WorldWideScience

Sample records for platinum-free laser glass

  1. Investigation of platinum alloys for melting of inclusion free laser glass: Final report

    International Nuclear Information System (INIS)

    Izumitani, T.; Toratani, H.; Meissner, H.E.

    1986-01-01

    The objective of this work is to evaluate the suitability of Pt alloys as crucible materials for melting LHG-8 phosphate laser glass. The tendency of forming metallic inclusions and ionic dissolution of alloy components in the glass is to be compared with that of pure Pt. Ionic Pt is introduced into the glass melt by direct dissolution of Pt at the crucible-melt interface and by vapor phase transport. It was felt that a Pt-alloy may behave sufficiently differently from Pt that a number of alloys should be studied. Pt inclusions may originate from Pt which reprecipitates from the glass melt on cooling or change in redox-conditions; from volatilized Pt which deposits in colder zones of the melting environment as crystallites which may drop back into the glass melt; and/or from Pt particles which are mechanically removed from the crucible and drop into the glass melt. Besides pure Pt, the following alloys have been tested: Pt/ 10 Ir, Pt/ 10 Rh, Pt/ 5 Au, Pt-ZGS, Pt/ 5 Au-ZGS, Pt/ 10 Rh-ZGS

  2. Towards crack-free ablation cutting of thin glass sheets with picosecond pulsed lasers

    Science.gov (United States)

    Sun, Mingying; Eppelt, Urs; Hartmann, Claudia; Schulz, Wolfgang; Zhu, Jianqiang; Lin, Zunqi

    2017-08-01

    We investigated the morphology and mechanism of laser-induced damage in the ablation cutting of thin glass sheets with picosecond laser. Two kinds of damage morphologies observed on the cross-section of the cut channel, are caused by high-density free-electrons and the temperature accumulation, respectively. Notches and micro-cracks can be observed on the top surface of the sample near the cut edge. The surface micro-cracks were related to high energy free-electrons and also the heat-affected zone. Heat-affected-zone and visible-cracks free conditions of glass cutting were achieved by controlling the repetition rate and spatial overlap of laser pulses.

  3. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    Science.gov (United States)

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  4. Photolithography-free laser-patterned HF acid-resistant chromium-polyimide mask for rapid fabrication of microfluidic systems in glass

    International Nuclear Information System (INIS)

    Zamuruyev, Konstantin O; Zrodnikov, Yuriy; Davis, Cristina E

    2017-01-01

    Excellent chemical and physical properties of glass, over a range of operating conditions, make it a preferred material for chemical detection systems in analytical chemistry, biology, and the environmental sciences. However, it is often compromised with SU8, PDMS, or Parylene materials due to the sophisticated mask preparation requirements for wet etching of glass. Here, we report our efforts toward developing a photolithography-free laser-patterned hydrofluoric acid-resistant chromium-polyimide tape mask for rapid prototyping of microfluidic systems in glass. The patterns are defined in masking layer with a diode-pumped solid-state laser. Minimum feature size is limited to the diameter of the laser beam, 30 µ m; minimum spacing between features is limited by the thermal shrinkage and adhesive contact of the polyimide tape to 40 µ m. The patterned glass substrates are etched in 49% hydrofluoric acid at ambient temperature with soft agitation (in time increments, up to 60 min duration). In spite of the simplicity, our method demonstrates comparable results to the other current more sophisticated masking methods in terms of the etched depth (up to 300 µ m in borosilicate glass), feature under etch ratio in isotropic etch (∼1.36), and low mask hole density. The method demonstrates high yield and reliability. To our knowledge, this method is the first proposed technique for rapid prototyping of microfluidic systems in glass with such high performance parameters. The proposed method of fabrication can potentially be implemented in research institutions without access to a standard clean-room facility. (paper)

  5. Fabrication of three-dimensional platinum microstructures with laser irradiation and electrochemical technique

    International Nuclear Information System (INIS)

    Kikuchi, T.; Takahashi, H.; Maruko, T.

    2007-01-01

    Three-dimensional (3D) platinum microstructures were fabricated by successive procedures: aluminum anodizing, laser irradiation, nickel/platinum electroplating, and removal of the aluminum substrate, the oxide films, and the nickel metal layer. Aluminum plates and rods were anodized in an oxalic acid solution to form porous type oxide films. The anodized specimens were immersed in a nickel electroplating solution, and then irradiated with a pulsed Nd-yttrium aluminum garnet (YAG) laser beam to remove the anodic oxide film with a three-dimensional XYZθ stage. The specimens were cathodically polarized in the nickel and a platinum electroplating solution to form the metal micropattern at the laser-irradiated area. The electroplated specimens were immersed in NaOH solution to dissolve the aluminum substrate and the oxide films, and then immersed in HCl solution to dissolve the nickel deposits. A platinum grid-shaped microstructure, a microspring, and a cylindrical network microstructure with 50-100 μm line width were obtained successfully

  6. Fabrication of three-dimensional platinum microstructures with laser irradiation and electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-Ku, Sapporo (Japan)]. E-mail: kiku@elechem1-mc.eng.hokudai.ac.jp; Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-Ku, Sapporo (Japan); Maruko, T. [Furuya Metal Co. Ltd., R and D Group, Shimodate Daiichi Kogyodanchi 1915, Morisoejima, Chikusei, Ibaraki (Japan)

    2007-02-01

    Three-dimensional (3D) platinum microstructures were fabricated by successive procedures: aluminum anodizing, laser irradiation, nickel/platinum electroplating, and removal of the aluminum substrate, the oxide films, and the nickel metal layer. Aluminum plates and rods were anodized in an oxalic acid solution to form porous type oxide films. The anodized specimens were immersed in a nickel electroplating solution, and then irradiated with a pulsed Nd-yttrium aluminum garnet (YAG) laser beam to remove the anodic oxide film with a three-dimensional XYZ{theta} stage. The specimens were cathodically polarized in the nickel and a platinum electroplating solution to form the metal micropattern at the laser-irradiated area. The electroplated specimens were immersed in NaOH solution to dissolve the aluminum substrate and the oxide films, and then immersed in HCl solution to dissolve the nickel deposits. A platinum grid-shaped microstructure, a microspring, and a cylindrical network microstructure with 50-100 {mu}m line width were obtained successfully.

  7. Research and development of improving the pumping efficiency of phosphate laser glass: Final report

    International Nuclear Information System (INIS)

    Izumitani, T.

    1985-01-01

    It is well known that Pt inclusion in laser glass remarkably lowers the damage threshold by laser beam. Present commercial laser glasses are produced so as to minimize the Pt inclusion. However, the damage due to small Pt inclusion, which has never seriously caused the laser damage in a lower fluence level, is getting to be a problem as the output fluence of laser increases. In NOVA system, most of laser glasses were damaged at fluence of 3 to 4 J/cm 2 . Since NOVA has been planned to operate at 10 J/cm 2 , this damage threshold is absolutely unacceptable and it should be increased. In this report we will show the basic conception to make a Pt inclusion free glass and its experimental results

  8. Development of large scale production of Nd-doped phosphate glasses for megajoule-scale laser systems

    International Nuclear Information System (INIS)

    Ficini, G.; Campbell, J.H.

    1996-01-01

    Nd-doped phosphate glasses are the preferred gain medium for high-peak-power lasers used for Inertial Confinement Fusion research because they have excellent energy storage and extraction characteristics. In addition, these glasses can be manufactured defect-free in large sizes and at relatively low cost. To meet the requirements of the future mega-joule size lasers, advanced laser glass manufacturing methods are being developed that would enable laser glass to be continuously produced at the rate of several thousand large (790 x 440 x 44 mm 3 ) plates of glass per year. This represents more than a 10 to 100-fold improvement in the scale of the present manufacturing technology

  9. Recent advances in phosphate laser glasses for high power applications

    International Nuclear Information System (INIS)

    Campbell, J.H.

    1996-01-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm 3 have been made and methods for continuous melting laser glass are under development

  10. New Erbium Doped Antimony Glasses for Laser and Glass ...

    African Journals Online (AJOL)

    Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses.

  11. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  12. Recent developments in laser glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1983-01-01

    The past decade has witnessed a proliferation of new glass-forming compositions including oxides, halides, oxyhalides, and chalcogenides. Many of these glasses are applicable to lasers and have greatly expanded the range of optical properties and spectroscopic parameters available to the laser designer. Our knowledge and understanding of many properties of interest for laser action - transparency, linear and nonlinear refractive indices, and damage threshold of the host glass and the absorption spectrum, radiative and nonradiative transition probabilities, fluorescence wavelength, stimulated emission cross section, and spectroscopic inhomogeneities of the lasing ion Nd 3 + - are reviewed

  13. Composite polymer/glass edge claddings for new Nova laser disks

    International Nuclear Information System (INIS)

    Powell, H.T.; Campbell, J.H.; Edwards, G.

    1987-01-01

    Large Nd:glass laser disks like those used in Nova require an edge cladding which absorbs at 1 μm. This cladding prevents Fresnel reflections from the edges from causing parasitic oscillations which would otherwise reduce the gain. The original Nova disks had a Cu/sup 2+/-doped phosphate glass cladding which was cast at high temperature around the circumference of the disk. Although the performance of this cladding is excellent, it was expensive to produce. Consequently, in parallel with their efforts to develop Pt inclusion-free laser glass, the authors developed a composite polymer/glass edge cladding that can be applied at greatly reduced cost. Laser disks constructed with the new cladding design show identical performance to the previous Nova disks and have been tested for hundreds of shots without degradation. The new cladding consists of absorbing glass strips which are bonded to the edges of polygonal-rather that elliptical-shaped disks. The bond is made by an --25-μm thick clear epoxy adhesive whose index of refraction matches both the laser and absorbing glass. By blending aromatic and aliphatic epoxy constituents, they achieved an index-of-refraction match within approximately +-0.003 between the epoxy and glass. The epoxy was also chosen based on its damage resistance to flashlamp light and its adhesive strength to glass. The present cladding is a major improvement over a previous experimental cladding utilizing silicone rubber as a coupling agent. Early prototypes constructed without using the presented techniques exhibited failures from both mechanisms. Delamination failures occurred which clearly showed both surface and bulk-mode parasitic oscillation. Requirements on the polymer, disk size, and Nd doping to prevent these problems are presented

  14. Segregation of the elements of the platinum group in a simulated high-level waste glass

    International Nuclear Information System (INIS)

    Mitamura, H.; Banba, T.; Kamizono, H.; Kiriyama, Y.; Kumata, M.; Murakami, T.; Tashiro, S.

    1983-01-01

    Segregation of the elements of the platinum group occurred during vitrification of the borosilicate glass containing 20 wt% simulated high-level waste oxides. The segregated materials were composed of two crystalline phases: one was the solid solution of ruthenium and rhodium dioxides and the other was that of palladium and rhodium metals also with tellurium. The segregated materials were not distributed homogeneously throughout the glass: (i) on the surface of the glass, there occurred palladium, rhodium and tellurium alloy alone; and (ii) at the inner part of the glass, the agglomerates of the two phases were concentrated in one part and dispersed in the other

  15. Femtosecond laser-induced periodic surface nanostructuring of sputtered platinum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Ainara, E-mail: airodriguez@ceit.es [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); Morant-Miñana, Maria Carmen; Dias-Ponte, Antonio; Martínez-Calderón, Miguel; Gómez-Aranzadi, Mikel; Olaizola, Santiago M. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain)

    2015-10-01

    Highlights: • Femtosecond laser-induced surface nanostructures on sputtered platinum thin films. • Three types of structures obtained: random nanostructures, LSFL and HSFL. • Two different modification regimes have been established based on laser fluence. - Abstract: In this work, submicro and nanostructures self-formed on the surface of Platinum thin films under femtosecond laser-pulse irradiation are investigated. A Ti:Sapphire laser system was used to linearly scan 15 mm lines with 100 fs pulses at a central wavelength of 800 nm with a 1 kHz repetition rate. The resulting structures were characterized by scanning electron microscopy (SEM) and 2D-Fast Fourier Transform (2D-FFT) analysis. This analysis of images revealed different types of structures depending on the laser irradiation parameters: random nanostructures, low spatial frequency LIPSS (LSFL) with a periodicity from about 450 to 600 nm, and high spatial frequency LIPSS (HSFL) with a periodicity from about 80 to 200 nm. Two different modifications regimes have been established for the formation of nanostructures: (a) a high-fluence regime in which random nanostructures and LSFL are obtained and (b) a low-fluence regime in which HSFL and LSFL are obtained.

  16. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.

    Science.gov (United States)

    Cui, Xiangzhi; Shi, Jianlin; Wang, Yongxia; Chen, Yu; Zhang, Lingxia; Hua, Zile

    2014-01-01

    As one of the most important clean energy sources, proton exchange membrane fuel cells (PEMFCs) have been a topic of extensive research focus for decades. Unfortunately, several critical technique obstacles, such as the high cost of platinum electrode catalysts, performance degradation due to the CO poisoning of the platinum anode, and carbon corrosion by oxygen in the cathode, have greatly impeded its commercial development. A prototype of a single PEMFC catalyzed by a mesostructured platinum-free WO3/C anode and a mesostructured carbon-free Pt/WC cathode catalysts is reported herein. The prototype cell exhibited 93% power output of a standard PEMFC using commercial Pt/C catalysts at 50 and 70 °C, and more importantly, CO poisoning-free and carbon corrosion-resistant characters of the anode and cathode, respectively. Consequently, the prototype cell demonstrated considerably enhanced cell operation durability. The mesostructured electrode catalysts are therefore highly promising in the future development and application of PEMFCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    Science.gov (United States)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  18. Linear self-focusing of continuous UV laser beam in photo-thermo-refractive glasses.

    Science.gov (United States)

    Sidorov, Alexander I; Gorbyak, Veronika V; Nikonorov, Nikolay V

    2018-03-19

    The experimental and theoretical study of continuous UV laser beam propagation through thick silver-containing photo-thermo-refractive glass is presented. It is shown for the first time that self-action of UV Gaussian beam in glass results in its self-focusing. The observed linear effect is non-reversible and is caused by the transformation of subnanosized charged silver molecular clusters to neutral state under UV laser radiation. Such transformation is accompanied by the increase of molecular clusters polarizability and the refractive index increase in irradiated area. As a result, an extended positive lens is formed in glass bulk. In a theoretical study of linear self-focusing effect, the "aberration-free" approximation was used, taking into account spatial distribution of induced absorption.

  19. Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass

    Science.gov (United States)

    Fedotov, S. S.; Drevinskas, R.; Lotarev, S. V.; Lipatiev, A. S.; Beresna, M.; ČerkauskaitÄ--, A.; Sigaev, V. N.; Kazansky, P. G.

    2016-02-01

    Self-assembled nanostructures created by femtosecond laser irradiation are demonstrated in alkali-free aluminoborosilicate glass. The growth of the induced retardance associated with the nanograting formation is three orders of magnitude slower than in silica glass and is observed only within a narrow range of pulse energies. However, the strength of retardance asymptotically approaches the value typically measured in pure silica glass, which is attractive for practical applications. A similar intensity threshold for nanograting formation of about 1 TW/cm2 is observed for all glasses studied. The radially polarized vortex beam micro-converter designed as a space-variant quarter-wave retarder for the near-infrared spectral range is imprinted in commercial Schott AF32 glass.

  20. Removal of platinum group metals contained in molten glass using copper

    International Nuclear Information System (INIS)

    Uruga, Kazuyoshi; Sawada, Kayo; Arita, Yuji; Enokida, Youichi; Yamamoto, Ichiro

    2007-01-01

    Removal of platinum group metals (PGMs) such as Pd, Ru, and RuO 2 from molten glass by using various amounts of liquid Cu was done as a basic study on a new vitrification process for a high-level radio-active waste. We prepared two types of borosilicate glasses containing PGMs and Cu, respectively. These glasses were mixed together and heated at 1,473 K for 4h in Ar atmosphere. More than 95% of Pd were removed as a spherical metal button composed of Pd-Cu alloy when Cu was added in an amount 0.5 times the weight of Pd. Nearly 95% of Ru was also removed as a spherical button with 2.5-5 times as much Cu addition as Ru in weight. Ruthenium oxide was reduced to metallic Ru by a reaction with Cu in the molten glass. The removal fraction was increased by increasing the amount of Cu and reached 63% when Cu addition was 7.5 times as much as RuO 2 in weight. By addition of Si as a reducing agent, nearly 90% of Pd and Ru were removed with Cu and Si metal composites even under O 2 :Ar=20:80 (v/v) condition. (author)

  1. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    International Nuclear Information System (INIS)

    Caird, J.A.; Agrawal, V.; Bayramian, A.; Beach, R.; Britten, J.; Chen, D.; Cross, R.; Ebbers, C.; Erlandson, A.; Feit, M.; Freitas, B.; Ghosh, C.; Haefner, C.; Homoelle, D.; Ladran, T.; Latkowski, J.; Molander, W.; Murray, J.; Rubenchik, S.; Schaffers, K.; Siders, C.W.; Stappaerts, E.; Sutton, S.; Telford, S.; Trenholme, J.; Barty, C.J.

    2008-01-01

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive

  2. Composite polymer: Glass edge cladding for laser disks

    Science.gov (United States)

    Powell, H.T.; Wolfe, C.A.; Campbell, J.H.; Murray, J.E.; Riley, M.O.; Lyon, R.E.; Jessop, E.S.

    1987-11-02

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation. 18 figs.

  3. Composite polymer-glass edge cladding for laser disks

    Science.gov (United States)

    Powell, Howard T.; Riley, Michael O.; Wolfe, Charles R.; Lyon, Richard E.; Campbell, John H.; Jessop, Edward S.; Murray, James E.

    1989-01-01

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.

  4. Development of continuous glass melting for production of Nd-doped phosphate glasses for the NIF and LMJ laser system

    International Nuclear Information System (INIS)

    Campbell, J. H.; Ficini-Dorn, G.; Hawley-Fedder, R.; McLean, M. J.; Suratwala, T.; Trombert, J. H.

    1998-01-01

    The NIF and LMJ laser systems require about 3380 and 4752 Nd-doped laser glass slabs, respectively. Continuous laser glass melting and forming will be used for the first time to manufacture these slabs. Two vendors have been chosen to produce the glass: Hoya Corporation and Schott Glass Technologies. The laser glass melting systems that each of these two vendors have designed, built and tested are arguably the most advanced in the world. Production of the laser glass will begin on a pilot scale in the fall of 1999

  5. Glass particles produced by laser ablation for ICP-MSmeasurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  6. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO(2) laser cladding.

    Science.gov (United States)

    Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J

    2011-09-01

    Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Flowing Air-Water Cooled Slab Nd: Glass Laser

    Science.gov (United States)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  8. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    Energy Technology Data Exchange (ETDEWEB)

    Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

    2008-10-28

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

  9. Structural modification of silica glass by laser scanning

    International Nuclear Information System (INIS)

    Zhao Jian; Sullivan, James; Zayac, John; Bennett, Ted D.

    2004-01-01

    The thermophysical nature of rapid CO 2 laser heating of silica glass is explored using a numerical simulation that considers the structural state of the glass, as characterized by the fictive temperature. The fictive temperature reflects the thermodynamic temperature at which the glass structure would be in equilibrium. To demonstrate that the thermophysical model can accurately predict the structural change in the glass, the fictive temperature is measured experimentally utilizing the fact that the fictive temperature change corresponds to a change of glass properties that can be revealed through wet chemical etching. The relationship between the etch rate and the fictive temperature is determined by preparing and etching samples of known fictive temperature. Wet chemical etching is used to measure the fictive temperature over the entire laser affected zone and the results are found to compare favorably with the results of the thermophysical model. The model and experimental measurements demonstrate that rapid laser processing results in an increased fictive temperature near the surface of the glass. The fictive temperature increase is about 1000 K and is uniform to within 5% over the laser affected zone. Near the boundary of this zone, the fictive temperature transitions abruptly to the value of the surrounding untreated glass

  10. Fabrication of isolated platinum nanowire gratings and nanoparticles on silica substrate by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasutaka [School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223- 8522 (Japan); Nedyalkov, Nikolay [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shouse 72, Sofia 1784 (Bulgaria); Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Takami, Akihiro [School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223- 8522 (Japan); Terakawa, Mitsuhiro, E-mail: terakawa@elec.keio.ac.jp [School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223- 8522 (Japan); Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan)

    2017-02-01

    Highlights: • Formation of HSFL with periodicities shorter than 100 nm. • Structural evolution from platinum nanowire gratings to platinum nanoparticles only by increasing the number of pulses. • Melting and fragmentation of the nanowire gratings would play a key role in structural evolution. - Abstract: We demonstrate the fabrication of isolated platinum nanostructures on a silica substrate by using femtosecond laser. Nanowire gratings which have short periodicities of approximately 50 nm were formed by irradiating a platinum thin film deposited on a fused silica substrate with 800-nm wavelength femtosecond laser pulses. The structural evolution from the nanowire gratings to nanoparticles was observed only by increasing the number of pulses. The periodicities or diameters of the structures showed good uniformity. Scanning electron microscopy of the surfaces and theoretical calculation of temperature profile using a two-temperature model revealed that the structural evolution can be attributed to the fragmentation of the formed nanowires. The presented method provides a simple and high-throughput technique for fabricating both metal nanowire gratings and nanoparticles, which have the potential to be used for the fabrication of optical, electrical and biomedical devices.

  11. Antibacterial properties of laser spinning glass nanofibers.

    Science.gov (United States)

    Echezarreta-López, M M; De Miguel, T; Quintero, F; Pou, J; Landin, M

    2014-12-30

    A laser-spinning technique has been used to produce amorphous, dense and flexible glass nanofibers of two different compositions with potential utility as reinforcement materials in composites, fillers in bone defects or scaffolds (3D structures) for tissue engineering. Morphological and microstructural analyses have been carried out using SEM-EDX, ATR-FTIR and TEM. Bioactivity studies allow the nanofibers with high proportion in SiO2 (S18/12) to be classified as a bioinert glass and the nanofibers with high proportion of calcium (ICIE16) as a bioactive glass. The cell viability tests (MTT) show high biocompatibility of the laser spinning glass nanofibers. Results from the antibacterial activity study carried out using dynamic conditions revealed that the bioactive glass nanofibers show a dose-dependent bactericidal effect on Sthaphylococcus aureus (S. aureus) while the bioinert glass nanofibers show a bacteriostatic effect also dose-dependent. The antibacterial activity has been related to the release of alkaline ions, the increase of pH of the medium and also the formation of needle-like aggregates of calcium phosphate at the surface of the bioactive glass nanofibers which act as a physical mechanism against bacteria. The antibacterial properties give an additional value to the laser-spinning glass nanofibers for different biomedical applications, such as treating or preventing surgery-associated infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Synthesis and Properties of Platinum Nanoparticles by Pulsed Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Maria Isabel Mendivil Palma

    2016-01-01

    Full Text Available Platinum (Pt nanoparticles were synthesized by pulsed laser ablation in liquid (PLAL technique in different liquids (acetone, ethanol, and methanol. Ablation was performed using a Q-switched Nd:YAG laser with output energy of 230 mJ/pulse for 532 nm wavelength. Ablation time and laser energy fluence were varied for all the liquids. Effects of laser energy fluence, ablation time, and nature of the liquid were reported. The mean size, size distributions, shape, elemental composition, and optical properties of Pt nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and UV-Visible absorption spectroscopy.

  13. Fabrication and characterization of a water-free mid-infrared fluorotellurite glass.

    Science.gov (United States)

    Lin, Aoxiang; Ryasnyanskiy, Aleksandr; Toulouse, Jean

    2011-03-01

    Using a physical and chemical dehydration technique and a high-pressure, ultradry O2 atmosphere in a semiclosed steel-chamber furnace, we fabricated a group of fluorotellurite glasses with a composition of (90-x)TeO2-xZnF2-10Na2O (mol.%, x=0-30). For x=30, no OH absorption was observed in the range of 0.38-6.1 μm. This is the first report of a water-free mid-IR fluorotellurite glass, to our knowledge, offering the common advantages of a robust oxide glass and an IR-transparent fluoride one. Besides optimized linear transmittance and absorption, the nonlinear refractive indices and Raman gain coefficients are reduced. These results are discussed in the context of mid-IR high-power laser generation and transmission.

  14. Multi-megajoule Nd: glass fusion laser design

    International Nuclear Information System (INIS)

    Manes, K.R.

    1986-01-01

    New technologies make multi-megajoule glass lasers economically feasible. Laser architectures using harmonic switchout, target plane holographic injection, phase conjugation, continuous apodization and higher amplifier efficiencies have been devised. A plan for a multi-megajoule laser which can be built for an acceptable cost relies on manufacturing economies of scale and the demonstration of the new technologies presented here. These include continuous pour glass production, rapid harmonic crystal growth, switching of large blocks of power using larger capcaitors packed more economically and by using large identical parts counts

  15. Strengthened glass for high average power laser applications

    International Nuclear Information System (INIS)

    Cerqua, K.A.; Lindquist, A.; Jacobs, S.D.; Lambropoulos, J.

    1987-01-01

    Recent advancements in high repetition rate and high average power laser systems have put increasing demands on the development of improved solid state laser materials with high thermal loading capabilities. The authors have developed a process for strengthening a commercially available Nd doped phosphate glass utilizing an ion-exchange process. Results of thermal loading fracture tests on moderate size (160 x 15 x 8 mm) glass slabs have shown a 6-fold improvement in power loading capabilities for strengthened samples over unstrengthened slabs. Fractographic analysis of post-fracture samples has given insight into the mechanism of fracture in both unstrengthened and strengthened samples. Additional stress analysis calculations have supported these findings. In addition to processing the glass' surface during strengthening in a manner which preserves its post-treatment optical quality, the authors have developed an in-house optical fabrication technique utilizing acid polishing to minimize subsurface damage in samples prior to exchange treatment. Finally, extension of the strengthening process to alternate geometries of laser glass has produced encouraging results, which may expand the potential or strengthened glass in laser systems, making it an exciting prospect for many applications

  16. OXYGEN BUBBLE DEVELOPMENT ON A PLATINUM ELECTRODE IN BOROSILICATE GLASS MELT BY THE EFFECT OF ALTERNATING CURRENT

    Directory of Open Access Journals (Sweden)

    Jiri Matej

    2014-10-01

    or on alternating reduction and re-forming of oxidic layer on the electrode in the transition range, has been suggested. Start of bubble evolution at low alternating current density has also been observed in simple sodium-calcium-silicate glass melt. A relation between bubble release and platinum corrosion caused by reduced silicon has been suggested

  17. UV-VUV laser induced phenomena in SiO2 glass

    International Nuclear Information System (INIS)

    Kajihara, Koichi; Ikuta, Yoshiaki; Oto, Masanori; Hirano, Masahiro; Skuja, Linards; Hosono, Hideo

    2004-01-01

    Creation and annihilation of point defects were studied for SiO 2 glass exposed to ultraviolet (UV) and vacuum UV (VUV) lights to improve transparency and radiation toughness of SiO 2 glass to UV-VUV laser light. Topologically disordered structure of SiO 2 glass featured by the distribution of Si-O-Si angle is a critical factor degrading transmittance near the fundamental absorption edge. Doping with terminal functional groups enhances the structural relaxation and reduces the number of strained Si-O-Si bonds by breaking up the glass network without creating the color centers. Transmittance and laser toughness of SiO 2 glass for F 2 laser is greatly improved in fluorine-doped SiO 2 glass, often referred as 'modified silica glass'. Interstitial hydrogenous species are mobile and reactive at ambient temperature, and play an important role in photochemical reactions induced by exposure to UV-VUV laser light. They terminate the dangling-bond type color centers, while enhancing the formation of the oxygen vacancies. These findings are utilized to develop a deep-UV optical fiber transmitting ArF laser photons with low radiation damage

  18. Fluorescence line-narrowing studies of Nd:glass laser materials

    International Nuclear Information System (INIS)

    Riseberg, L.A.; Brecher, C.

    The increasing importance of Nd glass lasers in laser fusion technology has emphasized the inadequacy in the understanding of the optical properties of rare earth ions in glasses. Indeed, it has been difficult to generate models for the performance of these devices, and the selection of host glasses could be done by little more than a trial-and-error approach. The technique of laser-induced fluorescence line-narrowing developed within the last few years provides a new and powerful tool for the study of these systems. In this technique, a laser excites within the inhomogeneously broadened absorption bands a selected subgroup of the ions in the system, namely those whose absorption energy is resonant with the laser. If the excitation does not migrate among the entire collection of ions prior to fluorescence, the fluorescence that is observed is only from the group that was excited and is narrowed. This permits the selective study of classes of ion sites within the ensemble. The concept is indicated schematically. By the use of a tunable laser, such as a dye laser, it is possible to vary the class of sites, defined by energy, that is excited and thereby study the important spectroscopic properties and their variations, unclouded by the averaging that occurs under excitation of the entire system. Furthermore, it is then possible to use the spectroscopic information to infer a description of the variation of the microscopic environment, and a rationalization of the effects of compositional changes. Use of a pulsed dye laser and time-resolved detection permits the study of the dynamics, including, for example, the energy transfer among ions of different energies within the inhomogeneously-broadened spectrum. The goal of this project has been to apply such studies to glasses of interest to glass laser technology, providing information for device modeling, and establishing design criteria for glass selection

  19. Imaging femtosecond laser-induced electronic excitation in glass

    International Nuclear Information System (INIS)

    Mao Xianglei; Mao, Samuel S.; Russo, Richard E.

    2003-01-01

    While substantial progress has been achieved in understanding laser ablation on the nanosecond and picosecond time scales, it remains a considerable challenge to elucidate the underlying mechanisms during femtosecond laser material interactions. We present experimental observations of electronic excitation inside a wide band gap glass during single femtosecond laser pulse (100 fs, 800 nm) irradiation. Using a femtosecond time-resolved imaging technique, we measured the evolution of a laser-induced electronic plasma inside the glass and calculated the electron number density to be on the order of 10 19 cm -3

  20. Janus neodymium glass laser operations manual

    International Nuclear Information System (INIS)

    Auerbach, J.M.; Holmes, N.C.; Trainor, R.J.

    1978-01-01

    A manual, prepared to guide personnel in operating and maintaining the Janus glass laser system, is presented. System components are described in detail. Step-by-step procedures are presented for firing the laser and for performing routine maintenance and calibration procedures

  1. Tensile behavior of laser treated Fe-Si-B metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Sameehan S.; Samimi, Peyman; Ghamarian, Iman; Katakam, Shravana; Collins, Peter C.; Dahotre, Narendra B., E-mail: narendra.dahotre@unt.edu [Department of Materials Science and Engineering, University of North Texas, 1150 Union Circle 305310, Denton, Texas 76203-5017 (United States)

    2015-10-28

    Fe-Si-B metallic glass foils were treated with a linear laser track using a continuous wave Nd-YAG laser and its effect on the overall tensile behavior was investigated. Microstructure and phase evolutions were evaluated using X-ray diffraction, resistivity measurements, and transmission electron microscopy. Crystallization fraction was estimated via the differential scanning calorimetry technique. Metallic glass foils treated with the lower laser fluences (<0.49 J/mm{sup 2}) experienced structural relaxation, whereas higher laser fluences led to crystallization within the laser treated region. The overall tensile behavior was least impacted by structural relaxation, whereas crystallization severely reduced the ultimate tensile strength of the laser treated metallic glass foils.

  2. Analysis of Nd3+:glass, solar-pumped, high-powr laser systems

    Science.gov (United States)

    Zapata, L. E.; Williams, M. D.

    1989-01-01

    The operating characteristics of Nd(3+):glass lasers energized by a solar concentrator were analyzed for the hosts YAG, silicate glass, and phosphate glass. The modeling is based on the slab zigzag laser geometry and assumes that chemical hardening methods for glass are successful in increasing glass hardness by a factor of 4. On this basis, it was found that a realistic 1-MW solar-pumped laser might be constructed from phosphate glass 4 sq m in area and 2 mm thick. If YAG were the host medium, a 1-MW solar-pumped laser need only be 0.5 sq m in area and 0.5 cm thick, which is already possible. In addition, Nd(3+) doped glass fibers were found to be excellent solar-pumped laser candidates. The small diameter of fibers eliminates thermal stress problems, and if their diameter is kept small (10 microns), they propagate a Gaussian single mode which can be expanded and transmitted long distances in space. Fiber lasers could then be used for communications in space or could be bundled and the individual beams summed or phase-matched for high-power operation.

  3. In vitro free radical scavenging activity of platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Aki; Kajita, Masashi; Kim, Juewon; Kanayama, Atsuhiro; Miyamoto, Yusei [Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 402, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 (Japan); Takahashi, Kyoko; Mashino, Tadahiko, E-mail: yusei74@k.u-tokyo.ac.j [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512 (Japan)

    2009-11-11

    A polyacrylic acid (PAA)-protected platinum nanoparticle species (PAA-Pt) was prepared by alcohol reduction of hexachloroplatinate. The PAA-Pt nanoparticles were well dispersed and homogeneous in size with an average diameter of 2.0 {+-} 0.4 nm (n = 200). We used electron spin resonance to quantify the residual peroxyl radical AOO. generated from 2,2-azobis (2-aminopropane) dihydrochloride (AAPH) by thermal decomposition in the presence of O{sub 2} and a spectrophotometric method to quantify the residual 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. PAA-Pt scavenged these two radicals in a dose-dependent manner. Platinum was the functional component. PAA-Pt reduced the rate of oxygen consumption required for linoleic acid peroxidation initiated by AOO. generated from AAPH, indicating inhibition of the propagation of linolate peroxidation. A thiobarbituric acid test also revealed dose-dependent inhibition of the linolate peroxidation by PAA-Pt. Fifty micromolar platinum, as PAA-Pt, completely quenched 250 {mu}M DPPH radical for 5 min. Even when twice diluted in half, the PAA-Pt still quenched 100% of the 250 {mu}M DPPH radical. The scavenging activity of PAA-Pt is durable. These observations suggest that PAA-Pt is an efficient scavenger of free radicals.

  4. Free electron laser

    International Nuclear Information System (INIS)

    Ortega, J.M.; Billardon, M.

    1986-01-01

    Operation principle of a laser and an oscillator are recalled together with the klystron one. In the free electron laser, electrons go through an undulator or an optical klystron. Principles of the last one are given. The two distinct ways of producing coherent radiation with an undulator and an optical klystron are presented. The first one is the use of the free electron laser, the second is to make use of the spontaneous emission generation (harmonics generation). The different current types of free electron lasers are presented (Stanford, Los Alamos, Aco at Orsay). Prospects and applications are given in conclusion [fr

  5. Holes generation in glass using large spot femtosecond laser pulses

    Science.gov (United States)

    Berg, Yuval; Kotler, Zvi; Shacham-Diamand, Yosi

    2018-03-01

    We demonstrate high-throughput, symmetrical, holes generation in fused silica glass using a large spot size, femtosecond IR-laser irradiation which modifies the glass properties and yields an enhanced chemical etching rate. The process relies on a balanced interplay between the nonlinear Kerr effect and multiphoton absorption in the glass which translates into symmetrical glass modification and increased etching rate. The use of a large laser spot size makes it possible to process thick glasses at high speeds over a large area. We have demonstrated such fabricated holes with an aspect ratio of 1:10 in a 1 mm thick glass samples.

  6. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  7. Medical Application of Free Electron Laser Trasmittance using Hollow Optical Fiber

    CERN Document Server

    Suzuki, Sachiko; Ishii, Katsonuri

    2004-01-01

    Mid-infrared Free Electron Laser (FEL) is expected as new application for biomedical surgery. However, delivery of MIR-FEL into the body is difficult because the common glass optical fibers have strong absorption at MIR region. A good operational and flexible line for FEL is required at medical field. A Hollow optical fiber is developed for IR laser and high-power laser delivery. We evaluated the fiber for FEL transmission line. This fiber is coated with cyclic olefin polymer (COP) and silver thin film on the inside of glass capillary tube. It is 700 μm-bore and 1m in lengths. The fiber transmission loss of the measured wavelength region of 5.5 μm to 12 μm is less than 1dB/m when the fiber is straight and 1.2 dB/m when bent to radius of 20 cm. Additionally, the output beam profile and the pulse structure is not so different form incidence beam. In conclusion, the fiber is suitable for delivery of the FEL energy for applications in medical and laser surgery.

