling with Experimental Verification

Directory of Open Access Journals (Sweden)

Grzegorz Mikułowski

2016-01-01

Full Text Available Many of mechanical energy absorbers utilized in engineering structures are hydraulic dampers, since they are simple and highly efficient and have favourable volume to load capacity ratio. However, there exist fields of applications where a threat of toxic contamination with the hydraulic fluid contents must be avoided, for example, food or pharmacy industries. A solution here can be a Pneumatic Adaptive Absorber (PAA, which is characterized by a high dissipation efficiency and an inactive medium. In order to properly analyse the characteristics of a PAA, an adequate mathematical model is required. This paper proposes a concept for mathematical modelling of a PAA with experimental verification. The PAA is considered as a piston-cylinder device with a controllable valve incorporated inside the piston. The objective of this paper is to describe a thermodynamic model of a double chamber cylinder with gas migration between the inner volumes of the device. The specific situation considered here is that the process cannot be defined as polytropic, characterized by constant in time thermodynamic coefficients. Instead, the coefficients of the proposed model are updated during the analysis. The results of the experimental research reveal that the proposed mathematical model is able to accurately reflect the physical behaviour of the fabricated demonstrator of the shock absorber.

15. Characterisation of a phenomenological model for commercial pneumatic muscle actuators.

Science.gov (United States)

Serres, J L; Reynolds, D B; Phillips, C A; Gerschutz, M J; Repperger, D W

2009-08-01

This study focuses on the parameter characterisation of a three-element phenomenological model for commercially available pneumatic muscle actuators (PMAs). This model consists of a spring, damping and contractile element arranged in parallel. Data collected from static loading, contraction and relaxation experiments were fitted to theoretical solutions of the governing equation for the three-element model resulting in prediction profiles for the spring, damping and contractile force coefficient. For the spring coefficient, K N/mm, the following relationships were found: K = 32.7 - 0.0321P for 150 < or = P < or = 314 kPa and K = 17 + 0.0179P for 314 < or = P < or = 550 kPa. For the damping coefficient, B Ns/mm, the following relationship was found during contraction: B = 2.90 for 150 < or = P < or = 550 kPa. During relaxation, B = 1.57 for 150 < or = P < or = 372 kPa and B = 0.311 + 0.00338P for 372 < or = P < or = 550. The following relationship for the contractile force coefficient, F(ce) N, was also determined: F(ce) = 2.91P+44.6 for 150 < or = P < or = 550 kPa. The model was then validated by reasonably predicting the response of the PMA to a triangular wave input in pressure under a constant load on a dynamic test station.

16. The effect of pneumatic tourniquets on skeletal muscle physiology.

Science.gov (United States)

Patterson, S; Klenerman, L; Biswas, M; Rhodes, A

1981-01-01

The effect of 3- and 5-hour pneumatic tourniquets on skeletal muscle physiology was investigated. Maximum isometric tension development, contraction and half relaxation times were measured in the muscles lying immediately under and distal to the tourniquet. On release of the tourniquet no consistent difference between control and experimental muscles was observed with respect to contraction and half relaxation times; however, there was a marked reduction in maximum isometric tension development. On the sixth day after release of a 5-hour tourniquet, isometric tension was reduced to 2--20 per cent of the control value in the distal muscle and to 40--60 per cent of the control value in the compressed muscle. Six days after a 3-hour tourniquet the compressed muscle tension was reduced to approximately 80 per cent of the control value whilst in the distal muscle, tension development varied from normal to 64 per cent of the control value. Thus it is shown that the effect on muscle contraction after a 3-hour tourniquet is not immediately reversed by the restoration of the blood supply. A reduction in muscle strength follows which may take a week or more to recover.

17. Variable recruitment in bundles of miniature pneumatic artificial muscles.

Science.gov (United States)

DeLaHunt, Sylvie A; Pillsbury, Thomas E; Wereley, Norman M

2016-09-13

The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these standard manipulators can experience significant efficiency losses when operated outside their target performance ranges at low actuation pressures. This study considers the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle. Bundles of miniature PAMs are experimentally characterized, their actuation behavior is modeled, and the efficiency gains and losses associated with the application of a variable recruitment control strategy are assessed. This bio-inspired control strategy allows muscle bundles to operate the fewest miniature PAMs necessary to achieve a desired performance objective, improving the muscle bundle's operating efficiency over larger ranges of force generation and displacement. The study also highlights the need for improved PAM fabrication techniques to facilitate the production of identical miniature PAMs for inclusion in muscle bundles.

18. Design and analysis of coiled fiber reinforced soft pneumatic actuator.

Science.gov (United States)

Singh, Gaurav; Xiao, Chenzhang; Hsiao-Wecksler, Elizabeth T; Krishnan, Girish

2018-04-18

Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic actuators that can contract and generate forces upon pressurization. Typical engineering applications utilize FREEs in their straight cylindrical configuration and derive actuation displacement and forces from their ends. However, there are several instances in nature, such as an elephant trunk, snakes and grapevine tendrils, where a spiral configuration of muscle systems is used for gripping, thereby establishing a mechanical connection with uniform force distribution. Inspired by these examples, this paper investigates the constricting behavior of a contracting FREE actuator deployed in a spiral or coiled configuration around a cylindrical object. Force balance is used to model the blocked force of the FREE, which is then related to the constriction force using a string model. The modeling and experimental findings reveal an attenuation in the blocked force, and thus the constriction force caused by the coupling of peripheral contact forces acting in the spiral configuration. The usefulness of the coiled FREE configuration is demonstrated in a soft arm orthosis for crutch users that provides a constriction force around the forearm. This design minimizes injury risk by reducing wrist load and improving wrist posture.

19. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

Directory of Open Access Journals (Sweden)

N. Saga

2006-01-01

Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

20. Development of a hybrid pneumatic-power vehicle

International Nuclear Information System (INIS)

Huang, K. David; Tzeng, S.-C.

2005-01-01

Many complex technologies have been developed and applied to improve the energy efficiency and exhaust emission of an engine under different driving conditions. The overall thermal efficiency of an internal-combustion engine, however, can be maintained at only about 20-30%, with aggravated problems in the design and development, such as overall difficulty, excessive time consumption or excessively high cost. For electric cars, there is still no major technological breakthrough for the rapid recharging of a large capacity battery and detection of remaining power in it. Although all currently available hybrid-power engines are able to lower the amount of exhaust emissions and the fuel consumption of the engine, they are still unable to achieve a stable and optimal running condition immediately after ignition; hence the engine's thermal-efficiency remains low. To solve the aforementioned problems, an innovative concept - a hybrid pneumatic power-system (HPPS), which stores 'flow work' instead of storing electrochemical energy of the battery - is introduced. This innovative power system not only ensures that the internal-combustion ensures optimally but also recycles the exhaust flow to propel the vehicle. The optimization of the internal-combustion and recycling of the exhaust energy can increase the vehicle's efficiency from an original 15% to 33%, an overall increase of 18%

1. Soft pneumatic actuator skin with piezoelectric sensors for vibrotactile feedback

Directory of Open Access Journals (Sweden)

Harshal Arun Sonar

2016-01-01

Full Text Available The latest wearable technologies demand more intuitive and sophisticated interfaces for communication, sensing, and feedback closer to the body. Evidently, such interfaces require flexibility and conformity without losing their functionality even on rigid surfaces. Although there has been various research efforts in creating tactile feedback to improve various haptic interfaces and master-slave manipulators, we are yet to see a comprehensive device that can both supply vibratory actuation and tactile sensing. This paper describes a soft pneumatic actuator (SPA based, SPA-skin prototype that allows bidirectional tactile information transfer to facilitate simpler and responsive wearable interface. We describe the design and fabrication of a 1.4 mm-thick vibratory SPA - skin that is integrated with piezoelectric sensors. We examine in detail the mechanical performance compared to the SPA model and the sensitivity of the sensors for the application in vibrotactile feedback. Experimental findings show that this ultra-thin SPA and the unique integration process of the discrete lead zirconate titanate (PZT based piezoelectric sensors achieve high resolution of soft contact sensing as well as accurate control on vibrotactile feedback by closing the control loop.

2. Perceptual evaluation and acoustic analysis of pneumatic artificial larynx.

Science.gov (United States)

Xu, Jie Jie; Chen, Xi; Lu, Mei Ping; Qiao, Ming Zhe

2009-12-01

To investigate the perceptual and acoustic characteristics of the pneumatic artificial larynx (PAL) and evaluate its speech ability and clinical value. Prospective study. The study was conducted in the Voice Lab, Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University. Forty-six laryngectomy patients using the PAL were rated for intelligibility and fluency of speech. The voice signals of sustained vowel /a/ for 40 healthy controls and 42 successful patients using the PAL were measured by a computer system. The acoustic parameters and sound spectrographs were analyzed and compared between the two groups. Forty-two of 46 patients using the PAL (91.3%) acquired successful speech capability. The intelligibility scores of 42 successful PAL speakers ranged from 71 to 95 percent, and the intelligibility range of four unsuccessful speakers was 30 to 50 percent. The fluency was judged as good or excellent in 42 successful patients, and poor or fair in four unsuccessful patients. There was no significant difference in average fundamental frequency, maximum intensity, jitter, shimmer, and normalized noise energy (NNE) between 42 successful PAL speakers and 40 healthy controls, while the maximum phonation time (MPT) of PAL speakers was slightly lower than that of the controls. The sound spectrographs of the patients using the PAL approximated those of the healthy controls. The PAL has the advantage of a high percentage of successful vocal rehabilitation. PAL speech is fluent and intelligible. The acoustic characteristics of the PAL are similar to those of a normal voice.

3. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement

Science.gov (United States)

Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; DiMaio, Simon P.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor

2010-01-01

Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system. PMID:21057608

4. Paper-based Pneumatic Locomotive Robot with Sticky Actuator

Directory of Open Access Journals (Sweden)

Du Xiaohan

2016-01-01

Full Text Available Demands for small-scale and low-cost robots have witnessed a great increase in recent years [1–5]. This paper introduces the design and fabrication of a novel, simple, low-cost and designer-friendly locomotive robot. The materials and tools to build the robot originate from everyday life. The robot is pneumatically powered and manually controlled by simply pumping and vacuuming the syringe repeatedly, which realizes reliable locomotion by folding and opening of the planes. In order to realize this complicated motion, a “3D Sticky Actuator” is developed. The motion and force analysis of actuator are then modelled by the numerical method to develop the relations between design parameters. This suggests a systematic and user interactive way of manufacturing various shapes of the actuator, depending on user-defined road condition (e.g. obstacles and slopes and other constraints. One key advantage of the paper-based robot is suggested by its high feasibility.

5. Rapid Pneumatic Transport of Radioactive Samples - RaPToRS

Science.gov (United States)

Padalino, S.; Barrios, M.; Sangster, C.

