WorldWideScience

Sample records for play diverse functional

  1. Microbial functional diversity plays an important role in the degradation of polyhydroxybutyrate (PHB) in soil.

    Science.gov (United States)

    Dey, Samrat; Tribedi, Prosun

    2018-03-01

    Towards bioremediation of recalcitrant materials like synthetic polymer, soil has been recognized as a traditional site for disposal and subsequent degradation as some microorganisms in soil can degrade the polymer in a non-toxic, cost-effective, and environment friendly way. Microbial functional diversity is a constituent of biodiversity that includes wide range of metabolic activities that can influence numerous aspects of ecosystem functioning like ecosystem stability, nutrient availability, ecosystem dynamics, etc. Thus, in the current study, we assumed that microbial functional diversity could play an important role in polymer degradation in soil. To verify this hypothesis, we isolated soil from five different sites of landfill and examined several microbiological parameters wherein we observed a significant variation in heterotrophic microbial count as well as microbial activities among the soil microcosms tested. Multivariate analysis (principle component analysis) based on the carbon sources utilization pattern revealed that soil microcosms showed different metabolic patterns suggesting the variable distribution of microorganisms among the soil microcosms tested. Since microbial functional diversity depends on both microbial richness and evenness, Shannon diversity index was determined to measure microbial richness and Gini coefficient was determined to measure microbial evenness. The tested soil microcosms exhibited variation in both microbial richness and evenness suggesting the considerable difference in microbial functional diversity among the tested microcosms. We then measured polyhydroxybutyrate (PHB) degradation in soil microcosms after desired period of incubation of PHB in soil wherein we found that soil microcosms having higher functional diversity showed enhanced PHB degradation and soil microcosms having lower functional diversity showed reduced PHB degradation. We also noticed that all the tested soil microcosms showed similar pattern in both

  2. Solitary Play: Some Functional Reconsiderations

    Science.gov (United States)

    Moore, Nancy V.; And Others

    1974-01-01

    Solitary play in six kindergarten children was observed and coded for frequency and type in order to resolve iscrepancies in a Sex Birth Order interaction. Several facts concerning solitary play as indicative of independence and maturity are noted. (Author/ED)

  3. Playful Postmodernism: Building with Diversity in the Postmodern Classroom

    Science.gov (United States)

    Feldman, Nancy; Barron, Mary; Holliman, Diane Carol; Karliner, Shelley; Walker, Uta M.

    2009-01-01

    The critical examination of language and the deconstruction of truth claims play an important role in how we build with diversity in our classrooms. We, as social work educators involved with playful postmodernism, recognize the significance of improvisation and playfulness in engaging the question: how is this examination and deconstruction done?…

  4. Organic Functional Group Playing Card Deck

    Science.gov (United States)

    Welsh, Michael J.

    2003-04-01

    The recognition and identification of organic functional groups, while essential for chemistry and biology majors, is also very useful for non-science majors in the study of molecules in art and life. In order to make this task more palatable for the non-science major (art and communications students), the images of a traditional playing deck of cards (heart, spade, diamond, and club) have been replaced with four representations of common organic functional groups. The hierarchy rules for naming two groups in a molecule is loosely incorporated to represent the sequence (King, Queen, Jack, ?, Ace) of the deck. Students practice recognizing and identifying organic groups by playing simple card games of "Old Maid" and "Go Fish". To play games like "Poker" or "Gin", a student must not only recognize the functional groups, but also master a naming hierarchy for the organic groups.

  5. Diversity and functions of intestinal mononuclear phagocytes

    DEFF Research Database (Denmark)

    Joeris, Thorsten; Müller-Luda, K; Agace, William Winston

    2017-01-01

    The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation. In the curr......The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation....... In the current review we discuss the function of intestinal cDC and monocyte-derived MNP, highlighting how these subsets play several non-redundant roles in the regulation of intestinal immune responses. While much remains to be learnt, recent findings also underline how the various populations of MNP adapt...

  6. A user's guide to functional diversity indices

    OpenAIRE

    Schleuter, D.; Daufresne, M.; Massol, F.; Argillier, C.

    2010-01-01

    Functional diversity is the diversity of species traits in ecosystems. This concept is increasingly used in ecological research, yet its formal definition and measurements are currently under discussion. As the overall behaviour and consistency of functional diversity indices have not been described so far, the novice user risks choosing an inaccurate index or a set of redundant indices to represent functional diversity. In our study we closely examine functional diversity indices to clari...

  7. Imaginary Play Companions: Characteristics and Functions.

    Science.gov (United States)

    Kalyan-Masih, V.

    1986-01-01

    Investigates some of the following characteristics associated with young children playing with imaginary play companions (IPCs): intelligence, parental and socioeconomic and educational background, family size, and birth order. Compares these children to those without IPCs. (HOD)

  8. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.

    Science.gov (United States)

    Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W

    2017-06-01

    Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.

  9. Togetherness and Diversity in Pre-School Play.

    Science.gov (United States)

    Janson, Ulf

    2001-01-01

    Examined transcribed episodes of preschoolers' play collected in another study to compare differences in the ways blind and sighted children have access to physical space, experience social interaction, and create meaningful symbols. Found that differences in visual ability may impede togetherness. Devised strategies for educational practice and…

  10. Preschoolers' Free Play--Connections with Emotional and Social Functioning

    Science.gov (United States)

    Veiga, Guida; Neto, Carlos; Rieffe, Carolien

    2016-01-01

    Play has an important role in various aspects of children's development. However, time for free play has declined substantially over the last decades. To date, few studies have focused on the relationship between opportunities for free play and children's social functioning. The aims of this study are to examine whether children´s free play is…

  11. Effect of Functional diversity on Software Performance

    OpenAIRE

    Viswanatha Rao, Balajee

    2011-01-01

    For the past few decades, there has been numerous literature produced on functional diversity and performance. However, the relationship between functional diversity and performance in software industry is clearly not explained and results are found to be inconsistent. The main focus of this research is to explore the effects of functional diversity on software project performance by conducting a qualitative study. Four metrics were chosen from literature namely decision making, creativity an...

  12. Functional & phylogenetic diversity of copepod communities

    Science.gov (United States)

    Benedetti, F.; Ayata, S. D.; Blanco-Bercial, L.; Cornils, A.; Guilhaumon, F.

    2016-02-01

    The diversity of natural communities is classically estimated through species identification (taxonomic diversity) but can also be estimated from the ecological functions performed by the species (functional diversity), or from the phylogenetic relationships among them (phylogenetic diversity). Estimating functional diversity requires the definition of specific functional traits, i.e., phenotypic characteristics that impact fitness and are relevant to ecosystem functioning. Estimating phylogenetic diversity requires the description of phylogenetic relationships, for instance by using molecular tools. In the present study, we focused on the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. First, we implemented a specific trait database for the most commonly-sampled and abundant copepod species of the Mediterranean Sea. Our database includes 191 species, described by seven traits encompassing diverse ecological functions: minimal and maximal body length, trophic group, feeding type, spawning strategy, diel vertical migration and vertical habitat. Clustering analysis in the functional trait space revealed that Mediterranean copepods can be gathered into groups that have different ecological roles. Second, we reconstructed a phylogenetic tree using the available sequences of 18S rRNA. Our tree included 154 of the analyzed Mediterranean copepod species. We used these two datasets to describe the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. The replacement component (turn-over) and the species richness difference component (nestedness) of the beta diversity indices were identified. Finally, by comparing various and complementary aspects of plankton diversity (taxonomic, functional, and phylogenetic diversity) we were able to gain a better understanding of the relationships among the zooplankton community, biodiversity, ecosystem function, and environmental forcing.

  13. Land use change has stronger effects on functional diversity than taxonomic diversity in tropical Andean hummingbirds.

    Science.gov (United States)

    Tinoco, Boris A; Santillán, Vinicio E; Graham, Catherine H

    2018-03-01

    Land use change modifies the environment at multiple spatial scales, and is a main driver of species declines and deterioration of ecosystem services. However, most of the research on the effects of land use change has focused on taxonomic diversity, while functional diversity, an important predictor of ecosystem services, is often neglected. We explored how local and landscape scale characteristics influence functional and taxonomic diversity of hummingbirds in the Andes Mountains in southern Ecuador. Data was collected in six landscapes along a land use gradient, from an almost intact landscape to one dominated by cattle pastures. We used point counts to sample hummingbirds from 2011 to 2012 to assessed how local factors (i.e., vegetation structure, flowering plants richness, nectar availability) and landscape factors (i.e., landscape heterogeneity, native vegetation cover) influenced taxonomic and functional diversity. Then, we analyzed environment - trait relationships (RLQ test) to explore how different hummingbird functional traits influenced species responses to these factors. Taxonomic and functional diversity of hummingbirds were positively associated with landscape heterogeneity but only functional diversity was positively related to native vegetation coverage. We found a weak response of taxonomic and functional diversity to land use change at the local scale. Environment-trait associations showed that body mass of hummingbirds likely influenced species sensitivity to land use change. In conclusion, landscape heterogeneity created by land use change can positively influence hummingbird taxonomic and functional diversity; however, a reduction of native vegetation cover could decrease functional diversity. Given that functional diversity can mediate ecosystem services, the conservation of native vegetation cover could play a key role in the maintenance of hummingbird pollination services in the tropical Andes. Moreover, there are particular functional

  14. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance.

    Science.gov (United States)

    Mensah, Sylvanus; Veldtman, Ruan; Assogbadjo, Achille E; Glèlè Kakaï, Romain; Seifert, Thomas

    2016-10-01

    The relationship between biodiversity and ecosystem function has increasingly been debated as the cornerstone of the processes behind ecosystem services delivery. Experimental and natural field-based studies have come up with nonconsistent patterns of biodiversity-ecosystem function, supporting either niche complementarity or selection effects hypothesis. Here, we used aboveground carbon (AGC) storage as proxy for ecosystem function in a South African mistbelt forest, and analyzed its relationship with species diversity, through functional diversity and functional dominance. We hypothesized that (1) diversity influences AGC through functional diversity and functional dominance effects; and (2) effects of diversity on AGC would be greater for functional dominance than for functional diversity. Community weight mean (CWM) of functional traits (wood density, specific leaf area, and maximum plant height) were calculated to assess functional dominance (selection effects). As for functional diversity (complementarity effects), multitrait functional diversity indices were computed. The first hypothesis was tested using structural equation modeling. For the second hypothesis, effects of environmental variables such as slope and altitude were tested first, and separate linear mixed-effects models were fitted afterward for functional diversity, functional dominance, and both. Results showed that AGC varied significantly along the slope gradient, with lower values at steeper sites. Species diversity (richness) had positive relationship with AGC, even when slope effects were considered. As predicted, diversity effects on AGC were mediated through functional diversity and functional dominance, suggesting that both the niche complementarity and the selection effects are not exclusively affecting carbon storage. However, the effects were greater for functional diversity than for functional dominance. Furthermore, functional dominance effects were strongly transmitted by CWM of

  15. Preschoolers’ free play - connections with emotional and social functioning

    Directory of Open Access Journals (Sweden)

    Guida Veiga

    2016-04-01

    Full Text Available Play has an important role in various aspects of children’s development. However, time for free play has declined substantially over the last decades. To date, few studies have focused on the relationship between opportunities for free play and children’s social functioning. The aims of this study are to examine whether children´s free play is related to their social functioning and whether this relationship is mediated by children´s emotional functioning. Seventy-eight children (age, 55- 77 months were tested on their theory of mind and emotion understanding. Parents reported on their children’s time for free play, empathic abilities, social competence and externalizing behaviors. The main findings showed that free play and children’s theory of mind are negatively related to externalizing behaviors. Empathy was strongly related to children’s social competence, but free play and social competence were not associated. Less time for free play is related to more disruptive behaviors in preschool children, however certain emotional functioning skills influence these behaviors independently of the time children have for free play. These outcomes suggest that free play might help to prevent the development of disruptive behaviors, but future studies should further examine the causality of this relationship.

  16. Solitary Active Videogame Play Improves Executive Functioning More Than Collaborative Play for Children with Special Needs.

    Science.gov (United States)

    Flynn, Rachel M; Colon, Nirmaliz

    2016-12-01

    This pilot study examined the impact of playing an active videogame on executive functioning (EF) skills for children with special needs, who typically have lower EF skills. Acute EF change was measured in 36 children with a range of special needs, including mental health disorders and developmental disabilities. Participants were assigned to one of two active videogame conditions: playing alone and playing with a peer. Two different EF tasks were conducted pre- and postplay. Children who played alone increased their accuracy performance more than children in the paired-play condition on two measures of EF. The study explored potential covariates of prior videogame experience, age, and enjoyment, but none of these variables related to EF change. This study's findings support active videogame play as an activity that can boost EF skills for children with special needs when they play alone. Future research should continue to examine the relationships between EF and active videogame play with a peer to elucidate the contributions of social interactions.

  17. Functional diversity changes during tropical forest succession.

    NARCIS (Netherlands)

    Lohbeck, M.W.M.; Poorter, L.; Paz, H.; Breugel, van M.; Martinez-Ramos, M.; Bongers, F.

    2012-01-01

    Functional diversity (FD) ‘those components of biodiversity that influence how an ecosystem operates or functions’ is a promising tool to assess the effect of biodiversity loss on ecosystem functioning. FD has received ample theoretical attention, but empirical studies are limited. We evaluate

  18. Assessing functional diversity by program slicing

    International Nuclear Information System (INIS)

    Wallace, D.R.; Lyle, J.R.; Gallagher, K.B.; Ippolito, L.M.

    1994-01-01

    A responsibility of the Nuclear Regulatory Commission auditors is to provide assessments of the quality of the safety systems. For software, the audit process as currently implemented is a slow, tedious, manual process prone to human errors. While auditors cannot possibly examine all components of the system in complete detail, they do check for implementation of specific principles like functional diversity. This paper describes an experimental prototype Computer Aided Software Engineering (CASE) tool, UNRAVEL, designed to enable auditors to check for functional diversity and aid an auditor in examining software by extracting all code relevant to a computation identified for detailed inspection

  19. Predicting estuarine benthic production using functional diversity

    Directory of Open Access Journals (Sweden)

    Marina Dolbeth

    2014-05-01

    Full Text Available We considered an estuarine system having naturally low levels of diversity, but attaining considerable high production levels, and being subjected to different sorts of anthropogenic impacts and climate events to investigate the relationship between diversity and secondary production. Functional diversity measures were used to predict benthic production, which is considered as a proxy of the ecosystem provisioning services. To this end, we used a 14-year dataset on benthic invertebrate community production from a seagrass and a sandflat habitat and we adopted a sequential modeling approach, where abiotic, trait community weighted means (CWM and functional diversity indices were tested by generalized linear models (GLM, and their significant variables were then combined to produce a final model. Almost 90% of variance of the benthic production could be predicted by combining the number of locomotion types, the absolute maximum atmospheric temperature (proxy of the heat waves occurrence, the type of habitat and the mean body mass, by order of importance. This result is in agreement with the mass ratio hypothesis, where ecosystem functions/services can be chiefly predicted by the dominant trait in the community, here measured as CWM. The increase of benthic production with the number of locomotion types may be seen as greater possibility of using the resources available in the system. Such greater efficiency would increase production. The other variables were also discussed in line of the previous hypothesis and taking into account the general positive relationship obtained between production and functional diversity indices. Overall, it was concluded that traits representative of wider possibilities of using available resources and higher functional diversity are related with higher benthic production.

  20. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.

    Science.gov (United States)

    He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A; Watson, David B; Adams, Michael W W; Fields, Matthew W; Alm, Eric J; Hazen, Terry C; Adams, Paul D; Arkin, Adam P; Zhou, Jizhong

    2018-02-20

    Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly ( P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as

  1. Versatile Loading of Diverse Cargo into Functional Polymer Capsules.

    Science.gov (United States)

    Richardson, Joseph J; Maina, James W; Ejima, Hirotaka; Hu, Ming; Guo, Junling; Choy, Mei Y; Gunawan, Sylvia T; Lybaert, Lien; Hagemeyer, Christoph E; De Geest, Bruno G; Caruso, Frank

    2015-02-01

    Polymer microcapsules are of particular interest for applications including self-healing coatings, catalysis, bioreactions, sensing, and drug delivery. The primary way that polymer capsules can exhibit functionality relevant to these diverse fields is through the incorporation of functional cargo in the capsule cavity or wall. Diverse functional and therapeutic cargo can be loaded into polymer capsules with ease using polymer-stabilized calcium carbonate (CaCO 3 ) particles. A variety of examples are demonstrated, including 15 types of cargo, yielding a toolbox with effectively 500+ variations. This process uses no harsh reagents and can take less than 30 min to prepare, load, coat, and form the hollow capsules. For these reasons, it is expected that the technique will play a crucial role across scientific studies in numerous fields.

  2. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    Science.gov (United States)

    Zhang, Ping; Wu, Linwei; Rocha, Andrea M.; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D.; Wu, Liyou; Watson, David B.; Adams, Michael W. W.; Alm, Eric J.; Adams, Paul D.; Arkin, Adam P.

    2018-01-01

    ABSTRACT Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. PMID:29463661

  3. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    Directory of Open Access Journals (Sweden)

    Zhili He

    2018-02-01

    Full Text Available Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN, representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5 increased significantly (P < 0.05 as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.

  4. To Play or Not to Play: Diverse Motives for Latino and Euro-American Parent-Child Play in a Children's Museum

    Science.gov (United States)

    DiBianca Fasoli, Allison

    2014-01-01

    A popular social discourse in the United States is that play is important for children's learning and that parental involvement maximizes play's learning potential. Past research has concluded that parents who hold this view of play are more likely to play with their children than those who do not. This study investigated the prevalence…

  5. Diversity and functional properties of bistable pigments.

    Science.gov (United States)

    Tsukamoto, Hisao; Terakita, Akihisa

    2010-11-01

    Rhodopsin and related opsin-based pigments, which are photosensitive membrane proteins, have been extensively studied using a wide variety of techniques, with rhodopsin being the most understood G protein-coupled receptor (GPCR). Animals use various opsin-based pigments for vision and a wide variety of non-visual functions. Many functionally varied pigments are roughly divided into two kinds, based on their photoreaction: bistable and monostable pigments. Bistable pigments are thermally stable before and after photo-activation, but monostable pigments are stable only before activation. Here, we review the diversity of bistable pigments and their molecular characteristics. We also discuss the mechanisms underlying different molecular characteristics of bistable and monostable pigments. In addition, the potential of bistable pigments as a GPCR model is proposed.

  6. Diversity, Function and Transcriptional Regulation of Gut Innate Lymphocytes

    Directory of Open Access Journals (Sweden)

    Lucille eRankin

    2013-03-01

    Full Text Available The innate immune system plays a critical early role in host defense against viruses, bacteria and tumour cells. Until recently, natural killer (NK cells and lymphoid tissue inducer (LTi cells were the primary members of the innate lymphocyte family: NK cells form the front-line interface between the external environment and the adaptive immune system, while LTi cells are essential for secondary lymphoid tissue formation. More recently, it has become apparent that the composition of this family is much more diverse than previously appreciated and newly recognized populations play distinct and essential functions in tissue protection. Despite the importance of these cells, the developmental relationships between different innate lymphocyte populations (ILCs remain unclear. Here we review recent advances in our understanding of the development of different innate immune cell subsets, the transcriptional programs that might be involved in driving fate decisions during development, and their relationship to NK cells.

  7. Fungal endophytes: diversity and functional roles

    Science.gov (United States)

    Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S.

    2009-01-01

    All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

  8. Functional diversity of resilin in Arthropoda

    Directory of Open Access Journals (Sweden)

    Jan Michels

    2016-09-01

    Full Text Available Resilin is an elastomeric protein typically occurring in exoskeletons of arthropods. It is composed of randomly orientated coiled polypeptide chains that are covalently cross-linked together at regular intervals by the two unusual amino acids dityrosine and trityrosine forming a stable network with a high degree of flexibility and mobility. As a result of its molecular prerequisites, resilin features exceptional rubber-like properties including a relatively low stiffness, a rather pronounced long-range deformability and a nearly perfect elastic recovery. Within the exoskeleton structures, resilin commonly forms composites together with other proteins and/or chitin fibres. In the last decades, numerous exoskeleton structures with large proportions of resilin and various resilin functions have been described. Today, resilin is known to be responsible for the generation of deformability and flexibility in membrane and joint systems, the storage of elastic energy in jumping and catapulting systems, the enhancement of adaptability to uneven surfaces in attachment and prey catching systems, the reduction of fatigue and damage in reproductive, folding and feeding systems and the sealing of wounds in a traumatic reproductive system. In addition, resilin is present in many compound eye lenses and is suggested to be a very suitable material for optical elements because of its transparency and amorphousness. The evolution of this remarkable functional diversity can be assumed to have only been possible because resilin exhibits a unique combination of different outstanding properties.

  9. Functional diversity in plant communities: Theory and analysis ...

    African Journals Online (AJOL)

    Plant functional diversity in community has become a key point in ecology studies recently. The development of species functional diversity was reviewed in the present work. Based on the former original research papers and reviews, we discussed the concept and connotation and put forward a new definition of functional ...

  10. A note on reliability estimation of functionally diverse systems

    International Nuclear Information System (INIS)

    Littlewood, B.; Popov, P.; Strigini, L.

    1999-01-01

    It has been argued that functional diversity might be a plausible means of claiming independence of failures between two versions of a system. We present a model of functional diversity, in the spirit of earlier models of diversity such as those of Eckhardt and Lee, and Hughes. In terms of the model, we show that the claims for independence between functionally diverse systems seem rather unrealistic. Instead, it seems likely that functionally diverse systems will exhibit positively correlated failures, and thus will be less reliable than an assumption of independence would suggest. The result does not, of course, suggest that functional diversity is not worthwhile; instead, it places upon the evaluator of such a system the onus to estimate the degree of dependence so as to evaluate the reliability of the system

  11. The function of game and role playing in adult education

    OpenAIRE

    Žáková, Zuzana

    2009-01-01

    The subjects of this work are game, role and role playing in upbringing, education and training, and in personnel practice. The work uses knowledge of pedagogy, psychology and sociology, and focuses on social interaction and personality development. It introduces basic educational, training and therapeutic methods and procedures, including methods in the field of adult education, where the core of these methods lies in playing roles. It presents brief characteristics of individual methods, in...

  12. Functional Diversity of Fibroblast Growth Factors in Bone Formation

    Directory of Open Access Journals (Sweden)

    Yuichiro Takei

    2015-01-01

    Full Text Available The functional significance of fibroblast growth factor (FGF signaling in bone formation has been demonstrated through genetic loss-of-function and gain-of-function approaches. FGFs, comprising 22 family members, are classified into three subfamilies: canonical, hormone-like, and intracellular. The former two subfamilies activate their signaling pathways through FGF receptors (FGFRs. Currently, intracellular FGFs appear to be primarily involved in the nervous system. Canonical FGFs such as FGF2 play significant roles in bone formation, and precise spatiotemporal control of FGFs and FGFRs at the transcriptional and posttranscriptional levels may allow for the functional diversity of FGFs during bone formation. Recently, several research groups, including ours, have shown that FGF23, a member of the hormone-like FGF subfamily, is primarily expressed in osteocytes/osteoblasts. This polypeptide decreases serum phosphate levels by inhibiting renal phosphate reabsorption and vitamin D3 activation, resulting in mineralization defects in the bone. Thus, FGFs are involved in the positive and negative regulation of bone formation. In this review, we focus on the reciprocal roles of FGFs in bone formation in relation to their local versus systemic effects.

  13. Low Functional β-Diversity Despite High Taxonomic β-Diversity among Tropical Estuarine Fish Communities

    Science.gov (United States)

    Villéger, Sébastien; Miranda, Julia Ramos; Hernandez, Domingo Flores; Mouillot, David

    2012-01-01

    The concept of β-diversity, defined as dissimilarity among communities, has been widely used to investigate biodiversity patterns and community assembly rules. However, in ecosystems with high taxonomic β-diversity, due to marked environmental gradients, the level of functional β-diversity among communities is largely overlooked while it may reveal processes shaping community structure. Here, decomposing biodiversity indices into α (local) and γ (regional) components, we estimated taxonomic and functional β-diversity among tropical estuarine fish communities, through space and time. We found extremely low functional β-diversity values among fish communities (diversities, α and γ functional diversities were very close to the minimal value. These patterns were caused by two dominant functional groups which maintained a similar functional structure over space and time, despite the strong dissimilarity in taxonomic structure along environmental gradients. Our findings suggest that taxonomic and functional β-diversity deserve to be quantified simultaneously since these two facets can show contrasting patterns and the differences can in turn shed light on community assembly rules. PMID:22792395

  14. Inorganic pyrophosphatases: structural diversity serving the function

    Science.gov (United States)

    Samygina, V. R.

    2016-05-01

    The review is devoted to ubiquitous enzymes, inorganic pyrophosphatases, which are essential in all living organisms. Despite the long history of investigations, these enzymes continue to attract interest. The review focuses on the three-dimensional structures of various representatives of this class of proteins. The structural diversity, the relationship between the structure and some properties of pyrophosphatases and various mechanisms of enzyme action related to the structural diversity of these enzymes are discussed. Interactions of pyrophosphatase with other proteins and possible practical applications are considered. The bibliography includes 56 references.

  15. Preschoolers' Cognitive and Emotional Self-Regulation in Pretend Play: Relations with Executive Functions and Quality of Play

    Science.gov (United States)

    Slot, Pauline Louise; Mulder, Hanna; Verhagen, Josje; Leseman, Paul P. M.

    2017-01-01

    The preschool period is marked by rapid growth of children's self-regulation and related executive functions. Self-regulation is considered an important aspect of school readiness and is related to academic and social--emotional outcomes in childhood. Pretend play, as part of the early childhood curriculum, is hypothesized to support…

  16. Preschoolers' cognitive and emotional self-regulation in pretend play : Relations with executive functions and quality of play

    NARCIS (Netherlands)

    Slot, Pauline Louise; Mulder, Hanna; Verhagen, Josje; Leseman, Paul

    2017-01-01

    The preschool period is marked by rapid growth of children's self-regulation and related executive functions. Self-regulation is considered an important aspect of school readiness and is related to academic and social–emotional outcomes in childhood. Pretend play, as part of the early childhood

  17. The role of high level play as a predictor social functioning in autism.

    Science.gov (United States)

    Manning, Margaret M; Wainwright, Laurel D

    2010-05-01

    Play and social abilities of a group of children diagnosed with high functioning autism were compared to a second group diagnosed with a variety of developmental language disorders (DLD). The children with autism engaged in fewer acts of high level play. The children with autism also had significantly lower social functioning than the DLD group early in the play session; however, these differences were no longer apparent by the end of the play session. In addition, a significant association existed between play and social functioning regardless of diagnosis. This suggests that play may act as a current indicator of social ability while providing an arena for social skills practice.

  18. Resource diversity and provenance underpin spatial patterns in functional diversity across native and exotic species.

    Science.gov (United States)

    Méndez, Verónica; Wood, Jamie R; Butler, Simon J

    2018-05-01

    Functional diversity metrics are increasingly used to augment or replace taxonomic diversity metrics to deliver more mechanistic insights into community structure and function. Metrics used to describe landscape structure and characteristics share many of the same limitations as taxonomy-based metrics, particularly their reliance on anthropogenically defined typologies with little consideration of structure, management, or function. However, the development of alternative metrics to describe landscape characteristics has been limited. Here, we extend the functional diversity framework to characterize landscapes based on the diversity of resources available across habitats present. We then examine the influence of resource diversity and provenance on the functional diversities of native and exotic avian communities in New Zealand. Invasive species are increasingly prevalent and considered a global threat to ecosystem function, but the characteristics of and interactions between sympatric native and exotic communities remain unresolved. Understanding their comparative responses to environmental change and the mechanisms underpinning them is of growing importance in predicting community dynamics and changing ecosystem function. We use (i) matrices of resource use (species) and resource availability (habitats) and (ii) occurrence data for 62 native and 25 exotic species and 19 native and 13 exotic habitats in 2015 10 × 10 km quadrats to examine the relationship between native and exotic avian and landscape functional diversity. The numbers of species in, and functional diversities of, native and exotic communities were positively related. Each community displayed evidence of environmental filtering, but it was significantly stronger for exotic species. Less environmental filtering occurred in landscapes providing a more diverse combination of resources, with resource provenance also an influential factor. Landscape functional diversity explained a greater

  19. The numerology of T cell functional diversity.

    Science.gov (United States)

    Haining, W Nicholas

    2012-01-27

    Memory T cells are heterogeneous in phenotype and function. In this issue of Immunity, Newell et al. (2012) use a new flow cytometry platform to show that the functional heterogeneity of the human T cell compartment is even greater than previously thought. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The Numerology of T Cell Functional Diversity

    OpenAIRE

    Haining, W. Nicholas

    2012-01-01

    Memory T cells are heterogeneous in phenotype and function. In this issue of Immunity Newell et al. (2012) use a new flow cytometry platform to show that the functional heterogeneity in the human T cell compartment is even greater than expected.

  1. Firm size diversity, functional richness, and resilience

    Science.gov (United States)

    Garmestani, A.S.; Allen, Craig R.; Mittelstaedt, J.D.; Stow, C.A.; Ward, W.A.

    2006-01-01

    This paper applies recent advances in ecology to our understanding of firm development, sustainability, and economic development. The ecological literature indicates that the greater the functional richness of species in a system, the greater its resilience - that is, its ability to persist in the face of substantial changes in the environment. This paper focuses on the effects of functional richness across firm size on the ability of industries to survive in the face of economic change. Our results indicate that industries with a richness of industrial functions are more resilient to employment volatility. ?? 2006 Cambridge University Press.

  2. Application of the Nutrition Functional Diversity indicator to assess food system contributions to dietary diversity and sustainable diets of Malawian households.

    Science.gov (United States)

    Luckett, Brian G; DeClerck, Fabrice A J; Fanzo, Jessica; Mundorf, Adrienne R; Rose, Donald

    2015-09-01

    Dietary diversity is associated with nutrient adequacy and positive health outcomes but indicators to measure diversity have focused primarily on consumption, rather than sustainable provisioning of food. The Nutritional Functional Diversity score was developed by ecologists to describe the contribution of biodiversity to sustainable diets. We have employed this tool to estimate the relative contribution of home production and market purchases in providing nutritional diversity to agricultural households in Malawi and examine how food system provisioning varies by time, space and socio-economic conditions. A secondary analysis of nationally representative household consumption data to test the applicability of the Nutritional Functional Diversity score. The data were collected between 2010 and 2011 across the country of Malawi. Households (n 11 814) from predominantly rural areas of Malawi. Nutritional Functional Diversity varied demographically, geographically and temporally. Nationally, purchased foods contributed more to household nutritional diversity than home produced foods (mean score=17·5 and 7·8, respectively). Households further from roads and population centres had lower overall diversity (PFunctional Diversity score is an effective indicator for identifying populations with low nutritional diversity and the relative roles that markets, agricultural extension and home production play in achieving nutritional diversity. This information may be used by policy makers to plan agricultural and market-based interventions that support sustainable diets and local food systems.

  3. Traits Without Borders:Integrating Functional Diversity Across Scales

    Czech Academy of Sciences Publication Activity Database

    Carmona, C. P.; de Bello, Francesco; Mason, N. W. H.; Lepš, Jan

    2016-01-01

    Roč. 31, č. 5 (2016), s. 382-394 ISSN 0169-5347 R&D Projects: GA ČR GAP505/12/1296; GA ČR GB14-36079G Institutional support: RVO:67985939 ; RVO:60077344 Keywords : functional trait * functional diversity * functional niche Subject RIV: EH - Ecology, Behaviour Impact factor: 15.268, year: 2016

  4. Ecosystem Functions across Trophic Levels Are Linked to Functional and Phylogenetic Diversity

    Science.gov (United States)

    Thompson, Patrick L.; Davies, T. Jonathan; Gonzalez, Andrew

    2015-01-01

    In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures. PMID:25693188

  5. Polychaete functional diversity in shallow habitats: Shelter from the storm

    Science.gov (United States)

    Wouters, Julia M.; Gusmao, Joao B.; Mattos, Gustavo; Lana, Paulo

    2018-05-01

    Innovative approaches are needed to help understanding how species diversity is related to the latitudinal gradient at large or small scales. We have applied a novel approach, by combining morphological and biological traits, to assess the relative importance of the large scale latitudinal gradient and regional morphodynamic drivers in shaping the functional diversity of polychaete assemblages in shallow water habitats, from exposed to estuarine sandy beaches. We used literature data on polychaetes from beaches along the southern and southeastern Brazilian coast together with data on beach types, slope, grain size, temperature, salinity, and chlorophyll a concentration. Generalized linear models on the FDis index for functional diversity calculated for each site and a combined RLQ and fourth-corner analysis were used to investigate relationships between functional traits and environmental variables. Functional diversity was not related to the latitudinal gradient but negatively correlated with grain size and beach slope. Functional diversity was highest in flat beaches with small grain size, little wave exposure and enhanced primary production, indicating that small scale morphodynamic conditions are the primary drivers of polychaete functional diversity.

  6. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function

    Directory of Open Access Journals (Sweden)

    Antommattei Frances M

    2008-10-01

    28 and σ54 play a role in regulating the Geobacter chemotaxis gene expression. Conclusion The numerous chemoreceptors and chemotaxis-like gene clusters of Geobacter appear to be responsible for a diverse set of signaling functions in addition to chemotaxis, including gene regulation and biofilm formation, through functionally and spatially distinct signaling pathways.

  7. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo

    2005-01-01

    level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has......NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protein...

  8. Local-scale Partitioning of Functional and Phylogenetic Beta Diversity in a Tropical Tree Assemblage.

    Science.gov (United States)

    Yang, Jie; Swenson, Nathan G; Zhang, Guocheng; Ci, Xiuqin; Cao, Min; Sha, Liqing; Li, Jie; Ferry Slik, J W; Lin, Luxiang

    2015-08-03

    The relative degree to which stochastic and deterministic processes underpin community assembly is a central problem in ecology. Quantifying local-scale phylogenetic and functional beta diversity may shed new light on this problem. We used species distribution, soil, trait and phylogenetic data to quantify whether environmental distance, geographic distance or their combination are the strongest predictors of phylogenetic and functional beta diversity on local scales in a 20-ha tropical seasonal rainforest dynamics plot in southwest China. The patterns of phylogenetic and functional beta diversity were generally consistent. The phylogenetic and functional dissimilarity between subplots (10 × 10 m, 20 × 20 m, 50 × 50 m and 100 × 100 m) was often higher than that expected by chance. The turnover of lineages and species function within habitats was generally slower than that across habitats. Partitioning the variation in phylogenetic and functional beta diversity showed that environmental distance was generally a better predictor of beta diversity than geographic distance thereby lending relatively more support for deterministic environmental filtering over stochastic processes. Overall, our results highlight that deterministic processes play a stronger role than stochastic processes in structuring community composition in this diverse assemblage of tropical trees.

  9. Functional diversity of soil invertebrates: a potential tool to explain N2O emission?

    Science.gov (United States)

    Lubbers, Ingrid; De Deyn, Gerlinde; Drake, Harold; Hunger, Sindy; Oppermann, Timo; van Groenigen, Jan Willem

    2017-04-01

    Soil biota play a crucial role in the mineralization of nutrients from organic material. However, they can thereby increase emissions of the potent greenhouse gas nitrous oxide (N2O). Our current lack of understanding of the factors controlling N2O production and emission is impeding the development of effective mitigation strategies. It is the challenge to control N2O emissions from production systems without reducing crop yield, and diversity of soil fauna may play a key role. A high functional diversity of soil invertebrates is known to stimulate nitrogen mineralization and thereby plant growth, however, it is unknown whether a high functional diversity of soil invertebrates can concurrently diminish N2O emissions. We hypothesized that increased functional diversity of soil invertebrates reduces faunal-induced N2O emissions by facilitating more complete denitrification through (i) stimulating the activity of denitrifying microbes, and (ii) affecting the distribution of micro and macro pores, creating more anaerobic reaction sites. Using state-of-the-art X-ray tomography and next-generation sequencing, we studied effects of functional diversity on soil structural properties and the diversity of the microbial community (16S rRNA genes and 16S rRNA), and linked these to soil N2O emissions. In a 120-day study we found that the functional composition of the soil invertebrate community determined N2O emissions: earthworm activity was key to faunal-induced N2O emissions (a 32-fold increase after 120 days, Pstructural properties (mean pore size, pore size distribution) were found to be radically altered by earthworm activity. We conclude that the presence of a few functional groups (ecosystem engineers) is more important than overall increased functional diversity in explaining faunal-affected N2O emissions.

  10. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    Directory of Open Access Journals (Sweden)

    Holly Sitters

    Full Text Available Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated

  11. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    Science.gov (United States)

    Sitters, Holly; York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian

    2016-01-01

    Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation

  12. β-Diversity, Community Assembly, and Ecosystem Functioning.

    Science.gov (United States)

    Mori, Akira S; Isbell, Forest; Seidl, Rupert

    2018-05-25

    Evidence is increasing for positive effects of α-diversity on ecosystem functioning. We highlight here the crucial role of β-diversity - a hitherto underexplored facet of biodiversity - for a better process-level understanding of biodiversity change and its consequences for ecosystems. A focus on β-diversity has the potential to improve predictions of natural and anthropogenic influences on diversity and ecosystem functioning. However, linking the causes and consequences of biodiversity change is complex because species assemblages in nature are shaped by many factors simultaneously, including disturbance, environmental heterogeneity, deterministic niche factors, and stochasticity. Because variability and change are ubiquitous in ecosystems, acknowledging these inherent properties of nature is an essential step for further advancing scientific knowledge of biodiversity-ecosystem functioning in theory and practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Diverse gene functions in a soil mobilome

    DEFF Research Database (Denmark)

    Luo, Wenting; Xu, Zhuofei; Riber, Leise

    2016-01-01

    Accessing bacterial mobilomes of any given environment enables the investigation of genetic traits encoded by circular genetic elements, and how their transfer drives the adaptation of microbial communities. Here we take advantage of Illumina HiSeq sequencing and report, for the first time......, the soil mobilome sampled from a well-characterized field in Hygum, Denmark. Soil bacterial cells were obtained by Nycodenz extraction, total DNA was purified by removing sheared chromosomal DNA using exonuclease digestion, and the remaining circular DNA was amplified with the phi29 polymerase and finally...... sequenced. The soil mobilome represented a wide range of known bacterial gene functions and highlighted the enrichment of plasmids, transposable elements and phages when compared to a well-characterized soil metagenome that, on the other hand, was dominated by basic biosynthesis and metabolism functions...

  14. Constructing and Role-Playing Student Avatars in a Simulation of Teaching Algebra for Diverse Learners

    Science.gov (United States)

    Ma, Tingting; Brown, Irving A.; Kulm, Gerald; Davis, Trina J.; Lewis, Chance W.; Allen, G. Donald

    2016-01-01

    From the perspectives of Graduate Research Assistants (GRAs), this study examines the design and implementation of a simulated teaching environment in "Second Life" (SL) for prospective teachers to teach algebra for diverse learners. Drawing upon the Learning-for-Use framework, the analyses provide evidence on the development of student…

  15. Bird functional diversity decreases with time since disturbance: Does patchy prescribed fire enhance ecosystem function?.

    Science.gov (United States)

    Sitters, Holly; Di Stefano, Julian; Christie, Fiona; Swan, Matthew; York, Alan

    2016-01-01

    Animal species diversity is often associated with time since disturbance, but the effects of disturbances such as fire on functional diversity are unknown. Functional diversity measures the range, abundance, and distribution of trait values in a community, and links changes in species composition with the consequences for ecosystem function. Improved understanding of the relationship between time since fire (TSF) and functional diversity is critical given that the frequency of both prescribed fire and wildfire is expected to increase. To address this knowledge gap, we examined responses of avian functional diversity to TSF and two direct measures of environmental heterogeneity, plant diversity, and structural heterogeneity. We surveyed birds across a 70-year chronosequence spanning four vegetation types in southeast Australia. Six bird functional traits were used to derive four functional diversity indices (richness, evenness, divergence, and dispersion) and the effects of TSF, plant diversity and structural heterogeneity on species richness and the functional diversity indices were examined using mixed models. We used a regression tree method to identify traits associated with species more common in young vegetation. Functional richness and dispersion were negatively associated with TSF in all vegetation types, suggesting that recent prescribed fire generates heterogeneous vegetation and provides greater opportunities for resource partitioning. Species richness was not significantly associated with TSF, and is probably an unreliable surrogate for functional diversity in fire-prone systems. A positive, relationship between functional evenness and structural heterogeneity was comnon to all vegetation types, suggesting that fine-scale (tens of meters) structural variation can enhance ecosystem function. Species more common in young vegetation were primarily linked by their specialist diets, indicating that ecosystem services such as seed dispersal and insect control

  16. Functionally diverse reef-fish communities ameliorate coral disease.

    Science.gov (United States)

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  17. Deforestation Impacts on Bat Functional Diversity in Tropical Landscapes.

    Directory of Open Access Journals (Sweden)

    Rodrigo García-Morales

    Full Text Available Functional diversity is the variability in the functional roles carried out by species within ecosystems. Changes in the environment can affect this component of biodiversity and can, in turn, affect different processes, including some ecosystem services. This study aimed to determine the effect of forest loss on species richness, abundance and functional diversity of Neotropical bats. To this end, we identified six landscapes with increasing loss of forest cover in the Huasteca region of the state of Hidalgo, Mexico. We captured bats in each landscape using mist nets, and calculated functional diversity indices (functional richness and functional evenness along with species richness and abundance. We analyzed these measures in terms of percent forest cover. We captured 906 bats (Phyllostomidae and Mormoopidae, including 10 genera and 12 species. Species richness, abundance and functional richness per night are positively related with forest cover. Generalized linear models show that species richness, abundance and functional richness per night are significantly related with forest cover, while seasonality had an effect on abundance and functional richness. Neither forest cover nor season had a significant effect on functional evenness. All these findings were consistent across three spatial scales (1, 3 and 5 km radius around sampling sites. The decrease in species, abundance and functional richness of bats with forest loss may have implications for the ecological processes they carry out such as seed dispersal, pollination and insect predation, among others.

  18. Deforestation Impacts on Bat Functional Diversity in Tropical Landscapes.

    Science.gov (United States)

    García-Morales, Rodrigo; Moreno, Claudia E; Badano, Ernesto I; Zuria, Iriana; Galindo-González, Jorge; Rojas-Martínez, Alberto E; Ávila-Gómez, Eva S

    2016-01-01

    Functional diversity is the variability in the functional roles carried out by species within ecosystems. Changes in the environment can affect this component of biodiversity and can, in turn, affect different processes, including some ecosystem services. This study aimed to determine the effect of forest loss on species richness, abundance and functional diversity of Neotropical bats. To this end, we identified six landscapes with increasing loss of forest cover in the Huasteca region of the state of Hidalgo, Mexico. We captured bats in each landscape using mist nets, and calculated functional diversity indices (functional richness and functional evenness) along with species richness and abundance. We analyzed these measures in terms of percent forest cover. We captured 906 bats (Phyllostomidae and Mormoopidae), including 10 genera and 12 species. Species richness, abundance and functional richness per night are positively related with forest cover. Generalized linear models show that species richness, abundance and functional richness per night are significantly related with forest cover, while seasonality had an effect on abundance and functional richness. Neither forest cover nor season had a significant effect on functional evenness. All these findings were consistent across three spatial scales (1, 3 and 5 km radius around sampling sites). The decrease in species, abundance and functional richness of bats with forest loss may have implications for the ecological processes they carry out such as seed dispersal, pollination and insect predation, among others.

  19. Functional trait space and the latitudinal diversity gradient

    DEFF Research Database (Denmark)

    Lamanna, Christine; Blonder, Benjamin; Violle, Cyrille

    2014-01-01

    The processes causing the latitudinal gradient in species richness remain elusive. Ecological theories for the origin of biodiversity gradients, such as competitive exclusion, neutral dynamics, and environmental filtering, make predictions for how functional diversity should vary at the alpha...... of trait combinations or that niche packing is stronger in the tropical zone. Although there are limitations in the data, our analyses suggest that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory....

  20. Functional diversity of supragranular GABAergic neurons in the barrel cortex

    Directory of Open Access Journals (Sweden)

    Luc J Gentet

    2012-08-01

    Full Text Available Although the neocortex forms a distributed system comprised of several functional areas, its vertical columnar organization is largely conserved across areas and species, suggesting the existence of a canonical neocortical microcircuit. In order to elucidate the principles governing the organization of such a cortical diagram, a detailed understanding of the dynamics binding different types of cortical neurons into a coherent algorithm is essential. Within this complex circuitry, GABAergic interneurons, while forming approximately only 15-20% of all cortical neurons, appear critical in maintaining a dynamic balance between excitation and inhibition. Despite their importance, cortical GABAergic neurons have not been extensively studied in vivo and their precise role in shaping the local microcircuit sensory response still remains to be determined. Their paucity, combined with their molecular, anatomical and physiological diversity, has made it difficult to even establish a consensual nomenclature.However, recent technological advances in microscopy and mouse genetics have fostered a renewed interest in neocortical interneurons by putting them within visible reach of experimenters. The anatomically well-defined whisker-to-barrel pathway of the rodent is particularly amenable to studies attempting to link cortical circuit dynamics to behavior. To each whisker corresponds a discrete cortical unit equivalent to a single column, specialized in the encoding and processing of the sensory information it receives. In this review, we will focus on the functional role that each subtype of supragranular GABAergic neuron embedded within such a single neocortical unit may play in shaping the dynamics of the local circuit during somatosensory integration.

  1. Bacterial diversity and ecological function in lake water bodies

    OpenAIRE

    Lijuan Ren; Dan He; Peng Xing; Yujing Wang; Qinglong Wu

    2013-01-01

    The healthy development of lake ecosystems is a global issue. Bacteria are not only an integral component of food webs, but also play a key role in controlling and regulating water quality in lake ecosystems. Hence, in order to provide some suggestions for maintaining the long-term and healthy development of lake ecosystems, this review discusses and analyses concepts and assessment of bacterial diversity, the distribution of bacteria communities, mechanisms of formation, and the ecological f...

  2. Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis.

    Science.gov (United States)

    Suggett, David J; Warner, Mark E; Leggat, William

    2017-10-01

    Coral reefs have entered an era of 'ecological crisis' as climate change drives catastrophic reef loss worldwide. Coral growth and stress susceptibility are regulated by their endosymbiotic dinoflagellates (genus Symbiodinium). The phylogenetic diversity of Symbiodinium frequently corresponds to patterns of coral health and survival, but knowledge of functional diversity is ultimately necessary to reconcile broader ecological success over space and time. We explore here functional traits underpinning the complex biology of Symbiodinium that spans free-living algae to coral endosymbionts. In doing so we propose a mechanistic framework integrating the primary traits of resource acquisition and utilisation as a means to explain Symbiodinium functional diversity and to resolve the role of Symbiodinium in driving the stability of coral reefs under an uncertain future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Species, functional, structural diversity of typical plant communities and their responses to environmental factors in Miao Archipelago, China.

    Science.gov (United States)

    Zheng, Li Ting; Su, Tian; Liu, Xiang Yu; Yin, Fang; Guo, Chao; Tuo, Bin; Yan, En Rong

    2018-02-01

    Island vegetation plays an important role in biodiversity research across the world. The study of plant diversity in island is helpful for understanding the mechanism of plant diversity maintenance under land-sea interaction. Here, four typical plant communities (Quercus acutissima community, Robinia pseudoacacia community, Pinus thunbergii community and Vitex negundo community) in Miao Archipelago were selected to examine the species, functional and structural diversities and their responses to environmental factors at the community scale by using species diversity indices, functional diversity indices, as well as structural diversity indices. The results showed that the species richness and Rao index of P. thunbergii community was higher than that of Q. acutissima community and R. pseudoacacia community, but the structural diversity was lower. The species diversity and structural diversity of V. Negundo shrub were lower than that of forest community, but the functional diversity was higher than some forest communities. The relationship between the diversity of typical plant communities in island area illustrated a significant positive correlation between species richness with Rao index and tree height diversity, however the correlation with functional evenness was significantly negative. The structural diversity and functional evenness were determined by slope with negative and positive relationships, respectively. Functional heterogeneity, functional divergence and species diversity were affected largely by soil physical and chemical properties, displaying the positive relationship with soil bulk density and soil total carbon content, and a negative relationship with soil water content. In conclusion, diversity pattern of plant community in Miao Archipelago reflected not only the characteristics in mainland vegetation but also the special nature of the sea island.

  4. Engineering Play: Exploring Associations with Executive Function, Mathematical Ability, and Spatial Ability in Preschool

    Science.gov (United States)

    Gold, Zachary Samuel

    Engineering play is a new perspective on preschool education that views constructive play as an engineering design process that parallels the way engineers think and work when they develop engineered solutions to human problems (Bairaktarova, Evangelou, Bagiati, & Brophy, 2011). Early research from this perspective supports its use in framing play as a key learning context. However, no research to date has examined associations between engineering play and other factors linked with early school success, such as executive function, mathematical ability, and spatial ability. Additionally, more research is needed to further validate a new engineering play observational measure. This study had two main goals: (1) to gather early validity data on the engineering play measure as a potentially useful instrument for documenting the occurrence of children's engineering play behaviors in educational contexts, such as block play. This was done by testing the factor structure of the engineering play behaviors in this sample and their association with preschoolers' planning, a key aspect of the engineering design process; (2) to explore associations between preschoolers' engineering play and executive function, mathematical ability, and spatial ability. Participants included 110 preschoolers (62 girls; 48 boys; M = 58.47 months) from 10 classrooms in the Midwest United States coded for their frequency of engagement in each of the nine engineering play behaviors. A confirmatory factor analysis resulted in one engineering play factor including six of the engineering play behaviors. A series of marginal regression models revealed that the engineering play factor was significantly and positively associated with the spatial horizontal rotation transformation. However, engineering play was not significantly related to planning ability, executive function, informal mathematical abilities, or other spatial transformation skills. Follow-up analyses revealed significant positive

  5. Global patterns of guild composition and functional diversity of spiders.

    Directory of Open Access Journals (Sweden)

    Pedro Cardoso

    Full Text Available The objectives of this work are: (1 to define spider guilds for all extant families worldwide; (2 test if guilds defined at family level are good surrogates of species guilds; (3 compare the taxonomic and guild composition of spider assemblages from different parts of the world; (4 compare the taxonomic and functional diversity of spider assemblages and; (5 relate functional diversity with habitat structure. Data on foraging strategy, prey range, vertical stratification and circadian activity was collected for 108 families. Spider guilds were defined by hierarchical clustering. We searched for inconsistencies between family guild placement and the known guild of each species. Richness and abundance per guild before and after correcting guild placement were compared, as were the proportions of each guild and family between all possible pairs of sites. Functional diversity per site was calculated based on hierarchical clustering. Eight guilds were discriminated: (1 sensing, (2 sheet, (3 space, and (4 orb web weavers; (5 specialists; (6 ambush, (7 ground, and (8 other hunters. Sixteen percent of the species richness corresponding to 11% of all captured individuals was incorrectly attributed to a guild by family surrogacy; however, the correlation of uncorrected vs. corrected guilds was invariably high. The correlation of guild richness or abundances was generally higher than the correlation of family richness or abundances. Functional diversity was not always higher in the tropics than in temperate regions. Families may potentially serve as ecological surrogates for species. Different families may present similar roles in the ecosystems, with replacement of some taxa by other within the same guild. Spiders in tropical regions seem to have higher redundancy of functional roles and/or finer resource partitioning than in temperate regions. Although species and family diversity were higher in the tropics, functional diversity seems to be also

  6. Spatial Factors Play a Major Role as Determinants of Endemic Ground Beetle Beta Diversity of Madeira Island Laurisilva

    Science.gov (United States)

    Boieiro, Mário; Carvalho, José C.; Cardoso, Pedro; Aguiar, Carlos A. S.; Rego, Carla; de Faria e Silva, Israel; Amorim, Isabel R.; Pereira, Fernando; Azevedo, Eduardo B.; Borges, Paulo A. V.; Serrano, Artur R. M.