  8. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Surface plasmon resonance assisted rapid laser joining of glass

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskaya, Svetlana A.; Tang, Guang; Abdolvand, Amin, E-mail: a.abdolvand@dundee.ac.uk [School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, Zengbo [School of Electronic Engineering, Bangor University, Bangor LL57 1UT (United Kingdom)

    2014-08-25

    Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (∼40 ns and repetition rate of 100 kHz) at 532 nm is demonstrated. The embedded silver nanoparticles were ∼30–40 nm in diameter, contained in a thin surface layer of ∼10 μm. A joint strength of 12.5 MPa was achieved for a laser fluence of only ∼0.13 J/cm{sup 2} and scanning speed of 10 mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices.

  10. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    Science.gov (United States)

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-08

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  11. Near-Infrared Free-Radical and Free-Radical-Promoted Cationic Photopolymerizations by In-Source Lighting Using Upconverting Glass.

    Science.gov (United States)

    Kocaarslan, Azra; Tabanli, Sevcan; Eryurek, Gonul; Yagci, Yusuf

    2017-11-13

    A method is presented for the initiation of free-radical and free-radical-promoted cationic photopolymerizations by in-source lighting in the near-infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron-transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free-radical-promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N-vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Forensic comparative glass analysis by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Bridge, Candice M.; Powell, Joseph; Steele, Katie L.; Sigman, Michael E.

    2007-01-01

    Glass samples of four types commonly encountered in forensic examinations have been analyzed by laser-induced breakdown spectroscopy (LIBS) for the purpose of discriminating between samples originating from different sources. Some of the glass sets were also examined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Refractive index (RI) measurements were also made on all glass samples and the refractive index data was combined with the LIBS and with the LA-ICP-MS data to enhance discrimination. The glass types examined included float glass taken from front and side automobile windows (examined on the non-float side), automobile headlamp glass, automobile side-mirror glass and brown beverage container glass. The largest overall discrimination was obtained by employing RI data in combination with LA-ICP-MS (98.8% discrimination of 666 pairwise comparisons at 95% confidence), while LIBS in combination with RI provided a somewhat lower discrimination (87.2% discrimination of 1122 pairwise comparisons at 95% confidence). Samples of side-mirror glass were less discriminated by LIBS due to a larger variance in emission intensities, while discrimination of side-mirror glass by LA-ICP-MS remained high

  13. Laser diode pumped ND: Glass slab laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, M.; Kanabe, T.; Matsui, H.

    2001-01-01

    As a first step of a driver development for the inertial fusion energy, we are developing a laser-diode-pumped zig-zag Nd:glass slab laser amplifier system HALNA 10 (High Average-power Laser for Nuclear-fusion Application) which can generate an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig-zag Nd:glass slab is pumped from both sides by 803-nm AlGaAs laser-diode(LD) module; each LD module has an emitting area of 420 mm x 10 mm and two LD modules generated in total 218 (max.) kW peak power with 2.6kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern, which nearly confirmed our conceptual design. (author)

  14. Platinum recycling in the United States in 1998

    Science.gov (United States)

    Hilliard, Henry E.

    2001-01-01

    In the United States, catalytic converters are the major source of secondary platinum for recycling. Other sources of platinum scrap include reforming and chemical process catalysts. The glass industry is a small but significant source of platinum scrap. In North America, it has been estimated that in 1998 more than 20,000 kilograms per year of platinum-group metals from automobile catalysts were available for recycling. In 1998, an estimated 7,690 kilograms of platinum were recycled in the United States. U.S. recycling efficiency was calculated to have been 76 percent in 1998; the recycling rate was estimated at 16 percent.

  15. 2.3 µm laser potential of TeO2 based glasses

    Science.gov (United States)

    Denker, B. I.; Dorofeev, V. V.; Galagan, B. I.; Motorin, S. E.; Sverchkov, S. E.

    2017-09-01

    Tm3+ doped TeO2-based well-dehydrated glasses were synthesized and investigated. The analysis of their spectral and relaxation properties have showed that these glasses can be a suitable host for bulk and fiber lasers emitting at ~2.3 µm wavelength (3H4-3H5 Tm3+ transition). Laser action in the bulk glass sample was demonstrated.

  16. Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser

    Science.gov (United States)

    Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.

    2017-03-01

    The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.

  17. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień

    2014-06-01

    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  18. Laser Machining and In Vitro Assessment of Wollastonite-Tricalcium Phosphate Eutectic Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Daniel Sola

    2018-01-01

    Full Text Available Bioactivity and ingrowth of ceramic implants is commonly enhanced by a suitable interconnected porous network. In this work, the laser machining of CaSiO3‒Ca3(PO42 biocompatible eutectic glass-ceramics and glasses was studied. For this purpose, 300 µm diameter craters were machined by using pulsed laser radiation at 532 nm with a pulsewidth in the nanosecond range. Machined samples were soaked in simulated body fluid for 2 months to assess the formation of a hydroxyapatite layer on the surface of the laser machined areas. The samples were manufactured by the laser floating zone technique using a CO2 laser. Morphology, composition and microstructure of the machined samples were described by Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and micro-Raman Spectroscopy.

  19. Laser spectroscopy of neutron deficient gold and platinum isotopes

    International Nuclear Information System (INIS)

    Savard, G.

    1988-03-01

    A new method for on-line laser spectroscopy of radioactive atoms based on the resonant ionization spectroscopy of laser-desorbed radioactive samples has been devised. An experimental setup has been installed on-line at the ISOCELE mass separator in Orsay (France) and experiments have been performed on the region of transitional nuclei around Z=79. Isotopic shift measurements on four new isotopes 194 Au, 196 Au, 198 Au, 199 Au have been performed on gold and results on the neutron deficient isotopes down to 186 Au have been obtained confirming the nuclear ground-state shape transition from oblate to prolate between 187 Au and 186 Au. The first isotopic shift measurements on radioactive platinum isotopes have been obtained on 186 Pt, 188 Pt, 189 Pt. Indications of a shape transition have been observed between 186 Pt and 188 Pt. The extracted experimental changes in mean square charge radii δ 2 > A,A' along isotopic chains are compared to self-consistent Hartree-Fock plus BCS calculations

  20. Solid state laser technology for inertial confinement fusion: A collection of articles from ''Energy and Technology Review''

    International Nuclear Information System (INIS)

    1988-06-01

    This paper contains reprinted articles that record several milestones in laser research at LLNL. ''Neodymium-Glass Laser Research and Development at LLNL'' recounts the history of the Laser Program and our work on neodymium-glass lasers. ''Nova Laser Technology'' describes the capabilities of the Nova laser and some of its uses. ''Building Nova: Industry Relations and Technology Transfer'' illustrates the Laboratory's commitment to work with US industry in technology development. ''Managing the Nova Laser Project'' details the organization and close monitoring of costs and schedules during the construction of the Nova laser facility. The article ''Optical Coatings by the Sol-Gel Process,'' describes our chemical process for making the damage-resistant, antireflective silica coatings used on the Nova laser glass. The technical challenges in designing and fabricating the KDP crystal arrays used to convert the light wave frequency of the Nova lasers are reported in ''Frequency Conversion of the Nova Laser.'' Two articles, ''Eliminating Platinum Inclusions in Laser Glass'' and ''Detecting Microscopic Inclusions in Optical Glass,'' describe how we dealt with the problem of damaging metal inclusions in the Nova laser glass. The last article reprinted here, ''Auxilliary Target Chamber for Nova,'' discusses the diversion of two of Nova's ten beamlines into a secondary chamber for the purpose of increasing our capacity for experimentation

  1. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-01-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  2. Laser-excited fluorescence spectroscopy of oxide glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1977-01-01

    Laser-induced fluorescence line narrowing was applied to investigate the local fields and interactions of paramagnetic ions in oxide glasses. Studies included the site dependence of energy levels, radiative and nonradiative transition probabilities, homogeneous line broadening, and ion--ion energy transfer of rare earth ions. These results and the experimental techniques are reviewed briefly; the use of paramagnetic ions other than the rare earths is also considered. Recently, laser-excited fluorescence spectroscopy was used to investigate modifications in the local structure of lithium borate glass caused by compositional changes and phase separation and the site dependence of nonradiative relaxation of paramagnetic ions by multiphonon processes. These results and their implications are discussed. 6 figures

  3. Development of composite polymer-glass edge claddings for Nova Laser Disks

    International Nuclear Information System (INIS)

    Campbell, J.H.; Edwards, G.; Frick, F.A.; Gemmell, D.S.; Gim, B.M.; Jancaitis, K.S.; Jessop, E.S.; Kong, M.K.; Lyon, R.E.; Murray, J.E.; Patton, H.G.; Pitts, J.H.; Powell, H.T.; Riley, M.O.; Wallerstein, E.P.; Wolfe, C.R.; Woods, B.W.

    1988-01-01

    Large Nd:glass laser disks for disk amplifiers require an edge cladding which absorbs at 1 μ m. This cladding prevents edge reflections from causing parasitic oscillations that would otherwise deplete the gain. The authors have developed a composite polymer-glass edge cladding that consists of absorbing glass strips bonded to the edges of laser glass disks using an epoxy adhesive. The edge cladding must survive a fluence of approximately 20 J/cm 2 in a 0.5-ms pulse. Failure can occur either by decomposition of the polymer or by mechanical failure from thermal stresses which leads to bond delamination. An epoxy has been developed that gives the required damage resistance, refractive index match and processing characteristics. A slight tilt of the disk edges greatly reduces the threat from parasitic oscillations and a glass surface treatment is used to promote bond adhesion. Laser disks fabricated with this new cladding show identical gain performance to disks using conventional fused-glass cladding and have been tested for over 2000 shots (equivalent to about a 4-year lifetime on Nova) with out degradation

  4. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Takashi; Miura, Noriaki [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Oowaki, Katsura; Kawaguchi, Isao [IHI Inspection and Instrumentation Co., Ltd, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  5. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials

    Science.gov (United States)

    Zhukov, Vladimir P.; Bulgakova, Nadezhda M.

    2017-05-01

    Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.

  6. Inspection of float glass using a novel retroreflective laser scanning system

    Science.gov (United States)

    Holmes, Jonathan D.

    1997-07-01

    Since 1988, Image Automation has marketed a float glass inspection system using a novel retro-reflective laser scanning system. The (patented) instrument scans a laser beam by use of a polygon through the glass onto a retro-reflective screen, and collects the retro-reflected light off the polygon, such that a stationary image of the moving spot on the screen is produced. The spot image is then analyzed for optical effects introduced by defects within the glass, which typically distort and attenuate the scanned laser beam, by use of suitable detectors. The inspection system processing provides output of defect size, shape and severity, to the factory network for use in rejection or sorting of glass plates to the end customer. This paper briefly describes the principles of operation, the system architecture, and limitations to sensitivity and measurement repeatability. New instruments based on the retro-reflective scanning method have recently been developed. The principles and implementation are described. They include: (1) Simultaneous detection of defects within the glass and defects in a mirror coating on the glass surface using polarized light. (2) A novel distortion detector for very dark glass. (3) Measurement of optical quality (flatness/refractive homogeneity) of the glass using a position sensitive detector.

  7. Rapid fabrication of transparent conductive films with controllable sheet resistance on glass substrates by laser annealing of diamond-like carbon films

    International Nuclear Information System (INIS)

    Lee, Keunhee; Ki, Hyungson

    2016-01-01

    We report a laser-based method for directly fabricating large-area, transparent conductive films with customizable electrical resistance on glass. In this method, a diamond-like carbon (DLC) film is deposited first on a glass substrate by pulsed laser deposition, which is then annealed in a helium shielding environment by a 2 kW continuous-wave fiber laser with a wavelength of 1070 nm, which is transparent to glass but is absorbed by DLC to transform the amorphous carbons to graphene. When a 510 nm thick film was annealed at a scanning speed of 1 m/s by a 200 μm top-hat laser beam, the sp 3 fraction was decreased from 43.1% to 8.1% after the annealing process, and the transformed film showed a transparency of ∼80% (at 550 nm) and a sheet resistance of ∼2050 Ω/sq. We also showed that sheet resistance and transparency can be controlled by changing processing parameters. To show the scalability of the method, a 15 mm wide line beam was used to produce a 15 mm × 15 mm film. This method is simple, fully scalable, transfer-free and catalyst-free, and we believe that the fabricated films can have many applications with further research, such as transparent heating films, electromagnetic shielding films, and transparent electrodes.

  8. Laser glass: a key material in the search for fusion energy

    International Nuclear Information System (INIS)

    Campbell, J H

    1999-01-01

    Nuclear fusion is the energy source that powers the sun. For more than four decades man has sought to develop this essentially inexhaustible, clean power source for use on earth. Unfortunately the conditions needed to initiate fusion are daunting; the nuclear fuel, consisting of isotopes of hydrogen, must be heated to temperatures in excess of 100,000,000 C and maintained at that temperature long enough for the nuclear fuel to ignite and burn. Lasers are being used as one of the tools to achieve these conditions. The best lasers for this work are those that derive their energy from a unique set of optical glasses called laser glasses. The work to develop, manufacture and test these glasses has involved a partnership between university and industry that has spanned more than 25 years. During this time lasers used in fusion development have grown from small systems that could fit on the top of a table to systems currently under construction that are approximately the size of a municipal sports stadium. A brief historical and anecdotal account of the development of laser glasses for fusion energy research applications is the subject of the presentation

  9. Laser properties of an improved average-power Nd-doped phosphate glass

    International Nuclear Information System (INIS)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-01-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime

  10. Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Teng, Yu; Zhou, Jiajia; Khisro, Said Nasir; Zhou, Shifeng; Qiu, Jianrong

    2014-01-01

    Highlights: • Abnormal elements redistribution behavior was observed in tellurite glass. • The refractive index and Raman intensity distribution changed significantly. • The relative glass composition remained unchanged while the glass density changed. • First time report on the abnormal element redistribution behavior in glass. • The glass network structure determines the elemental redistribution behavior. - Abstract: The success in the fabrication of micro-structures in glassy materials using femtosecond laser irradiation has proved its potential applications in the construction of three-dimensional micro-optical components or devices. In this paper, we report the elemental redistribution behavior in tellurite glass after the irradiation of high repetition rate femtosecond laser pulses. The relative glass composition remained unchanged while the glass density changed significantly, which is quite different from previously reported results about the high repetition rate femtosecond laser induced elemental redistribution in silicate glasses. The involved mechanism is discussed with the conclusion that the glass network structure plays the key role to determine the elemental redistribution. This observation not only helps to understand the interaction process of femtosecond laser with glassy materials, but also has potential applications in the fabrication of micro-optical devices

  11. Alkali-free bioactive glasses for bone regeneration

    OpenAIRE

    Kapoor, Saurabh

    2014-01-01

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tiss...

  12. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ahsan, Md. Shamim; Dewanda, Fadia; Lee, Man Seop; Sekita, Hitoshi; Sumiyoshi, Tetsumi

    2013-01-01

    Highlights: ► We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. ► Periodic microstructures are printed on the glass surface for superhydrophobicity. ► The contact angle of water droplet on the microstructured glass surface is 155°. ► The transparency of superhydrophobic glass is higher than 77% in visible spectrum. ► We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152° to 155°. The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  13. Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass

    Energy Technology Data Exchange (ETDEWEB)

    Foucher, C.; Guilhabert, B.; Laurand, N.; Dawson, M. D. [Institute of Photonics, SUPA, University of Strathclyde, Glasgow (United Kingdom)

    2014-04-07

    A mechanically flexible and wavelength-tunable laser with an ultra-thin glass membrane as substrate is demonstrated. The optically pumped hybrid device has a distributed feedback cavity that combines a colloidal quantum dot gain film with a grating-patterned polymeric underlayer, all on a 30-μm thick glass sheet. The total thickness of the structure is only 75 μm. The hybrid laser has an average threshold fluence of 450 ± 80 μJ/cm{sup 2} (for 5-ns excitation pulses) at an emitting wavelength of 607 nm. Mechanically bending the thin-glass substrate enables continuous tuning of the laser emission wavelength over an 18-nm range, from 600 nm to 618 nm. The correlation between the wavelength tunability and the mechanical properties of the thin laser structure is verified theoretically and experimentally.

  14. Low expansion and high gain Nd laser glasses

    International Nuclear Information System (INIS)

    Izumitani, Tetsuro; Peng, B.

    1995-01-01

    Due to the relationship between Judd-Ofelt intensity parameter and covalency, new laser glasses have been developed which have low expansion coefficients (85--91 x 10 -7 /cm C, 0--70 C) and high emission cross sections. They have good chemical properties, high Young's modulus and high thermal conductivities. These glasses are suitable for the National Ignition Facility

  15. Laser printed glass planar lightwave circuits with integrated fiber alignment structures

    Science.gov (United States)

    Desmet, A.; Radosavljevic, A.; Missinne, J.; Van Thourhout, D.; Van Steenberge, G.

    2018-02-01

    Femtosecond laser inscription allows straightforward manufacturing of glass planar lightwave circuits such as waveguides, interferometers, directional couplers, resonators and more complex structures. Fiber alignment structures are needed to facilitate communication with the glass planar lightwave circuit. In this study, a technique is described to create optical waveguides and alignment structures in the same laser exposure step. Using an industrial ytterbium-doped 1030 nm fiber laser pulses of 400 fs were focused into glass with a 0.4 NA objective causing permanent alteration of the material. Depending on laser parameters this modification allows direct writing of waveguides or the creation of channels after exposing the irradiated volumes to an etchant such as KOH. Writing of channels and waveguides with different laser powers, frequencies, polarisations, stage translation speeds and scan densities were investigated in fused silica and borosilicate glass. Waveguides with controlled dimensions were created, as well as etched U-grooves with a diameter of 126 μm and a sidewall roughness Ra of 255 nm. Cut back measurements were performed giving a waveguide propagation loss of 1.1 dB/cm in borosilicate glass. A coupling loss of 0.7 dB was measured for a transition between the waveguide and standard single mode fiber at 1550 nm, using index matching liquid. The described technique eliminates active alignment requirements and is useful for many applications such as microfluidic sensing, PLCs, fan-out connectors for multicore fibers and quantum optical networks.

  16. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    International Nuclear Information System (INIS)

    Vasileva, A.A.; Nazarov, I.A.; Olshin, P.K.; Povolotskiy, A.V.; Sokolov, I.A.; Manshina, A.A.

    2015-01-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag 2 O–0.4P 2 O 5 –0,1Nb 2 O 5 glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag 2 O–0.1Nb 2 O 5 –0.4P 2 O 5 and 0.55Ag 2 O–0.45P 2 O 5 glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown

  17. Glass laser discs with annular alkali lead borate coatings and use thereof

    International Nuclear Information System (INIS)

    Cooley, R.F.

    1975-01-01

    A laser assembly that includes a novel glass laser disc having an annular alkali lead borate glass coating for use in the assembly is disclosed. The annular coating has an index of refraction that is about 3 to 12 percent greater than the index of refraction of the laser disc, the thermal properties also being sufficiently matched with the glass laser disc so as to prevent the development of undesirable strains therein, the glass coating comprising a mixture of alkali metal oxides in which at least two different alkali metal oxides are present, and any K 2 O that is present is limited to an amount of not substantially more than about 1 percent by weight and an effective energy absorbing amount of heavy metal oxide that absorbs energy at a wavelength of about 1.06 microns to prevent parasitic oscillations. The heavy metal oxides include oxides of transition metals of the 3d, 4d, 4f, 5d and 5f orbital series. (auth)

  18. Comparison of Microleakage of Glass Ionomer Restoration in Primary Teeth Prepared by Er: YAG Laser and the Conventional Method

    Directory of Open Access Journals (Sweden)

    M. Ghandehari

    2012-01-01

    Full Text Available Objective: One of the main criteria in evaluating the restorative materials is the degree of microleakage. The aim of this study was to compare the microleakage of glass ionomer restored cavities prepared by Er:YAG laser or turbine and bur.Materials and Methods: Twenty extracted caries-free deciduous posterior teeth were selected for this study. The teeth were randomly divided into two groups for cavity preparation. Cavities in group one were prepared by high speed turbine and bur. In the second group, Er:YAG laser with a 3W output power, 300 mJ energy and 10 Hz frequency was used. Cavities were restored with GC Fuji II LC. After thermocycling, the samples were immersed into 0.5% methylene blue solution. They were sectioned for examination under optic microscope.Results: The Wilcoxon signed ranks test showed no significant difference between microleakage of the laser group and the conventional group (P>0.05.Conclusion: Er:YAG laser with its advantages in pediatric dentistry may be suggested as an alternative device for cavity preparation.Key Words: Er:YAG laser, Glass ionomer, Microleakage

  19. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, Md. Shamim, E-mail: shamim@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Electronics and Communication Engineering Discipline, School of Science, Engineering and Technology, Khulna University, Khulna-9208 (Bangladesh); Dewanda, Fadia, E-mail: fdewanda@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Man Seop, E-mail: leems1502@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sekita, Hitoshi, E-mail: sekita@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan); Sumiyoshi, Tetsumi, E-mail: sumiy@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. Black-Right-Pointing-Pointer Periodic microstructures are printed on the glass surface for superhydrophobicity. Black-Right-Pointing-Pointer The contact angle of water droplet on the microstructured glass surface is 155 Degree-Sign . Black-Right-Pointing-Pointer The transparency of superhydrophobic glass is higher than 77% in visible spectrum. Black-Right-Pointing-Pointer We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152 Degree-Sign to 155 Degree-Sign . The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  20. High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

    Directory of Open Access Journals (Sweden)

    Xiushan Zhu

    2010-01-01

    Full Text Available ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF, considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supercontinuum ZBLAN fiber lasers are addressed in detail. Finally, constraints on the power scaling of ZBLAN fiber lasers are analyzed and discussed. ZBLAN fiber lasers are showing promise of generating high-power emissions covering from ultraviolet to mid-infrared considering the recent advances in newly designed optical fibers, beam-shaped high-power pump diodes, beam combining techniques, and heat-dissipating technology.

  1. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Energy Technology Data Exchange (ETDEWEB)

    Vasileva, A.A., E-mail: anvsilv@gmail.com [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Nazarov, I.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg (Russian Federation); Olshin, P.K.; Povolotskiy, A.V. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Sokolov, I.A. [St.Petersburg State Polytechnical University, St.Petersburg (Russian Federation); LTD “AtomTjazhMash”, St.Petersburg (Russian Federation); Manshina, A.A. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation)

    2015-10-15

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.

  2. Improvement of laser irradiation uniformity in GEKKO XII glass laser system

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Matsuoka, Shinichi; Ando, Akinobu; Amano, Shinji; Nakatsuka, Masahiro; Kanabe, Tadashi; Jitsuno, Takahisa; Nakai, Sadao

    1995-01-01

    The uniform laser irradiation is one of key issues in the direct drive laser fusion research. The several key technologies for the uniform laser irradiation are reported. This paper includes the uniformity performance as a result of the introduction of the random phase plate, the partially coherent light and the beam smoothing by spectral dispersion into the New Gekko XI glass laser system. Finally the authors summarize the overall irradiation uniformity on the spherical target surface by considering the power imbalance effect. The technologies developed for the beam smoothing and the power balance control enable them to achieve the irradiation nonuniformities of around 1% level for a foot pulse and of a few % for a main drive pulse, respectively

  3. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Science.gov (United States)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  4. Thermal stress in the edge cladding of Nova glass laser disks

    International Nuclear Information System (INIS)

    Pitts, J.H.; Kong, M.K.; Gerhard, M.A.

    1987-01-01

    We calculated thermal stresses in Nova glass laser disks having light-absorbing edge cladding glass attached to the periphery with an epoxy adhesive. Our closed-form solutions indicated that, because the epoxy adhesive is only 25 μm across, it does not significantly affect the thermal stress in the disk or cladding glass. Our numerical results showed a peak tensile stress in the cladding glass of 24 MPa when the cladding glass had a uniform absorption coefficient of 7.5 cm -1 . This peak value is reduced to 19 MPa if surface parasitic oscillation heating is eliminated by tilting the disk edges. The peak tensile stresses exceed the typical 7 to 14-MPa working stress for glass; however, we have not observed any disk or cladding glass failures at peak Nova fluences of 20 J/cm 2 . We have observed delamination of the epoxy adhesive bond at fluences several times that which would occur on Nova. Replacement laser disks will incorporate cladding with a reduced absorption coefficient of 4.5 cm -1 . Recent experiments show that this reduced absorption coefficient is satisfactory

  5. Excess free volume in metallic glasses measured by X-ray diffraction

    International Nuclear Information System (INIS)

    Yavari, Alain Reza; Moulec, Alain Le; Inoue, Akihisa; Nishiyama, Nobuyuki; Lupu, Nicoleta; Matsubara, Eiichiro; Botta, Walter Jose; Vaughan, Gavin; Di Michiel, Marco; Kvick, Ake

    2005-01-01

    In crystalline materials, lattice expansion as measured by diffraction methods differs from the expansion of the sample dimensions as measured by dilatometry, due to the contribution of thermal vacancies to the latter. We have found that in glassy materials and metallic glasses in particular, this is not the case for the contribution of free volume. These findings are the first direct experimental confirmation of simulation results indicating that atomic size holes are unstable in glasses such that free volume is dispersed randomly. This allows direct measurement of excess free volume in glasses using diffraction methods in place of dilatometry, which is difficult to use once the sample softens at the glass transition temperature T g and above. Quenched-in and deformation-induced free-volume ΔV f were measured by X-ray diffraction in transmission during heating using synchrotron light. The measured thermal expansion coefficients α th were the same as in dilatometry. The glass transition T g appeared as a break in the value of α th at T g . The 'change-of-slope method' was applied to the kinetics of relaxation to derive the activation energy for the free-volume annihilation process

  6. Scintillation property of rare earth-free SnO-doped oxide glass

    OpenAIRE

    Masai, Hirokazu; Yanagida, Takayuki; Fujimoto, Yutaka; Koshimizu, Masanori; Yoko, Toshinobu

    2012-01-01

    The authors have demonstrated scintillation of rare earth (RE)-free Sn-doped oxide glass by excitation of ionizing radiation. It is notable that light emission is attained for RE-free transparent glass due to s[2]-sp transition of Sn[2+] centre and the emission correlates with the excitation band at 20 eV. We have also demonstrated that excitation band of emission centre can be tuned by the chemical composition of the host glass. The present result is valuable not only for design of RE-free i...

  7. Femtosecond laser-induced reduction in Eu-doped sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ki-Soo [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)]. E-mail: kslim@chungbuk.ac.kr; Lee, Sunkyun [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Trinh, Minh-Tuan [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Suk-Ho [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lee, Myeongkyu [Departent of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seoul 120-749 (Korea, Republic of); Hamilton, Douglas S. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Gibson, George N. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2007-01-15

    In this work, we report permanent reduction of Eu{sup 3+} to Eu{sup 2+} in sodium borate glasses by irradiation of near-infrared femtosecond laser. Glass composition of sodium borate was 85B{sub 2}O{sub 3}-15Na{sub 2}O. The glasses were doped with 0.05, 0.1, and 0.5 mol% Eu{sub 2}O{sub 3}. Absorption and fluorescence dynamics were studied to investigate valence state change of europium ions and the energy transfer between Eu{sup 2+} and Eu{sup 3+} ions. As the femtosecond laser intensity or exposure time increases, the emission band at 400 nm becomes stronger. However, the photoreduction efficiency decreases as the dopant concentration increases. We discuss the photoreduction mechanism under multiphoton absorption.

  8. Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited

    NARCIS (Netherlands)

    Fletcher, L.B.; Witcher, J.J.; Troy, N.; Reis, S.T.; Brow, R.K.; Martinez Vazquez, R.; Osellame, R.; Krol, D.M.

    2011-01-01

    We have studied the relationship between the initial glass composition and the structural changes associated with laser-induced refractive index modification in a series of Er-Yb doped and undoped zinc phosphate glasses. White light microscopy and waveguide experiments are used together with Raman

  9. Near-field enhanced femtosecond laser nano-drilling of glass substrate

    International Nuclear Information System (INIS)

    Zhou, Y.; Hong, M.H.; Fuh, J.Y.H.; Lu, L.; Lukyanchuk, B.S.; Wang, Z.B.

    2008-01-01

    Particle mask assisted near-field enhanced femtosecond laser nano-drilling of transparent glass substrate was demonstrated in this paper. A particle mask was fabricated by self-assembly of spherical 1 μm silica particles on the substrate surface. Then the samples were exposed to femtosecond laser (800 nm, 100 fs) and characterized by field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The nano-hole array was found on the glass surface. The hole sizes were measured from 200 to 300 nm with an average depth of 150 nm and increased with laser fluence. Non-linear triple-photon absorption and near-field enhancement were the main mechanisms of the nano-feature formation. Calculations based on Mie theory shows an agreement with experiment results. More debris, however, was found at high laser fluence. This can be attributed to the explosion of silica particles because the focusing point is inside the 1 μm particle. The simulation predicts that the focusing point will move outside the particle if the particle size increases. The experiment performed under 6.84 μm silica particles verified that no debris was formed. And for all the samples, no cracks were found on the substrate surface because of ultra-short pulse width of femtosecond laser. This method has potential applications in nano-patterning of transparent glass substrate for nano-structure device fabrication

  10. Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser

    Science.gov (United States)

    Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao

    2018-03-01

    The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.

  11. Computational model of dual q-switching and lasing processes of the pulsed Cr4+:YAG laser pumped by Nd-glass laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2007-01-01

    A mathematical model describing the absorption and oscillation processes of intracavity Cr 4+ : YAG crystal pumped by Nd-glass laser has been developed, in order to describe the temporal behavior of laser-absorber system. The model has been assumed that the Cr 4+ ions excited to a higher level by excited state absorption, followed by relaxation directly to the upper laser level through fast channel, and indirectly through slow proposed intermediate channel at different lifetimes. The model offers simple kinetic mechanisms for pulsed solid state lasers and also the influence of the variations of the laser input parameters (pumping rate, maximum amplification coefficient and loss coefficient) on the output pulse characteristics of the passive Q-switched Nd-glass and pulsed Cr 4+ : YAG lasers. The model estimates the temporal behavior of the population densities of different levels and laser beam densities as well as predicts the nanosecond output laser pulses of passive Q-switched Nd-glass laser and pulsed Cr 4+ : YAG laser. The calculated results are in good agreement with the available experimental and theoretical data in the literature. (author)

  12. Laser Assisted Free-Free Transition in Electron - Atom Collision

    Science.gov (United States)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  13. One-step femtosecond laser welding and internal machining of three glass substrates

    Science.gov (United States)

    Tan, Hua; Duan, Ji'an

    2017-05-01

    In this paper, it demonstrated one-step femtosecond laser welding and internal machining of three fused silica substrates in the optical- and non-optical-contact regimes by focusing 1030-nm laser pulses at the middle of the second substrate. Focusing laser pulses within the second glass in optical-contact and non-optical-contact samples induces permanent internal structural modification, leading to the three glass substrates bonding together simultaneously. The bonding mechanism is based on the internal modification of glass, and this mechanism is different from that of ordinary glass welding at the interface. Welding-spot size is affected by not only the gap distance (ablation effect) and heat transmission, but also by gravity through examining the sizes of the welding spots on the four contact welding surfaces. The maximum bonding strength of the lower interface (56.2 MPa) in the optical-contact regime is more than double that (27.6 MPa) in the non-optical-contact regime.

  14. Measurements and modeling of gain coefficients for neodymium laser glasses

    International Nuclear Information System (INIS)

    Linford, G.J.; Saroyan, R.A.; Trenholme, J.B.; Weber, M.J.

    1979-01-01

    Small-signal gain coefficients are reported for neodymium in silicate, phosphate, fluorophosphate, and fluoroberyllate laser glasses. Measurements were made in a disk amplifier under identical conditions. Using spectroscopic data as the input, amplifier gain is calculated as a fucntion of flashlamp energy, pumping pulse duration, disk thickness, and Nd-doping. The agreement between predicted and measured gains is generally with ;plus or minus;10 percent, consistent with experimental uncertainties in the model and the parameters used. The operating conditions which optimize amplifier performance and efficiency for a given laser glass may be found using spectroscopic data alone. This process can be extended to derive the most cost-effective staging of amplifier chains for fusion lasers. A discussion of the model and examples of calculations are presented

  15. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    Science.gov (United States)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  16. Direct measurement of the free energy of aging hard sphere colloidal glasses.

    Science.gov (United States)

    Zargar, Rojman; Nienhuis, Bernard; Schall, Peter; Bonn, Daniel

    2013-06-21

    The nature of the glass transition is one of the most important unsolved problems in condensed matter physics. The difference between glasses and liquids is believed to be caused by very large free energy barriers for particle rearrangements; however, so far it has not been possible to confirm this experimentally. We provide the first quantitative determination of the free energy for an aging hard sphere colloidal glass. The determination of the free energy allows for a number of new insights in the glass transition, notably the quantification of the strong spatial and temporal heterogeneity in the free energy. A study of the local minima of the free energy reveals that the observed variations are directly related to the rearrangements of the particles. Our main finding is that the probability of particle rearrangements shows a power law dependence on the free energy changes associated with the rearrangements similar to the Gutenberg-Richter law in seismology.

  17. Fabrication of Radiation Shielding Glasses Based on Lead-free High Refractive Index Glasses Prepared from Local Sand

    International Nuclear Information System (INIS)

    Dararutana, Pisutti; Dutchaneepet, Jirapan; Sirikulrat, Narin

    2007-08-01

    Full text: Lead glasses that show high refractive index are the best know and most popular for radiation shielding. Due to harmful effects of lead and considering the health as well as the environmental issues, lead-free glasses were developed. In this work, content of Chumphon sand was fixed at 40 % (by weight) as a main composition but concentrations of BaCO3 were varied from 6 to 30 % (by weight). It was found that the absorption coefficient of the glass samples containing 30 % BaCO3 was 0.233 cm-1 for Ba-133. The density was also measured. It can be concluded that the prepared lead free glasses offered adequate shielding to gamma radiation in comparison with the lead ones. These glasses were one of the environmental friendly materials

  18. Laser and thermal bleaching of colour centres in sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bukharaev, A A; Yafaev, N R [AN SSSR, Kazan. Fiziko-Tekhnicheskij Inst.

    1978-12-01

    The maximum of the additional absorption band in ..gamma..- or UV-irradiated sodium borate glasses shifts to higher energy when the low-energy side of the band is bleached by a helium-neon laser, ..lambda.. = 632.8 nm. Simultaneously the half-width of the additional absorption band decreases. This phenomenon is associated with the fact that because of structural disorder of glasses there is a distribution of ground-state energies of trapped electrons forming the light-sensitive absorption band. The distribution interval of the activation energy for trapped electrons is estimated using the decomposition of the initial thermal bleaching curves into components. For UV irradiated glasses it is aproximately 0.24 eV, and for ..gamma..-irradiated glasses only 0.12 eV. These values correlate with the relative shift maximum of the absorption band at laser bleaching.

  19. Efficient room temperature cw Yb:glass laser pumped by a 946nm Nd:YAG laser

    OpenAIRE

    Koch, R.; Clarkson, W.A.; Hanna, D.C.; Jiang, S.; Myers, M.J.; Rhonehouse, D.; Hamlin, S.J.; Griebner, U.; Schönnagel, H.

    1997-01-01

    By pumping with a cw diode-pumped Nd:YAG laser operating at 946nm laser operation of a new Yb-doped phosphate glass with 440mW cw output power and a slope efficiency of 48% with respect to the absorbed pump power was achieved at room temperature

  20. Glass temperatures in free-standing canisters

    International Nuclear Information System (INIS)

    Hardy, B.J.; Hensel, S.J.