2005-10-01

Some ICF neutron activation diagnostics require quick retrieval of the activated sample. Minimizing retrieval times is particularly important when the half-life of the activated material is on the order of the transport time or the degree of radioactivity is close to the background counting level. These restrictions exist in current experiments performed at the Laboratory for Laser Energetics, thus motivating the development of the RaPToRS system. The system has been designed to minimize transportation time while requiring no human intervention during transport or counting. These factors will be important if the system is to be used at the NIF where radiological hazards will be present during post activation. The sample carrier is pneumatically transported via a 4 inch ID PVC pipe to a remote location in excess of 100 meters from the activation site at a speed of approximately 7 m/s. It arrives at an end station where it is dismounted robotically from the carrier and removed from its hermetic package. The sample is then placed by the robot in a counting station. This system is currently being developed to measure back-to-back gamma rays produced by positron annihilation which were emitted by activated graphite. Funded in part by the U.S. DOE under sub contract with LLE at the University of Rochester.

6. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement.

Science.gov (United States)

Fischer, Gregory S; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Dimaio, Simon P; Tempany, Clare M; Hata, Nobuhiko; Fichtinger, Gabor

2008-06-01

Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system.

7. Characterization of California Central Coast Aquifers using Pneumatic Slug Tests

Science.gov (United States)

Aurelius, S.; Platt, D.; Whetsler, B.; Malama, B.

2017-12-01

The recent prolonged drought in California, where about 75% of the population depends to some extent ongroundwater, has led to increased stresses on the state's groundwater resources due to reduced recharge andincreased abstraction to supplement dwindling surface water supplies for irrigation and other urban uses.These factors have conspired to cause historic lows in groundwater levels, lost aquifer storage capacity dueincreased potential for land subsidence, and degraded water quality in coastal aquifers faced with increasedrates of seawater intrusion. Groundwater accounts for about a third of the total water uses in California,with some coastal communities being 100% dependent on groundwater. Irrigation accounts for over 60%of all state groundwater withdrawals in California. In light of this, the state of California recently passedthe Sustainable Groundwater Management Act (SGMA) aimed at bringing the State's groundwater basinsinto sustainable regimes of abstraction, recharge and storage. Groundwater ow models are critical to thesuccessful implementation of the SGMA legislation. However, the usefulness of the models is severely limitedby a lack of detailed knowledge of aquifer properties at spatial scales that allow for accurate projections tobe made about groundwater basin sustainability by resource managers. We report here the results of highresolution pneumatic slug tests performed in two shallow aquifers in San Luis Obispo County on the CaliforniaCentral Coast to obtain detailed information about aquifer properties, including permeability and storage,and their spatial variability.

8. External pneumatic intermittent compression for treatment of dependent pregnancy edema.

Science.gov (United States)

Jacobs, M K; McCance, K L; Stewart, M L

1982-01-01

A portable external pneumatic intermittent compression (EPIC) device has been successful in reducing peripheral edema. This study explored the effectiveness of EPIC for treating dependent pregnancy edema. In the study, 42 healthy pregnant women received EPIC for 30 minutes at 40 torr while in the left lateral recumbent position: Group One with mid-thigh boots, and Group Two with below-knee boots. Prior to compression, descriptive data were gathered, leg circumference measurements made, and surface skin temperatures recorded for three sites per leg. Vital signs were taken and pedal edema subjectively indexed. Following compression, circumferences, skin temperatures, vital signs, and edema indices were rerecorded. Three volumes were calculated for each leg using a mathematical model of leg segments as conical frustum units. Mean volume reductions for each leg were significant. The mid-thigh-length boots produced greater mean volume decreases. The volume decrease for calf, lower leg, and foot frustum units were significant. EPIC holds promise as a useful treatment for dependent pregnancy edema.

9. Rod-based Fabrication of Customizable Soft Robotic Pneumatic Gripper Devices for Delicate Tissue Manipulation.

Science.gov (United States)

Low, Jin-Huat; Yeow, Chen-Hua

2016-08-02

Soft compliant gripping is essential in delicate surgical manipulation for minimizing the risk of tissue grip damage caused by high stress concentrations at the point of contact. It can be achieved by complementing traditional rigid grippers with soft robotic pneumatic gripper devices. This manuscript describes a rod-based approach that combined both 3D-printing and a modified soft lithography technique to fabricate the soft pneumatic gripper. In brief, the pneumatic featureless mold with chamber component is 3D-printed and the rods were used to create the pneumatic channels that connect to the chamber. This protocol eliminates the risk of channels occluding during the sealing process and the need for external air source or related control circuit. The soft gripper consists of a chamber filled with air, and one or more gripper arms with a pneumatic channel in each arm connected to the chamber. The pneumatic channel is positioned close to the outer wall to create different stiffness in the gripper arm. Upon compression of the chamber which generates pressure on the pneumatic channel, the gripper arm will bend inward to form a close grip posture because the outer wall area is more compliant. The soft gripper can be inserted into a 3D-printed handling tool with two different control modes for chamber compression: manual gripper mode with a movable piston, and robotic gripper mode with a linear actuator. The double-arm gripper with two actuatable arms was able to pick up objects of sizes up to 2 mm and yet generate lower compressive forces as compared to elastomer-coated and non-coated rigid grippers. The feasibility of having other designs, such as single-arm or hook gripper, was also demonstrated, which further highlighted the customizability of the soft gripper device, and it's potential to be used in delicate surgical manipulation to reduce the risk of tissue grip damage.