    2013-01-01

    The development in recent years of new beta diversity analytical approaches highlighted valuable information on the different processes structuring ecological communities. A crucial development for the understanding of beta diversity patterns was also its differentiation in two components: species turnover and richness differences. In this study, we evaluate beta diversity patterns of ground beetles from 26 sites in Madeira Island distributed throughout Laurisilva – a relict forest restricted to the Macaronesian archipelagos. We assess how the two components of ground beetle beta diversity (βrepl – species turnover and βrich - species richness differences) relate with differences in climate, geography, landscape composition matrix, woody plant species richness and soil characteristics and the relative importance of the effects of these variables at different spatial scales. We sampled 1025 specimens from 31 species, most of which are endemic to Madeira Island. A spatially explicit analysis was used to evaluate the contribution of pure environmental, pure spatial and environmental spatially structured effects on variation in ground beetle species richness and composition. Variation partitioning showed that 31.9% of species turnover (βrepl) and 40.7% of species richness variation (βrich) could be explained by the environmental and spatial variables. However, different environmental variables controlled the two types of beta diversity: βrepl was influenced by climate, disturbance and soil organic matter content whilst βrich was controlled by altitude and slope. Furthermore, spatial variables, represented through Moran’s eigenvector maps, played a significant role in explaining both βrepl and βrich, suggesting that both dispersal ability and Madeira Island complex orography are crucial for the understanding of beta diversity patterns in this group of beetles. PMID:23724065

  7. Strain diversity plays no major role in the varying efficacy of rotavirus vaccines: an overview.

    Science.gov (United States)

    Velasquez, Daniel E; Parashar, Umesh D; Jiang, Baoming

    2014-12-01

    While a monovalent Rotarix® [RV1] and a pentavalent RotaTeq® [RV5] have been extensively tested and found generally safe and equally efficacious in clinical trials, the question still lingers about the evolving diversity of circulating rotavirus strains over time and their relationship with protective immunity induced by rotavirus vaccines. We reviewed data from clinical trials and observational studies that assessed the efficacy or field effectiveness of rotavirus vaccines against different rotavirus strains worldwide. RV1 provided broad clinical efficacy and field effectiveness against severe diarrhea due to all major circulating strains, including the homotypic G1P[8] and the fully heterotypic G2P[4] strains. Similarly, RV5 provided broad efficacy and effectiveness against RV5 and non-RV5 strains throughout different locations. Rotavirus vaccination provides broad heterotypic protection; however continuing surveillance is needed to track the change of circulating strains and monitor the effectiveness and safety of vaccines. Published by Elsevier B.V.

  8. Functional roles affect diversity-succession relationships for boreal beetles.

    Directory of Open Access Journals (Sweden)

    Heloise Gibb

    Full Text Available Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species. We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies. Species associated with microhabitats that accumulate with succession (fungi and dead wood thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.

  9. Functional diversity exhibits a diverse relationship with area, even a decreasing one

    Science.gov (United States)

    Karadimou, Elpida K.; Kallimanis, Athanasios S.; Tsiripidis, Ioannis; Dimopoulos, Panayotis

    2016-01-01

    The relationship between species richness and area is one of the few well-established laws in ecology, and one might expect a similar relationship with functional diversity (FD). However, only a few studies investigate the relationship between trait-based FD and area, the Functional Diversity - Area Relationship (FDAR). To examine FDAR, we constructed the species accumulation curve and the corresponding FD curve. We used plant diversity data from nested plots (1–128 m2), recorded on the Volcanic islands of Santorini Archipelagos, Greece. Six multidimensional FD indices were calculated using 26 traits. We identified a typology of FDARs depending on the facet of FD analyzed: (A) strongly positive for indices quantifying the range of functional traits in the community, (B) negative correlation for indices quantifying the evenness in the distribution of abundance in the trait space, (C) no clear pattern for indices reflecting the functional similarity of species and (D) idiosyncratic patterns with area for functional divergence. As area increases, the range of traits observed in the community increases, but the abundance of traits does not increase proportionally and some traits become dominant, implying a reliance on some functions that may be located in either the center or the periphery of the trait space. PMID:27752086

  10. Stress, Social Support, and Psychosocial Functioning of Ethnically Diverse Students

    Science.gov (United States)

    Farrell, Michelle; Langrehr, Kimberly J.

    2017-01-01

    This study examined the stress-buffering role of social support on indicators of psychosocial functioning among a combined and split sample of ethnically diverse college students. Although high social support significantly moderated 2 relationships in the combined sample, high and low levels of social support significantly reduced the effect of…

  11. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  12. Functional diversity of fish in estuaries at a global extent

    OpenAIRE

    Rita P Vasconcelos; Sébastien Villéger; François Guilhaumon

    2015-01-01

    Biodiversity is currently viewed as a framework encompassing multiple facets of the variety of life, including taxonomic and functional aspects. Species richness and composition of fish assemblages in estuaries is defined by global to local processes acting on community colonization. The present study further investigates how biodiversity of fish assemblages varies among estuaries globally, by simultaneously analysing taxonomic and functional richness and diversity of assemblages. A comprehen...

  13. New multidimensional functional diversity indices for a multifaceted framework in functional ecology.

    Science.gov (United States)

    Villéger, Sébastien; Mason, Norman W H; Mouillot, David

    2008-08-01

    Functional diversity is increasingly identified as an important driver of ecosystem functioning. Various indices have been proposed to measure the functional diversity of a community, but there is still no consensus on which are most suitable. Indeed, none of the existing indices meets all the criteria required for general use. The main criteria are that they must be designed to deal with several traits, take into account abundances, and measure all the facets of functional diversity. Here we propose three indices to quantify each facet of functional diversity for a community with species distributed in a multidimensional functional space: functional richness (volume of the functional space occupied by the community), functional evenness (regularity of the distribution of abundance in this volume), and functional divergence (divergence in the distribution of abundance in this volume). Functional richness is estimated using the existing convex hull volume index. The new functional evenness index is based on the minimum spanning tree which links all the species in the multidimensional functional space. Then this new index quantifies the regularity with which species abundances are distributed along the spanning tree. Functional divergence is measured using a novel index which quantifies how species diverge in their distances (weighted by their abundance) from the center of gravity in the functional space. We show that none of the indices meets all the criteria required for a functional diversity index, but instead we show that the set of three complementary indices meets these criteria. Through simulations of artificial data sets, we demonstrate that functional divergence and functional evenness are independent of species richness and that the three functional diversity indices are independent of each other. Overall, our study suggests that decomposition of functional diversity into its three primary components provides a meaningful framework for its quantification

  14. SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects.

    Science.gov (United States)

    Dereeper, Alexis; Nicolas, Stéphane; Le Cunff, Loïc; Bacilieri, Roberto; Doligez, Agnès; Peros, Jean-Pierre; Ruiz, Manuel; This, Patrice

    2011-05-05

    High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data. In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to

  15. Effects of land use on taxonomic and functional diversity

    DEFF Research Database (Denmark)

    Hevia, Violeta; Carmona, Carlos P.; Azcárate, Francisco M.

    2016-01-01

    Land-use change is the major driver of biodiversity loss. However, taxonomic diversity (TD) and functional diversity (FD) might respond differently to land-use change, and this response might also vary depending on the biotic group being analysed. In this study, we compare the TD and FD of four......: the sampling unit scale and the site scale. Land-use intensity effects on TD and FD were quite different and highly varied among the four biotic groups, with no single clear pattern emerging that could be considered general for all organisms. Additive partitioning of species diversity revealed clear...... contrasting patterns between TD and FD in the percentage of variability observed at each spatial scale. While most variability in TD was found at the larger scales, irregardless of organism group and land-use type, most variability in FD was found at the smallest scale, indicating that species turnover among...

  16. Rare species support vulnerable functions in high-diversity ecosystems.

    Science.gov (United States)

    Mouillot, David; Bellwood, David R; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C E Timothy; Renaud, Julien; Thuiller, Wilfried

    2013-01-01

    Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across

  17. Rare species support vulnerable functions in high-diversity ecosystems.

    Directory of Open Access Journals (Sweden)

    David Mouillot

    Full Text Available Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees, we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by

  18. Centrins in unicellular organisms: functional diversity and specialization.

    Science.gov (United States)

    Zhang, Yu; He, Cynthia Y

    2012-07-01

    Centrins (also known as caltractins) are conserved, EF hand-containing proteins ubiquitously found in eukaryotes. Similar to calmodulins, the calcium-binding EF hands in centrins fold into two structurally similar domains separated by an alpha-helical linker region, shaping like a dumbbell. The small size (15-22 kDa) and domain organization of centrins and their functional diversity/specialization make them an ideal system to study protein structure-function relationship. Here, we review the work on centrins with a focus on their structures and functions characterized in unicellular organisms.

  19. Distribution of mammal functional diversity in the Neotropical realm: Influence of land-use and extinction risk.

    Directory of Open Access Journals (Sweden)

    José F González-Maya

    Full Text Available Functional diversity represents a measure of diversity that incorporates the role of species in an ecosystem, and therefore its dynamics and resilience. Assessing its drivers and spatial variation represents an important step forward in our understanding of functional ecosystem dynamics and it is also necessary to achieve a comprehensive conservation planning. In this paper, we assessed mammal functional diversity for the 218 ecoregions within the Neotropical realm. We evaluated the overall influence and spatial variation of species richness, ecoregion extent, intervention and species at risk on functional diversity. Using ordinary least squares and geographically weighted regression modeling approaches, we found that intervened areas and threatened and non-threatened species are the most influential overall drivers of functional diversity. However, we also detected that these variables do not operate equally across scales. Our local analyses indicated both that the variation explained and local coefficients vary spatially depending on the ecoregion and major habitat type. As estimates of functional diversity are based on current distribution of all mammals, negative influence of intervened areas and positive influence of non-threatened species may reflect a potential degradation of functional processes for some ecosystems. Most generally, the negative influence of intervention together with the influence of threatened species indicates that some areas are currently more susceptible to functional diversity loss. Our results help to pinpoint key areas requiring urgent conservation action to reduce natural land-cover loss and areas where threatened species play influential roles on ecosystem functioning.

  20. Relationships between electronic game play, obesity, and psychosocial functioning in young men.

    Science.gov (United States)

    Wack, Elizabeth; Tantleff-Dunn, Stacey

    2009-04-01

    Most estimates suggest that American youth are spending a large amount of time playing video and computer games, spurring researchers to examine the impact this media has on various aspects of health and psychosocial functioning. The current study investigated relationships between frequency of electronic game play and obesity, the social/emotional context of electronic game play, and academic performance among 219 college-aged males. Current game players reported a weekly average of 9.73 hours of game play, with almost 10% of current players reporting an average of 35 hours of play per week. Results indicated that frequency of play was not significantly related to body mass index or grade point average. However, there was a significant positive correlation between frequency of play and self-reported frequency of playing when bored, lonely, or stressed. As opposed to the general conception of electronic gaming as detrimental to functioning, the results suggest that gaming among college-aged men may provide a healthy source of socialization, relaxation, and coping.

  1. The Association Between Video Game Play and Cognitive Function: Does Gaming Platform Matter?

    Science.gov (United States)

    Huang, Vivian; Young, Michaelia; Fiocco, Alexandra J

    2017-11-01

    Despite consumer growth, few studies have evaluated the cognitive effects of gaming using mobile devices. This study examined the association between video game play platform and cognitive performance. Furthermore, the differential effect of video game genre (action versus nonaction) was explored. Sixty undergraduate students completed a video game experience questionnaire, and we divided them into three groups: mobile video game players (MVGPs), console/computer video game players (CVGPs), and nonvideo game players (NVGPs). Participants completed a cognitive battery to assess executive function, and learning and memory. Controlling for sex and ethnicity, analyses showed that frequent video game play is associated with enhanced executive function, but not learning and memory. MVGPs were significantly more accurate on working memory performances than NVGPs. Both MVGPs and CVGPs were similarly associated with enhanced cognitive function, suggesting that platform does not significantly determine the benefits of frequent video game play. Video game platform was found to differentially associate with preference for action video game genre and motivation for gaming. Exploratory analyses show that sex significantly effects frequent video game play, platform and genre preference, and cognitive function. This study represents a novel exploration of the relationship between mobile video game play and cognition and adds support to the cognitive benefits of frequent video game play.

  2. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis

    OpenAIRE

    Elsholz, Alexander K. W.; Birk, Marlene S.; Charpentier, Emmanuelle; Turgay, K?r?ad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor pro...

  3. Disturbance, Functional Diversity and Ecosystem Processes: Does Species Identity Matter?

    OpenAIRE

    Emrick III, Verl Roy

    2013-01-01

    The role of disturbance is widely recognized as a fundamental driver of ecological organization from individual species to entire landscapes. Anthropogenic disturbances from military training provide a unique opportunity to examine effects of disturbance on vegetation dynamics, physicochemical soil properties, and ecosystem processes. Additionally, plant functional diversity has been suggested as the key to ecosystem processes such as productivity and nutrient dynamics. I investigated how dis...

  4. Biogeographical disparity in the functional diversity and redundancy of corals.

    Science.gov (United States)

    McWilliam, Mike; Hoogenboom, Mia O; Baird, Andrew H; Kuo, Chao-Yang; Madin, Joshua S; Hughes, Terry P

    2018-03-20

    Corals are major contributors to a range of key ecosystem functions on tropical reefs, including calcification, photosynthesis, nutrient cycling, and the provision of habitat structure. The abundance of corals is declining at multiple scales, and the species composition of assemblages is responding to escalating human pressures, including anthropogenic global warming. An urgent challenge is to understand the functional consequences of these shifts in abundance and composition in different biogeographical contexts. While global patterns of coral species richness are well known, the biogeography of coral functions in provinces and domains with high and low redundancy is poorly understood. Here, we quantify the functional traits of all currently recognized zooxanthellate coral species ( n = 821) in both the Indo-Pacific and Atlantic domains to examine the relationships between species richness and the diversity and redundancy of functional trait space. We find that trait diversity is remarkably conserved (>75% of the global total) along latitudinal and longitudinal gradients in species richness, falling away only in species-poor provinces ( n < 200), such as the Persian Gulf (52% of the global total), Hawaii (37%), the Caribbean (26%), and the East-Pacific (20%), where redundancy is also diminished. In the more species-poor provinces, large and ecologically important areas of trait space are empty, or occupied by just a few, highly distinctive species. These striking biogeographical differences in redundancy could affect the resilience of critical reef functions and highlight the vulnerability of relatively depauperate, peripheral locations, which are often a low priority for targeted conservation efforts.

  5. Functional diversity of fish in estuaries at a global extent

    Directory of Open Access Journals (Sweden)

    Rita P Vasconcelos

    2015-10-01

    Full Text Available Biodiversity is currently viewed as a framework encompassing multiple facets of the variety of life, including taxonomic and functional aspects. Species richness and composition of fish assemblages in estuaries is defined by global to local processes acting on community colonization. The present study further investigates how biodiversity of fish assemblages varies among estuaries globally, by simultaneously analysing taxonomic and functional richness and diversity of assemblages. A comprehensive worldwide database was compiled on the fish assemblage composition and environmental characteristics of estuaries. In addition, functional attributes of the fish species were characterized such as body size, habitat use and trophic ecology. We investigated the relationship between taxonomic and functional aspects of biodiversity, i.e. the match or mismatch between the two. We also explored how functional diversity of fish assemblages varied among estuaries globally and related to environmental features of estuaries, i.e. historic and contemporary, global and local constraints. The results are explored in the context of ecosystem functioning and resilience, and outcomes relevant to assist in prioritizing conservation efforts are highlighted.

  6. Plant functional diversity affects climate-vegetation interaction

    Science.gov (United States)

    Groner, Vivienne P.; Raddatz, Thomas; Reick, Christian H.; Claussen, Martin

    2018-04-01

    We present how variations in plant functional diversity affect climate-vegetation interaction towards the end of the African Humid Period (AHP) in coupled land-atmosphere simulations using the Max Planck Institute Earth system model (MPI-ESM). In experiments with AHP boundary conditions, the extent of the green Sahara varies considerably with changes in plant functional diversity. Differences in vegetation cover extent and plant functional type (PFT) composition translate into significantly different land surface parameters, water cycling, and surface energy budgets. These changes have not only regional consequences but considerably alter large-scale atmospheric circulation patterns and the position of the tropical rain belt. Towards the end of the AHP, simulations with the standard PFT set in MPI-ESM depict a gradual decrease of precipitation and vegetation cover over time, while simulations with modified PFT composition show either a sharp decline of both variables or an even slower retreat. Thus, not the quantitative but the qualitative PFT composition determines climate-vegetation interaction and the climate-vegetation system response to external forcing. The sensitivity of simulated system states to changes in PFT composition raises the question how realistically Earth system models can actually represent climate-vegetation interaction, considering the poor representation of plant diversity in the current generation of land surface models.

  7. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in Neotropical Savanna headwater streams

    Science.gov (United States)

    Biological diversity can be divided into: alpha (α, local), beta (β, difference in assemblage composition among locals), and gamma (γ, total diversity). We assessed the partitioning of taxonomic diversity of Ephemeroptera, Plecoptera and Trichoptera (EPT) and of functional feedin...

  8. Factors shaping bacterial phylogenetic and functional diversity in coastal waters of the NW Mediterranean Sea

    Science.gov (United States)

    Boras, Julia A.; Vaqué, Dolors; Maynou, Francesc; Sà, Elisabet L.; Weinbauer, Markus G.; Sala, Maria Montserrat

    2015-03-01

    To evaluate the main factors shaping bacterioplankton phylogenetic and functional diversity in marine coastal waters, we carried out a two-year study based on a monthly sampling in Blanes Bay (NW Mediterranean). We expected the key factors driving bacterial diversity to be (1) temperature and nutrient concentration, together with chlorophyll a concentration as an indicator of phytoplankton biomass and, hence, a carbon source for bacteria (here called bottom-up factors), and (2) top-down pressure (virus- and protist-mediated mortality of bacteria). Phylogenetic diversity was analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA. Functional diversity was assessed by using monomeric carbon sources in Biolog EcoPlates and by determining the activity of six extracellular enzymes. Our results indicate that the bacterial phylogenetic and functional diversity in this coastal system is shaped mainly by bottom-up factors. A dendrogram analysis of the DGGE banding patterns revealed three main sample clusters. Two clusters differed significantly in temperature, nitrate and chlorophyll a concentration, and the third was characterized by the highest losses of bacterial production due to viral lysis detected over the whole study period. Protistan grazing had no effect on bacterial functional diversity, since there were no correlations between protist-mediated mortality (PMM) and extracellular enzyme activities, and utilization of only two out of the 31 carbon sources (N-acetyl-D-glucosamine and α-cyclodextrin) was correlated with PMM. In contrast, virus-mediated mortality correlated with changes in the percentage of use of four carbon sources, and also with specific leu-aminopeptidase and β-glucosidase activity. This suggests that viral lysate provides a pool of labile carbon sources, presumably including amino acids and glucose, which may inhibit proteolytic and glucosidic activity. Our results indicate that bottom-up factors play a more important role than

  9. Everyday psychological functioning in children with unilateral cerebral palsy: does executive functioning play a role?

    Science.gov (United States)

    Whittingham, Koa; Bodimeade, Harriet L; Lloyd, Owen; Boyd, Roslyn N

    2014-06-01

    To identify whether executive functioning mediates the effect of having unilateral cerebral palsy (CP) on executive functioning in everyday life, psychological functioning, and social functioning. A cross-sectional cohort of 46 children with unilateral CP (25 males, 21 females; mean age 11y 1mo, SD 2y 5mo; 24 right-sided, 22 left-sided) and 20 children with typical development (nine males, 11 females; mean age 10y 10mo, SD 2y 4mo). Cognitive executive functioning was tested using a neuropsychological battery. Executive functioning in everyday life was measured with the Behavior Rating Inventory of Executive Function (BRIEF; teacher and parent reports) and psychological and social functioning by the Strengths and Difficulties Questionnaire (SDQ). Analysis included analysis of covariance and bootstrapping. Children with unilateral CP were found to have significantly decreased functioning, compared with children with typical development, on the BRIEF Behavioral Regulation Index, the BRIEF Metacognition Index, and on the SDQ emotion, conduct, hyperactivity, and peer problems subscales. Group differences were mediated by cognitive executive functioning for the BRIEF Metacognition Index (teacher and parent report), the BRIEF Behavioral Regulation Index (parent report only), the SDQ conduct subscale, and the SDQ hyperactivity subscale. This study suggests that the increased risk of children with unilateral CP experiencing executive functioning difficulties in everyday life, conduct problems, and hyperactivity can be partly explained by decreased cognitive executive functioning abilities relative to children with typical development. © 2014 Mac Keith Press.

  10. Morphological and functional diversity of primary producers group in savannas

    International Nuclear Information System (INIS)

    Medina, E.

    1996-01-01

    The meaning of biological diversity for the operation and stability of natural ecosystems is matter of great theoretical and practical interest. The appearance and permanency of species in a given atmosphere indicates its capacity to compete with other species with similar habit and requirements, and to accumulate the resources that allow its reproduction. On the other hand, the coexistence of similar species in the same ecosystem allows to wonder if ever biological redundancy exists, that is to say, if several species coexist with the same function inside the ecosystem, so that the disappearance of one of them would not have biological significant consequences. A strategy to simplify the analysis of relationships between biodiversity and ecosystems operation is by grouping species with similar function, called functional groups. In this work the the primary producers functional group is analyzed, essentially superiors plants, in a savannas ecosystems. The analysis establishes that the gives the primary producers group is heterogeneous and complex, so much morphological as functionally: 1) the structural complexity and diversity forms of life in an savannas ecosystem are associated with the stratified exploitation of resources over (light) and under the floor (nourishment and water). Changes in diversity that affect the system structure will probably also affect its operations. 2 )Very similar morphological species can differ physiologically up to constitute production units with contrasting nutritional requirements. The echo-physiologic analysis of this differentiation can explain the habitat preferences that are naturally observed. 3) The long-time permanency of rare species, of low frequency, show the inability of dominant species to capture all the available resources. 4) The primary producers and the floor microorganisms have strong interactions. Changes in the community composition can generate significant changes in other community. These biotic interactions

  11. PDZ-containing proteins: alternative splicing as a source of functional diversity.

    Science.gov (United States)

    Sierralta, Jimena; Mendoza, Carolina

    2004-12-01

    Scaffold proteins allow specific protein complexes to be assembled in particular regions of the cell at which they organize subcellular structures and signal transduction complexes. This characteristic is especially important for neurons, which are highly polarized cells. Among the domains contained by scaffold proteins, the PSD-95, Discs-large, ZO-1 (PDZ) domains are of particular relevance in signal transduction processes and maintenance of neuronal and epithelial polarity. These domains are specialized in the binding of the carboxyl termini of proteins allowing membrane proteins to be localized by the anchoring to the cytoskeleton mediated by PDZ-containing scaffold proteins. In vivo studies carried out in Drosophila have taught that the role of many scaffold proteins is not limited to a single process; thus, in many cases the same genes are expressed in different tissues and participate in apparently very diverse processes. In addition to the differential expression of interactors of scaffold proteins, the expression of variants of these molecular scaffolds as the result of the alternative processing of the genes that encode them is proving to be a very important source of variability and complexity on a main theme. Alternative splicing in the nervous system is well documented, where specific isoforms play roles in neurotransmission, ion channel function, neuronal cell recognition, and are developmentally regulated making it a major mechanism of functional diversity. Here we review the current state of knowledge about the diversity and the known function of PDZ-containing proteins in Drosophila with emphasis in the role played by alternatively processed forms in the diversity of functions attributed to this family of proteins.

  12. Condensins: universal organizers of chromosomes with diverse functions.

    Science.gov (United States)

    Hirano, Tatsuya

    2012-08-01

    Condensins are multisubunit protein complexes that play a fundamental role in the structural and functional organization of chromosomes in the three domains of life. Most eukaryotic species have two different types of condensin complexes, known as condensins I and II, that fulfill nonoverlapping functions and are subjected to differential regulation during mitosis and meiosis. Recent studies revealed that the two complexes contribute to a wide variety of interphase chromosome functions, such as gene regulation, recombination, and repair. Also emerging are their cell type- and tissue-specific functions and relevance to human disease. Biochemical and structural analyses of eukaryotic and bacterial condensins steadily uncover the mechanisms of action of this class of highly sophisticated molecular machines. Future studies on condensins will not only enhance our understanding of chromosome architecture and dynamics, but also help address a previously underappreciated yet profound set of questions in chromosome biology.

  13. Benefits of Simulation and Role-Playing to Teach Performance of Functional Assessments.

    Science.gov (United States)

    Trail Ross, Mary Ellen; Otto, Dorothy A; Stewart Helton, Anne

    The use of simulation is an innovative teaching strategy that has proven to be valuable in nursing education. This article describes the benefits of a simulation lab involving faculty role-play to teach baccalaureate nursing students how to properly assess the functional status of older adults. Details about the simulation lab, which involved functional assessments of two elderly community-dwelling residents, are presented, along with student and faculty evaluations of this teaching modality.

  14. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis.

    Science.gov (United States)

    Elsholz, Alexander K W; Birk, Marlene S; Charpentier, Emmanuelle; Turgay, Kürşad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis . We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.

  15. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis

    Science.gov (United States)

    Elsholz, Alexander K. W.; Birk, Marlene S.; Charpentier, Emmanuelle; Turgay, Kürşad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics. PMID:28748186

  16. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-12-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  17. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-01-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  18. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe

    DEFF Research Database (Denmark)

    Thuiller, Wilfried; Lavorel, Sandra; Sykes, Martin T.

    2006-01-01

    Rapid anthropogenic climate change is already affecting species distributions and ecosystem functioning worldwide. We applied niche-based models to analyse the impact of climate change on tree species and functional diversity in Europe. Present-day climate was used to predict the distributions...... of 122 tree species from different functional types (FT). We then explored projections of future distributions under one climate scenario for 2080, considering two alternative dispersal assumptions: no dispersal and unlimited dispersal. The species-rich broadleaved deciduous group appeared to play a key...... role in the future of different European regions. Temperate areas were projected to lose both species richness and functional diversity due to the loss of broadleaved deciduous trees. These were projected to migrate to boreal forests, thereby increasing their species richness and functional diversity...

  19. Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.

    Science.gov (United States)

    Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj

    2016-01-01

    The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.

  20. Consumers control diversity and functioning of a natural marine ecosystem.

    Directory of Open Access Journals (Sweden)

    Andrew H Altieri

    Full Text Available BACKGROUND: Our understanding of the functional consequences of changes in biodiversity has been hampered by several limitations of previous work, including limited attention to trophic interactions, a focus on species richness rather than evenness, and the use of artificially assembled communities. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we manipulated the density of an herbivorous snail in natural tide pools and allowed seaweed communities to assemble in an ecologically relevant and non-random manner. Seaweed species evenness and biomass-specific primary productivity (mg O(2 h(-1 g(-1 were higher in tide pools with snails because snails preferentially consumed an otherwise dominant seaweed species that can reduce biomass-specific productivity rates of algal assemblages. Although snails reduced overall seaweed biomass in tide pools, they did not affect gross primary productivity at the scale of tide pools (mg O(2 h(-1 pool(-1 or mg O(2 h(-1 m(-2 because of the enhanced biomass-specific productivity associated with grazer-mediated increases in algal evenness. SIGNIFICANCE: Our results suggest that increased attention to trophic interactions, diversity measures other than richness, and particularly the effects of consumers on evenness and primary productivity, will improve our understanding of the relationship between diversity and ecosystem functioning and allow more effective links between experimental results and real-world changes in biodiversity.

  1. Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape.

    Directory of Open Access Journals (Sweden)

    Luciana Coe Girão

    Full Text Available Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems in 10 fragments and 10 tracts of forest interior (control plots. As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated. The most conspicuous differences were the lack of three pollination systems in fragments--pollination by birds, flies and non-flying mammals--and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores for pollination systems (-30.3%, floral types (-23.6%, and floral sizes (-20.8% in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and

  2. Urbanization Drives a Reduction in Functional Diversity in a Guild of Nectar-feeding Birds

    Directory of Open Access Journals (Sweden)

    Anton Pauw

    2012-06-01

    Full Text Available Urbanization is a widespread and rapidly growing threat to biodiversity, therefore we need a predictive understanding of its effects on species and ecosystem processes. In this paper we study the impact of urbanization on a guild of nectar-feeding birds in a biodiversity hotspot at the Cape of Africa. The guild of four bird species provides important ecosystem services by pollinating 320 plant species in the Cape Floral Region. Functional diversity within the guild is related to differences in bill length. The long-billed Malachite Sunbird (Nectarinia famosa plays an irreplaceable role as the exclusive pollinator of plant species with long nectar tubes. We analyzed the composition of the guild in suburban gardens of Cape Town along a gradient of increasing distance from the nearest natural habitat. Urbanization reduces the functional diversity of the nectarivore guild. Malachite Sunbirds did not penetrate more than 1 km into the city, whereas only the short-billed Southern Double-collared Sunbirds (Cinnyris chalybea occurred throughout the urbanization gradient. The lack of data precludes conclusions regarding the detailed responses of Orange-breasted Sunbirds (Anthobaphes violacea and Sugarbirds (Promerops cafer, however their absence across the entire gradient is suggestive of high sensitivity. The functional diversity of this guild of pollinators can potentially be restored, but the pros and cons of this conservation action need to be considered.

  3. The Function of Play in Bruno Munari’s Children’s Books. A Historical Overview

    Directory of Open Access Journals (Sweden)

    Marnie Campagnaro

    2016-11-01

    Full Text Available The ludic dimension of Bruno Munari’s prolific children’s book publishing activity plays an important role, as far as narration and visual arts are concerned. Since the 1940s, and for the following 50 years, books, play and education were fundamental reference points in the artistic production and critical thinking of this Milanese artist. Munari cultivated these influences with extraordinary results in his picturebooks. The following analysis of some of Munari’s texts offers a historical-critical perspective on the value, function and representation of play in this vast production. The present research relies on three main analytical categories: co-authorship, disorientation and the experience of the limit.

  4. Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem.

    Science.gov (United States)

    Rudolf, Volker H W; Rasmussen, Nick L

    2013-05-01

    A central challenge in community ecology is to understand the connection between biodiversity and the functioning of ecosystems. While traditional approaches have largely focused on species-level diversity, increasing evidence indicates that there exists substantial ecological diversity among individuals within species. By far, the largest source of this intraspecific diversity stems from variation among individuals in ontogenetic stage and size. Although such ontogenetic shifts are ubiquitous in natural communities, whether and how they scale up to influence the structure and functioning of complex ecosystems is largely unknown. Here we take an experimental approach to examine the consequences of ontogenetic niche shifts for the structure of communities and ecosystem processes. In particular we experimentally manipulated the stage structure in a keystone predator, larvae of the dragonfly Anax junius, in complex experimental pond communities to test whether changes in the population stage or size structure of a keystone species scale up to alter community structure and ecosystem processes, and how functional differences scale with relative differences in size among stages. We found that the functional role of A. junius was stage-specific. Altering what stages were present in a pond led to concurrent changes in community structure, primary producer biomass (periphyton and phytoplankton), and ultimately altered ecosystem processes (respiration and net primary productivity), indicating a strong, but stage-specific, trophic cascade. Interestingly, the stage-specific effects did not simply scale with size or biomass of the predator, but instead indicated clear ontogenetic niche shifts in ecological interactions. Thus, functional differences among stages within a keystone species scaled up to alter the functioning of entire ecosystems. Therefore, our results indicate that the classical approach of assuming an average functional role of a species can be misleading because

  5. Gestational cortisol and social play shape development of marmosets' HPA functioning and behavioral responses to stressors.

    Science.gov (United States)

    Mustoe, Aaryn C; Taylor, Jack H; Birnie, Andrew K; Huffman, Michelle C; French, Jeffrey A

    2014-09-01

    Both gestational cortisol exposure (GCE) and variability in postnatal environments can shape the later-life behavioral and endocrine outcomes of the hypothalamic-pituitary-adrenal (HPA) axis. We examined the influence of GCE and social play on HPA functioning in developing marmosets. Maternal urinary cortisol samples were collected across pregnancy to determine GCE for 28 marmoset offspring (19 litters). We administered a social separation stressor to offspring at 6, 12, and 18 months of age, during which we collected urinary cortisol samples and behavioral observations. Increased GCE was associated with increased basal cortisol levels and cortisol reactivity, but the strength of this relationship decreased across age. Increased social play was associated with decreased basal cortisol levels and a marginally greater reduction in cortisol reactivity as offspring aged, regardless of offspring GCE. Thus, GCE is associated with HPA functioning, but socially enriching postnatal environments can alter the effects associated with increased fetal exposure to glucocorticoids. © 2014 Wiley Periodicals, Inc.

  6. Structure, function and diversity of the healthy human microbiome.

    Science.gov (United States)

    2012-06-13

    Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat's signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81-99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.

  7. Unrecognized coral species diversity masks differences in functional ecology.

    Science.gov (United States)

    Boulay, Jennifer N; Hellberg, Michael E; Cortés, Jorge; Baums, Iliana B

    2014-02-07

    Porites corals are foundation species on Pacific reefs but a confused taxonomy hinders understanding of their ecosystem function and responses to climate change. Here, we show that what has been considered a single species in the eastern tropical Pacific, Porites lobata, includes a morphologically similar yet ecologically distinct species, Porites evermanni. While P. lobata reproduces mainly sexually, P. evermanni dominates in areas where triggerfish prey on bioeroding mussels living within the coral skeleton, thereby generating asexual coral fragments. These fragments proliferate in marginal habitat not colonized by P. lobata. The two Porites species also show a differential bleaching response despite hosting the same dominant symbiont subclade. Thus, hidden diversity within these reef-builders has until now obscured differences in trophic interactions, reproductive dynamics and bleaching susceptibility, indicative of differential responses when confronted with future climate change.

  8. The functions of biological diversity in an age of extinction.

    Science.gov (United States)

    Naeem, Shahid; Duffy, J Emmett; Zavaleta, Erika

    2012-06-15

    Ecosystems worldwide are rapidly losing taxonomic, phylogenetic, genetic, and functional diversity as a result of human appropriation of natural resources, modification of habitats and climate, and the spread of pathogenic, exotic, and domestic plants and animals. Twenty years of intense theoretical and empirical research have shown that such biotic impoverishment can markedly alter the biogeochemical and dynamic properties of ecosystems, but frontiers remain in linking this research to the complexity of wild nature, and in applying it to pressing environmental issues such as food, water, energy, and biosecurity. The question before us is whether these advances can take us beyond merely invoking the precautionary principle of conserving biodiversity to a predictive science that informs practical and specific solutions to mitigate and adapt to its loss.

  9. Functionally relevant diversity of closely related Nitrospira in activated sludge.

    Science.gov (United States)

    Gruber-Dorninger, Christiane; Pester, Michael; Kitzinger, Katharina; Savio, Domenico F; Loy, Alexander; Rattei, Thomas; Wagner, Michael; Daims, Holger

    2015-03-01

    Nitrospira are chemolithoautotrophic nitrite-oxidizing bacteria that catalyze the second step of nitrification in most oxic habitats and are important for excess nitrogen removal from sewage in wastewater treatment plants (WWTPs). To date, little is known about their diversity and ecological niche partitioning within complex communities. In this study, the fine-scale community structure and function of Nitrospira was analyzed in two full-scale WWTPs as model ecosystems. In Nitrospira-specific 16S rRNA clone libraries retrieved from each plant, closely related phylogenetic clusters (16S rRNA identities between clusters ranged from 95.8% to 99.6%) within Nitrospira lineages I and II were found. Newly designed probes for fluorescence in situ hybridization (FISH) allowed the specific detection of several of these clusters, whose coexistence in the WWTPs was shown for prolonged periods of several years. In situ ecophysiological analyses based on FISH, relative abundance and spatial arrangement quantification, as well as microautoradiography revealed functional differences of these Nitrospira clusters regarding the preferred nitrite concentration, the utilization of formate as substrate and the spatial coaggregation with ammonia-oxidizing bacteria as symbiotic partners. Amplicon pyrosequencing of the nxrB gene, which encodes subunit beta of nitrite oxidoreductase of Nitrospira, revealed in one of the WWTPs as many as 121 species-level nxrB operational taxonomic units with highly uneven relative abundances in the amplicon library. These results show a previously unrecognized high diversity of Nitrospira in engineered systems, which is at least partially linked to niche differentiation and may have important implications for process stability.

  10. Diversity and functions of protein glycosylation in insects.

    Science.gov (United States)

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Linking biological soil crust diversity to ecological functions

    Science.gov (United States)

    Glaser, Karin; Borchhardt, Nadine; Schulz, Karoline; Mikhailyuk, Tatiana; Baumann, Karen; Leinweber, Peter; Ulf, Karsten

    2016-04-01

    Biological soil crusts (BSCs) are an association of different microorganisms and soil particles in the top millimeters of the soil. They are formed by algae, cyanobacteria, microfungi, bacteria, bryophytes and lichens in various compositions. Our aim was to determine and compare the biodiversity of all occurring organisms in biogeographically different habitats, ranging from polar (both Arctic and Antarctic), subpolar (Scandinavia), temperate (Germany) to dry regions (Chile). The combination of microscopy and molecular techniques (next-generation sequencing) revealed highly diverse crust communities, whose composition clustered by region and correlates with habitat characteristics such as water content. The BSC biodiversity was then linked to the ecological function of the crusts. The functional role of the BSCs in the biogeochemical cycles of carbon, nitrogen and phosphorous is evaluated using an array of state of the art soil chemistry methods including Py-FIMS (pyrolysis field ionization mass spectrometry) and XANES (x-ray absorbance near edge structure). Total P as well as P fractions were quantified in all BSCs, adjacent soil underneath and comparable nearby soil of BSC-free areas revealing a remarkable accumulation of total phosphorous and a distinct pattern of P fractions in the crust. Further, we observed an indication of a different P-speciation composition in the crust compared with BSC-free soil. The data allow answering the question whether BSCs act as sink or source for these compounds, and how biodiversity controls the biogeochemical function of BSCs.

  12. Measures of behavioral function predict duration of video game play: Utilization of the Video Game Functional Assessment - Revised.

    Science.gov (United States)

    Buono, Frank D; Griffiths, Mark D; Sprong, Matthew E; Lloyd, Daniel P; Sullivan, Ryan M; Upton, Thomas D

    2017-12-01

    Background Internet gaming disorder (IGD) was introduced in the DSM-5 as a way of identifying and diagnosing problematic video game play. However, the use of the diagnosis is constrained, as it shares criteria with other addictive orders (e.g., pathological gambling). Aims Further work is required to better understand IGD. One potential avenue of investigation is IGD's relationship to the primary reinforcing behavioral functions. This study explores the relationship between duration of video game play and the reinforcing behavioral functions that may motivate or maintain video gaming. Methods A total of 499 video game players began the online survey, with complete data from 453 participants (85% white and 28% female), were analyzed. Individuals were placed into five groups based on self-reported hours of video gaming per week, and completed the Video Game Functional Assessment - Revised (VGFA-R). Results The results demonstrated the escape and social attention function were significant in predicting duration of video game play, whereas sensory and tangible were not significant. Conclusion Future implications of the VGFA-R and behaviorally based research are discussed.

  13. Diversity

    Science.gov (United States)

    Portraits In Courage Vol. VIII Portraits In Courage Vol. IX Portraits In Courage Vol. X AF Sites Social -Wide Initiative to Promote Diversity and Inclusion in the Federal Workforce Executive Order 13548 : Virtual Diversity Conference Air Force Diversity & Inclusion Air Force Diversity Graphic There is no

  14. Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil.

    Science.gov (United States)

    Ding, Long-Jun; Su, Jian-Qiang; Sun, Guo-Xin; Wu, Jin-Shui; Wei, Wen-Xue

    2018-02-01

    Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community and functional genes to long-term integrated fertilization (chemical combined with organic fertilization) remain unclear. Here, we used pyrosequencing and a microarray-based GeoChip to explore the shifts of microbial community and functional genes in a paddy soil which received over 21-year fertilization with various regimes, including control (no fertilizer), rice straw (R), rice straw plus chemical fertilizer nitrogen (NR), N and phosphorus (NPR), NP and potassium (NPKR), and reduced rice straw plus reduced NPK (L-NPKR). Significant shifts of the overall soil bacterial composition only occurred in the NPKR and L-NPKR treatments, with enrichment of certain groups including Bradyrhizobiaceae and Rhodospirillaceae families that benefit higher productivity. All fertilization treatments significantly altered the soil microbial functional structure with increased diversity and abundances of genes for carbon and nitrogen cycling, in which NPKR and L-NPKR exhibited the strongest effect, while R exhibited the least. Functional gene structure and abundance were significantly correlated with corresponding soil enzymatic activities and rice yield, respectively, suggesting that the structural shift of the microbial functional community under fertilization might promote soil nutrient turnover and thereby affect yield. Overall, this study indicates that the combined application of rice straw and balanced chemical fertilizers was more pronounced in shifting the bacterial composition and improving the functional diversity toward higher productivity, providing a microbial point of view on applying a cost-effective integrated fertilization regime with rice straw plus reduced chemical fertilizers for sustainable nutrient management.

  15. Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-06-01

    Full Text Available Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C, nitrogen (N, and phosphorus (P cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip, we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH, transformation of hydroxylamine to nitrite (hao and ammonification (gdh genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated

  16. Decreases in soil microbial function and functional diversity in response to depleted uranium

    International Nuclear Information System (INIS)

    Meyer, M.C.; Paschke, M.W.; McLendon, T.

    1998-01-01

    A soil microcosm experiment was used to analyze effects of depleted uranium (DU) on soil function, and the concomitant changes in bacterial functional diversity. Uranium treatment levels were 0, 50, 500, 5000, 10,000 and 25,000 mg DU kg -1 soil. Three measures of soil function were made. Overall soil biological activity was assessed via measurement of soil respiration. Decomposition was assessed by measurement of mass loss of four different plant litter types: wood sticks, cellulose paper, high-N grass, and low-N grass. Mineral N availability in the microcosms was estimated using ion-exchange resin bags. Functional diversity of the microcosms was analyzed through the use of the Biolog-system of sole-C-utilization patterns. Soil respiration was the most sensitive measure of functional changes, with significant decreases observed starting at the 500 mg kg -1 treatment. No differences in N availability were observed across the U treatments. Litter decomposition was significantly decreased at the 25,000 mg kg -1 level relative to the control for all litter types except the high-N grass. Wood decomposition was reduced by 84% at the 25,000 mg kg - treatment, cellulose paper by 68%, and low-N grass by 15%. Decreases in the functional diversity of the bacterial community were related to the observed decrease in soil respiration, and to the greater effect on decomposition of the lower-quality litter types

  17. Butterflies show different functional and species diversity in relationship to vegetation structure and land use

    NARCIS (Netherlands)

    Aguirre-Gutiérrez, J.; WallisDeVries, M.F.; Marshall, L.; van't Zelfde, M.; Villalobos-Arámbula, A.R.; Boekelo, B.; Bartholomeus, H.; Franzén, M.; Biesmeijer, J.C.

    2017-01-01

    Aim: Biodiversity is rapidly disappearing at local and global scales also affecting the functional diversity of ecosystems. We aimed to assess whether functional diversity was correlated with species diversity and whether both were affected by similar land use and vegetation structure drivers.

  18. Mobilization of interactions between functional diversity of plant and soil organisms on nitrogen availability and use

    Science.gov (United States)

    Drut, Baptiste; Cassagne, Nathalie; Cannavacciuolo, Mario; Brauman, Alain; Le Floch, Gaëtan; Cobo, Jose; Fustec, Joëlle

    2017-04-01

    Keywords: legumes, earthworms, microorganisms, nitrogen, interactions Both aboveground and belowground biodiversity and their interactions can play an important role in crop productivity. Plant functional diversity, such as legume based intercrops have been shown to improve yields through plant complementarity for nitrogen use (Corre-Hellou et al., 2006). Moreover, plant species or plant genotype may influence the structure of soil microorganism communities through the composition of rhizodeposits in the rhizosphere (Dennis et al., 2010). Belowground diversity can also positively influence plant performance especially related to functional dissimilarity between soil organisms (Eisenhauer, 2012). Earthworms through their burrowing activity influence soil microbial decomposers and nutrient availability and have thus been reported to increase plant growth (Brown, 1995; Brown et al., 2004). We hypothesize that i) plant functional (genetic and/or specific) diversity associated to functional earthworms diversity are key drivers of interactions balance to improve crop performances and ii) the improvement of plant performances can be related to change in the structure of soil microorganism communities due to the diversity of rhizodeposits and the burrowing activity of earthworms. In a first mesocosm experiment, we investigated the effect of a gradient of plant diversity - one cultivar of wheat (Triticum aestivum L.), 3 different wheat cultivars, and 3 different cultivars intercropped with clover (Trifolium hybridum L.) - and the presence of one (endogeic) or two (endogeic and anecic) categories of earthworms on biomass and nitrogen accumulation of wheat. In a second mesocosm experiment, we investigated the influence of three species with different rhizodeposition - wheat, rapeseed (Brassica napus L. ) and faba bean (Vicia faba L.) in pure stand or intercropped - and the presence of endogeic earthworms on microbial activity and nitrogen availability. In the first experiment

  19. Functional diversity of potassium channel voltage-sensing domains.

    Science.gov (United States)

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  20. Phylogenetic and Functional Diversity of Fleshy-Fruited Plants Are Positively Associated with Seedling Diversity in a Tropical Montane Forest

    Directory of Open Access Journals (Sweden)

    Marcia C. Muñoz

    2017-08-01

    Full Text Available Mutualistic interactions between plants and animals can affect both plant and animal communities, and potentially leave imprints on plant demography. Yet, no study has simultaneously tested how trait variation in plant resources shapes the diversity of animal consumers, and how these interactions influence seedling recruitment. Here, we analyzed whether (i phylogenetic diversity and functional diversity of fruiting plants were correlated with the corresponding diversity of frugivorous birds, and (ii whether phylogenetic diversity and functional identity of plant and bird communities influenced the corresponding diversity and identity of seedling communities. We recorded mutualistic interactions between fleshy-fruited plants and frugivorous birds and seedling communities in 10 plots along an elevational gradient in the Colombian Andes. We built a phylogeny for plants/seedlings and birds and measured relevant morphological plant and bird traits that influence plant-bird interactions and seedling recruitment. We found that phylogenetic diversity and functional diversity of frugivorous birds were positively associated with the corresponding diversities of fruiting plants, consistent with a bottom-up effect of plants on birds. Moreover, the phylogenetic diversity of seedlings was related to the phylogenetic diversity of plants, but was unrelated to the phylogenetic diversity of frugivorous birds, suggesting that top-down effects of animals on seedlings were weak. Mean seed mass of seedling communities was positively associated with the mean fruit mass of plants, but was not associated with the mean avian body mass in the frugivore communities. Our study shows that variation in the traits of fleshy-fruited plants was associated with the diversity of frugivorous birds and affected the future trajectory of seedling recruitment, whereas the morphological traits of animal seed dispersers were unrelated to the phylogenetic and functional structure of

  1. Syndecans as cell surface receptors: Unique structure equates with functional diversity

    DEFF Research Database (Denmark)

    Choi, Youngsil; Chung, Heesung; Jung, Heyjung

    2011-01-01

    An increasing number of functions for syndecan cell surface heparan sulfate proteoglycans have been proposed over the last decade. Moreover, aberrant syndecan regulation has been found to play a critical role in multiple pathologies, including cancers, as well as wound healing and inflammation....... As receptors, they have much in common with other molecules on the cell surface. Syndecans are type I transmembrane molecules with cytoplasmic domains that link to the actin cytoskeleton and can interact with a number of regulators. However, they are also highly complex by virtue of their external...... glycosaminoglycan chains, especially heparan sulfate. This heterodisperse polysaccharide has the potential to interact with many ligands from diverse protein families. Here, we relate the structural features of syndecans to some of their known functions....

  2. The Efficacy of Exergames Played Proximally and over the Internet on Cognitive Functioning for Online Physical Education

    Science.gov (United States)

    Kooiman, Brian J.; Sheehan, Dwayne P.

    2014-01-01

    Exergames (active video games that require kinesthetic movement) played in proximity to other players or against a gaming machine have been linked to positive increases in cognitive functioning. This study tested to see if remote exergame play over the Internet had an impact similar to exergames that are played in proximity. The study shows that…

  3. Spatial Tourist and Functional Diversity on the Volcanic Island of Gran Canaria

    Science.gov (United States)

    Gonda-Soroczyńska, Eleonora; Olczyk, Hanna

    2017-10-01

    The conducted research is focused on spatial, functional and landscape diversity, the existing tourist potential and the possibilities for further development of a small, volcanic island of Gran Canaria. The discussed island was compared against other islands of the Canarian archipelago (Lanzarote, Fuerteventura, Tenerife, La Palma, El Hierro). Similarly to the remaining Canary Islands, the economy of Gran Canaria is predominantly based on tourism (approx. 4,5-5,0 million tourists visit the Canary Island annually and approx. 2,8 million come to Gran Canaria). Additionally, Puerto de la Luz transhipment centre in Las Palmas plays a very important role because of the goods imported from overseas. It is one of the largest ports in Spain (it reloads almost 2 million containers per year) also being an important Atlantic refuelling station. Apart from tourism, an important role is played here by agriculture, primarily the cultivation of bananas and tomatoes, which represent the most significant export good of the archipelago. The conducted spatial research showed an extensive diversity. This situation is, to a great extent, influenced by the climate. The northern part is cooler and dominated by agriculture, whereas the southern one is much warmer and characterized by a well-developed tourism infrastructure. Site inspections performed out along the outer contour of the island resembling a circle. Numerous architectural and urban sketches, urban analyses and photographic documentation were made. Community surveys were carried out. For a researcher, it was extremely interesting to answer the questions whether Gran Canaria is different from the other Canary Islands, especially in the functional and landscape context, and if so what exactly these differences consist of. What is Gran Canaria in particular characterized by and what kind of role it plays in the economic sector of Spain?

  4. Functions of pointing by humans, and dogs’ responses, during dog-human play between familiar and unfamiliar players.

    Directory of Open Access Journals (Sweden)

    Robert W. Mitchell

    2018-05-01

    Full Text Available Although much research focuses on human index finger pointing to hidden items for dogs in experimental settings, there is little research about human pointing in naturalistic interactions. We examined human pointing to dogs during 62 dog-human play interactions, spanning 4.8 hours of videotape, to determine the functions of human pointing and dogs’ responses to that pointing. Participants were 26 humans and 27 dogs. Humans played with their own dog(s and, almost always, an unfamiliar dog. Seventeen people (16 players and one passerby pointed for 20 dogs a total of 101 times (once with a foot during 26 interactions. Most (49.5% points were toward an object (almost always a ball, to direct attention or action toward the object; 36.6% were to the ground in front of the (almost always familiar pointer, directing the dog to come, and/or drop a ball the dog held, here; 10.9% directed the dog toward the designated player and/or play area; and 3.0% directed the dog to move away from a ball the dog had dropped. Humans almost always pointed such that the dog could see the point (92.1%, and pointed more with their own than with an unfamiliar dog. Dogs responded appropriately (i.e., did what the pointer requested for only 24.7% of the visible points, more often for points to the ground than for points to objects. The proportion of dogs’ appropriate responses to visible points was similar for both familiar (30% and unfamiliar (18% humans. Six dogs who responded appropriately to some points resisted responding appropriately to others. Future research should examine non-object directed uses of pointing with dogs and their responses in naturalistic and experimental settings, and experimentally assess diverse explanations, including resistance, when dogs and other animals fail standard pointing tasks.

  5. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model.

    Science.gov (United States)

    Miki, Takeshi; Ushio, Masayuki; Fukui, Shin; Kondoh, Michio

    2010-08-10

    Theory and empirical evidence suggest that plant-soil feedback (PSF) determines the structure of a plant community and nutrient cycling in terrestrial ecosystems. The plant community alters the nutrient pool size in soil by affecting litter decomposition processes, which in turn shapes the plant community, forming a PSF system. However, the role of microbial decomposers in PSF function is often overlooked, and it remains unclear whether decomposers reinforce or weaken litter-mediated plant control over nutrient cycling. Here, we present a theoretical model incorporating the functional diversity of both plants and microbial decomposers. Two fundamental microbial processes are included that control nutrient mineralization from plant litter: (i) assimilation of mineralized nutrient into the microbial biomass (microbial immobilization), and (ii) release of the microbial nutrients into the inorganic nutrient pool (net mineralization). With this model, we show that microbial diversity may act as a buffer that weakens plant control over the soil nutrient pool, reversing the sign of PSF from positive to negative and facilitating plant coexistence. This is explained by the decoupling of litter decomposability and nutrient pool size arising from a flexible change in the microbial community composition and decomposition processes in response to variations in plant litter decomposability. Our results suggest that the microbial community plays a central role in PSF function and the plant community structure. Furthermore, the results strongly imply that the plant-centered view of nutrient cycling should be changed to a plant-microbe-soil feedback system, by incorporating the community ecology of microbial decomposers and their functional diversity.

  6. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

    KAUST Repository

    Neave, Matthew J.

    2017-01-17

    Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.

  7. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

    KAUST Repository

    Neave, Matthew J.; Michell, Craig; Apprill, Amy; Voolstra, Christian R.

    2017-01-01

    Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.

  8. Continental cichlid radiations: functional diversity reveals the role of changing ecological opportunity in the Neotropics.

    Science.gov (United States)

    Arbour, Jessica Hilary; López-Fernández, Hernán

    2016-08-17

    Adaptive radiations have been hypothesized to contribute broadly to the diversity of organisms. Models of adaptive radiation predict that ecological opportunity and ecological release, the availability of empty ecological niches and the response by adapting lineages to occupy them, respectively, drive patterns of phenotypic and lineage diversification. Adaptive radiations driven by 'ecological opportunity' are well established in island systems; it is less clear if ecological opportunity influences continent-wide diversification. We use Neotropical cichlid fishes to test if variation in rates of functional evolution is consistent with changing ecological opportunity. Across a functional morphological axis associated with ram-suction feeding traits, evolutionary rates declined through time as lineages diversified in South America. Evolutionary rates of ram-suction functional morphology also appear to have accelerated as cichlids colonized Central America and encountered renewed opportunity. Our results suggest that ecological opportunity may play an important role in shaping patterns of morphological diversity of even broadly distributed lineages like Neotropical cichlids. © 2016 The Author(s).