    1993-01-01

    The waste-forms produced by the Defense Waste Processing Facility (DWPF) are subject to the requirements of the Waste Acceptance Product Specifications (WAPS). The WAPS sets the maximum post cooldown temperature of the waste-form glass at 400 degrees C. This criterion must be satisfied for the ambient conditions and heat generation rates expected for the waste-forms. As part of the work described in task plan, WSRC-RP-93-1177, Rev. 0, a computer model was used to calculate the maximum glass temperatures in free standing wasteforms for a variety of ambient temperatures and heat generation rates

  1. Laser-assisted fabrication of gold nanoparticle-composed structures embedded in borosilicate glass

    Directory of Open Access Journals (Sweden)

    Nikolay Nedyalkov

    2017-11-01

    Full Text Available We present results on laser-assisted formation of two- and three-dimensional structures comprised of gold nanoparticles in glass. The sample material was gold-ion-doped borosilicate glass prepared by conventional melt quenching. The nanoparticle growth technique consisted of two steps – laser-induced defect formation and annealing. The first step was realized by irradiating the glass by nanosecond and femtosecond laser pulses over a wide range of fluences and number of applied pulses. The irradiation by nanosecond laser pulses (emitted by a Nd:YAG laser system induced defect formation, expressed by brown coloration of the glass sample, only at a wavelength of 266 nm. At 355, 532 and 1064 nm, no coloration of the sample was observed. The femtosecond laser irradiation at 800 nm also induced defects, again observed as brown coloration. The absorbance spectra indicated that this coloration was related to the formation of oxygen deficiency defects. After annealing, the color of the irradiated areas changed to pink, with a corresponding well-defined peak in the absorbance spectrum. We relate this effect to the formation of gold nanoparticles with optical properties defined by plasmon excitation. Their presence was confirmed by high-resolution TEM analysis. No nanoparticle formation was observed in the samples irradiated by nanosecond pulses at 355, 532 and 1064 nm. The optical properties of the irradiated areas were found to depend on the laser processing parameters; these properties were studied based on Mie theory, which was also used to correlate the experimental optical spectra and the characteristics of the nanoparticles formed. We also discuss the influence of the processing conditions on the characteristics of the particles formed and the mechanism of their formation and demonstrate the fabrication of structures composed of nanoparticles inside the glass sample. This technique can be used for the preparation of 3D nanoparticle systems

  2. Large odd-even staggering in the very light platinum isotopes from laser spectroscopy

    CERN Document Server

    Le Blanc, F; Cabaret, L A; Crawford, J E; Duong, H T; Genevey, J; Girod, M; Huber, G; Krieg, M; Lee, J K P; Lettry, Jacques; Lunney, M D; Obert, J; Oms, J; Peru, S; Putaux, J C; Roussière, B; Sauvage, J; Sebastian, V; Zemlyanoi, S G

    1998-01-01

    Laser spectroscopy measurements have been carried out on very neutron-deficient platinum isotopes with the COMPLIS experimental set-up on line with the ISOLDE-Booster facility. For the first time, Hg alpha -decay was exploited to extend the very light platinum chain. Using the 5d/sup 9/6s /sup 3/D/sub 3/ to 5d/sup 9/6p /sup 3/P /sub 2/ optical transition, hyperfine spectra of /sup 182,181,180,179,178/Pt and /sup 183/Pt/sup m/ were recorded for the first time. The variation of the mean square charge radius between these nuclei, the magnetic moments of the odd isotopes and the quadrupole moment of /sup 183/Pt/sup m/ were thus measured. A large deformation change between /sup 183/Pt/sup 9/ and /sup 183/Pt/sup m/, an odd-even staggering of the charge radius and a deformation drop from A=179 are clearly observed. All these results are discussed and compared with microscopic theoretical predictions using Hartree-Fock- Bogolyubov calculations using the Gogny force. (20 refs).

  3. Alkali-free bioactive glasses for bone regeneration =

    Science.gov (United States)

    Kapoor, Saurabh

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) - Fluorapatite (Ca5(PO4)3F) - Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1-12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass

  4. Micromachining of glass by the third harmonic of nanosecond Nd:YVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Ramil, A. [Centro de Investigacions Tecnoloxicas, Universidade da Coruna, E-15403 Ferrol (A Coruna) (Spain)], E-mail: aramil@cdf.udc.es; Lamas, J.; Alvarez, J.C.; Lopez, A.J.; Saavedra, E.; Yanez, A. [Centro de Investigacions Tecnoloxicas, Universidade da Coruna, E-15403 Ferrol (A Coruna) (Spain)

    2009-03-01

    The ablation processing of glass was performed by using the third harmonic of nanosecond Nd:YVO{sub 4} laser. The objective of this work was the formation of deep holes with a high aspect ratio in soda lime glass; with this purpose different ways to raster the glass surface with the focused laser beam, i.e., single line, parallel lines and orthogonally crossing lines, have been tried and the effect of different parameters as the number of lines and number of scans in the depth and inclination of the sidewalls of the hole has been analyzed. Moreover, to reduce the time consumption in the laser processing of glass plates the relationship between penetration depths and overlapping factor has been studied and an optimum value of scan speed has been obtained for a particular case.

  5. Glass marking with diode-pumped Nd:YLF laser; Handotai reiki Nd:YLF laser ni yoru glass marking

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, F.; Hayashi, K. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1996-08-20

    The compact marking system based on a beam scanning system in which the fourth harmonic (FHG: 262 nm in wavelength) of a diode-pumped Nd:YLF (Nd:LiYf4) laser is used for the source of ultraviolet light is described. The result of application to the glass marking that caused a problem due to the generation of cracks is also explained. The machining characteristics significantly vary depending on the type of glass. During actual marking, sample processing must be beforehand carried out to optimize the processing conditions after confirming that there is no problem in practical use. For marking on the glass used for liquid-crystal board, it is valid to improve the density of a dot and increase the number of shots per dot for obtaining high visibility. However, cracks may occur in the clearance of each dot because of the thermal effect. Therefore, the processing conditions must be optimized according to the glass type and crack generation state. The generation of cracks can be suppressed by setting the processing conditions to the optimum level. As a result, satisfactory marking is obtained. 8 refs., 6 figs.

  6. One-step electrochemically-codeposited polyaniline-platinum for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Thiangkaew, Anongnad; Keothongkham, Khamsone; Maiaugree, Wasan; Jarernboon, Wirat [Khon Kaen University, Khon Kaen (Thailand); Kamwanna, Teerasak; Pimanpang, Samuk; Amornkitbamrung, Vittaya [Khon Kaen University, Khon Kaen (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen (Thailand)

    2014-05-15

    Platinum, polyaniline and composite polyaniline-platinum films were coated on conductive glass by using electrochemical deposition. They were then used as dye-sensitized solar cell counter electrodes. The efficiencies of platinum, polyaniline and composite polyaniline-platinum cells were 2.47, 4.47 and 6.62%, respectively. The improvement of composite polyaniline-platinum solar cell efficiency over pure polyaniline and platinum cells is because of an increase in the film's catalytic activity and a decrease in charge-transfer resistance between its counter electrode and electrolyte, as observed by using cyclic voltammogram and electrochemical impedance spectroscopy measurements, respectively. Co-deposition of polyaniline and Pt catalysts was confirmed by the presence of Pt and N peaks in the X-ray photoelectron spectroscopy spectrum.

  7. High frequency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Newman, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    By looking at the free-electron laser as a particle accelerator working backwards, Morton realized that the techniques used to accelerate particles could be used to improve the performance of free-electron lasers. In particular, he predicted the capture of electrons in ''stable-phase'' regions, or ''buckets'' in the electron phase space, and proposed that by decelerating the buckets, the trapped electrons could be decelerated to extract significant amounts of their energy as optical radiation. In fact, since electrons not trapped in the stable regions are forever excluded from them--at least in the adiabatic approximation--displacement techniques could also be used to accelerate or decelerate electrons in a free-electron laser. This paper explains the principle behind ''phase-displacement'' acceleration and details an experiment carried out with a 20-MeV electron beam to test these predictions. Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency. They show deceleration of electrons by as much as 7% and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator

  8. Acquisition of rheological and calorimetric properties of borosilicate glass to determine the free energy of formation

    International Nuclear Information System (INIS)

    Linard, Y.; Advocat, Th.

    2000-01-01

    No fundamental thermodynamic data, such as the entropy Δ f S T) and enthalpy Δ f H T) of formation are currently available for nuclear borosilicate glasses. They are necessary to assess the glass thermodynamic stability in water, one of the most important potential long-term glass alteration vectors. Three glass composition ranges were investigated: - 8 compositions ranging from a ternary B 2 O 3 -SiO 2 --Na 2 O (BSN) glass to the simulated SON 68 industrial glass for containment of high active nuclear wastes after reprocessing spent uranium oxide fuel from light water reactors. The basic BSN glass was gradually modified with the additives: Al 2 O 3 , CaO, ZrO 2 , Ce 2 O 3 , Li 2 O and Fe 2 O 3 , and non-radioactive surrogate fission product oxides. - A second using another BSN ternary glass to which Al 2 O 3 , MgO and a group of non-radioactive surrogate fission product oxides, representative of natural uranium GCR fuel, were added. - A third range consisting of various BSN ternary glass compositions. All the glass specimens were fabricated by melting the oxides, carbonates anal nitrates at 1273 to 1473 K in a platinum crucible. Experimental methods based on calorimetry and viscosimetry techniques were used to determine the heat capacity Cp of each glass composition, a necessary parameter in addition to the known heat capacities of the basic glass component oxides, for calculating Δ f S T) and Δ f S T). The heat capacity Cp was measured between 273 K and 1480 K through a combination of three experimental devices: a low-temperature adiabatic calorimeter, a differential scanning calorimeter, and an ice calorimeter. The glass configuration entropy S conf (T g ) necessary to obtain the glass entropy of formation (Eqn.(3)) was determined from tile glass rheological properties. A low-temperature viscosimeter was used to measure the strain ε of a glass specimen subjected to a given uniaxial stress σ to determine the viscosity η. A Couette viscosimeter was used to

  9. Ablative Fractional 10 600 nm Carbon Dioxide Laser Versus Non-ablative Fractional 1540 nm Erbium-Glass Laser in Egyptian Post-acne Scar patients.

    Science.gov (United States)

    Elsaie, Mohamed L; Ibrahim, Shady M; Saudi, Wael

    2018-01-01

    Introduction: Non-ablative fractional erbium-doped glass 1540 nm and fractional ablative 10600 nm carbon dioxide lasers are regarded as effective modalities for treating acne atrophic scars. In this study, we aimed to compare the effectiveness of fractional CO 2 laser and fractional nonablative 1540 nm erbium doped glass laser in treating post acne atrophic scars in Egyptian patients. Methods: Fifty-eight patients complaining of moderate and severe acne atrophic scars were randomly divided into 2 groups of 29 patients each. Both groups were subjected to 4 treatment sessions with 3 weeks interval and were followed up for 3 months. In group A, enrolled patient sreceived C2 laser, while in group B, patients were treated with 1540 nm erbium glass fractional laser. Results: Clinical assessment revealed that the mean grades of progress and improvement were higher with fractional 10600 nm CO2 laser but with non-significant difference between both treatments ( P = 0.1). The overall patients' satisfaction with both lasers were not significantly different ( P = 0.44). Conclusion: Both fractional ablative CO2 and fractional non-ablative erbium glass lasers are good modalities for treating acne scars with a high efficacy and safety profile and good patient satisfaction. The fractional ablative laser showed higher efficacy while non-ablative laser offered less pain and shorter downtime.

  10. Ag clustering investigation in laser irradiated ion-exchanged glasses by optical and vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trave, E., E-mail: enrico.trave@unive.it [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Cattaruzza, E.; Gonella, F.; Calvelli, P. [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Quaranta, A. [Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, I-38050 Povo (Italy); Rahman, A.; Mariotto, G. [Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona (Italy)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We modify the properties of Ag{sup +} exchanged glasses by thermal and laser treatment. Black-Right-Pointing-Pointer The induced microstructural changes are analyzed by optical and Raman spectroscopy. Black-Right-Pointing-Pointer Ag-based species in the glass show a peculiar PL activity in the UV-Vis range. Black-Right-Pointing-Pointer Raman and OA analysis allow for determining the Ag cluster size evolution. Black-Right-Pointing-Pointer Laser processing leads to different cluster formation and fragmentation mechanisms. - Abstract: Ion exchange process is widely used to dope silicate glass layers with silver for several applications, ranging from light waveguide to nanostructured composite glass fabrication. The silver-doped structure and its physical properties depend on the preparation parameters as well as on subsequent treatments. In particular, laser irradiation of the ion exchanged glasses has been demonstrated to be an effective tool to control cluster size and size distribution. Nevertheless, a complete comprehension of the basic phenomena and a systematic characterization of these systems are still lacking. In this paper, an extended optical characterization is presented for soda-lime glass slides, doped with silver by Ag{sup +}-Na{sup +} ion exchange, thermally treated and irradiated with a Nd:YAG laser beam at different wavelengths, and for different energy density. The samples were characterized by various spectroscopic techniques, namely, optical absorption, photoluminescence and micro-Raman analysis. The availability of all these characterization techniques allowed pointing out a suitable scenario for the Ag clustering evolution as a function of the ion exchange, annealing and laser irradiation parameters.

  11. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, Erica M.; Almirall, Jose R.

    2010-05-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  12. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Cahoon, Erica M.; Almirall, Jose R.

    2010-01-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  13. Efficient enhancement of bismuth NIR luminescence by aluminum and its mechanism in bismuth doped germanate laser glass

    DEFF Research Database (Denmark)

    Wang, L.P.; Tan, L.L.; Yue, Yuanzheng

    2016-01-01

    As a new member of laser glass family, bismuth-doped glasses have received rising interests due to the application of fiber amplifiers and laser sources in the new spectral range for the next-generation optical communication system. For practical application of the glasses, it must be considered ...

  14. Augmented reality glass-free three-dimensional display with the stereo camera

    Science.gov (United States)

    Pang, Bo; Sang, Xinzhu; Chen, Duo; Xing, Shujun; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu

    2017-10-01

    An improved method for Augmented Reality (AR) glass-free three-dimensional (3D) display based on stereo camera used for presenting parallax contents from different angle with lenticular lens array is proposed. Compared with the previous implementation method of AR techniques based on two-dimensional (2D) panel display with only one viewpoint, the proposed method can realize glass-free 3D display of virtual objects and real scene with 32 virtual viewpoints. Accordingly, viewers can get abundant 3D stereo information from different viewing angles based on binocular parallax. Experimental results show that this improved method based on stereo camera can realize AR glass-free 3D display, and both of virtual objects and real scene have realistic and obvious stereo performance.

  15. Linac technology for free-electron lasers

    International Nuclear Information System (INIS)

    Cooper, R.K.; Morton, P.L.; Wilson, P.B.; Keefe, D.; Faltens, A.

    1983-01-01

    The purpose of this paper is to concentrate on the properties of high-energy electron linear accelerators for use in free-electron lasers operating principally in the Compton regime. To fix our focus somewhat, we shall consider electron energies in the 20- to 200-MeV range and consider requirements for high-power free-electron lasers operating in the 0.5- to 10-μm range. Preliminary remarks are made on high-power free-electron laser amplifiers and oscillators and some desirable characteristics of the linacs that deliver electron beams for these devices. Both the high peak-current requirements of the amplifier and the high pulse-repetition frequency requirements of the oscillator can be met by present-day linac technology, although not necessarily by the same machine. In this papers second and third section, the technology of two rather different types of linear accelerators, the rf linac and the induction linac, is reviewed. In conclusion, applications to the Free Electron Lasers are stated

  16. Free volume of mixed cation borosilicate glass sealants elucidated by positron annihilation lifetime spectroscopy and its correlation with glass properties

    Science.gov (United States)

    Ojha, Prasanta K.; Rath, Sangram K.; Sharma, Sandeep K.; Sudarshan, Kathi; Pujari, Pradeep K.; Chongdar, Tapas K.; Gokhale, Nitin M.

    2015-01-01

    The role of La+3/Sr+2 ratios, which is varied from 0.08 to 5.09, on density, molar volume, packing fraction, free volume, thermal and electrical properties in strontium lanthanum aluminoborosilicate based glass sealants intended for solid oxide fuel cell (SOFC) applications is evaluated. The studies reveal expansion of the glass network evident from increasing molar volume and decreasing packing fraction of glasses with progressive La+3 substitutions. The molecular origin of these macroscopic structural features can be accounted for by the free volume parameters measured from positron annihilation lifetime spectroscopy (PALS). The La+3 induced expanded glass networks show increased number of subnanoscopic voids with larger sizes, as revealed from the ortho-positronium (o-Ps) lifetime and its intensity. A remarkably direct correspondence between the molar volume and fractional free volume trend is established with progressive La2O3 substitution in the glasses. The effect of these structural changes on the glass transition temperature, softening temperature, coefficient of thermal expansion, thermal stability as well as electrical conductivity has been studied.

  17. High efficiency metal marking with CO2 laser and glass marking with excimer laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    with a thoroughly tested ray-tracing model is presented and compared with experimental results. Special emphasis is put on two different applications namely marking in metal with TEA-CO2 laser and marking in glass with excimer laser. The results are evaluated on the basis of the achievable energy enhancement......Today, mask based laser materials processing and especially marking is widely used. However, the energy efficiency in such processes is very low [1].This paper gives a review of the results, that may be obtained using the energy enhancing technique [1]. Results of simulations performed...

  18. Development of high-average-power-laser medium based on silica glass

    International Nuclear Information System (INIS)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    We have developed a high-average-power laser material based on silica glass. A new method using Zeolite X is effective for homogeneously dispersing rare earth ions in silica glass to get a high quantum yield. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action, and therefore, we have carefully to treat the gelation and sintering processes, such as, selection of colloidal silica, pH value of for hydrolysis of tetraethylorthosilicate, and sintering history. The quality of the sintered sample and the applications are discussed. (author)

  19. Effect of providing free glasses on children's educational outcomes in China: cluster randomized controlled trial.

    Science.gov (United States)

    Ma, Xiaochen; Zhou, Zhongqiang; Yi, Hongmei; Pang, Xiaopeng; Shi, Yaojiang; Chen, Qianyun; Meltzer, Mirjam E; le Cessie, Saskia; He, Mingguang; Rozelle, Scott; Liu, Yizhi; Congdon, Nathan

    2014-09-23

    To assess the effect of provision of free glasses on academic performance in rural Chinese children with myopia. Cluster randomized, investigator masked, controlled trial. 252 primary schools in two prefectures in western China, 2012-13. 3177 of 19,934 children in fourth and fifth grades (mean age 10.5 years) with visual acuity 6/12 with glasses. 3052 (96.0%) completed the study. Children were randomized by school (84 schools per arm) to one of three interventions at the beginning of the school year: prescription for glasses only (control group), vouchers for free glasses at a local facility, or free glasses provided in class. Spectacle wear at endline examination and end of year score on a specially designed mathematics test, adjusted for baseline score and expressed in standard deviations. Among 3177 eligible children, 1036 (32.6%) were randomized to control, 988 (31.1%) to vouchers, and 1153 (36.3%) to free glasses in class. All eligible children would benefit from glasses, but only 15% wore them at baseline. At closeout glasses wear was 41% (observed) and 68% (self reported) in the free glasses group, and 26% (observed) and 37% (self reported) in the controls. Effect on test score was 0.11 SD (95% confidence interval 0.01 to 0.21) when the free glasses group was compared with the control group. The adjusted effect of providing free glasses (0.10, 0.002 to 0.19) was greater than parental education (0.03, -0.04 to 0.09) or family wealth (0.01, -0.06 to 0.08). This difference between groups was significant, but was smaller than the prespecified 0.20 SD difference that the study was powered to detect. The provision of free glasses to Chinese children with myopia improves children's performance on mathematics testing to a statistically significant degree, despite imperfect compliance, although the observed difference between groups was smaller than the study was originally designed to detect. Myopia is common and rarely corrected in this setting.Trial Registration

  20. THE PROPERTIES OF GUIDED ELECTROMAGNETIC FIELD MODES ON THE GaAs-BASED FIBER GLASS AND LASERS

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    1999-03-01

    Full Text Available On the lasers or fiber optic communication electromagnetic waves are transmitted by confining and guiding between special layer's or fiber glass respectively. It is desired that electric and magnetic waves are in the active region of the lasers and in the core of the fiber glass. It is obtained by making more larger the of refractive index of the regions. On this work, the behavior and varying of the electric and magnetic waves and the effects on the electromagnetic waves in the fiber glass and lasers are investigated.

  1. Effects of various polishing media and techniques on the surface finish and behavior of laser glasses

    International Nuclear Information System (INIS)

    Landingham, R.L.; Casey, A.W.; Lindahl, R.O.

    1978-01-01

    The advance of high-power laser technology is dependent on the rate of advancement in laser glass forming and surface preparation. The threshold damage of glass surfaces continues to be a weak link in the overall advancement of laser technology. Methods were developed and used in the evaluation of existing glass surface preparation techniques. Modified procedures were evaluated to reduce surface contamination and subsurface defects. Polishing rates were monitored under controlled polishing conditions (purity, pH, particle size distribution, particle concentration, etc.). Future work at LLL for this ongoing investigation is described

  2. Development of laser diode pumped Nd:glass slab laser driver for the inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Kanabe, Tadashi; Yasuhara, Ryo

    2002-01-01

    A diode-pumped solid state laser (DPSSL) is promising candidate of reactor driver for Inertial Fusion Energy (IFE). As a first step of a driver development for the IFE, we are developing a laser diode pumped zig-zag Nd:glass slab laser amplifier system HALNA 10 (High Average-power Laser for Nuclear-fusion Application) which can generated an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig zag Nd:glass slab is pumped from both sides by 803 nm AIGaAs laser diode (LD) module, each LD module has an emitting area of 420 mm x 10 mm and two LD modules generate in total 218 (max.) kW peak power with 2.6 kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in first-stage experiment 8.5 J output energy at 0.5 Hz with a beam quality of 2 times diffraction limited far-field pattern, which nearly confirmed our conceptual design. Since the key issue for the IFE DPSSL drive module were almost satisfactory, we have a confidence that a next 100 J x 10 Hz DPSSL module (HALNA 100) can be constructed. Thermal effects in laser slab, Faraday rotator, Faraday isolator and Pockets cell and their managements are discussed.

  3. Cutting thin glass by femtosecond laser ablation

    Science.gov (United States)

    Shin, Hyesung; Kim, Dongsik

    2018-06-01

    The femtosecond laser ablation process for cutting thin aluminoborosilicate glass sheets of thickness 100 μm was investigated with emphasis on effective cutting speed (Veff) and mechanical strength of diced samples. The process parameters including the laser fluence (F), overlap ratio (r) of the laser beam and polarization direction were varied at a fixed pulse repetition rate f = 1 kHz to find the optimal process condition that maximizes Veff and edge strength. A three-point bending test was performed to evaluate the front-side and back-side bending (edge) strength of the laser-cut samples. Veff was proportional to F unless r exceeded a critical value, at which excessive energy began to be delivered at the same spot. The front-side edge strength was bigger than the back-side strength because of the back-side damages such as chipping. Good edge strength, as high as ∼280 MPa (front-side) and ∼230 MPa (back-side), was obtained at F = 19 J/m2, r = 0.99, with laser polarization vertical to the cutting path.

  4. Gibbs Free Energy of Formation for Selected Platinum Group Minerals (PGM

    Directory of Open Access Journals (Sweden)

    Spiros Olivotos

    2016-01-01

    Full Text Available Thermodynamic data for platinum group (Os, Ir, Ru, Rh, Pd and Pt minerals are very limited. The present study is focused on the calculation of the Gibbs free energy of formation (ΔfG° for selected PGM occurring in layered intrusions and ophiolite complexes worldwide, applying available experimental data on their constituent elements at their standard state (ΔG = G(species − ΔG(elements, using the computer program HSC Chemistry software 6.0. The evaluation of the accuracy of the calculation method was made by the calculation of (ΔGf of rhodium sulfide phases. The calculated values were found to be ingood agreement with those measured in the binary system (Rh + S as a function of temperature by previous authors (Jacob and Gupta (2014. The calculated Gibbs free energy (ΔfG° followed the order RuS2 < (Ir,OsS2 < (Pt, PdS < (Pd, PtTe2, increasing from compatible to incompatible noble metals and from sulfides to tellurides.

  5. Cladding glass ceramic for use in high powered lasers

    Science.gov (United States)

    Marker, Alexander J.; Campbell, John H.

    1998-01-01

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  6. Development of improved laser glasses which can be melted on a commercial scale. Annual progress report, September 15, 1976--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, C.F.; Huff, N.T.; Vergano, P.J.

    1978-04-01

    Large neodymium doped glass laser systems are presently being built for nuclear fusion research. However, the power which can be generated by these systems is generally limited by self focusing in the laser glass. This study was undertaken to develop laser glasses with a minimum nonlinear refractive index which would allow the generation of higher powers in these laser systems. Various fluorophosphate glass forming systems were investigated in order to develop laser glasses with ''optimum'' properties (low n/sub 2/, medium sigma, long tau, highly stable). In these fluorophosphate systems, the regions of glass formation were defined and glass composition-property correlation equations were derived which related the various properties (n/sub D/, n/sub 2/, sigma, the Nd/sup 3 +/ peak lambda, ..delta..lambda, effective ..delta..lambda, sigma and tau radiative) to the glass composition. Specific glass compositions were developed which had nonlinear refractive indices of about /sup 1///sub 3/ those of commercial silicate laser glasses but had comparable spectroscopic properties (i.e., sigma). These glasses were sufficiently stable to cast single pieces of glass weighing in excess of 50 lbs.

  7. Retrofit of a high power Nd:glass laser system with liquid crystal polarizers

    International Nuclear Information System (INIS)

    Jacobs, S.D.; Cerqua, K.A.; Kessler, T.J.; Seka, W.; Bahr, R.

    1985-03-01

    The glass development laser (GDL), has been operating at the Laboratory for Laser Energetics since 1978. This Nd:phosphate glass system produces high peak power optical radiation at lambda = 1054 nm or lambda = 351 nm for use in studying the interaction physics of intense laser beams with matter. The amplifier staging incorporates the propagation of linearly and circularly polarized light in rod amplifiers which vary in diameter from 16 mm to 90 mm. Numerous quartz or mica quarter waveplates and Brewster angle dielectric thin film polarizers are required to limit accumulated phase retardation between amplification stages and to accommodate interstage Pockels' cell isolation switches. We have recently replaced most of the waveplate-dielectric polarizer combinations in GDL with liquid crystal polarizers. Comprised of 11 μm thick cholesteric fluids sandwiched between optical quality glass plates, liquid crystal polarizers provide excellent polarization properties, low insertion loss, angular insensitivity, and laser damage resistance at lambda = 1054 nm. The design, fabrication, and performance of left-handed and right-handed circular polarizers will be discussed

  8. Laser bioengineering of glass-titanium implants surface

    Science.gov (United States)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  9. Bismuth silicate glass: A new choice for 2 μm fiber lasers

    Science.gov (United States)

    Ding, Jia; Zhao, Guoying; Tian, Ying; Chen, Wei; Hu, Lili

    2012-11-01

    We report on a new Yb3+/Tm3+/Ho3+ co-doped bismuth silicate glass: SiO2-Bi2O3-R2O (R = Li, Na, K) for 2 μm fiber lasers. Bi2O3 was introduced into alkali silicate glass to optimize 2 μm emission properties. Physical, chemical and spectroscopic properties of Yb3+/Tm3+/Ho3+ co-doped SiO2-Bi2O3-R2O (SBR) glass were presented. The Yb3+/Tm3+/Ho3+ co-doped SBR glass shows excellent thermal stability (ΔT = 162 °C), an intense 2.0 μm emission pumped by 980 nm LD with a lifetime of 1.33 ms and width of 168 nm, large maximum emission cross section of Ho3+ (5.3 × 10-21 cm2), thus large σemτ product (7.049 × 10-24 cm2 s), which suggest its application in 2 μm fiber lasers.

  10. 100 TW CPA Nd: Glass laser for fast ignition research

    International Nuclear Information System (INIS)

    Fujita, H.; Daido, H.; Jitsuno, T.

    2001-01-01

    A 100 TW chirped pulse amplification (CPA) Nd:glass laser has been developed to investigate the fast ignition concept. The ultrashort-pulse (60 TW, 42 J, 0.7 ps) was focused on plane targets, plane targets with preformed plasma, and high density compressed plasmas produced by the GEKKO-XII (12 beam, 20 kJ) laser. Focus intensity of >10 19 W/cm 2 has been achieved. (author)

  11. The role of a low-energy–density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting

    International Nuclear Information System (INIS)

    Li, X.P.; Kang, C.W.; Huang, H.; Sercombe, T.B.

    2014-01-01

    Highlights: • We proposed a re-scan strategy to prevent crack propagation in SLM. • The re-scan should be carried out at a low laser energy density. • The underlying mechanism is through reduction and relief of residual stresses. • Lowered temperature gradient and superplasticity account for reduction of stress. • For the first time, a crack-free BMGCs gear with a large size was produced. - Abstract: In this paper, we have investigated the use of a re-scanning strategy to prevent propagation of macro-cracks during the selective laser melting of an Al 85 Ni 5 Y 6 Co 2 Fe 2 bulk metallic glass composites (BMGCs). These cracks form as a result of the high residual stress caused by the rapid heating and cooling of the material by the laser beam. Unlike crystalline materials, the BMGCs possess a supercooled liquid region in which the residual stress can be relieved by plastic flow. We show that by using a high power initial scan (designed to melt the material) followed by a lower power re-scan (for stress relief) cracking can be prevented. Using this approach, crack-free Al 85 Ni 5 Y 6 Co 2 Fe 2 BMGCs components have been fabricated, including a gear with a diameter ∼25 mm and height ∼10 mm

  12. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    Science.gov (United States)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  13. Effects of Nanodiamond Abrasive Friability in Experimental MR Fluids with Phosphate Laser Glass LHG-8 and Other Optical Glasses

    Energy Technology Data Exchange (ETDEWEB)

    DeGroote, J.E.; Marino, A.E.; Wilson, J.P.; Spencer, K.E.; Jacobs, S.D.

    2005-09-22

    Research is currently being conducted to better understand the role that nanodiamond abrasives play in the removal process of Magnetorheological Finishing (MRF). The following presents removal rate data for a set of six optical glasses that were spotted (not polished out) with four different MR fluids, as well as texturing/smoothing data for phosphate laser glass LHG-8.

  14. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  15. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Leonard C. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Ishida, Takanobu [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  16. Computer simulations of rare earth sites in glass: experimental tests and applications to laser materials

    International Nuclear Information System (INIS)

    Weber, M.J.

    1984-11-01

    Computer simulations of the microscopic structure of BeF 2 glasses using molecular dynamics are reviewed and compared with x-ray and neutron diffraction, EXAFS, NMR, and optical measurements. Unique information about the site-to-site variations in the local environments of rare earth ions is obtained using optical selective excitation and laser-induced fluorescence line-narrowing techniques. Applications and limitations of computer simulations to the development of laser glasses and to predictions of other static and dynamic properties of glasses are discussed. 35 references, 2 figures, 2 tables

  17. Glass transition near the free surface studied by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sikorski, M.

    2008-06-15

    A comprehensive picture of the glass transition near the liquid/vapor interface of the model organic glass former dibutyl phthalate is presented in this work. Several surface-sensitive techniques using x-ray synchrotron radiation were applied to investigate the static and dynamic aspects of the formation of the glassy state from the supercooled liquid. The amorphous nature of dibutyl phthalate close to the free surface was confirmed by grazing incidence X-ray diffraction studies. Results from X-ray reflectivity measurements indicate a uniform electron density distribution close to the interface excluding the possibility of surface freezing down to 175 K. Dynamics on sub-{mu}m length-scales at the surface was studied with coherent synchrotron radiation via x-ray photon correlation spectroscopy. From the analysis of the dispersion relation of the surface modes, viscoelastic properties of the dibutyl phthalate are deduced. The Kelvin-Voigt model of viscoelastic media was found to describe well the properties of the liquid/vapor interface below room temperature. The data show that the viscosity at the interface matches the values reported for bulk dibutyl phthalate. The scaled relaxation rate at the surface agrees with the bulk data above 210 K. Upon approaching the glass transition temperature the free surface was observed to relax considerably faster close to the liquid/vapor interface than in bulk. The concept of higher relaxation rate at the free surface is also supported by the results of the quasielastic nuclear forward scattering experiment, during which dynamics on molecular length scales around the calorimetric glass transition temperature is studied. The data were analyzed using mode-coupling theory of the glass transition and the model of the liquid(glass)/vapor interface, predicting inhomogeneous dynamics near the surface. The quasielastic nuclear forward scattering data can be explained when the molecular mobility is assumed to decrease with the increasing

  18. Glass transition near the free surface studied by synchrotron radiation

    International Nuclear Information System (INIS)

    Sikorski, M.

    2008-06-01

    A comprehensive picture of the glass transition near the liquid/vapor interface of the model organic glass former dibutyl phthalate is presented in this work. Several surface-sensitive techniques using x-ray synchrotron radiation were applied to investigate the static and dynamic aspects of the formation of the glassy state from the supercooled liquid. The amorphous nature of dibutyl phthalate close to the free surface was confirmed by grazing incidence X-ray diffraction studies. Results from X-ray reflectivity measurements indicate a uniform electron density distribution close to the interface excluding the possibility of surface freezing down to 175 K. Dynamics on sub-μm length-scales at the surface was studied with coherent synchrotron radiation via x-ray photon correlation spectroscopy. From the analysis of the dispersion relation of the surface modes, viscoelastic properties of the dibutyl phthalate are deduced. The Kelvin-Voigt model of viscoelastic media was found to describe well the properties of the liquid/vapor interface below room temperature. The data show that the viscosity at the interface matches the values reported for bulk dibutyl phthalate. The scaled relaxation rate at the surface agrees with the bulk data above 210 K. Upon approaching the glass transition temperature the free surface was observed to relax considerably faster close to the liquid/vapor interface than in bulk. The concept of higher relaxation rate at the free surface is also supported by the results of the quasielastic nuclear forward scattering experiment, during which dynamics on molecular length scales around the calorimetric glass transition temperature is studied. The data were analyzed using mode-coupling theory of the glass transition and the model of the liquid(glass)/vapor interface, predicting inhomogeneous dynamics near the surface. The quasielastic nuclear forward scattering data can be explained when the molecular mobility is assumed to decrease with the increasing

  19. Field-glass range finder with a semiconductor laser

    Science.gov (United States)

    Iwanejko, Leszek; Jankiewicz, Zdzislaw; Jarocki, Roman; Marczak, Jan

    1995-03-01

    This paper presents the project of a laboratory model of a field-glasses range-finger. The optical transmitter of the device contains a commercial pulse semiconductor laser which generates IR wavelength around 905 nm. Some of the technical parameters of this device are: a maximum range of up to 3 km; an accuracy of +/- 5 m, divergence of a laser beam of 1 mrad; a repetition rate of 1 kHz. Dichroic elements of the receiver ensure a capability of an optimization of a field of view, without the worsening of luminance and size of an observation field.

  20. Mobile glasses-free 3D using compact waveguide hologram

    Science.gov (United States)

    Pyun, K.; Choi, C.; Morozov, A.; Putilin, A.; Bovsunovskiy, I.; Kim, S.; Ahn, J.; Lee, H.-S.; Lee, S.

    2013-02-01

    The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.

  1. Mobile glasses-free 3D using compact waveguide hologram

    International Nuclear Information System (INIS)

    Pyun, K; Choi, C; Kim, S; Ahn, J; Lee, H-S; Lee, S; Morozov, A; Bovsunovskiy, I; Putilin, A

    2013-01-01

    The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.