10. A randomized trial of pneumatic reduction versus hydrostatic reduction for intussusception in pediatric patients.

Science.gov (United States)

Xie, Xiaolong; Wu, Yang; Wang, Qi; Zhao, Yiyang; Chen, Guobin; Xiang, Bo

2017-08-08

Data of randomly controlled trials comparing the hydrostatic and pneumatic reduction for intussusception in pediatric patients as initial therapy are lacking. The aim of this study was to conduct a randomly controlled trial to compare the effectiveness and safety of the hydrostatic and pneumatic reduction techniques. All intussusception patients who visited West China Hospital of Sichuan University from January 2014 to December 2015 were enrolled in this study in which they underwent pneumatic reduction or hydrostatic reduction. Patients were randomized into ultrasound-guided hydrostatic or X-ray-guided pneumatic reduction group. The data collected includes demographic data, symptoms, signs, and investigations. The primary outcome of the study was the success rate of reduction. And the secondary outcomes of the study were the rates of intestinal perforations and recurrence. A total of 124 children with intussusception who had met the inclusion criteria were enrolled. The overall success rate of this study was 90.32%. Univariable analysis showed that the success rate of hydrostatic reduction with normal saline (96.77%) was significantly higher than that of pneumatic reduction with air (83.87%) (p=0.015). Perforation after reduction was found in only one of the pneumatic reduction group. The recurrence rate of intussusception in the hydrostatic reduction group was 4.84% compared with 3.23% of pneumatic reduction group. Our study found that ultrasound-guided hydrostatic reduction is a simple, safe and effective nonoperative treatment for pediatric patients suffering from intussusceptions, and should be firstly adopted in the treatment of qualified patients. Therapeutic study TYPE OF STUDY: Prospective study. Copyright © 2017 Elsevier Inc. All rights reserved.

11. Foreword(Advances in Motion and Vibration Control Technology)

OpenAIRE

水野, 毅

2003-01-01

A new vibration isolation system using negative stiffness realized by active control technique is proposed in this paper. The serial connection of a normal spring and a suspension system with negative stiffness enables the isolation system to have low stiffness for vibration from the ground and high (theoretically infinite) stiffness against direct disturbance acting on the isolation table. A control method of realizing negative stiffness with a linear actuator is presented in an analytical f...

12. PREFACE: Vibrations at surfaces Vibrations at surfaces

Science.gov (United States)

Rahman, Talat S.

2011-12-01

This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

13. Vibration Theory, Vol. 3

DEFF Research Database (Denmark)

Nielsen, Søren R. K.

The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration th...... theory is unchanged in comparison to the 3rd edition. Only a few errors have been corrected.......The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

National Research Council Canada - National Science Library

Hilaire, Pierre

1998-01-01

.... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

15. NIF Ambient Vibration Measurements

International Nuclear Information System (INIS)

Noble, C.R.; Hoehler, M.S.; S.C. Sommer

1999-01-01

LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

16. A vibration sieve

Energy Technology Data Exchange (ETDEWEB)

Alekhin, S.A.; Denisenko, V.V.; Dzhalalov, M.G.; Kirichek, F.P.; Pitatel, Yu.A.; Prokopov, L.I.; Tikhonov, Yu.P.

1982-01-01

A vibration sieve is proposed which includes a vibration drive, a body and a screen installed on shock absorbers, a device for washing out the screen, and a subassembly for loading the material. To increase the operational reliability and effectiveness of the vibration sieve by improving the cleaning of the screen, the loading subassembly is equipped with a baffle with a lever which is hinged to it. The device for washing out the screen is made in the form of an electromagnet with a connecting rod, a switch and an eccentric, a friction ratchet mechanism and sprinkling systems. Here, the latter are interconnected, using a connecting rod, while the sprinkling system is installed on rollers under the screen. The electromagnetic switch is installed under the lever. The body is made with grooves for installing the sprinkling system. The vibration sieve is equipped with a switch which interacts with the connecting rod. The friction ratchet mechanism is equipped with a lug.

17. Structural Stability and Vibration

DEFF Research Database (Denmark)

Wiggers, Sine Leergaard; Pedersen, Pauli

This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

18. 2008 Vibrational Spectroscopy

Energy Technology Data Exchange (ETDEWEB)

Philip J. Reid

2009-09-21

The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

19. Levels of muscle enzymes in the serum after esophageal pneumatic dilation in patients with achalasia.

Science.gov (United States)

Kimchi, N A; Ron, Y; Abramowich, D; Shirin, H; Scapa, E; Avni, Y

2005-01-01

The success rate of pneumatic dilation of the esophagus in patients with achalasia is variable. We aim to assess whether levels of muscle enzymes in the serum are useful for predicting the efficacy of this procedure. Consecutive adults with symptomatic achalasia treated with pneumatic dilation were included. Blood samples were taken immediately before the procedure and after 12, 24 and 32 h. Clinical efficacy of the pneumatic dilation was evaluated on the basis of a symptom score defined prior to, and 2 months after the procedure. Eleven patients underwent 13 pneumatic dilations. In nine patients this was the first dilation attempt. Ten dilations were clinically effective. The study was discontinued after enzyme levels did not show a trend of increase in any of our patients. Moreover, a statistically significant unexpected decrease in creatine phosphokinase values was found 12 h after the procedure, among the 10 successful dilations. We believe that levels of muscle enzymes in the serum cannot predict the efficacy of pneumatic dilation in patients with achalasia.

20. A Study on the Bandwidth Characteristics of Pleated Pneumatic Artificial Muscles

Directory of Open Access Journals (Sweden)

Rino Versluys

2009-01-01

Full Text Available Pleated pneumatic artificial muscles have interesting properties that can be of considerable significance in robotics and automation. With a view to the potential use of pleated pneumatic artificial muscles as actuators for a fatigue test bench (high forces and small displacements, the bandwidth characteristics of a muscle-valve system were investigated. Bandwidth is commonly used for linear systems, as the Bode plot is independent of the amplitude of the input signal. However, due to the non-linear behaviour of pleated pneumatic artificial muscles, the system's gain becomes dependent on the amplitude of the input sine wave. As a result, only one Bode plot is insufficient to clearly describe or identify a non-linear system. In this study, the bandwidth of a muscle-valve system was assessed from two perspectives: a varying amplitude and a varying offset of the input sine wave. A brief introduction to pneumatic artificial muscles is given. The concept of pleated pneumatic artificial muscles is explained. Furthermore, the different test methods and experimental results are presented.