  9. Combined thermal and herbicide stress in functionally diverse coral symbionts

    International Nuclear Information System (INIS)

    Dam, J.W. van; Uthicke, S.; Beltran, V.H.; Mueller, J.F.; Negri, A.P.

    2015-01-01

    Most reef building corals rely on symbiotic microalgae (genus Symbiodinium) to supply a substantial proportion of their energy requirements. Functional diversity of different Symbiodinium genotypes, endorsing the host with physiological advantages, has been widely reported. Yet, the influence of genotypic specificity on the symbiont's susceptibility to contaminants or cumulative stressors is unknown. Cultured Symbiodinium of presumed thermal-tolerant clade D tested especially vulnerable to the widespread herbicide diuron, suggesting important free-living populations may be at risk in areas subjected to terrestrial runoff. Co-exposure experiments where cultured Symbiodinium were exposed to diuron over a thermal stress gradient demonstrated how fast-growing clade C1 better maintained photosynthetic capability than clade D. The mixture toxicity model of Independent Action, considering combined thermal stress and herbicide contamination, revealed response additivity for inhibition of photosynthetic yield in both tested cultures, emphasizing the need to account for cumulative stressor impacts in ecological risk assessment and resource management. - Highlights: • Water quality influences thermal stress thresholds in different Symbiodinium types. • Photosystem of clade D tested more sensitive than C1 to a common herbicide. • Increased thermal tolerance quickly countered in presence of herbicide. • Mixture toxicity approach demonstrated response additivity for combined stressors. • Symbiotic partnership may be compromised in areas subjected to terrestrial runoff. - Thermal-tolerant Symbiodinium type D tested especially vulnerable to a common herbicide, emphasizing the significance of cumulative stressors in ecological risk management

  10. Study protocol: effect of playful training on functional abilities of older adults - a randomized controlled trial.

    Science.gov (United States)

    Jessen, Jari Due; Lund, Henrik Hautop

    2017-01-19

    Loss of functional capabilities due to inactivity is one of the most common reasons for fall accidents, and it has been well established that loss of capabilities can be effectively reduced by physical activity. Pilot studies indicate a possible improvement in functional abilities of community dwelling elderly as a result of short-term playing with an exergame system in the form of interactive modular tiles. Such playful training may be motivational to perform and viewed by the subjects to offer life-fulfilling quality, while providing improvement in physical abilities, e.g. related to prevent fall accidents. The RCT will test for a variety of health parameters of community-dwelling elderly playing on interactive modular tiles. The study will be a single blinded, randomized controlled trial with 60 community-dwelling adults 70+ years. The trial will consist an intervention group of 30 participants training with the interactive modular tiles, and a control group of 30 participants that will receive the usual care provided to non-patient elderly. The intervention period will be 12 weeks. The intervention group will perform group training (4-5 individuals for 1 h training session with each participant receiving 13 min training) on the interactive tiles twice a week. Follow-up tests include 6-min Walk Test (6MWT), the 8-ft Timed Up & Go Test (TUG), and the Chair-Stand Test (CS) from the Senior Fitness Test, along with balancing tests (static test on Wii Board and Line Walk test). Secondary outcomes related to adherence, motivation and acceptability will be investigated through semi-structured interviews. Data will be collected from pre- and post-tests. Data will be analyzed for statistically significant differences by checking that there is a Gaussian distribution and then using paired t-test, otherwise using Wilcoxon signed-rank test. "Intention to treat" analysis will be done. The trial tests for increased mobility, agility, balancing and general fitness of

  11. Perineuronal nets play a role in regulating striatal function in the mouse.

    Directory of Open Access Journals (Sweden)

    Hyunchul Lee

    Full Text Available The striatum is the primary input nucleus of the basal ganglia, a collection of nuclei that play important roles in motor control and associative learning. We have previously reported that perineuronal nets (PNNs, aggregations of chondroitin-sulfate proteoglycans (CSPGs, form in the matrix compartment of the mouse striatum during the second postnatal week. This period overlaps with important developmental changes, including the attainment of an adult-like gait. Here, we investigate the identity of the cells encapsulated by PNNs, characterize their topographical distribution and determine their function by assessing the impact of enzymatic digestion of PNNs on two striatum-dependent behaviors: ambulation and goal-directed spatial learning. We show PNNs are more numerous caudally, and that a substantial fraction (41% of these structures surrounds parvalbumin positive (PV+ interneurons, while approximately 51% of PV+ cells are ensheathed by PNNs. The colocalization of these structures is greatest in dorsal, lateral and caudal regions of the striatum. Bilateral digestion of striatal PNNs led to an increase in both the width and variability of hind limb gait. Intriguingly, this also resulted in an improvement in the acquisition rate of the Morris water maze. Together, these data show that PNNs are associated with specific elements of striatal circuits and play a key role in regulating the function of this important structure in the mouse.

  12. Perineuronal nets play a role in regulating striatal function in the mouse.

    Science.gov (United States)

    Lee, Hyunchul; Leamey, Catherine A; Sawatari, Atomu

    2012-01-01

    The striatum is the primary input nucleus of the basal ganglia, a collection of nuclei that play important roles in motor control and associative learning. We have previously reported that perineuronal nets (PNNs), aggregations of chondroitin-sulfate proteoglycans (CSPGs), form in the matrix compartment of the mouse striatum during the second postnatal week. This period overlaps with important developmental changes, including the attainment of an adult-like gait. Here, we investigate the identity of the cells encapsulated by PNNs, characterize their topographical distribution and determine their function by assessing the impact of enzymatic digestion of PNNs on two striatum-dependent behaviors: ambulation and goal-directed spatial learning. We show PNNs are more numerous caudally, and that a substantial fraction (41%) of these structures surrounds parvalbumin positive (PV+) interneurons, while approximately 51% of PV+ cells are ensheathed by PNNs. The colocalization of these structures is greatest in dorsal, lateral and caudal regions of the striatum. Bilateral digestion of striatal PNNs led to an increase in both the width and variability of hind limb gait. Intriguingly, this also resulted in an improvement in the acquisition rate of the Morris water maze. Together, these data show that PNNs are associated with specific elements of striatal circuits and play a key role in regulating the function of this important structure in the mouse.

  13. Origin and Function of Tuning Diversity in Macaque Visual Cortex.

    Science.gov (United States)

    Goris, Robbe L T; Simoncelli, Eero P; Movshon, J Anthony

    2015-11-18

    Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells' diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers

    Science.gov (United States)

    Chiu, Chun-Huo; Chao, Anne

    2014-01-01

    Hill numbers (or the “effective number of species”) are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify “the effective number of equally abundant and (functionally) equally distinct species” in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of

  15. Distance-based functional diversity measures and their decomposition: a framework based on Hill numbers.

    Directory of Open Access Journals (Sweden)

    Chun-Huo Chiu

    Full Text Available Hill numbers (or the "effective number of species" are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify "the effective number of equally abundant and (functionally equally distinct species" in an assemblage. We also propose a class of mean functional diversity (per species, which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation measures, including N-assemblage functional

  16. Playing piano can improve upper extremity function after stroke: case studies.

    Science.gov (United States)

    Villeneuve, Myriam; Lamontagne, Anouk

    2013-01-01

    Music-supported therapy (MST) is an innovative approach that was shown to improve manual dexterity in acute stroke survivors. The feasibility of such intervention in chronic stroke survivors and its longer-term benefits, however, remain unknown. The objective of this pilot study was to estimate the short- and long-term effects of a 3-week piano training program on upper extremity function in persons with chronic stroke. A multiple pre-post sequential design was used, with measurements taken at baseline (week0, week3), prior to (week6) and after the intervention (week9), and at 3-week follow-up (week12). Three persons with stroke participated in the 3-week piano training program that combined structured piano lessons to home practice program. The songs, played on an electronic keyboard, involved all 5 digits of the affected hand and were displayed using a user-friendly MIDI program. After intervention, all the three participants showed improvements in their fine (nine hole peg test) and gross (box and block test) manual dexterity, as well as in the functional use of the upper extremity (Jebsen hand function test). Improvements were maintained at follow-up. These preliminary results support the feasibility of using an MST approach that combines structured lessons to home practice to improve upper extremity function in chronic stroke.

  17. Playing Piano Can Improve Upper Extremity Function after Stroke: Case Studies

    Directory of Open Access Journals (Sweden)

    Myriam Villeneuve

    2013-01-01

    Full Text Available Music-supported therapy (MST is an innovative approach that was shown to improve manual dexterity in acute stroke survivors. The feasibility of such intervention in chronic stroke survivors and its longer-term benefits, however, remain unknown. The objective of this pilot study was to estimate the short- and long-term effects of a 3-week piano training program on upper extremity function in persons with chronic stroke. A multiple pre-post sequential design was used, with measurements taken at baseline (week0, week3, prior to (week6 and after the intervention (week9, and at 3-week follow-up (week12. Three persons with stroke participated in the 3-week piano training program that combined structured piano lessons to home practice program. The songs, played on an electronic keyboard, involved all 5 digits of the affected hand and were displayed using a user-friendly MIDI program. After intervention, all the three participants showed improvements in their fine (nine hole peg test and gross (box and block test manual dexterity, as well as in the functional use of the upper extremity (Jebsen hand function test. Improvements were maintained at follow-up. These preliminary results support the feasibility of using an MST approach that combines structured lessons to home practice to improve upper extremity function in chronic stroke.

  18. Food-derived carbohydrates--structural complexity and functional diversity.

    Science.gov (United States)

    Tharanathan, Rudrapatnam N

    2002-01-01

    acid esters, which after oxidative coupling in vivo mediated by H2O2 and peroxidases or even by photochemical means give cross linked diferuloyl derivatives. The latter confer strength and extensibility to the cell wall and offer resistance for digestibility by ruminants. They also help blocking of the ingress of pathogens. The ester bound ferulic acid after oxidation in vivo generates reactive oxygen species that contribute to the fragmentation of non-starch polysaccharides (hemicelluloses), and thereby reduces the product viscosity, a property seen during long-term storage of rice. In plant tissues, the arabinogalactans are implicated in such diverse functions as cell-cell adhesion, nutrition of growing pollen tubes, response to microbial infections, and also as markers of identity expressed in the terminal sequences of saccharide chains.

  19. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    Science.gov (United States)

    Römling, Ute; Galperin, Michael Y.

    2015-01-01

    Summary Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis apparatus, export of the nascent β-D-glucan polymer to the cell surface, and the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of the resulting biofilm, which is particularly important for interactions of bacteria with higher organisms that lead to rhizosphere colonization and modulate virulence of cellulose-producing bacterial pathogens inside and outside of host cells. Here we review the organization of four principal types of cellulose synthase operons found in various bacterial genomes, identify additional bcs genes that encode likely components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms formed by a variety of free-living and pathogenic bacteria and, for the latter, in the choice between acute infection and persistence in the host. PMID:26077867

  20. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    Science.gov (United States)

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  1. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation.

    Directory of Open Access Journals (Sweden)

    Nina Bertaux-Skeirik

    2015-02-01

    Full Text Available The cytotoxin-associated gene (Cag pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (∆CagA::cat. Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ∆CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylori that was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the well-established Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique

  2. Microbial functional diversity associated with plant litter decomposition along a climatic gradient.

    Science.gov (United States)

    Sherman, Chen; Steinberger, Yosef

    2012-08-01

    Predicted changes in climate associated with increased greenhouse gas emissions can cause increases in global mean temperature and changes in precipitation regimes. These changes may affect key soil processes, e.g., microbial CO(2) evolution and biomass, mineralization rates, primary productivity, biodiversity, and litter decomposition, which play an important role in carbon and nutrient cycling in terrestrial ecosystems. Our study examined the changes in litter microbial communities and decomposition along a climatic gradient, ranging from arid desert to humid Mediterranean regions in Israel. Wheat straw litter bags were placed in arid, semi-arid, Mediterranean, and humid Mediterranean sites. Samples were collected seasonally over a 2-year period in order to evaluate mass loss, litter moisture, C/N ratio, bacterial colony-forming units (CFUs), microbial CO(2) evolution and biomass, microbial functional diversity, and catabolic profile. Decomposition rate was the highest during the first year of the study at the Mediterranean and arid sites. Community-level physiological profile and microbial biomass were the highest in summer, while bacterial CFUs were the highest in winter. Microbial functional diversity was found to be highest at the humid Mediterranean site, whereas substrate utilization increased at the arid site. Our results support the assumption that climatic factors control litter degradation and regulate microbial activity.

  3. Play, Playfulness, Creativity and Innovation

    Directory of Open Access Journals (Sweden)

    Patrick Bateson

    2014-05-01

    Full Text Available Play, as defined by biologists and psychologists, is probably heterogeneous. On the other hand, playfulness may be a unitary motivational state. Playful play as opposed to activities that merge into aggression is characterized by positive mood, intrinsic motivation, occurring in a protected context and easily disrupted by stress. Playful play is a good measure of positive welfare. It can occupy a substantial part of the waking-life of a young mammal or bird. Numerous functions for play have been proposed and they are by no means mutually exclusive, but some evidence indicates that those individual animals that play most are most likely to survive and reproduce. The link of playful play to creativity and hence to innovation in humans is strong. Considerable evidence suggests that coming up with new ideas requires a different mindset from usefully implementing a new idea.

  4. Functional Molecular Diversity of Marine Dissolved Organic Matter Is Reduced during Degradation

    Directory of Open Access Journals (Sweden)

    Andrea Mentges

    2017-06-01

    Full Text Available Dissolved organic matter (DOM is a highly diverse mixture of compounds, accounting for one of the world's largest active carbon pools. The surprising recalcitrance of some DOM compounds to bacterial degradation has recently been associated with its diversity. However, little is known about large-scale patterns of marine DOM diversity and its change through degradation, in particular considering the functional diversity of DOM. Here, we analyze the development of marine DOM diversity during degradation in two data sets comprising DOM of very different ages: a three-year mesocosm experiment and highly-resolved field samples from the Atlantic and Southern Ocean. The DOM molecular composition was determined using ultra-high resolution mass spectrometry. We quantify DOM diversity using three conceptually different diversity measures, namely richness of molecular formulas, abundance-based diversity, and functional molecular diversity. Using these measures we find stable molecular richness of DOM with age >1 year, systematic changes in the molecules' abundance distribution with degradation state, and increasing homogeneity with respect to chemical properties for more degraded DOM. Coinciding with differences in sea water density, the spatial field data separated clearly into regions of high and low diversity. The joint application of different diversity measures yields a comprehensive overview on temporal and spatial patterns of molecular diversity, valuable for general conclusions on drivers and consequences of marine DOM diversity.

  5. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea.

    Science.gov (United States)

    Mindel, Beth L; Neat, Francis C; Trueman, Clive N; Webb, Thomas J; Blanchard, Julia L

    2016-01-01

    Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300-2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  6. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea

    Directory of Open Access Journals (Sweden)

    Beth L. Mindel

    2016-09-01

    Full Text Available Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300–2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  7. Environmental conditions influence the plant functional diversity effect on potential denitrification.

    Directory of Open Access Journals (Sweden)

    Ariana E Sutton-Grier

    2011-02-01

    Full Text Available Global biodiversity loss has prompted research on the relationship between species diversity and ecosystem functioning. Few studies have examined how plant diversity impacts belowground processes; even fewer have examined how varying resource levels can influence the effect of plant diversity on microbial activity. In a field experiment in a restored wetland, we examined the role of plant trait diversity (or functional diversity, (FD and its interactions with natural levels of variability of soil properties, on a microbial process, denitrification potential (DNP. We demonstrated that FD significantly affected microbial DNP through its interactions with soil conditions; increasing FD led to increased DNP but mainly at higher levels of soil resources. Our results suggest that the effect of species diversity on ecosystem functioning may depend on environmental factors such as resource availability. Future biodiversity experiments should examine how natural levels of environmental variability impact the importance of biodiversity to ecosystem functioning.

  8. Diversity and Ecological Functions of Crenarchaeota in Terrestrial Hot Springs of Tengchong, China

    Science.gov (United States)

    Li, W.; Song, Z.; Chen, J.; Jiang, H.; Zhou, E.; Wang, F.; Xiao, X.; Zhang, C.

    2010-12-01

    The diversity and potential ecological functions of Crenarchaeota were investigated in eight terrestrial hot springs (pH: 2.8-7.7; temperature: 43.6-96 C) located in Tengchong, China, using 16S rRNA gene phylogenetic analysis. A total of 826 crenarchaeotal clones were analyzed and a total of 47 Operational taxonomic units (OTUs) were identified. Most (93%) of the identified OTUs were closely related (89-99%) to those retrieved from hot springs and other thermal environments. Our data showed that temperature may predominate over pH in affecting crenarchaeotal diversity in Tengchong hot springs. Crenarchaeotal diversity in moderate-temperature (59 to 77 C) hot springs was the highest, indicating that the moderate-temperature hot springs are more inclusive for Crenarchaeota. To understand what ecological functions these Crenarchaeota may play in Tengchong hot springs, we isolated the environmental RNA and constructed four cDNA clone libraries of the archaeal accA gene that encodes Acetyl CoA carboxylase. The accA gene represents one of the key enzymes responsible for the CO2 fixation in the 3-hydroxypropionate/4-hydroxybutyrate pathway. The results of phylogenetic analysis showed all the transcribed accA gene sequences can be classified into three large clusters, with the first one being affiliated with marine crenarchaeota, the second one with cultured crenarchaeota, and the third one with Chlorobi (Green sulfur bacteria), which have been proved to employ the 3-hydroxypropionate/4-hydroxybutyrate pathway. The long-branch distances of the phylogenetic tree suggest that these sequences represent novel accA-like gene. Our results also showed that sequences of the accA-like gene from the same hot spring belonged to one cluster, which suggests that a single crenarchaeotal group may fix CO2 via 3-hydroxypropionate/4-hydroxybutyrate pathway in the investigated hot springs.

  9. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices.

    Science.gov (United States)

    Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo

    2015-02-22

    Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Teaching Functional Play Skills to a Young Child with Autism Spectrum Disorder through Video Self-Modeling.

    Science.gov (United States)

    Lee, Sharon Y; Lo, Ya-Yu; Lo, Yafen

    2017-08-01

    The researchers used a single-case, multiple probe design across three sets of toys (i.e., farm toy, doctor's clinic toy, and rescue toy) to examine the effects of video self-modeling (VSM) on the functional play skills of a 5-year-old child with autism spectrum disorder. The findings showed a functional relation between VSM and increased percentages of functional play actions across the toy sets. The participant's percentages of the targeted functional play skills for the intervention toys remained high 1 week and 2 weeks after the intervention ceased. Additionally, preliminary generalization results showed slight improvement in the percentages of functional play actions with the generalization toys that were not directly taught. Limitations, practical implications, and directions for future research are discussed.

  11. Functional diversity of macrobenthic assemblages decreases in response to sewage discharges

    NARCIS (Netherlands)

    Gusmao, Joao B.; Brauko, Kalina M.; Eriksson, Britas K.; Lana, Paulo C.

    We analyzed the effects of sewage discharge on a subtropical estuary by comparing the functional diversity of intertidal macroinvertebrate assemblages in contaminated with non-contaminated reference areas. Functional structure was assessed using biological traits analysis (BTA) and four multivariate

  12. Molecular and functional diversity in Capsicum landraces of ...

    African Journals Online (AJOL)

    shrawan

    2013-09-25

    Sep 25, 2013 ... of diversity in the local germplasm was much needed to recognize the genetic .... reducing sugar and multiplying with a conversion factor (0.95). The absorbance for ..... Except SPG-3 which was outlier with 54% intra-cluster ...

  13. Molecular and functional diversity in Capsicum landraces of ...

    African Journals Online (AJOL)

    The present study analyzed the diversity in 26 landraces of Capsicum from Andaman Islands using 20 morphological, 16 biochemical and 10 DNA markers. Significant differences were observed in tested landraces and 16 reference genotypes from mainland India. Biochemical markers grouped all the genotypes into eight ...

  14. [Research on functional diversity of microorganisms on jujube fruit surface in storage].

    Science.gov (United States)

    Sha, Yuexia

    2009-10-01

    Disease during storage caused by microbial infection is a serious problem of jujube fruits. The aim of the study was to characterize the microbial diversity in stored jujube fruits. I used Biolog in experiment. The types of micro-plates were Filamentous Fungi micro-plate and Economicmicro-plate. There was much difference in microbial functional diversity on the surface of stored jujube fruit. The microbial functional diversity of stored 30 days was richer than it of stored 15 days. The diversity, homogeneity and average well color development of jujube used by fruit perservatives were lower than it not used by fruit preservatives. There were six kinds of the characteristic carbon. Our study firstly showed microbial diversity on the surface of stored jujube fruit. Biolog could be applied in the research on microbial functional diversity of fruit surface.

  15. Does gender play a role in functional asymmetry of ventromedial prefrontal cortex?

    Science.gov (United States)

    Tranel, Daniel; Damasio, Hanna; Denburg, Natalie L; Bechara, Antoine

    2005-12-01

    We found previously in a lesion study that the right-sided sector of the ventromedial prefrontal cortices (VMPCs) was critical for social/emotional functioning and decision-making, whereas the left side appeared to be less important. It so happened that all but one of the subjects in that study were men, and the one woman did not fit the pattern very well. This prompted a follow-up investigation, in which we explored the following question: Does gender play a role in the development of defects in social conduct, emotional functioning and decision-making, following unilateral VMPC damage? We culled from our Patient Registry same-sex pairs of men or women patients who had comparable unilateral VMPC damage in either the left or right hemisphere. Two male pairs and one female pair were formed, and we included two additional women with unilateral right VMPC damage (8 patients in all). The domains of measurement covered social conduct, emotional processing and personality, and decision-making. We found a systematic effect of gender on the pattern of left-right asymmetry in VMPC. In men, there were severe defects following unilateral right VMPC damage, but not following left-sided damage. In women, there were defects following unilateral left VMPC damage; following right-sided damage, however, defects were mild or absent. The findings suggest that men and women may use different strategies to solve similar problems--e.g. men may use a more holistic, gestalt-type strategy, and women may use a more analytic, verbally-mediated strategy. Such differences could reflect asymmetric, gender-related differences in the neurobiology of left and right VMPC sectors.

  16. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function

    Science.gov (United States)

    Kara, Firas M.; Chitu, Violeta; Sloane, Jennifer; Axelrod, Matthew; Fredholm, Bertil B.; Stanley, E. Richard; Cronstein, Bruce N.

    2010-01-01

    Adenosine regulates a wide variety of physiological processes via interaction with one or more G-protein-coupled receptors (A1R, A2AR, A2BR, and A3R). Because A1R occupancy promotes fusion of human monocytes to form giant cells in vitro, we determined whether A1R occupancy similarly promotes osteoclast function and formation. Bone marrow cells (BMCs) were harvested from C57Bl/6 female mice or A1R-knockout mice and their wild-type (WT) littermates and differentiated into osteoclasts in the presence of colony stimulating factor-1 and receptor activator of NF-κB ligand in the presence or absence of the A1R antagonist 1,3-dipropyl-8-cyclopentyl xanthine (DPCPX). Osteoclast morphology was analyzed in tartrate-resistant acid phosphatase or F-actin-stained samples, and bone resorption was evaluated by toluidine blue staining of dentin. BMCs from A1R-knockout mice form fewer osteoclasts than BMCs from WT mice, and the A1R antagonist DPCPX inhibits osteoclast formation (IC50=1 nM), with altered morphology and reduced ability to resorb bone. A1R blockade increased ubiquitination and degradation of TRAF6 in RAW264.7 cells induced to differentiate into osteoclasts. These studies suggest a critical role for adenosine in bone homeostasis via interaction with adenosine A1R and further suggest that A1R may be a novel pharmacologic target to prevent the bone loss associated with inflammatory diseases and menopause.—Kara, F. M., Chitu, V., Sloane, J., Axelrod, M., Fredholm, B. B., Stanley, R., Cronstein, B. N. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. PMID:20181934

  17. Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function.

    Directory of Open Access Journals (Sweden)

    Zhipeng Zhou

    Full Text Available The COP9 signalosome (CSN is a highly conserved multifunctional complex that has two major biochemical roles: cleaving NEDD8 from cullin proteins and maintaining the stability of CRL components. We used mutation analysis to confirm that the JAMM domain of the CSN-5 subunit is responsible for NEDD8 cleavage from cullin proteins in Neurospora crassa. Point mutations of key residues in the metal-binding motif (EX(nHXHX(10D of the CSN-5 JAMM domain disrupted CSN deneddylation activity without interfering with assembly of the CSN complex or interactions between CSN and cullin proteins. Surprisingly, CSN-5 with a mutated JAMM domain partially rescued the phenotypic defects observed in a csn-5 mutant. We found that, even without its deneddylation activity, the CSN can partially maintain the stability of the SCF(FWD-1 complex and partially restore the degradation of the circadian clock protein FREQUENCY (FRQ in vivo. Furthermore, we showed that CSN containing mutant CSN-5 efficiently prevents degradation of the substrate receptors of CRLs. Finally, we found that deletion of the CAND1 ortholog in N. crassa had little effect on the conidiation circadian rhythm. Our results suggest that CSN integrity plays major roles in hyphal growth, conidial development, and circadian function in N. crassa.

  18. Mini Heme-Proteins: Designability of Structure and Diversity of Functions.

    Science.gov (United States)

    Rai, Jagdish

    2017-08-30

    Natural heme proteins may have heme bound to poly-peptide chain as a cofactor via noncovalent forces or heme as a prosthetic group may be covalently bound to the proteins. Nature has used porphyrins in diverse functions like electron transfer, oxidation, reduction, ligand binding, photosynthesis, signaling, etc. by modulating its properties through diverse protein matrices. Synthetic chemists have tried to utilize these molecules in equally diverse industrial and medical applications due to their versatile electro-chemical and optical properties. The heme iron has catalytic activity which can be modulated and enhanced for specific applications by protein matrix around it. Heme proteins can be designed into novel enzymes for sterio specific catalysis ranging from oxidation to reduction. These designed heme-proteins can have applications in industrial catalysis and biosensing. A peptide folds around heme easily due to hydrophobic effect of the large aromatic ring of heme. The directional property of co-ordinate bonding between peptide and metal ion in heme further specifies the structure. Therefore heme proteins can be easily designed for targeted structure and catalytic activity. The central aromatic chemical entity in heme viz. porphyrin is a very ancient molecule. Its presence in the prebiotic soup and in all forms of life suggests that it has played a vital role in the origin and progressive evolution of living organisms. Porphyrin macrocycles are highly conjugated systems composed of four modified pyrrole subunits interconnected at their α -carbon atoms via methine (=CH-) bridges. Initial minimalist models of hemoproteins focused on effect of heme-ligand co-ordinate bonding on chemical reactivity, spectroscopy, electrochemistry and magnetic properties of heme. The great sensitivity of these spectroscopic features of heme to its surrounding makes them extremely useful in structural elucidation of designed heme-peptide complexes. Therefore heme proteins are

  19. Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application

    Directory of Open Access Journals (Sweden)

    Cristina M. Prieto-Barajas

    2018-01-01

    Full Text Available Microbial mats are horizontally stratified microbial communities, exhibiting a structure defined by physiochemical gradients, which models microbial diversity, physiological activities, and their dynamics as a whole system. These ecosystems are commonly associated with aquatic habitats, including hot springs, hypersaline ponds, and intertidal coastal zones and oligotrophic environments, all of them harbour phototrophic mats and other environments such as acidic hot springs or acid mine drainage harbour non-photosynthetic mats. This review analyses the complex structure, diversity, and interactions between the microorganisms that form the framework of different types of microbial mats located around the globe. Furthermore, the many tools that allow studying microbial mats in depth and their potential biotechnological applications are discussed.

  20. Diversions

    Science.gov (United States)

    Gough, John

    2017-01-01

    Three game examples using L-shaped tri-cubes in alternative arrangements are presented. Each game example challenges you to think who might win, and what alternative playing strategies could be implemented to change the final outcome.

  1. The human LIS1 is downregulated in hepatocellular carcinoma and plays a tumor suppressor function

    International Nuclear Information System (INIS)

    Xing, Zhen; Tang, Xin; Gao, Yuan; Da, Liang; Song, Hai; Wang, Suiquan; Tiollais, Pierre; Li, Tsaiping; Zhao, Mujun

    2011-01-01

    Highlights: → LIS1 mRNA and protein levels are decreased in 70% HCC tissues. → Downregulation of LIS1 expression induces oncogenic transformation of QSG7701 and NIH3T3 cells in vitro and in vivo. → LIS1 downregulation leads to mitotic errors including spindle and chromosome defects. → Ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. → Our results suggest that LIS1 plays a potential tumor suppressor role in the development and progression of HCC. -- Abstract: The human lissencephaly-1 gene (LIS1) is a disease gene responsible for Miller-Dieker lissencephaly syndrome (MDL). LIS1 gene is located in the region of chromosome 17p13.3 that is frequency deleted in MDL patients and in human liver cancer cells. However, the expression and significance of LIS1 in liver cancer remain unknown. Here, we investigated the expression of LIS1 in hepatocellular carcinoma (HCC) tissues by real-time PCR, Western blot, and immunohistochemistry. The results indicated that the mRNA and protein levels of LIS1 were downregulated in about 70% of HCC tissues, and this downregulation was significantly associated with tumor progression. Functional studies showed that the reduction of LIS1 expression in the normal human liver cell line QSG7701 or the mouse fibroblast cell line NIH3T3 by shRNA resulted in colony formation in soft agar and xenograft tumor formation in nude mice, demonstrating that a decrease in the LIS1 level can promote the oncogenic transformation of cells. We also observed that the phenotypes of LIS1-knockdown cells displayed various defective mitotic structures, suggesting that the mechanism by which reduced LIS1 levels results in tumorigenesis is associated with its role in mitosis. Furthermore, we demonstrated that ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. Our results suggest that LIS1 plays a potential tumor suppressor role in the development and

  2. The human LIS1 is downregulated in hepatocellular carcinoma and plays a tumor suppressor function

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Zhen; Tang, Xin; Gao, Yuan; Da, Liang; Song, Hai; Wang, Suiquan [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Tiollais, Pierre [Unite' d' Organisation Nucleaire et Oncogenese, INSERM U.579, Institut Pasteur, Paris (France); Li, Tsaiping [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Zhao, Mujun, E-mail: mjzhao@sibs.ac.cn [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China)

    2011-06-03

    Highlights: {yields} LIS1 mRNA and protein levels are decreased in 70% HCC tissues. {yields} Downregulation of LIS1 expression induces oncogenic transformation of QSG7701 and NIH3T3 cells in vitro and in vivo. {yields} LIS1 downregulation leads to mitotic errors including spindle and chromosome defects. {yields} Ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. {yields} Our results suggest that LIS1 plays a potential tumor suppressor role in the development and progression of HCC. -- Abstract: The human lissencephaly-1 gene (LIS1) is a disease gene responsible for Miller-Dieker lissencephaly syndrome (MDL). LIS1 gene is located in the region of chromosome 17p13.3 that is frequency deleted in MDL patients and in human liver cancer cells. However, the expression and significance of LIS1 in liver cancer remain unknown. Here, we investigated the expression of LIS1 in hepatocellular carcinoma (HCC) tissues by real-time PCR, Western blot, and immunohistochemistry. The results indicated that the mRNA and protein levels of LIS1 were downregulated in about 70% of HCC tissues, and this downregulation was significantly associated with tumor progression. Functional studies showed that the reduction of LIS1 expression in the normal human liver cell line QSG7701 or the mouse fibroblast cell line NIH3T3 by shRNA resulted in colony formation in soft agar and xenograft tumor formation in nude mice, demonstrating that a decrease in the LIS1 level can promote the oncogenic transformation of cells. We also observed that the phenotypes of LIS1-knockdown cells displayed various defective mitotic structures, suggesting that the mechanism by which reduced LIS1 levels results in tumorigenesis is associated with its role in mitosis. Furthermore, we demonstrated that ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. Our results suggest that LIS1 plays a potential tumor suppressor role in the

  3. Functional Resilience against Climate-Driven Extinctions - Comparing the Functional Diversity of European and North American Tree Floras.

    Directory of Open Access Journals (Sweden)

    Mario Liebergesell

    Full Text Available Future global change scenarios predict a dramatic loss of biodiversity for many regions in the world, potentially reducing the resistance and resilience of ecosystem functions. Once before, during Plio-Pleistocene glaciations, harsher climatic conditions in Europe as compared to North America led to a more depauperate tree flora. Here we hypothesize that this climate driven species loss has also reduced functional diversity in Europe as compared to North America. We used variation in 26 traits for 154 North American and 66 European tree species and grid-based co-occurrences derived from distribution maps to compare functional diversity patterns of the two continents. First, we identified similar regions with respect to contemporary climate in the temperate zone of North America and Europe. Second, we compared the functional diversity of both continents and for the climatically similar sub-regions using the functional dispersion-index (FDis and the functional richness index (FRic. Third, we accounted in these comparisons for grid-scale differences in species richness, and, fourth, investigated the associated trait spaces using dimensionality reduction. For gymnosperms we find similar functional diversity on both continents, whereas for angiosperms functional diversity is significantly greater in Europe than in North America. These results are consistent across different scales, for climatically similar regions and considering species richness patterns. We decomposed these differences in trait space occupation into differences in functional diversity vs. differences in functional identity. We show that climate-driven species loss on a continental scale might be decoupled from or at least not linearly related to changes in functional diversity. This might be important when analyzing the effects of climate-driven biodiversity change on ecosystem functioning.

  4. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    Science.gov (United States)

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  5. On play and playing.

    Science.gov (United States)

    Rudan, Dusko

    2013-12-01

    The paper offers a review of the development of the concept of play and playing. The true beginnings of the development of the theories of play are set as late as in the 19th century. It is difficult to define play as such; it may much more easily be defined through its antipode--work. In the beginning, play used to be connected with education; it was not before Freud's theory of psychoanalysis and Piaget's developmental psychology that the importance of play in a child's development began to be explained in more detail. The paper further tackles the role of play in the adult age. Detailed attention is paid to psychodynamic and psychoanalytic authors, in particular D. W. Winnicott and his understanding of playing in the intermediary (transitional) empirical or experiential space. In other words, playing occupies a space and time of its own. The neuroscientific concept of playing is also tackled, in the connection with development as well.

  6. Young Mothers' Play with Their Toddlers: Individual Variability as a Function of Psychosocial Factors

    Science.gov (United States)

    Driscoll, Joan Riley; Easterbrooks, M. Ann

    2007-01-01

    There is no one style of parenting which characterizes young mothers as a group. In addition, life circumstances play an important role in shaping maternal behaviour. The aim of this study was to identify patterns of maternal play behaviour and contextual (social and personal) factors associated with these different patterns. In this study, 107…

  7. Functional integrity of the habenula is necessary for social play behaviour in rats

    NARCIS (Netherlands)

    van Kerkhof, L.W.; Damsteegt, R.; Trezza, V.; Voorn, P.; Vanderschuren, L.J.

    2013-01-01

    During post-weaning development, a marked increase in peer-peer interactions is observed in mammals, including humans, which is signified by the abundance of social play behaviour. Social play is highly rewarding, and known to be modulated through monoaminergic neurotransmission. Recently, the

  8. Student Musicians' Ear-Playing Ability as a Function of Vernacular Music Experiences

    Science.gov (United States)

    Woody, Robert H.; Lehmann, Andreas C.

    2010-01-01

    This study explored the differences in ear-playing ability between formal "classical" musicians and those with vernacular music experience (N = 24). Participants heard melodies and performed them back, either by singing or playing on their instruments. The authors tracked the number of times through the listen-then-perform cycle that each…

  9. Diversity-interaction modeling: estimating contributions of species identities and interactions to ecosystem function

    DEFF Research Database (Denmark)

    Kirwan, L; Connolly, J; Finn, J A

    2009-01-01

    to the roles of evenness, functional groups, and functional redundancy. These more parsimonious descriptions can be especially useful in identifying general diversity-function relationships in communities with large numbers of species. We provide an example of the application of the modeling framework......We develop a modeling framework that estimates the effects of species identity and diversity on ecosystem function and permits prediction of the diversity-function relationship across different types of community composition. Rather than just measure an overall effect of diversity, we separately....... These models describe community-level performance and thus do not require separate measurement of the performance of individual species. This flexible modeling approach can be tailored to test many hypotheses in biodiversity research and can suggest the interaction mechanisms that may be acting....

  10. Impacts of Urban Areas and Their Characteristics on Avian Functional Diversity

    Directory of Open Access Journals (Sweden)

    Emily Oliveira Hagen

    2017-07-01

    Full Text Available Urban development is rapidly expanding across the globe and is a major driver of environmental change. Despite considerable improvements in our understanding of how species richness responds to urbanization, there is still insufficient knowledge of how other measures of assemblage composition and structure respond to urban development. Functional diversity metrics provide a useful approach for quantifying ecological function. We compare avian functional diversity in 25 urban areas, located across the globe, with paired non-urban assemblages using a database of 27 functional traits that capture variation in resource use (amount and type of resources and how they are acquired across the 529 species occurring across these assemblages. Using three standard functional diversity metrics (FD, MNTD, and convex hull we quantify observed functional diversity and, using standardized effect sizes, how this diverges from that expected under random community assembly null models. We use regression trees to investigate whether human population density, amount of vegetation and city size (spatial extent of urban land, bio-region and use of semi-natural or agricultural assemblages as a baseline modulate the effect of urbanization on functional diversity. Our analyses suggest that observed functional diversity of urban avian assemblages is not consistently different from that of non-urban assemblages. After accounting for species richness avian functional diversity is higher in cities than areas of semi-natural habitat. This creates a paradox as species responses to urban development are determined by their ecological traits, which should generate assemblages clustered within a narrow range of trait space. Greater habitat diversity within cities compared to semi-natural areas dominated by a single habitat may enhance functional diversity in cities and explain this paradox. Regression trees further suggest that smaller urban areas, lower human population densities

  11. Origination and immigration drive latitudinal gradients in marine functional diversity.

    Directory of Open Access Journals (Sweden)

    Sarah K Berke

    Full Text Available Global patterns in the functional attributes of organisms are critical to understanding biodiversity trends and predicting biotic responses to environmental change. In the first global marine analysis, we find a strong decrease in functional richness, but a strong increase in functional evenness, with increasing latitude using intertidal-to-outer-shelf bivalves as a model system (N = 5571 species. These patterns appear to be driven by the interplay between variation in origination rates among functional groups, and latitudinal patterns in origination and range expansion, as documented by the rich fossil record of the group. The data suggest that (i accumulation of taxa in spatial bins and functional categories has not impeded continued diversification in the tropics, and (ii extinctions will influence ecosystem function differentially across latitudes.

  12. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain.

    Science.gov (United States)

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500-2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.

  13. Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai Mountain

    Directory of Open Access Journals (Sweden)

    Congcong Shen

    2016-07-01

    Full Text Available The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500 to 2200 m on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0, we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC. This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.

  14. Diversity of Pol IV function is defined by mutations at the maize rmr7 locus.

    Directory of Open Access Journals (Sweden)

    Jennifer L Stonaker

    2009-11-01

    Full Text Available Mutations affecting the heritable maintenance of epigenetic states in maize identify multiple small RNA biogenesis factors including NRPD1, the largest subunit of the presumed maize Pol IV holoenzyme. Here we show that mutations defining the required to maintain repression7 locus identify a second RNA polymerase subunit related to Arabidopsis NRPD2a, the sole second largest subunit shared between Arabidopsis Pol IV and Pol V. A phylogenetic analysis shows that, in contrast to representative eudicots, grasses have retained duplicate loci capable of producing functional NRPD2-like proteins, which is indicative of increased RNA polymerase diversity in grasses relative to eudicots. Together with comparisons of rmr7 mutant plant phenotypes and their effects on the maintenance of epigenetic states with parallel analyses of NRPD1 defects, our results imply that maize utilizes multiple functional NRPD2-like proteins. Despite the observation that RMR7/NRPD2, like NRPD1, is required for the accumulation of most siRNAs, our data indicate that different Pol IV isoforms play distinct roles in the maintenance of meiotically-heritable epigenetic information in the grasses.

  15. Study protocol: effect of playful training on functional abilities of older adults - a randomized controlled trial

    DEFF Research Database (Denmark)

    Jessen, Jari Due; Lund, Henrik Hautop

    2017-01-01

    of community dwelling elderly as a result of short-term playing with an exergame system in the form of interactive modular tiles. Such playful training may be motivational to perform and viewed by the subjects to offer life-fulfilling quality, while providing improvement in physical abilities, e.g. related...... to prevent fall accidents. The RCT will test for a variety of health parameters of community-dwelling elderly playing on interactive modular tiles.Methods: The study will be a single blinded, randomized controlled trial with 60 community-dwelling adults 70+ years. The trial will consist an intervention group...... paired t-test, otherwise using Wilcoxon signed-rank test. "Intention to treat" analysis will be done.Discussion: The trial tests for increased mobility, agility, balancing and general fitness of community-dwelling elderly as a result of playing, in this case on modular interactive tiles. A positive...

  16. Regional specialization within the human striatum for diverse psychological functions.

    Science.gov (United States)

    Pauli, Wolfgang M; O'Reilly, Randall C; Yarkoni, Tal; Wager, Tor D

    2016-02-16

    Decades of animal and human neuroimaging research have identified distinct, but overlapping, striatal zones, which are interconnected with separable corticostriatal circuits, and are crucial for the organization of functional systems. Despite continuous efforts to subdivide the human striatum based on anatomical and resting-state functional connectivity, characterizing the different psychological processes related to each zone remains a work in progress. Using an unbiased, data-driven approach, we analyzed large-scale coactivation data from 5,809 human imaging studies. We (i) identified five distinct striatal zones that exhibited discrete patterns of coactivation with cortical brain regions across distinct psychological processes and (ii) identified the different psychological processes associated with each zone. We found that the reported pattern of cortical activation reliably predicted which striatal zone was most strongly activated. Critically, activation in each functional zone could be associated with distinct psychological processes directly, rather than inferred indirectly from psychological functions attributed to associated cortices. Consistent with well-established findings, we found an association of the ventral striatum (VS) with reward processing. Confirming less well-established findings, the VS and adjacent anterior caudate were associated with evaluating the value of rewards and actions, respectively. Furthermore, our results confirmed a sometimes overlooked specialization of the posterior caudate nucleus for executive functions, often considered the exclusive domain of frontoparietal cortical circuits. Our findings provide a precise functional map of regional specialization within the human striatum, both in terms of the differential cortical regions and psychological functions associated with each striatal zone.

  17. Functional-diversity indices can be driven by methodological choices and species richness.

    Science.gov (United States)

    Poos, Mark S; Walker, Steven C; Jackson, Donald A

    2009-02-01

    Functional diversity is an important concept in community ecology because it captures information on functional traits absent in measures of species diversity. One popular method of measuring functional diversity is the dendrogram-based method, FD. To calculate FD, a variety of methodological choices are required, and it has been debated about whether biological conclusions are sensitive to such choices. We studied the probability that conclusions regarding FD were sensitive, and that patterns in sensitivity were related to alpha and beta components of species richness. We developed a randomization procedure that iteratively calculated FD by assigning species into two assemblages and calculating the probability that the community with higher FD varied across methods. We found evidence of sensitivity in all five communities we examined, ranging from a probability of sensitivity of 0 (no sensitivity) to 0.976 (almost completely sensitive). Variations in these probabilities were driven by differences in alpha diversity between assemblages and not by beta diversity. Importantly, FD was most sensitive when it was most useful (i.e., when differences in alpha diversity were low). We demonstrate that trends in functional-diversity analyses can be largely driven by methodological choices or species richness, rather than functional trait information alone.

  18. Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community.

    Science.gov (United States)

    Patoine, Guillaume; Thakur, Madhav P; Friese, Julia; Nock, Charles; Hönig, Lydia; Haase, Josephine; Scherer-Lorenzen, Michael; Eisenhauer, Nico

    2017-11-01

    A better understanding of the mechanisms driving litter diversity effects on decomposition is needed to predict how biodiversity losses affect this crucial ecosystem process. In a microcosm study, we investigated the effects of litter functional diversity and two major groups of soil macro-detritivores on the mass loss of tree leaf litter mixtures. Furthermore, we tested the effects of litter trait community means and dissimilarity on litter mass loss for seven traits relevant to decomposition. We expected macro-detritivore effects on litter mass loss to be most pronounced in litter mixtures of high functional diversity. We used 24 leaf mixtures differing in functional diversity, which were composed of litter from four species from a pool of 16 common European tree species. Earthworms, isopods, or a combination of both were added to each litter combination for two months. Litter mass loss was significantly higher in the presence of earthworms than in that of isopods, whereas no synergistic effects of macro-detritivore mixtures were found. The effect of functional diversity of the litter material was highest in the presence of both macro-detritivore groups, supporting the notion that litter diversity effects are most pronounced in the presence of different detritivore species. Species-specific litter mass loss was explained by nutrient content, secondary compound concentration, and structural components. Moreover, dissimilarity in N concentrations increased litter mass loss, probably because detritivores having access to nutritionally diverse food sources. Furthermore, strong competition between the two macro-detritivores for soil surface litter resulted in a decrease of survival of both macro-detritivores. These results show that the effects of litter functional diversity on decomposition are contingent upon the macro-detritivore community and composition. We conclude that the temporal dynamics of litter trait diversity effects and their interaction with

  19. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    Science.gov (United States)

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  20. Diversity, classification and function of the plant protein kinase superfamily

    OpenAIRE

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase r...

  1. BRICHOS - a superfamily of multidomain proteins with diverse functions

    Directory of Open Access Journals (Sweden)

    Johansson Jan

    2009-09-01

    Full Text Available Abstract Background The BRICHOS domain has been found in 8 protein families with a wide range of functions and a variety of disease associations, such as respiratory distress syndrome, dementia and cancer. The domain itself is thought to have a chaperone function, and indeed three of the families are associated with amyloid formation, but its structure and many of its functional properties are still unknown. Findings The proteins in the BRICHOS superfamily have four regions with distinct properties. We have analysed the BRICHOS proteins focusing on sequence conservation, amino acid residue properties, native disorder and secondary structure predictions. Residue conservation shows large variations between the regions, and the spread of residue conservation between different families can vary greatly within the regions. The secondary structure predictions for the BRICHOS proteins show remarkable coherence even where sequence conservation is low, and there seems to be little native disorder. Conclusions The greatly variant rates of conservation indicates different functional constraints among the regions and among the families. We present three previously unknown BRICHOS families; group A, which may be ancestral to the ITM2 families; group B, which is a close relative to the gastrokine families, and group C, which appears to be a truly novel, disjoint BRICHOS family. The C-terminal region of group C has nearly identical sequences in all species ranging from fish to man and is seemingly unique to this family, indicating critical functional or structural properties.

  2. β-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan.

    Directory of Open Access Journals (Sweden)

    Jorge Omar López-Martínez

    Full Text Available Two main theories have attempted to explain variation in plant species composition (β-diversity. Niche theory proposes that most of the variation is related to environment (environmental filtering, whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning, and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position, whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity -possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity

  3. Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb.

    Science.gov (United States)

    Medrano, Mónica; Herrera, Carlos M; Bazaga, Pilar

    2014-10-01

    The ecological significance of epigenetic variation has been generally inferred from studies on model plants under artificial conditions, but the importance of epigenetic differences between individuals as a source of intraspecific diversity in natural plant populations remains essentially unknown. This study investigates the relationship between epigenetic variation and functional plant diversity by conducting epigenetic (methylation-sensitive amplified fragment length polymorphisms, MSAP) and genetic (amplified fragment length polymorphisms, AFLP) marker-trait association analyses for 20 whole-plant, leaf and regenerative functional traits in a large sample of wild-growing plants of the perennial herb Helleborus foetidus from ten sampling sites in south-eastern Spain. Plants differed widely in functional characteristics, and exhibited greater epigenetic than genetic diversity, as shown by per cent polymorphism of MSAP fragments (92%) or markers (69%) greatly exceeding that for AFLP ones (41%). After controlling for genetic structuring and possible cryptic relatedness, every functional trait considered exhibited a significant association with at least one AFLP or MSAP marker. A total of 27 MSAP (13.0% of total) and 12 AFLP (4.4%) markers were involved in significant associations, which explained on average 8.2% and 8.0% of trait variance, respectively. Individual MSAP markers were more likely to be associated with functional traits than AFLP markers. Between-site differences in multivariate functional diversity were directly related to variation in multilocus epigenetic diversity after multilocus genetic diversity was statistically accounted for. Results suggest that epigenetic variation can be an important source of intraspecific functional diversity in H. foetidus, possibly endowing this species with the capacity to exploit a broad range of ecological conditions despite its modest genetic diversity. © 2014 John Wiley & Sons Ltd.

  4. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  5. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes.

    Science.gov (United States)

    Martinelli, Simone; Krumbach, Oliver H F; Pantaleoni, Francesca; Coppola, Simona; Amin, Ehsan; Pannone, Luca; Nouri, Kazem; Farina, Luciapia; Dvorsky, Radovan; Lepri, Francesca; Buchholzer, Marcel; Konopatzki, Raphael; Walsh, Laurence; Payne, Katelyn; Pierpont, Mary Ella; Vergano, Samantha Schrier; Langley, Katherine G; Larsen, Douglas; Farwell, Kelly D; Tang, Sha; Mroske, Cameron; Gallotta, Ivan; Di Schiavi, Elia; Della Monica, Matteo; Lugli, Licia; Rossi, Cesare; Seri, Marco; Cocchi, Guido; Henderson, Lindsay; Baskin, Berivan; Alders, Mariëlle; Mendoza-Londono, Roberto; Dupuis, Lucie; Nickerson, Deborah A; Chong, Jessica X; Meeks, Naomi; Brown, Kathleen; Causey, Tahnee; Cho, Megan T; Demuth, Stephanie; Digilio, Maria Cristina; Gelb, Bruce D; Bamshad, Michael J; Zenker, Martin; Ahmadian, Mohammad Reza; Hennekam, Raoul C; Tartaglia, Marco; Mirzaa, Ghayda M

    2018-01-17

    Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Boronate Derivatives of Functionally Diverse Catechols: Stability Studies

    Directory of Open Access Journals (Sweden)

    Kamal Aziz Ketuly

    2010-03-01

    Full Text Available Benzeneboronate of catecholic carboxyl methyl esters, N-acetyldopamine, coumarin and catechol estrogens were prepared as crystalline derivatives in high yield. Related catechol compounds with extra polar functional group(s (OH, NH2 do not form or only partially form unstable cyclic boronate derivatives.

  7. Mycorrhizal symbioses of Salix repens : diversity and functional significance

    NARCIS (Netherlands)

    Heijden, van der E.W.

    2000-01-01

    This thesis investigates the significance of different mycorrhizal fungi, belonging to different functional types (arbuscular mycorrhiza-AM and ectomycorrhiza-EcM), in Salix repens . A comparison between above-ground and below-ground observations on ectomycorrhizal

  8. Microbial community diversity and composition varies with habitat characteristics and biofilm function in macrophyte-rich streams

    DEFF Research Database (Denmark)

    Levi, Peter S.; Starnawski, Piotr; Poulsen, Britta

    2017-01-01

    Biofilms in streams play an integral role in ecosystem processes and function yet few studies have investigated the broad diversity of these complex prokaryotic and eukaryotic microbial communities. Physical habitat characteristics can affect the composition and abundance of microorganisms...... in these biofilms by creating microhabitats. Here we describe the prokaryotic and eukaryotic microbial diversity of biofilms in sand and macrophyte habitats (i.e. epipsammon and epiphyton, respectively) in five macrophyte-rich streams in Jutland, Denmark. The macrophyte species varied in growth morphology, C......:N stoichiometry, and preferred stream habitat, providing a range in environmental conditions for the epiphyton. Among all habitats and streams, the prokaryotic communities were dominated by common phyla, including Alphaproteobacteria, Bacteriodetes, and Gammaproteobacteria, while the eukaryotic communities were...

  9. The association between singing and/or playing a musical instrument and cognitive functions in older adults.

    Science.gov (United States)

    Mansens, D; Deeg, D J H; Comijs, H C

    2017-05-19

    Cognitive decline happens to everyone when aging, but to some more than others. Studies with children, adults, and professional musicians suggest that making music could be associated with better cognitive functioning. In older adults however, this association is less well investigated, which is therefore the aim of this study. In this cross-sectional study data from 1101 participants aged 64 and older from the Longitudinal Aging Study Amsterdam were used. Multivariable linear regression analyses were performed to test the association between making music and cognitive functioning and time spent making music and cognitive functioning. ANCOVA analyses were performed to differentiate between participants who made no music, only sang, only played an instrument or both sang and played an instrument in terms of cognitive functioning. Making music was significantly positively associated with letter fluency, learning and attention/short-term memory. Time spent making music yielded no significant results. The ANCOVA analyses showed higher scores for participants who only played an instrument compared to participants who made no music on learning, working memory and processing speed. For processing speed the instrument only group also had a higher score than participants who only sang. Making music at least once every two weeks and especially playing a musical instrument, is associated with better attention, episodic memory and executive functions. The results suggest that making music might be a potential protective factor for cognitive decline; however, to support this notion a longitudinal study design is needed.