  2. Biological applications of ultraviolet free-electron lasers

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated

  3. Femtosecond laser writing of new type of waveguides in silver containing glasses (Conference Presentation)

    Science.gov (United States)

    Abou Khalil, Alain; Bérubé, Jean-Philippe; Danto, Sylvain; Desmoulin, Jean-Charles; Cardinal, Thierry; Petit, Yannick G.; Canioni, Lionel; Vallée, Réal

    2017-03-01

    Femtosecond laser writing in glasses is a growing field of research and development in photonics, since it provides a versatile, robust and efficient approach to directly address 3D material structuring. Laser-glass interaction process has been studied for many years, especially the local changes of the refractive index that have been classified by three distinct types (types I, II and III, respectively). These refractive index modifications are widely used for the creation of photonics devices such as waveguides [1], couplers, photonic crystals to fabricate integrated optical functions in glasses for photonic applications as optical circuits or integrated sensors. Femtosecond laser writing in a home-developed silver containing zinc phosphate glasses induces the creation of fluorescent silver clusters distributed around the laser-glass interaction voxel [2]. In this paper, we introduce a new type of refractive index modification in glasses. It is based on the creation of these photo-induced silver clusters allowing a local change in the refractive index Δn = 5×10-3, which is sufficient for the creation of waveguides and photonics devices. The wave guiding process in our glasses along these structures with original geometry is demonstrated for wavelengths from visible to NIR [3], giving a promising access to integrated optical circuits in these silver containing glasses. Moreover, the characterization of the waveguides is presented, including their original geometry, the refractive index change, the mode profile, the estimation of propagation losses and a comparison with simulation results. 1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729-1731 (1996). 2. M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, The Journal of Physical Chemistry C 114, 15584-15588 (2010). 3. S. Danto, F. Désévédavy, Y. Petit, J.-C. Desmoulin, A. Abou Khalil, C. Strutynski, M. Dussauze, F

  4. Laser ablation of silicate glasses doped with transuranic actinides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1998-01-01

    Direct sampling laser ablation plasma mass spectrometry (DS-LAMS) was applied to silica glasses doped with 237 Np, 242 Pu or 241 Am using a unique instrument recently installed into a transuranic glovebox. The primary goal was to assess the utility of mass spectrometry of directly ablated ions for facile evaluation of actinide (An) constituents of silicate glass immobilization matrices used for encapsulation of radionuclides. The instrument and general procedures have been described elsewhere. Three high-purity silicate glasses prepared by a sol-gel process (SG) and one conventional high-temperature (HT; melting point ∼ 1,450 C) borosilicate glass were studied. These glasses comprised the following constituents, with compositions expressed in mass percentages: Np-HT ∼ 30% SiO 2 + 6% B 2 O 3 + 3% BaO + 13% Al 2 O 3 + 10% PbO + 30% La 2 O 3 + 8% 237 NpO 2 ; Np-SG ∼ 70% SiO 2 + 30% 237 NpO 2 ; Pu-SG ∼ 70% SiO 2 + 30% 242 PuO 2 ; Am-SG ∼ 85% SiO 2 + 15% 241 AmO 2

  5. Performance results for Beamlet: A large aperture multipass Nd glass laser

    International Nuclear Information System (INIS)

    Campbell, J.H.; Barker, C.E.; VanWonterghem, B.M.; Speck, D.R.; Behrendt, W.C.; Murray, J.R.; Caird, J.A.; Decker, D.E.; Smith, I.C.

    1995-01-01

    The Beamlet laser is a large aperture, flashlamp pumped Nd: glass laser that is a scientific prototype of an advanced Inertial Fusion laser. Beamlet has achieved third harmonic, conversion efficiency of near 80% with its nominal 35cm x 35cm square beam at mean 3ω fluences in excess of 8 J/cm 2 (3-ns). Beamlet uses an adaptive optics system to correct for aberrations and achieve less than 2 x diffraction limited far field spot size

  6. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    International Nuclear Information System (INIS)

    Lan, Xiaodong; Wu, Hong; Liu, Yong; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-01-01

    Metallic glass composite coatings Ti 45 Cu 41 Ni 9 Zr 5 and Ti 45 Cu 41 Ni 6 Zr 5 Sn 3 (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni 2 SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  7. Effect of nanosecond UV laser irradiation on luminescence and absorption in silver- and copper-containing phosphate glasses

    Science.gov (United States)

    Murashov, A. A.; Sidorov, A. I.; Stoliarchuk, M. V.

    2018-03-01

    Experimental evidence is presented that nanosecond UV laser irradiation of silver- and copper-containing barium phosphate glasses leads to luminescence quenching in the visible range. Subsequent heat treatment induces an absorption in the range 350–500 nm. These effects are due to the ionisation and fragmentation of subnanometre molecular clusters by laser radiation and subsequent (heat treatment-induced) formation of nanoparticles possessing plasmon resonance. Our numerical modelling results demonstrate the feasibility of producing stable AgnCum hybrid molecular clusters in glass. Local modification of the optical properties of glass by laser light can be used for optical information recording.

  8. Experimental investigation of the generation of harmonic photons from the interaction of free electrons with intense laser radiation

    International Nuclear Information System (INIS)

    Englert, T.J.

    1983-01-01

    An experimental investigation of the generation of second harmonic photons through the interaction of free electrons with an intense laser beam has been performed. Second harmonic photons with a wavelength of 530nm generated from the interaction of free electrons with 1060nm photons from a neodymium-glass laser are implied by observing Doppler shifted photons with wavelengths of 490nm and 507nm. The observed photon wavelengths results from a Doppler shift of the laser photon wavelengths as viewed in the rest frame of the electrons combined with a Doppler shift of the second harmonic photons emitted from 1600eV and 500eV electrons. Comparison of experimental results with those predicted by cross sections, derived using classical and quantum electrodynamics, shows reasonable agreement with both theories. Although second harmonic photons are created, the dynamics of second harmonic photon generation (accelerated electron motion due to the electromagnetic field or actual two-photon interaction with the electron) cannot be resolved without further experiment

  9. Excimer laser corneal surgery and free oxygen radicals.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Akata, F; Hasanreisoğlu, B; Türközkan, N

    1996-01-01

    Corneal photoablation with 193 nm argon fluoride excimer laser is a new technique for the treatment of refractive errors and for removing corneal opacities and irregularities. Ultraviolet radiation and thermal injury induce free radical formation in the tissues. The aim of this study was to confirm the production of free radicals by excimer laser photoablation in rabbits. The thermal changes of the posterior corneal surface were recorded during excimer laser photoablation. The lipid peroxide (LPO) levels and superoxide dismutase (SOD) activities of aqueous humour were measured after excimer laser keratectomy. The aqueous LPO levels were not changed after excimer laser ablation, but both the thermal increase in the cornea during the photoablation and the decreased aqueous SOD activities suggest that free radicals are formed in the cornea during excimer laser keratectomy, and that they may be responsible for some of the complications of excimer laser corneal surgery.

  10. Spatio-selective surface modification of glass assisted by laser-induced deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Takahashi, Hironobu; Niidome, Yasuro; Hisanabe, Hideyuki; Kuroiwa, Keita; Kimizuka, Nobuo; Yamada, Sunao

    2006-01-01

    Using pulsed laser irradiation (532 nm), dodecanethiol-capped gold nanoparticles (DT-Au) were deposited on the laser-irradiated region of a hydrophobic glass substrate modified with dimethyloctadecylchlorosilane (DMOS). After removal of deposited DT-Au, the laser-deposited region on the substrate was hydrophilic, as verified by static water contact angles. X-ray photoelectron spectroscopy suggested that the naked glass surface was not exposed at the hydrophilic region. Immersion of the substrate into gold nanorod (NR) solution selectively immobilized NRs on the hydrophilic surface via electrostatic interactions, indicating that the hydrophilic region was an anionic surface. From these results, it is expected that some immobilized DMOS groups on the laser-irradiated region of the substrate were oxidized during DT-Au deposition and fragmentation of the deposited DT-Au

  11. Stress relaxation damage in K9 glass plate irradiated by 1.06μm CW laser

    International Nuclear Information System (INIS)

    Luo Fu; Sun Chengwei

    2001-01-01

    Based on the stress relaxation model in 1D planar geometry and the visco-elastic constitutive equation, the temperature and stress histories in the K9 glass samples irradiated by CW laser beams (λ = 1.06 μm) have been calculated. The results indicate that the residual tensile stress due to the stress relaxation effect during cooling after the laser radiation may be greater than the tensile fracture strength of samples, while the maximum compression stress during the laser heating is less than the requirement for compression damage. For a K9 glass window of 3 mm thickness, its damage due to the stress relaxation may be induced by a laser radiation of 0.946 MW/cm 2 for 0.2s . Therefore, the stress relaxation should be regarded as the main mechanism of damage in K9 glass windows while a CW laser beam (λ = 1.06 μm) irradiates it with large spot

  12. Undulators and free-electron lasers

    CERN Document Server

    Luchini, P

    1990-01-01

    This book is a reference text for all those working in free-electron laser research as well as being a learning aid for physicists and graduate students who wish an introduction to this field. Only a basic understanding of relativistic mechanics and electromagnetism is presupposed. After an overview of early developments and general principles of operation, the different models that can be used to describe free-electron lasers are presented, organized according to their range of applicability. The relevent conceptual and mathematical constructs are built up from first principles with attention to obtaining the practically important results in a simple but rigorous way. Interaction of the undulator with the driving electron accelerator and the laser cavity and design of undulator magnets are treated and an overview is given of some typical experiments.

  13. Effect Of Laser CO2 Parameters In Marking Of Glass

    International Nuclear Information System (INIS)

    Khanafi-Benghalem, Nafissa; Boudoukha, Hassina; Benghalem, Kamel

    2008-01-01

    Currently many techniques of marking are exploited in a great number of sectors, on various materials (cardboard, textile, wood, leather, plastic, metal, ceramics and glass). The printing is done on supports of great or small dimension for all geometrical forms (plane, round, conical and ovalised). We can print colour as much than we wish. The marking technology for the identification of the glass parts knows a remarkable development carried by the new needs for the industrialists using transparent materials such as the optical, chemical, pharmaceutical sectors, the luxury and drink industries or publicity and decoration (neon signs, advertising mirrors). The objective of our work consists particularly in engraving on glass the measurement scales forming a whole of ordered graduation which the goal is to carry out reading systems of measuring apparatus about 1/10 μm of precision. We used as tool for marking the laser CO 2 . Our choice is justified by the flexibility of the laser, the permanent lifespan of the graduations carried out and the guarantee of the facility of reading incidentally the precision and the accuracy of the measuring apparatus. The study parameters of the laser beam are the velocity (400, 600, 800, 1000 m/s.), the power (25, 75 and 80% of 25W) and the numbers pass (one, two and three pass). The optical observations results obtained suggest that the highest and the average power used remain the favourable parameters for the quality of the graduations carried out.

  14. Free standing bulk metallic glass microcomponents: Tooling considerations

    DEFF Research Database (Denmark)

    Byrne, Cormac; Eldrup, Morten Mostgaard; Ohnuma, Masato

    2010-01-01

    Bulk metallic glasses have enormous potential for use in small-scale devices such as MEMS and biomedical components. Thermoplastic forging of free standing components poses challenges unlike those seen when forging crystalline materials. Central to these challenges is the simultaneous advantage/disadvantage...

  15. High-efficiency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Baru, C.A.; Newnam, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency and show deceleration of electrons by as much as 7%, and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator

  16. Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M. [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hassan, Z. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2016-07-19

    A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and UV-Vis spectrophotometer.

  17. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  18. Free-electron lasers considered for CEBAF

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Spinoff development of industrial free-electron lasers is in prospect for an industry-universitylaboratory consortium centred at the Continuous Electron Beam Accelerator Facility in Newport News, Virginia, site of the CEBAF 4 GeV superconducting radiofrequency (SRF) accelerator, now being commissioned (see page 42). Together with several US corporations and universities, the Laboratory is now also addressing the potential of smaller SRF electron accelerators for ''driving'' free-electron lasers (FELs)

  19. Laser sintering of nano 13-93 glass scaffolds: Microstructure, mechanical properties and bioactivity

    Directory of Open Access Journals (Sweden)

    Cao Y.

    2015-01-01

    Full Text Available As the only bioactive material that can bond with both hard tissues and soft tissues, bioactive glass has become much important in the field of tissue engineering. 13-93 bioactive glass scaffolds were fabricated via selective laser sintering (SLS. It was focused on the effects of laser sintering on microstructure and mechanical properties of the scaffolds. The experimental results showed that the sintered layer gradually became dense with the laser power increasing and then some defects occurred, such as macroscopic caves. The optimum compressive strength and fracture toughness were 21.43±0.87 MPa and 1.14±0.09 MPa.m1/2, respectively. In vitro bioactivity showed that there was the bone-like apatite layer on the surface of the scaffolds after soaking in simulated body fluid (SBF, which was further evaluated by Fourier transform infrared spectroscopy (FTIR. Moreover, cell culture study showed MG-63 cells adhered and spread well on the scaffolds, and proliferated with increasing time in cell culture. These indicated excellent bioactivity and biocompatibility of nano 13-93 glass scaffolds.

  20. Automated characterization of glass microspheres used for laser fusion experiments

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Norimatsu, Takayoshi; Izawa, Yasukazu; Yamanaka, Chiyoe.

    1985-01-01

    In laser fusion experiments glass microspheres of 100 to 1000 μm in diameter and 1 to 20 μm in wall thickness are most commonly used as fuel containers. The glass microspheres should be characterized precisely to meet stringent experimental requirements. Much time is consumed to characterize and select good quality spheres among thousands of spheres. We have developed an automated system to characterize and select glass microspheres. The system consists of charger, quadrupole rail, image processing and X-Y stage control with micro-computer. Total processing time primarily depends on the time required for image analysis, which should be compromised with the accuracy of characterization. The time for simple characterization requires about 10 sec. at present. (author)

  1. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  2. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Xiaodong; Wu, Hong, E-mail: wuhong927@126.com; Liu, Yong, E-mail: yonliu@csu.edu.cn; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-10-15

    Metallic glass composite coatings Ti{sub 45}Cu{sub 41}Ni{sub 9}Zr{sub 5} and Ti{sub 45}Cu{sub 41}Ni{sub 6}Zr{sub 5}Sn{sub 3} (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni{sub 2}SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  3. Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.

    Science.gov (United States)

    Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R

    2014-10-10

    Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062  nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067  nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067  nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.

  4. Laser annealing of ion implanted silicon by the aid of a Q-switched neodymium glass laser

    International Nuclear Information System (INIS)

    Exner, H.; Laemmel, B.; Zscherpe, G.

    1984-01-01

    Experimental results of laser annealing of arsenic implanted silicon are presented. Different depths of melting are obtained by varying the energy flux density of the Q-switched neodymium glass laser. The annealed samples are studied by the aid of optical microscopy, scanning electron microscopy, Rutherford backscattering spectrometry (RBS) combined with ion channeling, and of resistance measurements. Not any defect could be found by RBS and no surface structure could be determined by microscopy

  5. Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses

    International Nuclear Information System (INIS)

    Palomar, T.; Oujja, M.; García-Heras, M.; Villegas, M.A.; Castillejo, M.

    2013-01-01

    The feasibility and possibilities of laser induced breakdown spectroscopy (LIBS) in the full study of non-destructible historic glasses have been explored in the present work. Thirteen Roman glass samples, including seven entire glass beads, from the ancient town of Augusta Emerita (SW Spain) were characterized by LIBS in combination with other conventional techniques, such as scanning electron microscopy/energy dispersive X-ray spectrometry, X-ray fluorescence and ultraviolet–visible spectrophotometry. LIBS stratigraphic analysis, carried out by the application of successive laser pulses on the same spot, has been mainly targeted at characterizing particular features of non-destructible historic glasses, such as bulk chemical composition, surface degradation pathologies (dealkalinization layers and deposits), chromophores, and opacifying elements. The obtained data demonstrate that LIBS can be a useful and alternative technique for spectroscopic studies of historical glasses, especially for those conserved under burial conditions and when it deals with studying non-destructible samples. - Highlights: • Determination of chromophores and opacifiers in non-destructible glass by LIBS • Manganese is determined as principal component of dark deposits. • Antimony appears in all decorations while lead is only present in yellow ones. • Stratigraphic analysis enables the identification of dealkalinization layers

  6. Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses

    Energy Technology Data Exchange (ETDEWEB)

    Palomar, T. [Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain); Oujja, M., E-mail: m.oujja@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, C/Serrano 119, 28006 Madrid (Spain); García-Heras, M.; Villegas, M.A. [Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain); Castillejo, M. [Instituto de Química Física Rocasolano, CSIC, C/Serrano 119, 28006 Madrid (Spain)

    2013-09-01

    The feasibility and possibilities of laser induced breakdown spectroscopy (LIBS) in the full study of non-destructible historic glasses have been explored in the present work. Thirteen Roman glass samples, including seven entire glass beads, from the ancient town of Augusta Emerita (SW Spain) were characterized by LIBS in combination with other conventional techniques, such as scanning electron microscopy/energy dispersive X-ray spectrometry, X-ray fluorescence and ultraviolet–visible spectrophotometry. LIBS stratigraphic analysis, carried out by the application of successive laser pulses on the same spot, has been mainly targeted at characterizing particular features of non-destructible historic glasses, such as bulk chemical composition, surface degradation pathologies (dealkalinization layers and deposits), chromophores, and opacifying elements. The obtained data demonstrate that LIBS can be a useful and alternative technique for spectroscopic studies of historical glasses, especially for those conserved under burial conditions and when it deals with studying non-destructible samples. - Highlights: • Determination of chromophores and opacifiers in non-destructible glass by LIBS • Manganese is determined as principal component of dark deposits. • Antimony appears in all decorations while lead is only present in yellow ones. • Stratigraphic analysis enables the identification of dealkalinization layers.

  7. Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review

    Directory of Open Access Journals (Sweden)

    Nadia Giovanna Boetti

    2017-12-01

    Full Text Available In recent years, the exploitation of compact laser sources and amplifiers in fiber form has found extensive applications in industrial and scientific fields. The fiber format offers compactness, high beam quality through single-mode regime and excellent heat dissipation, thus leading to high laser reliability and long-term stability. The realization of devices based on this technology requires an active medium with high optical gain over a short length to increase efficiency while mitigating nonlinear optical effects. Multicomponent phosphate glasses meet these requirements thanks to the high solubility of rare-earth ions in their glass matrix, alongside with high emission cross-sections, chemical stability and high optical damage threshold. In this paper, we review recent advances in the field thanks to the combination of highly-doped phosphate glasses and innovative fiber drawing techniques. We also present the main performance achievements and outlook both in continuous wave (CW and pulsed mode regimes.

  8. Interaction of power pulses of laser radiation with glasses containing implanted metal nanoparticles

    CERN Document Server

    Stepanov, A L; Hole, D E; Bukharaev, A A

    2001-01-01

    The sodium-calcium silicate glasses, implanted by the Ag sup + ions with the energy of 60 keV and the dose of 7 x 10 sup 1 sup 6 cm sup - sup 2 by the ion current flux density of 10 mu A/cm sup 2 , are studied. The ion implantation makes it possible to synthesize in the near-the-surface glass area the composite layer, including the silver nanoparticles. The effect of the powerful pulse excimer laser on the obtained composite layer is investigated. It is established that the laser radiation leads to decrease in the silver nanoparticles size in the implanted layer. However nonuniform distribution of particles by size remains though not so wide as before the irradiation. The experimental results are explained by the effect of glass and metallic particles melting in the nanosecond period of time

  9. Effect of focusing condition on molten area characteristics in micro-welding of borosilicate glass by picosecond pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, I.H.W.; Okamoto, Y.; Okada, A.; Takekuni, T. [Okayama University, Graduate School of Natural Science and Technology, Okayama (Japan); Sakagawa, T. [Kataoka Corporation, Yokohama (Japan)

    2016-05-15

    The characteristics of the molten area are attributed not only by laser energy condition but also the focusing condition. In this study, a picosecond pulsed laser of 1064 nm in wavelength and 12.5 ps in pulse duration was used as a laser source for joining glass material. Influence of focusing condition on micro-welding of glasses was experimentally investigated by using an objective lens with and without spherical aberration correction, and its molten area was characterized. The usage of objective lens with spherical aberration correction led to a larger molten area inside the bulk material of glass even under the same pulse energy, which related to the efficient micro-welding of glass materials. In addition, an optical system with the spherical aberration correction led to a stable absorption of laser energy inside the bulk glass material, stabilizing the shape of molten area, which resulted in the reliable weld joint. On the other hand, breaking strength of the specimens with spherical aberration correction was higher than that without spherical aberration correction. Therefore, it is concluded that the focusing condition with spherical aberration correction led to the larger and stable molten area, which resulted in higher joining strength in micro-welding of glass materials. (orig.)

  10. Photoluminescence and lasing in whispering gallery mode glass microspherical resonators

    Energy Technology Data Exchange (ETDEWEB)

    Ristić, D. [Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics, Bijenička c. 54, Zagreb (Croatia); Center of Excellence for Advanced Materials and Sensing Devices, Research unit New Functional Materials, Bijenička c. 54, Zagreb (Croatia); Berneschi, S.; Camerini, M. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Farnesi, D.; Pelli, S. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); Trono, C. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Chiappini, A.; Chiasera, A.; Ferrari, M. [CSMFO Group, Istituto di Fotonica e Nanotecnologie, IFN-CNR, Via alla Cascata 56/C, 38050 Povo-Trento (Italy); Lukowiak, A. [Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, Wroclaw 50-950 (Poland); Dumeige, Y.; Féron, P. [Laboratoire d' Optronique, (CNRS-UMR 6082-Foton), ENSSAT, 6 rue de Kérampont, 22300 Lannion (France); Righini, G.C. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); Soria, S., E-mail: s.soria@ifac.cnr.it [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Conti, G. Nunzi [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy)

    2016-02-15

    We report experimental results regarding the development of Er{sup 3+}-doped glass microspherical cavities for the fabrication of compact sources at 1.55 μm. We investigate several different approaches in order to fabricate the microspheres including direct melting of Er{sup 3+}-doped glass powders, synthesis of Er{sup 3+}-doped monolithic microspheres by drawing Er{sup 3+}-doped glass, and coating of silica microspheres with an Er{sup 3+}-doped sol–gel layer. Details of the different fabrication processes are presented together with the photoluminescence characterization in free space configuration of the microspheres and of the glass precursor. We have analyzed the photoluminescence spectra of the whispering gallery modes of the microspheres excited using evanescent coupling and we demonstrate tunable laser action in a wide range of wavelengths around 1.55 μm. As much as 90 μW of laser output power was measured in Er{sup 3+}-doped glass microspheres. - Highlights: • Different approaches in microsphere fabrication and various types of post-processing. • Trimming of photorefractive glass microsphere lasers with UV light. • Peak power record of 90 μW by pumping at 1480 nm.

  11. Nonlinear theory of the free-electron laser

    International Nuclear Information System (INIS)

    Chian, A.C.-L.; Padua Brito Serbeto, A. de.

    1984-01-01

    A theory of Raman free-electron laser using a circularly polarized electromagnetic pump is investigated. Coupled wave equations that describe both linear and nonlinear evolution of stimulated Raman scattering are derived. The dispersion relation and the growth rate for the parametric instability are obtained. Nonlinear processes that may lead to saturation of the free-electron laser are discussed. (Author) [pt

  12. The Two-Beam Free Electron Laser Oscillator

    CERN Document Server

    Thompson, Neil R

    2004-01-01

    A one-dimensional model of a free-electron laser operating simultaneously with two electron beams of different energies [1] is extended to an oscillator configuration. The electron beam energies are chosen so that an harmonic of the lower energy beam is at the fundamental radiation wavelength of the higher energy beam. Potential benefits over a single-beam free-electron laser oscillator are discussed.

  13. Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds

    Energy Technology Data Exchange (ETDEWEB)

    Ciuca, Octav P., E-mail: octav.ciuca@manchester.ac.uk [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Carter, Richard M. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom); Prangnell, Philip B. [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Hand, Duncan P. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom)

    2016-10-15

    Precision welded joints, produced between fused silica glass and aluminium by a newly-developed picosecond-pulse laser technique, have been analysed for the first time using a full range of electron microscopy methods. The welds were produced as lap joints by focusing a 1.2 μm diameter laser beam through the transparent glass top sheet, slightly below the surface of the metal bottom sheet. Despite the extremely short interaction time, extensive reaction was observed in the weld zone, which involved the formation of nanocrystalline silicon and at least two transitional alumina phases, γ- and δ-Al{sub 2}O{sub 3}. The weld formation process was found to be complex and involved: the formation of a constrained plasma cavity at the joint interface, non-linear absorption in the glass, and the creation of multiple secondary keyholes in the metal substrate by beam scattering. The joint area was found to expand outside of the main interaction volume, as the energy absorbed into the low conductivity and higher melting point silica glass sheet melted the aluminium surface across a wider contact area. The reasons for the appearance of nanocrystalline Si and transitional alumina reaction products within the welds are discussed. - Highlights: •Pulsed laser welding of dissimilar materials causes extensive chemical reactivity. •Metastable Al{sub 2}O{sub 3} phases form due to laser-induced highly-transient thermal regime. •Fused silica is reduced by Al to form nanocrystalline Si. •Mechanism of joint formation is discussed.

  14. Laser direct fabrication of silver conductors on glass boards

    International Nuclear Information System (INIS)

    Li Xiangyou; Zeng Xiaoyan; Li Huiling; Qi Xiaojing

    2005-01-01

    Laser micro-cladding has been used to fabricate metal conductors, according to a designed electronic circuit, directly onto glass boards which had been coated with a silver-containing electronic paste. The electronic pastes, composed of silver powders, inorganic binders and organic medium, thus formed the conductive metal pattern (i.e. electric circuit) along the path of the laser allowing the rest of the layer to be removed subsequently by an organic solvent. Firing in a furnace at 600 deg. C resulted in conductive lines with resistivity of about 10 -5 Ω cm and with adhesive strength of the order of magnitude of megapascals

  15. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    Science.gov (United States)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  16. Pretreatment of Platinum/Tin Oxide-Catalyst

    Science.gov (United States)

    Hess, Robert V.; Paulin, Patricia A.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Addition of CO to He pretreatment doubles catalytic activity. In sealed, high-energy, pulsed CO2 laser, CO and O2 form as decomposition products of CO2 in laser discharge zone. Products must be recombined, because oxygen concentration of more than few tenths of percent causes rapid deterioration of power, ending in unstable operation. Promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide. New development increases activity of catalyst so less needed for recombination process.

  17. Temperature profiles for laser-induced heating of nanocrystals embedded in glass matrices

    Science.gov (United States)

    Bhatnagar, Promod K.; Nagpal, Swati

    2001-05-01

    Quantum confined nanostructures are very important because of their application towards optoelectronic devices. Commercial colored glass filters, which have large semiconductor particles, are being used to manufacture nanocrystals by suitable heat treatments. The progress in this area has been hampered by high size dispersion of these dots in the glass matrix which leads to reduction in higher order susceptibility thereby reducing non-linearity. In the present paper attempt has been made to theoretically model the temperature profiles of a laser irradiated CdS doped Borosilicate sample. Laser being used has a beam diameter of 1.5 mm and energy for 10 nsec pulse is 10 mJ. Two different particle radii of 5 nm and 10 nm have been considered. It is found that larger particles reach higher temperatures for the same pulse characteristics. This is because smaller particles have larger surface to volume ratio and hence dissipates out heat faster to the surrounding. Hence bigger particles will reach dissolution temperature faster than smaller particle and particle beyond a certain size should dissolve in the glass matrix when a sample is heat treated by laser. This could lead to a reduction in size dispersion of the nanocrystals. Also photodarkening effect found in semiconductor doped glasses is a big handicap for practical application of these materials in fast optical switching and non-linear optical devices. Photodarkening effect has been established to be a photochemical effect and it is important to study the temperature profiles around a particle since it will effect the impurity migration.

  18. Direct femtosecond laser writing of buried infrared waveguides in chalcogenide glasses

    Science.gov (United States)

    Le Coq, D.; Bychkov, E.; Masselin, P.

    2016-02-01

    Direct laser writing technique is now widely used in particular in glass, to produce both passive and active photonic devices. This technique offers a real scientific opportunity to generate three-dimensional optical components and since chalcogenide glasses possess transparency properties from the visible up to mid-infrared range, they are of great interest. Moreover, they also have high optical non-linearity and high photo-sensitivity that make easy the inscription of refractive index modification. The understanding of the fundamental and physical processes induced by the laser pulses is the key to well-control the laser writing and consequently to realize integrated photonic devices. In this paper, we will focus on two different ways allowing infrared buried waveguide to be obtained. The first part will be devoted to a very original writing process based on a helical translation of the sample through the laser beam. In the second part, we will report on another original method based on both a filamentation phenomenon and a point by point technique. Finally, we will demonstrate that these two writing techniques are suitable for the design of single mode waveguide for wavelength ranging from the visible up to the infrared but also to fabricate optical components.

  19. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Filipa O.; Pires, Ricardo A., E-mail: rpires@dep.uminho.pt; Reis, Rui L.

    2013-04-01

    Al-free glasses of general composition 0.340SiO{sub 2}:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na{sub 2}O:0.060P{sub 2}O{sub 5} (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. Highlights: ► We developed partially degradable, bioactive, Al-free glass-ionomer cements (GICs). ► Enhanced mechanical behavior was achieved using 63–125 μm glass particle size range. ► The highest mechanical resistance was obtained using poly(acrylic acid) of 50 kDa. ► Biodegradation was successfully tuned to start 8 weeks after GIC preparation. ► Zn

  20. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability

    International Nuclear Information System (INIS)

    Gomes, Filipa O.; Pires, Ricardo A.; Reis, Rui L.

    2013-01-01

    Al-free glasses of general composition 0.340SiO 2 :0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na 2 O:0.060P 2 O 5 (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. Highlights: ► We developed partially degradable, bioactive, Al-free glass-ionomer cements (GICs). ► Enhanced mechanical behavior was achieved using 63–125 μm glass particle size range. ► The highest mechanical resistance was obtained using poly(acrylic acid) of 50 kDa. ► Biodegradation was successfully tuned to start 8 weeks after GIC preparation. ► Zn release should be

  1. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  2. Free Electron Laser in Poland

    CERN Document Server

    Romaniuk, Ryszard

    2009-01-01

    The idea of building a new IVth generation of light sources of high luminosity, which use accelerators, arose in the 80ties of XXth century. Now, in a numerable synchrotron and laser laboratories in Europe, there is carried out, since a couple of years, intense applied research on free electron lasers (FEL) [17,18]. Similarly, in this country, free electron laser in Poland – POLFEL [9] is, in a design, a coherent light source of the IVth generation, characterized by very short pulses in the range of 10-100fs, of big power 0,2GW and UV wavelength of 27nm, of average power 1W, with effective high power third harmonic of 9nm. The laser consists of a linear superconducting accelerator 100m in length, undulator and experimental lines. It generates a monochromatic and coherent radiation and can be tuned from THz range via IR, visible to UV, and potentially to X-rays. The linac works in quasi-CW or real-CW mode. It is planned by IPJ [9,10] and XFEL-Poland Consortium [16] as a part of the ESFRI [1] priority EuroFEL...

  3. Chirp-free direct modulation of 550 nm emission in Er3+ -Doped Fluoroindate glass by nonlinear feedback control

    Science.gov (United States)

    Cai, Runyu; Thitsa, Makhin; Bluiett, Althea; Brown, Ei; Hommerich, Uwe

    2017-06-01

    We propose a direct modulation method with nonlinear feedback controller which can produce chirp-free modulation of the output pulse without bulky external modulators. This work reports the design of the controller which, via a feedback loop, varies and controls the pump rate in real time by automatically adjusting the pump power to precisely modulate the emission of 550 nm in Er3+ -doped Fluoroindate glass under 1.48 μm pumping. In this interdisciplinary paper, well established theoretical tools from nonlinear control theory are applied to the dynamical system of the laser material in order to produce the desired output of the laser. The controller is simulated in MATLAB Simulink and the simulation results show that our technique yields precise modulation of the output intensity without frequency chirping. Results on both theoretical analysis of the control methodology and simulation are presented.

  4. Enzyme-Free Electrochemical Glucose Sensors Prepared by Dealloying Pd-Ni-P Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yuqiao Zeng

    2014-01-01

    Full Text Available We report the formation of enzyme-free electrochemical glucose sensors by electrochemical dealloying palladium-containing Pd-Ni-P metallic glasses. When metallic glasses with different Pd contents are used as the dealloying precursor alloys, palladium-based nanoporous metals with different ligament and pore sizes can be obtained. The chemical compositions of the nanoporous metals also vary according to the different precursor compositions. All the as-obtained nanoporous metals exhibit electrochemical catalytic activity towards the oxidation of d-glucose, indicating that the nanoporous metals prepared by dealloying the Pd-Ni-P metallic glasses are promising materials for enzyme-free electrochemical glucose sensor.

  5. Modifications in silver-doped silicate glasses induced by ns laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Cattaruzza, E., E-mail: cattaruz@unive.it [Physical Chemistry Department, Universita Ca Foscari Venezia, via Torino 155/b, I-30172 Venezia-Mestre (Italy); Mardegan, M. [Physical Chemistry Department, Universita Ca Foscari Venezia, via Torino 155/b, I-30172 Venezia-Mestre (Italy); Trave, E. [Physical Chemistry Department, Universita Ca Foscari Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Battaglin, G. [Physical Chemistry Department, Universita Ca Foscari Venezia, via Torino 155/b, I-30172 Venezia-Mestre (Italy); Calvelli, P. [Physical Chemistry Department, Universita Ca' Foscari Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Enrichi, F. [Associazione CIVEN and Nanofab S.c.a.r.l., via delle Industrie 5, I-30175 Venezia-Marghera (Italy); Gonella, F. [Physical Chemistry Department, Universita Ca Foscari Venezia, Dorsoduro 2137, I-30123 Venezia (Italy)

    2011-04-01

    Glass layers for planar light waveguides prepared by Ag-Na ion exchange of different silicate glasses in molten salt baths are annealed and/or irradiated with a laser beam in the UV region, with different energy density values and total pulse numbers. The samples are mainly characterized by optical absorption spectroscopy, luminescence spectroscopy, and Rutherford backscattering spectrometry, in order to determine the role of irradiation parameters and of the host matrix structure in the aggregation phenomena. Photoluminescence spectroscopy gave information regarding the presence of Ag multimeric aggregates, the primal seeds for the growing (nano)crystals. The appearance of the plasmon resonance band in the optical absorption spectra proved the formation of Ag clusters and allowed the evolution steps of the clusterization process to be followed as a function of the energy deposited during the laser irradiation.

  6. [Influence of cations on the laser Raman spectra of silicate glasses].

    Science.gov (United States)

    Xiong, Yi; Zhao, Hong-xia; Gan, Fu-xi

    2012-04-01

    Na2O(K2O)-CaO(MgO)-SiO2, Na2O(K2O)-Al2O3-SiO2, Na2O(K2O)-B2O3-SiO2, Na2O(K2O)-PbO-SiO2 and PbO-BaO-SiO2 glass systems were investigated using laser Raman spectroscopic technique. The modification of short-range structure of glass caused by network modifier cations will influence Raman signature. Alkali and alkali-earth ions can weaken the bridging oxygen bond, thus lower the frequency of Si-O(b)-Si anti-symmetric stretching vibration. When coordina ted by oxygen ions, B3+ can form [BO4] tetrahedron and enter the silicon-oxygen network, but this effect had little impact on the frequency of Raman peaks located in the high-frequency region. Al3+ can also be coordinated by oxygen ions to form [AlO4] tetrahedron. [AlO4] will increase the disorder degree of network while entering network. Ba2+ can increase the density of electron cloud along the Si-O(nb) bond when it bonds with non-bridging oxygen, which will lead to a higher peak intensity of O-Si-O stretching vibration. The Raman peaks of alkli- and alkali-earth silicate glasses are mainly distributed in the region of 400 - 1 200 cm(-1), while in the spectrum of Na2O(K2O)-PbO-SiO2 glass system a 131 cm(-1) peak existed. The authors assigned it to the Pb-O symmetric stretching vibration. Some of the samples were produced in the laboratory according to the average compositions of ancient glasses, so this research is very significant to discriminating ancient silicate glasses of different systems by Laser Raman spectroscopic technique.

  7. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    International Nuclear Information System (INIS)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.