1. Comparison of a pneumatic conveyor and bucket elevator on an energy and economic basis

Energy Technology Data Exchange (ETDEWEB)

Rothwell, T.M.; Southwell, P.H. (Agricultural and Energy Engineering Ltd., Moorefield, ON (Canada)); Vigneault, C. (Agricultural Canada Research Station, St-Jean-sur-Richelieu, PQ (Canada))

1991-07-01

Tests were performed at a commercial feed mill which was replacing an existing pneumatic conveyor with a bucket elevator, in order to compare the performance of the two types of conveyor on an energy and cost basis. The conveyors were used to transport ground corn from a hammermill at an average grinding rate of 8.5 tonnes/h. At the same conveying rate of ground product, the pneumatic conveyor required a power of 27.5 kW and an energy of 4.77 kWh/tonne while the bucket elevator required a power of 4.7 kW and an energy of 0.88 kWh/tonne. The financial costs of conveying energy were \$8,350/y for the pneumatic system and \$1,540/y for the bucket elevator, excluding peak demand charges for electricity. The tests therefore demonstrated that a bucket elevator is far more efficient than a pneumatic conveyor and should be considered in the design of new feed mills. For existing mills, a bucket elevator should be considered if there are problems with the pneumatic system already in place or if the capacity of the mill needs to be increased. 2 refs., 2 tabs.

2. Adaptive robust trajectory tracking control of a parallel manipulator driven by pneumatic cylinders

Directory of Open Access Journals (Sweden)

Ce Shang

2016-04-01

Full Text Available Due to the compressibility of air, non-linear characteristics, and parameter uncertainties of pneumatic elements, the position control of a pneumatic cylinder or parallel platform is still very difficult while comparing with the systems driven by electric or hydraulic power. In this article, based on the basic dynamic model and descriptions of thermal processes, a controller integrated with online parameter estimation is proposed to improve the performance of a pneumatic cylinder controlled by a proportional valve. The trajectory tracking error is significantly decreased by applying this method. Moreover, the algorithm is expanded to the problem of posture trajectory tracking for the three-revolute prismatic spherical pneumatic parallel manipulator. Lyapunov’s method is used to give the proof of stability of the controller. Using NI-CompactRio, NI-PXI, and Veristand platform as the realistic controller hardware and data interactive environment, the adaptive robust control algorithm is applied to the physical system successfully. Experimental results and data analysis showed that the posture error of the platform could be about 0.5%–0.7% of the desired trajectory amplitude. By integrating this method to the mechatronic system, the pneumatic servo solutions can be much more competitive in the industrial market of position and posture control.

International Nuclear Information System (INIS)

Qian, N; Ruan, J; Li, W

2006-01-01

The precise double-sided polishing process is one of the main methods to get the ultra-smooth surface of workpiece. In double-sided polishing machine, a loading system is required to be able to precisely control the load superimposed on the workpiece, while the polishing is being carried out. A pneumatic servo loading system is proposed for this purpose. In the pneumatic servo system, the servo valve, which acts both the electrical to mechanical converter and the power amplifier, has a substantial influence on the performance of the loading system. Therefore a specially designed pneumatic digital servo valve is applied in the control system. In this paper, the construction of the pneumatic servo loading system in double-sided polishing machine and control strategy associated with the digital servo valve are first addressed. The mathematical model of the system established and the hardware of the pneumatic servo system is designed. Finally, the experiments are carried out by measuring the practical load on the workpiece and the quality of the surface finish. It is demonstrated that the error rate of load is less than 5% and a super-smooth surface of silicon wafer with roughness Ra 0.401 nm can be obtained

4. Evaluation of Bus Vibration Comfort Based on Passenger Crowdsourcing Mode

Directory of Open Access Journals (Sweden)

Hong Zhao

2016-01-01

Full Text Available Vibration comfort is an important factor affecting the quality of service (QoS of bus. In order to make people involved in supervising bus’s vibration comfort and improve passengers’ riding experience, a novel mode of passenger crowdsourcing is introduced. In this paper, comfort degree of bus vibration is calculated from bus’s vibration signals collected by passengers’ smartphones and sent through WiFi to the Boa web server which shows the vibration comfort on the LCD deployed in bus and maybe trigger alarm lamp when the vibration is beyond the threshold. Three challenges here have been overcome: firstly, space coordinate transformation algorithm is used to solve the constant drift of signals collected; secondly, a low-pass filter is designed to isolate gravity from signals real-timely via limited computing resources; thirdly, an embedded evaluation system is developed according to the calculation procedure specified by criterion ISO 2631-1997. Meanwhile, the model proposed is tested in a practical running environment, the vibration data in whole travel are recorded and analyzed offline. The results show that comfort degree of vibration obtained from the experimental system is identical with the truth, and this mode is proved to be effective.

5. Variable modulus cellular structures using pneumatic artificial muscles

Science.gov (United States)

Pontecorvo, Michael E.; Niemiec, Robert J.; Gandhi, Farhan S.

2014-04-01

This paper presents a novel variable modulus cellular structure based on a hexagonal unit cell with pneumatic artificial muscle (PAM) inclusions. The cell considered is pin-jointed, loaded in the horizontal direction, with three PAMs (one vertical PAM and two horizontal PAMs) oriented in an "H" configuration between the vertices of the cell. A method for calculation of the hexagonal cell modulus is introduced, as is an expression for the balance of tensile forces between the horizontal and vertical PAMs. An aluminum hexagonal unit cell is fabricated and simulation of the hexagonal cell with PAM inclusions is then compared to experimental measurement of the unit cell modulus in the horizontal direction with all three muscles pressurized to the same value over a pressure range up to 758 kPa. A change in cell modulus by a factor of 1.33 and a corresponding change in cell angle of 0.41° are demonstrated experimentally. A design study via simulation predicts that differential pressurization of the PAMs up to 2068 kPa can change the cell modulus in the horizontal direction by a factor of 6.83 with a change in cell angle of only 2.75°. Both experiment and simulation show that this concept provides a way to decouple the length change of a PAM from the change in modulus to create a structural unit cell whose in-plane modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the pressure supplied to the individual muscles.