  10. Functional Diversity of Neurotrophin Actions on the Oculomotor System

    Science.gov (United States)

    Benítez-Temiño, Beatriz; Davis-López de Carrizosa, María A.; Morcuende, Sara; Matarredona, Esperanza R.; de la Cruz, Rosa R.; Pastor, Angel M.

    2016-01-01

    Neurotrophins play a principal role in neuronal survival and differentiation during development, but also in the maintenance of appropriate adult neuronal circuits and phenotypes. In the oculomotor system, we have demonstrated that neurotrophins are key regulators of developing and adult neuronal properties, but with peculiarities depending on each neurotrophin. For instance, the administration of NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor) or NT-3 (neurotrophin-3) protects neonatal extraocular motoneurons from cell death after axotomy, but only NGF and BDNF prevent the downregulation in ChAT (choline acetyltransferase). In the adult, in vivo recordings of axotomized extraocular motoneurons have demonstrated that the delivery of NGF, BDNF or NT-3 recovers different components of the firing discharge activity of these cells, with some particularities in the case of NGF. All neurotrophins have also synaptotrophic activity, although to different degrees. Accordingly, neurotrophins can restore the axotomy-induced alterations acting selectively on different properties of the motoneuron. In this review, we summarize these evidences and discuss them in the context of other motor systems. PMID:27916956

  11. Diverse novel functions of neutrophils in immunity, inflammation, and beyond

    OpenAIRE

    Mocsai, A.

    2013-01-01

    Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10–20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellu...

  12. Diverse Functional Properties of Wilson Disease ATP7B Variants

    Science.gov (United States)

    Huster, Dominik; Kühne, Angelika; Bhattacharjee, Ashima; Raines, Lily; Jantsch, Vanessa; Noe, Johannes; Schirrmeister, Wiebke; Sommerer, Ines; Sabri, Osama; Berr, Frieder; Mössner, Joachim; Stieger, Bruno; Caca, Karel; Lutsenko, Svetlana

    2012-01-01

    BACKGROUND & AIMS Wilson disease is a severe disorder of copper metabolism caused by mutations in ATP7B, which encodes a copper-transporting adenosine triphosphatase. The disease presents with a variable phenotype that complicates the diagnostic process and treatment. Little is known about the mechanisms that contribute to the different phenotypes of the disease. METHODS We analyzed 28 variants of ATP7B from patients with Wilson disease that affected different functional domains; the gene products were expressed using the baculovirus expression system in Sf9 cells. Protein function was analyzed by measuring catalytic activity and copper (64Cu) transport into vesicles. We studied intracellular localization of variants of ATP7B that had measurable transport activities and were tagged with green fluorescent protein in mammalian cells using confocal laser scanning microscopy. RESULTS Properties of ATP7B variants with pathogenic amino-acid substitution varied greatly even if substitutions were in the same functional domain. Some variants had complete loss of catalytic and transport activity, whereas others lost transport activity but retained phosphor-intermediate formation or had partial losses of activity. In mammalian cells, transport-competent variants differed in stability and subcellular localization. CONCLUSIONS Variants in ATP7B associated with Wilson disease disrupt the protein’s transport activity, result in its mislocalization, and reduce its stability. Single assays are insufficient to accurately predict the effects of ATP7B variants the function of its product and development of Wilson disease. These findings will contribute to our understanding of genotype–phenotype correlation and mechanisms of disease pathogenesis. PMID:22240481

  13. Diverse novel functions of neutrophils in immunity, inflammation, and beyond.

    Science.gov (United States)

    Mócsai, Attila

    2013-07-01

    Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10-20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellular pathogens such as viruses and mycobacteria. They have been shown to intimately shape the adaptive immune response at various levels, including marginal zone B cells, plasmacytoid dendritic cells and T cell populations, and even to control NK cell homeostasis. Neutrophils have been shown to mediate an alternative pathway of systemic anaphylaxis and to participate in allergic skin reactions. Finally, neutrophils were found to be involved in physiological and pathological processes beyond the immune system, such as diabetes, atherosclerosis, and thrombus formation. Many of those functions appear to be related to their unique ability to release neutrophil extracellular traps even in the absence of pathogens. This review summarizes those novel findings on versatile functions of neutrophils and how they change our view of neutrophil biology in health and disease.

  14. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  15. Structural and Functional Diversity of Weed Species in Organic and Conventional Rice Agro-Ecosystems

    Directory of Open Access Journals (Sweden)

    S. Y. Mousawi Toghani

    2016-02-01

    Full Text Available Introduction Diversity reflects the complexity of a system and can maintain its sustainability. Higherdiversity, results in higher inherent complexity of agro-ecosystems and strengthen their processes. It is necessary to realize the spatial distribution and temporal properties of the biodiversity components in agro-ecosystems, for the conservation and optimal utilization. Since weeds as a complementary component of agro-ecosystems and are inseparable, so the study of species, their functional and structural diversity of them can play an important role in weed management and balance in ecological systems. Materials and Methods This study was performed to determine the effects of different management systems on structural, and functional diversity of paddy weeds in Mazandaran province. Three rice fields, ranged from 0.3 to 0.5 ha, were chosen for each management system. Samples were collected from three fields running under each selected management system (organic and conventional. Data (number of weed species and their density were randomly gathered from 9 quadrates (1m×1m per each field in four stages (tillering, stem elongation, grain filling and after harvest. The diversity, evenness, frequency and similarity indices for weeds were determined at genera and species level. Data analysis carried out through T-test and grouping performed via cluster analysis as hierarchy. Results and Discussion All monitored weeds can be classified into four plant family including cereals (Poaceae, sedges (Cyperaceae, plantain (Plantaginaceae and chicory (Asteraceae.Under conventional systems the values of weed diversity indices were higher during tillering and stem elongation compared with organic ones, and were lower during grain filling and after harvest stages. However indices of weed evenness showed contrary tendency. Both Sympson and Shanon-Wiener diversity indices, consist of two clusters in 76% similarity. Evenness indices of Kamargo and Smith

  16. Macrophage heterogeneity in tissues: phenotypic diversity and functions

    Science.gov (United States)

    Gordon, Siamon; Plüddemann, Annette; Martinez Estrada, Fernando

    2014-01-01

    During development and throughout adult life, macrophages derived from hematopoietic progenitors are seeded throughout the body, initially in the absence of inflammatory and infectious stimuli as tissue-resident cells, with enhanced recruitment, activation, and local proliferation following injury and pathologic insults. We have learned a great deal about macrophage properties ex vivo and in cell culture, but their phenotypic heterogeneity within different tissue microenvironments remains poorly characterized, although it contributes significantly to maintaining local and systemic homeostasis, pathogenesis, and possible treatment. In this review, we summarize the nature, functions, and interactions of tissue macrophage populations within their microenvironment and suggest questions for further investigation. PMID:25319326

  17. Play with online virtual pets as a method to improve mirror neuron and real world functioning in autistic children.

    Science.gov (United States)

    Altschuler, Eric Lewin

    2008-01-01

    Autism is a severe disease with no known cause and no cure or treatment. Recently, ourselves and subsequently others found that so-called "mirror neurons" - neurons that respond not only when a person moves, but upon observation of movement in another - are dysfunctional in autistic children. Here I suggest an easy, simple, inexpensive and fun method to improve mirror neuron functioning in autistic children, increase appreciation in autistic children for the theory of mind and thinking of others, and most importantly hopefully to improve real world functioning: play with virtual online pets that are the "embodiment" of a stuffed animal the child has. Adoption and then care and play with online pets forces, in a fun way, one to think about the world through the eyes and needs of the pet. A simple method to test this play with online virtual pet therapy is described.

  18. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil.

    Science.gov (United States)

    Xue, K; van Nostrand, J D; Vangronsveld, J; Witters, N; Janssen, J O; Kumpiene, J; Siebielec, G; Galazka, R; Giagnoni, L; Arenella, M; Zhou, J-Z; Renella, G

    2015-11-01

    We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Role of Make-Believe Play in the Development of Executive Function: Status of Research and Future Directions

    Science.gov (United States)

    Berk, Laura E.; Meyers, Adena B.

    2013-01-01

    The authors discuss the association between make-believe play and the development of executive-function (EF) skills in young children. Some forty years ago, Lev S. Vygotsky first proposed that make-believe fosters the development of symbolic thought and self-regulation. Since then, a small body of research has produced evidence of an association…

  20. Predator-prey dynamics driven by feedback between functionally diverse trophic levels.

    Directory of Open Access Journals (Sweden)

    Katrin Tirok

    Full Text Available Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits--prey edibility and predator food-selectivity--and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity.

  1. Variable reporting of functional outcomes and return to play in superior labrum anterior and posterior tear.

    Science.gov (United States)

    Steinhaus, Michael E; Makhni, Eric C; Lieber, Adam C; Kahlenberg, Cynthia A; Gulotta, Lawrence V; Romeo, Anthony A; Verma, Nikhil N

    2016-11-01

    Outcomes assessments after superior labrum anterior and posterior (SLAP) tear/repair are highly varied, making it difficult to draw comparisons across the literature. This study examined the inconsistency in outcomes reporting in the SLAP tear literature. We hypothesize that there is significant variability in outcomes reporting and that although most studies may report return to play, time to return reporting will be highly variable. The PubMed, Medline, Scopus, and Embase databases were systematically reviewed for studies from January 2000 to December 2014 reporting outcomes after SLAP tear/repair. Two reviewers assessed each study, and those meeting inclusion criteria were examined for pertinent data. Outcomes included objective (range of motion, strength, clinical examinations, and imaging) and subjective (patient-reported outcomes, satisfaction, activities of daily living, and return to play) measures. Of the 56 included studies, 43% documented range of motion, 14% reported strength, and 16% noted postoperative imaging. There was significant variation in use of patient-reported outcomes measures, with the 3 most commonly noted measures reported in 20% to 55% of studies. Return to play was noted in 75% of studies, and 23% reported time to return, with greater rates in elite athletes. Eleven studies (20%) did not report follow-up or noted data with <12 months of follow-up. The SLAP literature is characterized by substantial variability in outcomes reporting, with time to return to play noted in few studies. Efforts to standardize outcomes reporting would facilitate comparisons across the literature and improve our understanding of the prognosis of this injury. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. Changes in the functional trait composition and diversity of meadow communities induced by Rhinanthus minor L.

    Czech Academy of Sciences Publication Activity Database

    Mudrák, Ondřej; de Bello, Francesco; Doležal, Jiří; Lepš, Jan

    2016-01-01

    Roč. 51, č. 1 (2016), s. 1-11 ISSN 1211-9520 R&D Projects: GA MŠk(CZ) EE2.3.30.0048 Institutional support: RVO:67985939 ; RVO:60077344 Keywords : functional traits * functional diversity * root hemiparasite Subject RIV: EF - Botanics; EH - Ecology, Behaviour (BC-A) Impact factor: 1.017, year: 2016

  3. Real-time monitoring prefrontal activities during online video game playing by functional near-infrared spectroscopy.

    Science.gov (United States)

    Li, Yue; Zhang, Lei; Long, Kehong; Gong, Hui; Lei, Hao

    2018-02-16

    A growing body of literature has suggested that video game playing can induce functional and structural plasticity of the brain. The underlying mechanisms, however, remain poorly understood. In this study, functional near-infrared spectroscopy (fNIRS) was used to record prefrontal activities in 24 experienced game players when they played a massively multiplayer online battle arena video game, League of Legends (LOL), under naturalistic conditions. It was observed that game onset was associated with significant activations in the ventrolateral prefrontal cortex (VLPFC) and concomitant deactivations in the dorsolateral prefrontal cortex (DLPFC) and frontal pole area (FPA). Game events, such as slaying an enemy and being slain by an enemy evoked region-specific time-locked hemodynamic/oxygenation responses in the prefrontal cortex (PFC). It was proposed that the VLPFC activities during LOL playing are likely responses to visuo-motor task load of the game, while the DLPFC/FPA activities may be involved in the constant shifts of attentional states and allocation of cognitive resources required by game playing. The present study demonstrated that it is feasible to use fNIRS to monitor real-time prefrontal activity during online video game playing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Scale-Dependence of Processes Structuring Dung Beetle Metacommunities Using Functional Diversity and Community Deconstruction Approaches

    Science.gov (United States)

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  5. Melatonin in Plants - Diversity of Levels and Multiplicity of Functions.

    Science.gov (United States)

    Hardeland, Rüdiger

    2016-01-01

    Melatonin has been detected in numerous plant species. A particularly surprising finding concerns the highly divergent levels of melatonin that vary between species, organs and environmental conditions, from a few pg/g to over 20 μg/g, reportedly up to 200 μg/g. Highest values have been determined in oily seeds and in plant organs exposed to high UV radiation. The divergency of melatonin concentrations is discussed under various functional aspects and focused on several open questions. This comprises differences in precursor availability, catabolism, the relative contribution of isoenzymes of the melatonin biosynthetic pathway, and differences in rate limitation by either serotonin N-acetyltransferase or N-acetylserotonin O-methyltransferase. Other differences are related to the remarkable pleiotropy of melatonin, which exhibits properties as a growth regulator and morphogenetic factor, actually debated in terms of auxin-like effects, and as a signaling molecule that modulates pathways of ethylene, abscisic, jasmonic and salicylic acids and is involved in stress tolerance, pathogen defense and delay of senescence. In the context of high light/UV intensities, elevated melatonin levels exceed those required for signaling via stress-related phytohormones and may comprise direct antioxidant and photoprotectant properties, perhaps with a contribution of its oxidatively formed metabolites, such as N (1)-acetyl-N (2)-formyl-5-methoxykynuramine and its secondary products. High melatonin levels in seeds may also serve antioxidative protection and have been shown to promote seed viability and germination capacity.

  6. Linking microbial diversity and functionality of arctic glacial surface habitats.

    Science.gov (United States)

    Lutz, Stefanie; Anesio, Alexandre M; Edwards, Arwyn; Benning, Liane G

    2017-02-01

    Distinct microbial habitats on glacial surfaces are dominated by snow and ice algae, which are the critical players and the dominant primary colonisers and net producers during the melt season. Here for the first time we have evaluated the role of these algae in association with the full microbial community composition (i.e., algae, bacteria, archaea) in distinct surface habitats and on 12 glaciers and permanent snow fields in Svalbard and Arctic Sweden. We cross-correlated these data with the analyses of specific metabolites such as fatty acids and pigments, and a full suite of potential critical physico-chemical parameters including major and minor nutrients, and trace metals. It has been shown that correlations between single algal species, metabolites, and specific geochemical parameters can be used to unravel mixed metabolic signals in complex communities, further assign them to single species and infer their functionality. The data also clearly show that the production of metabolites in snow and ice algae is driven mainly by nitrogen and less so by phosphorus limitation. This is especially important for the synthesis of secondary carotenoids, which cause a darkening of glacial surfaces leading to a decrease in surface albedo and eventually higher melting rates. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Patterns of bird functional diversity on land-bridge island fragments.

    Science.gov (United States)

    Ding, Zhifeng; Feeley, Kenneth J; Wang, Yanping; Pakeman, Robin J; Ding, Ping

    2013-07-01

    The loss of species diversity due to habitat fragmentation has been extensively studied. In contrast, the impacts of habitat fragmentation on functional diversity remains relatively poorly understood. We conducted bird functional diversity studies on a set of 41 recently isolated land-bridge islands in the Thousand Island Lake, China. We analysed differences in bird species richness and a recently developed suite of complementary functional diversity indices (FRic, volume of functional space occupied; FEve, evenness of abundance distribution in the functional trait space; FDiv, divergence in the distribution of abundance in the trait volume) across different gradients (island area and isolation). We found no correlations between FRic and FEve or FEve and FDiv, but negative correlations between FRic and FDiv. As predicted, island area accounted for most of the variation in bird species richness, whereas isolation explained most of the variation in species evenness (decreasing species evenness with increasing isolation). Functional diversity appears to be more strongly influenced by habitat filtering as opposed to limiting similarity. More specifically, across all islands, both FRic and FEve were significantly lower than expected for randomly assembled communities, but FDiv showed no clear patterns. FRic increased with island area, FEve decreased with island area and FDiv showed no clear patterns. Our finding that FEve decreases with island area at TIL may indicate low functional stability on such islands, and as such large islands and habitat patches may deserve extra attention and/or protection. These results help to demonstrate the importance of considering the effects of fragmentation on functional diversity in habitat management and reserve design plans. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  8. In Search of functionality-diversity relationships in anaerobic mixed culture fermentations

    International Nuclear Information System (INIS)

    Kleerebezem, R.; Temudo, M.; Muyzer Van Loosdrecht, M. C. M.

    2009-01-01

    Based on the work described in this paper we will postulate that in environmental ecosystems with a weak selective pressure no clear relationship exists between the ecosystem functionality and the microbial diversity and microbial composition. In the past years we have been investigating the anaerobic fermentation of glucose, xylose, and glycerol, and mixtures of these substrates in continuously stirred tank reactors (CSTR) inoculated with an activated sludge characterized by a very rich microbial diversity. (Author)

  9. Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly

    Czech Academy of Sciences Publication Activity Database

    de Bello, Francesco; Šmilauer, P.; Diniz-Filho, J. A. F.; Carmona, C. P.; Lososová, Z.; Herben, Tomáš; Götzenberger, Lars

    2017-01-01

    Roč. 8, č. 10 (2017), s. 1200-1211 ISSN 2041-210X R&D Projects: GA ČR(CZ) GA16-15012S; GA ČR GB14-36079G EU Projects: European Commission(XE) 267243 Institutional support: RVO:67985939 Keywords : community ecology * phylogenetic diversity * functional diversity Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 5.708, year: 2016

  10. Taxonomic and functional trait diversity of wild bees in different urban settings

    Directory of Open Access Journals (Sweden)

    Étienne Normandin

    2017-03-01

    Full Text Available Urbanization is one of the major anthropogenic processes contributing to local habitat loss and extirpation of numerous species, including wild bees, the most widespread pollinators. Little is known about the mechanisms through which urbanization impacts wild bee communities, or the types of urban green spaces that best promote their conservation in cities. The main objective of this study was to describe and compare wild bee community diversity, structure, and dynamics in two Canadian cities, Montreal and Quebec City. A second objective was to compare functional trait diversity among three habitat types (cemeteries, community gardens and urban parks within each city. Bees were collected using pan traps and netting on the same 46 sites, multiple times, over the active season in 2012 and 2013. A total of 32,237 specimens were identified, representing 200 species and 6 families, including two new continental records, Hylaeus communis Nylander (1852 and Anthidium florentinum (Fabricius, 1775. Despite high community evenness, we found significant abundance of diverse species, including exotic ones. Spatio-temporal analysis showed higher stability in the most urbanized city (Montreal but low nestedness of species assemblages among the three urban habitats in both cities. Our study demonstrates that cities are home to diverse communities of wild bees, but in turn affect bee community structure and dynamics. We also found that community gardens harbour high levels of functional trait diversity. Urban agriculture therefore contributes substantially to the provision of functionally diverse bee communities and possibly to urban pollination services.

  11. Taxonomic and functional trait diversity of wild bees in different urban settings.

    Science.gov (United States)

    Normandin, Étienne; Vereecken, Nicolas J; Buddle, Christopher M; Fournier, Valérie

    2017-01-01

    Urbanization is one of the major anthropogenic processes contributing to local habitat loss and extirpation of numerous species, including wild bees, the most widespread pollinators. Little is known about the mechanisms through which urbanization impacts wild bee communities, or the types of urban green spaces that best promote their conservation in cities. The main objective of this study was to describe and compare wild bee community diversity, structure, and dynamics in two Canadian cities, Montreal and Quebec City. A second objective was to compare functional trait diversity among three habitat types (cemeteries, community gardens and urban parks) within each city. Bees were collected using pan traps and netting on the same 46 sites, multiple times, over the active season in 2012 and 2013. A total of 32,237 specimens were identified, representing 200 species and 6 families, including two new continental records, Hylaeus communis Nylander (1852) and Anthidium florentinum (Fabricius, 1775). Despite high community evenness, we found significant abundance of diverse species, including exotic ones. Spatio-temporal analysis showed higher stability in the most urbanized city (Montreal) but low nestedness of species assemblages among the three urban habitats in both cities. Our study demonstrates that cities are home to diverse communities of wild bees, but in turn affect bee community structure and dynamics. We also found that community gardens harbour high levels of functional trait diversity. Urban agriculture therefore contributes substantially to the provision of functionally diverse bee communities and possibly to urban pollination services.

  12. Functional diversity of macrophyte communities within and between Pyrenean lakes

    Directory of Open Access Journals (Sweden)

    Enric BALLESTEROS

    2009-02-01

    Full Text Available Submersed vegetation is a common feature in about 70% Pyrenean high mountain (>1500 m a.s.l. lakes. Isoetids and soft-water elodeids are common elements of this underwater flora and can form distinct vegetation units (i.e. patches of vegetation dominated by different species within complex mosaics of vegetation in shallow waters (<7 m. Since isoetids exert a strong influence on sediment biogeochemistry due to high radial oxygen loss, we examined the small scale characteristics of the lake environment (water and sediment associated to vegetation patches in order to ascertain potential functional differences among them. To do so, we characterised the species composition and biomass of the main vegetation units from 11 lakes, defined plant communities based on biomass data, and then related each community with sediment properties (redox and dissolved nutrient concentration in the pore water and water nutrient concentration within plant canopy. We also characterised lake water and sediment in areas without vegetation as a reference. A total of twenty-one vegetation units were identified, ranging from one to five per lake. A cluster analysis on biomass species composition suggested seven different macrophyte communities that were named after the most dominant species: Nitella sp., Potamogeton praelongus, Myriophyllum alterniflorum, Sparganium angustifolium, Isoetes echinospora, Isoetes lacustris and Carex rostrata. Coupling between macrophyte communities and their immediate environment (overlying water and sediment was manifested mainly as variation in sediment redox conditions and the dominant form of inorganic nitrogen in pore-water. These effects depended on the specific composition of the community, and on the allocation between above- and belowground biomass, and could be predicted with a model relating the average and standard deviation of sediment redox potential from 0 down to -20 cm, across macrophyte communities. Differences in pore

  13. Wide ranges of functional traits in the flora from the central region of Sonora: A diversity to be explored

    Science.gov (United States)

    Cesar Hinojo Hinojo; Alejandro E. Castellanos; Jose M. Llano. Sotelo

    2013-01-01

    Although the Sonoran Desert does not have the highest plant species richness, it has been documented with the highest growth form diversity from the North American deserts. It is not known if this high growth form diversity could also harbor a high functional diversity. In this study we characterize the ecophysiological functional traits of photosynthetic capacity,...

  14. Distinguishing Playing Status Through a Functionally Relevant Performance Measure in Female Division I Collegiate Soccer Athletes.

    Science.gov (United States)

    Magrini, Mitchel A; Colquhoun, Ryan J; Sellers, John H; Conchola, Eric C; Hester, Garrett M; Thiele, Ryan M; Pope, Zach K; Smith, Doug B

    2017-06-08

    Although soccer is predominately an endurance sport, high velocity movements may be an important indicator of athletic success. The purpose of this investigation was to establish whether squat jumps (SJ) can differentiate starters from non-starters with a female collegiate division I soccer team. Eighteen female division I soccer athletes were separated into two groups: 9 starters (age: 19.5 ± 1.0; mass = 64.8 ± 11.5 kg; height = 167.5 ± 7.7 cm; games started = 18.2 ± 4.7; minutes played = 1633.8 ± 478.2 min) and 9 non-starters (age: 19.4 ± 1.4 years; mass = 63.3 ± 4.2 kg; height = 164.7 ± 6.8 cm; games started 0.7 ± 1.3; minutes played 158.2 ± 269.3). Each athlete performed 3 maximal SJs at a starting knee angle of 110° without arm swing. Each participant's SJ height, mean power (MP), peak power (PP), mean velocity (MV), and peak velocity (PV) were measured during each attempt by a linear position transducer (LPT). No statistically significant differences (p ≥ 0.05) in MP and PP between the starters and non-starters were observed. However, starters performed significantly better than non-starters in SJ height (p = 0.002), MV (p = 0.025), and PV (p = 0.015). Additionally, SJ height was strongly correlated with MV (r = 0.628) and PV (r = 0.647). These findings suggest that SJ height, MV and PV, may be important variables for discriminating differences between starters and non-starters in division I female soccer athletes and a strong indicator of explosive performance.

  15. Functional diversity of benthic ciliate communities in response to environmental gradients in a wetland of Yangtze Estuary, China.

    Science.gov (United States)

    Xu, Yuan; Fan, Xinpeng; Warren, Alan; Zhang, Liquan; Xu, Henglong

    2018-02-01

    Researches on the functional diversity of benthic ecosystems have mainly focused on macrofauna, and studies on functional structure of ciliate communities have been based only on trophic- or size-groups. Current research was carried out on the changing patterns of classical and functional diversity of benthic ciliates in response to environmental gradients at three sites in a wetland in Yangtze Estuary. The results showed that changes of environmental factors (e.g. salinity, sediment grain size and hydrodynamic conditions) in the Yangtze Estuary induce variability in species composition and functional trait distribution. Furthermore, increased species richness and diversity did not lead to significant changes in functional diversity due to functional redundancy. However, salt water intrusion of Yangtze Estuary during the dry season could cause reduced functional diversity of ciliate communities. Current study provides the first insight into the functional diversity of ciliate communities in response to environmental gradients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Functional diversity of home gardens and their agrobiodiversity conservation benefits in Benin, West Africa.

    Science.gov (United States)

    Gbedomon, Rodrigue Castro; Salako, Valère Kolawolé; Fandohan, Adandé Belarmain; Idohou, Alix Frank Rodrigue; Glèlè Kakaї, Romain; Assogbadjo, Achille Ephrem

    2017-11-25

    Understanding the functional diversity of home gardens and their socio-ecological determinants is essential for mainstreaming these agroforestry practices into agrobiodiversity conservation strategies. This paper analyzed functional diversity of home gardens, identified the socio-ecological drivers of functions assigned to them, and assessed the agrobiodiversity benefits of home gardens functions. Using data on occurring species in home garden (HG) and functions assigned to each species by the gardeners, the study combined clustering and discriminant canonical analyses to explore the functional diversity of 360 home gardens in Benin, West Africa. Next, multinomial logistic models and chi-square tests were used to analyze the effect of socio-demographic characteristics of gardeners (age, gender, and education level), agro-ecological zones (humid, sub-humid, and semi-arid), and management regime (single and multiple managers) on the possession of a functional type of home gardens. Generalized linear models were used to assess the effect of the functions of home gardens and the determinant factor on their potential in conserving agrobiodiversity. Seven functional groups of home gardens, four with specific functions (food, medicinal, or both food and medicinal) and three with multiple functions (more than two main functions), were found. Women owned most of home gardens with primarily food plant production purpose while men owned most of home gardens with primarily medicinal plant production purposes. Finding also showed that multifunctional home gardens had higher plant species diversity. Specifically, crops and crop wild relatives occurred mainly in home gardens with food function while wild plant species were mostly found in home gardens with mainly medicinal function. Home gardening is driven by functions beyond food production. These functions are mostly related to direct and extractive values of home gardens. Functions of home gardens were gendered, with women

  17. Evaluating Treatments for Functionally Equivalent Problem Behavior Maintained by Adult Compliance with Mands during Interactive Play

    Science.gov (United States)

    Schmidt, Jonathan D.; Bednar, Mary K.; Willse, Lena V.; Goetzel, Amanda L.; Concepcion, Anthony; Pincus, Shari M.; Hardesty, Samantha L.; Bowman, Lynn G.

    2017-01-01

    A primary goal of behavioral interventions is to reduce dangerous or inappropriate behavior and to generalize treatment effects across various settings. However, there is a lack of research evaluating generalization of treatment effects while individuals with functionally equivalent problem behavior interact with each other. For the current study,…

  18. Integrating abundance and functional traits reveals new global hotspots of fish diversity.

    Science.gov (United States)

    Stuart-Smith, Rick D; Bates, Amanda E; Lefcheck, Jonathan S; Duffy, J Emmett; Baker, Susan C; Thomson, Russell J; Stuart-Smith, Jemina F; Hill, Nicole A; Kininmonth, Stuart J; Airoldi, Laura; Becerro, Mikel A; Campbell, Stuart J; Dawson, Terence P; Navarrete, Sergio A; Soler, German A; Strain, Elisabeth M A; Willis, Trevor J; Edgar, Graham J

    2013-09-26

    Species richness has dominated our view of global biodiversity patterns for centuries. The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management. However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling). Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao's Q), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only. There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites ('community evenness'), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness. Our findings suggest that the contribution of species diversity to a range of

  19. Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function.

    Science.gov (United States)

    Lowery, Jason; Kuczmarski, Edward R; Herrmann, Harald; Goldman, Robert D

    2015-07-10

    Intermediate filaments (IFs) are composed of one or more members of a large family of cytoskeletal proteins, whose expression is cell- and tissue type-specific. Their importance in regulating the physiological properties of cells is becoming widely recognized in functions ranging from cell motility to signal transduction. IF proteins assemble into nanoscale biopolymers with unique strain-hardening properties that are related to their roles in regulating the mechanical integrity of cells. Furthermore, mutations in the genes encoding IF proteins cause a wide range of human diseases. Due to the number of different types of IF proteins, we have limited this short review to cover structure and function topics mainly related to the simpler homopolymeric IF networks composed of vimentin, and specifically for diseases, the related muscle-specific desmin IF networks. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Playing Piano Can Improve Upper Extremity Function after Stroke: Case Studies

    OpenAIRE

    Villeneuve, Myriam; Lamontagne, Anouk

    2013-01-01

    Music-supported therapy (MST) is an innovative approach that was shown to improve manual dexterity in acute stroke survivors. The feasibility of such intervention in chronic stroke survivors and its longer-term benefits, however, remain unknown. The objective of this pilot study was to estimate the short- and long-term effects of a 3-week piano training program on upper extremity function in persons with chronic stroke. A multiple pre-post sequential design was used, with measurements taken a...

  1. Parametric scaling from species to growth-form diversity: an interesting analogy with multifractal functions.

    Science.gov (United States)

    Ricotta, Carlo; Pacini, Alessandra; Avena, Giancarlo

    2002-01-01

    We propose a measure of divergence from species to life-form diversity aimed at summarizing the ecological similarity among different plant communities without losing information on traditional taxonomic diversity. First, species and life-form relative abundances within a given plant community are determined. Next, using Rényi's generalized entropy, the diversity profiles of the analyzed community are computed both from species and life-form relative abundances. Finally, the speed of decrease from species to life-form diversity is obtained by combining the outcome of both profiles. Interestingly, the proposed measure shows some formal analogies with multifractal functions developed in statistical physics for the analysis of spatial patterns. As an application for demonstration, a small data set from a plant community sampled in the archaeological site of Paestum (southern Italy) is used.

  2. Functional diversity and redundancy across fish gut, sediment and water bacterial communities.

    Science.gov (United States)

    Escalas, Arthur; Troussellier, Marc; Yuan, Tong; Bouvier, Thierry; Bouvier, Corinne; Mouchet, Maud A; Flores Hernandez, Domingo; Ramos Miranda, Julia; Zhou, Jizhong; Mouillot, David

    2017-08-01

    This article explores the functional diversity and redundancy in a bacterial metacommunity constituted of three habitats (sediment, water column and fish gut) in a coastal lagoon under anthropogenic pressure. Comprehensive functional gene arrays covering a wide range of ecological processes and stress resistance genes to estimate the functional potential of bacterial communities were used. Then, diversity partitioning was used to characterize functional diversity and redundancy within (α), between (β) and across (γ) habitats. It was showed that all local communities exhibit a highly diversified potential for the realization of key ecological processes and resistance to various environmental conditions, supporting the growing evidence that macro-organisms microbiomes harbour a high functional potential and are integral components of functional gene dynamics in aquatic bacterial metacommunities. Several levels of functional redundancy at different scales of the bacterial metacommunity were observed (within local communities, within habitats and at the metacommunity level). The results suggested a high potential for the realization of spatial ecological insurance within this ecosystem, that is, the functional compensation among microorganisms for the realization and maintenance of key ecological processes, within and across habitats. Finally, the role of macro-organisms as dispersal vectors of microbes and their potential influence on marine metacommunity dynamics were discussed. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota).

    Science.gov (United States)

    Leavitt, Steven D; Kraichak, Ekaphan; Nelsen, Matthew P; Altermann, Susanne; Divakar, Pradeep K; Alors, David; Esslinger, Theodore L; Crespo, Ana; Lumbsch, Thorsten

    2015-07-01

    Microbial symbionts are instrumental to the ecological and long-term evolutionary success of their hosts, and the central role of symbiotic interactions is increasingly recognized across the vast majority of life. Lichens provide an iconic group for investigating patterns in species interactions; however, relationships among lichen symbionts are often masked by uncertain species boundaries or an inability to reliably identify symbionts. The species-rich lichen-forming fungal family Parmeliaceae provides a diverse group for assessing patterns of interactions of algal symbionts, and our study addresses patterns of lichen symbiont interactions at the largest geographic and taxonomic scales attempted to date. We analysed a total of 2356 algal internal transcribed spacer (ITS) region sequences collected from lichens representing ten mycobiont genera in Parmeliaceae, two genera in Lecanoraceae and 26 cultured Trebouxia strains. Algal ITS sequences were grouped into operational taxonomic units (OTUs); we attempted to validate the evolutionary independence of a subset of the inferred OTUs using chloroplast and mitochondrial loci. We explored the patterns of symbiont interactions in these lichens based on ecogeographic distributions and mycobiont taxonomy. We found high levels of undescribed diversity in Trebouxia, broad distributions across distinct ecoregions for many photobiont OTUs and varying levels of mycobiont selectivity and specificity towards the photobiont. Based on these results, we conclude that fungal specificity and selectivity for algal partners play a major role in determining lichen partnerships, potentially superseding ecology, at least at the ecogeographic scale investigated here. To facilitate effective communication and consistency across future studies, we propose a provisional naming system for Trebouxia photobionts and provide representative sequences for each OTU circumscribed in this study. © 2015 John Wiley & Sons Ltd.

  4. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ying [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Liu, Jin; Liu, Yang; Qin, Yaru [Beijing Institute of Radiation Medicine, Beijing (China); Luo, Qun [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Wang, Quanli, E-mail: 13691110351@163.com [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Duan, Haifeng, E-mail: duanhf0720@163.com [Beijing Institute of Radiation Medicine, Beijing (China)

    2015-08-21

    Mesenchymal stem cells (MSC) are a kind of stromal cell within the tumor microenvironment. In our research, MSC derived from acute myeloid leukemia patients' bone marrow (AML-MSC) and lung cancer tissues (LC-MSC) as well as normal bone marrow-derived MSC (BM-MSC) cultured in conditioned medium of HeLa cells were found to have higher expressions of Toll-like receptor (TLR4) mRNA compared with BM-MSC. The sorted TLR4-positive MSC (TLR4+ MSC) differed in cytokine (interleukin-6, interleukin-8, and monocyte chemoattractant protein-1) secretion from those of unsorted MSC. MSC was reported to inhibit natural killer (NK) cell proliferation and function. In this research, we confirmed that TLR4+ MSC aggravate this suppression. Furthermore, when TLR4 in the sorted cells were stimulated by LPS or following blocked by antibody, the suppression on NK cell proliferation and cytotoxicity were more intensive or recovered respectively. Compared to unsorted MSC, NKG2D receptor expression on NK cells were also inhibited by TLR4+ MSC. These findings suggest that activation of TLR4 pathway is important for TLR4+ MSC and MSC to obstruct anti-tumor immunity by inhibiting NK cell function, which may provide a potential stroma-targeted tumor therapy. - Highlights: • TLR4+ MSC inhibit NK cell proliferation in vivo and in vitro. • TLR4+ MSC inhibit NKG2D expression on NK cells and NK cell cytotoxicity. • The distinguished cytokine expression of TLR4+ MSC may contribute to the inhibition on NK cell function.

  5. Relative roles of local disturbance, current climate and palaeoclimate in determining phylogenetic and functional diversity in Chinese forests

    DEFF Research Database (Denmark)

    Feng, Gang; Mi, Xiangcheng; Bøcher, Peder Klith

    2014-01-01

    their relative roles in determining woody plant phylogenetic and functional diversity in this important hotspot for woody plant diversity. Local disturbance was the best predictor of functional diversity as represented by maximum canopy height (Hmax), probably reflecting the dominant role of competition...... studied, their relative importance for other aspects of diversity, notably phylogenetic and functional diversity is so far little studied. Here, we link data from large Chinese forest plots to data on current and Last Glacial Maximum (LGM) climate as well as local disturbance regimes to study...

  6. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function

    OpenAIRE

    Kara, Firas M.; Chitu, Violeta; Sloane, Jennifer; Axelrod, Matthew; Fredholm, Bertil B.; Stanley, E. Richard; Cronstein, Bruce N.

    2010-01-01

    Adenosine regulates a wide variety of physiological processes via interaction with one or more G-protein-coupled receptors (A1R, A2AR, A2BR, and A3R). Because A1R occupancy promotes fusion of human monocytes to form giant cells in vitro, we determined whether A1R occupancy similarly promotes osteoclast function and formation. Bone marrow cells (BMCs) were harvested from C57Bl/6 female mice or A1R-knockout mice and their wild-type (WT) littermates and differentiated into osteoclasts in the pre...

  7. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland.

    Directory of Open Access Journals (Sweden)

    Yufang Shen

    Full Text Available Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L. field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer, GMC (gravel mulching with inorganic N fertilizer, FMC (plastic-film mulching with inorganic N fertilizer and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition. The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological

  8. Morphological and functional diversity in therizinosaur claws and the implications for theropod claw evolution.

    Science.gov (United States)

    Lautenschlager, Stephan

    2014-06-22

    Therizinosaurs are a group of herbivorous theropod dinosaurs from the Cretaceous of North America and Asia, best known for their iconically large and elongate manual claws. However, among Therizinosauria, ungual morphology is highly variable, reflecting a general trend found in derived theropod dinosaurs (Maniraptoriformes). A combined approach of shape analysis to characterize changes in manual ungual morphology across theropods and finite-element analysis to assess the biomechanical properties of different ungual shapes in therizinosaurs reveals a functional diversity related to ungual morphology. While some therizinosaur taxa used their claws in a generalist fashion, other taxa were functionally adapted to use the claws as grasping hooks during foraging. Results further indicate that maniraptoriform dinosaurs deviated from the plesiomorphic theropod ungual morphology resulting in increased functional diversity. This trend parallels modifications of the cranial skeleton in derived theropods in response to dietary adaptation, suggesting that dietary diversification was a major driver for morphological and functional disparity in theropod evolution.

  9. Taxonomical and functional diversity turnover in Mediterranean grasslands: interactions between grazing, habitat type and rainfall

    Czech Academy of Sciences Publication Activity Database

    Carmona, C. P.; Azcárate, F. M.; de Bello, Francesco; Ollero, H. S.; Lepš, Jan; Peco, B.

    2012-01-01

    Roč. 49, č. 5 (2012), 1084-1093 ISSN 0021-8901 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50070508 Institutional support: RVO:67985939 ; RVO:60077344 Keywords : Dehesa * diversity partitioning * functional redundancy * grazing management Subject RIV: EH - Ecology, Behaviour Impact factor: 4.740, year: 2012

  10. Microbial functional diversity and enzymatic activity of soil degraded by sulphur mining reclaimed with various waste

    Science.gov (United States)

    Joniec, Jolanta; Frąc, Magdalena

    2017-10-01

    The aim of the study was to evaluate microbial functional diversity based on community level physiological profiling and β-glucosidase activity changes in soil degraded by sulphur mining and subjected to reclamation with various waste. The experiment was set up in the area of the former `Jeziórko' Sulphur Mine (Poland), on a soilless substrate with a particle size distribution of slightly loamy sand. The experimental variants included the application of post-flotation lime, sewage sludge and mineral wool. The analyses of soil samples included the assessment of the following microbiological indices: β-glucosidase activity and functional diversity average well color development and richness). The results indicate that sewage sludge did not exert a significant impact on the functional diversity of microorganisms present in the reclaimed soil. In turn, the application of other types of waste contributed to a significant increase in the parameters of total metabolic activity and functional diversity of the reclaimed soil. However, the temporal analysis of the metabolic profile of soil microorganisms demonstrated that a single application of waste did not yield a durable, stable metabolic profile in the reclaimed soil. Still, there was an increase in β-glucosidase activity, especially in objects treated with sewage sludge.

  11. Analysis of the functional diversity of the microbial communities in a ...

    African Journals Online (AJOL)

    The Biolog method was thus evaluated in a paper-mill water system. The influence of the production of various paper grades, biocide combinations and monthly maintenance shut-downs on the functional diversity of the microbial communities were determined using the Biolog technique. The communities in the planktonic ...

  12. Comparing functional diversity in traits and demography of Central European vegetation

    Czech Academy of Sciences Publication Activity Database

    Herben, Tomáš; Nováková, Z.; Klimešová, Jitka

    2013-01-01

    Roč. 24, č. 5 (2013), s. 910-920 ISSN 1100-9233 R&D Projects: GA ČR GA526/09/0963 Institutional support: RVO:67985939 Keywords : botanical garden * plant functional traits * funtional diversity Subject RIV: EF - Botanics Impact factor: 3.372, year: 2013

  13. Playing fair: the contribution of high-functioning recess to overall school climate in low-income elementary schools.

    Science.gov (United States)

    London, Rebecca A; Westrich, Lisa; Stokes-Guinan, Katie; McLaughlin, Milbrey

    2015-01-01

    Recess is a part of the elementary school day with strong implications for school climate. Positive school climate has been linked to a host of favorable student outcomes, from attendance to achievement. We examine 6 low-income elementary schools' experiences implementing a recess-based program designed to provide safe, healthy, and inclusive play to study how improving recess functioning can affect school climate. Data from teacher, principal, and recess coach interviews; student focus groups; recess observations; and a teacher survey are triangulated to understand the ways that recess changed during implementation. Comparing schools that achieved higher- and lower-functioning recesses, we link recess functioning with school climate. Recess improved in all schools, but 4 of the 6 achieved a higher-functioning recess. In these schools, teachers and principals agreed that by the end of the year, recess offered opportunities for student engagement, conflict resolution, pro-social skill development, and emotional and physical safety. Respondents in these four schools linked these changes to improved overall school climate. Recess is an important part of the school day for contributing to school climate. Creating a positive recess climate helps students to be engaged in meaningful play and return to class ready to learn. © 2014, American School Health Association.

  14. Why we shouldn't underestimate the impact of plant functional diversity

    Science.gov (United States)

    Groner, V.; Raddatz, T.; Reick, C. H.; Claussen, M.

    2017-12-01

    We present a series of coupled land-atmosphere simulations with different combinations of plant functional types (PFTs) from mid-Holocene to preindustrial to show how plant functional diversity affects simulated climate-vegetation interaction under changing environmental conditions in subtropical Africa. Scientists nowadays agree that the establishment of the ``green'' Sahara was triggered by external changes in the Earth's orbit and amplified by internal feedback mechanisms. The timing and abruptness of the transition to the ``desert'' state are in turn still under debate. While some previous studies indicated an abrupt collapse of vegetation implying a strong climate-vegetation feedback, others suggested a gradual vegetation decline thereby questioning the existence of a strong climate-vegetation feedback. However, none of these studies explicitly accounted for the role of plant diversity. We show that the introduction or removal of a single PFT can bring about significant impacts on the simulated climate-vegetation system response to changing orbital forcing. While simulations with the standard set of PFTs show a gradual decrease of precipitation and vegetation cover over time, the reduction of plant functional diversity can cause either an abrupt decline of both variables or an even slower response to the external forcing. PFT composition seems to be the decisive factor for the system response to external forcing, and an increase in plant functional diversity does not necessarily increase the stability of the climate-vegetation system. From this we conclude that accounting for plant functional diversity in future studies - not only on palaeo climates - could significantly improve the understanding of climate-vegetation interaction in semi-arid regions, the predictability of the vegetation response to changing climate, and respectively, of the resulting feedback on precipitation.

  15. Play Matters

    DEFF Research Database (Denmark)

    Sicart (Vila), Miguel Angel

    ? In Play Matters, Miguel Sicart argues that to play is to be in the world; playing is a form of understanding what surrounds us and a way of engaging with others. Play goes beyond games; it is a mode of being human. We play games, but we also play with toys, on playgrounds, with technologies and design......, but not necessarily fun. Play can be dangerous, addictive, and destructive. Along the way, Sicart considers playfulness, the capacity to use play outside the context of play; toys, the materialization of play--instruments but also play pals; playgrounds, play spaces that enable all kinds of play; beauty...

  16. Shifts in taxonomic and functional microbial diversity with agriculture: How fragile is the Brazilian Cerrado?

    Science.gov (United States)

    Souza, Renata Carolini; Mendes, Iêda Carvalho; Reis-Junior, Fábio Bueno; Carvalho, Fabíola Marques; Nogueira, Marco Antonio; Vasconcelos, Ana Tereza Ribeiro; Vicente, Vânia Aparecida; Hungria, Mariangela

    2016-03-16

    The Cerrado--an edaphic type of savannah--comprises the second largest biome of the Brazilian territory and is the main area for grain production in the country, but information about the impact of land conversion to agriculture on microbial diversity is still scarce. We used a shotgun metagenomic approach to compare undisturbed (native) soil and soils cropped for 23 years with soybean/maize under conservation tillage--"no-till" (NT)--and conventional tillage (CT) systems in the Cerrado biome. Soil management and fertilizer inputs with the introduction of agriculture improved chemical properties, but decreased soil macroporosity and microbial biomass of carbon and nitrogen. Principal coordinates analyses confirmed different taxonomic and functional profiles for each treatment. There was predominance of the Bacteria domain, especially the phylum Proteobacteria, with higher numbers of sequences in the NT and CT treatments; Archaea and Viruses also had lower numbers of sequences in the undisturbed soil. Within the Alphaproteobacteria, there was dominance of Rhizobiales and of the genus Bradyrhizobium in the NT and CT systems, attributed to massive inoculation of soybean, and also of Burkholderiales. In contrast, Rhizobium, Azospirillum, Xanthomonas, Pseudomonas and Acidobacterium predominated in the native Cerrado. More Eukaryota, especially of the phylum Ascomycota were detected in the NT. The functional analysis revealed lower numbers of sequences in the five dominant categories for the CT system, whereas the undisturbed Cerrado presented higher abundance. High impact of agriculture in taxonomic and functional microbial diversity in the biome Cerrado was confirmed. Functional diversity was not necessarily associated with taxonomic diversity, as the less conservationist treatment (CT) presented increased taxonomic sequences and reduced functional profiles, indicating a strategy to try to maintain soil functioning by favoring taxa that are probably not the most

  17. Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity

    Science.gov (United States)

    Rabbi, S. M. F.; Daniel, H.; Lockwood, P. V.; MacDonald, C.; Pereg, L.; Tighe, M.; Wilson, B. R.; Young, I. M.

    2016-09-01

    Aggregates play a key role in protecting soil organic carbon (SOC) from microbial decomposition. The objectives of this study were to investigate the influence of pore geometry on the organic carbon decomposition rate and bacterial diversity in both macro- (250-2000 μm) and micro-aggregates (53-250 μm) using field samples. Four sites of contrasting land use on Alfisols (i.e. native pasture, crop/pasture rotation, woodland) were investigated. 3D Pore geometry of the micro-aggregates and macro-aggregates were examined by X-ray computed tomography (μCT). The occluded particulate organic carbon (oPOC) of aggregates was measured by size and density fractionation methods. Micro-aggregates had 54% less μCT observed porosity but 64% more oPOC compared with macro-aggregates. In addition, the pore connectivity in micro-aggregates was lower than macro-aggregates. Despite both lower μCT observed porosity and pore connectivity in micro-aggregates, the organic carbon decomposition rate constant (Ksoc) was similar in both aggregate size ranges. Structural equation modelling showed a strong positive relationship of the concentration of oPOC with bacterial diversity in aggregates. We use these findings to propose a conceptual model that illustrates the dynamic links between substrate, bacterial diversity, and pore geometry that suggests a structural explanation for differences in bacterial diversity across aggregate sizes.

  18. Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soils provide numerous essential ecosystem services such as carbon cycling...... of soil microbial functions is still needed. In soil, enzymes originate from a variety of organisms, notably fungi and bacteria and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity will reflect...... the functional diversity and activity of the microorganisms involved in decomposition processes. Their activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysacharides as cellulose, hemicellulose...

  19. Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms

    Science.gov (United States)

    Wilhelm, Linda; Besemer, Katharina; Fragner, Lena; Peter, Hannes; Weckwerth, Wolfram; Battin, Tom J

    2015-01-01

    Resources structure ecological communities and potentially link biodiversity to energy flow. It is commonly believed that functional traits (generalists versus specialists) involved in the exploitation of resources depend on resource availability and environmental fluctuations. The longitudinal nature of stream ecosystems provides changing resources to stream biota with yet unknown effects on microbial functional traits and community structure. We investigated the impact of autochthonous (algal extract) and allochthonous (spruce extract) resources, as they change along alpine streams from above to below the treeline, on microbial diversity, community composition and functions of benthic biofilms. Combining bromodeoxyuridine labelling and 454 pyrosequencing, we showed that diversity was lower upstream than downstream of the treeline and that community composition changed along the altitudinal gradient. We also found that, especially for allochthonous resources, specialisation by biofilm bacteria increased along that same gradient. Our results suggest that in streams below the treeline biofilm diversity, specialisation and functioning are associated with increasing niche differentiation as potentially modulated by divers allochthonous and autochthonous constituents contributing to resources. These findings expand our current understanding on biofilm structure and function in alpine streams. PMID:25978543

  20. Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity.

    Science.gov (United States)

    Gherardi, Laureano A; Sala, Osvaldo E

    2015-12-01

    Although precipitation interannual variability is projected to increase due to climate change, effects of changes in precipitation variance have received considerable less attention than effects of changes in the mean state of climate. Interannual precipitation variability effects on functional diversity and its consequences for ecosystem functioning are assessed here using a 6-year rainfall manipulation experiment. Five precipitation treatments were switched annually resulting in increased levels of precipitation variability while maintaining average precipitation constant. Functional diversity showed a positive response to increased variability due to increased evenness. Dominant grasses decreased and rare plant functional types increased in abundance because grasses showed a hump-shaped response to precipitation with a maximum around modal precipitation, whereas rare species peaked at high precipitation values. Increased functional diversity ameliorated negative effects of precipitation variability on primary production. Rare species buffered the effect of precipitation variability on the variability in total productivity because their variance decreases with increasing precipitation variance. © 2015 John Wiley & Sons Ltd/CNRS.

  1. Evolutionary Pattern and Regulation Analysis to Support Why Diversity Functions Existed within PPAR Gene Family Members

    Directory of Open Access Journals (Sweden)

    Tianyu Zhou

    2015-01-01

    Full Text Available Peroxisome proliferators-activated receptor (PPAR gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3′ UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3′ UTR are essential for PPARs evolution and diversity functions acquired.

  2. Evolutionary Pattern and Regulation Analysis to Support Why Diversity Functions Existed within PPAR Gene Family Members.

    Science.gov (United States)

    Zhou, Tianyu; Yan, Xiping; Wang, Guosong; Liu, Hehe; Gan, Xiang; Zhang, Tao; Wang, Jiwen; Li, Liang

    2015-01-01

    Peroxisome proliferators-activated receptor (PPAR) gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors) domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors) are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3' UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3' UTR are essential for PPARs evolution and diversity functions acquired.

  3. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms.

    Science.gov (United States)

    de Bello, Francesco; Carmona, Carlos P; Lepš, Jan; Szava-Kovats, Robert; Pärtel, Meelis

    2016-04-01

    While an increasing number of indices for estimating the functional trait diversity of biological communities are being proposed, there is a growing demand by ecologists to clarify their actual implications and simplify index selection. Several key indices relate to mean trait dissimilarity between species within biological communities. Among them, the most widely used include (a) the mean species pairwise dissimilarity (MPD) and (b) the Rao quadratic entropy (and related indices). These indices are often regarded as redundant and promote the unsubstantiated yet widely held view that Rao is a form of MPD. Worryingly, existing R functions also do not always simplify the use and differentiation of these indices. In this paper, we show various distinctions between these two indices that warrant mathematical and biological consideration. We start by showing an existing form of MPD that considers species abundances and is different from Rao both mathematically and conceptually. We then show that the mathematical relationship between MPD and Rao can be presented simply as Rao = MPD × Simpson, where the Simpson diversity index is defined as 1 - dominance. We further show that this relationship is maintained for both species abundances and presence/absence. This evidence dismantles the paradigm that the Rao diversity is an abundance-weighted form of MPD and indicates that both indices can differ substantially at low species diversities. We discuss the different interpretations of trait diversity patterns in biological communities provided by Rao and MPD and then provide a simple R function, called "melodic," which avoids the unintended results that arise from existing mainstream functions.