    2017-01-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  8. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    Science.gov (United States)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  9. Diode-pumped glass laser (10 J X 10 HZ) development

    International Nuclear Information System (INIS)

    Tadashi Kanabe; Toshiyuki Kawashima; Masanobu Yamanaka; Masahiro Nakatsuka; Yasukazu Izawa; Takeshi Kanzaki; Hirofumi Kan; Sadao Nakai

    2002-01-01

    A high-energy, high beam quality, diode-pumped 1053-nm Nd:phosphate glass laser amplifier has been demonstrated in order to verify the conceptual design of HALNA (High Average-power Laser for Nuclear-fusion Application): a diode-pumped solid-state laser based on a water-cooled zig-zag slab optical geometry. This amplifier yielded 8.5 J output energy per pulse at 0.5 Hz in a 20 ns pulse of two times the diffraction limit beam quality with an optical-to-optical conversion efficiency of 10.9%. The experimental results revealed that the primary requirements for the IFE driver, such as diode-pumping, energy storage and extraction efficiencies, and beam quality have been fulfilled

  10. Cooperative rearranging region size and free volume in As-Se glasses

    Energy Technology Data Exchange (ETDEWEB)

    Saiter, A; Saiter, J-M [Laboratoire PBM, UMR 6522, LECAP, Institut des Materiaux de Rouen, Universite de Rouen, Faculte des Sciences, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Golovchak, R; Shpotyuk, M; Shpotyuk, O [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska street, Lviv, UA-79031 (Ukraine)

    2009-02-18

    Glasses of the As-Se system have been used as model objects of the covalent disordered inorganic polymers to investigate the correlation between the cooperative rearranging region (CRR) size determined at the glass transition temperature and the free volume fraction in the glassy state. The CRR size has been determined using temperature modulated differential scanning calorimetry data according to Donth's approach, while the free volume fraction in the investigated materials has been estimated using positron annihilation lifetime spectroscopy data. The obtained results testify that the appearance of open-volume defects greater than 80 A{sup 3} leads to a significant decrease in the CRR size.

  11. Cooperative rearranging region size and free volume in As-Se glasses

    International Nuclear Information System (INIS)

    Saiter, A; Saiter, J-M; Golovchak, R; Shpotyuk, M; Shpotyuk, O

    2009-01-01

    Glasses of the As-Se system have been used as model objects of the covalent disordered inorganic polymers to investigate the correlation between the cooperative rearranging region (CRR) size determined at the glass transition temperature and the free volume fraction in the glassy state. The CRR size has been determined using temperature modulated differential scanning calorimetry data according to Donth's approach, while the free volume fraction in the investigated materials has been estimated using positron annihilation lifetime spectroscopy data. The obtained results testify that the appearance of open-volume defects greater than 80 A 3 leads to a significant decrease in the CRR size.

  12. Laser-fusion 40Ar/39Ar Ages of Darwin Impact Glass

    Science.gov (United States)

    Lo, Ching-Hua; Howard, Kieren T.; Chung, Sun-Lin; Meffre, Sebastien

    2002-11-01

    Three samples of Darwin Glass, an impact glass found in Tasmania, Australia at the edge of the Australasian tektite strewn field were dated using the 40Ar/39Ar single-grain laser fusion technique, yielding isochron ages of 796-815 ka with an overall weighted mean of 816 ± 7 ka. These data are statistically indistinguishable from those recently reported for the Australasian tektites from Southeast Asia and Australia (761-816 ka; with a mean weighted age of 803 ± 3 ka). However, considering the compositional and textural differences and the disparity from the presumed impact crater area for Australasian tektites, Darwin Glass is more likely to have resulted from a distinct impact during the same period of time.

  13. Free-electron laser theory

    International Nuclear Information System (INIS)

    Dattoli, G.; Torre, A.

    1989-01-01

    The essential features of the theory of the free electron laser (FEL) are given in some detail. Beginning with an explanation of the basic gain mechanism, the lectures continue with a discussion of the problems associated with single-passage and recirculated (storage-ring) operation. Pulse propagation effects and the so-called 'lethargic' behaviour are analysed more completely. Finally, elements of FEL quantum theory are reported, in order to clarify the laser process from the microscopic point of view. Appendices give a fuller treatment of optical cavities and undulator magnets. (orig.)

  14. Production and characterization of femtosecond laser-written double line waveguides in heavy metal oxide glasses

    Science.gov (United States)

    da Silva, Diego Silvério; Wetter, Niklaus Ursus; de Rossi, Wagner; Kassab, Luciana Reyes Pires; Samad, Ricardo Elgul

    2018-01-01

    We report the fabrication and characterization of double line waveguides directly written in tellurite and germanate glasses using a femtosecond laser delivering 30 μJ, 80 fs pulses at 4 kHz repetition rate. The double line waveguides produced presented internal losses inferior to 2.0 dB/cm. The output mode profile and the M2 measurements indicate multimodal guiding behavior. A better beam quality for the GeO2 - PbO waveguide was observed when compared with TeO2 - ZnO glass. Raman spectroscopy of the waveguides showed structural modification of the glassy network and indicates that a negative refractive index modification occurs at the focus of the laser beam, therefore allowing for light guiding in between two closely spaced laser written lines. The refractive index change at 632 nm is around 10-4, and the structural changes in the laser focal region of the writing, evaluated by Raman spectroscopy, corroborated our findings that these materials are potential candidates for optical waveguides and passive components. To the best of our knowledge, the two double line configuration demonstrated in the present work was not reported before for germanate or tellurite glasses.

  15. End-pumped Nd:YAG Q-switched laser with high energy and narrow pulse for glass carving

    Science.gov (United States)

    Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu

    2009-05-01

    In order to raise the accuracy of glass carving and improve deep cutting, a novel diode end-pumed solid-state laser is researched. Selecting proper volume of laser crytal, one continue wave laser diode which longitudinally pumped Nd:YAG crystal is performed and an applied optics coupling system is designed with self focusing.Computing with ray trace software and MATLAB software, the best parameter is obtained, so pumping beam is coupled efficiently to Nd:YAG.Used a Cr4+:YAG crystal with the singnal transmission of 82% and a line plane-concave cavity, nanosecond narrow pulse is gotten. After two thermal-electrical coolers kept the laser to work at constant temperature instead of water cooling, the volume of laser is markedly reduced. The method of thermal-electrical cooling could increase the system efficiency,achieve the effect of low mode output.Experimental results indicate that the maximum laser output energy in 1064 nm is 118mJ,pulse width is 5 ns, conversion efficiency from light to light is 15.7% under the condition of the incident power of 5 W and the diameter of the output laser spot is less than 1 mm. This end-pumped Nd:YAG Q-switched laser with the light output of high quality and long life, which has 0.01 mm accuracy after lens focusing can satisfy the glass carving with higher precision, rapid speed as well as easy control. It can be used in carving all kinds of glass and replace current CO2 laser.

  16. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  17. Photonic Free-Electron Lasers

    NARCIS (Netherlands)

    van der Slot, Petrus J.M.; Denis, T.; Lee, J.H.H.; van Dijk, M.W.; Boller, Klaus J.

    2012-01-01

    A photonic free-electron laser (pFEL) produces coherent Cerenkov radiation from a set of parallel electron beams streaming through a photonic crystal. The function of the crystal is to slow down the phase velocity of a copropagating electromagnetic wave, such that also mildly relativistic electrons

  18. Development of Faraday rotators for high power glass laser systems

    International Nuclear Information System (INIS)

    Yoshida, Kunio; Kato, Yoshiaki; Yamanaka, Chiyoe.

    1980-01-01

    As a new approach to nuclear fusion, laser-induced fusion has been recently highlighted. It is no exaggeration to say that the future success of this technique depends on the development of high power laser as the energy driver. Faraday rotators are used as photo-diodes to prevent amplifiers and oscillator assemblies from the possibility to be broken by reversely transmitting light. The authors were able to increase the isolation ratio by about 10 times as compared with conventional one by employing the large performance index, disc type Faraday glass, FR-5. In this paper, first, Faraday glasses which are the composing element of Faraday rotators and the optical characteristics of dielectric thin-film polarizers are described, and next, the design of a magnetic coil and its resulting coil characteristics are reported. Then the dominant causes limiting the isolation ratio of Faraday rotators are investigated, and it is clarified that the residual strain in Faraday glasses and the non-uniformity of magnetic field affect predominantly. The measured results are as follows: The magnetic flux densities required to rotate by 45 deg the polarizing plane of the light transmitted through the Faraday rotators A and B are both 27 kG; and the isolation ratios over the whole effective plane are 36 and 32 dB, respectively. (Wakatsuki, Y.)

  19. How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?

    Czech Academy of Sciences Publication Activity Database

    Bulgakova, Nadezhda M.; Zhukov, V.P.; Collins, A.R.; Rostohar, Danijela; Derrien, Thibault; Mocek, Tomáš

    2015-01-01

    Roč. 336, May (2015), s. 364-374 ISSN 0169-4332 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : laser material processing * high power lasers * glass cutting * laser-matter interaction * biwave length irradiation * ambient gas ionization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.150, year: 2015

  20. Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy

    Science.gov (United States)

    Loebe, Klaus; Uhl, Arnold; Lucht, Hartmut

    2003-10-01

    A laser microscope system for the microanalytical characterization of complex materials is described. The universal measuring principle of laser-induced breakdown spectroscopy (LIBS) in combination with echelle optics permits a fast simultaneous multielement analysis with a possible spatial resolution below 10 pm. The developed system features completely UV-transparent optics for the laser-microscope coupling and the emission beam path and enables parallel signal detection within the wavelength range of 200-800 nm with a spectral resolution of a few picometers. Investigations of glass defects and tool steels were performed. The characterization of a glass defect in a tumbler by a micro-LIBS line scan, with use of a 266-nm diode-pumped Nd:YAG laser for excitation, is possible by simple comparison of plasma spectra of the defect and the surrounding area. Variations in the main elemental composition as well as impurities by trace elements are detected at the same time. Through measurement of the calibration samples with the known concentration of the corresponding element, a correlation between the intensity of spectral lines and the element concentration was also achieved. The change of elemental composition at the transient stellite solder of tool steels has been determined by an area scan. The two-dimensional pictures show abrupt changes of the element distribution along the solder edge and allow fundamental researches of dynamic modifications (e.g., diffusion) in steel.

  1. Laser ablation of toluene liquid for surface micro-structuring of silica glass

    International Nuclear Information System (INIS)

    Niino, H.; Kawaguchi, Y.; Sato, T.; Narazaki, A.; Gumpenberger, T.; Kurosaki, R.

    2006-01-01

    Microstructures with well-defined micropatterns were fabricated on the surfaces of silica glass using a laser-induced backside wet etching (LIBWE) method by diode-pumped solid state (DPSS) UV laser at the repetition rate of 10 kHz. For a demonstration of flexible rapid prototyping as mask-less exposure system, the focused laser beam was directed to the sample by galvanometer-based point scanning system. Additionally, a diagnostics study of plume propagation in the ablated products of toluene solid film was carried out with an intensified CCD (ICCD) camera

  2. Laser-induced radial birefringence and spin-to-orbital optical angular momentum conversion in silver-doped glasses

    International Nuclear Information System (INIS)

    Amjad, Jafar Mostafavi; Khalesifard, Hamid Reza; Slussarenko, Sergei; Karimi, Ebrahim; Santamato, Enrico; Marrucci, Lorenzo

    2011-01-01

    Samples of Ag + /Na + ion-exchanged glass that have been subject to intense laser irradiation may develop novel optical properties, as a consequence of the formation of patterns of silver nanoparticles and other structures. Here, we report the observation of a laser-induced permanent transverse birefringence, with the optical axis forming a radial pattern, as revealed by the spin-to-orbital angular momentum conversion occurring in a probe light beam. The birefringence pattern can be modeled well as resulting from thermally-induced stresses arising in the silver-doped glass during laser exposure, although the actual mechanism leading to the permanent anisotropy is probably more complex.

  3. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  4. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  5. Determination of the free enthalpies of formation of borosilicate glasses

    International Nuclear Information System (INIS)

    Linard, Y.

    2000-01-01

    This work contributes to the study of the thermochemical properties of nuclear waste glasses. Results are used to discuss mechanisms and parameters integrated in alteration models of conditioning materials. Glass is a disordered material defined thermodynamically as a non-equilibrium state. Taking into account one order parameter to characterise its configurational state, the metastable equilibrium for the glass was considered and the main thermochemical properties were determined. Calorimetric techniques were used to measure heat capacities and formation enthalpies of borosilicate glasses (from 3 to 8 constitutive oxides). Formation Entropies were measured too, using the entropy theory of relaxation processes proposed by Adam and Gibbs (1965). The configurational entropy contribution were determined from viscosity measurements. This set of data has allowed the calculation of Gibb's free energies of dissolution of glasses in pure water. By comparison with leaching experiments, it has been demonstrated that the decreasing of the dissolution rate at high reaction progress cannot be associated to the approach of an equilibrium between the sound glass and the aqueous solution. The composition changes of the reaction area at the glass surface need to be considered too. To achieve a complete description of the thermodynamic stability, the equilibrium between hydrated de-alkalinized glass and/or the gel layer with the aqueous solution should also be evaluated. (author)

  6. Pulsed-laser deposition of smooth thin films of Er, Pr and Nd doped glasses

    Energy Technology Data Exchange (ETDEWEB)

    Epurescu, G. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania)], E-mail: george@nipne.ro; Vlad, A. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania); Institut fuer Angewandte Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz (Austria); Bodea, M.A. [Institut fuer Angewandte Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz (Austria); Vasiliu, C. [National Institute for Optoelectronics INOE 2000, Atomistilor 1, P.O. Box MG 05, 077125 Bucharest-Magurele (Romania); Dumitrescu, O. [University Politehnica of Bucharest, Faculty of Industrial Chemistry, Science and Engineering of Oxide Materials Department, Polizu Str. 1, sect. 1, Bucharest (Romania); Niciu, H. [National Institute of Glass, Department for Laser Glass Technology, 47 Th. Pallady Str., Sect.3, Bucharest (Romania); Elisa, M. [National Institute for Optoelectronics INOE 2000, Atomistilor 1, P.O. Box MG 05, 077125 Bucharest-Magurele (Romania); Siraj, K.; Pedarnig, J.D.; Baeuerle, D. [Institut fuer Angewandte Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz (Austria); Filipescu, M.; Nedelcea, A. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania); Galca, A.C. [National Institute of Materials Physics, Atomistilor 105bis, P.O. Box MG 07, RO- 77125, Magurele (Romania); Grigorescu, C.E.A. [National Institute for Optoelectronics INOE 2000, Atomistilor 1, P.O. Box MG 05, 077125 Bucharest-Magurele (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania)

    2009-03-01

    Thin films of complex oxides have been obtained by pulsed-laser deposition (PLD) from glass targets belonging to the system Li{sub 2}O-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-(RE){sub 2}O{sub 3}, with RE = Nd, Pr, Er. The films were deposited on quartz, silicon and ITO/glass substrates using a F{sub 2} laser ({lambda} = 157 nm, {iota} {approx} 20 ns) for ablation in vacuum. The structural, morphological and optical properties of the oxide films were investigated through IR and UV-VIS spectroscopy, Atomic Force Microscopy (AFM), Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy (SEM-EDX) and Spectroscopic Ellipsometry. The laser wavelength was found to be the key parameter to obtain thin films with very smooth surface. In this way new possibilities are opened to grow multilayer structures for photonic applications.

  7. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T., E-mail: torsten.boeck@ikz-berlin.de [Leibniz-Institute for Crystal Growth, Max-Born-Straße 2, Berlin 12489 (Germany); Symietz, C.; Bonse, J.; Andree, S.; Krüger, J. [Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, Berlin 12205 (Germany); Heidmann, B.; Schmid, M. [Department of Physics, Freie Universität Berlin, Arnimalle 14, Berlin 14195 (Germany); Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Lux-Steiner, M. [Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Heterogeneous Material Systems, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany)

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  8. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam

    International Nuclear Information System (INIS)

    Niry, M. D.; Khalesifard, H. R.; Mostafavi-Amjad, J.; Ahangary, A.; Azizian-Kalandaragh, Y.

    2012-01-01

    Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar + laser beam (intensity: 9.2 x 10 4 W/cm 2 ) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

  9. Ho3+-doped AlF3-TeO2-based glass fibers for 2.1 µm laser applications

    Science.gov (United States)

    Wang, S. B.; Jia, Z. X.; Yao, C. F.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2017-05-01

    Ho3+-doped AlF3-TeO2-based glass fibers based on AlF3-BaF2-CaF2-YF3-SrF2-MgF2-TeO2 glasses are fabricated by using a rod-in-tube method. The glass rod including a core and a thick cladding layer is prepared by using a suction method, where the thick cladding layer is used to protect the core from the effect of surface crystallization during the fiber drawing. By inserting the glass rod into a glass tube, the glass fibers with relatively low loss (~2.3 dB m-1 @ 1560 nm) are prepared. By using a 38 cm long Ho3+-doped AlF3-TeO2-based glass fiber as the gain medium and a 1965 nm fiber laser as the pump source, 2065 nm lasing is obtained for a threshold pump power of ~220 mW. With further increasing the pump power to ~325 mW, the unsaturated output power of the 2065 nm laser is about 82 mW and the corresponding slope efficiency is up to 68.8%. The effects of the gain fiber length on the lasing threshold, the slope efficiency, and the operating wavelength are also investigated. Our experimental results show that Ho3+-doped AlF3-TeO2-based glass fibers are promising gain media for 2.1 µm laser applications.

  10. Effect of temperature on surface error and laser damage threshold for self-healing BK7 glass.

    Science.gov (United States)

    Wang, Chu; Wang, Hongxiang; Shen, Lu; Hou, Jing; Xu, Qiao; Wang, Jian; Chen, Xianhua; Liu, Zhichao

    2018-03-20

    Cracks caused during the lapping and polishing process can decrease the laser-induced damage threshold (LIDT) of the BK7 glass optical elements, which would shorten the lifetime and limit the output power of the high-energy laser system. When BK7 glass is heated under appropriate conditions, the surface cracks can exhibit a self-healing phenomenon. In this paper, based on thermodynamics and viscous fluid mechanics theory, the mechanisms of crack self-healing are explained. The heat-healing experiment was carried out, and the effect of water was analyzed. The multi-spatial-frequency analysis was used to investigate the effect of temperature on surface error for self-healing BK7 glass, and the lapped BK7 glass specimens before and after heat healing were detected by an interferometer and atomic force microscopy. The low-spatial-frequency error was analyzed by peak to valley and root mean square, the mid-spatial-frequency error was analyzed by power spectral density, and the high-spatial-frequency error was analyzed by surface roughness. The results showed that the optimal heating temperature for BK7 was 450°C, and when the heating temperature was higher than the glass transition temperature (555°C), the surface quality decreased a lot. The laser damage test was performed, and the specimen heated at 450°C showed an improvement in LIDT.

  11. Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models.

    Science.gov (United States)

    Amann, Philipp M; Marquardt, Yvonne; Steiner, Timm; Hölzle, Frank; Skazik-Voogt, Claudia; Heise, Ruth; Baron, Jens M

    2016-04-01

    Clinical experiences with non-ablative fractional erbium glass laser therapy have demonstrated promising results for dermal remodelling and for the indications of striae, surgical scars and acne scars. So far, molecular effects on human skin following treatment with these laser systems have not been elucidated. Our aim was to investigate laser-induced effects on skin morphology and to analyse molecular effects on gene regulation. Therefore, human three-dimensional (3D) organotypic skin models were irradiated with non-ablative fractional erbium glass laser systems enabling qRT-PCR, microarray and histological studies at same and different time points. A decreased mRNA expression of matrix metalloproteinases (MMPs) 3 and 9 was observed 3 days after treatment. MMP3 also remained downregulated on protein level, whereas the expression of other MMPs like MMP9 was recovered or even upregulated 5 days after irradiation. Inflammatory gene regulatory responses measured by the expression of chemokine (C-X-C motif) ligands (CXCL1, 2, 5, 6) and interleukin expression (IL8) were predominantly reduced. Epidermal differentiation markers such as loricrin, filaggrin-1 and filaggrin-2 were upregulated by both tested laser optics, indicating a potential epidermal involvement. These effects were also shown on protein level in the immunofluorescence analysis. This novel standardised laser-treated human 3D skin model proves useful for monitoring time-dependent ex vivo effects of various laser systems on gene expression and human skin morphology. Our study reveals erbium glass laser-induced regulations of MMP and interleukin expression. We speculate that these alterations on gene expression level could play a role for dermal remodelling, anti-inflammatory effects and increased epidermal differentiation. Our finding may have implications for further understanding of the molecular mechanism of erbium glass laser-induced effects on human skin.

  12. Workshop on scientific and industrial applications of free electron lasers

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.

    1990-05-01

    A Workshop on Scientific and Industrial Applications of Free Electron Lasers was organized to address potential uses of a Free Electron Laser in the infrared wavelength region. A total of 13 speakers from national laboratories, universities, and the industry gave seminars to an average audience of 30 persons during June 12 and 13, 1989. The areas covered were: Free Electron Laser Technology, Chemistry and Surface Science, Atomic and Molecular Physics, Condensed Matter, and Biomedical Applications, Optical Damage, and Optoelectronics

  13. [Glass Development Laser (GDL) Facility upgrade.] LLE Review. Quarterly report, October-December 1984. Volume 21

    International Nuclear Information System (INIS)

    Kim, H.

    1984-01-01

    This volume of the LLE Review contains articles on the upgrade of the GDL (Glass Development) system, theoretical advances in the laser fusion effort, improved target fabrication capabilities, x-ray laser research, developments in the picosecond optics research of the LLE advanced technology program, and on the National Laser Users Facility activities for October-December 1984. 56 refs., 31 figs., 3 tabs

  14. Subcritical crack growth in a phosphate laser glass

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, S.N.; Tomozawa, M.; Hayden, J.S.; Suratwala, T.I.; Campbell, J.H.

    1999-11-01

    The rate of subcritical crack growth in a metaphosphate Nd-doped laser glass was measured using the double-cleavage-drilled compression (DCDC) method. The crack velocity is reported as a function of stress intensity at temperatures ranging from 296 to 573 K and in nitrogen with water vapor pressures ranging from 40 Pa (0.3 mmHg) to 4.7 x 10{sup 4} Pa (355 mmHg). The measured crack velocities follow region I, II, and III behavior similar to that reported for silicate glasses. A chemical and mass-transport-limited reaction rate model explains the behavior of the data except at high temperatures and high water vapor pressures where crack tip blunting is observed. Blunting is characterized to reinitiate slow crack growth at higher stresses. A dynamic crack tip blunting mechanism is proposed to explain the deviation from the reaction rate model.

  15. Reductions in Aprotic Media. I. Cathodic Reduction Limits in Acetonitrile at a Platinum Electrode.

    Science.gov (United States)

    1981-08-15

    specifically; (1) The difference in the effect of water on lithium solutions and tetraalkylammonium solutions, (2) the passivation of a platinum electrode...solutions. 5 EXPERIMENTAL Procedure for Controlled Potential Electrolysis The electrolyses were performed in a glass H-cell. The anode and cathode...fine porous glass frit from the Luggin section. The electrolyses were run in constant potential mode. After electrolysis, the catholyte was removed and

  16. Free-electron laser results

    International Nuclear Information System (INIS)

    Stein, W.E.; Brau, C.A.; Newnam, B.E.; Warren, R.W.; Winston, J.; Young, L.M.

    1981-01-01

    The Los Alamos free-electron laser (FEL) amplifier experiment was designed to demonstrate high efficiency for transfer of energy from an electron beam to a light beam in the magnetic field of a tapered wiggler. Initial results indicate an energy transfer consistent with theory. Distinct groups of decelerated electrons as well as accelerated electrons are clearly present in the energy spectrum of electrons emerging from the wiggler when the laser light is present. The observed energy decrease for the electrons captured in the decelerating bucket is approx. 6% and the average decrease of the entire energy distribution is approx. 2% for the conditions of these initial measurements

  17. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang [Keio University, Department of Mechanical Engineering, Faculty of Science and Technology, Yokohama (Japan)

    2016-10-15

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN. (orig.)

  18. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Science.gov (United States)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  19. How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: bulgakova@fzu.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., Novosibirsk 630090 (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073 Novosibirsk (Russian Federation); Collins, Adam R. [NCLA, NUI Galway, Galway (Ireland); Rostohar, Danijela; Derrien, Thibault J.-Y.; Mocek, Tomáš [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic)

    2015-05-01

    Highlights: • The factors influencing laser micromachining of transparent materials are analyzed. • Important role of ambient gas in laser processing is shown by numerical simulations. • The large potential of bi-wavelength laser processing is demonstrated. - Abstract: The interaction of short and ultrashort pulse laser radiation with glass materials is addressed. Particular attention is paid to regimes which are important in industrial applications such as laser cutting, drilling, functionalization of material surfaces, etc. Different factors influencing the ablation efficiency and quality are summarized and their importance is illustrated experimentally. The effects of ambient gas ionization in front of the irradiated target are also analyzed. A possibility to enhance laser coupling with transparent solids by bi-wavelength irradiation is discussed.

  20. F2-laser patterning of indium tin oxide (ITO) thin film on glass substrate

    International Nuclear Information System (INIS)

    Xu, M.Y.; Li, J.; Herman, P.R.; Lilge, L.D.

    2006-01-01

    This paper reports the controlled micromachining of 100 nm thick indium tin oxide (ITO) thin films on glass substrates with a vacuum-ultraviolet 157 nm F 2 laser. Partial to complete film removal was observed over a wide fluence window from 0.49 J/cm 2 to an optimized single pulse fluence of 4.5 J/cm 2 for complete film removal. Optical microscopy, atomic force microscopy, and energy dispersive X-ray analysis show little substrate or collateral damage by the laser pulse which conserved the stoichiometry, optical transparency and electrical conductivity of ITO coating adjacent to the trenches. At higher fluence, a parallel micron sized channel can be etched in the glass substrate. The high photon energy and top-hat beam homogenized optical system of the F 2 laser opens new means for direct structuring of electrodes and microchannels in biological microfluidic systems or in optoelectronics. (orig.)

  1. Combined chemotherapy including platinum derivatives for medulloblastoma. The usefulness as maintenance chemotherapy

    International Nuclear Information System (INIS)

    Sasaki, Hikaru; Otani, Mitsuhiro; Yoshida, Kazunari; Kagami, Hiroshi; Shimazaki, Kenji; Toya, Shigeo; Kawase, Takeshi

    1997-01-01

    The authors reviewed 24 cerebellar medulloblastoma patients treated at Keio University to determine usefulness of combined chemotherapy including platinum derivatives (cisplatin, carboplatin) as the induction and maintenance treatment. All patients underwent radical surgery and craniospinal irradiation. Ten received adjuvant chemotherapy other than platinum derivatives (mainly with nitrosourea compounds), five were treated by induction and maintenance chemotherapy including platinum derivatives, and nine patients did not undergo chemotherapy. The progression-free survival rate of patients treated with platinum derivatives was better than that of patients treated with other modes of chemotherapy and also that of patients who did not receive chemotherapy. The results were especially good in the case of four patients treated with maintenance chemotherapy consisting of carboplatin and etoposide, two of whom had been free from relapse beyond the risk period of Collins. The occurrences of toxicity in maintenance chemotherapy with carboplatin and etoposide were limited to transient leucopenia. The present study indicates combined chemotherapy including platinum derivatives benefits patients with medulloblastoma, and could be useful, especially as maintenance treatment. (author)

  2. Research on heightening quality of free electron laser using superconducting linear accelerator

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    1996-01-01

    In this paper, the superconducting high frequency linear accelerator technology using low temperature superconductor is introduced, and its application to the heightening of quality of free electron laser is discussed. The high frequency application of superconductivity is a relatively new technology, and the first superconducting high frequency linear accelerator was made at the middle of 1960s. The invention of free electron laser and the development so far are described. In free electron laser, the variation of wavelength, high efficiency and high power output are possible as compared with conventional type lasers. The price and the size are two demerits of free electron laser that remain to the last. In Japan Atomic Energy Research Institute, the adjustment experiment is carried out for the prototype free electron laser. About this prototype, injection system, superconducting accelerator, helium refrigerator, whole solid element high frequency power source, control system, electron beam transport system, undulator system and optical resonator are described. The application of high mean power output free electron laser and its future are discussed. (K.I.)

  3. Flashlamp pumped Ti-sapphire laser for ytterbium glass chirped pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akihiko; Ohzu, Akira; Sugiyama, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    1998-03-01

    A flashlamp pumped Ti:sapphire laser is designed for ytterbium glass chirped pulse amplification. A high quality Ti:sapphire rod and a high energy long pulse discharging power supply are key components. The primary step is to produce the output power of 10 J per pulse at 920 nm. (author)

  4. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  5. Free-electron lasers 2

    International Nuclear Information System (INIS)

    Petroff, Y.

    1989-01-01

    This book presents papers on free-electron laser technology. The authors cover technological developments on existing FELs, new FEL research, and the use of FELs in experimental investigations. Among the studies reported are lasing in the visible and UV on the Novosibirsk VEPP-3 storage ring, description of Japanese FEL research, and Mark III FEL, and the Paladin results

  6. Synthesis and characterization of silver-containing glasses: evolution under ionizing irradiation and femtosecond laser multi-scale structuring

    International Nuclear Information System (INIS)

    Desmoulin, Jean-Charles

    2016-01-01

    The silver-containing phosphate glasses allowed original developments throughout the micro-structuring of architectures for innovative photonic in the volume, at the surface or in the fibered material. The chemical engineering of the material plays an important role from this point of view. An increasing silver oxide ratio leads to an important quantity of pairs in the pristine glass matrix. This dimer in favor of the aggregation process bringing to the production of species during the interaction between the glass and the infrared femtosecond laser. A study conducted by EPR spectroscopy on irradiated samples (ionizing sources) demonstrated that the dose rate is predominant for the control of the involved chemical process. Mainly, electron and holes are stabilized at low dose rate whereas the formation of luminescent silver clusters occurs for high peak power typical of ultra-short lasers. The Direct Laser Writing process allows local structuring of the matter and resulted in original tridimensional patterns. The fine chemical distribution analysis inside annular fluorescent objects clearly showed a depletion zone of the silver concentration in the center. Ionic migration effects from the center towards the edges of the laser beam are then highlighted. The Eu 3+ -doped photosensitive glasses emphasized a synergy between photo-induced silver clusters and trivalent lanthanides. Indeed, a luminescence exaltation associated to the europium emission is measured. (author)

  7. Bone Ablation at 2.94 mm Using the Free-Electron Laser and Er:YAG Laser

    Science.gov (United States)

    Ivanov, Borislav; Hakimian, Arman; Peavy, G. M.; Haglund, Richard

    2002-03-01

    Bone Ablation at 2.94 microns Using the Free-Electron Laser and Er:YAG Laser in Perfluorocarbon Compounds B. Ivanov^1, A. M. Hakimian^1, G. M. Peavy^2, R. F. Haglund, Jr.1 1Department of Physics and Astronomy, W. M. Keck Foundation Free-Electron Laser Center, Vanderbilt University, Nashville, TN 37235 2Beckman Laser Institute and Medical Clinic, College of Medicine, University of California, Irvine, CA 92612 We report studies on the efficiency of mid-IR laser ablation of cow cortical bone using the Vanderbilt free-electron laser (FEL), when irrigating the ablation zone with an inert and biocompatible perfluorocarbon compounds (PFC). At 2.94 microns, the bone matrix (mainly by water) absorbs the radiation while the PFCs transmit this wavelength, dissipate heat and acoustical stress, and prevent carbonization of the bone sample. The ablation rate, as a function of laser fluence, scanning speed and the type of PFC, was investigated. The laser fluence was estimated to be 5 J/cm^2 - 100 J/cm^2 with a laser focal spot diameter of 160 microns 500 microns and a scanning speed of 40 microns/s 2960 microns/s. The ablation rate was estimated from scanning electron microscopy to be 0.5 mm/s 2.4 mm/s. Comparisons of ablation rates with the FEL and a Er:YAG laser at 2.94 microns are being evaluated.

  8. Wave function of free electron in a strong laser plasma

    International Nuclear Information System (INIS)

    Zhu Shitong; Shen Wenda; Guo Qizhi

    1993-01-01

    The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed

  9. Engineering of refractive index in sulfide chalcogenide glass by direct laser writing

    KAUST Repository

    Zhang, Yaping; Gao, Yangqin; Ng, Tien Khee; Ooi, Boon S.; Chew, Basil; Hedhili, Mohamed N.; Zhao, Donghui; Jain, Himanshu

    2010-01-01

    Arsenic trisulfide (As2S3) glass is an interesting material for photonic integrated circuits (PICs) as infrared (IR) or nonlinear optical components. In this paper, direct laser writing was applied to engineer the refractive index of As2S3 thin film

  10. Multimode laser emission from free-standing cylindrical microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Jaison, E-mail: jaisonpeter@cusat.ac.in; Radhakrishnan, P.; Nampoori, V.P.N.; Kailasnath, M.

    2014-05-01

    We report a well resolved whispering gallery mode (WGM) laser emission from a free-standing microring cavity based on a dye doped hollow polymer optical fiber (DDHPOF), which is transversely pumped by a pulsed Nd:YAG laser. The microring laser is characterized by a well-defined, low threshold pump power at which the emission spectral intensity dramatically increases and collapses into several dominant microcavity laser modes with reduced mode spacing and high Q-value. Resonant modes are excited inside the gain medium which is strongly confined along the radial direction so that the spacing of lasing modes is controlled by the diameter of the cylindrical microcavity. A variation in the free spectral range of WGM spectra from 0.23 to 0.09 nm coupled with a red-shift is observed with an increase in the diameter of DDHPOFs. - Highlights: • Different diameter free-standing cylindrical microcavity lasers have been fabricated and their performances have been evaluated. • The microring laser is characterized by a well-defined, low threshold pump power, with reduced mode spacing and high Q-value. • When the diameter of DDHPOF increases, the number of lasing peaks increases along with the decrease of the FSR as observed from our studies. • It is also found that whispering gallery lasing envelope is shifted from 559 to 571 nm (Stokes shift) with the diameter.

  11. Power neodymium-glass amplifier of a repetitively pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2011-11-30

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 Multiplication-Sign 25 mm and a {approx}40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 {mu}s. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass {approx}3.2, the linear gain {approx}0.031 cm{sup -1} with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm{sup -3}. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4{lambda} ({lambda} = 0.63 {mu}m is the probing radiation wavelength).

  12. Power neodymium-glass amplifier of a repetitively pulsed laser

    International Nuclear Information System (INIS)

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I

    2011-01-01

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 × 25 mm and a ∼40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 μs. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass ∼3.2, the linear gain ∼0.031 cm -1 with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm -3 . The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4λ (λ = 0.63 μm is the probing radiation wavelength).

  13. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage

    International Nuclear Information System (INIS)

    Sigaev, Vladimir N; Savinkov, Vitaly I; Lotarev, Sergey V; Shakhgildyan, Georgiy Yu; Paleari, Alberto; Lorenzi, Roberto

    2013-01-01

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications. (paper)

  14. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage.

    Science.gov (United States)

    Sigaev, Vladimir N; Savinkov, Vitaly I; Lotarev, Sergey V; Shakhgildyan, Georgiy Yu; Lorenzi, Roberto; Paleari, Alberto

    2013-06-07

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications.

  15. Fracture-free surfaces of CAD/CAM lithium metasilicate glass-ceramic using micro-slurry jet erosion.

    Science.gov (United States)

    Yin, Ling; Baba, Takashi; Nakanishi, Yoshitaka

    2018-04-01

    This paper reports the use of micro-slurry jet erosion (MSJE) on CAD/CAM lithium mesilicate glass ceramic (LMGC) that is capable of achieving the fracture-free surface quality. A computer-controlled MSJE process using a low-pressure and low-concentration alumina slurry was applied to diamond-ground LMGC surfaces with surface and subsurface damage. The MSJE processed and diamond-ground LMGC surfaces were examined using scanning electron microscopy (SEM) to examine surface morphology, fractures, and residual defects. 3D confocal laser microscopy (CLM) was used to quantitatively characterize all machined surface textures as a function of processing conditions. Our results show that surface and subsurface damage induced in diamond-ground surfaces were significantly diminished after 50-cycle MSJE processing. Fracture-free surfaces were obtained after 100 MSJE cycles. Our measured parameters of the 3D surface topography included the average surface roughness, maximum peak-valley height, highest peak height, lowest valley height, and kurtosis and absolute skewness of height distributions. All these parameters were significantly reduced with the increase of MSJE cycles. This work implies that MSJE promises to be an effective manufacturing technique for the generation of fracture-free LMGC surfaces which are crucial for high-quality monolithic restorations made from the material. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A spectral unaveraged algorithm for free electron laser simulations

    International Nuclear Information System (INIS)

    Andriyash, I.A.; Lehe, R.; Malka, V.