6. Variable gearing in a biologically inspired pneumatic actuator array

International Nuclear Information System (INIS)

Azizi, Emanuel; Roberts, Thomas J

2013-01-01

A fundamental feature of pennate muscles is that muscle fibers are oriented at an angle to the line of action and rotate as they shorten, becoming more oblique throughout a contraction. This change in fiber orientation (pennation angle) can amplify the shortening velocity of a fiber and increase output velocity of the muscle. The velocity advantage resulting from dynamic changes in pennation angle can be characterized as a gear ratio (muscle velocity/fiber velocity). A recent study has shown that a pennate muscle's gear ratio varies automatically depending on the load such that a muscle operates with a high gear during rapid contractions and low gear during forceful contractions. We examined whether this variable gearing behavior can be replicated in a pennate array of artificial muscles. We used McKibben type pneumatic actuators, which shorten in tension when filled with compressed gas. Similar to muscle fibers, the actuators expand radially during shortening, a feature thought to be a critical part of the variable gearing mechanism in pennate muscles. We arranged McKibben actuators in an array oriented to mimic a pennate muscle, and quantified the system's gear ratio during contraction against a range of loads. Video was used to measure the gear ratio during each contraction. We find that similar to pennate muscles, the gear ratio decreases significantly with increasing load and that variable gearing results from load-dependent variation in the amount of actuator rotation. These results support the idea that variable gearing in pennate muscles is mediated by difference is fiber rotation and the direction of muscle bulging. The behavior of our artificial muscle array also highlights the potential benefits of bio-inspired architectures in artificial muscle arrays, including the ability to vary force and speed automatically in response to variable loading conditions. (paper)

7. Soft Pneumatic Actuator Fascicles for High Force and Reliability.

Science.gov (United States)

Robertson, Matthew A; Sadeghi, Hamed; Florez, Juan Manuel; Paik, Jamie

2017-03-01

Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system.

8. Variable gearing in a biologically inspired pneumatic actuator array.

Science.gov (United States)

Azizi, Emanuel; Roberts, Thomas J

2013-06-01

A fundamental feature of pennate muscles is that muscle fibers are oriented at an angle to the line of action and rotate as they shorten, becoming more oblique throughout a contraction. This change in fiber orientation (pennation angle) can amplify the shortening velocity of a fiber and increase output velocity of the muscle. The velocity advantage resulting from dynamic changes in pennation angle can be characterized as a gear ratio (muscle velocity/fiber velocity). A recent study has shown that a pennate muscle's gear ratio varies automatically depending on the load such that a muscle operates with a high gear during rapid contractions and low gear during forceful contractions. We examined whether this variable gearing behavior can be replicated in a pennate array of artificial muscles. We used McKibben type pneumatic actuators, which shorten in tension when filled with compressed gas. Similar to muscle fibers, the actuators expand radially during shortening, a feature thought to be a critical part of the variable gearing mechanism in pennate muscles. We arranged McKibben actuators in an array oriented to mimic a pennate muscle, and quantified the system's gear ratio during contraction against a range of loads. Video was used to measure the gear ratio during each contraction. We find that similar to pennate muscles, the gear ratio decreases significantly with increasing load and that variable gearing results from load-dependent variation in the amount of actuator rotation. These results support the idea that variable gearing in pennate muscles is mediated by difference is fiber rotation and the direction of muscle bulging. The behavior of our artificial muscle array also highlights the potential benefits of bio-inspired architectures in artificial muscle arrays, including the ability to vary force and speed automatically in response to variable loading conditions.

9. VARIABLE GEARING IN A BIOLOGICALLY-INSPIRED PNEUMATIC ACTUATOR ARRAY

Science.gov (United States)

Azizi, Emanuel; Roberts, Thomas J.

2013-01-01

A fundamental feature of pennate muscles is that muscle fibers are oriented at an angle to the line of action and rotate as they shorten, becoming more oblique throughout a contraction. This change in fiber orientation (pennation angle) can amplify the shortening velocity of a fiber and increase output velocity of the muscle. The velocity advantage resulting from dynamic changes in pennation angle can be characterized as a gear ratio (muscle velocity/fiber velocity). A recent study has shown that a pennate muscle’s gear ratio varies automatically depending on the load such that a muscle operates with a high gear during rapid contractions and low gear during forceful contractions. We examined whether this variable gearing behavior can be replicated in a pennate array of artificial muscles. We used McKibben type pneumatic actuators, which shorten in tension when filled with compressed gas. Similar to muscle fibers, the actuators expand radially during shortening, a feature thought to be a critical part of the variable gearing mechanism in pennate muscles. We arranged McKibben actuators in an array oriented to mimic a pennate muscle, and quantified the system’s gear ratio during contraction against a range of loads. Video was used to measure the gear ratio during each contraction. We find that similar to pennate muscles, the gear ratio decreases significantly with increasing load and that variable gearing results from load-dependent variation in the amount of actuator rotation. These results support the idea that variable gearing in pennate muscles is mediated by difference is fiber rotation and the direction of muscle bulging. The behavior of our artificial muscle array also highlights the potential benefits of bio-inspired architectures in artificial muscle arrays, including the ability to vary force and speed automatically in response to variable loading conditions. PMID:23462288