  4. Selection of multiple umbrella species for functional and taxonomic diversity to represent urban biodiversity.

    Science.gov (United States)

    Sattler, T; Pezzatti, G B; Nobis, M P; Obrist, M K; Roth, T; Moretti, M

    2014-04-01

    Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty-one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within- and across-taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity. © 2013 Society for Conservation Biology.

  5. Temporal changes in taxonomic and functional diversity of fish assemblages downstream from mountaintop mining

    Science.gov (United States)

    Hitt, Nathaniel P.; Chambers, Douglas B.

    2014-01-01

    Mountaintop mining (MTM) affects chemical, physical, and hydrological properties of receiving streams, but the long-term consequences for fish-assemblage structure and function are poorly understood. We sampled stream fish assemblages using electrofishing techniques in MTM exposure sites and reference sites within the Guyandotte River basin, USA, during 2010–2011. We calculated indices of taxonomic diversity (species richness, abundance, Shannon diversity) and functional diversity (functional richness, functional evenness, functional divergence) to compare exposure and reference assemblages between seasons (spring and autumn) and across years (1999–2011). We based temporal comparisons on 2 sites that were sampled during 1999–2001 by Stauffer and Ferreri (2002). Exposure assemblages had lower taxonomic and functional diversity than reference assemblages or simulated assemblages that accounted for random variation. Differences in taxonomic composition between reference and exposure assemblages were associated with conductivity and aqueous Se concentrations. Exposure assemblages had fewer species, lower abundances, and less biomass than reference assemblages across years and seasons. Green Sunfish (Lepomis cyanellus) and Creek Chub (Semotilus atromaculatus) became numerically dominant in exposure assemblages over time because of their persistence and losses of other taxa. In contrast, species richness increased over time in reference assemblages, a result that may indicate recovery from drought. Mean individual biomass increased as fish density decreased and most obligate invertivores were apparently extirpated at MTM exposure sites. Effects of MTM were not related to physical-habitat conditions but were associated with water-quality variables, which may limit quality and availability of benthic macroinvertebrate prey. Simulations revealed effects of MTM that could not be attributed to random variation in fish assemblage structure.

  6. Diversity and Function of Microbial Community in Chinese Strong-Flavor Baijiu Ecosystem: A Review

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2018-04-01

    Full Text Available Strong flavor baijiu (SFB, also called Luzhou-flavor liquor, is the most popular Chinese baijiu. It is manufactured via solid fermentation, with daqu as the starter. Microbial diversity of the SFB ecosystem and the synergistic effects of the enzymes and compounds produced by them are responsible for the special flavor and mouthfeel of SFB. The present review covers research studies focused on microbial community analysis of the SFB ecosystem, including the culturable microorganisms, their metabolic functions, microbial community diversity and their interactions. The review specifically emphasizes on the most recently conducted culture-independent analysis of SFB microbial community diversity. Furthermore, the possible application of systems biology approaches for elucidating the molecular mechanisms of SFB production were also reviewed and prospected.

  7. Microbial Species and Functional Diversity in Rice Rhizosphere of High-yield Special Ecological Areas

    Directory of Open Access Journals (Sweden)

    PAN Li-yuan

    2016-11-01

    Full Text Available Taoyuan, Yunnan Province is a special eco-site which keeps the highest yield records of rice cultivation in small planting areas. Soil microbial species and functional diversity were evaluated using cultivation method and BIOLOG ecoplates. The results showed that the microbial community of the high yield region was more abundant, and the total microbial population was 2 times of the control, furthermore, the areas belonged to the healthy "bacteria" soil, which was showed as bacteria > actinomycetes > fungi. Bacteria were the dominant populations in the rhizosphere of high yielding rice field, and the yield formation of rice was not correlated with the depth of soil layers. In order to obtain more species diversity information, Shannon diversity index H, Shannon evenness index E and Simpson index D were analyzed, and the results showed that microbial community diversity and evenness were not the main differences between the high and general yield areas. Then, the functional diversity of soil microbial community was investigated through the average well color development(AWCD and diversity index analyses. The results of AWCD analysis indicated that the metabolic activity of soil microbial community in high yield paddy soils were stronger than the control. Moreover, the difference range from large to small showed as tillering stage > harvest period > seedling period > rotation period, the stronger the rice growth, the greater the difference between the high yield region and the control. At tillering stage and harvest stage, due to the vigorous plant growth, the root exudates were rich, and the microbial communities of high yield paddy soils showed a strong metabolic activity and strong ability to use carbon sources. The results of Shannon, Simpson and McIntosh indices analysis indicated that common microbial species was not a key factor affecting the yield of rice. Tillering stage was a key period for the growth of high yield rice, and many

  8. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    Science.gov (United States)

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  9. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.

    Science.gov (United States)

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-08-20

    Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.

  10. UV radiation and organic matter composition shape bacterial functional diversity in sediments

    Directory of Open Access Journals (Sweden)

    Ellard Roy Hunting

    2013-10-01

    Full Text Available AbstractUV radiation and organic matter (OM composition are known to influence the speciescomposition of bacterioplankton communities. Potential effects of UV radiation onbacterial communities residing in sediments remain completely unexplored to date.However, it has been demonstrated that UV radiation can reach the bottom of shallowwaters and wetlands and alter the OM composition of the sediment, suggesting thatUV radiation may be more important for sediment bacteria than previously anticipated.It is hypothesized here that exposure of shallow OMcontaining sediments to UVradiation induces OMsource dependant shifts in the functional composition ofsediment bacterial communities. This study therefore investigated the combinedinfluence of both UV radiation and OM composition on bacterial functional diversity inlaboratory sediments. Two different organic matter sources, labile and recalcitrantorganic matter (OM, were used and metabolic diversity was measured with BiologGN. Radiation exerted strong negative effects on the metabolic diversity in thetreatments containing recalcitrant OM, more than in treatments containing labile OM.The functional composition of the bacterial community also differed significantlybetween the treatments. Our findings demonstrate that a combined effect of UVradiation and OM composition shapes the functional composition of microbialcommunities developing in sediments, hinting that UV radiation may act as animportant sorting mechanism for bacterial communities and driver for bacterialfunctioning in shallow lakes and wetlands.

  11. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W -D [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhu, Y -G [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Fu, B -J [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Marschner, P [Soil and Land Systems, School of Earth and Environmental Sciences, University of Adelaide, DP 636, 5005 (Australia); He, J -Z [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2006-09-15

    There are increasing concerns over the effects of veterinary antibiotics and heavy metals in agricultural soils. The widely used veterinary antibiotic oxytetracycline (OTC), Cu and their combination on soil microbial community function were assessed with the Biolog method. The microbial community was extracted from the soil and exposed to a 0.85% sodium chloride solution containing OTC (0, 1, 5, 11, 43, 109 and 217 {mu}M), or Cu (0, 10, 20, 100 and 300 {mu}M), or combination of the two pollutants (OTC 0, 5, 11 {mu}M and Cu 0, 20 {mu}M). Functional diversity, evenness, average well color development (AWCD) and substrate utilization decreased significantly with increasing concentrations of OTC or Cu (p < 0.005). The critical concentrations were 11 {mu}M for OTC and 20 {mu}M for Cu. The combination of OTC and Cu significantly decreased Shannon's diversity, evenness and utilization of carbohydrates and carboxylic acids compared to individual one of the contaminants. The antibiotic OTC and Cu had significant negative effects on soil microbial community function, particularly when both pollutants were present. - Oxytetracycline reduces the functional diversity of soil microbial community, and the combination of Cu and oxytetracycline leads to a further reduction.

  12. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community

    International Nuclear Information System (INIS)

    Kong, W.-D.; Zhu, Y.-G.; Fu, B.-J.; Marschner, P.; He, J.-Z.

    2006-01-01

    There are increasing concerns over the effects of veterinary antibiotics and heavy metals in agricultural soils. The widely used veterinary antibiotic oxytetracycline (OTC), Cu and their combination on soil microbial community function were assessed with the Biolog method. The microbial community was extracted from the soil and exposed to a 0.85% sodium chloride solution containing OTC (0, 1, 5, 11, 43, 109 and 217 μM), or Cu (0, 10, 20, 100 and 300 μM), or combination of the two pollutants (OTC 0, 5, 11 μM and Cu 0, 20 μM). Functional diversity, evenness, average well color development (AWCD) and substrate utilization decreased significantly with increasing concentrations of OTC or Cu (p < 0.005). The critical concentrations were 11 μM for OTC and 20 μM for Cu. The combination of OTC and Cu significantly decreased Shannon's diversity, evenness and utilization of carbohydrates and carboxylic acids compared to individual one of the contaminants. The antibiotic OTC and Cu had significant negative effects on soil microbial community function, particularly when both pollutants were present. - Oxytetracycline reduces the functional diversity of soil microbial community, and the combination of Cu and oxytetracycline leads to a further reduction

  13. Response diversity, functional redundancy, and post-logging productivity in northern temperate and boreal forests.

    Science.gov (United States)

    Correia, David Laginha Pinto; Raulier, Frédéric; Bouchard, Mathieu; Filotas, Élise

    2018-04-19

    The development of efficient ecosystem resilience indicators was identified as one of the key research priorities in the improvement of existing sustainable forest management frameworks. Two indicators of tree diversity associated with ecosystem functioning have recently received particular attention in the literature: functional redundancy (FR) and response diversity (RD). We examined how these indicators could be used to predict post-logging productivity in forests of Québec, Canada. We analysed the relationships between pre-logging FR and RD, as measured with sample plots, and post-logging productivity, measured as seasonal variation in enhanced vegetation index obtained from MODIS satellite imagery. The effects of the deciduous and coniferous tree components in our pre-disturbance diversity assessments were isolated in order to examine the hypothesis that they have different impacts on post-disturbance productivity. We also examined the role of tree species richness and species identity effects. Our analysis revealed the complementary nature of traditional biodiversity indicators and trait-based approaches in the study of biodiversity-ecosystem-functioning relationships in dynamic ecosystems. We report a significant and positive relationship between pre-disturbance deciduous RD and post-disturbance productivity, as well as an unexpected significant negative effect of coniferous RD on productivity. This negative relationship with post-logging productivity likely results from slower coniferous regeneration speeds and from the relatively short temporal scale examined. Negative black-spruce-mediated identity effects were likely associated with increased stand vulnerability to paludification and invasion by ericaceous shrubs that slow down forest regeneration. Response diversity outperformed functional redundancy as a measure of post-disturbance productivity most likely due to the stand-replacing nature of the disturbance considered. To the best of our knowledge

  14. Functional diversity of bacterial genes associated with aromatic hydrocarbon degradation in anthropogenic dark earth of Amazonia

    Directory of Open Access Journals (Sweden)

    Mariana Gomes Germano

    2012-05-01

    Full Text Available The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE and their biochar (BC. Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (α-ARHD bacterial gene were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirão Experimental Station - secondary forest (SF and agriculture (AG -, and the biochar (SF_BC and AG_BC, respectively. Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.

  15. Diversity Indices as Measures of Functional Annotation Methods in Metagenomics Studies

    KAUST Repository

    Jankovic, Boris R.

    2016-01-26

    Applications of high-throughput techniques in metagenomics studies produce massive amounts of data. Fragments of genomic, transcriptomic and proteomic molecules are all found in metagenomics samples. Laborious and meticulous effort in sequencing and functional annotation are then required to, amongst other objectives, reconstruct a taxonomic map of the environment that metagenomics samples were taken from. In addition to computational challenges faced by metagenomics studies, the analysis is further complicated by the presence of contaminants in the samples, potentially resulting in skewed taxonomic analysis. The functional annotation in metagenomics can utilize all available omics data and therefore different methods that are associated with a particular type of data. For example, protein-coding DNA, non-coding RNA or ribosomal RNA data can be used in such an analysis. These methods would have their advantages and disadvantages and the question of comparison among them naturally arises. There are several criteria that can be used when performing such a comparison. Loosely speaking, methods can be evaluated in terms of computational complexity or in terms of the expected biological accuracy. We propose that the concept of diversity that is used in the ecosystems and species diversity studies can be successfully used in evaluating certain aspects of the methods employed in metagenomics studies. We show that when applying the concept of Hill’s diversity, the analysis of variations in the diversity order provides valuable clues into the robustness of methods used in the taxonomical analysis.

  16. Resource partitioning along multiple niche axes drives functional diversity in parrotfishes on Caribbean coral reefs.

    Science.gov (United States)

    Adam, Thomas C; Kelley, Megan; Ruttenberg, Benjamin I; Burkepile, Deron E

    2015-12-01

    The recent loss of key consumers to exploitation and habitat degradation has significantly altered community dynamics and ecosystem function across many ecosystems worldwide. Predicting the impacts of consumer losses requires knowing the level of functional diversity that exists within a consumer assemblage. In this study, we document functional diversity among nine species of parrotfishes on Caribbean coral reefs. Parrotfishes are key herbivores that facilitate the maintenance and recovery of coral-dominated reefs by controlling algae and provisioning space for the recruitment of corals. We observed large functional differences among two genera of parrotfishes that were driven by differences in diet. Fishes in the genus Scarus targeted filamentous algal turf assemblages, crustose coralline algae, and endolithic algae and avoided macroalgae, while fishes in the genus Sparisoma preferentially targeted macroalgae. However, species with similar diets were dissimilar in other attributes, including the habitats they frequented, the types of substrate they fed from, and the spatial scale at which they foraged. These differences indicate that species that appear to be functionally redundant when looking at diet alone exhibit high levels of complementarity when we consider multiple functional traits. By identifying key functional differences among parrotfishes, we provide critical information needed to manage parrotfishes to enhance the resilience of coral-dominated reefs and reverse phase shifts on algal-dominated reefs throughout the wider Caribbean. Further, our study provides a framework for predicting the impacts of consumer losses in other species rich ecosystems.

  17. Specialized functional diversity and interactions of the Na,K-ATPase

    Directory of Open Access Journals (Sweden)

    Igor I. Krivoi

    2016-05-01

    Full Text Available Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions and protein kinase signaling pathways. In addition to its ‘classical’ function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.

  18. Reliability of a Test Battery Designed for Quickly and Safely Assessing Diverse Indices of Neuromuscular Function

    Science.gov (United States)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason, R.; Buxton, Roxanne E.; Lawrence, Emily L.; Sinka, Joseph; Guilliams, Mark E.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.

    2010-01-01

    Spaceflight affects nearly every physiological system. Spaceflight-induced alterations in physiological function translate to decrements in functional performance. Purpose: To develop a test battery for quickly and safely assessing diverse indices of neuromuscular performance. I. Quickly: Battery of tests can be completed in approx.30-40 min. II. Safely: a) No eccentric muscle actions or impact forces. b) Tests present little challenge to postural stability. III. Diverse indices: a) Strength: Excellent reliability (ICC = 0.99) b) Central activation: Very good reliability (ICC = 0.87) c) Power: Excellent reliability (ICC = 0.99) d) Endurance: Total work has excellent reliability (ICC = 0.99) e) Force steadiness: Poor reliability (ICC = 0.20 - 0.60) National

  19. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    OpenAIRE

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-01-01

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Avera...

  20. Patterns of functional diversity of two trophic groups after canopy thinning in an abandoned coppice

    Czech Academy of Sciences Publication Activity Database

    Šipoš, Jan; Hédl, Radim; Hula, V.; Chudomelová, Markéta; Košulič, O.; Niedobová, J.; Riedl, Vladan

    2017-01-01

    Roč. 52, č. 1 (2017), s. 45-58 ISSN 1211-9520 R&D Projects: GA AV ČR IAA600050812; GA MŠk(CZ) EE2.3.20.0267 EU Projects: European Commission(XE) 278065 - LONGWOOD Institutional support: RVO:67985939 Keywords : coppice restoration * functional diversity * trophic groups Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.017, year: 2016

  1. miR-181c-BRK1 axis plays a key role in actin cytoskeleton-dependent T cell function.

    Science.gov (United States)

    Lim, Shok Ping; Ioannou, Nikolaos; Ramsay, Alan G; Darling, David; Gäken, Joop; Mufti, Ghulam J

    2018-05-01

    MicroRNAs are short endogenous noncoding RNAs that play pivotal roles in a diverse range of cellular processes. The miR-181 family is important in T cell development, proliferation, and activation. In this study, we have identified BRK1 as a potential target of miR-181c using a dual selection functional assay and have showed that miR-181c regulates BRK1 by translational inhibition. Given the importance of miR-181 in T cell function and the potential role of BRK1 in the involvement of WAVE2 complex and actin polymerization in T cells, we therefore investigated the influence of miR-181c-BRK1 axis in T cell function. Stimulation of PBMC derived CD3 + T cells resulted in reduced miR-181c expression and up-regulation of BRK1 protein expression, suggesting that miR-181c-BRK1 axis is important in T cell activation. We further showed that overexpression of miR-181c or suppression of BRK1 resulted in inhibition of T cell activation and actin polymerization coupled with defective lamellipodia generation and immunological synapse formation. Additionally, we found that BRK1 silencing led to reduced expressions of other proteins in the WAVE2 complex, suggesting that the impairment of T cell actin dynamics was a result of the instability of the WAVE2 complex following BRK1 depletion. Collectively, we demonstrated that miR-181c reduces BRK1 protein expression level and highlighted the important role of miR-181c-BRK1 axis in T cell activation and actin polymerization-mediated T cell functions. ©2018 Society for Leukocyte Biology.

  2. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean

    Science.gov (United States)

    Acevedo-Trejos, Esteban; Brandt, Gunnar; Bruggeman, Jorn; Merico, Agostino

    2015-01-01

    The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing ‘pushes’ the community towards larger cell sizes, whereas nutrient uptake and sinking ‘pull’ the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients. PMID:25747280

  3. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-01-01

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates—ciliates frequently found in anoxic ecosystems—on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885–3,190 and 2,387–2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function. PMID:27431197

  4. Influence of soil zinc concentrations on zinc sensitivity and functional diversity of microbial communities

    International Nuclear Information System (INIS)

    Lock, K.; Janssen, C.R.

    2005-01-01

    Pollution induced community tolerance (PICT) is based on the phenomenon that toxic effects reduce survival of the most sensitive organisms, thus increasing community tolerance. Community tolerance for a contaminant is thus a strong indicator for the presence of that contaminant at the level of adverse concentrations. Here we assessed PICT in 11 soils contaminated with zinc runoff from galvanised electricity pylons and 11 reference soils sampled at 10 m distance from these pylons. Using PICT, the influence of background concentration and bioavailability of zinc on zinc sensitivity and functional diversity of microbial communities was assessed. Zinc sensitivity of microbial communities decreased significantly with increasing zinc concentrations in pore water and calcium chloride extracted fraction while no significant relationship was found with total zinc concentration in the soil. It was also found that functional diversity of microbial communities decreased with increasing zinc concentrations, indicating that increased tolerance is indeed an undesirable phenomenon when environmental quality is considered. The hypothesis that zinc sensitivity of microbial communities is related to background zinc concentration in pore water could not be confirmed. - Zinc sensitivity of microbial communities and functional diversity decrease with increasing zinc concentration in the pore water

  5. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge.

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-09-29

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates-ciliates frequently found in anoxic ecosystems-on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885-3,190 and 2,387-2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function.

  6. Five species, many genotypes, broad phenotypic diversity: When agronomy meets functional ecology.

    Science.gov (United States)

    Prieto, Ivan; Litrico, Isabelle; Violle, Cyrille; Barre, Philippe

    2017-01-01

    Current ecological theory can provide insight into the causes and impacts of plant domestication. However, just how domestication has impacted intraspecific genetic variability (ITV) is unknown. We used 50 ecotypes and 35 cultivars from five grassland species to explore how selection drives functional trait coordination and genetic differentiation. We quantified the extent of genetic diversity among different sets of functional traits and determined how much genetic diversity has been generated within populations of natural ecotypes and selected cultivars. In general, the cultivars were larger (e.g., greater height, faster growth rates) and had larger and thinner leaves (greater SLA). We found large (average 63%) and trait-dependent (ranging from 14% for LNC to 95.8% for growth rate) genetic variability. The relative extent of genetic variability was greater for whole-plant than for organ-level traits. This pattern was consistent within ecotypes and within cultivars. However, ecotypes presented greater ITV variability. The results indicated that genetic diversity is large in domesticated species with contrasting levels of heritability among functional traits and that selection for high yield has led to indirect selection of some associated leaf traits. These findings open the way to define which target traits should be the focus in selection programs, especially in the context of community-level selection. © 2017 Botanical Society of America.

  7. Vector species richness increases haemorrhagic disease prevalence through functional diversity modulating the duration of seasonal transmission.

    Science.gov (United States)

    Park, Andrew W; Cleveland, Christopher A; Dallas, Tad A; Corn, Joseph L

    2016-06-01

    Although many parasites are transmitted between hosts by a suite of arthropod vectors, the impact of vector biodiversity on parasite transmission is poorly understood. Positive relationships between host infection prevalence and vector species richness (SR) may operate through multiple mechanisms, including (i) increased vector abundance, (ii) a sampling effect in which species of high vectorial capacity are more likely to occur in species-rich communities, and (iii) functional diversity whereby communities comprised species with distinct phenologies may extend the duration of seasonal transmission. Teasing such mechanisms apart is impeded by a lack of appropriate data, yet could highlight a neglected role for functional diversity in parasite transmission. We used statistical modelling of extensive host, vector and microparasite data to test the hypothesis that functional diversity leading to longer seasonal transmission explained variable levels of disease in a wildlife population. We additionally developed a simple transmission model to guide our expectation of how an increased transmission season translates to infection prevalence. Our study demonstrates that vector SR is associated with increased levels of disease reporting, but not via increases in vector abundance or via a sampling effect. Rather, the relationship operates by extending the length of seasonal transmission, in line with theoretical predictions.

  8. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs.

    Science.gov (United States)

    Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco

    2017-05-01

    Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs - rooftops covered with vegetation - can contribute mitigate the loss of urban green spaces by providing new habitats for numerous arthropod species. Whether green roofs can contribute to enhance taxonomic and functional diversity and increase connectivity across urbanized areas remains, however, largely unknown. Furthermore, only limited information is available on how environmental conditions shape green roof arthropod communities. We investigated the community composition of arthropods (Apidae, Curculionidae, Araneae and Carabidae) on 40 green roofs and 40 green sites at ground level in the city of Zurich, Switzerland. We assessed how the site's environmental variables (such as area, height, vegetation, substrate and connectivity among sites) affect species richness and functional diversity using generalized linear models. We used an extension of co-inertia analysis (RLQ) and fourth-corner analysis to highlight the mechanism underlying community assemblages across taxonomic groups on green roof and ground communities. Species richness was higher at ground-level sites, while no difference in functional diversity was found between green roofs and ground sites. Green roof arthropod diversity increased with higher connectivity and plant species richness, irrespective of substrate depth, height and area of green roofs. The species trait analysis reviewed the mechanisms related to the environmental predictors that shape the species assemblages of the different taxa at ground and roof sites. Our study shows the important contribution of green roofs in maintaining high functional diversity of arthropod communities across different taxonomic groups, despite their lower species richness compared with ground sites. Species communities on green roofs revealed to be characterized

  9. Climate-suitable planting as a strategy for maintaining forest productivity and functional diversity.

    Science.gov (United States)

    Duveneck, Matthew J; Scheller, Robert M

    2015-09-01

    Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000-2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region (northeastern Minnesota and northern lower Michigan, USA). We compared current climate to low- and high-emission futures. We simulated a low-emission climate future with the Intergovernmental Panel on Climate Change (IPCC) 2007 B1 emission scenario and the Parallel Climate Model Global Circulation Model (GCM). We simulated a high-emission climate future with the IPCC A1FI emission scenario and the Geophysical Fluid Dynamics Laboratory (GFDL) GCM. We compared current forest management practices (business-as-usual) to CSP management. In the CSP scenario, we simulated a target planting of 5.28% and 4.97% of forested area per five-year time step in the Minnesota and Michigan landscapes, respectively. We found that simulated CSP species successfully established in both landscapes under all climate scenarios. The presence of CSP species generally increased simulated aboveground biomass. Species diversity increased due to CSP; however, the effect on functional diversity was variable. Because the planted species were functionally similar to many native species, CSP did not result in a consistent increase nor decrease in functional diversity. These results provide an assessment of the potential efficacy and limitations of CSP management. These results have

  10. Functional Diversity of Fungal Communities in Soil Contaminated with Diesel Oil

    Directory of Open Access Journals (Sweden)

    Agata Borowik

    2017-09-01

    Full Text Available The widespread use and consumption of crude oil draws the public’s attention to the fate of petroleum hydrocarbons in the environment, as they can permeate the soil environment in an uncontrollable manner. Contamination of soils with petroleum products, including diesel oil (DO, can cause changes in the microbiological soil properties. The effect of diesel oil on the functional diversity of fungi was tested in a model experiment during 270 days. Fungi were isolated from soil and identified. The functional diversity of fungal communities was also determined. Fungi were identified with the MALDI-TOF method, while the functional diversity was determined using FF-plates made by Biolog®, with 95 carbon sources. Moreover, the diesel oil degradation dynamics was assessed. The research showed that soil contaminated with diesel oil is characterized by a higher activity of oxireductases and a higher number of fungi than soil not exposed to the pressure of this product. The DO pollution has an adverse effect on the diversity of fungal community. This is proved by significantly lower values of the Average Well-Color Development, substrates Richness (R and Shannon–Weaver (H indices at day 270 after contamination. The consequences of DO affecting soil not submitted to remediation are persistent. After 270 days, only 64% of four-ringed, 28% of five-ringed, 21% of 2–3-ringed and 16% of six-ringed PAHs underwent degradation. The lasting effect of DO on communities of fungi led to a decrease in their functional diversity. The assessment of the response of fungi to DO pollution made on the basis of the development of colonies on Petri dishes [Colony Development (CD and Eco-physiological Diversity (EP indices] is consistent with the analysis based on the FF MicroPlate system by Biolog®. Thus, a combination of the FF MicroPlate system by Biolog® with the simultaneous calculation of CD and EP indices alongside the concurrent determination of the content of

  11. Functional group diversity is key to Southern Ocean benthic carbon pathways.

    Directory of Open Access Journals (Sweden)

    David K A Barnes

    Full Text Available High latitude benthos are globally important in terms of accumulation and storage of ocean carbon, and the feedback this is likely to have on regional warming. Understanding this ecosystem service is important but difficult because of complex taxonomic diversity, history and geography of benthic biomass. Using South Georgia as a model location (where the history and geography of benthic biology is relatively well studied we investigated whether the composition of functional groups were critical to benthic accumulation, immobilization and burial pathway to sequestration-and also aid their study through simplification of identification. We reclassified [1], [2] morphotype and carbon mass data to 13 functional groups, for each sample of 32 sites around the South Georgia continental shelf. We investigated the influence on carbon accumulation, immobilization and sequestration estimate by multiple factors including the compositions of functional groups. Functional groups showed high diversity within and between sites, and within and between habitat types. Carbon storage was not linked to a functional group in particular but accumulation and immobilization increased with the number of functional groups present and the presence of hard substrata. Functional groups were also important to carbon burial rate, which increased with the presence of mixed (hard and soft substrata. Functional groups showed high surrogacy for taxonomic composition and were useful for examining contrasting habitat categorization. Functional groups not only aid marine carbon storage investigation by reducing time and the need for team size and speciality, but also important to benthic carbon pathways per se. There is a distinct geography to seabed carbon storage; seabed boulder-fields are hotspots of carbon accumulation and immobilization, whilst the interface between such boulder-fields and sediments are key places for burial and sequestration.

  12. Evidence that a functional fertilin-like ADAM plays a role in human sperm-oolemmal interactions.

    Science.gov (United States)

    Bronson, R A; Fusi, F M; Calzi, F; Doldi, N; Ferrari, A

    1999-05-01

    Fertilin is a protein initially identified in guinea pig spermatozoa; it is the prototype of a larger family of conserved, proteins designated as a disintegrin and a metalloproteinase (ADAM). These heterodimers which consist of alpha and beta subunits, containing metalloproteinase-like and disintegrin-like domains, appear to play a role in mammalian fertilization. Peptides derived from the disintegrin domains of two ADAMs, fertilin and cyritestin, interfere with gamete adhesion and sperm-egg membrane fusion in non-human species. It has been suggested that fertilin-beta binds to an oolemmal integrin, and it is proposed that the tripeptide FEE (Phe-Glu-Glu) is the integrin recognition sequence in human fertilin-beta. We evaluated whether fertilin beta plays a role in human fertilization by studying the effects of a linear octapeptide containing the FEE sequence, SFEECDLP, and a scrambled octapeptide with the same amino acids, SFPCEDEL, on the incorporation of human spermatozoa by human zona-free eggs. The effects of G4120, a potent RGD-containing (Arg-Gly-Asp) thioether-bridged cyclic peptide which blocks both fibronectin and vitronectin receptors, and the relationship between FEE- and RGD-receptor interactions on sperm-egg interactions were also studied. The FEE-containing peptide, but not the scrampled peptide, inhibited sperm adhesion to oocytes and their penetration, over the range 1-5 microM. The inhibition induced by SFEECDLP was reversible and occurred only in the presence of peptide itself. The G4120 peptide exhibited 10-fold less inhibitory effects on sperm adhesion and penetration than did SFEECDLP. When combined, SFEECDLP and G4120 exhibited strong inhibition of both adhesion and penetration at concentrations that individually had been ineffective, suggesting co-operation between the two receptor-ligand interactions during fertilization. We propose that a fertilin-like molecule is functionally active on human spermatozoa and that its interaction with an

  13. Partitioning of functional and taxonomic diversity in surface-associated microbial communities.

    Science.gov (United States)

    Roth-Schulze, Alexandra J; Zozaya-Valdés, Enrique; Steinberg, Peter D; Thomas, Torsten

    2016-12-01

    Surfaces, including those submerged in the marine environment, are subjected to constant interactions and colonisation by surrounding microorganisms. The principles that determine the assembly of those epibiotic communities are however poorly understood. In this study, we employed a hierarchical design to assess the functionality and diversity of microbial communities on different types of host surfaces (e.g. macroalgae, seagrasses). We found that taxonomic diversity was unique to each type of host, but that the majority of functions (> 95%) could be found in any given surface community, suggesting a high degree of functional redundancy. However, some community functions were enriched on certain surfaces and were related to host-specific properties (e.g. the degradation of specific polysaccharides). Together these observations support a model, whereby communities on surfaces are assembled from guilds of microorganisms with a functionality that is partitioned into general properties for a surface-associated life-style, but also specific features that mediate host-specificity. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography.

    Directory of Open Access Journals (Sweden)

    Ruth Hershberg

    2008-12-01

    Full Text Available Mycobacterium tuberculosis infects one third of the human world population and kills someone every 15 seconds. For more than a century, scientists and clinicians have been distinguishing between the human- and animal-adapted members of the M. tuberculosis complex (MTBC. However, all human-adapted strains of MTBC have traditionally been considered to be essentially identical. We surveyed sequence diversity within a global collection of strains belonging to MTBC using seven megabase pairs of DNA sequence data. We show that the members of MTBC affecting humans are more genetically diverse than generally assumed, and that this diversity can be linked to human demographic and migratory events. We further demonstrate that these organisms are under extremely reduced purifying selection and that, as a result of increased genetic drift, much of this genetic diversity is likely to have functional consequences. Our findings suggest that the current increases in human population, urbanization, and global travel, combined with the population genetic characteristics of M. tuberculosis described here, could contribute to the emergence and spread of drug-resistant tuberculosis.

  15. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea.

    Science.gov (United States)

    Díaz-Pérez, Leopoldo; Rodríguez-Zaragoza, Fabián Alejandro; Ortiz, Marco; Cupul-Magaña, Amílcar Leví; Carriquiry, Jose D; Ríos-Jara, Eduardo; Rodríguez-Troncoso, Alma Paola; García-Rivas, María Del Carmen

    2016-01-01

    This study evaluated the relationship between the indices known as the Reef Health Index (RHI) and two-dimensional Coral Health Index (2D-CHI) and different representative metrics of biological, ecological and functional diversity of fish and corals in 101 reef sites located across seven zones in the western Caribbean Sea. Species richness and average taxonomic distinctness were used to asses biological estimation; while ecological diversity was evaluated with the indices of Shannon diversity and Pielou´s evenness, as well as by taxonomic diversity and distinctness. Functional diversity considered the number of functional groups, the Shannon diversity and the functional Pielou´s evenness. According to the RHI, 57.15% of the zones were classified as presenting a "poor" health grade, while 42.85% were in "critical" grade. Based on the 2D-CHI, 28.5% of the zones were in "degraded" condition and 71.5% were "very degraded". Differences in fish and coral diversity among sites and zones were demonstrated using permutational ANOVAs. Differences between the two health indices (RHI and 2D-CHI) and some indices of biological, ecological and functional diversity of fish and corals were observed; however, only the RHI showed a correlation between the health grades and the species and functional group richness of fish at the scale of sites, and with the species and functional group richness and Shannon diversity of the fish assemblages at the scale of zones. None of the health indices were related to the metrics analyzed for the coral diversity. In general, our study suggests that the estimation of health indices should be complemented with classic community indices, or should at least include diversity indices of fish and corals, in order to improve the accuracy of the estimated health status of coral reefs in the western Caribbean Sea.

  16. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    International Nuclear Information System (INIS)

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-01-01

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair

  17. Evaluating green infrastructure in urban environments using a multi-taxa and functional diversity approach.

    Science.gov (United States)

    Pinho, Pedro; Correia, Otília; Lecoq, Miguel; Munzi, Silvana; Vasconcelos, Sasha; Gonçalves, Paula; Rebelo, Rui; Antunes, Cristina; Silva, Patrícia; Freitas, Catarina; Lopes, Nuno; Santos-Reis, Margarida; Branquinho, Cristina

    2016-05-01

    Forested areas within cities host a large number of species, responsible for many ecosystem services in urban areas. The biodiversity in these areas is influenced by human disturbances such as atmospheric pollution and urban heat island effect. To ameliorate the effects of these factors, an increase in urban green areas is often considered sufficient. However, this approach assumes that all types of green cover have the same importance for species. Our aim was to show that not all forested green areas are equal in importance for species, but that based on a multi-taxa and functional diversity approach it is possible to value green infrastructure in urban environments. After evaluating the diversity of lichens, butterflies and other-arthropods, birds and mammals in 31 Mediterranean urban forests in south-west Europe (Almada, Portugal), bird and lichen functional groups responsive to urbanization were found. A community shift (tolerant species replacing sensitive ones) along the urbanization gradient was found, and this must be considered when using these groups as indicators of the effect of urbanization. Bird and lichen functional groups were then analyzed together with the characteristics of the forests and their surroundings. Our results showed that, contrary to previous assumptions, vegetation density and more importantly the amount of urban areas around the forest (matrix), are more important for biodiversity than forest quantity alone. This indicated that not all types of forested green areas have the same importance for biodiversity. An index of forest functional diversity was then calculated for all sampled forests of the area. This could help decision-makers to improve the management of urban green infrastructures with the goal of increasing functionality and ultimately ecosystem services in urban areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes

    Science.gov (United States)

    Dwivedi, Sangam L.; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro

    2017-01-01

    There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and

  19. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes

    Directory of Open Access Journals (Sweden)

    Sangam L. Dwivedi

    2017-08-01

    Full Text Available There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection

  20. Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization.

    Science.gov (United States)

    Tiago, Igor; Veríssimo, António

    2013-06-01

    Microbial and functional diversity were assessed, from a serpentinization-driven subterrestrial alkaline aquifer - Cabeço de Vide Aquifer (CVA) in Portugal. DGGE analyses revealed the presence of a stable microbial community. By 16S rRNA gene libraries and pyrosequencing analyses, a diverse bacterial composition was determined, contrasting with low archaeal diversity. Within Bacteria the majority of the populations were related to organisms or sequences affiliated to class Clostridia, but members of classes Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Deinococci, Gammaproteobacteria and of the phyla Bacteroidetes, Chloroflexi and Nitrospira were also detected. Domain Archaea encompassed mainly sequences affiliated to Euryarchaeota. Only form I RuBisCO - cbbL was detected. Autotrophic carbon fixation via the rTCA, 3-HP and 3-HP/4H-B cycles could not be confirmed. The detected APS reductase alpha subunit - aprA sequences were phylogenetically related to sequences of sulfate-reducing bacteria belonging to Clostridia, and also to sequences of chemolithoautothrophic sulfur-oxidizing bacteria belonging to Betaproteobacteria. Sequences of methyl coenzyme M reductase - mcrA were phylogenetically affiliated to sequences belonging to Anaerobic Methanotroph group 1 (ANME-1). The populations found and the functional key markers detected in CVA suggest that metabolisms related to H2 , methane and/or sulfur may be the major driving forces in this environment. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. The phylogeny of the mammalian heme peroxidases and the evolution of their diverse functions

    Directory of Open Access Journals (Sweden)

    Ó'Fágáin Ciarán

    2008-03-01

    Full Text Available Abstract Background The mammalian heme peroxidases (MHPs are a medically important group of enzymes. Included in this group are myeloperoxidase, eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase. These enzymes are associated with such diverse diseases as asthma, Alzheimer's disease and inflammatory vascular disease. Despite much effort to elucidate a clearer understanding of the function of the 4 major groups of this multigene family, we still do not have a clear understanding of their relationships to each other. Results Sufficient signal exists for the resolution of the evolutionary relationships of this family of enzymes. We demonstrate, using a root mean squared deviation statistic, how the removal of the fastest evolving sites aids in the minimisation of the effect of long branch attraction and the generation of a highly supported phylogeny. Based on this phylogeny we have pinpointed the amino acid positions that have most likely contributed to the diverse functions of these enzymes. Many of these residues are in close proximity to sites implicated in protein misfolding, loss of function or disease. Conclusion Our analysis of all available genomic sequence data for the MHPs from all available completed mammalian genomes, involved sophisticated methods of phylogeny reconstruction and data treatment. Our study has (i fully resolved the phylogeny of the MHPs and the subsequent pattern of gene duplication, and (ii, we have detected amino acids under positive selection that have most likely contributed to the observed functional shifts in each type of MHP.

  2. Ecological-network models link diversity, structure and function in the plankton food-web

    Science.gov (United States)

    D'Alelio, Domenico; Libralato, Simone; Wyatt, Timothy; Ribera D'Alcalà, Maurizio

    2016-02-01

    A planktonic food-web model including sixty-three functional nodes (representing auto- mixo- and heterotrophs) was developed to integrate most trophic diversity present in the plankton. The model was implemented in two variants - which we named ‘green’ and ‘blue’ - characterized by opposite amounts of phytoplankton biomass and representing, respectively, bloom and non-bloom states of the system. Taxonomically disaggregated food-webs described herein allowed to shed light on how components of the plankton community changed their trophic behavior in the two different conditions, and modified the overall functioning of the plankton food web. The green and blue food-webs showed distinct organizations in terms of trophic roles of the nodes and carbon fluxes between them. Such re-organization stemmed from switches in selective grazing by both metazoan and protozoan consumers. Switches in food-web structure resulted in relatively small differences in the efficiency of material transfer towards higher trophic levels. For instance, from green to blue states, a seven-fold decrease in phytoplankton biomass translated into only a two-fold decrease in potential planktivorous fish biomass. By linking diversity, structure and function in the plankton food-web, we discuss the role of internal mechanisms, relying on species-specific functionalities, in driving the ‘adaptive’ responses of plankton communities to perturbations.

  3. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing

    Science.gov (United States)

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong

    2015-06-01

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.

  4. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.

    Science.gov (United States)

    An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao

    2017-07-25

    Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.

  5. Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle.

    Science.gov (United States)

    Call, Jarrod A; Wilson, Rebecca J; Laker, Rhianna C; Zhang, Mei; Kundu, Mondira; Yan, Zhen

    2017-06-01

    Autophagy is a conserved cellular process for degrading aggregate proteins and dysfunctional organelle. It is still debatable if autophagy and mitophagy (a specific process of autophagy of mitochondria) play important roles in myogenic differentiation and functional regeneration of skeletal muscle. We tested the hypothesis that autophagy is critical for functional regeneration of skeletal muscle. We first observed time-dependent increases (3- to 6-fold) of autophagy-related proteins (Atgs), including Ulk1, Beclin1, and LC3, along with reduced p62 expression during C2C12 differentiation, suggesting increased autophagy capacity and flux during myogenic differentiation. We then used cardiotoxin (Ctx) or ischemia-reperfusion (I/R) to induce muscle injury and regeneration and observed increases in Atgs between days 2 and 7 in adult skeletal muscle followed by increased autophagy flux after day 7 Since Ulk1 has been shown to be essential for mitophagy, we asked if Ulk1 is critical for functional regeneration in skeletal muscle. We subjected skeletal muscle-specific Ulk1 knockout mice (MKO) to Ctx or I/R. MKO mice had significantly impaired recovery of muscle strength and mitochondrial protein content post-Ctx or I/R. Imaging analysis showed that MKO mice have significantly attenuated recovery of mitochondrial network at 7 and 14 days post-Ctx. These findings suggest that increased autophagy protein and flux occur during muscle regeneration and Ulk1-mediated mitophagy is critical for recovery for the mitochondrial network and hence functional regeneration. Copyright © 2017 the American Physiological Society.

  6. Expanded functional diversity of shaker K(+ channels in cnidarians is driven by gene expansion.

    Directory of Open Access Journals (Sweden)

    Timothy Jegla

    Full Text Available The genome of the cnidarian Nematostella vectensis (starlet sea anemone provides a molecular genetic view into the first nervous systems, which appeared in a late common ancestor of cnidarians and bilaterians. Nematostella has a surprisingly large and diverse set of neuronal signaling genes including paralogs of most neuronal signaling molecules found in higher metazoans. Several ion channel gene families are highly expanded in the sea anemone, including three subfamilies of the Shaker K(+ channel gene family: Shaker (Kv1, Shaw (Kv3 and Shal (Kv4. In order to better understand the physiological significance of these voltage-gated K(+ channel expansions, we analyzed the function of 18 members of the 20 gene Shaker subfamily in Nematostella. Six of the Nematostella Shaker genes express functional homotetrameric K(+ channels in vitro. These include functional orthologs of bilaterian Shakers and channels with an unusually high threshold for voltage activation. We identified 11 Nematostella Shaker genes with a distinct "silent" or "regulatory" phenotype; these encode subunits that function only in heteromeric channels and serve to further diversify Nematostella Shaker channel gating properties. Subunits with the regulatory phenotype have not previously been found in the Shaker subfamily, but have evolved independently in the Shab (Kv2 family in vertebrates and the Shal family in a cnidarian. Phylogenetic analysis indicates that regulatory subunits were present in ancestral cnidarians, but have continued to diversity at a high rate after the split between anthozoans and hydrozoans. Comparison of Shaker family gene complements from diverse metazoan species reveals frequent, large scale duplication has produced highly unique sets of Shaker channels in the major metazoan lineages.

  7. Arthropod Diversity and Functional Importance in Old-Growth Forests of North America

    Directory of Open Access Journals (Sweden)

    Timothy Schowalter

    2017-03-01

    Full Text Available Old-growth forests have become rare in North America but provide habitat for unique assemblages of species that often are rare in younger forests. Insects and related arthropods reach their highest diversity in old-growth forests because of their stable moderate temperature and relative humidity and the rich variety of resources represented by high plant species richness and structural complexity. Old-growth arthropod assemblages typically are distinct from those in younger, managed forests. Major subcommunities include the arboreal community that is composed of a rich assemblage of herbivores, fungivores, and their associated predators and parasitoids that function to regulate primary production and nutrient fluxes, the stem zone community that includes bark- and wood-boring species and their associated predators and parasitoids that initiate the decomposition of coarse woody debris, and the forest floor community composed of a variety of detritivores, fungivores, burrowers, and their associated predators and parasitoids that are instrumental in litter decomposition. Insect outbreaks are relatively rare in old-growth forests, where the diversity of resources and predators limit population growth. In turn, insects contribute to plant diversity and limit primary production of host plant species, thereby promoting development of old-growth forest characteristics. Arthropods also provide important functions in decomposition and nutrient cycling that may be lost in younger, managed forests with limited provision of coarse woody debris and accumulated litter. Protection of remnant old-growth forests within the forest matrix may be particularly valuable for maintaining the diversity of plant and arthropod predators that can minimize outbreaks, thereby contributing to resilience to changing environmental conditions.

  8. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    Science.gov (United States)

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  9. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms

    OpenAIRE

    Jung, Jaejoon; Philippot, Laurent

    2016-01-01

    The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Acti...

  10. Metagenomic-based study of the phylogenetic and functional gene diversity in Galápagos land and marine iguanas.

    Science.gov (United States)

    Hong, Pei-Ying; Mao, Yuejian; Ortiz-Kofoed, Shannon; Shah, Rushabh; Cann, Isaac; Mackie, Roderick I

    2015-02-01

    In this study, a metagenome-based analysis of the fecal samples from the macrophytic algae-consuming marine iguana (MI; Amblyrhynchus cristatus) and terrestrial biomass-consuming land iguanas (LI; Conolophus spp.) was conducted. Phylogenetic affiliations of the fecal microbiome were more similar between both iguanas than to other mammalian herbivorous hosts. However, functional gene diversities in both MI and LI iguana hosts differed in relation to the diet, where the MI fecal microbiota had a functional diversity that clustered apart from the other terrestrial-biomass consuming reptilian and mammalian hosts. A further examination of the carbohydrate-degrading genes revealed that several of the prevalent glycosyl hydrolases (GH), glycosyl transferases (GT), carbohydrate binding modules (CBM), and carbohydrate esterases (CE) gene classes were conserved among all examined herbivorous hosts, reiterating the important roles these genes play in the breakdown and metabolism of herbivorous diets. Genes encoding some classes of carbohydrate-degrading families, including GH2, GH13, GT2, GT4, CBM50, CBM48, CE4, and CE11, as well as genes associated with sulfur metabolism and dehalogenation, were highly enriched or unique to the MI. In contrast, gene sequences that relate to archaeal methanogenesis were detected only in LI fecal microbiome, and genes coding for GH13, GH66, GT2, GT4, CBM50, CBM13, CE4, and CE8 carbohydrate active enzymes were highly abundant in the LI. Bacterial populations were enriched on various carbohydrates substrates (e.g., glucose, arabinose, xylose). The majority of the enriched bacterial populations belong to genera Clostridium spp. and Enterococcus spp. that likely accounted for the high prevalence of GH13 and GH2, as well as the GT families (e.g., GT2, GT4, GT28, GT35, and GT51) that were ubiquitously present in the fecal microbiota of all herbivorous hosts.

  11. Metagenomic-Based Study of the Phylogenetic and Functional Gene Diversity in Galápagos Land and Marine Iguanas

    KAUST Repository

    Hong, Pei-Ying

    2014-12-19

    In this study, a metagenome-based analysis of the fecal samples from the macrophytic algae-consuming marine iguana (MI; Amblyrhynchus cristatus) and terrestrial biomass-consuming land iguanas (LI; Conolophus spp.) was conducted. Phylogenetic affiliations of the fecal microbiome were more similar between both iguanas than to other mammalian herbivorous hosts. However, functional gene diversities in both MI and LI iguana hosts differed in relation to the diet, where the MI fecal microbiota had a functional diversity that clustered apart from the other terrestrial-biomass consuming reptilian and mammalian hosts. A further examination of the carbohydrate-degrading genes revealed that several of the prevalent glycosyl hydrolases (GH), glycosyl transferases (GT), carbohydrate binding modules (CBM), and carbohydrate esterases (CE) gene classes were conserved among all examined herbivorous hosts, reiterating the important roles these genes play in the breakdown and metabolism of herbivorous diets. Genes encoding some classes of carbohydrate-degrading families, including GH2, GH13, GT2, GT4, CBM50, CBM48, CE4, and CE11, as well as genes associated with sulfur metabolism and dehalogenation, were highly enriched or unique to the MI. In contrast, gene sequences that relate to archaeal methanogenesis were detected only in LI fecal microbiome, and genes coding for GH13, GH66, GT2, GT4, CBM50, CBM13, CE4, and CE8 carbohydrate active enzymes were highly abundant in the LI. Bacterial populations were enriched on various carbohydrates substrates (e.g., glucose, arabinose, xylose). The majority of the enriched bacterial populations belong to genera Clostridium spp. and Enterococcus spp. that likely accounted for the high prevalence of GH13 and GH2, as well as the GT families (e.g., GT2, GT4, GT28, GT35, and GT51) that were ubiquitously present in the fecal microbiota of all herbivorous hosts.

  12. Differential subcellular distribution of ion channels and the diversity of neuronal function.

    Science.gov (United States)

    Nusser, Zoltan

    2012-06-01

    Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Functional soil microbial diversity across Europe estimated by EEA, MicroResp and BIOLOG

    DEFF Research Database (Denmark)

    Winding, Anne; Rutgers, Michiel; Creamer, Rachel

    consisting of 81 soil samples covering five Biogeograhical Zones and three land-uses in order to test the sensitivity, ease and cost of performance and biological significance of the data output. The techniques vary in how close they are to in situ functions; dependency on growth during incubation......Soil microorganisms are abundant and essential for the bio-geochemical processes of soil, soil quality and soil ecosystem services. All this is dependent on the actual functions the microbial communities are performing in the soil. Measuring soil respiration has for many years been the basis...... of estimating soil microbial activity. However, today several techniques are in use for determining microbial functional diversity and assessing soil biodiversity: Methods based on CO2 development by the microbes such as substrate induced respiration (SIR) on specific substrates have lead to the development...

  14. Wherefore Art Thou, Homeo(stasis? Functional Diversity in Homeostatic Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Bridget N. Queenan

    2012-01-01

    Full Text Available Homeostatic plasticity has emerged as a fundamental regulatory principle that strives to maintain neuronal activity within optimal ranges by altering diverse aspects of neuronal function. Adaptation to network activity is often viewed as an essential negative feedback restraint that prevents runaway excitation or inhibition. However, the precise importance of these homeostatic functions is often theoretical rather than empirically derived. Moreover, a remarkable multiplicity of homeostatic adaptations has been observed. To clarify these issues, it may prove useful to ask: why do homeostatic mechanisms exist, what advantages do these adaptive responses confer on a given cell population, and why are there so many seemingly divergent effects? Here, we approach these questions by applying the principles of control theory to homeostatic synaptic plasticity of mammalian neurons and suggest that the varied responses observed may represent distinct functional classes of control mechanisms directed toward disparate physiological goals.

  15. Topological variation in the evolution of new reactions in functionally diverse enzyme superfamilies.

    Science.gov (United States)

    Meng, Elaine C; Babbitt, Patricia C

    2011-06-01

    In functionally diverse enzyme superfamilies (SFs), conserved structural and active site features reflect catalytic capabilities 'hard-wired' in each SF architecture. Overlaid on this foundation, evolutionary changes in active site machinery, structural topology and other aspects of structural organization and interactions support the emergence of new reactions, mechanisms, and substrate specificity. This review connects topological with functional variation in each of the haloalkanoic acid dehalogenase (HAD) and vicinal oxygen chelate fold (VOC) SFs and a set of redox-active thioredoxin (Trx)-fold SFs to illustrate a few of the varied themes nature has used to evolve new functions from a limited set of structural scaffolds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Partitioning the regional and local drivers of phylogenetic and functional diversity along temperate elevational gradients on an East Asian peninsula.

    Science.gov (United States)

    Chun, Jung-Hwa; Lee, Chang-Bae

    2018-02-12

    Species-centric approaches to biodiversity in ecological research are limited in their ability to reflect the evolutionary history and functional diversity of community assembly. Recently, the introduction of alternative facets of biodiversity, such as phylogenetic and functional diversity, has shed light on this problem and improved our understanding of the processes underlying biodiversity patterns. Here, we investigated the phylogenetic and functional diversity patterns of α, β and γ components in woody plant assemblages along regional and local elevational gradients in South Korea. Although the patterns of phylogenetic and functional diversity varied along regional and local elevational transects, the main drivers were partitioned into two categories: regional area or climate for phylogenetic diversity, depending on whether the transect was at a regional or local scale; and habitat heterogeneity for functional diversity, which was derived in elevational bands. Moreover, environmental distance was more important than was geographic distance for phylogenetic and functional β diversity between paired elevational bands. These results support the hypothesis that niche-based deterministic processes such as environmental filtering and competitive exclusion are fundamental in structuring woody plant assemblages along temperate elevational gradients regardless of scale (regional vs. local) in our study areas.

  17. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    Science.gov (United States)

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-06-01

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalize community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water plant functional group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 687 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed that models achieved acceptable predictive performance, with correct classification rates in the range 0.68-0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. © 2017 by the Ecological Society of America.

  18. Changes in enzyme activity and functional diversity in soil induced by Cd and glucose addition

    Science.gov (United States)

    Gilmullina, A. R.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Toxic heavy metal (HM) contamination is a major global issue as it may have an indirect effect on the health of soil, plants, animals and, consequently, on human health. Agricultural soils’ fertilization is one of the reported sources of HM pollution in the world. In this case simultaneous input of stimulating and inhibiting agents into soil takes place, and effects of the combined influence of these agents is hardly predictable. In this study, a simultaneous inhibiting and stimulating effect of Cd and glucose on soil microbes was studied in a model experiment. Enzyme activities (phosphatase, β-glucosidase and cellobiohydrolase) and functional diversity (BIOLOG®EcoPlates ™) were assessed as a test functions. Cd (300 μg Cd g-1 ) amendment had a negative effect only on phosphatase activity. Glucose (3 mg C g-1) addition inhibited β-glucosidase activity and stimulated functional diversity. In joint addition of Cd and Glucose the leading effect belonged to that agent which had the greatest effect in case when it was added separately.