    2015-01-01

    We propose and discuss a numerical method to model electromagnetic emission from the oscillating relativistic charged particles and its coherent amplification. The developed technique is well suited for free electron laser simulations, but it may also be useful for a wider range of physical problems involving resonant field–particles interactions. The algorithm integrates the unaveraged coupled equations for the particles and the electromagnetic fields in a discrete spectral domain. Using this algorithm, it is possible to perform full three-dimensional or axisymmetric simulations of short-wavelength amplification. In this paper we describe the method, its implementation, and we present examples of free electron laser simulations comparing the results with the ones provided by commonly known free electron laser codes

  17. Preparation and properties of hollow glass microspheres for use in laser fusion experiments

    International Nuclear Information System (INIS)

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.

    1983-01-01

    We review the preparation of high quality, hollow-glass microspheres for use in laser driven fusion experiments at LLNL. The primary focus of this paper is on the liquid-droplet method for making glass spheres, which has been in use at LLNL for over six years. We have combined the results from previous studies with our current results to present a detailed description of the preparation and the composition and physical properties of the glass microspheres. We also present a mathematical model that simulates the microsphere formation process. Examples are given of the application of the model to study the effects of various process parameters

  18. Preparation and properties of hollow glass microspheres for use in laser fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.

    1983-11-01

    We review the preparation of high quality, hollow-glass microspheres for use in laser driven fusion experiments at LLNL. The primary focus of this paper is on the liquid-droplet method for making glass spheres, which has been in use at LLNL for over six years. We have combined the results from previous studies with our current results to present a detailed description of the preparation and the composition and physical properties of the glass microspheres. We also present a mathematical model that simulates the microsphere formation process. Examples are given of the application of the model to study the effects of various process parameters.

  19. Ultra-fast movies of thin-film laser ablation

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  20. Modeling the Losses of Dissolved CO(2) from Laser-Etched Champagne Glasses.

    Science.gov (United States)

    Liger-Belair, Gérard

    2016-04-21

    Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate definitely impacts champagne tasting by modifying the neuro-physicochemical mechanisms responsible for aroma release and flavor perception. On the basis of theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics, and mass transfer equations, a global model is proposed, depending on various parameters of both the wine and the glass itself, which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses. The question of champagne temperature was closely examined, and its role on the modeled losses of dissolved CO2 was corroborated by a set of experimental data.

  1. Longitudinal space charge assisted echo seeding of a free-electron laser with laser-spoiler noise suppression

    Directory of Open Access Journals (Sweden)

    Kirsten Hacker

    2014-09-01

    Full Text Available Seed lasers are employed to improve the temporal coherence of free-electron laser (FEL light. However, when these seed pulses are short relative to the particle bunch, the noisy, temporally incoherent radiation from the unseeded electrons can overwhelm the coherent, seeded radiation. In this paper, a technique to seed a particle bunch with an external laser is presented in which a new mechanism to improve the contrast between coherent and incoherent free electron laser radiation is employed together with a novel, simplified echo-seeding method. The concept relies on a combination of longitudinal space charge wakes and an echo-seeding technique to make a short, coherent pulse of FEL light together with noise background suppression. Several different simulation codes are used to illustrate the concept with conditions at the soft x-ray free-electron laser in Hamburg, FLASH.

  2. The effects of Nd2O3 concentration in the laser emission of TeO2-ZnO glasses

    Science.gov (United States)

    Moreira, L. M.; Anjos, V.; Bell, M. J. V.; Ramos, C. A. R.; Kassab, L. R. P.; Doualan, D. J. L.; Camy, P.; Moncorgé, R.

    2016-08-01

    The present work reports the modification introduced by different Nd2O3 concentration on optical properties and the laser operation of Nd3+ doped (TeO2-ZnO) bulk tellurite glass. The spectroscopic data are analyzed within the Judd Ofelt formalism framework and the results are compared to the fluorescence lifetime and emission measurements to derive values for the quantum efficiency and the stimulated emission cross section of the considered 4F3/2 → 4I11/2 infrared laser transition around 1062.5 nm. Continuous-wave laser action is achieved with this bulk tellurite glass by pumping the sample inside a standard plan-concave mirror laser cavity with different output couplers. It is possible to observe coherent emission only for the lower concentration (0.5%(wt.) of Nd2 O3). Also laser action could only be observed for this sample with threshold pump power of 73 mW associated with a laser slope efficiency of 8% for an output coupler transmission of 4% indicating that TeO2-ZnO are potential materials for laser action. The results presented in this work together with those previously reported with higher concentration (1.0% (wt) of Nd2O3) determine the adequate Nd2O3 concentration for laser action and guide the correct experimental procedure for TeO2-ZnO glasses preparation.

  3. Optimising the treatment of the partially platinum-sensitive relapsed ovarian cancer patient

    Directory of Open Access Journals (Sweden)

    Nicoletta Colombo

    2014-12-01

    Full Text Available The choice of second-line chemotherapy in patients with recurrent ovarian cancer (ROC is complex, with several factors to be considered, the most important of which is the length of the platinum-free treatment interval (PFI. Recently ROC patients have been further stratified into platinum sensitive (PS, partially platinum sensitive (PPS and platinum resistant (PR subgroups depending on the length of the PFI. Response to second-line therapy, progression-free survival (PFS and overall survival (OS are linked to the PFI, all of them improving as the PFI increases. Consequently, there is increasing interest in PFI extension strategies with platinum-free therapeutic options. Such strategies are currently being studied in patients with partially platinum-sensitive disease (PFI 6-12 months, as the treatment of these patients remains clinically challenging. A non-platinum option, trabectedin + pegylated liposomal doxorubicin (PLD combination, has been evaluated in ROC patients in the pivotal phase III OVA-301 study. The OVA-301 study differed from previous trials in the same setting as it included only patients who were not expected to benefit from or who were ineligible for or who were unwilling to receive re-treatment with platinum-based chemotherapy, including those with PPS and PR disease. Subset analysis of patients with PPS disease in OVA-301 showed that the trabectedin + PLD combination significantly improved PFS compared with PLD alone; median PFS 7.4 versus 5.5 months, p=0.0152. Final survival data from the same subset of patients, showed that trabectedin + PLD also achieved a significant 36% decrease in the risk of death compared with PLD alone (HR=0.64; 95% CI, 0.47–0.88; p=0.0027. Median overall survival (OS was 22.4 months in the trabectedin + PLD arm versus 16.4 months in the PLD arm. This represents a statistically significant 6-month improvement in median OS in patients treated with trabectedin + PLD compared to those treated with PLD

  4. The effect of a 1550 nm fractional erbium-glass laser in female pattern hair loss.

    Science.gov (United States)

    Lee, G-Y; Lee, S-J; Kim, W-S

    2011-12-01

    Female pattern hair loss (FPHL) is the most common cause of hair loss in women, and its prevalence increases with advancing age. Affected women may experience psychological distress and social withdrawal. A variety of laser and light sources have been tried for treatment of hair loss, and some success has been reported. The purpose of this study was to determine the efficacy and safety of a 1550 nm fractional erbium-glass laser in treatment of female pattern hair loss. Twenty eight ethnic South Korean patients with varying degrees of FPHL were enrolled in the study. Patients received ten treatments with a 1550 nm fractional Er:Glass Laser (Mosaic, Lutronic Co., Ltd, Seoul, South Korea) at 2-weeks intervals using the same parameters (5-10 mm tip, 6 mJ pulse energy, 800 spot/cm(2) density, static mode). Phototrichogram and global photographs were taken at baseline and at the end of laser treatment, and analysed for changes in hair density and hair shaft diameter. Global photographs underwent blinded review by three independent dermatologists using a 7-point scale. Patients also answered questionnaires assessing hair growth throughout the study. All adverse effects were reported during the study. Twenty seven patients completed a 5-month schedule of laser treatment. One patient was excluded during treatment due to occurrence of alopecia areata. At the initial visit, mean hair density was 100 ± 14/cm(2) , and mean hair thickness was 58 ± 12 μm. After 5 months of laser treatment, hair density showed a marked increase to 157 ± 28/cm(2) (P laser treatment; however, these resolved within 2 h. A 1550 nm fractional erbium-glass laser irradiation may be an effective and safe treatment option for women with female pattern hair loss. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  5. Free-Free Transitions in the Presence of Laser Fields and Debye Potential at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, Anand

    2012-01-01

    We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.

  6. Free-electron laser driven by the LBNL laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K.E.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2008-01-01

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (∼10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10 13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  7. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Tanaskovic, D.; Jokic, B.; Socol, G.; Popescu, A.; Mihailescu, I.N.; Petrovic, R.; Janackovic, Dj.

    2007-01-01

    Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 , or bioglasses in the system SiO 2 -Na 2 O-K 2 O-CaO-MgO-P 2 O 5 with SiO 2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* (λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H 2 O vapors, while the bioglass layers were deposited in O 2 . Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications

  8. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    Science.gov (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  9. Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties

    International Nuclear Information System (INIS)

    Li, X.P.; Kang, C.W.; Huang, H.; Zhang, L.C.; Sercombe, T.B.

    2014-01-01

    In this study, single line scans at different laser powers were carried out using selective laser meting (SLM) equipment on a pre-fabricated porous Al 86 Ni 6 Y 4.5 Co 2 La 1.5 metallic glass (MG) preform. The densification, microstructural evolution, phase transformation and mechanical properties of the scan tracks were systematically investigated. It was found that the morphology of the scan track was influenced by the energy distribution of the laser beam and the heat transfer competition between convection and conduction in the melt pool. Due to the Gaussian distribution of laser energy and heat transfer process, different regions of the scan track experienced different thermal histories, resulting in a gradient microstructure and mechanical properties. Higher laser powers caused higher thermal stresses, which led to the formation of cracks; while low power reduced the strength of the laser track, also inducing cracking. The thermal fluctuation at high laser power produced an inhomogeneous chemical distribution which gave rise to severe crystallization of the MG, despite the high cooling rate. The crystallization occurred both within the heat affected zone (HAZ) and at the edge of melt pool. However, by choosing an appropriate laser power crack-free scan tracks could be produced with no crystallization. This work provides the necessary fundamental understanding that will lead to the fabrication of large-size, crack-free MG with high density, controllable microstructure and mechanical properties using SLM

  10. Creating large second-order optical nonlinearity in optical waveguides written by femtosecond laser pulses in boro-aluminosilicate glass

    Science.gov (United States)

    An, Hong-Lin; Arriola, Alexander; Gross, Simon; Fuerbach, Alexander; Withford, Michael J.; Fleming, Simon

    2014-01-01

    The thermal poling technique was applied to optical waveguides embedded in a commercial boro-aluminosilicate glass, resulting in high levels of induced second-order optical nonlinearity. The waveguides were fabricated using the femtosecond laser direct-write technique, and thermally poled samples were characterized with second harmonic optical microscopy to reveal the distribution profile of the induced nonlinearity. It was found that, in contrast to fused silica, the presence of waveguides in boro-aluminosilicate glass led to an enhancement of the creation of the second-order nonlinearity, which is larger in the laser written waveguiding regions when compared to the un-modified substrate. The magnitude of the nonlinear coefficient d33 achieved in the core of the laser-written waveguides, up to 0.2 pm/V, was comparable to that in thermally poled fused silica, enabling the realization of compact integrated electro-optic devices in boro-aluminosilicate glasses.

  11. Free volume model: High-temperature deformation of a Zr-based bulk metallic glass

    International Nuclear Information System (INIS)

    Bletry, M.; Guyot, P.; Blandin, J.J.; Soubeyroux, J.L.

    2006-01-01

    The homogeneous deformation of a zirconium-based bulk metallic glass is investigated in the glass transition region. Compression tests at different temperatures and strain rates have been conducted. The mechanical behavior is analyzed in the framework of the free volume model, taking into account the dependence of the flow defect concentration on deformation. The activation volume is evaluated and allows one to gather the viscosity data (for the different strain rates and temperatures) on a unique master curve. It is also shown that, due to the relation between flow defect concentration and free volume, it is not possible to deduce the equilibrium flow defect concentration directly from mechanical measurements. However, if this parameter is arbitrarily chosen, mechanical measurements give access to the other parameters of the model, these parameters for the alloy under investigation being of the same order of magnitude as those for other metallic glasses

  12. Laser-induced nonlinear crystalline waveguide on glass fiber format and diode-pumped second harmonic generation

    Science.gov (United States)

    Shi, Jindan; Feng, Xian

    2018-03-01

    We report a diode pumped self-frequency-doubled nonlinear crystalline waveguide on glass fiber. A ribbon fiber has been drawn on the glass composition of 50GeO2-25B2O3-25(La,Yb)2O3. Surface channel waveguides have been written on the surface of the ribbon fiber, using space-selective laser heating method with the assistance of a 244 nm CW UV laser. The Raman spectrum of the written area indicates that the waveguide is composed of structure-deformed nonlinear (La,Yb)BGeO5 crystal. The laser-induced surface wavy cracks have also been observed and the forming mechanism of the wavy cracks has been discussed. Efficient second harmonic generation has been observed from the laser-induced crystalline waveguide, using a 976 nm diode pump. 13 μW of 488 nm output has been observed from a 17 mm long waveguide with 26.0 mW of launched diode pump power, corresponding to a normalized conversion efficiency of 4.4%W-1.

  13. 3D features of modified photostructurable glass-ceramic with infrared femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Pradas, J.M., E-mail: jmfernandez@ub.edu [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Serrano, D.; Bosch, S.; Morenza, J.L.; Serra, P. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-04-01

    The exclusive ability of laser radiation to be focused inside transparent materials makes lasers a unique tool to process inner parts of them unreachable with other techniques. Hence, laser direct-write can be used to create 3D structures inside bulk materials. Infrared femtosecond lasers are especially indicated for this purpose because a multiphoton process is usually required for absorption and high resolution can be attained. This work studies the modifications produced by 450 fs laser pulses at 1027 nm wavelength focused inside a photostructurable glass-ceramic (Foturan) at different depths. Irradiated samples were submitted to standard thermal treatment and subsequent soaking in HF solution to form the buried microchannels and thus unveil the modified material. The voxel dimensions of modified material depend on the laser pulse energy and the depth at which the laser is focused. Spherical aberration and self-focusing phenomena are required to explain the observed results.

  14. Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching

    NARCIS (Netherlands)

    Lenssen, B.L.K.; Bellouard, Y.

    2012-01-01

    Femtosecond laser manufacturing combined with chemical etching has recently emerged as a flexible platform for fabricating three-dimensional devices and integrated optical elements in glass substrates. Here, we demonstrate an optically transparent micro-actuator fabricated out of a single piece of

  15. LASER-INDUCED BIOACTIVITY IN DENTAL PORCELAIN MODIFIED BY BIOACTIVE GLASS

    Directory of Open Access Journals (Sweden)

    ANASTASIA BEKETOVA

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of laser-liquid-solid interaction method in the bioactivity of dental porcelain modified by bioactive glass. Forty sol-gel derived specimens were immersed in Dulbecco's Modified Eagle's Medium, 31 and 9 specimens of which were treated with Er:YAG and Nd:YAG laser respectively. Untreated specimens served as controls. Incubation of specimens followed. Bioactivity was evaluated, using Fourier Transform Infrared spectroscopy (FTIR, Scanning Electron Microscopy (SEM/Energy Dispersive Spectroscopy (EDS and Transmission Electron Microscopy (TEM. FTIR detected peaks associated with hydroxyapatite on 1 Nd:YAG- and 4 Er:YAG-treated specimens. SEM analysis revealed that Er:YAG-treated specimens were covered by granular hydroxyapatite layer, while Nd:YAG treated specimen presented growth of flake-like hydroxyapatite. TEM confirmed the results. The untreated controls presented delayed bioactivity. In conclusion, Nd:YAG and Er:YAG laser treatment of the material, under certain fluencies, accelerates hydroxyapatite formation. Nd:YAG laser treatment of specific parameters causes the precipitation of flake-like hydroxyapatite in nano-scale.

  16. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shi-zhen, E-mail: xusz@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Cai-zhen [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Dou, Hong-qiang [Department of Material Science and Engineering, Sichuan Engineering Technical College, Deyang 618000 (China); Liao, Wei, E-mail: liaowei@caep.cn [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Xiao-yang; Ding, Ren-jie [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zu, Xiao-tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2017-06-01

    Highlights: • The fs laser ablation of borosilicate glass (K9) were investigated under 35 and 500 fs pulses. • At high fluence regime, the ablation rate at 35 fs in air increased to a plateau, and 500 fs in air and vacuum decreased. • The mechanisms of multiple-photon ionization and impact ionization were included. • The ablation morphologies of smooth zone and laser-induced periodic surface structures were presented and illustrated. • The ablation mechanisms of non-thermal and thermal ablation were included. - Abstract: Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm{sup 2} and 2.1 J/cm{sup 2} were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.

  17. Lecture-Room Interference Demo Using a Glass Plate and a Laser Beam Focused on It

    Science.gov (United States)

    Ageev, Leonid A.; Yegorenkov, Vladimir D.

    2010-01-01

    We describe a simple case of non-localized interference produced with a glass plate and a laser beam focused on it. The proposed setup for observing interference is compact when semiconductor lasers are employed, and it is well suited for demonstration and comparison of interference in reflected and transmitted light in a large lecture-room. This…

  18. Iodometric determination of platinum(4) using amperometry

    International Nuclear Information System (INIS)

    Zakharov, V.A.; Gavva, N.F.; Songina, O.A.

    1976-01-01

    The possibility of iodometric determination of platinum (4) by amperometric titration has been investigated. Titration has been conducted at zero potential of platinum reference electrode. Voltampere curves and absorption spectra of the solutions have been recorded to elucidate the nature of platinum (4) interaction with iodide-ion. It has been established that in the case of small excess of iodide complex [PtI 6 ] 2- is formed. When there is a considerable excess of KI, platinum (4) is reduced to Pt(2) with the formation of [PtI 4 ] 2 - and liberation of free iodine. Optimal for iodometric titration of Pt(4) is the use of acetate ot phosphate background solution with pH 6-8 with respect to 1M KI which is attained by adding 3 g of solid KI to 20 ml of the solution being titrated. Under these conditions the limit of platinum detection is 0.5 mkg/ml. Determination of Pt (4) is not hindered by the presence of 200-fold amounts of Cr(6), V(5), and Ni(2) as well as by 20-10-fold amounts of As(5), Sb(5), Se(4), Te(4), Rh(3), and Ir(3), Determination is hindered by the presence of Pd(2), Fe(3), Ir(4), and Cu(2) which, however, can easily be overcome. The possibility has been shown of using the developed technique for analysis of platinum catalysts and alloys

  19. Smith-Purcell free-electron laser

    International Nuclear Information System (INIS)

    Woods, K.J.; Walsh, J.E.

    1995-01-01

    The term Smith-Purcell free electron laser can be employed generally to describe any coherent radiation source in which a diffraction grating is used to couple an electron beam with the electromagnetic field. To date, most practical developments of this concept have focused on devices which operate in the millimeter spectral regime. In this paper construction of a Smith-Purcell free-electron laser operating in the far-infrared (FIR) region using a novel resonator cavity design and the electron beam from a low energy (0.5-5 MeV) radio-frequency accelerator will be discussed. A tunable source in this region would have many applications and since the beam energy is low, the small size and low overall cost of such a device would make it a laboratory instrument. Current projects which are progressing towards developing a FIR source are the programs at Stanford and CREOL. Both of these projects are using permanent magnet undulators to couple the electron beam with the electromagnetic field. An alternative approach is to use an electron beam passing over a diffraction grating as the radiating mechanism. This phenomenon is known as Smith-Purcell radiation and was first demonstrated for incoherent emission at visible wavelengths. The addition of feedback enhances the stimulated component of the emission which leads to the growth of coherence. Recent calculations for spontaneous emission have shown that the wiggler parameter and the grating efficiency are analogous. This result has important implications for the development of a Smith-Purcell FEL because a grating based free-electron laser would offer a greater range of tunability at a lower cost than its wiggler based counterpart

  20. Fabrication of wound capacitors using flexible alkali-free glass

    International Nuclear Information System (INIS)

    Wilke, Rudeger H. T.; Baker, Amanda; Brown-Shaklee, Harlan; Johnson-Wilke, Raegan; Hettler, Chad

    2016-01-01

    Here, alkali-free glasses, which exhibit high energy storage densities (~35 J/cc), present a unique opportunity to couple high temperature stability with high breakdown strength, and thus provide an avenue for capacitor applications with stringent temperature and power requirements. Realizing the potential of these materials in kilovolt class capacitors with >1 J/cc recoverable energy density requires novel packaging strategies that incorporate these extremely fragile dielectrics. In this paper, we demonstrate the feasibility of fabricating wound capacitors using 50-μm-thick glass. Two capacitors were fabricated from 2.8-m-long ribbons of thin (50 μm) glass wound into 125-140-mm-diameter spools. The capacitors exhibit a capacitance of 70-75 nF with loss tangents below 1%. The wound capacitors can operate up to 1 kV and show excellent temperature stability to 150 °C. By improving the end terminations, the self-resonance can be shifted to above 1 MHz, indicating that these materials may be useful for pulsed power applications with microsecond discharge times.

  1. Development of LD pumped 10 J x 10 Hz Nd: Glass slab laser system

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Kanabe, Tadashi; Matsui, Hideki

    2000-01-01

    As a first step of a driver development for the inertial fusion energy, we are developing a diode-pumped zig-zag Nd: glass slab laser amplifier system which can generate an output of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig-zag Nd: glass slab is pumped from both sides by 803-nm AlGaAs laser-diode (LD) module; each LD module has an emitting area of 420 mm x 10 mm and two LD modules generated in total 200 kW peak power with 2.5 kW/cm 2 peak intensity at 10 Hz repetition rate. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern. (author)

  2. Free Electron Lasers in 2005

    CERN Document Server

    Colson, W B; Voughs, T

    2005-01-01

    Twenty-eight years after the first operation of the short wavelength free electron laser (FEL) at Stanford University, there continue to be many important experiments, proposed experiments, and user facilities around the world. Properties of FELs in the infrared, visible, UV, and x-ray wavelength regimes are listed and discussed.

  3. Free Electron Lasers in 2004

    CERN Document Server

    Colson, William B

    2004-01-01

    Twenty-seven years after the first operation of the short wavelength free electron laser (FEL) at Stanford University, there continue to be many important experiments, proposed experiments, and user facilities around the world. Properties of FELs operating in the infrared, visible, UV, and x-ray wavelength regimes are listed and discussed.

  4. Nanoscale mechanochemical wear of phosphate laser glass against a CeO{sub 2} particle in humid air

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiaxin, E-mail: yujiaxin@swust.edu.cn [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); He, Hongtu; Zhang, Yafeng [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); Hu, Hailong [Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-01-15

    Highlights: • Friction components of phosphate glass/CeO{sub 2} pair in humid air were quantified to understand the friction mechanism. • Severe nanoscale wear was directly observed by AFM topography on both phosphate glass and CeO{sub 2} particle in humid air. • The wearless behaviors of phosphate glass in vacuum were confirmed by the AFM phase image. • Capillary water bridge induced corrosion plays an important role in the mechanochemical wear of phosphate glass in air. - Abstract: Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO{sub 2} particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO{sub 2} pair in air was found to be 5–7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65–79%. The capillary water bridge further induced a serious material removal of glass and CeO{sub 2} particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Ce−O−P bond, accelerating the reaction between water and the glass/CeO{sub 2} pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  5. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    International Nuclear Information System (INIS)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H.

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 μm. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  6. Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass

    International Nuclear Information System (INIS)

    Ma Fengxu; Yang Jianjun; Xiaonong Zhu; Liang Chunyong; Wang Hongshui

    2010-01-01

    Surface morphological evolution of Zr-based metallic glass ablated by femtosecond lasers is investigated in atmosphere condition. Three types of permanent ring structures with micro-level spacing are observed for different laser shots and fluences. In the case of low laser fluences, the generation of annular patterns with nonthermal features is observed on the rippled structure with the subwavelength scale, and the ring spacing shows a decrease tendency from the center to the margin. While in the case of high laser fluences, the concentric rings formation within the laser spot is found to have evident molten traces and display the increasing ring spacing along the radial direction. Moreover, when the laser shots accumulation becomes large, the above two types of ring microstructures begin to develop into the common ablation craters. Analysis and discussion suggests that the stress-induced condensation of ablation vapors and the frozen thermocapillary waves on the molten surfaces should be responsible for the formation of two different types of concentric ring structures, respectively. Eventually, a processing window for each resulting surface microstructure type is obtained experimentally and indicates the possibility to control the morphological transitions among different types.

  7. Measurement of stress-induced birefringence in glasses based on reflective laser feedback effect

    Science.gov (United States)

    Haisha, Niu; YanXiong, Niu; Jiyang, Li

    2017-02-01

    A glass birefringence measurement system utilizing the reflective laser feedback (RLF) effect is presented. The measurement principle is analyzed based on the equivalent cavity of a Fabry-Perot interferometer, and the experiments are conducted with a piece of quartz glass with applied extrusion force. In the feedback system, aluminum film used as a feedback mirror is affixed to the back of the sample. When the light is reflected back into the cavity, as the reinjected light is imprinted with the birefringence information in the sample, the gain and polarization states of the laser are modulated. The variation of optical power and polarization states hopping is monitored to obtain the magnitude of the stress. The system has advantages such as simplicity and low-cost with a precision of 1.9 nm. Moreover, by adjusting the position of the aluminum, large-area samples can be measured anywhere at any place.

  8. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm

    Science.gov (United States)

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-03-01

    Ho3+/Tm3+ co-doped 50TeO2-25GeO2-3WO3-5La2O3-3Nb2O5-5Li2O-9BaF2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho3+ is greatly influenced by the doping concentration ratio of Ho3+ to Tm3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10-21 cm2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm-1, which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser.

  9. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073, Novosibirsk (Russian Federation); Sonina, Svetlana V. [Novosibirsk State University, 1 Koptuga Ave., 630090 Novosibirsk (Russian Federation); Meshcheryakov, Yuri P. [Design and Technology Branch of Lavrentyev Institute of Hydrodynamics SB RAS, Tereshkovoi street 29, 630090 Novosibirsk (Russian Federation)

    2015-12-21

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  10. Laser-induced dendritic microstructures on the surface of Ag+-doped glass

    International Nuclear Information System (INIS)

    Nahal, A.; Mostafavi-Amjad, J.; Ghods, A.; Khajehpour, M. R. H.; Reihani, S. N. S.; Kolahchi, M. R.

    2006-01-01

    Fractal dendritic silver microstructures are observed on the surface of the Ag + -doped glasses as a result of a photothermal interaction with a focused multiline cw high-power (P max =8 W) Ag + laser beam. It is found that evolution of the structures depends on the exposure time and also on the concentration of the silver ions in the sample. The fractal dimension of the generated dendritic microstructures increases with the exposure time. Instability of the contact line of the molten silver flow toward the periphery of the interaction area is discussed as a result of the temperature gradient, due to the Gaussian intensity distribution across the laser beam

  11. Free-electron laser beam

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    2003-01-01

    The principle and history of free-electron laser (FEL), first evidenced in 1977, the relationship between FEL wavelength and output power, the high-power FEL driven by the superconducting linac, the X-ray FEL by the linac, and the medical use are described. FEL is the vacuum oscillator tube and essentially composed from the high-energy linac, undulator and light-resonator. It utilizes free electrons in the vacuum to generate the beam with wavelength ranging from microwave to gamma ray. The first high-power FEL developed in Japanese Atomic Energy Research Institute (JAERI) is based on the development of superconducting linac for oscillating the highest power beam. In the medical field, applications to excise brain tumors (in US) and to reconstruct experimentally blood vessels in the pig heart (in Gunma University) by lasing and laser coagulator are in progress with examinations to remove intra-vascular cholesterol mass by irradiation of 5.7μm FEL beam. Cancer cells are considered diagnosed by FEL beam of far-infrared-THz range. The FEL beam CT is expected to have a wide variety of application without the radiation exposure and its resolution is equal or superior to that of usual imaging techniques. (N.I.)

  12. Generation of surface electromagnetic waves in terahertz spectral range by free-electron laser radiation and their refractive index determination

    International Nuclear Information System (INIS)

    Bogomolov, G.D.; Jeong, Uk Young; Zhizhin, G.N.; Nikitin, A.K.; Zavyalov, V.V.; Kazakevich, G.M.; Lee, Byung Cheol

    2005-01-01

    First experiments for observation of surface electromagnetic waves (SEW) in the terahertz spectral range generated on dense aluminum films covering the optical quality glass plates are presented in this paper. Coherent radiation of the new free-electron laser covering the frequency range from 30 to 100cm -1 was used. The interference technique employing SEW propagation in the part of one shoulder of the asymmetric interferometer was applied. From the interference pattern the real part of SEW's effective refractive index ae ' was determined for the two laser emission wavelengths: at λ=150μm-ae ' =1+5x10 -5 , at λ=110μm-ae ' =1+8x10 -4 . High sensitivity of the interference patterns to overlayers made of Ge and Si with thickness of 100nm was demonstrated as well

  13. Pb-free Radiation Shielding Glass Using Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Watcharin Rachniyom

    2015-12-01

    Full Text Available In this work, Pb-free shielding glass samples were prepared by the melt quenching technique using subbituminous fly ash (SFA composed of xBi2O3 : (60-xB2O3 : 10Na2O : 30SFA (where x = 10, 15, 20, 25, 30 and 35 by wt%. The samples were investigated for their physical and radiation shielding properties. The density and hardness were measured. The results showed that the density increased with the increase of Bi2O3 content. The highest value of hardness was observed for glass sample with 30 wt% of Bi2O3 concentration. The samples were investigated under 662 keV gamma ray and the results were compared with theoretical calculations. The values of the mass attenuation coefficient (μm, the atomic cross section (σe and the effective atomic number (Zeff were found to increase with an increase of the Bi2O3 concentration and were in good agreement with the theoretical calculations. The best results for the half-value layer (HVL were observed in the sample with 35 wt% of Bi2O3 concentration, better than the values of barite concrete. These results demonstrate the viability of using coal fly ash waste for radiation shielding glass without PbO in the glass matrices.

  14. Preparation and optical properties of TeO2-BaO-ZnO-ZnF2 fluoro-tellurite glass for mid-infrared fiber Raman laser applications

    Science.gov (United States)

    Li, Jie; Xiao, Xusheng; Gu, Shaoxuan; Xu, Yantao; Zhou, Zhiguang; Guo, Haitao

    2017-04-01

    A serial of novel fluoro-tellurite glasses with compositions of 60TeO2-20BaO-(20-x)ZnO-xZnF2 (x = 0, 2, 4, 5 and 6 mol%) were prepared. The compositional dependences of glass structural evaluation, Raman gain coefficient, UV-Vis transmission spectrum, IR transmission spectrum, linear refractive index and third-order nonlinearity were analyzed. The results showed that the addition of 6 mol% ZnF2 can further improve the Raman gain coefficient to as well as 52 × 10-11 cm/W and effectively decrease around 73% and 57% absorption coefficients respectively caused by free Osbnd H groups (@3.3 μm) and hydrogen-bonded Osbnd H groups (@4.5 μm) in glass. Addition of ZnF2 does not change the UV-Vis absorption edge, optical band gap energy and infrared region cut-off edge almost, while the linear refraction index and ultrafast third-nonlinearity show unmonotonic changes. These novel fluoro-tellurite glasses may be suitable candidates for using in mid-infrared Raman fiber laser and/or amplifier.

  15. Positron trapping defects in free-volume investigation of Ge–Ga–S–CsCl glasses

    International Nuclear Information System (INIS)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Hotra, O.; Popov, A.I.

    2016-01-01

    Evolution of free-volume positron trapping defects caused by crystallization process in (80GeS_2–20Ga_2S_3)_1_0_0_−_x(CsCl)_x, 0 ≤ x ≤ 15 chalcogenide-chalcohalide glasses was studied by positron annihilation lifetime technique. It is established that CsCl additives in Ge–Ga–S glassy matrix transform defect-related component spectra, indicating that the agglomeration of free-volume voids occurs in initial and crystallized (80GeS_2–20Ga_2S_3)_1_0_0_−_x(CsCl)_x, 0 ≤ x ≤ 10 glasses. Void fragmentation in (80GeS_2–20Ga_2S_3)_8_5(CsCl)_1_5 glass can be associated with loosing of their inner structure. Full crystallization in each of these glasses corresponds to the formation of defect-related voids. These trends are confirmed by positron-positronium decomposition algorithm. It is shown, that CsCl additives result in white shift in the visible regions in transmission spectra. The γ-irradiation of 80GeS_2–20Ga_2S_3 base glass leads to slight long-wavelength shift of the fundamental optical absorption edge and decreasing of transmission speaks in favor of possible formation of additional defects in glasses and their darkening. - Highlights: • CsCl additives in Ge–Ga–S glassy matrix lead to the agglomeration of voids. • Full crystallization of Ge–Ga–S–CsCl glasses corresponds to the formation of defect voids. • Gamma-irradiation of glass stimulates the creation of additional defects and darkening.

  16. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    Science.gov (United States)

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Femtosecond laser-written double line waveguides in germanate and tellurite glasses

    Science.gov (United States)

    S. da Silva, Diego; Wetter, Niklaus U.; de Rossi, Wagner; Samad, Ricardo E.; Kassab, Luciana R. P.

    2018-02-01

    The authors report the fabrication and characterization of passive waveguides in GeO2-PbO and TeO2-ZnO glasses written with a femtosecond laser delivering pulses with 3μJ, 30μJ and 80fs at 4kHz repetition rate. Permanent refractive index change at the focus of the laser beam was obtained and waveguides were formed by two closely spaced laser written lines, where the light guiding occurs between them. The refractive index change at 632 nm is around 10-4 . The value of the propagation losses was around 2.0 dB/cm. The output mode profiles indicate multimodal guiding behavior. Raman measurements show structural modification of the glassy network. The results show that these materials are potential candidates for passive waveguides applications as low-loss optical components.

  18. Oscillator and system development on the VULCAN glass laser system for the plasma beat-wave program

    International Nuclear Information System (INIS)

    Danson, C.N.

    1990-03-01

    This thesis describes the oscillator and system development on the VULCAN glass laser undertaken in support of the RAL Plasma Beat-wave experiments. This program seeks to evaluate advanced particle acceleration schemes for a new generation of machines for fundamental research in high energy physics. The experiments required two synchronised high power laser pulses of slightly different wavelength. These pulses were generated using two different laser media; Nd:YAG and Nd:YLF operating at 1.064 and 1.053 microns respectively. The first oscillator system developed operated with both lasing media housed in the same laser cavity. Problems with the stability of the optical output required the development of a second system which housed the two lasing media in separate cavities. The second aspect of the development work, described in this thesis, was the reconfiguration of the VULCAN glass laser system to amplify the two laser pulses to power levels of 0.5 TW per pulse. The first scheduled experiment required the two pulses to be propagated co-linearly. To amplify the pulses to the high output powers required two amplifying media to be used which preferentially amplify the two lasing wavelengths. For the later experiments the two laser pulses were amplified in separate amplifier chains which required the design of an efficient beam combiner. (author)

  19. Gibbs free-energy difference between the glass and crystalline phases of a Ni-Zr alloy

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.

    1993-01-01

    The heats of eutectic melting and devitrification, and the specific heats of the crystalline, glass, and liquid phases have been measured for a Ni24Zr76 alloy. The data are used to calculate the Gibbs free-energy difference, Delta G(AC), between the real glass and the crystal on an assumption that the liquid-glass transition is second order. The result shows that Delta G(AC) continuously increases as the temperature decreases in contrast to the ideal glass case where Delta G(AC) is assumed to be independent of temperature.

  20. High-energy Nd:glass laser facility for collisionless laboratory astrophysics

    International Nuclear Information System (INIS)

    Niemann, C; Constantin, C G; Schaeffer, D B; Lucky, Z; Gekelman, W; Everson, E T; Tauschwitz, A; Weiland, T; Winske, D

    2012-01-01

    A kilojoule-class laser (Raptor) has recently been activated at the Phoenix-laser-facility at the University of California Los Angeles (UCLA) for an experimental program on laboratory astrophysics in conjunction with the Large Plasma Device (LAPD). The unique combination of a high-energy laser system and the 18 meter long, highly-magnetized but current-free plasma will support a new class of plasma physics experiments, including the first laboratory simulations of quasi-parallel collisionless shocks, experiments on magnetic reconnection, or advanced laser-based diagnostics of basic plasmas. Here we present the parameter space accessible with this new instrument, results from a laser-driven magnetic piston experiment at reduced power, and a detailed description of the laser system and its performance.