10. Soft Pneumatic Actuator Fascicles for High Force and Reliability

Science.gov (United States)

Robertson, Matthew A.; Sadeghi, Hamed; Florez, Juan Manuel

2017-01-01

Abstract Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system. PMID:28289573

11. Initial Design and Experimental Evaluation of a Pneumatic Interference Actuator.

Science.gov (United States)

Nesler, Christopher R; Swift, Tim A; Rouse, Elliott J

2018-04-01

Substantial device mass and control complexity can hinder the impact of wearable robotic technologies, such as exoskeletons. Thus, despite promising previous research, the development of a simple, lightweight actuator for these systems has not yet been fully realized. The purpose of this study was to derive and demonstrate a proof-of-concept for a pneumatic interference actuator (PIA)-a lightweight, soft actuator able to produce torque by the self-intersection of a fabric balloon that arises from changes in physical geometry. General closed-form equations are derived to express the expected actuator torque and mechanical work as functions of the balloon geometry, pressure, and deflection angle. Hard and soft cylindrical physical prototypes were constructed to assess the accuracy of the mathematical models. The proposed mathematical model was found to agree with the pressure-volume relationship and successfully predict the maximum torque as a function of geometry, pressure, and deflection at nonzero deflection angles. Peak powers up to 122.1 ± 10.0 W (mean ± standard deviation), with a resting internal pressure of 158.0 ± 0.2 kPa, were observed from the hard actuator prototype. For the soft actuator prototype, peak powers of 97.9 ± 21.1 W were observed at a resting pressure of 166.8 kPa. The work performed was within 3.2% ± 3.4% and 14.4% ± 8.2% of theoretical values across all trials, and within 19.1% ± 4.4% of theoretical values when compared to the torque-angle relationship. This study highlights the promise of utilizing the self-intersection of a PIA to perform human-scale mechanical work, and future research will focus on implementations for wearable robotic systems.

12. Clinical characteristics affecting the outcome of pneumatic retinopexy.

Science.gov (United States)

Davis, Michael J; Mudvari, Sachin S; Shott, Susan; Rezaei, Kourous A

2011-02-01

To review characteristics and outcomes of patients who underwent primary pneumatic retinopexy (PR) for repair of rhegmatogenous retinal detachment in a multioffice retina practice and to determine what preoperative characteristics were associated with success or failure of PR. A retrospective medical record review was conducted of patients who underwent primary PR from September 2001 to March 2009. Patients with less than 6 months of follow-up were excluded. Data collected on each patient included age, sex, affected eye, preoperative visual acuity, lens status, presence of posterior vitreous detachment, presence of vitreous hemorrhage, macular status, presence of lattice degeneration, number and location of retinal breaks, clock hour extent of detachment, final visual acuity, final retinal status, number of procedures to reattach retina, and duration of follow-up. Two hundred thirteen patients were included. The mean age was 59.3 years and 53.5% were male. Mean follow-up was 24.6 months, and 64.8% of patients had a successful PR. Vitreous hemorrhage and retinal detachment greater than 4.5 clock hours were the 2 factors that significantly affected successful outcome (P = .04 and .01, respectively). The overall mean final visual acuity was 20/40, with a mean of 20/30 in the success group and a mean of 20/60 in the failure group (P treatment option for certain types of rhegmatogenous retinal detachment. In patients with vitreous hemorrhage and detachments greater than 4.5 clock hours, the success rate may be lower. Final visual acuity is better with successful reattachment with a single procedure.

13. Current visual and anatomic outcomes of pneumatic retinopexy.

Science.gov (United States)

Kulkarni, Kaushal M; Roth, Daniel B; Prenner, Jonathan L

2007-10-01

To assess current visual and anatomic outcomes of pneumatic retinopexy (PR) for the repair of rhegmatogenous retinal detachment (RD). Retrospective chart review of 150 patients who underwent PR for RD between January 2000 and February 2005. Patients with a history of scleral buckling, Lincoff balloon, or proliferative diabetic retinopathy in the same eye were excluded. Successful reattachment was achieved in 76.7% with a single procedure and 98.7% after additional procedures. A total of 17.3% underwent a subsequent procedure for a new or persistent tear. The success rate remained consistent in pseudophakic and aphakic eyes, and eyes with traumatic detachments, macular detachment, multiple breaks, poor preoperative visual acuity (VA) (lattice degeneration, >or=6 clock hours of detachment, and prior pars plana vitrectomy. A total of 2.7% of eyes underwent a second additional procedure for RD. A total of 32% of males versus 15.3% of females underwent an additional procedure for RD (P = 0.07). Final VA >or=20/50 was achieved in 80.8% of macula-on and 73.6% of macula-off RDs. Of eyes that underwent an additional procedure, final VA >or=20/50 was achieved in 63.2% of macula-on and 43.8% of macula-off RDs, and those with macula-on RD lost a mean of 1.79 (+/-4.9) lines of Snellen VA, while those with macula-off RD gained a mean of 5.6 (+/-4.6) lines (P = 0.00006). : PR had a high anatomic success rate in eyes with a wide variety of complicated RDs. Male sex may be a risk factor for failed PR. Careful monitoring and treatment of postoperative tears is important in preventing redetachment.

14. Design and analysis of adaptive honeycomb structure with pneumatic muscle fibers

Science.gov (United States)

Yin, Weilong; Tian, Dongkui; Chen, Yijin

2012-04-01

The adaptive honeycomb structure actuated by pneumatic muscle fibers is proposed in this paper. The FE model of adaptive honeycomb structure is developed by use of ANSYS software. The elastics modulus of the developed pneumatic muscle fibers is experimentally determined and their output force is tested. The results show that the contraction ratio of the pneumatic muscle fibers with inner diameter of 2mm could reach up to 26.8% and the force could reach to a value of 27N when the applied pressure is 0.4MPa and the contraction ratio is zero. When the adaptive honeycomb has a certain load and an effective output displacement, the applied force must be greater than a certain value. The adaptive honeycomb must be consumed extra energy when the output displacement and force are produced.