  19. Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems.

    Science.gov (United States)

    Leenay, Ryan T; Maksimchuk, Kenneth R; Slotkowski, Rebecca A; Agrawal, Roma N; Gomaa, Ahmed A; Briner, Alexandra E; Barrangou, Rodolphe; Beisel, Chase L

    2016-04-07

    CRISPR-Cas adaptive immune systems in prokaryotes boast a diversity of protein families and mechanisms of action, where most systems rely on protospacer-adjacent motifs (PAMs) for DNA target recognition. Here, we developed an in vivo, positive, and tunable screen termed PAM-SCANR (PAM screen achieved by NOT-gate repression) to elucidate functional PAMs as well as an interactive visualization scheme termed the PAM wheel to convey individual PAM sequences and their activities. PAM-SCANR and the PAM wheel identified known functional PAMs while revealing complex sequence-activity landscapes for the Bacillus halodurans I-C (Cascade), Escherichia coli I-E (Cascade), Streptococcus thermophilus II-A CRISPR1 (Cas9), and Francisella novicida V-A (Cpf1) systems. The PAM wheel was also readily applicable to existing high-throughput screens and garnered insights into SpyCas9 and SauCas9 PAM diversity. These tools offer powerful means of elucidating and visualizing functional PAMs toward accelerating our ability to understand and exploit the multitude of CRISPR-Cas systems in nature. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. New microbial resource: microbial diversity, function and dynamics in Chinese liquor starter.

    Science.gov (United States)

    Huang, Yuhong; Yi, Zhuolin; Jin, Yanling; Zhao, Yonggui; He, Kaize; Liu, Dayu; Zhao, Dong; He, Hui; Luo, Huibo; Zhang, Wenxue; Fang, Yang; Zhao, Hai

    2017-11-06

    Traditional Chinese liquor (Baijiu) solid state fermentation technology has lasted for several thousand years. The microbial communities that enrich in liquor starter are important for fermentation. However, the microbial communities are still under-characterized. In this study, 454 pyrosequencing technology was applied to comprehensively analyze the microbial diversity, function and dynamics of two most-consumed liquor starters (Jiang- and Nong-flavor) during production. In total, 315 and 83 bacterial genera and 72 and 47 fungal genera were identified in Jiang- and Nong-flavor liquor starter, respectively. The relatively high diversity was observed when the temperature increased to 70 and 62 °C for Jiang- and Nong-flavor liquor starter, respectively. Some thermophilic fungi have already been isolated. Microbial communities that might contribute to ethanol fermentation, saccharification and flavor development were identified and shown to be core communities in correlation-based network analysis. The predictively functional profile of bacterial communities showed significant difference in energy, carbohydrate and amino acid metabolism and the degradation of aromatic compounds between the two kinds of liquor starters. Here we report these liquor starters as a new functionally microbial resource, which can be used for discovering thermophilic and aerobic enzymes and for food and feed preservation.

  1. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes

    Directory of Open Access Journals (Sweden)

    Schmitz Lars

    2011-11-01

    Full Text Available Abstract Background Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal fish active in well-illuminated conditions, whereas night-active (nocturnal fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. Results We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Conclusions Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.

  2. Evaluating functional diversity: Missing trait data and the importance of species abundance structure and data transformation

    Czech Academy of Sciences Publication Activity Database

    Májeková, M.; Paal, T.; Plowman, Nichola S.; Bryndová, Michala; Kasari, L.; Norberg, A.; Weiss, Matthias; Bishop, T. R.; Luke, S. H.; Sam, Kateřina; Le Bagousse-Pinguet, Y.; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Roč. 11, č. 2 (2016), č. článku e0149270. E-ISSN 1932-6203 R&D Projects: GA ČR GB14-36098G; GA ČR(CZ) GP14-32024P; GA ČR GAP505/12/1296 Grant - others:GA JU(CZ) 156/2013/P Institutional support: RVO:60077344 ; RVO:67985939 Keywords : data incompleteness * functional diversity * species abundance Subject RIV: EH - Ecology, Behaviour; EH - Ecology, Behaviour (BU-J) Impact factor: 2.806, year: 2016 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149270

  3. Adaptive evolution in locomotor performance: How selective pressures and functional relationships produce diversity.

    Science.gov (United States)

    Scales, Jeffrey A; Butler, Marguerite A

    2016-01-01

    Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  4. Phylogenetic diversity and functional characterization of the Manila clam microbiota: a culture-based approach.

    Science.gov (United States)

    Leite, Laura; Jude-Lemeilleur, Florence; Raymond, Natalie; Henriques, Isabel; Garabetian, Frédéric; Alves, Artur

    2017-09-01

    According to the hologenome theory, the microbiota contributes to the fitness of the holobiont having an important role in its adaptation, survival, development, health, and evolution. Environmental stress also affects the microbiota and its capability to assist the holobiont in coping with stress factors. Here, we analyzed the diversity of cultivable bacteria associated with Manila clam tissues (mantle, gills, hemolymph) in two non-contaminated sites (Portugal and France) and one metal-contaminated site (Portugal). A total of 240 isolates were obtained. Representative isolates (n = 198) of the overall diversity were identified by 16S rDNA sequencing and subjected to functional characterization. Isolates affiliated with Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Proteobacteria (mostly Pseudoalteromonadaceae and Vibrionaceae) were dominant in non-contaminated sites while Actinobacteria (mostly Microbacteriaceae) dominated in the metal-contaminated site. The main factor affecting the microbiota composition was contamination. No significant differences were observed between clam tissues and geographic regions. Several isolates tested positive for antibacterial activity, biofilm formation, protease, and siderophore production. The results show that the Manila clam harbors a diverse microbiota that may contribute to clam protection and overall fitness, as well as to its adaptation to stressful environments. In addition, the Manila clam microbiota is revealed as a promising source of novel probiotics with potential application in aquaculture.

  5. Biogeographical boundaries, functional group structure and diversity of Rocky Shore communities along the Argentinean coast.

    Directory of Open Access Journals (Sweden)

    Evie A Wieters

    Full Text Available We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10's km and local (10's m scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3-4 main 'groups' of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site to stabilize patterns of biomass variability and, in this manner, provide a buffer, or "insurance", against

  6. Soil functional diversity analysis of a bauxite-mined restoration chronosequence.

    Science.gov (United States)

    Lewis, Dawn E; White, John R; Wafula, Denis; Athar, Rana; Dickerson, Tamar; Williams, Henry N; Chauhan, Ashvini

    2010-05-01

    Soil microorganisms are sensitive to environmental perturbations such that changes in microbial community structure and function can provide early signs of anthropogenic disturbances and even predict restoration success. We evaluated the bacterial functional diversity of un-mined and three chronosequence sites at various stages of rehabilitation (0, 10, and 20 years old) located in the Mocho Mountains of Jamaica. Samples were collected during the dry and wet seasons and analyzed for metal concentrations, microbial biomass carbon, bacterial numbers, and functional responses of soil microbiota using community-level physiological profile (CLPP) assays. Regardless of the season, un-mined soils consisted of higher microbial biomass and numbers than any of the rehabilitated sites. Additionally, the number and rate of substrates utilized and substrate evenness (the distribution of color development between the substrates) were significantly greater in the un-mined soils with carbohydrates being preferentially utilized than amino acids, polymers, carboxylic acids, and esters. To some extent, functional responses varied with the seasons but the least physiological activity was shown by the site rehabilitated in 1987 indicating long-term perturbation to this ecosystem. Small subunit ribosomal DNA (SSUrDNA)-denaturing gradient-gel electrophoresis analyses on the microbiota collected from the most preferred CLPP substrates followed by taxonomic analyses showed Proteobacteria, specifically the gamma-proteobacteria, as the most functionally active phyla, indicating a propensity of this phyla to out-compete other groups under the prevailing conditions. Additionally, multivariate statistical analyses, Shannon's diversity, and evenness indices, principal component analysis, biplot and un-weighted-pair-group method with arithmetic averages dendrograms further confirmed that un-mined sites were distinctly different from the rehabilitated soils.

  7. Land-use systems affect Archaeal community structure and functional diversity in western Amazon soils

    Directory of Open Access Journals (Sweden)

    Acácio Aparecido Navarrete

    2011-10-01

    Full Text Available The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure and ammonia-oxidizing Archaea (richness and community composition were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009 from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old, agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA of Archaea (306 sequences, the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366, followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715, crops (H' = 1.4613; D = 0.3309 and secondary forest (H' = 0.8633; D = 0.5405. All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 % previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.

  8. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere.

    Science.gov (United States)

    Venkatachalam, S; Ranjan, K; Prasanna, R; Ramakrishnan, B; Thapa, S; Kanchan, A

    2016-07-01

    The diversity and abundance of culturable microbiome members of the rice phyllosphere was investigated using cv. Pusa Punjab Basmati 1509. Both diversity and species richness of bacteria were significantly higher in plants in pots in a semi-controlled environment than those in fields. Application of fertilisers reduced both diversity and species richness in field-grown plants under a conventional flooded system of rice intensification (SRI) and in dry-seeded rice (DSR) modes. Sequence analyses of 16S rDNA of culturable bacteria, those selected after amplified ribosomal DNA restriction analysis (ARDRA), showed the dominance of α-proteobacteria (35%) and actinobacteria (38%); Pantoea, Exiguobacterium and Bacillus were common among the culturable phyllospheric bacteria. About 34% of 83 culturable bacterial isolates had higher potential (>2 μg·ml(-1) ) for indole acetic acid production in the absence of tryptophan. Interestingly, the phyllosphere bacterial isolates from the pot experiment had significantly higher potential for nitrogen fixation than isolates from the field experiment. Enrichment for cyanobacteria showed both unicellular forms and non-heterocystous filaments under aerobic as well as anaerobic conditions. PCR-DGGE analysis of these showed that aerobic and anaerobic conditions as well as the three modes of cultivation of rice in the field strongly influenced the number and abundance of phylotypes. The adaptability and functional traits of these culturable microbiome members suggest enormous diversity in the phyllosphere, including potential for plant growth promotion, which was also significantly influenced by the different methods of growing rice. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Exploring spatial planning and functional program impact on microbial diversity and distribution in two South African hospital microbiomes

    CSIR Research Space (South Africa)

    Nice, Jaco A

    2015-07-01

    Full Text Available This paper presents a theoretical and experimental research approach on the impact of spatial planning and functional program on the microbial load, distribution and organism diversity in hospital environments. The investigation aims to identify...

  10. Disturbance of Oligodendrocyte Function Plays a Key Role in the Pathogenesis of Schizophrenia and Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Shingo Miyata

    2015-01-01

    Full Text Available The major psychiatric disorders such as schizophrenia (SZ and major depressive disorder (MDD are thought to be multifactorial diseases related to both genetic and environmental factors. However, the genes responsible and the molecular mechanisms underlying the pathogenesis of SZ and MDD remain unclear. We previously reported that abnormalities of disrupted-in-Schizophrenia-1 (DISC1 and DISC1 binding zinc finger (DBZ might cause major psychiatric disorders such as SZ. Interestingly, both DISC and DBZ have been further detected in oligodendrocytes and implicated in regulating oligodendrocyte differentiation. DISC1 negatively regulates the differentiation of oligodendrocytes, whereas DBZ plays a positive regulatory role in oligodendrocyte differentiation. We have reported that repeated stressful events, one of the major risk factors of MDD, can induce sustained upregulation of plasma corticosterone levels and serum/glucocorticoid regulated kinase 1 (Sgk1 mRNA expression in oligodendrocytes. Repeated stressful events can also activate the SGK1 cascade and cause excess arborization of oligodendrocyte processes, which is thought to be related to depressive-like symptoms. In this review, we discuss the expression of DISC1, DBZ, and SGK1 in oligodendrocytes, their roles in the regulation of oligodendrocyte function, possible interactions of DISC1 and DBZ in relation to SZ, and the activation of the SGK1 signaling cascade in relation to MDD.

  11. Functional diversity of non-lethal effects, chemical camouflage, and variation in fish avoidance in colonizing beetles.

    Science.gov (United States)

    Resetarits, William J; Pintar, Matthew R

    2016-12-01

    Predators play an extremely important role in natural communities. In freshwater systems, fish can dominate sorting both at the colonization and post-colonization stage. Specifically, for many colonizing species, fish can have non-lethal, direct effects that exceed the lethal direct effects of predation. Functionally diverse fish species with a range of predatory capabilities have previously been observed to elicit functionally equivalent responses on oviposition in tree frogs. We tested this hypothesis of functional equivalence of non-lethal effects for four predatory fish species, using naturally colonizing populations of aquatic beetles. Among taxa other than mosquitoes, and with the exception of the chemically camouflaged pirate perch, Aphredoderus sayanus, we provide the first evidence of variation in colonization or oviposition responses to different fish species. Focusing on total abundance, Fundulus chrysotus, a gape-limited, surface-feeding fish, elicited unique responses among colonizing Hydrophilidae, with the exception of the smallest and most abundant taxa, Paracymus, while Dytiscidae responded similarly to all avoided fish. Neither family responded to A. sayanus. Analysis of species richness and multivariate characterization of the beetle assemblages for the four fish species and controls revealed additional variation among the three avoided species and confirmed that chemical camouflage in A. sayanus results in assemblages essentially identical to fishless controls. The origin of this variation in beetle responses to different fish is unknown, but may involve variation in cue sensitivity, different behavioral algorithms, or differential responses to species-specific fish cues. The identity of fish species occupying aquatic habitats is crucial to understanding community structure, as varying strengths of lethal and non-lethal effects, as well as their interaction, create complex landscapes of predator effects and challenge the notion of functional

  12. A Global Overview of the Genetic and Functional Diversity in the Helicobacter pylori cag Pathogenicity Island

    Science.gov (United States)

    Moodley, Yoshan; Uhr, Markus; Stamer, Christiana; Vauterin, Marc; Suerbaum, Sebastian; Achtman, Mark

    2010-01-01

    The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown. PMID:20808891

  13. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem

    International Nuclear Information System (INIS)

    Edwards, Arwyn; Pachebat, Justin A; Swain, Martin; Hegarty, Matt; Rassner, Sara M E; Hodson, Andrew J; Irvine-Fynn, Tristram D L; Sattler, Birgit

    2013-01-01

    Cryoconite is a microbe–mineral aggregate which darkens the ice surface of glaciers. Microbial process and marker gene PCR-dependent measurements reveal active and diverse cryoconite microbial communities on polar glaciers. Here, we provide the first report of a cryoconite metagenome and culture-independent study of alpine cryoconite microbial diversity. We assembled 1.2 Gbp of metagenomic DNA sequenced using an Illumina HiScanSQ from cryoconite holes across the ablation zone of Rotmoosferner in the Austrian Alps. The metagenome revealed a bacterially-dominated community, with Proteobacteria (62% of bacterial-assigned contigs) and Bacteroidetes (14%) considerably more abundant than Cyanobacteria (2.5%). Streptophyte DNA dominated the eukaryotic metagenome. Functional genes linked to N, Fe, S and P cycling illustrated an acquisitive trend and a nitrogen cycle based upon efficient ammonia recycling. A comparison of 32 metagenome datasets revealed a similarity in functional profiles between the cryoconite and metagenomes characterized from other cold microbe–mineral aggregates. Overall, the metagenomic snapshot reveals the cryoconite ecosystem of this alpine glacier as dependent on scavenging carbon and nutrients from allochthonous sources, in particular mosses transported by wind from ice-marginal habitats, consistent with net heterotrophy indicated by productivity measurements. A transition from singular snapshots of cryoconite metagenomes to comparative analyses is advocated. (letter)

  14. Soil microbial community profiles and functional diversity in limestone cedar glades

    Science.gov (United States)

    Cartwright, Jennifer M.; Dzantor, E. Kudjo; Momen, Bahram

    2016-01-01

    Rock outcrop ecosystems, such as limestone cedar glades (LCGs), are known for their rare and endemic plant species adapted to high levels of abiotic stress. Soils in LCGs are thin (< 25 cm), soil-moisture conditions fluctuate seasonally between xeric and saturated, and summer soil temperatures commonly exceed 48 °C. The effects of these stressors on soil microbial communities (SMC) remain largely unstudied, despite the importance of SMC-plant interactions in regulating the structure and function of terrestrial ecosystems. SMC profiles and functional diversity were characterized in LCGs using community level physiological profiling (CLPP) and plate-dilution frequency assays (PDFA). Most-probable number (MPN) estimates and microbial substrate-utilization diversity (H) were positively related to soil thickness, soil organic matter (OM), soil water content, and vegetation density, and were diminished in alkaline soil relative to circumneutral soil. Soil nitrate showed no relationship to SMCs, suggesting lack of N-limitation. Canonical correlation analysis indicated strong correlations between microbial CLPP patterns and several physical and chemical properties of soil, primarily temperature at the ground surface and at 4-cm depth, and secondarily soil-water content, enabling differentiation by season. Thus, it was demonstrated that several well-described abiotic determinants of plant community structure in this ecosystem are also reflected in SMC profiles.

  15. Species Diversity and Functional Prediction of Surface Bacterial Communities on Aging Flue-Cured Tobaccos.

    Science.gov (United States)

    Wang, Fan; Zhao, Hongwei; Xiang, Haiying; Wu, Lijun; Men, Xiao; Qi, Chang; Chen, Guoqiang; Zhang, Haibo; Wang, Yi; Xian, Mo

    2018-06-05

    Microbes on aging flue-cured tobaccos (ATFs) improve the aroma and other qualities desirable in products. Understanding the relevant organisms would picture microbial community diversity, metabolic potential, and their applications. However, limited efforts have been made on characterizing the microbial quality and functional profiling. Herein, we present our investigation of the bacterial diversity and predicted potential genetic capability of the bacteria from two AFTs using 16S rRNA gene sequences and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) software. The results show that dominant bacteria from AFT surfaces were classified into 48 genera, 36 families, and 7 phyla. In addition, Bacillus spp. was found prevalent on both ATFs. Furthermore, PICRUSt predictions of bacterial community functions revealed many attractive metabolic capacities in the AFT microbiota, including several involved in the biosynthesis of flavors and fragrances and the degradation of harmful compounds, such as nicotine and nitrite. These results provide insights into the importance of AFT bacteria in determining product qualities and indicate specific microbial species with predicted enzymatic capabilities for the production of high-efficiency flavors, the degradation of undesirable compounds, and the provision of nicotine and nitrite tolerance which suggest fruitful areas of investigation into the manipulation of AFT microbiota for AFT and other product improvements.

  16. Diverse Phytochemicals and Bioactivities in the Ancient Fruit and Modern Functional Food Pomegranate (Punica granatum).

    Science.gov (United States)

    Wu, Sheng; Tian, Li

    2017-09-25

    Having served as a symbolic fruit since ancient times, pomegranate ( Punica granatum ) has also gained considerable recognition as a functional food in the modern era. A large body of literature has linked pomegranate polyphenols, particularly anthocyanins (ATs) and hydrolyzable tannins (HTs), to the health-promoting activities of pomegranate juice and fruit extracts. However, it remains unclear as to how, and to what extent, the numerous phytochemicals in pomegranate may interact and exert cooperative activities in humans. In this review, we examine the structural and analytical information of the diverse phytochemicals that have been identified in different pomegranate tissues, to establish a knowledge base for characterization of metabolite profiles, discovery of novel phytochemicals, and investigation of phytochemical interactions in pomegranate. We also assess recent findings on the function and molecular mechanism of ATs as well as urolithins, the intestinal microbial derivatives of pomegranate HTs, on human nutrition and health. A better understanding of the structural diversity of pomegranate phytochemicals as well as their bioconversions and bioactivities in humans will facilitate the interrogation of their synergistic/antagonistic interactions and accelerate their applications in dietary-based cancer chemoprevention and treatment in the future.

  17. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    Science.gov (United States)

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  18. Modeling microbial community structure and functional diversity across time and space.

    Science.gov (United States)

    Larsen, Peter E; Gibbons, Sean M; Gilbert, Jack A

    2012-07-01

    Microbial communities exhibit exquisitely complex structure. Many aspects of this complexity, from the number of species to the total number of interactions, are currently very difficult to examine directly. However, extraordinary efforts are being made to make these systems accessible to scientific investigation. While recent advances in high-throughput sequencing technologies have improved accessibility to the taxonomic and functional diversity of complex communities, monitoring the dynamics of these systems over time and space - using appropriate experimental design - is still expensive. Fortunately, modeling can be used as a lens to focus low-resolution observations of community dynamics to enable mathematical abstractions of functional and taxonomic dynamics across space and time. Here, we review the approaches for modeling bacterial diversity at both the very large and the very small scales at which microbial systems interact with their environments. We show that modeling can help to connect biogeochemical processes to specific microbial metabolic pathways. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1.

    Science.gov (United States)

    Xia, Wei; Bai, Yingguo; Cui, Ying; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Zhang, Wei; Luo, Huiying; Zhan, Xiuan; Yao, Bin

    2016-06-08

    The fungus Humicola insolens is one of the most powerful decomposers of crystalline cellulose. However, studies on the β-glucosidases from this fungus remain insufficient, especially on glycosyl hydrolase family 3 enzymes. In the present study, we analyzed the functional diversity of three distant family 3 β-glucosidases from Humicola insolens strain Y1, which belonged to different evolutionary clades, by heterogeneous expression in Pichia pastoris strain GS115. The recombinant enzymes shared similar enzymatic properties including thermophilic and neutral optima (50-60 °C and pH 5.5-6.0) and high glucose tolerance, but differed in substrate specificities and kinetics. HiBgl3B was solely active towards aryl β-glucosides while HiBgl3A and HiBgl3C showed broad substrate specificities including both disaccharides and aryl β-glucosides. Of the three enzymes, HiBgl3C exhibited the highest specific activity (158.8 U/mg on pNPG and 56.4 U/mg on cellobiose) and catalytic efficiency and had the capacity to promote cellulose degradation. Substitutions of three key residues Ile48, Ile278 and Thr484 of HiBgl3B to the corresponding residues of HiBgl3A conferred the enzyme activity towards sophorose, and vice versa. This study reveals the functional diversity of GH3 β-glucosidases as well as the key residues in recognizing +1 subsite of different substrates.

  20. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM: a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs

    Directory of Open Access Journals (Sweden)

    R. Pavlick

    2013-06-01

    Full Text Available Terrestrial biosphere models typically abstract the immense diversity of vegetation forms and functioning into a relatively small set of predefined semi-empirical plant functional types (PFTs. There is growing evidence, however, from the field ecology community as well as from modelling studies that current PFT schemes may not adequately represent the observed variations in plant functional traits and their effect on ecosystem functioning. In this paper, we introduce the Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM as a new approach to terrestrial biosphere modelling with a richer representation of functional diversity than traditional modelling approaches based on a small number of fixed PFTs. JeDi-DGVM simulates the performance of a large number of randomly generated plant growth strategies, each defined by a set of 15 trait parameters which characterize various aspects of plant functioning including carbon allocation, ecophysiology and phenology. Each trait parameter is involved in one or more functional trade-offs. These trade-offs ultimately determine whether a strategy is able to survive under the climatic conditions in a given model grid cell and its performance relative to the other strategies. The biogeochemical fluxes and land surface properties of the individual strategies are aggregated to the grid-cell scale using a mass-based weighting scheme. We evaluate the simulated global biogeochemical patterns against a variety of field and satellite-based observations following a protocol established by the Carbon-Land Model Intercomparison Project. The land surface fluxes and vegetation structural properties are reasonably well simulated by JeDi-DGVM, and compare favourably with other state-of-the-art global vegetation models. We also evaluate the simulated patterns of functional diversity and the sensitivity of the JeDi-DGVM modelling approach to the number of sampled strategies. Altogether, the results demonstrate the

  1. Examining playfulness in adults: Testing its correlates with personality, positive psychological functioning, goal aspirations, and multi-methodically assessed ingenuity

    OpenAIRE

    René T. Proyer

    2012-01-01

    The prime aim of this set of studies was to test the disposition to play (playfulness) in adults in its relation with various measures of personality but also ability (self-estimated but also psychometri- cally measured ingenuity). Study 1 (n = 180) shows that adults playfulness relates primarily to extraversion, lower conscientiousness, and higher endorsements of culture; joy of being laughed at (gelotophilia) and agreeableness were also predictive in a regression analysis; Study 2 (n = 264)...

  2. Playful Membership

    DEFF Research Database (Denmark)

    Åkerstrøm Andersen, Niels; Pors, Justine Grønbæk

    2014-01-01

    This article studies the implications of current attempts by organizations to adapt to a world of constant change by introducing the notion of playful organizational membership. To this end we conduct a brief semantic history of organizational play and argue that when organizations play, employees...... are expected to engage in playful exploration of alternative selves. Drawing on Niklas Luhmann's theory of time and decision-making and Gregory Bateson's theory of play, the article analyses three empirical examples of how games play with conceptions of time. We explore how games represent an organizational...

  3. Accurate determination of renal function in patients with intestinal urinary diversions

    International Nuclear Information System (INIS)

    McDougal, W.S.; Koch, M.O.

    1986-01-01

    The regular determination of renal function is a critical part of the management of patients who have had the urinary tract reconstructed with intestinal segments. These intestinal segments reabsorb urinary solutes and, thereby, complicate the determination of renal function by conventional methods. Urinary clearances of urea, creatinine and inulin were performed in patients with intestinal segments in the urinary tract and controls under varying diuretic conditions. Patients with intestinal diversions also underwent radioisotopic determination of renal function. The urinary clearances of urea, creatinine and inulin are highly dependent on the rate of urine flow in patients with intestinal segments in the urinary tract. Diuresis maximizes the urinary clearances of these solutes by minimizing intestinal reabsorption. Creatinine clearance prediction from the serum creatinine underestimates true glomerular filtration rate. Radioisotopic determination of renal function correlates poorly with true glomerular filtration rate. Only creatinine clearance measured under diuretic conditions correlates well with true renal function. Urine concentrating ability cannot be assessed accurately in patients with intestinal segments in the urinary tract, since osmolality rapidly equilibrates across the segments

  4. Are Protected Areas Required to Maintain Functional Diversity in Human-Modified Landscapes?

    Science.gov (United States)

    Cottee-Jones, H. Eden W.; Matthews, Thomas J.; Bregman, Tom P.; Barua, Maan; Tamuly, Jatin; Whittaker, Robert J.

    2015-01-01

    The conversion of forest to agriculture across the world’s tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities. PMID:25946032

  5. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China.

    Science.gov (United States)

    Liang, Yuting; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Wu, Liyou; Zhang, Xu; Li, Guanghe; Zhou, Jizhong

    2011-03-01

    To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites.

  6. Typological diversity of tall buildings and complexes in relation to their functional structure

    Science.gov (United States)

    Generalov, Viktor P.; Generalova, Elena M.; Kalinkina, Nadezhda A.; Zhdanova, Irina V.

    2018-03-01

    The paper focuses on peculiarities of tall buildings and complexes, their typology and its formation in relation to their functional structure. The research is based on the analysis of tall buildings and complexes and identifies the following main functional elements of their formation: residential, administrative (office), hotel elements. The paper also considers the following services as «disseminated» in the space-planning structure: shops, medicine, entertainment, kids and sports facilities, etc., their location in the structure of the total bulk of the building and their impact on typological diversity. Research results include suggestions to add such concepts as «single-function tall buildings» and «mixed-use tall buildings and complexes» into the classification of tall buildings. In addition, if a single-function building or complex performs serving functions, it is proposed to add such concepts as «a residential tall building (complex) with provision of services», «an administrative (public) tall building (complex) with provision of services» into the classification of tall buildings. For mixed-use buildings and complexes the following terms are suggested: «a mixed-use tall building with provision of services», «a mixed-use tall complex with provision of services».

  7. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    2011-01-01

    Full Text Available One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.

  8. [Effects of nitrogen application rate on faba bean fusarium wilt and rhizospheric microbial metabolic functional diversity].

    Science.gov (United States)

    Dong, Yan; Yang, Zhi-xian; Dong, Kun; Tang, Li; Zheng, Yi; Hu, Guo-bin

    2013-04-01

    A field plot experiment was conducted to study the effects of different nitrogen (N) application rates on the microbial functional diversity in faba bean rhizosphere and the relationships between the microbial functional diversity and the occurrence of faba bean fusarium wilt. Four nitrogen application rates were installed, i. e. , N0(0 kg hm-2 , N1 (56. 25 kg hm-2) , N2(112. 5 kg hm-2), and N3 (168.75 kg hm-2), and Biolog microbial analysis system was applied to study the damage of faba bean fusarium wilt and the rhizospheric microbial metabolic functional diversity. Applying N (N1 N2, and N3) decreased the disease index of faba bean fusarium wilt and the quantity of Fusarium oxysporum significantly, and increased the quantities of bacteria and actinomyces and the ratios of bacteria/fungi and actinomyces/fungi significantly, with the peak values of bacteria and actinomyces, bacteria/fungi, and actinomyces/fungi, and the lowest disease index and F. oxysporum density in N2. As compared with N0, applying N increased the AWCD value significantly, but the effects of different N application rates on the ability of rhizospheric microbes in utilizing six types of carbon sources had definite differences. Under the application of N, the utilization rates of carbohydrates, carboxylic acids, and amino acids by the rhizospheric microbes were higher. Principal component analysis demonstrated that applying N changed the rhizospheric microbial community composition obviously, and the carbohydrates, carboxylic acids, and amino acids were the sensitive carbon sources differentiating the changes of the microbial community induced by N application. Applying N inhibited the utilization of carbohydrates and carboxylic acids but improved the utilization of amino acids and phenolic acids by the rhizospheric microbes, which could be one of the main reasons of applying N being able to reduce the harm of faba bean fusarium wilt. It was suggested that rationally applying N could increase the

  9. The world's richest tadpole communities show functional redundancy and low functional diversity: ecological data on Madagascar's stream-dwelling amphibian larvae

    Directory of Open Access Journals (Sweden)

    Randrianiaina Roger-Daniel

    2010-05-01

    Full Text Available Abstract Background Functional diversity illustrates the range of ecological functions in a community. It allows revealing the appearance of functional redundancy in communities and processes of community assembly. Functional redundancy illustrates the overlap in ecological functions of community members which may be an indicator of community resilience. We evaluated patterns of species richness, functional diversity and functional redundancy on tadpole communities in rainforest streams in Madagascar. This habitat harbours the world's most species-rich stream tadpole communities which are due to their occurrence in primary habitat of particular interest for functional diversity studies. Results Species richness of tadpole communities is largely determined by characteristics of the larval habitat (stream structure, not by adult habitat (forest structure. Species richness is positively correlated with a size-velocity gradient of the streams, i.e. communities follow a classical species-area relationship. While widely observed for other taxa, this is an unusual pattern for anuran larvae which usually is expected to be hump-shaped. Along the species richness gradient, we quantified functional diversity of all communities considering the similarity and dissimilarity of species in 18 traits related to habitat use and foraging. Especially species-rich communities were characterised by an overlap of species function, i.e. by functional redundancy. By comparing the functional diversity of the observed communities with functional diversity of random assemblages, we found no differences at low species richness level, whereas observed species-rich communities have lower functional diversity than respective random assemblages. Conclusions We found functional redundancy being a feature of communities also in primary habitat, what has not been shown before using such a continuous measure. The observed species richness dependent pattern of low functional

  10. Dimensions of biodiversity loss: Spatial mismatch in land-use impacts on species, functional and phylogenetic diversity of European bees.

    Science.gov (United States)

    De Palma, Adriana; Kuhlmann, Michael; Bugter, Rob; Ferrier, Simon; Hoskins, Andrew J; Potts, Simon G; Roberts, Stuart P M; Schweiger, Oliver; Purvis, Andy

    2017-12-01

    Agricultural intensification and urbanization are important drivers of biodiversity change in Europe. Different aspects of bee community diversity vary in their sensitivity to these pressures, as well as independently influencing ecosystem service provision (pollination). To obtain a more comprehensive understanding of human impacts on bee diversity across Europe, we assess multiple, complementary indices of diversity. One Thousand four hundred and forty six sites across Europe. We collated data on bee occurrence and abundance from the published literature and supplemented them with the PREDICTS database. Using Rao's Quadratic Entropy, we assessed how species, functional and phylogenetic diversity of 1,446 bee communities respond to land-use characteristics including land-use class, cropland intensity, human population density and distance to roads. We combined these models with statistically downscaled estimates of land use in 2005 to estimate and map-at a scale of approximately 1 km 2 -the losses in diversity relative to semi-natural/natural baseline (the predicted diversity of an uninhabited grid square, consisting only of semi-natural/natural vegetation). We show that-relative to the predicted local diversity in uninhabited semi-natural/natural habitat-half of all EU27 countries have lost over 10% of their average local species diversity and two-thirds of countries have lost over 5% of their average local functional and phylogenetic diversity. All diversity measures were generally lower in pasture and higher-intensity cropland than in semi-natural/natural vegetation, but facets of diversity showed less consistent responses to human population density. These differences have led to marked spatial mismatches in losses: losses in phylogenetic diversity were in some areas almost 20 percentage points (pp.) more severe than losses in species diversity, but in other areas losses were almost 40 pp. less severe. These results highlight the importance of exploring

  11. Functional diversity of fish in tropical estuaries: A traits-based approach of communities in Pernambuco, Brazil

    Science.gov (United States)

    Silva-Júnior, C. A. B.; Mérigot, B.; Lucena-Frédou, F.; Ferreira, B. P.; Coxey, M. S.; Rezende, S. M.; Frédou, T.

    2017-11-01

    Environmental changes and human activities may have strong impacts on biodiversity and ecosystem functioning. While biodiversity is traditionally based on species richness and composition, there is a growing concern to take into account functional diversity to assess and manage species communities. In spite of their economic importance, functional diversity quantified by a traits-based approach is still poorly documented in tropical estuaries. In this study, the functional diversity of fishes was investigated within four estuaries in Pernambuco state, northeast of Brazil. These areas are subject to different levels of human impact (e.g. mangrove deforestation, shrimp farming, fishing etc.) and environmental conditions. Fishes were collected during 34 scientific surveys. A total of 122 species were identified and 12 functional traits were quantified describing two main functions: food acquisition and locomotion. Fish abundance and functional dissimilarities data were combined into a multivariate analysis, the Double Principal Coordinate Analysis, to identify the functional typology of fish assemblages according to the estuary. Results showed that Itapissuma, the largest estuary with a wider mangrove forest area, differs from the other three estuaries, showing higher mean values per samples of species richness S and quadratic entropy Q. Similarly, it presented a different functional typology (the first two axes of the DPCoA account for 68.7% of total inertia, while those of a traditional PCA based solely on species abundances provided only 17.4%). Conversely, Suape, Sirinhaém, and to a lower extent Rio Formoso, showed more similarity in their diversity. This result was attributed to their predominantly marine influenced hydrological features, and similar levels of species abundances and in morphological traits. Overall, this study, combining diversity indices and a recent multivariate analysis to access species contribution to functional typology, allows to deepen

  12. Diversity of Dominant Bacterial Taxa in Activated Sludge Promotes Functional Resistance following Toxic Shock Loading

    KAUST Repository

    Saikaly, Pascal

    2010-12-14

    Examining the relationship between biodiversity and functional stability (resistance and resilience) of activated sludge bacterial communities following disturbance is an important first step towards developing strategies for the design of robust biological wastewater treatment systems. This study investigates the relationship between functional resistance and biodiversity of dominant bacterial taxa by subjecting activated sludge samples, with different levels of biodiversity, to toxic shock loading with cupric sulfate (Cu[II]), 3,5-dichlorophenol (3,5-DCP), or 4-nitrophenol (4-NP). Respirometric batch experiments were performed to determine the functional resistance of activated sludge bacterial community to the three toxicants. Functional resistance was estimated as the 30 min IC50 or the concentration of toxicant that results in a 50% reduction in oxygen utilization rate compared to a referential state represented by a control receiving no toxicant. Biodiversity of dominant bacterial taxa was assessed using polymerase chain reaction-terminal restriction fragment length polymorphism (PCR-T-RFLP) targeting the 16S ribosomal RNA (16S rRNA) gene. Statistical analysis of 30 min IC50 values and PCR-T-RFLP data showed a significant positive correlation (P<0.05) between functional resistance and microbial diversity for each of the three toxicants tested. To our knowledge, this is the first study showing a positive correlation between biodiversity of dominant bacterial taxa in activated sludge and functional resistance. In this system, activated sludge bacterial communities with higher biodiversity are functionally more resistant to disturbance caused by toxic shock loading. © 2010 Springer Science+Business Media, LLC.

  13. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia.

    Science.gov (United States)

    Gomes, Newton C M; Flocco, Cecilia G; Costa, Rodrigo; Junca, Howard; Vilchez, Ramiro; Pieper, Dietmar H; Krögerrecklenfort, Ellen; Paranhos, Rodolfo; Mendonça-Hagler, Leda C S; Smalla, Kornelia

    2010-11-01

    In this study, the combination of culture enrichments and molecular tools was used to identify bacterial guilds, plasmids and functional genes potentially important in the process of petroleum hydrocarbon (PH) decontamination in mangrove microniches (rhizospheres and bulk sediment). In addition, we aimed to recover PH-degrading consortia (PHDC) for future use in remediation strategies. The PHDC were enriched with petroleum from rhizosphere and bulk sediment samples taken from a mangrove chronically polluted with oil hydrocarbons. Southern blot hybridization (SBH) assays of PCR amplicons from environmental DNA before enrichments resulted in weak positive signals for the functional gene types targeted, suggesting that PH-degrading genotypes and plasmids were in low abundance in the rhizosphere and bulk sediments. However, after enrichment, these genes were detected and strong microniche-dependent differences in the abundance and composition of hydrocarbonoclastic bacterial populations, plasmids (IncP-1α, IncP-1β, IncP-7 and IncP-9) and functional genes (naphthalene, extradiol and intradiol dioxygenases) were revealed by in-depth molecular analyses [PCR-denaturing gradient gel electrophoresis and hybridization (SBH and microarray)]. Our results suggest that, despite the low abundance of PH-degrading genes and plasmids in the environmental samples, the original bacterial composition of the mangrove microniches determined the structural and functional diversity of the PHDC enriched. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Environmental and Human Controls of Ecosystem Functional Diversity in Temperate South America

    Directory of Open Access Journals (Sweden)

    Domingo Alcaraz-Segura

    2013-01-01

    Full Text Available The regional controls of biodiversity patterns have been traditionally evaluated using structural and compositional components at the species level, but evaluation of the functional component at the ecosystem level is still scarce. During the last decades, the role of ecosystem functioning in management and conservation has increased. Our aim was to use satellite-derived Ecosystem Functional Types (EFTs, patches of the land-surface with similar carbon gain dynamics to characterize the regional patterns of ecosystem functional diversity and to evaluate the environmental and human controls that determine EFT richness across natural and human-modified systems in temperate South America. The EFT identification was based on three descriptors of carbon gain dynamics derived from seasonal curves of the MODIS Enhanced Vegetation Index (EVI: annual mean (surrogate of primary production, seasonal coefficient of variation (indicator of seasonality and date of maximum EVI (descriptor of phenology. As observed for species richness in the southern hemisphere, water availability, not energy, emerged as the main climatic driver of EFT richness in natural areas of temperate South America. In anthropogenic areas, the role of both water and energy decreased and increasing human intervention increased richness at low levels of human influence, but decreased richness at high levels of human influence.

  15. Cross-cultural consistency and diversity in intrinsic functional organization of Broca's Region.

    Science.gov (United States)

    Zhang, Yu; Fan, Lingzhong; Caspers, Svenja; Heim, Stefan; Song, Ming; Liu, Cirong; Mo, Yin; Eickhoff, Simon B; Amunts, Katrin; Jiang, Tianzi

    2017-04-15

    As a core language area, Broca's region was consistently activated in a variety of language studies even across different language systems. Moreover, a high degree of structural and functional heterogeneity in Broca's region has been reported in many studies. This raised the issue of how the intrinsic organization of Broca's region effects by different language experiences in light of its subdivisions. To address this question, we used multi-center resting-state fMRI data to explore the cross-cultural consistency and diversity of Broca's region in terms of its subdivisions, connectivity patterns and modularity organization in Chinese and German speakers. A consistent topological organization of the 13 subdivisions within the extended Broca's region was revealed on the basis of a new in-vivo parcellation map, which corresponded well to the previously reported receptorarchitectonic map. Based on this parcellation map, consistent functional connectivity patterns and modularity organization of these subdivisions were found. Some cultural difference in the functional connectivity patterns was also found, for instance stronger connectivity in Chinese subjects between area 6v2 and the motor hand area, as well as higher correlations between area 45p and middle frontal gyrus. Our study suggests that a generally invariant organization of Broca's region, together with certain regulations of different language experiences on functional connectivity, might exists to support language processing in human brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages.

    Science.gov (United States)

    Zeng, Shenzheng; Huang, Zhijian; Hou, Dongwei; Liu, Jian; Weng, Shaoping; He, Jianguo

    2017-01-01

    Intestinal microbiota is an integral component of the host and plays important roles in host health. The pacific white shrimp is one of the most profitable aquaculture species commercialized in the world market with the largest production in shrimp consumption. Many studies revealed that the intestinal microbiota shifted significantly during host development in other aquaculture animals. In the present study, 22 shrimp samples were collected every 15 days from larval stage (15 day post-hatching, dph) to adult stage (75 dph) to investigate the intestinal microbiota at different culture stages by targeting the V4 region of 16S rRNA gene, and the microbial function prediction was conducted by PICRUSt. The operational taxonomic unit (OTU) was assigned at 97% sequence identity. A total of 2,496 OTUs were obtained, ranging from 585 to 1,239 in each sample. Forty-three phyla were identified due to the classifiable sequence. The most abundant phyla were Proteobacteria, Cyanobacteria, Tenericutes, Fusobacteria, Firmicutes, Verrucomicrobia, Bacteroidetes, Planctomycetes, Actinobacteria and Chloroflexi. OTUs belonged to 289 genera and the most abundant genera were Candidatus_Xiphinematobacter , Propionigenium , Synechococcus , Shewanella and Cetobacterium . Fifty-nine OTUs were detected in all samples, which were considered as the major microbes in intestine of shrimp. The intestinal microbiota was enriched with functional potentials that were related to transporters, ABC transporters, DNA repair and recombination proteins, two component system, secretion system, bacterial motility proteins, purine metabolism and ribosome. All the results showed that the intestinal microbial composition, diversity and functions varied significantly at different culture stages, which indicated that shrimp intestinal microbiota depended on culture stages. These findings provided new evidence on intestinal microorganism microecology and greatly enhanced our understanding of stage

  17. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei at different culture stages

    Directory of Open Access Journals (Sweden)

    Shenzheng Zeng

    2017-11-01

    Full Text Available Intestinal microbiota is an integral component of the host and plays important roles in host health. The pacific white shrimp is one of the most profitable aquaculture species commercialized in the world market with the largest production in shrimp consumption. Many studies revealed that the intestinal microbiota shifted significantly during host development in other aquaculture animals. In the present study, 22 shrimp samples were collected every 15 days from larval stage (15 day post-hatching, dph to adult stage (75 dph to investigate the intestinal microbiota at different culture stages by targeting the V4 region of 16S rRNA gene, and the microbial function prediction was conducted by PICRUSt. The operational taxonomic unit (OTU was assigned at 97% sequence identity. A total of 2,496 OTUs were obtained, ranging from 585 to 1,239 in each sample. Forty-three phyla were identified due to the classifiable sequence. The most abundant phyla were Proteobacteria, Cyanobacteria, Tenericutes, Fusobacteria, Firmicutes, Verrucomicrobia, Bacteroidetes, Planctomycetes, Actinobacteria and Chloroflexi. OTUs belonged to 289 genera and the most abundant genera were Candidatus_Xiphinematobacter, Propionigenium, Synechococcus, Shewanella and Cetobacterium. Fifty-nine OTUs were detected in all samples, which were considered as the major microbes in intestine of shrimp. The intestinal microbiota was enriched with functional potentials that were related to transporters, ABC transporters, DNA repair and recombination proteins, two component system, secretion system, bacterial motility proteins, purine metabolism and ribosome. All the results showed that the intestinal microbial composition, diversity and functions varied significantly at different culture stages, which indicated that shrimp intestinal microbiota depended on culture stages. These findings provided new evidence on intestinal microorganism microecology and greatly enhanced our understanding of stage

  18. Disparities in Quality of Park Play Spaces between Two Cities with Diverse Income and Race/Ethnicity Composition: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Gavin R. Jenkins

    2015-07-01

    Full Text Available This study investigated the differences in the quality of park play spaces between an affluent and a non-affluent community in a large US Southeastern metropolitan area. Two cities were purposefully selected to reflect differences in household income and race/ethnicity characteristics. Using the Playable Space Quality Assessment Tool (PSQAT, all parks (n = 11, with six in the affluent city, and five in the non-affluent city in these two cities were evaluated. The data were analyzed across three aspects of environmental features of the PSQAT: Location, Play Value and Care and Maintenance between parks in the two cities. The Mann-Whitney U test was used to test the study hypotheses. Results indicated significant differences between parks in the two cities in all three aspects of the PSQAT with p-values ≤ 0.03 and effect sizes of > 0.65, suggesting that the affluent city had parks of a higher quality than the non-affluent city. Significant disparity in Play Value (p = 0.009 in parks between these two communities suggests that children and young people are likely to have different experiences of the play spaces in their locality and therefore may experience different physical and psychological health benefits.

  19. Electric organ discharge diversity in the genus Gymnotus: anatomo-functional groups and electrogenic mechanisms.

    Science.gov (United States)

    Rodríguez-Cattáneo, A; Aguilera, P; Cilleruelo, E; Crampton, W G R; Caputi, A A

    2013-04-15

    Previous studies describe six factors accounting for interspecific diversity of electric organ discharge (EOD) waveforms in Gymnotus. At the cellular level, three factors determine the locally generated waveforms: (1) electrocyte geometry and channel repertoire; (2) the localization of synaptic contacts on electrocyte surfaces; and (3) electric activity of electromotor axons preceding the discharge of electrocytes. At the organismic level, three factors determine the integration of the EOD as a behavioral unit: (4) the distribution of different types of electrocytes and specialized passive tissue forming the electric organ (EO); (5) the neural mechanisms of electrocyte discharge coordination; and (6) post-effector mechanisms. Here, we reconfirm the importance of the first five of these factors based on comparative studies of a wider diversity of Gymnotus than previously investigated. Additionally, we report a hitherto unseen aspect of EOD diversity in Gymnotus. The central region of the EO (which has the largest weight on the conspecific-received field) usually exhibits a negative-positive-negative pattern where the delay between the early negative and positive peaks (determined by neural coordination mechanisms) matches the delay between the positive and late negative peaks (determined by electrocyte responsiveness). Because delays between peaks typically determine the peak power frequency, this matching implies a co-evolution of neural and myogenic coordination mechanisms in determining the spectral specificity of the intraspecific communication channel. Finally, we define four functional species groups based on EO/EOD structure. The first three exhibit a heterogeneous EO in which doubly innervated electrocytes are responsible for a main triphasic complex. Group I species exhibit a characteristic cephalic extension of the EO. Group II species exhibit an early positive component of putative neural origin, and strong EO auto-excitability. Group III species exhibit

  20. Gancao-Gansui combination impacts gut microbiota diversity and related metabolic functions.

    Science.gov (United States)

    Yu, Jingao; Guo, Jianming; Tao, Weiwei; Liu, Pei; Shang, Erxin; Zhu, Zhenhua; Fan, Xiuhe; Shen, Juan; Hua, Yongqing; Zhu, Kevin Yue; Tang, Yuping; Duan, Jin-Ao

    2018-03-25

    The theory of "eighteen incompatible medicaments" (EIM) in traditional Chinese medicine (TCM) is the most representative case of herbal-herbal interactions. Gancao and Gansui are one of the incompatible herbal pairs in EIM. Gancao, also known as "licorice", is the most frequently used Chinese herb or food additive. Gansui, the root of Euphorbia kansui T.P. Wang, is another famous Chinese herb usually used to treat edema, ascites and asthma but could induce gastrointestinal (GI) tract irritation. Although Gancao and Gansui are incompatible herbal pairs, they are still used in combination in the famous "Gansui-Banxia" decoction. This study was conducted to investigate if Gancao-Gansui combination could exacerbate Gansui induced GI tract injury. Moreover, the impact of Gancao-Gansui combination to gut microbiota and related metabolism pathways were evaluated. Normal mice were divided into different groups and treated with Gancao extracts, Gansui extracts, and Gancao-Gansui combination extracts for 7 days. Serum biomarkers (diamine oxidase activity, lipopolysaccharide, motilin, IL-1β, IL-6, TNF-α) were determined to reflect GI tract damage. Gut microbiota diversity was studied by 16S rDNA sequencing and metagenomes analysis were also conducted to reflect functional genes expression alteration. Fecal hydrogen sulfide concentrations were measured by spectrophotometry to confirm the alteration of Desulfovibrio genus. Fecal lipid metabolomics study was conducted by GC-MS analysis to confirm the change of metagenomes and Mycoplasma abundance. Gancao-Gansui combination did not exacerbate GI tract tissue or functional damage but caused gut microbiota dysbiosis and increased some rare genus's abundance including Desulfovibrio and Mycoplasma. Desulfovibrio genus proliferation was confirmed by the disturbance of fecal hydrogen sulfide homeostasis. Gancao-Gansui combination also dys-regulated the metabolic genes in metagenomes. Mycoplasma genus proliferation and the metagenomes

  1. Play Therapy

    Science.gov (United States)

    Lawver, Timothy; Blankenship, Kelly

    2008-01-01

    Play therapy is a treatment modality in which the therapist engages in play with the child. Its use has been documented in a variety of settings and with a variety of diagnoses. Treating within the context of play brings the therapist and the therapy to the level of the child. By way of an introduction to this approach, a case is presented of a six-year-old boy with oppositional defiant disorder. The presentation focuses on the events and interactions of a typical session with an established patient. The primary issues of the session are aggression, self worth, and self efficacy. These themes manifest themselves through the content of the child’s play and narration of his actions. The therapist then reflects these back to the child while gently encouraging the child toward more positive play. Though the example is one of nondirective play therapy, a wide range of variation exists under the heading of play therapy. PMID:19724720

  2. Multi-scale functional and taxonomic β-diversity of the macroinvertebrate communities in a Mediterranean coastal lagoon

    Directory of Open Access Journals (Sweden)

    D. CABANA

    2017-03-01

    Full Text Available Benthic macroinvertebrate communities form the basis of the intricate lagoonal food web. Understanding their functional and taxonomic response, from a β-diversity perspective, is essential to disclose underlying patterns with potential applicability in conservation and management actions. Within the central lagoon of Messolonghi we studied the main environmental components structuring the macroinvertebrate community. We analyzed the β-taxonomic and β-functional diversity across the main habitats and seasons, over a year time frame. Our results outline habitat type and vegetation biomass as the major factors structuring the communities. We found environmental variability to have a positive correlation with functional β-diversity, however no correlation was found with taxonomic β-diversity. Across the seasons an asynchronous response of the functional and taxonomic β-diversity was identified. The taxonomic composition displayed significant heterogeneity during the driest period and the functional during the rainy season. Across the habitats the unvegetated presented higher taxonomic homogeneity and functionally heterogeneity, contrary the vegetated habitats present higher taxonomic variability and functional homogeneity. Across the seasons and habitats a pattern of functional redundancy and taxonomic replacement was identified. Besides high functional turnover versus low taxonomic turnover was documented in an anthropogenic organically enriched habitat We conclude that habitats display independent functional and taxonomic seasonal patterns, thus different processes may contribute to their variability. The framework presented here highlights the importance of studying both β-diversity components framed in a multiscale approach to better understand ecological processes and variability patterns. These results are important to understand macroinvertebrate community assembly processes and are valuable for conservation purposes.

  3. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes.

    Science.gov (United States)

    Xu, Lin; Jiang, Zhe; Qing, Quan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M

    2013-02-13

    Functional kinked nanowires (KNWs) represent a new class of nanowire building blocks, in which functional devices, for example, nanoscale field-effect transistors (nanoFETs), are encoded in geometrically controlled nanowire superstructures during synthesis. The bottom-up control of both structure and function of KNWs enables construction of spatially isolated point-like nanoelectronic probes that are especially useful for monitoring biological systems where finely tuned feature size and structure are highly desired. Here we present three new types of functional KNWs including (1) the zero-degree KNW structures with two parallel heavily doped arms of U-shaped structures with a nanoFET at the tip of the "U", (2) series multiplexed functional KNW integrating multi-nanoFETs along the arm and at the tips of V-shaped structures, and (3) parallel multiplexed KNWs integrating nanoFETs at the two tips of W-shaped structures. First, U-shaped KNWs were synthesized with separations as small as 650 nm between the parallel arms and used to fabricate three-dimensional nanoFET probes at least 3 times smaller than previous V-shaped designs. In addition, multiple nanoFETs were encoded during synthesis in one of the arms/tip of V-shaped and distinct arms/tips of W-shaped KNWs. These new multiplexed KNW structures were structurally verified by optical and electron microscopy of dopant-selective etched samples and electrically characterized using scanning gate microscopy and transport measurements. The facile design and bottom-up synthesis of these diverse functional KNWs provides a growing toolbox of building blocks for fabricating highly compact and multiplexed three-dimensional nanoprobes for applications in life sciences, including intracellular and deep tissue/cell recordings.