  1. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    International Nuclear Information System (INIS)

    Nagpal, Swati

    2002-01-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature

  2. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    Science.gov (United States)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  3. Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance

    Science.gov (United States)

    Santoro, Carlo; Rojas-Carbonell, Santiago; Awais, Roxanne; Gokhale, Rohan; Kodali, Mounika; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2018-01-01

    Platinum group metal-free (PGM-free) ORR catalysts from the Fe-N-C family were synthesized using sacrificial support method (SSM) technique. Six experimental steps were used during the synthesis: 1) mixing the precursor, the metal salt, and the silica template; 2) first pyrolysis in hydrogen rich atmosphere; 3) ball milling; 4) etching the silica template using harsh acids environment; 5) the second pyrolysis in ammonia rich atmosphere; 6) final ball milling. Three independent batches were fabricated following the same procedure. The effect of each synthetic parameters on the surface chemistry and the electrocatalytic performance in neutral media was studied. Rotating ring disk electrode (RRDE) experiment showed an increase in half wave potential and limiting current after the pyrolysis steps. The additional improvement was observed after etching and performing the second pyrolysis. A similar trend was seen in microbial fuel cells (MFCs), in which the power output increased from 167 ± 2 μW cm-2 to 214 ± 5 μW cm-2. X-ray Photoelectron Spectroscopy (XPS) was used to evaluate surface chemistry of catalysts obtained after each synthetic step. The changes in chemical composition were directly correlated with the improvements in performance. We report outstanding reproducibility in both composition and performance among the three different batches.

  4. Laser amplifier based on a neodymium glass rod 150 mm in diameter

    Energy Technology Data Exchange (ETDEWEB)

    Shaykin, A A; Fokin, A P; Soloviev, A A; Kuzmin, A A; Shaikin, I A; Burdonov, K F; Khazanov, E A [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Charukhchev, A V [Public Limited Company " Scientific research Institute for Optoelectronic Instrument Engineering" , Leningrad region (Russian Federation)

    2014-05-30

    A unique large-aperture neodymium glass rod amplifier is experimentally studied. The small-signal gain distribution is measured at different pump energies. The aperture-averaged gain is found to be 2.3. The stored energy (500 J), the maximum possible pump pulse repetition rate, and the depolarisation in a single pulse and in a series of pulses with a repetition rate of one pulse per five minutes are calculated based on the investigations performed. It is shown that the use of this amplifier at the exit of the existing laser can increase the output pulse energy from 300 to 600 J. (lasers)

  5. Short wavelength optics for future free electron lasers

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1984-04-01

    Although much free-electron laser work is directed toward achieving sufficient single-pass gain to be useful for research purposes, the availability of mirrors of high reflectance for the vacuum ultraviolet and soft x-ray regime would make resonant cavities a possibility. In addition, as in ordinary synchrotron radiation work, mirrors are required for the construction of realistic experiments and for beam manipulation purposes such as folding and extraction. The Working Group discussed a number of approaches to reflecting optics for free electron lasers, which are summarized here, and described in some detail. 16 references, 2 figures

  6. Evaluation of Mechanical Properties of Glass Fiber Posts Subjected to Laser Surface Treatments.

    Science.gov (United States)

    Barbosa Siqueira, Carolina; Spadini de Faria, Natália; Raucci-Neto, Walter; Colucci, Vivian; Alves Gomes, Erica

    2016-10-01

    The aim of this study was to evaluate the influence of laser irradiation on flexural strength, elastic modulus, and surface roughness and morphology of glass fiber posts (GFPs). Laser treatment of GFPs has been introduced to improve its adhesion properties. A total of 40 GFPs were divided into 4 groups according to the irradiation protocol: GC-no irradiation, GYAG-irradiation with erbium:yttrium-aluminum-garnet [Er:YAG], GCR-irradiation with erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG), and GDI-irradiation with diode laser. The GFP roughness and morphology were evaluated through laser confocal microscopy before and after surface treatment. Three-point bending flexural test measured flexural strength and elastic modulus. Data about elastic modulus and flexural strength were subjected to one-way ANOVA and Bonferroni test (p properties of GFPs.

  7. Two-dimensional optimization of free-electron-laser designs

    Science.gov (United States)

    Prosnitz, D.; Haas, R.A.

    1982-05-04

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  8. Treatment of tooth fracture by medium-energy CO2 laser and DP-bioactive glass paste: the interaction of enamel and DP-bioactive glass paste during irradiation by CO2 laser.

    Science.gov (United States)

    Lin, C P; Tseng, Y C; Lin, F H; Liao, J D; Lan, W H

    2001-03-01

    Acute trauma or trauma associated with occlusal disturbance can produce tooth crack or fracture. Although several methods are proposed to treat the defect, however, the prognosis is generally poor. If the fusion of a tooth fracture by laser is possible, it will offer an alternative to extraction or at least serve as an adjunctive treatment in the reconstruction. We have tried to use a continuous-wave CO2 laser and a newly developed DP-bioactive glass paste (DPGP) to fuse or bridge tooth crack or fracture lines. Both the DP-bioactive glass paste and tooth enamel have strong absorption bands at the wavelength of 10.6 microm. Therefore, under CO2 laser, DPGP and enamel should have an effective absorption and melt together. The interface between DPGP and enamel could be regarded as a mixture of DPGP and enamel (DPG-E). The study focused on the phase transformation, microstructure, functional group and thermal behavior of DPG-E with or without CO2 laser irradiation, by the analytical techniques of XRD, FTIR, DTA/TGA, and SEM. The results of XRD showed that the main crystal phase in the DPG-E was dicalcium phosphate dihydrate (CaHPO4.2H2O). It changed into CaHPO4, gamma-Ca2P2O7, beta-Ca2P2O7 and finally alpha-Ca2P2O7 with increasing temperature. In the FTIR analysis, the 720 cm(-1) absorption band ascribed to the P-O-P linkage in pyrophosphate rose up and the intensities of the OH- bands reduced after laser irradiation. In regard to the results of DTA/TGA after irradiation, the weight loss decreased due to the removal of part of absorption water and crystallization water by the CO2 laser. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight chemical bond between the enamel and DPGP. We expect that DPGP with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture.

  9. Vacuum-Free, Maskless Patterning of Ni Electrodes by Laser Reductive Sintering of NiO Nanoparticle Ink and Its Application to Transparent Conductors

    KAUST Repository

    Lee, Daeho

    2014-10-28

    © 2014 American Chemical Society. We introduce a method for direct patterning of Ni electrodes through selective laser direct writing (LDW) of NiO nanoparticle (NP) ink. High-resolution Ni patterns are generated from NiO NP thin films by a vacuum-free, lithography-free, and solution-processable route. In particular, a continuous wave laser is used for the LDW reductive sintering of the metal oxide under ambient conditions with the aid of reducing agents in the ink solvent. Thin (∼40 nm) Ni electrodes of glossy metallic surfaces with smooth morphology and excellent edge definition can be fabricated. By applying this method, we demonstrate a high transmittance (>87%), electrically conducting panel for a touch screen panel application. The resistivity of the Ni electrode is less than an order of magnitude higher compared to that of the bulk Ni. Mechanical bending test, tape-pull test, and ultrasonic bath test confirm the robust adhesion of the electrodes on glass and polymer substrates.

  10. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors.

    Science.gov (United States)

    Lee, Daeho; Paeng, Dongwoo; Park, Hee K; Grigoropoulos, Costas P

    2014-10-28

    We introduce a method for direct patterning of Ni electrodes through selective laser direct writing (LDW) of NiO nanoparticle (NP) ink. High-resolution Ni patterns are generated from NiO NP thin films by a vacuum-free, lithography-free, and solution-processable route. In particular, a continuous wave laser is used for the LDW reductive sintering of the metal oxide under ambient conditions with the aid of reducing agents in the ink solvent. Thin (∼ 40 nm) Ni electrodes of glossy metallic surfaces with smooth morphology and excellent edge definition can be fabricated. By applying this method, we demonstrate a high transmittance (>87%), electrically conducting panel for a touch screen panel application. The resistivity of the Ni electrode is less than an order of magnitude higher compared to that of the bulk Ni. Mechanical bending test, tape-pull test, and ultrasonic bath test confirm the robust adhesion of the electrodes on glass and polymer substrates.

  11. Inverse free electron laser accelerator for advanced light sources

    Directory of Open Access Journals (Sweden)

    J. P. Duris

    2012-06-01

    Full Text Available We discuss the inverse free electron laser (IFEL scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  12. Laser- and gamma-induced transformations of optical spectra of indium-doped sodium borate glass

    CERN Document Server

    Kopyshinsky, O V; Zelensky, S E; Danilchenko, B A; Shakhov, O P

    2003-01-01

    The optical absorption and luminescence properties of indium-doped sodium borate glass irradiated by gamma-rays and by powerful UV lasers within the impurity-related absorption band are investigated experimentally. It is demonstrated that both the laser- and gamma-irradiation cause similar transformations of optical spectra in the UV and visible regions. The changes of the spectra observed are described with the use of a model which includes three types of impurity centres formed by differently charged indium ions.

  13. Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters

    International Nuclear Information System (INIS)

    Maki, D.; Ishii, T.; Sato, F.; Kato, Y.; Yamamoto, T.; Iida, T.

    2011-01-01

    A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using 241 Am alpha rays. The spatial resolution of this system was ∼3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image. (authors)

  14. Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters.

    Science.gov (United States)

    Maki, Daisuke; Ishii, Tetsuya; Sato, Fuminobu; Kato, Yushi; Yamamoto, Takayoshi; Iida, Toshiyuki

    2011-03-01

    A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using (241)Am alpha rays. The spatial resolution of this system was ∼ 3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image.

  15. Synthesis of Glass Nanofibers Using Femtosecond Laser Radiation Under Ambient Condition

    Directory of Open Access Journals (Sweden)

    Venkatakrishnan K

    2009-01-01

    Full Text Available Abstract We report the unique growth of nanofibers in silica and borosilicate glass using femtosecond laser radiation at 8 MHz repetition rate and a pulse width of 214 fs in air at atmospheric pressure. The nanofibers are grown perpendicular to the substrate surface from the molten material in laser-drilled microvias where they intertwine and bundle up above the surface. The fibers are few tens of nanometers in thickness and up to several millimeters in length. Further, it is found that at some places nanoparticles are attached to the fiber surface along its length. Nanofiber growth is explained by the process of nanojets formed in the molten liquid due to pressure gradient induced from the laser pulses and subsequently drawn into fibers by the intense plasma pressure. The attachment of nanoparticles is due to the condensation of vapor in the plasma.

  16. Reduction of Residual Stresses in Sapphire Cover Glass Induced by Mechanical Polishing and Laser Chamfering Through Etching

    Directory of Open Access Journals (Sweden)

    Shih-Jeh Wu

    2016-10-01

    Full Text Available Sapphire is a hard and anti-scratch material commonly used as cover glass of mobile devices such as watches and mobile phones. A mechanical polishing using diamond slurry is usually necessary to create mirror surface. Additional chamfering at the edge is sometimes needed by mechanical grinding. These processes induce residual stresses and the mechanical strength of the sapphire work piece is impaired. In this study wet etching by phosphate acid process is applied to relief the induced stress in a 1” diameter sapphire cover glass. The sapphire is polished before the edge is chamfered by a picosecond laser. Residual stresses are measured by laser curvature method at different stages of machining. The results show that the wet etching process effectively relief the stress and the laser machining does not incur serious residual stress.

  17. FreeDam - A webtool for free-electron laser-induced damage in femtosecond X-ray crystallography

    Science.gov (United States)

    Jönsson, H. Olof; Östlin, Christofer; Scott, Howard A.; Chapman, Henry N.; Aplin, Steve J.; Tîmneanu, Nicuşor; Caleman, Carl

    2018-03-01

    Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.

  18. Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses

    International Nuclear Information System (INIS)

    Natura, U.; Ehrt, D.

    2001-01-01

    Fluoride phosphate (FP) glasses with low phosphate content are high-transparent in the deep ultraviolet (UV) range and attractive candidates for UV-optics. Their optical properties are complementary to fluoride crystals. The anomalous partial dispersion makes them desirable for optical lens designs to reduce the secondary spectrum. Their UV transmission is limited by trace impurities introduced by raw materials and decreases when exposed to UV-radiation (lamps, lasers). The experiments of the paper published previously in this journal were used in order to separate radiation induced absorption bands in the fluoride phosphate glass FP10. In this paper the generation mechanism of the phosphorus-oxygen related hole center POHC 2 is investigated in detail in glasses of various compositions (various phosphate and impurity contents) in order to predict the transmission loss in case of long-time irradiation. Experiments were carried out using ArF- and KrF-excimer lasers (ns-pulses). POHC 2 generation strongly depends on the phosphate content and on the content of Pb 2+ . A model was developed on these terms. Rate equations are formulated, incorporating the influence of the Pb 2+ -content on the defect generation, a two-step creation term including an energy transfer process and a one-photon bleaching term. This results in a set of coupled nonlinear differential equations. Absorption coefficients and lifetimes of the excited states were calculated as well. Experimental results compared well with the numerical analysis of the theoretical rate equations

  19. Laser-assisted preparation and photoelectric properties of grating-structured Pt/FTO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nai-fei, E-mail: rnf_ujs@126.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing, E-mail: lij_huang@126.com [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Bao-jia [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-09-30

    Highlights: • Pt layers were deposited by DC magnetron sputtering on commercial FTO glasses. • Pt/FTO films were irradiated by laser for inducing gratings and annealing. • An ideal grating-structured Pt/FTO film was obtained using a fluence of 1.05 J/cm{sup 2}. • The grating-structured Pt/FTO film exhibited excellent photoelectric properties. • Laser-assisted treatment is effective for improving performance of FTO-based films. - Abstract: In order to improve the transparency and conductivity of commercial fluorine-doped tin oxide (FTO) glass, platinum (Pt) layers were deposited on the FTO film by direct current (DC) magnetron sputtering, followed by being irradiating with a 532 nm nanosecond pulsed laser for the dual purpose of inducing grating structures and annealing. Introducing a Pt layer decreased the average transmittance (400–800 nm) and the sheet resistance of the initial FTO film from 80.2% and 8.4 Ω/sq to 68.6% and 7.9 Ω/sq, respectively. The ideal grating-structured Pt/FTO film was obtained by laser irradiation with a fluence of 1.05 J/cm{sup 2}, and X-ray diffraction (XRD) analysis confirmed that this film underwent optimal annealing. As a result, it exhibited an average transmittance (400–800 nm) of 84.1% and a sheet resistance of 6.8 Ω/sq. These results indicated that laser-assisted treatment combined with introduction of metal layer can effectively improve photoelectric properties of FTO single-layer films.

  20. Program to Research Laser-Driven Thermionic Electron Sources for Free Electron Lasers.

    Science.gov (United States)

    1988-01-01

    by sinal I lengths of coaxial cable. With the ’. corresponding charge to the diode also reduced, a series of temporall y sho rter -Ioctron pulse-s was...e combination of approximately 1.6 eV. With the Nd:glass laser beam pulse heating the cathode " and the charge supplied by 0.5/ F capacitor, a series ...available charge stored in the h-arg ing ’apar i tor. A series of experiments was performed wilh lowetr capacitances of sevoral tens of picofarads furnished

  1. Platinum-group elements

    Science.gov (United States)

    Zientek, Michael L.; Loferski, Patricia J.; Parks, Heather L.; Schulte, Ruth F.; Seal, Robert R.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    The platinum-group elements (PGEs)—platinum, palladium, rhodium, ruthenium, iridium, and osmium—are metals that have similar physical and chemical properties and tend to occur together in nature. PGEs are indispensable to many industrial applications but are mined in only a few places. The availability and accessibility of PGEs could be disrupted by economic, environmental, political, and social events. The United States net import reliance as a percentage of apparent consumption is about 90 percent.PGEs have many industrial applications. They are used in catalytic converters to reduce carbon monoxide, hydrocarbon, and nitrous oxide emissions in automobile exhaust. The chemical industry requires platinum or platinum-rhodium alloys to manufacture nitric oxide, which is the raw material used to manufacture explosives, fertilizers, and nitric acid. In the petrochemical industry, platinum-supported catalysts are needed to refine crude oil and to produce aromatic compounds and high-octane gasoline. Alloys of PGEs are exceptionally hard and durable, making them the best known coating for industrial crucibles used in the manufacture of chemicals and synthetic materials. PGEs are used by the glass manufacturing industry in the production of fiberglass and flat-panel and liquid crystal displays. In the electronics industry, PGEs are used in computer hard disks, hybridized integrated circuits, and multilayer ceramic capacitors.Aside from their industrial applications, PGEs are used in such other fields as health, consumer goods, and finance. Platinum, for example, is used in medical implants, such as pacemakers, and PGEs are used in cancer-fighting drugs. Platinum alloys are an ideal choice for jewelry because of their white color, strength, and resistance to tarnish. Platinum, palladium, and rhodium in the form of coins and bars are also used as investment commodities, and various financial instruments based on the value of these PGEs are traded on major exchanges

  2. Scratch test induced shear banding in high power laser remelted metallic glass layers

    NARCIS (Netherlands)

    Matthews, D. T. A.; Ocelik, V.; de Hosson, J. Th. M.

    Laser remelted surface layers of a Cu-based metallic glass forming alloy have been produced with fully amorphous depths up to 350 mu m for single track widths of around 1.3 mm and have been checked by transmission of synchrotron radiation. They have been subjected to indentation hardness and scratch

  3. Preparation of platinum-free tubular dye-sensitized solar cells by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Khwanchit Wongcharee

    2016-10-01

    Full Text Available Tubular dye-sensitized solar cells (DSSCs were developed by replacing expensive materials with lower cost materials as follows: (1 replacing conductive glass electrodes with titanium (Ti wires and (2 replacing platinum (Pt catalyst with the mixture of multi-walled carbon nanotubes, MWCNTs and Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate, PEDOT-PSS. Platinized counter electrodes were used as the standard counter electrodes for comparison. The effects of the chemical treatment of titanium wire substrate and electrophoretic deposition condition on the efficiency of DSSCs were also investigated. The chemical treatment of titanium wires was carried out by soaking the wires in HF-HNO3 solutions at three different concentrations of 0.8, 1.6 and 2.4 M and three different soaking durations of 5, 10 and 15 min. The optimum condition was found at HF-HNO3 concentration of 0.8 M and soaking duration of 10 min. Film coating on working electrodes was performed using electrophoretic technique at three different voltages of 5, 8 and 10 V and four different coating durations of 1, 3, 5 and 7 min. Then, the optimum condition at deposition voltage of 5 V and deposition duration of 5 min was applied for film deposition on counter electrodes. The efficiency of DSSC with CNTs/TiO2 counter electrode was 0.03%. The addition of PEDOT-PSS improved the efficiency of DSSC to 0.08%.

  4. Spontaneous emission and gain in a waveguide free-electron laser

    International Nuclear Information System (INIS)

    Golightly, W.J.; Ride, S.K.

    1991-01-01

    A free-electron laser enclosed in a waveguide of narrowly spaced parallel plates has been proposed as a compact, coherent source of far-infrared radiation. In this paper, the spontaneous emission and small-signal gain of such a device are analyzed. Maxwell's equations are solved for the fields of a relativistic electron beam passing through a linearly polarized undulator in the presence of a parallel-plane waveguide. The radiation intensity is resolved into its component waveguide modes for the fundamental frequency and for all harmonics. The intensity profile in a given harmonic mode is altered significantly when a parameter involving the undulator period, beam energy, and transverse dimension of the guide is such that the radiation group velocity is close to the electrons' axial velocity. The small-signal gain in the waveguide free-electron laser is calculated and related to the spontaneous emission. Near zero slip, the gain curve is significantly different from that of a free-space free-electron laser with the same parameters

  5. High power operation of cladding pumped holmium-doped silica fibre lasers.

    Science.gov (United States)

    Hemming, Alexander; Bennetts, Shayne; Simakov, Nikita; Davidson, Alan; Haub, John; Carter, Adrian

    2013-02-25

    We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.

  6. High-temperature laser annealing for thin film polycrystalline silicon solar cell on glass substrate

    Science.gov (United States)

    Chowdhury, A.; Schneider, J.; Dore, J.; Mermet, F.; Slaoui, A.

    2012-06-01

    Thin film polycrystalline silicon films grown on glass substrate were irradiated with an infrared continuous wave laser for defects annealing and/or dopants activation. The samples were uniformly scanned using an attachment with the laser system. Substrate temperature, scan speed and laser power were varied to find suitable laser annealing conditions. The Raman spectroscopy and Suns- V oc analysis were carried out to qualify the films quality after laser annealing. A maximum enhancement of the open circuit voltage V oc of about 100 mV is obtained after laser annealing of as-grown polysilicon structures. A strong correlation was found between the full width half maximum of the Si crystalline peak and V oc. It is interpreted as due to defects annealing as well as to dopants activation in the absorbing silicon layer. The maximum V oc reached is 485 mV after laser treatment and plasma hydrogenation, thanks to defects passivation.

  7. The quantum mechanical analysis of the free electron laser

    International Nuclear Information System (INIS)

    Dattoli, G.; Renieri, A.

    1985-01-01

    A quantum analysis of the Free Electron Laser is presented. The theory is developed both in single and longitudinal multimode regimes. Finally a self-consistent procedure to study the growth of the laser signal from the vacuum to the macroscopic level is presented

  8. High-efficiency free-electron-laser experiments

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Goldstein, J.C.; Hohla, K.L.; Newnam, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.

    1983-01-01

    Experiments with a tapered-wiggler free-electron laser have demonstrated extraction of about 3% of the energy from the electron beam and measured the corresponding optical emission. These results are in excellent agreement with theory and represent an order-of-magnitude improvement over all previous results

  9. XUV/VUV free-electron laser oscillator

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Newnam, B.E.; Cooper, R.K.; Comly, J.C. Jr.

    1984-04-01

    It is shown, from computations based on a detailed theoretical model, that modest improvements in electron beam and optical mirror technologies will enable a free-electron laser, driven by an rf linear accelerator, to operate in the 50 to 200-nm range of optical wavelengths. 10 references

  10. Through-transmission laser welding of glass fibre composite: Experimental light scattering identification

    Science.gov (United States)

    Cosson, Benoit; Asséko, André Chateau Akué; Dauphin, Myriam

    2018-05-01

    The purpose of this paper is to develop a cost-effective, efficient and quick to implement experimental optical method in order to predict the optical properties (extinction coefficient) of semi-transparent polymer composites. The extinction coefficient takes into account the effects due to the absorption and the scattering phenomena in a semi-transparent component during the laser processes, i.e. TTLW (through-transmission laser welding). The present method used a laser as light source and a reflex camera equipped with a macro lens as a measurement device and is based on the light transmission measurement through different thickness samples. The interaction between the incident laser beam and the semi-transparent composite is exanimated. The results are presented for the case of a semi-transparent composite reinforced with the unidirectional glass fiber (UD). A numerical method, ray tracing, is used to validate the experimental results. The ray tracing method is appropriate to characterize the light-scattering phenomenon in semi-transparent materials.

  11. Investigation of lead-iron-phosphate glass for SRP waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-10-01

    The search for a host solid for the immobilization of nuclear waste has focused on various vitreous waste forms. Recently, lead-iron-phosphate (LIP) glasses have been proposed for solidification of all types of HLLW. Investigation of this glass for vitrification of SRP waste demonstrated that the phosphate glass is incompatible with the current borosilicate glass technology. The durability of LIP glasses in deionized water was comparable to current borosilicate waste glass formulations, and the LIP glass has a low melt temperature. However, many of the defense waste constituents have low solubility in the phosphate melt, producing an inhomogeneous product. Also, the LIP melt is highly corrosive which prevents the use of current melter materials, in particular Inconel 690, and thus requires more exotic materials of construction such as platinum

  12. Initial alignment method for free space optics laser beam

    Science.gov (United States)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  13. Free-space QKD system hacking by wavelength control using an external laser.

    Science.gov (United States)

    Lee, Min Soo; Woo, Min Ki; Jung, Jisung; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2017-05-15

    We develop a way to hack free-space quantum key distribution (QKD) systems by changing the wavelength of the quantum signal laser using an external laser. Most free-space QKD systems use four distinct lasers for each polarization, thereby making the characteristics of each laser indistinguishable. We also discover a side-channel that can distinguish the lasers by using an external laser. Our hacking scheme identifies the lasers by automatically applying the external laser to each signal laser at different intensities and detecting the wavelength variation according to the amount of incident external laser power. We conduct a proof-of-principle experiment to verify the proposed hacking structure and confirm that the wavelength varies by several gigahertzes to several nanometers, depending on the intensity of the external laser. The risk of hacking is successfully proven through the experimental results. Methods for prevention are also suggested.

  14. Holographic wavefront characterization of a frequency-tripled high-peak-power neodymium:glass laser

    International Nuclear Information System (INIS)

    Kessler, T.J.

    1984-01-01

    Near-field amplitude and phase distributions from a high-peak-power, frequency converted Nd:glass laser (lambda = 351 nm) have been holographically recorded on silver-halide emulsions. Conventionally, the absence of a suitable reference beam forces one to use some type of shearing interferometry to obtain phasefront information, while the near-field and far-field distributions are recorded as intensity profiles. In this study, a spatially filtered, locally generated reference beam was created to holographically store the complex amplitude distribution of the pulsed laser beam, while reconstruction of the original wavefront was achieved with a continuous-wave laser. Reconstructed near-field and quasi-far-field intensity distributions closely resembled those obtained from conventional techniques, and accurate phasefront reconstruction was achieved. Furthermore, several two-beam interferometric techniques, not practicable with a high-peak-power laser, have been successfully implemented on a continuous-wave reconstruction of the pulsed laser beam. 46 refs., 40 figs., 1 tab

  15. Use of 1540nm fractionated erbium:glass laser for split skin graft resurfacing: a case study.

    Science.gov (United States)

    Narinesingh, S; Lewis, S; Nayak, B S

    2013-09-01

    The field of laser skin resurfacing has evolved rapidly over the past two decades from ablative lasers, to nonablative systems using near-infrared, intense-pulsed light and radio-frequency systems, and most recently fractional laser resurfacing. Although fractional thermolysis is still in its infancy, its efficacy in in the treatment of skin disorders have been clearly demonstrated. Here we present a case report on the safety and efficacy of a 1540nm erbium:glass laser in the treatment of the waffle pattern of a meshed skin graft in a 38-year-old patient with type V skin in the Caribbean.

  16. Evaluation of a Novel Temperature Sensing Probe for Monitoring and Controlling Glass Temperature in a Joule-Heated Glass Melter

    International Nuclear Information System (INIS)

    Watkins, A. D.; Musick, C. A.; Cannon, C.; Carlson, N. M.; Mullenix, P.D.; Tillotson, R. D.

    1999-01-01

    A self-verifying temperature sensor that employs advanced contact thermocouple probe technology was tested in a laboratory-scale, joule-heated, refractory-lined glass melter used for radioactive waste vitrification. The novel temperature probe monitors melt temperature at any given level of the melt chamber. The data acquisition system provides the real-time temperature for molten glass. Test results indicate that the self-verifying sensor is more accurate and reliable than classic platinum/rhodium thermocouple and sheath assemblies. The results of this test are reported as well as enhancements being made to the temperature probe. To obtain more reliable temperature measurements of the molten glass for improving production efficiency and ensuring consistent glass properties, optical sensing was reviewed for application in a high temperature environment

  17. Free Electron Laser Induced Forward Transfer Method of Biomaterial for Marking

    Science.gov (United States)

    Suzuki, Kaoru

    Biomaterial, such as chitosan, poly lactic acid, etc., containing fluorescence agent was deposited onto biology hard tissue, such as teeth, fingernail of dog or cat, or sapphire substrate by free electron laser induced forward transfer method for direct write marking. Spin-coated biomaterial with fluorescence agent of rhodamin-6G or zinc phthalochyamine target on sapphire plate was ablated by free electron laser (resonance absorption wavelength of biomaterial : 3380 nm). The influence of the spin-coating film-forming temperature on hardness and adhesion strength of biomaterial is particularly studied. Effect of resonance excitation of biomaterial target by turning free electron laser was discussed to damage of biomaterial, rhodamin-6G or zinc phtarochyamine for direct write marking

  18. Aerosol Imaging with a Soft X-ray Free Electron Laser

    International Nuclear Information System (INIS)

    Bogan, Michael J.; Boutet, Sebastien; Chapman, Henry N.; Marchesini, Stefano; Barty, Anton; Benner, W. Henry; Rohner, Urs; Frank, Matthias; Hau-Riege, Stefan P.; Bajt, Sasa; Woods, Bruce; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; Schulz, Joachim

    2010-01-01

    Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10 12 photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

  19. Beamline for X-ray Free Electron Laser of SACLA

    International Nuclear Information System (INIS)

    Tono, K; Togashi, T; Ohashi, H; Kimura, H; Takahashi, S; Takeshita, K; Tomizawa, H; Goto, S; Inubushi, Y; Sato, T; Yabashi, M

    2013-01-01

    A beamline for X-ray free electron laser (XFEL) has been developed at SACLA, SPring-8 Angstrom Compact free electron LAser. The beamline delivers and diagnoses an XFEL beam without degrading the beam quality. The transport optics are applicable in the range of 4–30 keV with a double-crystal monochromator or 4–15 keV with either of two double-mirror systems. A photon diagnostic system of the beamline monitors intensity, photon energy, center-of-mass position, and spatial profile in shot-by-shot and non-destructive manners.

  20. The free electron laser: a system capable of determining the gold standard in laser vision correction

    International Nuclear Information System (INIS)

    Fowler, W. Craig; Rose, John G.; Chang, Daniel H.; Proia, Alan D.

    1999-01-01

    Introduction. In laser vision correction surgery, lasers are generally utilized based on their beam-tissue interactions and corneal absorption characteristics. Therefore, the free electron laser, with its ability to provide broad wavelength tunability, is a unique research tool for investigating wavelengths of possible corneal ablation. Methods. Mark III free electron laser wavelengths between 2.94 and 6.7 μm were delivered in serial 0.1 μm intervals to corneas of freshly enucleated porcine globes. Collateral damage, ablation depth, and ablation diameter were measured in histologic sections. Results. The least collateral damage (12-13 μm) was demonstrated at three wavelengths: 6.0, 6.1 (amide I), and 6.3 μm. Minimal collateral damage (15 μm) was noted at 2.94 μm (OH-stretch) and at 6.2 μm. Slightly greater collateral damage was noted at 6.45 μm (amide II), as well as at the 5.5-5.7 μm range, but this was still substantially less than the collateral damage noted at the other wavelengths tested. Conclusions. Our results suggest that select mid-infrared wavelengths have potential for keratorefractive surgery and warrant additional study. Further, the free electron laser's ability to allow parameter adjustment in the far-ultraviolet spectrum may provide unprecedented insights toward establishing the gold-standard parameters for laser vision correction surgery

  1. High Performance Platinum Group Metal Free Membrane Electrode Assemblies through Control of Interfacial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Katherine [Proton Energy Systems, Wallingford, CT (United States); Capuano, Christopher [Proton Energy Systems, Wallingford, CT (United States); Atanassov, Plamen [Univ. of New Mexico, Albuquerque, NM (United States); Mukerjee, Sanjeev [Northeastern Univ., Boston, MA (United States); Hickner, Michael [Pennsylvania State Univ., University Park, PA (United States)

    2017-11-29

    The quantitative goal of this project was to produce a high-performance anion exchange membrane water electrolyzer (AEM-WE) completely free of platinum group metals (PGMs), which could operate for at least 500 hours with less than 50 microV/hour degradation, at 500 mA/cm2. To achieve this goal, work focused on the optimization of electrocatalyst conductivity, with dispersion and utilization in the membrane electrode assembly (MEA) improved through refinement of deposition techniques. Critical factors were also explored with significant work undertaken by Northeastern University to further understand catalyst-membrane-ionomer interfaces and how they differ from liquid electrolyte. Water management and optimal cell operational parameters were established through the design, fabrication, and test of a new test station at Proton specific for AEM evaluation. Additionally, AEM material stability and robustness at high potentials and gas evolution conditions were advanced at Penn State.

  2. Free electron laser as a fusion driver

    International Nuclear Information System (INIS)

    Prosnitz, D.; Schlitt, L.

    1981-01-01

    The Free Electron Laser (FEL) is shown to be a potentially attractive solution to the problem of finding a suitable short wavelength fusion driver. The design of a 3 MJ, 250 nm FEL fusion driver is discussed

  3. The chirped-pulse inverse free-electron laser: A high-gradient vacuum laser accelerator

    International Nuclear Information System (INIS)

    Hartemann, F.V.; Landahl, E.C.; Troha, A.L.; Van Meter, J.R.; Baldis, H.A.; Freeman, R.R.; Luhmann, N.C. Jr.; Song, L.; Kerman, A.K.; Yu, D.U.

    1999-01-01

    The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. copyright 1999 American Institute of Physics

  4. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R

    2016-05-10

    One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Laser Setup for Volume Diffractive Optical Elements Recording in Photo-Thermo-Refractive Glass

    Science.gov (United States)

    2016-04-14

    Total Number: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Names of...3 1b 2 3 a b Fig. 14. Schematic of a DBR (a) and DFB (b) lasers in Yb doped PTR glass. 1a and 1b – dichroic beam splitters with HR at 1066 nm and HT

  6. Linac-driven XUV free-electron laser

    International Nuclear Information System (INIS)

    Newnam, B.E.; Goldstein, J.C.; Fraser, J.S.; Cooper, R.K.

    1983-01-01

    Use of an rf linear accelerator as the electron source for a free-electron laser operating in the extreme ultraviolet wavelength range from 100 nm to at least as low as 50 nm appears feasible. Peak and average power outputs of greater than 100 kW and 50W, respectively, are predicted

  7. Solvent extraction of platinum with thiobenzanilide. Separation of platinum from copper

    International Nuclear Information System (INIS)

    Shkil', A.N.; Zolotov, Yu.A.

    1989-01-01

    The solvent extraction of micro concentrations of platinum has been investigated from hydrochloric acid media using thiobenzanilide in the presence of SnCl 2 and KI. In the presence of SnCl 2 platinum is extracted rapidly and to significant completion. Conditions have been developed for the quantitative extraction of platinum. The authors have also examined the solvent extraction of copper(II) using thiobenzanilide, interference due to copper(II) and iron(III) on solvent extraction of platinum, and methods to suppress this interference. A procedure has also been developed for the separation of platinum from copper. Solvent extraction of metals was studied using radioactive isotopes: 197 Pt, 64 Cu, 59 Fe, 198 Au, 109 Pd, 110m Ag

  8. Second harmonic generation in Te crystal using free electron laser

    CERN Document Server

    Yamauchi, T; Minehara, E J

    2002-01-01

    The second harmonic generation signal converted from the fundamental wavelength of 22 mu m of a free electron laser was observed for the first time using a birefringent Te crystal. The experimental conversion efficiency of Te crystal for second harmonic generation is 0.53%, which is equivalent to the theoretical value within a factor of 2. The Te crystal has been incorporated into an autocorrelator system to measure the micro-pulse width of infrared free electron laser successfully. (author)

  9. The long-term effect of 1550 nm erbium:glass fractional laser in acne vulgaris.

    Science.gov (United States)

    Liu, Yale; Zeng, Weihui; Hu, Die; Jha, Smita; Ge, Qin; Geng, Songmei; Xiao, Shengxiang; Hu, Guanglei; Wang, Xiaoxiao

    2016-04-01

    We evaluated the short-term and long-term effects of the 1550 nm erbium:glass (Er:glass) fractional laser in the treatment of facial acne vulgaris. Forty-five (9 male and 36 female) acne patients were treated 4 times at 4-week intervals with the following parameters: 169 spot density and 15-30 mJ/cm(2) fluence. There was no control group. The laser spots were adjustable (maximum overlap: 20%) according to the treatment area, and delivered in rows in order to cover all the face. Clinical photographs were taken. The IGA scores and lesion counts were performed for each treatment. Their current state was obtained by phone call follow-up to determine the long-term effect and photographs were offered by themselves or taken in hospital. After four treatments, all patients had an obvious reduction of lesion counts and IGA score and the peak lesion counts decreased to 67.7% after the initial four treatment sessions. For long-term effect, 8 patients lost follow-up, hence 37 patients were followed-up. 8 patients were 2-year follow up, 27 at the 1-year follow-up, and all patients at the half-year follow-up. The mean percent reduction was 72% at the half-year follow-up, 79 at the 1-year follow-up and 75% at the 2-year follow-up. Side effects and complications were limited to transient erythema and edema, and few patients suffered from transient acne flare-ups and sensitivity. All patients responded that their skin was less prone to oiliness. In conclusion, acne can be successfully treated by 1550 nm Er:glass fractional laser, with few side effects and prolonged acne clearing.