15. Transient Torsional Analysis of a Belt Conveyor Drive with Pneumatic Flexible Shaft Coupling

Directory of Open Access Journals (Sweden)

Kaššay Peter

2017-03-01

Full Text Available Development and application of pneumatic flexible shaft couplings have been in the center of our department research activities for a long time. These couplings are able to change torsional stiffness by changing pressure in their flexible elements – air bellows. Until now we have dealt with the use of pneumatic flexible shaft couplings for tuning mechanical systems working with periodically alternating load torque at steady state. Some mechanical systems, however, operate with a static load torque at constant speed (e.g. hoists, elevators, etc., where it is necessary to consider the suitability of shaft coupling in terms of load torque at transient conditions (run-up and braking. Therefore we decided to analyze the use of pneumatic flexible shaft couplings also in this type of mechanical systems on an example of conveyor belt drive.

16. Comparation of the impact of selected technical gases on properties of a pneumatic flexible coupling

Directory of Open Access Journals (Sweden)

Grega Robert

2018-01-01

Full Text Available An important part of the oscillating mechanical drives are flexible shaft couplings. The special use of the pneumatic flexible coupling is possibility to serve as mechanical drives tuners. Being examined in tuners mechanical drives there is also a research focus on the impact of industrial gases on the change of dynamic characteristics of pneumatic couplings. The paper investigates five different industrial gases, namely: air, helium (He-4.6, a mixture of propane and butane gas (C3H8+C4H10, argon (Ar and nitrogen (N2 to see how these gases affect the dynamic characteristics of pneumatic flexible shaft coupling with marking 4-2/70 T-C.

17. Characterization of a piezoelectric valve for an adaptive pneumatic shock absorber

International Nuclear Information System (INIS)

Mikułowski, Grzegorz; Wiszowaty, Rafał; Holnicki-Szulc, Jan

2013-01-01

This paper describes a pneumatic valve based on a multilayer piezoelectric actuator and Hörbiger plates. The device was designed to operate in an adaptive pneumatic shock absorber. The adaptive pneumatic shock absorber was considered as a piston–cylinder device and the valve was intended to be installed inside the piston. The main objective for the valve application was regulating the gas flow between the cylinder’s chambers in order to maintain the desired value of the reaction force generated by the shock absorber. The paper describes the design constraints and requirements, together with results of analytical modelling of fluid flow verified versus experimentally obtained data. The presented results indicate that the desired performance characteristics of the valve were obtained. The geometrical constraints of the flow ducts were studied and the actuator’s functional features analysed. (paper)

18. Arrested pneumatization of the sphenoid sinus mimicking intraosseous lesions of the skull base

Energy Technology Data Exchange (ETDEWEB)

2015-03-15

Arrested pneumatization of the sphenoid sinus is a developmental variant that is not always well recognized and is often confused with other pathologies associated with the skull base. This report describes the case of a patient referred for cone-beam computed tomography (CBCT) imaging for dental implant therapy. CBCT demonstrated a well-defined incidental lesion in the left sphenoid sinus with soft tissue-like density and sclerotic borders with internal curvilinear opacifications. The differential diagnoses included intraosseous lipoma, arrested pneumatization of the sphenoid sinus, chondrosarcoma, chondroid chordoma, and ossifying fibroma. The radiographic diagnosis of arrested pneumatization was based on the location of the lesion, its well-defined nature, the presence of internal opacifications, and lack of expansion. Gray-scale CBCT imaging of the area demonstrated values similar to fatty tissue. This case highlighted the fact that benign developmental variants associated with the skull base share similar radiographic features with more serious pathological entities.

19. Development of a pneumatic transport system for bulk transfer of metal grade uranium oxide powder

International Nuclear Information System (INIS)

Manna, S.; Satpati, S.K.; Roy, S.B.

2010-01-01

Uranium oxide powder is a commonly handled ceramic powder in nuclear industries. Design of the powder transfer system is an important aspect because of some of its typical characteristics. Pneumatic transport system has been widely used in transferring powder from one place to another. A pneumatic transport system using vacuum has been presented in the paper. This is used for bulk transfer of UO 3 powder. The system consists of a cyclone separator and filter cloth at the top of the cyclone separator. The pneumatic transfer system provides high efficiency with sustainable performance and it is a compact, robust, handy and moveable unit. No degradation of the powder quality has been observed during transfer. The system provides highly efficient, easy and safe transfer of radioactive powder, better working environment for the operator. (author)

20. Pneumatic Rotary Actuator Position Servo System Based on ADE-PD Control

Directory of Open Access Journals (Sweden)

Yeming Zhang

2018-03-01

Full Text Available In order to accurately control the rotation position of a pneumatic rotary actuator, the flow state of the gas and the motion state of the pneumatic rotary actuator in the pneumatic rotary actuator position servo system are analyzed in this paper. The mathematical model of the system and the experiment platform are established after that. An Adaptive Differential Evolution (ADE algorithm which adaptively ameliorates the scaling factor and crossover probability in the process of individual evolution is proposed and applied to the parameter optimization of PD controller. The experimental platform is used to compare the controller with Differential Evolution (DE algorithm and NCD-PID controller. Finally, the characteristics of the system are tested by increasing the inertial load. The experimental results illustrate that system using ADE-PD control strategy has greater position precision and faster response than using DE-PD and NCD-PID strategies, and shows great robustness.