  4. Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA).

    Science.gov (United States)

    Engel, Annette Summers; Meisinger, Daniela B; Porter, Megan L; Payn, Robert A; Schmid, Michael; Stern, Libby A; Schleifer, K H; Lee, Natuschka M

    2010-01-01

    Microbial mats in sulfidic cave streams offer unique opportunities to study redox-based biogeochemical nutrient cycles. Previous work from Lower Kane Cave, Wyoming, USA, focused on the aerobic portion of microbial mats, dominated by putative chemolithoautotrophic, sulfur-oxidizing groups within the Epsilonproteobacteria and Gammaproteobacteria. To evaluate nutrient cycling and turnover within the whole mat system, a multidisciplinary strategy was used to characterize the anaerobic portion of the mats, including application of the full-cycle rRNA approach, the most probable number method, and geochemical and isotopic analyses. Seventeen major taxonomic bacterial groups and one archaeal group were retrieved from the anaerobic portions of the mats, dominated by Deltaproteobacteria and uncultured members of the Chloroflexi phylum. A nutrient spiraling model was applied to evaluate upstream to downstream changes in microbial diversity based on carbon and sulfur nutrient concentrations. Variability in dissolved sulfide concentrations was attributed to changes in the abundance of sulfide-oxidizing microbial groups and shifts in the occurrence and abundance of sulfate-reducing microbes. Gradients in carbon and sulfur isotopic composition indicated that released and recycled byproduct compounds from upstream microbial activities were incorporated by downstream communities. On the basis of the type of available chemical energy, the variability of nutrient species in a spiraling model may explain observed differences in microbial taxonomic affiliations and metabolic functions, thereby spatially linking microbial diversity to nutrient spiraling in the cave stream ecosystem.

  5. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms.

    Science.gov (United States)

    Jung, Jaejoon; Philippot, Laurent; Park, Woojun

    2016-03-14

    The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Actinobacteria-dominant communities was observed when species diversity was reduced. Metagenomic analysis showed that a large proportion of functional gene categories were significantly altered by the reduction in biodiversity. The abundance of genes related to the nitrogen cycle was significantly reduced in the low-diversity community, impairing denitrification. In contrast, the efficiency of diesel biodegradation was increased in the low-diversity community and was further enhanced by addition of red clay as a stimulating agent. Our results suggest that the relationship between microbial diversity and ecological function involves trade-offs among ecological processes, and should not be generalized as a positive, neutral, or negative relationship.

  6. Spatial patterns of littoral zooplankton assemblages along a salinity gradient in a brackish sea: A functional diversity perspective

    Science.gov (United States)

    Helenius, Laura K.; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena

    2017-11-01

    The distribution patterns and diversity of littoral zooplankton are both key baseline information for understanding the functioning of coastal ecosystems, and for identifying the mechanisms by which the impacts of recently increased eutrophication are transferred through littoral food webs. In this study, zooplankton community structure and diversity along a shallow coastal area of the northern Baltic Sea were determined in terms of horizontal environmental gradients. Spatial heterogeneity of the zooplankton community was examined along the gradient. Altogether 31 sites in shallow sandy bays on the coast of southwest Finland were sampled in the summer periods of 2009 and 2010 for zooplankton and environmental variables (surface water temperature, salinity, turbidity, wave exposure, macrophyte coverage, chlorophyll a and nutrients). Zooplankton diversity was measured as both taxonomic as well as functional diversity, using trait-based classification of planktonic crustaceans. Salinity, and to a lesser extent turbidity and temperature, were found to be the main predictors of the spatial patterns and functional diversity of the zooplankton community. Occurrence of cyclopoid copepods, as well as abundances of the calanoid copepod genus Acartia and the rotifer genus Keratella were found to be key factors in differentiating sites along the gradient. As far as we know, this is the first extensive study of functional diversity in Baltic Sea coastal zooplankton communities.

  7. A synthetic C16 omega-hydroxyphytoceramide improves skin barrier functions from diversely perturbed epidermal conditions.

    Science.gov (United States)

    Oh, Myoung Jin; Nam, Jin Ju; Lee, Eun Ok; Kim, Jin Wook; Park, Chang Seo

    2016-10-01

    Omega-hydroxyceramides (ω-OH-Cer) play a crucial role in maintaining the integrity of skin barrier. ω-OH-Cer are the primary lipid constituents of the corneocyte lipid envelope (CLE) covalently attached to the outer surface of the cornified envelope linked to involucrin to become bound form lipids in stratum corneum (SC). CLE becomes a hydrophobic impermeable layer of matured corneocyte preventing loss of natural moisturizing factor inside the corneocytes. More importantly, CLE may also play an important role in the formation of proper orientation of intercellular lipid lamellar structure by interdigitating with the intercellular lipids in a comb-like fashion. Abnormal barrier conditions associated with atopic dermatitis but also UVB-irradiated skins are known to have lowered level of bound lipids, especially ω-OH-Cer, which indicate that ω-OH-Cer play an important role in maintaining the integrity of skin barrier. In this study, protective effects of a novel synthetic C16 omega-hydroxyphytoceramides (ω-OH-phytoceramide) on skin barrier function were investigated. Epidermal barrier disruption was induced by UVB irradiation, tape-stripping in hairless mouse and human skin. Protective effect of damaged epidermis was evaluated using the measurement of transepidermal water loss and cohesion of SC. Increased keratinocyte differentiation was verified using cultured keratinocyte through western blot. Results clearly demonstrated that a synthetic C16 ω-OH-phytoceramide enhanced the integrity of SC and accelerated the recovery of damaged skin barrier function by stimulating differentiation process. In a conclusion, a synthetic C16 ω-OH-phytoceramide treatment improved epidermal homeostasis in several disrupted conditions.

  8. TASK-2: a K2P K+ channel with complex regulation and diverse physiological functions

    Directory of Open Access Journals (Sweden)

    Luis Pablo Cid

    2013-07-01

    Full Text Available TASK-2 (K2P5.1 is a two-pore domain K+ channel belonging to the TALK subgroup of the K2P family of proteins. TASK-2 has been shown to be activated by extra- and intracellular alkalinisation. Extra- and intracellular pH-sensors reside at arginine 224 and lysine 245 and might affect separate selectivity filter and inner gates respectively. TASK-2 is modulated by changes in cell volume and a regulation by direct G-protein interaction has also been proposed. Activation by extracellular alkalinisation has been associated with a role of TASK-2 in kidney proximal tubule bicarbonate reabsorption, whilst intracellular pH-sensitivity might be the mechanism for its participation in central chemosensitive neurons. In addition to these functions TASK-2 has been proposed to play a part in apoptotic volume decrease in kidney cells and in volume regulation of glial cells and T-lymphocytes. TASK-2 is present in chondrocytes of hyaline cartilage, where it is proposed to play a central role in stabilizing the membrane potential. Additional sites of expression are dorsal root ganglion neurons, endocrine and exocrine pancreas and intestinal smooth muscle cells. TASK-2 has been associated with the regulation of proliferation of breast cancer cells and could become target for breast cancer therapeutics. Further work in native tissues and cells together with genetic modification will no doubt reveal the details of TASK-2 functions that we are only starting to suspect.

  9. Assessment of soil microbial diversity with functional multi-endpoint methods

    DEFF Research Database (Denmark)

    Winding, Anne; Creamer, R. E.; Rutgers, M.

    on CO2 development by the microbes such as substrate induced respiration (SIR) on specific substrates have lead to the development of MicroResp™ and Community Level Physiological Profile (CLPP) with Biolog™ plates, and soil enzymatic activity assayed by Extracellular Enzyme Activity (EEA) based on MUF......Soil microbial diversity provides the cornerstone for support of soil ecosystem services by key roles in soil organic matter turnover, carbon sequestration and water infiltration. However, standardized methods to quantify the multitude of microbial functions in soils are lacking. Methods based...... to the lack of principle methods, the data obtained from these substitute methods are currently not used in classification and assessment schemes, making quantification of natural capital and ecosystems services of the soil a difficult venture. In this contribution, we compare and contrast the three...

  10. Functional diversity in Spain. Towards the equal inclusion of persons with disabilities

    Directory of Open Access Journals (Sweden)

    Colectivo Ioé

    2013-07-01

    Full Text Available This text brings together some of the conclusions of the study Disabilities and social inclusion, edited in 2012 by La Caixa Foundation, which in its turn in based on the last survey on Disability, Personal Autonomy and Frailty conducted by the Spanish Statistical Office (INE in 2008. In particular, it focuses on some of the aspects of major interest for understanding the ways of social inclusion and labor insertion of the persons with functional diversity, a group of 3.8 million people, of which 1.5 million people are in their working age. Some analyses and proposals to address the problems of chronification and marginalization of this large sector of the population are highlighted from a socio-preventative approach.

  11. Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity

    DEFF Research Database (Denmark)

    Souza, Danielle Maia de; Flynn, Dan F. B.; DeClerck, Fabrice

    2013-01-01

    the distinctiveness of species; this paper proposes the use of an FD index to calculate characterization factors (CFs) for land use impacts. Furthermore, we compare the results of the CFs to current practice and assess the increase in complexity introduced by the use of the new indicator.The model proposed is based...... challenges. Such indices are data hungry (requiring species composition and traits) require more complex calculations than current common practice, including decisions on the choice of a method to calculate FD and the selection of traits.......The focus of land use modeling in life cycle impact assessment has been mainly on taxonomic measures of biodiversity, namely species richness (SR). However, increasing availability of trait data for species has led to the use of functional diversity (FD) as a promising metric to reflect...

  12. Functional understanding of the diverse exon-intron structures of human GPCR genes.

    Science.gov (United States)

    Hammond, Dorothy A; Olman, Victor; Xu, Ying

    2014-02-01

    The GPCR genes have a variety of exon-intron structures even though their proteins are all structurally homologous. We have examined all human GPCR genes with at least two functional protein isoforms, totaling 199, aiming to gain an understanding of what may have contributed to the large diversity of the exon-intron structures of the GPCR genes. The 199 genes have a total of 808 known protein splicing isoforms with experimentally verified functions. Our analysis reveals that 1301 (80.6%) adjacent exon-exon pairs out of the total of 1,613 in the 199 genes have either exactly one exon skipped or the intron in-between retained in at least one of the 808 protein splicing isoforms. This observation has a statistical significance p-value of 2.051762 * e(-09), assuming that the observed splicing isoforms are independent of the exon-intron structures. Our interpretation of this observation is that the exon boundaries of the GPCR genes are not randomly determined; instead they may be selected to facilitate specific alternative splicing for functional purposes.

  13. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional.

    Science.gov (United States)

    Sun, Jianwei; Remsing, Richard C; Zhang, Yubo; Sun, Zhaoru; Ruzsinszky, Adrienn; Peng, Haowei; Yang, Zenghui; Paul, Arpita; Waghmare, Umesh; Wu, Xifan; Klein, Michael L; Perdew, John P

    2016-09-01

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.

  14. Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity.

    Directory of Open Access Journals (Sweden)

    Remco Stam

    Full Text Available Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions.

  15. Functional diversity of the macro‑invertebrate community in the port area of Kerkennah Islands (Tunisia

    Directory of Open Access Journals (Sweden)

    N. ALOUI‑BEJAOUI

    2012-04-01

    Full Text Available The harbour area of Sidi Youssef in Kerkennah islands is characterized by specific anthropogenic pressures linked to fishing activities. To study the functional diversity of benthic macro invertebrates, 10 stations located around the port and along the ship canal were sampled by SCUBA diving. Collected invertebrates were identified, counted and preserved. For the functional organization of the community, the most common biodiversity indices and functional groups were assessed at each station, and main physical and chemical parameters were measured. Results showed that the main apparent anthropogenic stress, that could lead to negative impacts on the studied area, was related to dredging/harbour activities. Suspension feeders, consisting essentially of polychaetes, which may be disturbed by water turbidity, dominated the stations farthest from the port, where the intensity of harbour activities is obviously reduced. On the contrary, carnivores dominated inside the port, possibly benefiting from fish scraps discarded at the area, while stations close to the port appeared to be more balanced trophically. The applied biotic indices showed that the area is in good ecological status, except of the navigation channel and the port entrance, which were slightly degraded.

  16. Diverse Roles of Axonemal Dyneins in Drosophila Auditory Neuron Function and Mechanical Amplification in Hearing.

    Science.gov (United States)

    Karak, Somdatta; Jacobs, Julie S; Kittelmann, Maike; Spalthoff, Christian; Katana, Radoslaw; Sivan-Loukianova, Elena; Schon, Michael A; Kernan, Maurice J; Eberl, Daniel F; Göpfert, Martin C

    2015-11-26

    Much like vertebrate hair cells, the chordotonal sensory neurons that mediate hearing in Drosophila are motile and amplify the mechanical input of the ear. Because the neurons bear mechanosensory primary cilia whose microtubule axonemes display dynein arms, we hypothesized that their motility is powered by dyneins. Here, we describe two axonemal dynein proteins that are required for Drosophila auditory neuron function, localize to their primary cilia, and differently contribute to mechanical amplification in hearing. Promoter fusions revealed that the two axonemal dynein genes Dmdnah3 (=CG17150) and Dmdnai2 (=CG6053) are expressed in chordotonal neurons, including the auditory ones in the fly's ear. Null alleles of both dyneins equally abolished electrical auditory neuron responses, yet whereas mutations in Dmdnah3 facilitated mechanical amplification, amplification was abolished by mutations in Dmdnai2. Epistasis analysis revealed that Dmdnah3 acts downstream of Nan-Iav channels in controlling the amplificatory gain. Dmdnai2, in addition to being required for amplification, was essential for outer dynein arms in auditory neuron cilia. This establishes diverse roles of axonemal dyneins in Drosophila auditory neuron function and links auditory neuron motility to primary cilia and axonemal dyneins. Mutant defects in sperm competition suggest that both dyneins also function in sperm motility.

  17. Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Tacchi, Jessica L; Raymond, Benjamin B A; Haynes, Paul A; Berry, Iain J; Widjaja, Michael; Bogema, Daniel R; Woolley, Lauren K; Jenkins, Cheryl; Minion, F Chris; Padula, Matthew P; Djordjevic, Steven P

    2016-02-01

    Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC-MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity. © 2016 The Authors.

  18. Playful Literacy

    DEFF Research Database (Denmark)

    Froes, Isabel

    these practices, which compose the taxonomy of tablet play. My contribution lies in identifying and proposing a series of theoretical concepts that complement recent theories related to play and digital literacy studies. The data collected through observations informed some noteworthy aspects, including how...... with tablets’ physical and digital affordances shape children’s digital play. This thesis presents how young children’s current practices when playing with tablets inform digital experiences in Denmark and Japan. Through an interdisciplinary lens and a grounded theory approach, I have identified and mapped...... vocabulary in children’s digital play experiences. These early digital experiences set the rules for the playgrounds and assert digital tablets as twenty-first-century toys, shaping young children’s playful literacy....

  19. Differential surface phenotype and context-dependent reactivity of functionally diverse NKT cells.

    Science.gov (United States)

    Cameron, Garth; Godfrey, Dale I

    2018-03-05

    Natural Killer T (NKT) cells are a functionally diverse population that recognizes lipid-based antigens in association with the antigen-presenting molecule CD1d. Here, we define a technique to separate the functionally distinct thymic NKT1, NKT2 and NKT17 cell subsets by their surface expression of CD278 (ICOS) and the activation-associated glycoform of CD43, enabling the investigation of subset-specific effector-functions. We report that all three subsets express the transcription factor GATA-3 and the potential to produce IL-4 and IL-10 following activation. This questions the notion that NKT2 cells are the predominant source of IL-4 within the NKT cell pool, and suggests that IL-10-production may be more indicative of NKT cell plasticity than the existence of a distinct regulatory lineage or subset. We also show that many NKT17 cells are CD4 + and are biased toward Vβ8.3 TCR gene usage. Lastly, we demonstrate that the toll-like receptor (TLR) ligand lipopolysaccharide (LPS) can induce a NKT17 cell-biased response, even in the absence of exogenous antigen, and that combining LPS with α-GalCer resulted in enhanced IL-17A-production, and reduced levels of the immunosuppressive cytokine IL-10. This study provides a novel means to examine the context-dependent reactivity of the functionally heterogeneous NKT cell population and provides important new insight into the functional biology of these subsets. © 2018 Australasian Society for Immunology Inc.

  20. Harvesting influences functional identity and diversity over time in forests of the northeastern U.S.A.

    Science.gov (United States)

    M.T. Curzon; A.W. D' Amato; S. Fraver; B.J. Palik; A. Bottero; J.R. Foster; K.E. Gleason

    2017-01-01

    Concern over global environmental change and associated uncertainty has given rise to greater emphasis on fostering resilience through forest management. We examined the impact of standard silvicultural systems (including clearcutting, shelterwood, and selection) compared with unharvested controls on tree functional identity and functional diversity in three forest...

  1. The effect of range changes on the functional turnover, structure and diversity of bird assemblages under future climate scenarios.

    Science.gov (United States)

    Barbet-Massin, Morgane; Jetz, Walter

    2015-08-01

    Animal assemblages fulfill a critical set of ecological functions for ecosystems that may be altered substantially as climate change-induced distribution changes lead to community disaggregation and reassembly. We combine species and community perspectives to assess the consequences of projected geographic range changes for the diverse functional attributes of avian assemblages worldwide. Assemblage functional structure is projected to change highly unevenly across space. These differences arise from both changes in the number of species and changes in species' relative local functional redundancy or distinctness. They sometimes result in substantial losses of functional diversity that could have severe consequences for ecosystem health. Range expansions may counter functional losses in high-latitude regions, but offer little compensation in many tropical and subtropical biomes. Future management of local community function and ecosystem services thus relies on understanding the global dynamics of species distributions and multiscale approaches that include the biogeographic context of species traits. © 2015 John Wiley & Sons Ltd.

  2. Playful Interaction

    DEFF Research Database (Denmark)

    2003-01-01

    The video Playful Interaction describes a future architectural office, and envisions ideas and concepts for playful interactions between people, materials and appliances in a pervasive and augmented working environment. The video both describes existing developments, technologies and designs...... as well as ideas not yet implemented such as playful modes of interaction with an augmented ball. Playful Interaction has been used as a hybrid of a vision video and a video prototype (1). Externally the video has been used to visualising our new ideas, and internally the video has also worked to inspire...

  3. Mediatized play

    DEFF Research Database (Denmark)

    Johansen, Stine Liv

    Children’s play must nowadays be understood as a mediatized field in society and culture. Media – understood in a very broad sense - holds severe explanatory power in describing and understanding the practice of play, since play happens both with, through and inspired by media of different sorts........ In this presentation the case of ‘playing soccer’ will be outlined through its different mediated manifestations, including soccer games and programs on TV, computer games, magazines, books, YouTube videos and soccer trading cards....

  4. A Functional Return-to-Play Progression After Exertional Heat Stroke in a High School Football Player.

    Science.gov (United States)

    Lopez, Rebecca M; Tanner, Patrick; Irani, Sarah; Mularoni, P Patrick

    2018-03-01

      To present a functional return-to-play (RTP) progression after exertional heat stroke (EHS) in a 17-year-old high school football defensive end (height = 185 cm, mass = 145.5 kg).   The patient had no pertinent medical history but moved to a warm climate several days before the EHS occurred. After completing an off-season conditioning test (14- × 110-yd [12.6- × 99.0-m] sprints) on a warm afternoon (temperature = approximately 34°C [93°F], relative humidity = 53%), the patient collapsed. An athletic trainer (AT) was called to the field, where he found the patient conscious but exhibiting central nervous system dysfunction. Emergency medical services were summoned and immediately transported the patient to the hospital.   Exertional heat stroke, heat exhaustion, exertional sickling, rhabdomyolysis, and cardiac arrhythmia.   The patient was immediately transported to a hospital, where his oral temperature was 39.6°C (103.3°F). He was transferred to a children's hospital and treated for rhabdomyolysis, transaminitis, and renal failure. He was hospitalized for 11 days. After a physician's clearance once the laboratory results normalized, an RTP progression was completed. The protocol began with light activity and progressed over 3 weeks to full football practice. During activity, an AT monitored the patient's gastrointestinal temperature, heart rate, rating of perceived exertion, fluid consumption, and sweat losses.   Documentation of RTP guidelines for young athletes is lacking. We used a protocol intended for the football setting to ensure the athlete was heat tolerant, had adequate physical fitness, and could safely RTP. Despite his EHS, he recovered fully, with no lasting effects, and successfully returned to compete in the final 5 games of the season.   Using a gradual RTP progression and close monitoring, a high school defensive end successfully returned to football practice and games after EHS. This case demonstrates the feasibility of

  5. Play Practices and Play Moods

    DEFF Research Database (Denmark)

    Karoff, Helle Skovbjerg

    2013-01-01

    The aim of this article is to develop a view of play as a relation between play practices and play moods based on an empirical study of children's everyday life and by using Bateson's term of ‘framing’ [(1955/2001). In Steps to an ecology of mind (pp. 75–80). Chicago: University of Chicago Press......], Schmidt's notion of ‘commonness’ [(2005). Om respekten. København: Danmarks Pædagogiske Universitets Forlag; (2011). On respect. Copenhagen: Danish School of Education University Press] and Heidegger's term ‘mood’ [(1938/1996). Time and being. Cornwall: Wiley-Blackwell.]. Play mood is a state of being...... in which we are open and ready, both to others and their production of meaning and to new opportunities for producing meaning. This play mood is created when we engage with the world during play practices. The article points out four types of play moods – devotion, intensity, tension and euphorica – which...

  6. Managing diversity : How leaders' multiculturalism and colorblindness affect work group functioning

    NARCIS (Netherlands)

    Meeussen, Loes; Otten, Sabine; Phalet, Karen

    Workforces are becoming increasingly diverse and leaders face the challenge of managing their groups to minimize costs and maximize benefits of diversity. This paper investigates how leaders' multiculturalism and colorblindness affect cultural minority and majority members' experiences of

  7. Multicriteria performance and sustainability in livestock farming systems: Functional diversity matters

    NARCIS (Netherlands)

    Tichit, M.; Puillet, L.; Sabatier, R.; Teillard, F.

    2011-01-01

    Agricultural intensification drastically reduces diversity at different scales of livestock farming systems (LFS). This homogenization process leads to environmental degradation and ignores the fact that multiple performance criterions often come in conflict. Taking advantage of diversity at

  8. Diversity Indices as Measures of Functional Annotation Methods in Metagenomics Studies

    KAUST Repository

    Jankovic, Boris R.

    2016-01-01

    in the ecosystems and species diversity studies can be successfully used in evaluating certain aspects of the methods employed in metagenomics studies. We show that when applying the concept of Hill’s diversity, the analysis of variations in the diversity order

  9. Playing Shakespeare.

    Science.gov (United States)

    Bashian, Kathleen Ryniker

    1993-01-01

    Describes a yearlong project at 12 Catholic middle schools in the Diocese of Arlington, Virginia, to incorporate the plays of William Shakespeare into the curriculum. Teachers attended university lectures and directed students in performances of the plays. Concludes that Shakespeare can be understood and enjoyed by middle school students. (BCY)

  10. Fertilization decreases species diversity but increases functional diversity: A three-year experiment in a Tibetan alpine meadow

    Czech Academy of Sciences Publication Activity Database

    Niu, K.; Choler, P.; de Bello, Francesco; Mirotchnick, N.; Du, G.; Sun, S.

    2014-01-01

    Roč. 182, Spec. Iss. (2014), s. 106-112 ISSN 0167-8809 R&D Projects: GA ČR GAP505/12/1296 Institutional support: RVO:67985939 Keywords : functional traits * productivity * trait divergence Subject RIV: EH - Ecology, Behaviour Impact factor: 3.402, year: 2014

  11. Functional characterization of sugarcane mustang domesticated transposases and comparative diversity in sugarcane, rice, maize and sorghum

    Directory of Open Access Journals (Sweden)

    Daniela Kajihara

    2012-01-01

    Full Text Available Transposable elements (TEs account for a large portion of plant genomes, particularly in grasses, in which they correspond to 50%-80% of the genomic content. TEs have recently been shown to be a source of new genes and new regulatory networks. The most striking contribution of TEs is referred as “molecular domestication”, by which the element coding sequence loses its movement capacity and acquires cellular function. Recently, domesticated transposases known as mustang and derived from the Mutator element have been described in sugarcane. In order to improve our understanding of the function of these proteins, we identified mustang genes from Sorghum bicolor and Zea mays and performed a phenetic analysis to assess the diversity and evolutionary history of this gene family. This analysis identified orthologous groups and showed that mustang genes are highly conserved in grass genomes. We also explored the transcriptional activity of sugarcane mustang genes in heterologous and homologous systems. These genes were found to be ubiquitously transcribed, with shoot apical meristem having the highest expression levels, and were downregulated by phytohormones. Together, these findings suggest the possible involvement of mustang proteins in the maintenance of hormonal homeostasis.

  12. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives

    Science.gov (United States)

    Moses, Tessa; Papadopoulou, Kalliope K.

    2014-01-01

    Saponins are widely distributed plant natural products with vast structural and functional diversity. They are typically composed of a hydrophobic aglycone, which is extensively decorated with functional groups prior to the addition of hydrophilic sugar moieties, to result in surface-active amphipathic compounds. The saponins are broadly classified as triterpenoids, steroids or steroidal glycoalkaloids, based on the aglycone structure from which they are derived. The saponins and their biosynthetic intermediates display a variety of biological activities of interest to the pharmaceutical, cosmetic and food sectors. Although their relevance in industrial applications has long been recognized, their role in plants is underexplored. Recent research on modulating native pathway flux in saponin biosynthesis has demonstrated the roles of saponins and their biosynthetic intermediates in plant growth and development. Here, we review the literature on the effects of these molecules on plant physiology, which collectively implicate them in plant primary processes. The industrial uses and potential of saponins are discussed with respect to structure and activity, highlighting the undoubted value of these molecules as therapeutics. PMID:25286183

  13. Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam.

    Science.gov (United States)

    Goswami, Gunajit; Deka, Priyadarshini; Das, Pompi; Bora, Sudipta Sankar; Samanta, Ramkrishna; Boro, Robin Chandra; Barooah, Madhumita

    2017-07-01

    In this study, we report on the bacterial diversity and their functional properties prevalent in tea garden soils of Assam that have low pH (3.8-5.5). Culture-dependent studies and phospholipid fatty acid analysis revealed a high abundance of Gram-positive bacteria. Further, 70 acid-tolerant bacterial isolates characterized using a polyphasic taxonomy approach could be grouped to the genus Bacillus, Lysinibacillus, Staphylococcus, Brevundimonas, Alcaligenes, Enterobacter, Klebsiella, Escherichia, and Aeromonas. Among the 70 isolates, 47 most promising isolates were tested for their plant growth promoting activity based on the production of Indole Acetic Acid (IAA), siderophore, and HCN as well as solubilization of phosphate, zinc, and potassium. Out of the 47 isolates, 10 isolates tested positive for the entire aforesaid plant growth promoting tests and further tested for quantitative analyses for production of IAA, siderophore, and phosphate solubilization at the acidic and neutral condition. Results indicated that IAA and siderophore production, as well as phosphate solubilization efficiency of the isolates decreased significantly (P ≤ 0.05) in the acidic environment. This study revealed that low soil pH influences bacterial community structure and their functional properties.

  14. RNAi pathways in Mucor: A tale of proteins, small RNAs and functional diversity.

    Science.gov (United States)

    Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M

    2016-05-01

    The existence of an RNA-mediated silencing mechanism in the opportunistic fungal pathogen Mucor circinelloides was first described in the early 2000. Since then, Mucor has reached an outstanding position within the fungal kingdom as a model system to achieve a deeper understanding of regulation of endogenous functions by the RNA interference (RNAi) machinery. M. circinelloides combines diverse components of its RNAi machinery to carry out functions not only limited to the defense against invasive nucleic acids, but also to regulate expression of its own genes by producing different classes of endogenous small RNA molecules (esRNAs). The recent discovery of a novel RNase that participates in a new RNA degradation pathway adds more elements to the gene silencing-mediated regulation. This review focuses on esRNAs in M. circinelloides, the different pathways involved in their biogenesis, and their roles in regulating specific physiological and developmental processes in response to environmental signals, highlighting the complexity of silencing-mediated regulation in fungi. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas

    KAUST Repository

    Neave, Matthew J.; Apprill, Amy; Ferrier-Pagè s, Christine; Voolstra, Christian R.

    2016-01-01

    Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.

  16. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas

    KAUST Repository

    Neave, Matthew J.

    2016-08-24

    Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.

  17. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria.

    Science.gov (United States)

    Raaijmakers, Jos M; Mazzola, Mark

    2012-01-01

    Soil- and plant-associated environments harbor numerous bacteria that produce antibiotic metabolites with specific or broad-spectrum activities against coexisting microorganisms. The function and ecological importance of antibiotics have long been assumed to yield a survival advantage to the producing bacteria in the highly competitive but resource-limited soil environments through direct suppression. Although specific antibiotics may enhance producer persistence when challenged by competitors or predators in soil habitats, at subinhibitory concentrations antibiotics exhibit a diversity of other roles in the life history of the producing bacteria. Many processes modulated by antibiotics may be inherently critical to the producing bacterium, such as the acquisition of substrates or initiation of developmental changes that will ensure survival under stressful conditions. Antibiotics may also have roles in more complex interactions, including in virulence on host plants or in shaping the outcomes of multitrophic interactions. The innate functions of antibiotics to producing bacteria in their native ecosystem are just beginning to emerge, but current knowledge already reveals a breadth of activities well beyond the historical perspective of antibiotics as weaponry in microbial conflicts.

  18. Prebiotics Modulate the Effects of Antibiotics on Gut Microbial Diversity and Functioning in Vitro.

    Science.gov (United States)

    Johnson, Laura P; Walton, Gemma E; Psichas, Arianna; Frost, Gary S; Gibson, Glenn R; Barraclough, Timothy G

    2015-06-04

    Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs), which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation--another method used to modulate gut composition and function--could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre), inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria) or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota.

  19. Climate mediates hypoxic stress on fish diversity and nursery function at the land–sea interface

    Science.gov (United States)

    Hughes, Brent B.; Levey, Matthew D.; Fountain, Monique C.; Carlisle, Aaron B.; Chavez, Francisco P.; Gleason, Mary G.

    2015-01-01

    Coastal ecosystems provide numerous important ecological services, including maintenance of biodiversity and nursery grounds for many fish species of ecological and economic importance. However, human population growth has led to increased pollution, ocean warming, hypoxia, and habitat alteration that threaten ecosystem services. In this study, we used long-term datasets of fish abundance, water quality, and climatic factors to assess the threat of hypoxia and the regulating effects of climate on fish diversity and nursery conditions in Elkhorn Slough, a highly eutrophic estuary in central California (United States), which also serves as a biodiversity hot spot and critical nursery grounds for offshore fisheries in a broader region. We found that hypoxic conditions had strong negative effects on extent of suitable fish habitat, fish species richness, and abundance of the two most common flatfish species, English sole (Parophrys vetulus) and speckled sanddab (Citharichthys stigmaeus). The estuary serves as an important nursery ground for English sole, making this species vulnerable to anthropogenic threats. We determined that estuarine hypoxia was associated with significant declines in English sole nursery habitat, with cascading effects on recruitment to the offshore adult population and fishery, indicating that human land use activities can indirectly affect offshore fisheries. Estuarine hypoxic conditions varied spatially and temporally and were alleviated by strengthening of El Niño conditions through indirect pathways, a consistent result in most estuaries across the northeast Pacific. These results demonstrate that changes to coastal land use and climate can fundamentally alter the diversity and functioning of coastal nurseries and their adjacent ocean ecosystems. PMID:26056293

  20. Climate mediates hypoxic stress on fish diversity and nursery function at the land-sea interface.

    Science.gov (United States)

    Hughes, Brent B; Levey, Matthew D; Fountain, Monique C; Carlisle, Aaron B; Chavez, Francisco P; Gleason, Mary G

    2015-06-30

    Coastal ecosystems provide numerous important ecological services, including maintenance of biodiversity and nursery grounds for many fish species of ecological and economic importance. However, human population growth has led to increased pollution, ocean warming, hypoxia, and habitat alteration that threaten ecosystem services. In this study, we used long-term datasets of fish abundance, water quality, and climatic factors to assess the threat of hypoxia and the regulating effects of climate on fish diversity and nursery conditions in Elkhorn Slough, a highly eutrophic estuary in central California (United States), which also serves as a biodiversity hot spot and critical nursery grounds for offshore fisheries in a broader region. We found that hypoxic conditions had strong negative effects on extent of suitable fish habitat, fish species richness, and abundance of the two most common flatfish species, English sole (Parophrys vetulus) and speckled sanddab (Citharichthys stigmaeus). The estuary serves as an important nursery ground for English sole, making this species vulnerable to anthropogenic threats. We determined that estuarine hypoxia was associated with significant declines in English sole nursery habitat, with cascading effects on recruitment to the offshore adult population and fishery, indicating that human land use activities can indirectly affect offshore fisheries. Estuarine hypoxic conditions varied spatially and temporally and were alleviated by strengthening of El Niño conditions through indirect pathways, a consistent result in most estuaries across the northeast Pacific. These results demonstrate that changes to coastal land use and climate can fundamentally alter the diversity and functioning of coastal nurseries and their adjacent ocean ecosystems.

  1. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils.

    Science.gov (United States)

    Gill, Aman S; Lee, Angela; McGuire, Krista L

    2017-08-15

    New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation ( cbbL-R [ cbbL gene, red-like subunit] and apsA ), nitrogen cycling ( noxZ and amoA ), and contaminant degradation ( bphA ); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a

  2. Elevated Atmospheric CO2 and Drought Affect Soil Microbial Community and Functional Diversity Associated with Glycine max

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2017-12-01

    Full Text Available Abstract Under the background of climate change, the increase of atmospheric CO2 and drought frequency have been considered as significant influencers on the soil microbial communities and the yield and quality of crop. In this study, impacts of increased ambient CO2 and drought on soil microbial structure and functional diversity of a Stagnic Anthrosol were investigated in phytotron growth chambers, by testing two representative CO2 levels, three soil moisture levels, and two soil cover types (with or without Glycine max. The 16S rDNA and 18S rDNA fragments were amplified to analyze the functional diversity of fungi and bacteria. Results showed that rhizosphere microbial biomass and community structure were significantly affected by drought, but effects differed between fungi and bacteria. Drought adaptation of fungi was found to be easier than that of bacteria. The diversity of fungi was less affected by drought than that of bacteria, evidenced by their higher diversity. Severe drought reduced soil microbial functional diversity and restrained the metabolic activity. Elevated CO2 alone, in the absence of crops (bare soil, did not enhance the metabolic activity of soil microorganisms. Generally, due to the co-functioning of plant and soil microorganisms in water and nutrient use, plants have major impacts on the soil microbial community, leading to atmospheric CO2 enrichment, but cannot significantly reduce the impacts of drought on soil microorganisms.

  3. GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer

    Science.gov (United States)

    Lu, Zhenmei; He, Zhili; Parisi, Victoria A.; Kang, Sanghoon; Deng, Ye; Van Nostrand, Joy D.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Suflita, Joseph M.; Zhou, Jizhong

    2012-01-01

    The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.

  4. Prokaryotic caspase homologs: phylogenetic patterns and functional characteristics reveal considerable diversity.

    Directory of Open Access Journals (Sweden)

    Johannes Asplund-Samuelsson

    Full Text Available Caspases accomplish initiation and execution of apoptosis, a programmed cell death process specific to metazoans. The existence of prokaryotic caspase homologs, termed metacaspases, has been known for slightly more than a decade. Despite their potential connection to the evolution of programmed cell death in eukaryotes, the phylogenetic distribution and functions of these prokaryotic metacaspase sequences are largely uncharted, while a few experiments imply involvement in programmed cell death. Aiming at providing a more detailed picture of prokaryotic caspase homologs, we applied a computational approach based on Hidden Markov Model search profiles to identify and functionally characterize putative metacaspases in bacterial and archaeal genomes. Out of the total of 1463 analyzed genomes, merely 267 (18% were identified to contain putative metacaspases, but their taxonomic distribution included most prokaryotic phyla and a few archaea (Euryarchaeota. Metacaspases were particularly abundant in Alphaproteobacteria, Deltaproteobacteria and Cyanobacteria, which harbor many morphologically and developmentally complex organisms, and a distinct correlation was found between abundance and phenotypic complexity in Cyanobacteria. Notably, Bacillus subtilis and Escherichia coli, known to undergo genetically regulated autolysis, lacked metacaspases. Pfam domain architecture analysis combined with operon identification revealed rich and varied configurations among the metacaspase sequences. These imply roles in programmed cell death, but also e.g. in signaling, various enzymatic activities and protein modification. Together our data show a wide and scattered distribution of caspase homologs in prokaryotes with structurally and functionally diverse sub-groups, and with a potentially intriguing evolutionary role. These features will help delineate future characterizations of death pathways in prokaryotes.

  5. Diversity and Functional Analysis of the FeMo-Cofactor Maturase NifB

    Directory of Open Access Journals (Sweden)

    Simon Arragain

    2017-11-01

    Full Text Available One of the main hurdles to engineer nitrogenase in a non-diazotrophic host is achieving NifB activity. NifB is an extremely unstable and oxygen sensitive protein that catalyzes a low-potential SAM-radical dependent reaction. The product of NifB activity is called NifB-co, a complex [8Fe-9S-C] cluster that serves as obligate intermediate in the biosyntheses of the active-site cofactors of all known nitrogenases. Here we study the diversity and phylogeny of naturally occurring NifB proteins, their protein architecture and the functions of the distinct NifB domains in order to understand what defines a catalytically active NifB. Focus is on NifB from the thermophile Chlorobium tepidum (two-domain architecture, the hyperthermophile Methanocaldococcus infernus (single-domain architecture and the mesophile Klebsiella oxytoca (two-domain architecture, showing in silico characterization of their nitrogen fixation (nif gene clusters, conserved NifB motifs, and functionality. C. tepidum and M. infernus NifB were able to complement an Azotobacter vinelandii (ΔnifB mutant restoring the Nif+ phenotype and thus demonstrating their functionality in vivo. In addition, purified C. tepidum NifB exhibited activity in the in vitro NifB-dependent nitrogenase reconstitution assay. Intriguingly, changing the two-domain K. oxytoca NifB to single-domain by removal of the C-terminal NifX-like extension resulted in higher in vivo nitrogenase activity, demonstrating that this domain is not required for nitrogen fixation in mesophiles.

  6. Unifying the functional diversity in natural and cultivated soils using the overall body-mass distribution of nematodes.

    Science.gov (United States)

    Mulder, Christian; Maas, Rob

    2017-11-28

    Sustainable use of our soils is a key goal for environmental protection. As many ecosystem services are supported belowground at different trophic levels by nematodes, soil nematodes are expected to provide objective metrics for biological quality to integrate physical and chemical soil variables. Trait measurements of body mass carried out at the individual level can in this way be correlated with environmental properties that influence the performance of soil biota. Soil samples were collected across 200 sites (4 soil types and 5 land-use types resulting in 9 combinations) during a long-term monitoring programme in the Netherlands and the functional diversity of nematode communities was investigated. Using three commonly used functional diversity indices applicable to single traits (Divergence, Evenness and Richness), a unified index of overall body-mass distribution is proposed to better illustrate the application of functional metrics as a descriptor of land use. Effects of land use and soil chemistry on the functional diversity of nematodes were demonstrated and a combination of environmental factors accounts for the low functional value of Scots Pine forest soils in comparison to the high functional value of heathland soils, whereas human factors account for the low functional and chemical values of arable fields. These findings show an unexpected high functional vulnerability of nematodes inhabiting clay-rich soils in comparison to sandy soils and support the notion that soil C:N ratio is a major driver of biodiversity. The higher the C:N ratio, the higher the overall diversity, as soil nematodes cope better with nutrient-poor agroecosystems under less intense fertilization. A trait-based way focusing on size distribution of nematodes is proposed to maintain environmental health by monitoring the overall diversity in soil biota, keeping agriculture and forestry sustainable.

  7. The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler.

    Science.gov (United States)

    Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S

    2014-05-01

    Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  8. Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Sørensen, S. J.

    2001-01-01

    This study investigates the effect of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. The changes in diversity were monitored in soil microcosms, enriched with 25 mug Hg(II) g(-1) soil, over a period of 3 months...... by purification of total soil DNA and amplification of bacterial 16S rDNA fragments by polymerase chain reaction. Concentrations of bioavailable and total mercury were measured throughout the experiment. The effect on the culturable heterotrophic and genetic diversity was very similar, showing an immediate...... decrease after mercury addition but then slowly increasing throughout the entire experimental period. Pre-exposure levels were not reached within the time span of this investigation. The DGGE band pattern indicated that a shift in the community structure was responsible for recovered diversity. When...

  9. Research Paper: Effectiveness of Group Play Therapy on the Communication of 5-8 Years Old Children With High Functioning Autism

    Directory of Open Access Journals (Sweden)

    Fateme Rafati

    2016-11-01

    Conclusion It is concluded that the group play therapy can help the children to understand and communicate well. This therapy can be used as a complementary training and therapeutic method for children with high functioning autism to help improve their communication deficiencies.

  10. Competitive versus Cooperative Exergame Play for African American Adolescents' Executive Function Skills: Short-Term Effects in a Long-Term Training Intervention

    Science.gov (United States)

    Staiano, Amanda E.; Abraham, Anisha A.; Calvert, Sandra L.

    2012-01-01

    Exergames are videogames that require gross motor activity, thereby combining gaming with physical activity. This study examined the role of competitive versus cooperative exergame play on short-term changes in executive function skills, following a 10-week exergame training intervention. Fifty-four low-income overweight and obese African American…

  11. Adaptive landscape and functional diversity of Neotropical cichlids: implications for the ecology and evolution of Cichlinae (Cichlidae; Cichliformes).

    Science.gov (United States)

    Arbour, J H; López-Fernández, H

    2014-11-01

    Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise-AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  12. The Sabah Biodiversity Experiment: a long-term test of the role of tree diversity in restoring tropical forest structure and functioning

    Science.gov (United States)

    Hector, Andy; Philipson, Christopher; Saner, Philippe; Chamagne, Juliette; Dzulkifli, Dzaeman; O'Brien, Michael; Snaddon, Jake L.; Ulok, Philip; Weilenmann, Maja; Reynolds, Glen; Godfray, H. Charles J.

    2011-01-01

    Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results. PMID:22006970

  13. Diversity and Abundance of Beetle (Coleoptera Functional Groups in a Range of Land Use System in Jambi, Sumatra

    Directory of Open Access Journals (Sweden)

    SURYO HARDIWINOTO

    2009-10-01

    Full Text Available Degradation of tropical rain forest might exert impacts on biodiversity loss and affect the function and stability of the related ecosystems. The objective of this study was to study the impact of land use systems (LUS on the diversity and abundance of beetle functional groups in Jambi area, Sumatra. This research was carried out during the rainy season (May-June of 2004. Inventory and collection of beetles have been conducted using winkler method across six land use systems, i.e. primary forest, secondary forest, Imperata grassland, rubber plantation, oilpalm plantation, and cassava garden. The result showed that a total of 47 families and subfamilies of beetles was found in the study area, and they were classified into four major functional groups, i.e. herbivore, predator, scavenger, and fungivore. There were apparent changes in proportion, diversity, and abundance of beetle functional groups from forests to other land use systems. The bulk of beetle diversity and abundance appeared to converge in primary forest and secondary forest and predatory beetles were the most diverse and the most abundant of the four major functional groups.

  14. α,β-Unsaturated monoterpene acid glucose esters: structural diversity, bioactivities and functional roles.

    Science.gov (United States)

    Goodger, Jason Q D; Woodrow, Ian E

    2011-12-01

    The glycosylation of lipophilic small molecules produces many important plant secondary metabolites. The majority of these are O-glycosides with relatively fewer occurring as glucose esters of aromatic or aliphatic acids. In particular, monoterpene acid glucose esters have much lower structural diversity and distribution compared to monoterpene glycosides. Nevertheless, there have been over 20 monoterpene acid glucose esters described from trees in the genus Eucalyptus (Myrtaceae) in recent years, all based on oleuropeic acid, menthiafolic acid or both. Here we review all of the glucose esters containing these monoterpenoids identified in plants to date. Many of the compounds contain phenolic aglycones and all contain at least one α,β-unsaturated carbonyl, affording a number of important potential therapeutic reactivities such as anti-tumor promotion, carcinogenesis suppression, and anti-oxidant and anti-inflammatory activities. Additional properties such as cytotoxicity, bitterness, and repellency are suggestive of a role in plant defence, but we also discuss their localization to the exterior of foliar secretory cavity lumina, and suggest they may also protect secretory cells from toxic terpenes housed within these structures. Finally we discuss how the use of a recently developed protocol to isolate secretory cavities in a functional state could be used in conjunction with systems biology approaches to help characterize their biosynthesis and roles in plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Tracking of plus-ends reveals microtubule functional diversity in different cell types

    Science.gov (United States)

    Shaebani, M. Reza; Pasula, Aravind; Ott, Albrecht; Santen, Ludger

    2016-07-01

    Many cellular processes are tightly connected to the dynamics of microtubules (MTs). While in neuronal axons MTs mainly regulate intracellular trafficking, they participate in cytoskeleton reorganization in many other eukaryotic cells, enabling the cell to efficiently adapt to changes in the environment. We show that the functional differences of MTs in different cell types and regions is reflected in the dynamic properties of MT tips. Using plus-end tracking proteins EB1 to monitor growing MT plus-ends, we show that MT dynamics and life cycle in axons of human neurons significantly differ from that of fibroblast cells. The density of plus-ends, as well as the rescue and catastrophe frequencies increase while the growth rate decreases toward the fibroblast cell margin. This results in a rather stable filamentous network structure and maintains the connection between nucleus and membrane. In contrast, plus-ends are uniformly distributed along the axons and exhibit diverse polymerization run times and spatially homogeneous rescue and catastrophe frequencies, leading to MT segments of various lengths. The probability distributions of the excursion length of polymerization and the MT length both follow nearly exponential tails, in agreement with the analytical predictions of a two-state model of MT dynamics.

  16. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    Directory of Open Access Journals (Sweden)

    Magdalena Frąc

    2014-08-01

    Full Text Available Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS and from a sewage sludge landfill that was 3 m from a SS landfill (SS3 were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD, Richness (R and Shannon-Weaver index (H were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications.

  17. Soil microbial functional and fungal diversity as influenced by municipal sewage sludge accumulation.

    Science.gov (United States)

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-08-28

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H) were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications.

  18. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    Science.gov (United States)

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-01-01

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H) were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications. PMID:25170681

  19. Prebiotics Modulate the Effects of Antibiotics on Gut Microbial Diversity and Functioning in Vitro

    Directory of Open Access Journals (Sweden)

    Laura P. Johnson

    2015-06-01

    Full Text Available Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs, which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation—another method used to modulate gut composition and function—could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre, inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota.

  20. Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling.

    Science.gov (United States)

    Bell, James B; Woulds, Clare; Oevelen, Dick van

    2017-09-20

    Hydrothermal vents are highly dynamic ecosystems and are unusually energy rich in the deep-sea. In situ hydrothermal-based productivity combined with sinking photosynthetic organic matter in a soft-sediment setting creates geochemically diverse environments, which remain poorly studied. Here, we use comprehensive set of new and existing field observations to develop a quantitative ecosystem model of a deep-sea chemosynthetic ecosystem from the most southerly hydrothermal vent system known. We find evidence of chemosynthetic production supplementing the metazoan food web both at vent sites and elsewhere in the Bransfield Strait. Endosymbiont-bearing fauna were very important in supporting the transfer of chemosynthetic carbon into the food web, particularly to higher trophic levels. Chemosynthetic production occurred at all sites to varying degrees but was generally only a small component of the total organic matter inputs to the food web, even in the most hydrothermally active areas, owing in part to a low and patchy density of vent-endemic fauna. Differences between relative abundance of faunal functional groups, resulting from environmental variability, were clear drivers of differences in biogeochemical cycling and resulted in substantially different carbon processing patterns between habitats.

  1. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation

    Science.gov (United States)

    Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R.; Luke, Sarah H.; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data. PMID:26881747

  2. Hunting down frame shifts: Ecological analysis of diverse functional gene sequences

    Directory of Open Access Journals (Sweden)

    Michal eStrejcek

    2015-11-01

    Full Text Available Functional gene ecological analyses using amplicon sequencing can be challenging as translated sequences are often burdened with shifted reading frames. The aim of this work was to evaluate several bioinformatics tools designed to correct errors which arise during sequencing in an effort to reduce the number of frame-shifts (FS. Genes encoding for alpha subunits of biphenyl (bphA and benzoate (benA dioxygenases were used as model sequences. FrameBot, a FS correction tool, was able to reduce the number of detected FS to zero. However, up to 43.1% of sequences were discarded by FrameBot as non-specific targets. Therefore, we proposed a de novo mode of FrameBot for FS correction, which works on a similar basis as common chimera identifying platforms and is not dependent on reference sequences. By nature of FrameBot de novo design, it is crucial to provide it with data as error free as possible. We tested the ability of several publicly available correction tools to decrease the number of errors in the data sets. The combination of Maximum Expected Error (MEE filtering and single linkage pre-clustering (SLP proved the most efficient read procession. Applying FrameBot de novo on the processed data enabled analysis of BphA sequences with minimal losses of potentially functional sequences not homologous to those previously known. This experiment also demonstrated the extensive diversity of dioxygenases in soil. A script which performs FrameBot de novo is presented in the supplementary material to the study and the tool was implemented into FunGene Pipeline available at http://fungene.cme.msu.edu/FunGenePipeline/ and https://github.com/rdpstaff/Framebot.

  3. Postphenomenological Play

    DEFF Research Database (Denmark)

    Hammar, Emil

    This paper aims to identify an understanding of digital games in virtual environments by using Don Ihde’s (1990) postphenomenological approach to how technology mediates the world to human beings in conjunction with Hans-Georg Gadamer’s (1993) notion of play . Through this tentatively proposed am...... amalgamation of theories I point towards an alternative understanding of the relationship between play and game as not only dialectic, but also as socially and ethically relevant qua the design and implementation of the game as technology....

  4. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    Science.gov (United States)

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-11-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha.

  5. Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control

    Science.gov (United States)

    Qingchao Li; H. Lee Allen; Arthur G. Wollum

    2004-01-01

    The effects of organic matter removal, soil compaction, and vegetation control on soil microbial biomass carbon, nitrogen, C-to-N ratio, and functional diversity were examined in a 6-year loblolly pine plantation on a Coastal Plain site in eastern North Carolina, USA. This experimental plantation was established as part of the US Forest Service's Long Term Soil...

  6. Metagenomic-Based Study of the Phylogenetic and Functional Gene Diversity in Galápagos Land and Marine Iguanas

    KAUST Repository

    Hong, Pei-Ying; Mao, Yuejian; Ortiz-Kofoed, Shannon; Shah, Rushabh S.; Cann, Isaac Ko O; Mackie, Roderick Ian

    2014-01-01

    affiliations of the fecal microbiome were more similar between both iguanas than to other mammalian herbivorous hosts. However, functional gene diversities in both MI and LI iguana hosts differed in relation to the diet, where the MI fecal microbiota had a

  7. Genetic and functional diversity of soil microbial communities associated to grapevine plants and wine quality

    Science.gov (United States)

    Mocali, Stefano; Fabiani, Arturo; Kuramae, Eiko; de Hollander, Mattias; Kowalchuk, George A.; Vignozzi, Nadia; Valboa, Giuseppe; Costantini, Edoardo

    2013-04-01

    soils. The structure of soil microbial communities was assessed using 16S and 18S rRNA genes pyrosequencing and the determination of some soil microbial properties such as microbial respiration, microbial C-biomass were also determined. The role of both genetic and functional diversity of soil bacterial community on grape physiology and wine quality will be discussed.

  8. Playful Organizations

    DEFF Research Database (Denmark)

    Pors, Justine Grønbæk; Åkerstrøm Andersen, Niels

    2015-01-01

    intact. In its final sections, the article discusses what happens to conditions of decision-making when organisations do not just see undecidability as a given condition, but as a limited resource indispensable for change and renewal. The article advances discussions of organisational play by exploring...

  9. Clay Play

    Science.gov (United States)

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  10. Sweet Play

    Science.gov (United States)

    Leung, Shuk-kwan S.; Lo, Jane-Jane

    2010-01-01

    This article features Sweet play math, a "math by the month" activity that involves decorating and making sugar cubes. Teachers may want to substitute straws, paper squares, alphabet blocks, or such commercially made manipulatives as Unifix[R] cubes for the real sweets. Given no allergy concerns, teachers and students alike would enjoy some sweet…

  11. Group play

    DEFF Research Database (Denmark)

    Tychsen, Anders; Hitchens, Michael; Brolund, Thea

    2008-01-01

    Role-playing games (RPGs) are a well-known game form, existing in a number of formats, including tabletop, live action, and various digital forms. Despite their popularity, empirical studies of these games are relatively rare. In particular there have been few examinations of the effects of the v......Role-playing games (RPGs) are a well-known game form, existing in a number of formats, including tabletop, live action, and various digital forms. Despite their popularity, empirical studies of these games are relatively rare. In particular there have been few examinations of the effects...... of the various formats used by RPGs on the gaming experience. This article presents the results of an empirical study, examining how multi-player tabletop RPGs are affected as they are ported to the digital medium. Issues examined include the use of disposition assessments to predict play experience, the effect...... of group dynamics, the influence of the fictional game characters and the comparative play experience between the two formats. The results indicate that group dynamics and the relationship between the players and their digital characters, are integral to the quality of the gaming experience in multiplayer...

  12. Playing Teacher.

    Science.gov (United States)

    Gilbert, Juan E.

    The acceptance of animation technologies is increasing. Video games, such as Sony PlayStation (SONY, 2002), have become part of the culture for young people from kindergarten through undergraduate school. Animation technologies have been implemented into educational systems in the form of animated pedagogical agents (Johnson, 2000). The research…

  13. Aesthetic Play

    DEFF Research Database (Denmark)

    Bang, Jytte Susanne

    2012-01-01

    The present article explores the role of music-related artefacts and technologies in children’s lives. More specifically, it analyzes how four 10- to 11-year old girls use CDs and DVD games in their music-play activities and which developmental themes and potentials may accrue from such activitie...

  14. Water Play

    Science.gov (United States)

    Cline, Jane E.; Smith, Brandy A.

    2016-01-01

    The inclusion of activities to develop sensory awareness, spatial thinking, and physical dexterity, operationalized through hands-on science lessons such as water play, have long been part of early childhood education. This practical article addresses Next Generation Science Standards K-2 ETS1-3 and K-2 ETS1-2 by having four-year-old…

  15. Chronic polyaromatic hydrocarbon (PAH contamination is a marginal driver for community diversity and prokaryotic predicted functioning in coastal sediments

    Directory of Open Access Journals (Sweden)

    Mathilde Jeanbille

    2016-08-01

    Full Text Available Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.

  16. Principal determinants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites.

    Science.gov (United States)

    Sipos, J; Hodecek, J; Kuras, T; Dolny, A

    2017-08-01

    Although ecological succession is one of the principal focuses of recent restoration ecology research, it is still unclear which factors drive this process and positively influence species richness and functional diversity. In this study we sought to elucidate how species traits and functional diversity change during forest succession, and to identify important factors that determine the species in the observed assemblages. We analyzed species richness and functional diversity of ground beetle assemblages in relation to succession on post-industrial localities after habitat deterioration caused by spoil deposition. We selected ground beetles as they are known to be sensitive to landscape changes (with a large range of responses), and their taxonomy and ecology are generally well-known. Ground beetles were sampled on the spoil heaps during the last 30 years when spontaneous succession occurred. To calculate functional diversity, we used traits related to habitat and trophic niche, i.e. food specialization, wing morphology, trophic level, and bio-indication value. Ground beetle species were found to be distributed non-randomly in the assemblages in the late phase of succession. Ordination analyses revealed that the ground beetle assemblage was significantly associated with the proportion of forested area. Environmental heterogeneity generated assemblages that contained over-dispersed species traits. Our findings indicated that environmental conditions at late successional stages supported less mobile carnivorous species. Overall, we conclude that the decline in species richness and functional diversity in the middle of the studied succession gradient indicated that the assemblages of open habitats had been replaced by species typical of forest ecosystems.

  17. Functional hoarseness in children: short-term play therapy with family dynamic counseling as therapy of choice.

    Science.gov (United States)

    Kollbrunner, Jürg; Seifert, Eberhard

    2013-09-01

    Children with nonorganic voice disorders (NVDs) are treated mainly using direct voice therapy techniques such as the accent method or glottal attack changes and indirect methods such as vocal hygiene and voice education. However, both approaches tackle only the symptoms and not etiological factors in the family dynamics and therefore often enjoy little success. The aim of the "Bernese Brief Dynamic Intervention" (BBDI) for children with NVD was to extend the effectiveness of pediatric voice therapies with a psychosomatic concept combining short-term play therapy with the child and family dynamic counseling of the parents. This study compares the therapeutic changes in three groups where different procedures were used, before intervention and 1 year afterward: counseling of parents (one to two consultations; n = 24), Brief Dynamic Intervention on the lines of the BBDI (three to five play therapy sessions with the child plus two to four sessions with the parents; n = 20), and traditional voice therapy (n = 22). A Voice Questionnaire for Parents developed by us with 59 questions to be answered on a four-point Likert scale was used to measure the change. According to the parents' assessment, a significant improvement in voice quality was achieved in all three methods. Counseling of parents (A) appears to have led parents to give their child more latitude, for example, they stopped nagging the child or demanding that he/she should behave strictly by the rules. After BBDI (B), the mothers were more responsive to their children's wishes and the children were more relaxed and their speech became livelier. At home, they called out to them less often at a distance, which probably improved parent-child dialog. Traditional voice therapy (C) seems to have had a positive effect on the children's social competence. BBDI seems to have the deepest, widest, and therefore probably the most enduring therapeutic effect on children with NVD. Copyright © 2013 The Voice Foundation

  18. Community Structure and Function of High-temperature Chlorophototrophic Microbial Mats Inhabiting Diverse Geothermal Environments

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2013-06-01

    Full Text Available Six phototrophic microbial mat communities from different geothermal springs (YNP were studied using metagenome sequencing and geochemical analyses. The primary goals of this work were to determine differences in community composition of high-temperature phototrophic mats distributed across the Yellowstone geothermal ecosystem, and to identify metabolic attributes of predominant organisms present in these communities that may correlate with environmental attributes important in niche differentiation. Random shotgun metagenome sequences from six phototrophic communities (average~ 53 Mbp/site were subjected to multiple taxonomic, phylogenetic and functional analyses. All methods, including G+C content distribution, MEGAN analyses and oligonucleotide frequency-based clustering, provided strong support for the dominant community members present in each site. Cyanobacteria were only observed in non-sulfidic sites; de novo assemblies were obtained for Synechococcus-like populations at Chocolate Pots (CP_7 and Fischerella-like populations at White Creek (WC_6. Chloroflexi-like sequences (esp. Roseiflexus and/or Chloroflexus spp. were observed in all six samples and contained genes involved in bacteriochlorophyll biosynthesis and the 3-hydroxypropionate carbon fixation pathway. Other major sequence assemblies were obtained for a Chlorobiales population from CP_7 (proposed family Thermochlorobacteriaceae, and an anoxygenic, sulfur-oxidizing Thermochromatium-like (Gamma-proteobacteria population from Bath Lake Vista Annex (BLVA_20. Additional sequence coverage is necessary to establish more complete assemblies of other novel bacteria in these sites (e.g., Bacteroidetes and Firmicutes; however, current assemblies suggested that several of these organisms play important roles in heterotrophic and fermentative metabolisms. Definitive linkages were established between several of the dominant phylotypes present in these habitats and important functional

  19. The interaction between LYVE-1 with hyaluronan on the cell surface may play a role in the diversity of adhesion to cancer cells.

    Science.gov (United States)

    Du, Yan; Liu, Hua; He, Yiqing; Liu, Yiwen; Yang, Cuixia; Zhou, Muqing; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng

    2013-01-01

    Hyaluronan (HA), a simple disaccharide unit, can polymerize and is considered a primary component of the extracellular matrix, which has a wide range of biological functions. In recent years, HA was found on the surface of tumor cells. According to previous reports, differing HA content on the cell surface of tumor cells is closely related to lymph node metastases, but the mechanisms mediating this process remained unclear. This research intended to study the surface content of HA on tumor cells and analyze cell adhesive changes caused by the interaction between HA and its lymphatic endothelial receptor (LYVE-1). We screened and observed high HA content on HS-578T breast cells and low HA content on MCF-7 breast cells through particle exclusion, immunofluorescence and flow cytometry experiments. The expression of LYVE-1, the lymph-vessel specific HA receptor, was consistent with our previous report and enhanced the adhesion of HA(high)-HS-578T cells to COS-7(LYVE-1(+)) through HA in cell static adhesion and dynamic parallel plate flow chamber experiments. MCF-7 breast cells contain little HA on the surface; however, our results showed little adhesion difference between MCF-7 cells and COS-7(LYVE-1(+)) and COS-7(LYVE-1(-)) cells. Similar results were observed concerning the adhesion of HS-578T cells or MCF-7 cells to SVEC4-10 cells. Furthermore, we observed for the first time that the cell surface HA content of high transfer tumor cells was rich, and we visualized the cross-linking of HA cable structures, which may activate LYVE-1 on lymphatic endothelial cells, promoting tumor adhesion. In summary, high-low cell surface HA content of tumor cells through the interaction with LYVE-1 leads to adhesion differences.

  20. Diversity of radioprobes targeted to tumor angiogenesis on molecular functional imaging

    International Nuclear Information System (INIS)

    Lu Xia; Zhang Huabei

    2013-01-01

    Molecular functional imaging could visualize, characterize, and measure the bio- logical processes including tumor angiogenesis at the molecular and cellular levels in humans and other living systems. The molecular probes labeled by a variety of radionuclide used in the field of the nuclear medicine play pivotal roles in molecular imaging of tumor angiogenesis. However, the regulatory role of different probes in tumor angiogenesis has not been systematically illustrated. The current status of tumor angiogenesis imaging with radiolabeled probes of peptide, monoclonal antibody as well as its fragment, especially nanoparticle-based probes to gain insights into the robust tumor angiogenesis development were summarized. It was recognized that only the probes such as nanoparticle-based probes, which truly target the tumor vasculature rather than tumor cells because of poor extravasation, are really tumor angiogenesis imaging agent. The research of molecular probe targeted to angiogenesis would meet its flourish just after the outstanding improvements in the in vivo stability and biocompatibility, tumor-targeting efficacy, and pharmacokinetics of tumor angiogenesis imaging probes are made. Translation to clinical applications will also be critical for the maximize benefits of these novel agents. The future of tumor angiogenesis imaging lies in liable imaging probes and multiple imaging modalities, imaging of protein-protein interactions, and quantitative molecular imaging. (authors)

  1. 略论音乐美育功能的发挥%On the Play of Aesthetic Function of Music

    Institute of Scientific and Technical Information of China (English)

    吴雪蕾

    2013-01-01

    音乐具有特殊的美育功能,它在素质教育中发挥着重要的作用。通过对音乐美育功能发挥的前提条件、心理机制进行分析,提出了音乐的美育功能的重要性及其方法。%The paper analyses the prerequisites and psychological mechanism of aesthetic function of music and proposes the significance of aesthetic function of music as well as the approches.

  2. Functional hallmarks of GABAergic synapse maturation and the diverse roles of neurotrophins

    Directory of Open Access Journals (Sweden)

    Rosemarie eGrantyn

    2011-07-01

    Full Text Available Functional impairment of the adult brain can result from deficits in the ontogeny of GABAergic synaptic transmission. Gene defects underlying autism spectrum disorders, Rett’s syndrome or some forms of epilepsy, but also a diverse set of syndromes accompanying perinatal trauma, hormonal imbalances, intake of sleep-inducing or mood-improving drugs or, quite common, alcohol intake during pregnancy can alter GABA signaling early in life. The search for therapeutically relevant endogenous molecules or exogenous compounds able to alleviate the consequences of dysfunction of GABAergic transmission in the embryonic or postnatal brain requires a clear understanding of its site- and state-dependent development. At the level of single synapses, it is necessary to discriminate between presynaptic and postsynaptic alterations, and to define parameters that can be regarded as both suitable and accessible for the quantification of developmental changes. Here we focus on the performance of GABAergic synapses in two brain structures, the hippocampus and the superior colliculus, describe some novel aspects of neurotrophin effects during the development of GABAergic synaptic transmission and examine the applicability of the following rules: 1 Synaptic transmission starts with GABA, 2 Nascent/immature GABAergic synapses operate in a ballistic mode (multivesicular release, 3 Immature synaptic terminals release vesicles with higher probability than mature synapses, 4 Immature GABAergic synapses are prone to paired pulse and tetanic depression, 5 Synapse maturation is characterized by an increasing dominance of synchronous over asynchronous release, 6 In immature neurons GABA acts as a depolarizing transmitter, 7 Synapse maturation implies IPSC shortening due to an increase in alpha1 subunit expression, 8 Extrasynaptic (tonic conductances can inhibit the development of synaptic (phasic GABA actions.

  3. Functional diversity of voltage-sensing phosphatases in two urodele amphibians.

    Science.gov (United States)

    Mutua, Joshua; Jinno, Yuka; Sakata, Souhei; Okochi, Yoshifumi; Ueno, Shuichi; Tsutsui, Hidekazu; Kawai, Takafumi; Iwao, Yasuhiro; Okamura, Yasushi

    2014-07-16

    Voltage-sensing phosphatases (VSPs) share the molecular architecture of the voltage sensor domain (VSD) with voltage-gated ion channels and the phosphoinositide phosphatase region with the phosphatase and tensin homolog (PTEN), respectively. VSPs enzymatic activities are regulated by the motions of VSD upon depolarization. The physiological role of these proteins has remained elusive, and insights may be gained by investigating biological variations in different animal species. Urodele amphibians are vertebrates with potent activities of regeneration and also show diverse mechanisms of polyspermy prevention. We cloned cDNAs of VSPs from the testes of two urodeles; Hynobius nebulosus and Cynops pyrrhogaster, and compared their expression and voltage-dependent activation. Their molecular architecture is highly conserved in both Hynobius VSP (Hn-VSP) and Cynops VSP (Cp-VSP), including the positively-charged arginine residues in the S4 segment of the VSD and the enzymatic active site for substrate binding, yet the C-terminal C2 domain of Hn-VSP is significantly shorter than that of Cp-VSP and other VSP orthologs. RT-PCR analysis showed that gene expression pattern was distinct between two VSPs. The voltage sensor motions and voltage-dependent phosphatase activities were investigated electrophysiologically by expression in Xenopus oocytes. Both VSPs showed "sensing" currents, indicating that their voltage sensor domains are functional. The phosphatase activity of Cp-VSP was found to be voltage dependent, as shown by its ability to regulate the conductance of coexpressed GIRK2 channels, but Hn-VSP lacked such phosphatase activity due to the truncation of its C2 domain. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  4. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls

    Directory of Open Access Journals (Sweden)

    Eduardo Castro-Nallar

    2015-08-01

    Full Text Available The role of the human microbiome in schizophrenia remains largely unexplored. The microbiome has been shown to alter brain development and modulate behavior and cognition in animals through gut-brain connections, and research in humans suggests that it may be a modulating factor in many disorders. This study reports findings from a shotgun metagenomic analysis of the oropharyngeal microbiome in 16 individuals with schizophrenia and 16 controls. High-level differences were evident at both the phylum and genus levels, with Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria dominating both schizophrenia patients and controls, and Ascomycota being more abundant in schizophrenia patients than controls. Controls were richer in species but less even in their distributions, i.e., dominated by fewer species, as opposed to schizophrenia patients. Lactic acid bacteria were relatively more abundant in schizophrenia, including species of Lactobacilli and Bifidobacterium, which have been shown to modulate chronic inflammation. We also found Eubacterium halii, a lactate-utilizing species. Functionally, the microbiome of schizophrenia patients was characterized by an increased number of metabolic pathways related to metabolite transport systems including siderophores, glutamate, and vitamin B12. In contrast, carbohydrate and lipid pathways and energy metabolism were abundant in controls. These findings suggest that the oropharyngeal microbiome in individuals with schizophrenia is significantly different compared to controls, and that particular microbial species and metabolic pathways differentiate both groups. Confirmation of these findings in larger and more diverse samples, e.g., gut microbiome, will contribute to elucidating potential links between schizophrenia and the human microbiota.

  5. Thymidine kinases share a conserved function for nucleotide salvage and play an essential role in Arabidopsis thaliana growth and development.

    Science.gov (United States)

    Xu, Jing; Zhang, Lin; Yang, Dong-Lei; Li, Qun; He, Zuhua

    2015-12-01

    Thymidine kinases (TKs) are important components in the nucleotide salvage pathway. However, knowledge about plant TKs is quite limited. In this study, the molecular function of TKs in Arabidopsis thaliana was investigated. Two TKs were identified and named AtTK1 and AtTK2. Expression of both genes was ubiquitous, but AtTK1 was strongly expressed in high-proliferation tissues. AtTK1 was localized to the cytosol, whereas AtTK2 was localized to the mitochondria. Mutant analysis indicated that the two genes function coordinately to sustain normal plant development. Enzymatic assays showed that the two TK proteins shared similar catalytic specificity for pyrimidine nucleosides. They were able to complement an Escherichia coli strain lacking TK activity. 5'-Fluorodeoxyuridine (FdU) resistance and 5-ethynyl 2'-deoxyuridine (EdU) incorporation assays confirmed their activity in vivo. Furthermore, the tk mutant phenotype could be alleviated by nucleotide feeding, establishing that the biosynthesis of pyrimidine nucleotides was disrupted by the TK deficiency. Finally, both human and rice (Oryza sativa) TKs were able to rescue the tk mutants, demonstrating the functional conservation of TKs across organisms. Taken together, our findings clarify the specialized function of two TKs in A. thaliana and establish that the salvage pathway mediated by the kinases is essential for plant growth and development. © 2015 Institute of Plant Physiology and Ecology, SIBS, CAS New Phytologist © 2015 New Phytologist Trust.

  6. Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China.

    Directory of Open Access Journals (Sweden)

    Qiuyuan Huang

    Full Text Available Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m saline (1.4% lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E. Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.

  7. Comparison of Ant Community Diversity and Functional Group Composition Associated to Land Use Change in a Seasonally Dry Oak Forest.

    Science.gov (United States)

    Cuautle, M; Vergara, C H; Badano, E I

    2016-04-01

    Ants have been used to assess land use conversion, because they reflect environmental change, and their response to these changes have been useful in the identification of bioindicators. We evaluated ant diversity and composition associated to different land use change in a temperate forest (above 2000 m asl) in Mexico. The study was carried out in "Flor del Bosque" Park a vegetation mosaic of native Oak Forests and introduced Eucalyptus and grasslands. Species richness, dominance and diversity rarefaction curves, based on ant morphospecies and functional groups, were constructed and compared among the three vegetation types, for the rainy and the dry seasons of 2008-2009. Jaccard and Sorensen incidence-based indices were calculated to obtain similarity values among all the habitats. The Oak Forest was a rich dominant community, both in species and functional groups; the Eucalyptus plantation was diverse with low dominance. The most seasonality habitat was the grassland, with low species and high functional group diversity during the dry seasons, but the reverse pattern during the wet season. The Oak Forest was more similar to the Eucalyptus plantation than to the grassland, particularly during the dry season. Oak Forests are dominated by Cold Climate Specialists, specifically Prenolepis imparis (Say). The Eucalyptus and the grassland are characterized by generalized Myrmicinae, as Pheidole spp. and Monomorium ebenium (Forel). The conservation of the native Oak Forest is primordial for the maintenance of Cold Climate Specialist ant communities. The microclimatic conditions in this forest, probably, prevented the invasion by opportunistic species.

  8. Effect of Play-based Therapy on Meta-cognitive and Behavioral Aspects of Executive Function: A Randomized, Controlled, Clinical Trial on the Students With Learning Disabilities.

    Science.gov (United States)

    Karamali Esmaili, Samaneh; Shafaroodi, Narges; Hassani Mehraban, Afsoon; Parand, Akram; Zarei, Masoume; Akbari-Zardkhaneh, Saeed

    2017-01-01

    Although the effect of educational methods on executive function (EF) is well known, training this function by a playful method is debatable. The current study aimed at investigating if a play-based intervention is effective on metacognitive and behavioral skills of EF in students with specific learning disabilities. In the current randomized, clinical trial, 49 subjects within the age range of 7 to 11 years with specific learning disabilities were randomly assigned into the intervention (25 subjects; mean age 8.5±1.33 years) and control (24 subjects; mean age 8.7±1.03 years) groups. Subjects in the intervention group received EF group training based on playing activities; subjects in the control group received no intervention. The behavior rating inventory of executive function (BRIEF) was administered to evaluate the behavioral and cognitive aspects of EF. The duration of the intervention was 6 hours per week for 9 weeks. Multivariate analysis of covariance was used to compare mean changes (before and after) in the BRIEF scores between the groups. The assumptions of multivariate analysis of covariance were examined. After controlling pre-test conditions, the intervention and control groups scored significantly differently on both the metacognition (P=0.002; effect size=0.20) and behavior regulation indices (P=0.01; effect size=0.12) of BRIEF. Play-based therapy is effective on the metacognitive and behavioral aspects of EF in students with specific learning disabilities. Professionals can use play-based therapy rather than educational approaches in clinical practice to enhance EF skills.

  9. Playing facilitator

    DEFF Research Database (Denmark)

    Houmøller, Ellen; Marchetti, Emanuela

    2015-01-01

    event called InnoEvent, addressed to students in the fields of multimedia and healthcare. Being interested in studying games and role-play as tools to support independent learning in the field of design thinking and team-building, following Dewey’s (1938) theory of learning experience, we ran two...... workshops based on two classic role-play games: The Silent Game (Brandt, 2006) and The Six Thinking Hats (de Bono, 1985). These games were created to support students in learning design thinking in groups and are assigned positive values in literature, hence we expected a smooth process. However, our...... experience was rather characterized by conflictual negotiations with the students. Data from our observations and from interviews with group representatives show that the students took a discontinuous learning path, characterised by a false start, failure, and a thorough reconsideration of their work...

  10. Effects of short-term active video game play on community adults: under International Classification of Functioning, Disability and Health consideration.

    Science.gov (United States)

    Tseng, Wei-Che; Hsieh, Ru-Lan

    2013-06-01

    The effects of active video game play on healthy individuals remain uncertain. A person's functional health status constitutes a dynamic interaction between components identified in the International Classification of Functioning, Disability, and Health (ICF). The aim of this study was to investigate the short-term effects of active video game play on community adults using the ICF. Sixty community adults with an average age of 59.3 years and without physical disabilities were recruited. Over 2 weeks, each adult participated in six sessions of active video game play lasting 20 minutes each. Participants were assessed before and after the intervention. Variables were collected using sources related to the ICF components, including the Hospital Anxiety and Depression Scale, Multidimensional Fatigue Inventory, Biodex Stability System, chair- rising time, Frenchay Activity Index, Rivermead Mobility Index, Chronic Pain Grade Questionnaire, Work Ability Index, and World Health Organization Quality of Life-Brief Version. Compared to baseline data, significantly reduced risk of a fall measured by Biodex Stability System and improvements in disability scores measured by the Chronic Pain Grade Questionnaire were noted. There was no significant change in the other variables measured. Short-term, active video game play reduces fall risks and ameliorates disabilities in community adults.

  11. Sown species richness and realized diversity can influence functioning of plant communities differently

    Czech Academy of Sciences Publication Activity Database

    Rychtecká, Terezie; Lanta, V.; Weiterová, I.; Lepš, Jan

    2014-01-01

    Roč. 101, č. 8 (2014), s. 637-644 ISSN 0028-1042 Institutional support: RVO:60077344 Keywords : biodiversity * realized diversity * species pool Subject RIV: EF - Botanics Impact factor: 2.098, year: 2014

  12. H2B ubiquitination: Conserved molecular mechanism, diverse physiologic functions of the E3 ligase during meiosis.

    Science.gov (United States)

    Wang, Liying; Cao, Chunwei; Wang, Fang; Zhao, Jianguo; Li, Wei

    2017-09-03

    RNF20/Bre1 mediated H2B ubiquitination (H2Bub) has various physiologic functions. Recently, we found that H2Bub participates in meiotic recombination by promoting chromatin relaxation during meiosis. We then analyzed the phylogenetic relationships among the E3 ligase for H2Bub, its E2 Rad6 and their partner WW domain-containing adaptor with a coiled-coil (WAC) or Lge1, and found that the molecular mechanism underlying H2Bub is evolutionarily conserved from yeast to mammals. However, RNF20 has diverse physiologic functions in different organisms, which might be caused by the evolutionary divergency of their domain/motif architectures. In the current extra view, we not only elucidate the evolutionarily conserved molecular mechanism underlying H2Bub, but also discuss the diverse physiologic functions of RNF20 during meiosis.

  13. Links between plant litter chemistry, species diversity, and below-ground ecosystem function

    OpenAIRE

    Meier, Courtney L.; Bowman, William D.

    2008-01-01

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics...

  14. Enhancing Social Skills in Adolescents with High Functioning Autism using Motor-based Role-play Intervention

    Directory of Open Access Journals (Sweden)

    Sharon A. Gutman PhD, OTR, FAOTA

    2012-11-01

    Full Text Available The purpose of this pilot study was to collect pilot data evaluating whether a motor-based role-play intervention using a canine animal assistant can enhance social skill use in two adolescents with HFA. A single subject ABA design across two participants was used. The intervention consisted of four 1-hour sessions over 4 weeks. The quality of social interaction was measured by the Evaluation of Social Interaction (ESIadministered at baseline and the 3-month probe. Frequency of targeted social skill use was measured duringbaseline, intervention, and probe phases. Participant 1 experienced statistically significant increases in both ESI scores (p = .012, t = -5.488 from baseline to the 3-month probe. Participant 2 also experienced a statistically significant increase in ESI scores from baseline to probe (p = .002, t = -10.167, but he was unable to fully maintain these gains at the 3-month probe. This pilot study’s findings suggest that the intervention produced positive effects in both participants and warrant further investigation.

  15. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair.

    Science.gov (United States)

    Morales, Julio C; Richard, Patricia; Rommel, Amy; Fattah, Farjana J; Motea, Edward A; Patidar, Praveen L; Xiao, Ling; Leskov, Konstantin; Wu, Shwu-Yuan; Hittelman, Walter N; Chiang, Cheng-Ming; Manley, James L; Boothman, David A

    2014-04-01

    Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair.

  16. The Effectiveness of Singing or Playing a Wind Instrument in Improving Respiratory Function in Patients with Long-Term Neurological Conditions: A Systematic Review.

    Science.gov (United States)

    Ang, Kexin; Maddocks, Matthew; Xu, Huiying; Higginson, Irene J

    2017-03-01

    Many long-term neurological conditions adversely affect respiratory function. Singing and playing wind instruments are relatively inexpensive interventions with potential for improving respiratory function; however, synthesis of current evidence is needed to inform research and clinical use of music in respiratory care. To critically appraise, analyze, and synthesize published evidence on the effectiveness of singing or playing a wind instrument to improve respiratory function in people with long-term neurological conditions. Systematic review of published randomized controlled trials and observational studies examining singing or playing wind instruments to improve respiratory function in individuals with long-term neurological conditions. Articles meeting specified inclusion criteria were identified through a search of the Medline, Embase, PsycINFO, Cochrane Library, CINAHL, Web of Science, CAIRSS for Music, WHO International Clinical Trials Registry Platform Search Portal, and AMED databases as early as 1806 through March 2015. Information on study design, clinical populations, interventions, and outcome measures was extracted and summarized using an electronic standardized coding form. Methodological quality was assessed and summarized across studies descriptively. From screening 584 references, 68 full texts were reviewed and five studies included. These concerned 109 participants. The studies were deemed of low quality, due to evidence of bias, in part due to intervention complexity. No adverse effects were reported. Overall, there was a trend toward improved respiratory function, but only one study on Parkinson's disease had significant between-group differences. The positive trend in respiratory function in people with long-term neurological conditions following singing or wind instrument therapy is of interest, and warrants further investigation. © the American Music Therapy Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  17. Mammalian play: training for the unexpected.

    Science.gov (United States)

    Spinka, M; Newberry, R C; Bekoff, M

    2001-06-01

    In this review, we present a new conceptual framework for the study of play behavior, a hitherto puzzling array of seemingly purposeless and unrelated behavioral elements that are recognizable as play throughout the mammalian lineage. Our major new functional hypothesis is that play enables animals to develop flexible kinematic and emotional responses to unexpected events in which they experience a sudden loss of control. Specifically, we propose that play functions to increase the versatility of movements used to recover from sudden shocks such as loss of balance and falling over, and to enhance the ability of animals to cope emotionally with unexpected stressful situations. To obtain this "training for the unexpected," we suggest that animals actively seek and create unexpected situations in play through self-handicapping; that is, deliberately relaxing control over their movements or actively putting themselves into disadvantageous positions and situations. Thus, play is comprised of sequences in which the players switch rapidly between well-controlled movements similar to those used in "serious" behavior and self-handicapping movements that result in temporary loss of control. We propose that this playful switching between in-control and out-of-control elements is cognitively demanding, setting phylogenetic and ontogenetic constraints on play, and is underlain by neuroendocrinological responses that produce a complex emotional state known as "having fun." Furthermore, we propose that play is often prompted by relatively novel or unpredictable stimuli, and is thus related to, although distinct from, exploration. We present 24 predictions that arise from our new theoretical framework, examining the extent to which they are supported by the existing empirical evidence and contrasting them with the predictions of four major alternative hypotheses about play. We argue that our "training for the unexpected" hypothesis can account for some previously puzzling

  18. `Sex' – It's not only Women's Work: A Case for Refocusing on the Functional Role that Sex Plays in Work for both Women and Men

    OpenAIRE

    Uretsky, Elanah

    2014-01-01

    Mention of the term sex work often invokes images of marginalized women at risk for HIV infection. Such images, however, are counterintuitive to the functional role intended by the movement that spawned use of the terms `sex work' and `sex worker'. This article looks at the sexual practices of men in urban China to argue for a return to a functional definition of `sex work', which was originally meant to legitimize the role sex plays in work. The progenitors of this movement intended to use `...

  19. Playing Possum

    Directory of Open Access Journals (Sweden)

    Enrico Euli

    2016-07-01

    Full Text Available Our society is drenched in the catastrophe; where the growth of financial crisis, environmental cataclysm and militarization represents its gaudiest and mortifying phenomena. Humans struggle with depression, sense of impotence, anguish towards a future considered a threat.  A possibility to keep us alive can be represented by the enhancement of our ability in ‘playing Possum’, an exercise of desisting and renitence: to firmly say ‘no’. To say no to a world that proposes just one way of being and living free, that imposes as the only unavoidable possible destiny.

  20. Playful Technology

    DEFF Research Database (Denmark)

    Johansen, Stine Liv; Eriksson, Eva

    2013-01-01

    In this paper, the design of future services for children in Danish public libraries is discussed, in the light of new challenges and opportunities in relation to new media and technologies. The Danish government has over the last few years initiated and described a range of initiatives regarding...... in the library, the changing role of the librarians and the library space. We argue that intertwining traditional library services with new media forms and engaging play is the core challenge for future design in physical public libraries, but also that it is through new media and technology that new...

  1. DOES THE INFERIOR FRONTAL SULCUS PLAY A FUNCTIONAL ROLE IN DECEPTION? A NEURONAVIGATED THETA-BURST TRANSCRANIAL MAGNETIC STIMULATION STUDY

    Directory of Open Access Journals (Sweden)

    Bruno eVerschuere

    2012-10-01

    Full Text Available Background. By definition, lying involves withholding the truth. Response inhibition may therefore be the cognitive function at the heart of deception. Neuroimaging research has shown that the same brain region that is activated during response inhibition tasks, namely the inferior frontal region, is also activated during deception paradigms. This led to the hypothesis that the inferior frontal region is the neural substrate critically involved in withholding the truth. Objective. We critically examine the functional necessity of the inferior frontal region in withholding the truth during deception. Method. We experimentally manipulated the neural activity level in right inferior frontal sulcus (IFS by means of neuronavigated continuous theta burst stimulation (cTBS. Individual structural magnetic resonance brain images (MRI were used to allow precise stimulation in each participant. Twenty-six participants answered autobiographical questions truthfully or deceptively before and after sham and real cTBS. Results. Deception was reliably associated with more errors, longer and more variable response times than truth telling. Despite the potential role of IFS in deception as suggested by neuroimaging data, the cTBS-induced disruption of right IFS did not affect response times or error rates, when compared to sham stimulation. Conclusions. The present findings do not support the hypothesis that the right inferior frontal sulcus is critically involved in deception.

  2. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa.

    Science.gov (United States)

    Corbelli, Julian Martin; Zurita, Gustavo Andres; Filloy, Julieta; Galvis, Juan Pablo; Vespa, Natalia Isabel; Bellocq, Isabel

    2015-01-01

    The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic (PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools) and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland), and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation.

  3. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa

    Science.gov (United States)

    Corbelli, Julian Martin; Zurita, Gustavo Andres; Filloy, Julieta; Galvis, Juan Pablo; Vespa, Natalia Isabel; Bellocq, Isabel

    2015-01-01

    The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic (PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools) and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland), and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation. PMID:25978319

  4. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa.

    Directory of Open Access Journals (Sweden)

    Julian Martin Corbelli

    Full Text Available The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD, functional (FBD and phylogenetic (PBD facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants from two contrasting biomes (subtropical forest and grassland and land uses (tree plantations and cropfields in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland, and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation.

  5. The Power of Outdoor Play and Play in Natural Environments

    Science.gov (United States)

    Kemple, Kristen M.; Oh, JiHyun; Kenney, Elizabeth; Smith-Bonahue, Tina

    2016-01-01

    Young children's outdoor play serves important and diverse purposes, including physical exercise and opportunities for growth in all developmental areas. Unfortunately, the amount of time that children spend engaged in unstructured, child-directed outdoor play has diminished significantly in the past generation. In this article, the authors…

  6. Spanish juniper gain expansion opportunities by counting on a functionally diverse dispersal assemblage community.

    Science.gov (United States)

    Escribano-Ávila, Gema; Pías, Beatriz; Sanz-Pérez, Virginia; Virgós, Emilio; Escudero, Adrián; Valladares, Fernando

    2013-10-01

    Seed dispersal is typically performed by a diverse array of species assemblages with different behavioral and morphological traits which determine dispersal quality (DQ, defined as the probability of recruitment of a dispersed seed). Fate of ecosystems to ongoing environmental changes is critically dependent on dispersal and mainly on DQ in novel scenarios. We assess here the DQ, thus the multiplicative effect of germination and survival probability to the first 3 years of life, for seeds dispersed by several bird species (Turdus spp.) and carnivores (Vulpes vulpes, Martes foina) in mature woodland remnants of Spanish juniper (Juniperus thurifera) and old fields which are being colonized by this species. Results showed that DQ was similar in mature woodlands and old fields. Germination rate for seeds dispersed by carnivores (11.5%) and thrushes (9.12%) was similar, however, interacted with microhabitat suitability. Seeds dispersed by carnivores reach the maximum germination rate on shrubs (16%), whereas seeds dispersed by thrushes did on female juniper canopies (15.5) indicating that each group of dispersers performed a directed dispersal. This directional effect was diluted when survival probability was considered: thrushes selected smaller seeds which had higher mortality in the seedling stage (70%) in relation to seedlings dispersed by carnivores (40%). Overall, thrushes resulted low-quality dispersers which provided a probability or recruitment of 2.5%, while a seed dispersed by carnivores had a probability of recruitment of 6.5%. Our findings show that generalist dispersers (i.e., carnivores) can provide a higher probability of recruitment than specialized dispersers (i.e., Turdus spp.). However, generalist species are usually opportunistic dispersers as their role as seed dispersers is dependent on the availability of trophic resources and species feeding preferences. As a result, J. thurifera dispersal community is composed by two functional groups of

  7. The disequilibrium of nucleosomes distribution along chromosomes plays a functional and evolutionarily role in regulating gene expression

    KAUST Repository

    Cui, Peng

    2011-08-19

    To further understand the relationship between nucleosome-space occupancy (NO) and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3)-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues-cerebrum, testis, and ESCs-and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK) genes and tissue-specific (TS) genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types. © 2011 Cui et al.

  8. The disequilibrium of nucleosomes distribution along chromosomes plays a functional and evolutionarily role in regulating gene expression.

    Directory of Open Access Journals (Sweden)

    Peng Cui

    Full Text Available To further understand the relationship between nucleosome-space occupancy (NO and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues--cerebrum, testis, and ESCs--and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK genes and tissue-specific (TS genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types.

  9. FairyPlay

    DEFF Research Database (Denmark)

    Toft, Herdis

    2018-01-01

    in a play culture where children recycle them in transmitted, transformed and transgressive modes. His fairy tales function as raw materials – trash – for play-production, and these contemporary children muddle, mingle, remix their formulas and elements with other materials and adjust them to a play context......Hans Christian Andersen is a cultural icon in the Danish community, and his fairy tales are canonized as treasured Danish cultural heritage. However, situated as they are today in a crosscultural mix between folklore, booklore and medialore, they also may be analysed as useful, treasured trash...... through improvisations. So they perform what we shall name FairyPlay - just like Hans Christian Andersen himself did. We show Hans Christian Andersen as an intimate connoisseur of play culture, a homo ludens, a trash-sculptor and a thing-finder, like Pippi Longstocking and like children in play. Examples...

  10. From L-dopa to dihydroxyphenylacetaldehyde: a toxic biochemical pathway plays a vital physiological function in insects.

    Directory of Open Access Journals (Sweden)

    Christopher Vavricka

    2011-01-01

    Full Text Available One protein in Aedes aegypti, classified into the aromatic amino acid decarboxylase (AAAD family based on extremely high sequence homology (∼70% with dopa decarboxylase (Ddc, was biochemically investigated. Our data revealed that this predicted AAAD protein use L-dopa as a substrate, as does Ddc, but it catalyzes the production of 3,4-dihydroxylphenylacetaldehyde (DHPAA directly from L-dopa and apparently has nothing to do with the production of any aromatic amine. The protein is therefore named DHPAA synthase. This subsequently led to the identification of the same enzyme in Drosophila melanogaster, Anopheles gambiae and Culex quinquefasciatus by an initial prediction of putative DHPAA synthase based on sequence homology and subsequent verification of DHPAA synthase identity through protein expression and activity assays. DHPAA is highly toxic because its aldehyde group readily reacts with the primary amino groups of proteins, leading to protein crosslinking and inactivation. It has previously been demonstrated by several research groups that Drosophila DHPAA synthase was expressed in tissues that produce cuticle materials and apparent defects in regions of colorless, flexible cuticular structures have been observed in its gene mutants. The presence of free amino groups in proteins, the high reactivity of DHPAA with the free amino groups, and the genetically ascertained function of the Drosophila DHPAA synthase in the formation of colorless, flexible cuticle, when taken together, suggest that mosquito and Drosophila DHPAA synthases are involved in the formation of flexible cuticle through their reactive DHPAA-mediated protein crosslinking reactions. Our data illustrate how a seemingly highly toxic pathway can serve for an important physiological function in insects.

  11. Depth-related trends in morphological and functional diversity of demersal fish assemblages in the western Mediterranean Sea

    Science.gov (United States)

    Farré, Marc; Tuset, Víctor M.; Cartes, Joan E.; Massutí, Enric; Lombarte, Antoni

    2016-09-01

    The morphological and functional traits of fishes are key factors defining the ecological and biological habits of species within ecosystems. However, little is known about how the depth gradient affects these factors. In the present study, several demersal fish assemblages from the Balearic Islands (western Mediterranean Sea) along a wide depth range (40-2200 m) were morphologically, functionally and ecologically described. The morphological characterization of communities was performed using geometric morphometric methods, while the functional structures were obtained by the functional categorization of species and the application of principal coordinates analysis (PCoA). The results revealed that morphospaces presented less richness of body forms as depth increases, although they showed a progressive spreading of species toward the periphery, with a proliferation of more extreme body traits, demonstrating lower morphological redundancy. In addition, a trend toward the elongation of body shape was also observed with depth. Moreover, functional diversity increased with bathymetry up to 1400 m, where it sharply decreased downwards. This decrease was parallel to a progressive fall of H‧ (ecological diversity) up to 2200 m. Functional redundancy progressively decreased until the deepest assemblage (more constantly in the deeper levels), which was almost exclusively dominated by benthopelagic wandering species feeding on suprabenthos. Redundancy analysis (RDA) demonstrated that both morphological and functional spaces showed high variation along the bathymetric range. Mantel test indicated that the majority of species presented similar spatial distribution within the morphospace and functional space, although in the functional space the more abundant species were always located at the periphery. These results demonstrate that the assessment of the morpho-functional variation between marine communities helps to understand the processes that affect the structure and

  12. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003.

    Science.gov (United States)

    Christiaen, Steven E A; O'Connell Motherway, Mary; Bottacini, Francesca; Lanigan, Noreen; Casey, Pat G; Huys, Geert; Nelis, Hans J; van Sinderen, Douwe; Coenye, Tom

    2014-01-01

    In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.

  13. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003.

    Directory of Open Access Journals (Sweden)

    Steven E A Christiaen

    Full Text Available In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2, and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.

  14. Ecosystem engineering by invasive exotic beavers reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile.

    Science.gov (United States)

    Anderson, Christopher B; Rosemond, Amy D

    2007-11-01

    Species invasions are of global significance, but predicting their impacts can be difficult. Introduced ecosystem engineers, however, provide an opportunity to test the underlying mechanisms that may be common to all invasive engineers and link relationships between changes in diversity and ecosystem function, thereby providing explanatory power for observed ecological patterns. Here we test specific predictions for an invasive ecosystem engineer by quantifying the impacts of habitat and resource modifications caused by North American beavers (Castor canadensis) on aquatic macroinvertebrate community structure and stream ecosystem function in the Cape Horn Biosphere Reserve, Chile. We compared responses to beavers in three habitat types: (1) forested (unimpacted) stream reaches, (2) beaver ponds, and (3) sites immediately downstream of beaver dams in four streams. We found that beaver engineering in ponds created taxonomically simplified, but more productive, benthic macroinvertebrate assemblages. Specifically, macroinvertebrate richness, diversity and number of functional feeding groups were reduced by half, while abundance, biomass and secondary production increased three- to fivefold in beaver ponds compared to forested sites. Reaches downstream of beaver ponds were very similar to natural forested sections. Beaver invasion effects on both community and ecosystem parameters occurred predominantly via increased retention of fine particulate organic matter, which was associated with reduced macroinvertebrate richness and diversity (via homogenization of benthic microhabitat) and increased macroinvertebrate biomass and production (via greater food availability). Beaver modifications to macroinvertebrate community structure were largely confined to ponds, but increased benthic production in beaver-modified habitats adds to energy retention and flow for the entire stream ecosystem. Furthermore, the effects of beavers on taxa richness (negative) and measures of

  15. [Responses of functional diversity of aquatic insect community to land use change in middle reach of Qiantang River, East China].

    Science.gov (United States)

    Zhang, Lian-Bo; Liu, Dong-Xiao; Liu, Shuo-Ru; Zhang, Yong; Tong, Xiao-Li; Wang, Bei-Xin

    2013-10-01

    Based on the biological traits such as life history, resistance ability against environmental disturbance, and physiological characteristics of aquatic insects, and by using the fourth-corner statistical method, this paper studied the responses of the functional diversity of aquatic insect community to land use change in the middle reach of Qiantang River, Zhejiang Province of East China. For the test aquatic insect community, some of its biological traits were sensitive to land use change, and altered along human disturbance gradients as expected. With the increasing intensity of human disturbance, the maximal insect body length decreased gradually, the dominant respiration pattern evolved from gill respiration to tegument respiration, and the abundance of burrowers increased significantly. At the same time, the functional diversity measured as Rao's quadratic entropy was significantly higher in reference sites than in disturbed sites (P aquatic community were mainly induced by the land use change caused by human activities, which resulted in the decline of stream water quality and habitat quality and the variations of aquatic insect community composition and biological traits. The aquatic insect biological traits and functional diversity could be the potentially effective indicators in the stream health assessment in the future.

  16. Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling

    NARCIS (Netherlands)

    Bell, J.B.; Woulds, C.; van Oevelen, D.

    2017-01-01

    Hydrothermal vents are highly dynamic ecosystems and are unusually energy rich in the deep-sea. Insitu hydrothermal-based productivity combined with sinking photosynthetic organic matter in a softsedimentsetting creates geochemically diverse environments, which remain poorly studied. Here,we use

  17. PHYLOGENETIC AND FUNCTIONAL DIVERSITY OF SEAGULL AND CANADIAN GEESE FECAL MICROBIAL COMMUNITIES

    Science.gov (United States)

    In spite of increasing public health concerns on the risks associated with swimming in waters contaminated with waterfowl feces, there is little information on the gut microbial communities of aquatic birds. To address the molecular microbial diversity of waterfowl, 16S rDNA and ...

  18. Examining the Effectiveness of Functional Family Therapy across Diverse Client Ethnic Groups

    Science.gov (United States)

    Dunham, Jessica Barfield

    2009-01-01

    Treatment for adolescent problem behavior has been given extensive attention in the literature due to the serious nature of the problem and the potential risk to others and the community. As the needs of an increasingly diverse juvenile population intensify and mounting evidence suggests ethnic minority youth receive disparate treatment across…

  19. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity

    Czech Academy of Sciences Publication Activity Database

    Mason, N. W. H.; Richardson, S. J.; Peltzer, D. A.; de Bello, Francesco; Wardle, D. A.; Allen, R. B.

    2012-01-01

    Roč. 100, č. 3 (2012), 678-689 ISSN 0022-0477 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : plant community diversity * environmental filtering * forest ecosystem Subject RIV: EH - Ecology, Behaviour Impact factor: 5.431, year: 2012

  20. Methodological advances to study the diversity of soil protists and their functioning in soil food webs

    NARCIS (Netherlands)

    Geisen, Stefan; Bonkowski, Michael

    2018-01-01

    Abstract Soils host the most complex communities of organisms, which are still largely considered as an unknown ‘black box’. A key role in soil food webs is held by the highly abundant and diverse group of protists. Traditionally, soil protists are considered as the main consumers of bacteria in

  1. Methodological advances to study the diversity of soil protists and their functioning in soil food webs

    NARCIS (Netherlands)

    Geisen, Stefan; Bonkowski, Michael

    2017-01-01

    Soils host the most complex communities of organisms, which are still largely considered as an unknown 'black box'. A key role in soil food webs is held by the highly abundant and diverse group of protists. Traditionally, soil protists are considered as the main consumers of bacteria in soils.

  2. Development of the Contextual Assessment of Social Skills (CASS): a role play measure of social skill for individuals with high-functioning autism.

    Science.gov (United States)

    Ratto, Allison B; Turner-Brown, Lauren; Rupp, Betty M; Mesibov, Gary B; Penn, David L

    2011-09-01

    This study piloted a role play assessment of conversational skills for adolescents and young adults with high-functioning autism/Asperger syndrome (HFA/AS). Participants completed two semi-structured role plays, in which social context was manipulated by changing the confederate's level of interest in the conversation. Participants' social behavior was rated via a behavioral coding system, and performance was compared across contexts and groups. An interaction effect was found for several items, whereby control participants showed significant change across context, while participants with HFA/AS showed little or no change. Total change across contexts was significantly correlated with related social constructs and significantly predicted ASD. The findings are discussed in terms of the potential utility of the CASS in the evaluation of social skill.

  3. Impulsive Internet Game Play Is Associated With Increased Functional Connectivity Between the Default Mode and Salience Networks in Depressed Patients With Short Allele of Serotonin Transporter Gene

    Directory of Open Access Journals (Sweden)

    Ji Sun Hong

    2018-04-01

    Full Text Available Problematic Internet game play is often accompanied by major depressive disorder (MDD. Depression seems to be closely related to altered functional connectivity (FC within (and between the default mode network (DMN and salience network. In addition, serotonergic neurotransmission may regulate the symptoms of depression, including impulsivity, potentially by modulating the DMN. We hypothesized that altered connectivity between the DMN and salience network could mediate an association between the 5HTTLPR genotype and impulsivity in patients with depression. A total of 54 participants with problematic Internet game play and MDD completed the research protocol. We genotyped for 5HTTLPR and assessed the DMN FC using resting-state functional magnetic resonance imaging. The severity of Internet game play, depressive symptoms, anxiety, attention and impulsivity, and behavioral inhibition and activation were assessed using the Young Internet Addiction Scale (YIAS, Beck Depressive Inventory, Beck Anxiety Inventory (BAI, Korean Attention Deficit Hyperactivity Disorder scale, and the Behavioral Inhibition and Activation Scales (BIS-BAS, respectively. The SS allele was associated with increased FC within the DMN, including the middle prefrontal cortex (MPFC to the posterior cingulate cortex, and within the salience network, including the right supramarginal gyrus (SMG to the right rostral prefrontal cortex (RPFC, right anterior insular (AInsular to right SMG, anterior cingulate cortex (ACC to left RPFC, and left AInsular to right RPFC, and between the DMN and salience network, including the MPFC to the ACC. In addition, the FC from the MPFC to ACC positively correlated with the BIS and YIAS scores in the SS allele group. The SS allele of 5HTTLPR might modulate the FC within and between the DMN and salience network, which may ultimately be a risk factor for impulsive Internet game play in patients with MDD.

  4. Impulsive Internet Game Play Is Associated With Increased Functional Connectivity Between the Default Mode and Salience Networks in Depressed Patients With Short Allele of Serotonin Transporter Gene.

    Science.gov (United States)

    Hong, Ji Sun; Kim, Sun Mi; Bae, Sujin; Han, Doug Hyun

    2018-01-01

    Problematic Internet game play is often accompanied by major depressive disorder (MDD). Depression seems to be closely related to altered functional connectivity (FC) within (and between) the default mode network (DMN) and salience network. In addition, serotonergic neurotransmission may regulate the symptoms of depression, including impulsivity, potentially by modulating the DMN. We hypothesized that altered connectivity between the DMN and salience network could mediate an association between the 5HTTLPR genotype and impulsivity in patients with depression. A total of 54 participants with problematic Internet game play and MDD completed the research protocol. We genotyped for 5HTTLPR and assessed the DMN FC using resting-state functional magnetic resonance imaging. The severity of Internet game play, depressive symptoms, anxiety, attention and impulsivity, and behavioral inhibition and activation were assessed using the Young Internet Addiction Scale (YIAS), Beck Depressive Inventory, Beck Anxiety Inventory (BAI), Korean Attention Deficit Hyperactivity Disorder scale, and the Behavioral Inhibition and Activation Scales (BIS-BAS), respectively. The SS allele was associated with increased FC within the DMN, including the middle prefrontal cortex (MPFC) to the posterior cingulate cortex, and within the salience network, including the right supramarginal gyrus (SMG) to the right rostral prefrontal cortex (RPFC), right anterior insular (AInsular) to right SMG, anterior cingulate cortex (ACC) to left RPFC, and left AInsular to right RPFC, and between the DMN and salience network, including the MPFC to the ACC. In addition, the FC from the MPFC to ACC positively correlated with the BIS and YIAS scores in the SS allele group. The SS allele of 5HTTLPR might modulate the FC within and between the DMN and salience network, which may ultimately be a risk factor for impulsive Internet game play in patients with MDD.

  5. Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions.

    Science.gov (United States)

    Biedrzycka, Aleksandra; O'Connor, Emily; Sebastian, Alvaro; Migalska, Magdalena; Radwan, Jacek; Zając, Tadeusz; Bielański, Wojciech; Solarz, Wojciech; Ćmiel, Adam; Westerdahl, Helena

    2017-07-05

    Recent work suggests that gene duplications may play an important role in the evolution of immunity genes. Passerine birds, and in particular Sylvioidea warblers, have highly duplicated major histocompatibility complex (MHC) genes, which are key in immunity, compared to other vertebrates. However, reasons for this high MHC gene copy number are yet unclear. High-throughput sequencing (HTS) allows MHC genotyping even in individuals with extremely duplicated genes. This HTS data can reveal evidence of selection, which may help to unravel the putative functions of different gene copies, i.e. neofunctionalization. We performed exhaustive genotyping of MHC class I in a Sylvioidea warbler, the sedge warbler, Acrocephalus schoenobaenus, using the Illumina MiSeq technique on individuals from a wild study population. The MHC diversity in 863 genotyped individuals by far exceeds that of any other bird species described to date. A single individual could carry up to 65 different alleles, a large proportion of which are expressed (transcribed). The MHC alleles were of three different lengths differing in evidence of selection, diversity and divergence within our study population. Alleles without any deletions and alleles containing a 6 bp deletion showed characteristics of classical MHC genes, with evidence of multiple sites subject to positive selection and high sequence divergence. In contrast, alleles containing a 3 bp deletion had no sites subject to positive selection and had low divergence. Our results suggest that sedge warbler MHC alleles that either have no deletion, or contain a 6 bp deletion, encode classical antigen presenting MHC molecules. In contrast, MHC alleles containing a 3 bp deletion may encode molecules with a different function. This study demonstrates that highly duplicated MHC genes can be characterised with HTS and that selection patterns can be useful for revealing neof