  10. Treatment of burn scars in Fitzpatrick phototype III patients with a combination of pulsed dye laser and non-ablative fractional resurfacing 1550 nm erbium:glass/1927 nm thulium laser devices.

    Science.gov (United States)

    Tao, Joy; Champlain, Amanda; Weddington, Charles; Moy, Lauren; Tung, Rebecca

    2018-01-01

    Burn scars cause cosmetic disfigurement and psychosocial distress. We present two Fitzpatrick phototype (FP) III patients with burn scars successfully treated with combination pulsed dye laser (PDL) and non-ablative fractional lasers (NAFL). A 30-year-old, FP III woman with a history of a second-degree burn injury to the bilateral arms and legs affecting 30% body surface area (BSA) presented for cosmetic treatment. The patient received three treatments with 595 nm PDL (7 mm, 8 J, 6 ms), six with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and five with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). Treated burn scars improved significantly in thickness, texture and colour. A 33-year-old, FP III man with a history of a second-degree burn injury of the left neck and arm affecting 7% BSA presented for cosmetic treatment. The patient received two treatments with 595 nm PDL (5 mm, 7.5 J, 6 ms), four with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and two with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). The burn scars became thinner, smoother and more normal in pigmentation and appearance. Our patients' burn scars were treated with a combination of PDL and NAFL (two wavelengths). The PDL targets scar hypervascularity, the 1550 nm erbium:glass stimulates collagen remodelling and the 1927 nm thulium targets epidermal processes, particularly hyperpigmentation. This combination addresses scar thickness, texture and colour with a low side effect profile and is particularly advantageous in patients at higher risk of post-procedure hyperpigmentation. Our cases suggest the combination of 595nm PDL plus NAFL 1550 nm erbium:glass/1927 nm thulium device is effective and well-tolerated for burn scar treatment in skin of colour.

  11. Eu2+-doped OH− free calcium aluminosilicate glass: A phosphor for smart lighting

    International Nuclear Information System (INIS)

    Lima, S.M.; Andrade, L.H.C.; Rocha, A.C.P.; Silva, J.R.; Farias, A.M.; Medina, A.N.; Baesso, M.L.; Nunes, L.A.O.; Guyot, Y.; Boulon, G.

    2013-01-01

    In this paper, a broad emission band from Eu 2+ -doped OH − free calcium aluminosilicate glass is reported. By changing the excitation wavelengths, the results showed it is possible to tune the emission from green to orange, what combined with the scattered light from the same blue LED used for excitation, provided a color rendering index of 71 and a correlated color temperature of 6550 K. Our preliminary tests indicate this material as a promising phosphor towards the development of smart lighting devices. -- Highlights: • We report a broad emission band from Eu 2+ -doped OH − free calcium aluminosilicate glass. • The maximum emission peak can be tune from green to orange region. • The test with a LED provided a color rendering index of 71 and a correlated color temperature of 6550 K

  12. Femtosecond versus picosecond laser pulses for film-free laser bioprinting.

    Science.gov (United States)

    Petit, Stephane; Kérourédan, Olivia; Devillard, Raphael; Cormier, Eric

    2017-11-01

    We investigate the properties of microjets in the context of film-free laser induced forward transfer in the femtosecond and picosecond regimes. The influence of the pulse duration (ranging from 0.4 to 12 ps) and the energy (ranging from 6 to 12 μJ) is systematically studied on the height, diameter, speed, volume, and shape of the jets. The 400 fs pulses generate thin and stable jets compatible with bioprinting, while 14 ps pulses generate more unstable jets. A pulse duration around 8 ps seems, therefore, to be an interesting trade-off to cover many bio-applications of microjets generated by lasers.

  13. Microfabrication in free-standing gallium nitride using UV laser micromachining

    International Nuclear Information System (INIS)

    Gu, E.; Howard, H.; Conneely, A.; O'Connor, G.M.; Illy, E.K.; Knowles, M.R.H.; Edwards, P.R.; Martin, R.W.; Watson, I.M.; Dawson, M.D.

    2006-01-01

    Gallium nitride (GaN) and related alloys are important semiconductor materials for fabricating novel photonic devices such as ultraviolet (UV) light-emitting diodes (LEDs) and vertical cavity surface-emitting lasers (VCSELs). Recent technical advances have made free-standing GaN substrates available and affordable. However, these materials are strongly resistant to wet chemical etching and also, low etch rates restrict the use of dry etching. Thus, to develop alternative high-resolution processing for these materials is increasingly important. In this paper, we report the fabrication of microstructures in free-standing GaN using pulsed UV lasers. An effective method was first developed to remove the re-deposited materials due to the laser machining. In order to achieve controllable machining and high resolution in GaN, machining parameters were carefully optimised. Under the optimised conditions, precision features such as holes (through holes, blind or tapered holes) on a tens of micrometer length scale have been machined. To fabricate micro-trenches in GaN with vertical sidewalls and a flat bottom, different process strategies of laser machining were tested and optimised. Using this technique, we have successfully fabricated high-quality micro-trenches in free-standing GaN with various widths and depths. The approach combining UV laser micromachining and other processes is also discussed. Our results demonstrate that the pulsed UV laser is a powerful tool for fabricating precision microstructures and devices in gallium nitride

  14. Calibration-free laser-induced breakdown spectroscopy for ...

    Indian Academy of Sciences (India)

    journal of. August 2012 physics pp. 299–310. Calibration-free laser-induced ... for quantitative analysis of materials, illustrated by CF-LIBS applied to a ..... The authors are thankful to BRNS, DAE, Govt. of India for the financial support provided.

  15. Striation-free fibre laser cutting of mild steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Sobih, M.; Crouse, P.L.; Li, L. [University of Manchester, Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, Sackville Street Building, P.O. Box 88, Manchester (United Kingdom)

    2008-01-15

    High-power laser cutting is extensively used in many industrial applications. An important weakness of this process is the formation of striations, i.e. regular lines on the cut surface, which lowers the quality of the surfaces produced. The elimination of striation formation is thus of considerable importance, since it could open a variety of novel high-precision applications. This study presents the initial results of a laser cutting study using a 1 kW single-mode fibre laser, a relative newcomer in the field of laser metal cutting. Striation-free laser cuts are demonstrated when cutting 1 mm thick mild steel sheets. (orig.)

  16. Engineering of refractive index in sulfide chalcogenide glass by direct laser writing

    KAUST Repository

    Zhang, Yaping

    2010-01-01

    Arsenic trisulfide (As2S3) glass is an interesting material for photonic integrated circuits (PICs) as infrared (IR) or nonlinear optical components. In this paper, direct laser writing was applied to engineer the refractive index of As2S3 thin film. Film samples were exposed to focused above bandgap light with wavelength at 405 nm using different fluence adjusted by laser power and exposure time. The index of refraction before and after laser irradiation was calculated by fitting the experimental data obtained from Spectroscopic Ellipsometer (SE) measurement to Tauc-Lorenz dispersion formula. A positive change in refractive index (Δn = 0.19 at 1.55 μm) as well as an enhancement in anisotropy was achieved in As2S3 film by using 10 mW, 0.3 μs laser irradiation. With further increasing the fluence, refractive index increased while anisotropic property weakened. Due to the rapid and large photo-induced modification of refractive index obtainable with high spatial resolution, this process is promising for integrated optic device fabrication.

  17. Pulse propagation in tapered wiggler free electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered wiggler devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristcs are presented and are found to change considerably over this range

  18. Highly coherent free-running dual-comb chip platform.

    Science.gov (United States)

    Hébert, Nicolas Bourbeau; Lancaster, David G; Michaud-Belleau, Vincent; Chen, George Y; Genest, Jérôme

    2018-04-15

    We characterize the frequency noise performance of a free-running dual-comb source based on an erbium-doped glass chip running two adjacent mode-locked waveguide lasers. This compact laser platform, contained only in a 1.2 L volume, rejects common-mode environmental noise by 20 dB thanks to the proximity of the two laser cavities. Furthermore, it displays a remarkably low mutual frequency noise floor around 10  Hz 2 /Hz, which is enabled by its large-mode-area waveguides and low Kerr nonlinearity. As a result, it reaches a free-running mutual coherence time of 1 s since mode-resolved dual-comb spectra are generated even on this time scale. This design greatly simplifies dual-comb interferometers by enabling mode-resolved measurements without any phase lock.

  19. Free-electron laser system with Raman amplifier outcoupling

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.

    1988-05-03

    A free-electron laser system is described comprising: a free-electron laser pump beam generator producing a high-power optical output beam in a vacuum environement; a Raman amplifier cell located in the path of the output beam from the pump beam generator; means for generating and introducing a Stokes seed beam into the Raman amplifier cell, a pair of gaseous windows through which the output beam enters and leaves the Raman amplifier cell, each window having a stream of gas moving continuously in a direction generally perpendicular to the beam; and a mirror positioned in the path of the output beam from the Raman amplifier, the mirror functioning to reflect and further direct the output beam, but not the unwanted spectral components.

  20. On the enzymatic formation of platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Govender, Y.; Riddin, T. L. [Rhodes University, Department of Biochemistry, Microbiology and Biotechnology (South Africa); Gericke, M. [MINTEK (South Africa); Whiteley, C. G., E-mail: C.Whiteley@ru.ac.z [Rhodes University, Department of Biochemistry, Microbiology and Biotechnology (South Africa)

    2010-01-15

    A dimeric hydrogenase enzyme (44.5 and 39.4 kDa sub units) was isolated in a 39.5% yield from the fungus Fusarium oxysporum and purified 4.64-fold by ion exchange chromatography on Sephacryl S-200. Characterisation of the enzyme afforded pH and temperature optima of 7.5 and 38 {sup o}C, respectively, a half-life stability of 36 min and a V{sub max} and K{sub m} of 3.57 nmol min{sup -1} mL{sup -1} and 2.25 mM, respectively. This enzyme was inhibited (non-competitively) by hydrogen hexachloroplatinic acid (H{sub 2}PtCl{sub 6}) at 1 or 2 mM with a K{sub i} value of 118 {mu}M. Incubation of the platinum salt with the pure enzyme under an atmosphere of hydrogen and optimum enzyme conditions (pH 7.5, 38 {sup o}C) afforded <10% bioreduction after 8 h while at conditions suitable for platinum nanoparticle formation (pH 9, 65 {sup o}C) over 90% reduction took place after the same length of time. Cell-free extract from the fungal isolates produced nearly 90% bioreduction of the platinum salt under both pH and temperature conditions. The bioreduction of the platinum salt by a hydrogenase enzyme takes place by a passive process and not an active one as previously understood.

  1. Fabrication of polycrystalline silicon thin films on glass substrates using fiber laser crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Dao, Vinh Ai; Han, Kuymin; Heo, Jongkyu; Kyeong, Dohyeon; Kim, Jaehong; Lee, Youngseok; Kim, Yongkuk; Jung, Sungwook; Kim, Kyunghae [Information and Communication Device Laboratory, School of Information and Communication Engineering, Sungkyunkwan University (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.k [Information and Communication Device Laboratory, School of Information and Communication Engineering, Sungkyunkwan University (Korea, Republic of)

    2009-05-29

    Laser crystallization of amorphous silicon (a-Si), using a fiber laser of {lambda} = 1064 nm wavelength, was investigated. a-Si films with 50 nm thickness deposited on glass were prepared by a plasma enhanced chemical vapor deposition. The infrared fundamental wave ({lambda} = 1064 nm) is not absorbed by amorphous silicon (a-Si) films. Thus, different types of capping layers (a-CeO{sub x}, a-SiN{sub x}, and a-SiO{sub x}) with a desired refractive index, n and thickness, d were deposited on the a-Si surface. Crystallization was a function of laser energy density, and was performed using a fiber laser. The structural properties of the crystallized films were measured via Raman spectra, a scanning electron microscope (SEM), and an atomic force microscope (AFM). The relationship between film transmittance and crystallinity was discussed. As the laser energy density increased from 10-40 W, crystallinity increased from 0-90%. However, the higher laser density adversely affected surface roughness and uniformity of the grain size. We found that favorable crystallization and uniformity could be accomplished at the lower energy density of 30 W with a-SiO{sub x} as the capping layer.

  2. Properties of optical breakdown in BK7 glass induced by an extended-cavity femtosecond laser oscillator.

    Science.gov (United States)

    Do, Binh T; Phillips, Mark C; Miller, Paul A; Kimmel, Mark W; Britsch, Justin; Cho, Seong-Ho

    2009-02-16

    Using an extended-cavity femtosecond oscillator, we investigated optical breakdown in BK7 glass caused by the accumulated action of many laser pulses. By using a pump-probe experiment and collecting the transmitted pump along with the reflected pump and the broadband light generated by the optical breakdown, we measured the build-up time to optical breakdown as a function of the pulse energy, and we also observed the instability of the plasma due to the effect of defocusing and shielding created by the electron gas. The spectrum of the broadband light emitted by the optical breakdown and the origin of the material modification in BK7 glass was studied. We developed a simple model of electromagnetic wave propagation in plasma that is consistent with the observed behavior of the reflection, absorption, and transmission of the laser light.

  3. Plasmonic laser printing for ink-free color decoration

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil

    2016-01-01

    Here we show a method of color printing on nanoimprinted plasmonic metasurfaces [1] using laser post-writing. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures [2]. This leads to melting and reshaping of the imprinted 20nm Al...... also be used on a larger scale to personify products such as mobile phones with unique decorations, names, etc‥ This laser technology may create environmentally sound color printing solutions and simplify the production for consumer products....... structures embedded in plastics. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different color appearances can be created. Color printing by this technology has several advantages over dye technology: ink/toner-free, sub...

  4. Investigation on Er{sup 3+}/Ho{sup 3+} co-doped silicate glass for ~2 µm fiber lasers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueqiang; Huang, Feifei; Cheng, Jimeng; Fan, Xiaokang; Gao, Song [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Science, Beijing 100039 (China); Zhang, Junjie [College of Materials Science and Technology, China Jiliang University, Hangzhou 310018 (China); Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Danping, E-mail: dpchen2008@aliyun.com [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-06-15

    A stable Er{sup 3+}/Ho{sup 3+} co-doped lead silicate glass is developed. Luminescent properties are recorded under pumping with 808 and 1550 nm lasers. Energy-transfer mechanism and efficiency are analyzed. Energy-transfer efficiency from Er{sup 3+}:{sup 4}I{sub 13/2} to Ho{sup 3+}:{sup 5}I{sub 7} reaches 93.8% at 3 mol% Ho{sub 2}O{sub 3} doping concentration. Strong luminescence is detected when pumped at 1550 nm because of efficient energy transfer from Er{sup 3+}:{sup 4}I{sub 13/2} to Ho{sup 3+}:{sup 5}I{sub 7}. Peak gain coefficient at 2056 nm is detected as 1.62 cm{sup −1}. The excellent luminescent property and high stability indicate that Er{sup 3+}/Ho{sup 3+} co-doped lead silicate glass can be applied in 2 µm fiber lasers. - Highlights: • Er{sup 3+}/Ho{sup 3+} co-doped silicate glasses with high stability are prepared. • Strong luminescence is detected under pump of 1550 nm lasers owing to efficient energy transfer from Er{sup 3+} to Ho{sup 3+}. • Transfer efficiency is calculated to be 93.8% when Ho{sub 2}O{sub 3} doping concentration is up to 3 mol%. • Gain coefficient peaks at 2056 nm to be 1.62 cm{sup −1}.

  5. Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses

    International Nuclear Information System (INIS)

    Caird, J.A.; Ramponi, A.J.; Staver, P.R.

    1991-01-01

    Radiometrically calibrated spectroscopic techniques employing an integrating-sphere detection system have been used to determine the fluorescence quantum efficiencies for two commercially available Nd 3+ -doped phosphate laser glasses, LG-750 and LG-760. Quantum efficiencies and fluorescence lifetimes were measured for samples with various neodymium concentrations. It is shown that the effects of concentration quenching are accurately described when both resonant nonradiative excitation hopping (the Burshtein model) and annihilation by cross relaxation are accounted for by Foerster--Dexter dipole--dipole energy-transfer theory. The Foerster--Dexter critical range for nonradiative excitation hopping was found to be R DD =11 A, while the critical range for cross relaxation was close to R DA =4 A in these glasses. The quantum efficiency at low Nd 3+ concentrations was (92±5)%, implying a nonradiative relaxation rate of 210±150 s -1 for isolated ions. Improved values for the radiative lifetimes and the stimulated emission cross sections for these glasses were also deduced from the measurements

  6. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-01-01

    We discuss the design and current status of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, VUV pulses driven by a high-current, GeV electron beam from the existing Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few cm. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing to the high current ( and 10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 1013 photons/pulse. Devices based both on SASE and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered

  7. ZrCuAl Bulk Metallic Glass spall induced by laser shock

    Science.gov (United States)

    Jodar, Benjamin; Loison, Didier; Yokoyama, Yoshihiko; Lescoute, Emilien; Berthe, Laurent; Sangleboeuf, Jean-Christophe

    2017-06-01

    To face High Velocity Impacts, the aerospace industry is always seeking for innovative materials usable as debris shielding components. Bulk Metallic Glasses (BMG) revealed interesting mechanical properties in case of static and quasi-static loading conditions: high elasticity, high tenacity, low density and high fracture threshold... The department of Mechanics and Glass of the Institut of Physics Rennes conducted on the ELFIE facility, laser shock experiments to study the behavior of a ternary ZrCuAl BMG under high strain rate, up-to fragmentation process. On the one hand, in-situ diagnostics were used to measure ejection velocities with PDV and debris morphologies were observed by Shadowgraphy. On the other hand, spalled areas (dimensions and features) were characterized through post-mortem analysis (optical observations, profilometry and SEM). These results are compared to experimental and numerical data on the crystalline forms of the ZrCuAl basic compounds.

  8. Research on high performance mirrors for free electron lasers

    International Nuclear Information System (INIS)

    Kitatani, Fumito

    1996-01-01

    For the stable functioning of free electron laser, high performance optical elements are required because of its characteristics. In particular in short wavelength free electron laser, since its gain is low, the optical elements having very high reflectivity are required. Also in free electron laser, since high energy noise light exists, the optical elements must have high optical breaking strength. At present in Power Reactor and Nuclear Fuel Development Corporation, the research for heightening the performance of dielectric multi-layer film elements for short wavelength is carried out. For manufacturing such high performance elements, it is necessary to develop the new materials for vapor deposition, new vapor deposition process, and the techniques of accurate substrate polishing and inspection. As the material that satisfies the requirements, there is diamond-like carbon (DLC) film, of which the properties are explained. As for the manufacture of the DLC films for short wavelength optics, the test equipment for forming the DLC films, the test of forming the DLC films, the change of the film quality due to gas conditions, discharge conditions and substrate materials, and the measurement of the optical breaking strength are reported. (K.I.)

  9. Assessment and forensic application of laser-induced breakdown spectroscopy (LIBS) for the discrimination of Australian window glass.

    Science.gov (United States)

    El-Deftar, Moteaa M; Speers, Naomi; Eggins, Stephen; Foster, Simon; Robertson, James; Lennard, Chris

    2014-08-01

    A commercially available laser-induced breakdown spectroscopy (LIBS) instrument was evaluated for the determination of elemental composition of twenty Australian window glass samples, consisting of 14 laminated samples and 6 non-laminated samples (or not otherwise specified) collected from broken windows at crime scenes. In this study, the LIBS figures of merit were assessed in terms of accuracy, limits of detection and precision using three standard reference materials (NIST 610, 612, and 1831). The discrimination potential of LIBS was compared to that obtained using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray microfluorescence spectroscopy (μXRF) and scanning electron microscopy energy dispersive X-ray spectrometry (SEM-EDX) for the analysis of architectural window glass samples collected from crime scenes in the Canberra region, Australia. Pairwise comparisons were performed using a three-sigma rule, two-way ANOVA and Tukey's HSD test at 95% confidence limit in order to investigate the discrimination power for window glass analysis. The results show that the elemental analysis of glass by LIBS provides a discrimination power greater than 97% (>98% when combined with refractive index data), which was comparable to the discrimination powers obtained by LA-ICP-MS and μXRF. These results indicate that LIBS is a feasible alternative to the more expensive LA-ICP-MS and μXRF options for the routine forensic analysis of window glass samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Transient regimes during high-temperature deformation of a bulk metallic glass: A free volume approach

    International Nuclear Information System (INIS)

    Bletry, M.; Guyot, P.; Brechet, Y.; Blandin, J.J.; Soubeyroux, J.L.

    2007-01-01

    The homogeneous deformation of a zirconium-based bulk metallic glass is investigated in the glass transition range. Compression and stress-relaxation tests have been conducted. The stress-strain curves are modeled in the framework of the free volume theory, including transient phenomena (overshoot and undershoot). This approach allows several physical parameters (activation volume, flow defect creation and relaxation coefficient) to be determined from a mechanical experiment. This model is able to rationalize the dependency of stress overshoot on relaxation time. It is shown that, due to the relationship between flow defect concentration and free volume model, it is impossible to determine the equilibrium flow defect concentration. However, the relative variation of flow defect is always the same, and all the model parameters depend on the equilibrium flow defect concentration. The methodology presented in this paper should, in the future, allow the consistency of the free volume model to be assessed

  11. Morphology and orientation of β-BaB{sub 2}O{sub 4} crystals patterned by laser in the inside of samarium barium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, Akihito; Shinozaki, Kenji; Honma, Tsuyoshi; Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp

    2015-01-15

    Nonlinear optical β-BaB{sub 2}O{sub 4} crystal lines (β-BBO) were patterned in the inside of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by irradiations of continuous-wave Yb:YVO{sub 4} lasers with a wavelength of 1080 nm (power: P=0.8–1.0 W, scanning speed: S=0.2–2.5 μm/s), in which the laser focal position was moved gradually from the surface to the inside. The morphology, size, and orientation of β-BBO crystals were examined from polarization optical microscope and birefringence imaging observations. It was demonstrated that c-axis oriented β-BBO crystals with long lengths (e.g., 20 mm) were patterned in the inside of the glass. The morphology of β-BBO in the cross-section of lines was a rectangular shape with rounded corners, and the volume of β-BBO formed increased with increasing laser power and with decreasing laser scanning speed. The maximum depth in the inside from the surface for β-BBO patterning increased with increasing laser power, e.g., D{sub max}∼100 μm at P=0.8 W, D{sub max}∼170 μm at P=0.9 W, and D{sub max}∼200 μm at P=1 W. The present study proposes that the laser-induced crystallization opens a new door for applied engineering in glassy solids. - Graphical abstract: This figure shows the POM photographs for β-BaB{sub 2}O{sub 4} crystal lines patterned by cw Yb:YVO{sub 4} fiber laser irradiations with a laser power of P=0.8 W and a laser scanning speed S=2 μm/s in the glass. The laser focal point was moved gradually from the surface into the inside. The results shown in Fig. 1 demonstrate that it is possible to pattern highly oriented β-BaB{sub 2}O{sub 4} crystals even in the inside of glasses. - Highlights: • β-BaB{sub 2}O{sub 4} crystal lines were patterned in the inside of a glass by lasers. • Laser focal position was moved gradually from the surface to the inside. • Birefringence imaging was observed. • Morphology, size, and orientation of crystals were clarified. • Crystal lines with long lengths

  12. Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass

    Science.gov (United States)

    Almeida, Gustavo F. B.; Almeida, Juliana M. P.; Martins, Renato J.; De Boni, Leonardo; Arnold, Craig B.; Mendonca, Cleber R.

    2018-01-01

    The development of advanced photonics devices requires materials with large optical nonlinearities, fast response times and high optical transparency, while at the same time allowing for the micro/nano-processing needed for integrated photonics. In this context, glasses have been receiving considerable attention given their relevant optical properties which can be specifically tailored by compositional control. Corning Gorilla® Glass (strengthened alkali aluminosilicate glass) is well-known for its use as a protective screen in mobile devices, and has attracted interest as a potential candidate for optical devices. Therefore, it is crucial not only to expand the knowledge on the fabrication of waveguides in Gorilla Glass under different regimes, but also to determine its nonlinear optical response, both using fs-laser pulses. Thus, this paper reports, for the first time, characterization of the third-order optical nonlinearities of Gorilla Glass, as well as linear and nonlinear characterization of waveguide written with femtosecond pulses under the low repetition rate regime (1 kHz).

  13. Research on heightening of performance of optical system for free electron laser

    International Nuclear Information System (INIS)

    Kumagai, Hiroshi; Kawamura, Yoshiyuki; Toyada, Koichi

    1996-01-01

    Free electron laser will become in future the center of industrial laser technology as a high efficiency, high power output laser. For the development of free electron laser, the development of the elementary technologies such as accelerator, wiggler, optical system and so on must be carried out. For the stable functioning of free electron laser for long hours, the innovative technical development of the optical technology has been strongly desired. In this research, the development of the method of manufacturing a new high performance, multilayer film reflection mirror and the research on compound optical damage by new high energy photon generation process were advanced. The research on the formation of aluminum oxide thin films by using surface reaction, the development of the technology for forming high accuracy, multi-layer thin films and the evaluation of the optical performance of multi-layer films are reported. The constitution of compound optical damage evaluation system, the calculation of the luminance of high energy photons and the experiment on the generation of photons by a carbon dioxide gas laser are described regarding the compound optical damage research. (K.I.)

  14. Platinum metals in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Zereini, Fathi [Frankfurt Univ. (Germany). Dept. of Environmental Analytical Chemistry; Wiseman, Clare L.S. (ed.) [Toronto Univ. (Canada). School of the Environment

    2015-03-01

    This book contains the five chapters with the following topics: 1. SOURCES OF PGE EMISSIONS ELEMENTS: Sources of Platinum Group Elements (PGE) in the Environment; Impact of Platinum Group Element Emissions from Mining and Production Activities. 2. ANALYTICAL METHODS FOR THE DETERMINATION OF PGE IN BIOLOGICAL AND ENVIRONMENTAL MATRICES: Appraisal of Biosorption for Recovery, Separation and Determination of Platinum, Palladium and Rhodium in Environmental Samples; On the Underestimated Factors Influencing the Accuracy of Determination of Pt and Pd by Electrothermal Atomic Absorption Spectrometry in Road Dust Samples; Application of Solid Sorbents for Enrichment and Separation of Platinum Metal Ions; Voltammetric Analysis of Platinum in Environmental Matrices; Speciation Analysis of Chloroplatinates; Analysis of Platinum Group Elements in Environmental Samples: A Review. 3. OCCURRENCE, CHEMICAL BEHAVIOR AND FATE OF PGE IN THE ENVIRONMENT: Brazilian PGE Research Data Survey on Urban and Roadside Soils; Platinum, Palladium and Rhodium in a Bavarian Roadside Soil; Increase of Platinum Group Element Concentrations in Soils and Airborne Dust During the Period of Vehicular Exhaust Catalysts Introduction; Platinum-Group Elements in Urban Fluvial Bed Sediments-Hawaii; Long-Term Monitoring of Palladium and Platinum Contents in Road Dust of the City of Munich, Germany; Characterization of PGEs and Other Elements in Road Dusts and Airborne Particles in Houston, Texas; Accumulation and Distribution of Pt and Pd in Roadside Dust, Soil and Vegetation in Bulgaria; Increase of the Environmental Pt Concentration in the Metropolitan Area of Mexico City Associated to the Use of Automobile Catalytic Converters; Solubility of Emitted Platinum Group Elements (Pt, Pd and Rh) in Airborne Particulate Matter (PM10) in the Presence of Organic Complexing Agents; The Influence of Anionic Species (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}) on the Transformation and Solubility of Platinum in

  15. Los Alamos advanced free-electron laser

    Science.gov (United States)

    Chan, K. C. D.; Kraus, R. H.; Ledford, J.; Meier, K. L.; Meyer, R. E.; Nguyen, D.; Sheffield, R. L.; Sigler, F. L.; Young, L. M.; Wang, T. S.; Wilson, W. L.; Wood, R. L.

    1992-07-01

    Los Alamos researchers are building a free-electron laser (FEL) for industrial, medical, and research applications. This FEL, which will incorporate many of the new technologies developed over the last decade, will be compact, robust, and user-friendly. Electrons produced by a photocathode will be accelerated to 20 MeV by a high-brightness accelerator and transported by permanent-magnet quadrupoles and dipoles. The resulting electron beam will have an excellent instantaneous beam quality of 10πmm mrad in transverse emittance and 0.3% in energy spread at a peak current up to 300 A. Including operation at higher harmonics, the laser wavelength extends from 3.7 μm to 0.4 μm.

  16. Design of a compact application-oriented free-electron laser

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Meier, K.; Nguyen, D.; Sheffield, R.; Wang, T.S.; Warren, R.W.; Wilson, W.; Young, L.M.

    1992-01-01

    The goal of the Advanced Free-Electron Laser Project at the Los Alamos National Laboratory is to demonstrate that a free-electron laser (FEL) suitable for industrial, medical, and research applications can be built. This FEL system should be efficient, compact, robust, and user-friendly. To achieve this goal, we have incorporated advanced components presently available. Electrons produced by a photoelectron source are accelerated to 20 MeV by a high-brightness accelerator. They are transported by an emittance-preserving beamline with permanent-magnet quadrupoles and dipoles. The electron beam has excellent instantaneous beam quality better than: 2.5 π mm mrad in transverse emittance and 0.3% in energy spread at a Peak current up to 310 A. It is used to excite a FEL oscillator with a pulsed-current microwiggler. Including operation at higher harmonics, the laser wavelength extends from 3.7 μm to 0.4 μm

  17. Design of a compact application-oriented free-electron laser

    Science.gov (United States)

    Chan, K. C. D.; Meier, K.; Nguyen, D.; Sheffield, R.; Wang, T. S.; Warren, R. W.; Wilson, W.; Young, L. M.

    The goal of the Advanced Free-Electron Laser Project at the Los Alamos National Laboratory is to demonstrate that a free-electron laser (FEL) suitable for industrial, medical, and research applications can be built. This FEL system should be efficient, compact, robust, and user-friendly. To achieve this goal, we have incorporated advanced components presently available. Electrons produced by a photoelectron source are accelerated to 20 MeV by a high-brightness accelerator. They are transported by an emittance-preserving beamline with permanent-magnet quadrupoles and dipoles. The electron beam has excellent instantaneous beam quality better than: 2.5 (pi) mm mrad in transverse emittance and 0.3 percent in energy spread at a Peak current up to 310 A. It is used to excite a FEL oscillator with a pulsed-current microwiggler. Including operation at higher harmonics, the laser wavelength extends from 3.7 to 0.4 microns.

  18. Photosensitivity of the Er/Yb-Codoped Schott IOG1 Phosphate Glass Using 248 nm, Femtosecond, and Picosecond Laser Radiation

    International Nuclear Information System (INIS)

    Pissadakis, S.; Michelakaki, I.

    2009-01-01

    The effect of 248 nm laser radiation, with pulse duration of 5 picoseconds, 500 femtosecond, and 120 femtosecond, on the optical properties and the Knoop hardness of a commercial Er/Yb-codoped phosphate glass is presented here. Refractive index changes of the order of few parts of 10-4 are correlated with optical absorption centers induced in the glass volume, using Kramers-Kroning relationship. Accordingly, substantially lower refractive index changes are measured in volume Bragg gratings inscribed in the glass, indicating that, in addition to the optical density changes, volume dilation changes of negative sign may also be associated with the 248 nm ultrafast irradiation. The Knoop hardness experimental results reveal that the glass matrix undergoes an observable initial hardening and then a reversing softening and volume dilation process for modest accumulated energy doses, where the Knoop hardness follows a nonmonotonic trend. Comparative results on the Knoop hardness trend are also presented for the case of 193 nm excimer laser radiation. The above findings denote that the positive or negative evolution of refractive index changes induced by the 248 0nm ultrafast radiation in the glass is dominated by the counteraction of the color center formation and the volume modification effects.

  19. Free electron lasers and short wavelengths: state of the art and prospects

    International Nuclear Information System (INIS)

    Couprie, M.E.

    2003-01-01

    Free electron lasers generate coherent and adjustable radiation that is based on the interaction of a light wave with a relativistic electron beam circulating in a periodic and permanent magnetic field produced by an ondulator. The light wave comes from either - synchrotron radiation emitted by the electron packet at each round in the case of SASE (self amplified spontaneous emission) operating more, or - synchrotron radiation stored in an optic cavity in the case of oscillator operating mode, or - an external laser wave in the case of harmonic generation operating mode. Under particular conditions the light wave is amplified to the detriment of the kinetic energy of the electrons which leads to the laser effect. 5 free electron lasers are operating in the world: Super-Aco in France, Elettra in Italy, NIJI-4 and Uvsor in Japan, and Duke in Usa. The state of the art of free electron lasers in the UV, VUV range is presented and the different configurations associated to storage rings, linac and ERL (energy recovery linacs) are described. (A.C.)

  20. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene.

    Science.gov (United States)

    Choi, Jae-Kyung; Kwak, Jinsung; Park, Soon-Dong; Yun, Hyung Duk; Kim, Se-Yang; Jung, Minbok; Kim, Sung Youb; Park, Kibog; Kang, Seoktae; Kim, Sung-Dae; Park, Dong-Yeon; Lee, Dong-Su; Hong, Suk-Kyoung; Shin, Hyung-Joon; Kwon, Soon-Yong

    2015-01-27

    Growth of large-scale patterned, wrinkle-free graphene and the gentle transfer technique without further damage are most important requirements for the practical use of graphene. Here we report the growth of wrinkle-free, strictly uniform monolayer graphene films by chemical vapor deposition on a platinum (Pt) substrate with texture-controlled giant grains and the thermal-assisted transfer of large-scale patterned graphene onto arbitrary substrates. The designed Pt surfaces with limited numbers of grain boundaries and improved surface perfectness as well as small thermal expansion coefficient difference to graphene provide a venue for uniform growth of monolayer graphene with wrinkle-free characteristic. The thermal-assisted transfer technique allows the complete transfer of large-scale patterned graphene films onto arbitrary substrates without any ripples, tears, or folds. The transferred graphene shows high crystalline quality with an average carrier mobility of ∼ 5500 cm(2) V(-1) s(-1) at room temperature. Furthermore, this transfer technique shows a high tolerance to variations in types and morphologies of underlying substrates.

  1. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO2 laser polishing

    International Nuclear Information System (INIS)

    Choi, Hun-Kook; Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak; Kim, Jin-Tae; Ahsan, Shamim

    2014-01-01

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO 2 laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO 2 laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO 2 laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  2. An XUV/VUV free-electron laser oscillator

    Science.gov (United States)

    Goldstein, J. C.; Newnam, B. E.; Cooper, R. K.; Comly, J. C., Jr.

    Problems regarding the extension of free-electron laser technology from the visible and near infrared region, where such devices are currently operating, to the ultraviolet have recently been extensively discussed. It was found that significant technical problems must be overcome before free-electron lasers (FELs) can be operated in the VUV (100-200 nm) and the XUV (50-100). However, the present lack of other intense and tunable sources of coherent radiation at these wavelengths together with the intrinsic properties of FELs make the development of such devices potentially very rewarding. The properties of FELs include continuous tunability in wavelength and output in the form of a train of picosecond pulses. An investigation is conducted regarding the feasibility of an operation of a FEL in the XUV/VUV regions, taking into account a theoretical model. It is found that modest improvements in electron beam and optical mirror technologies will make the design of a FEL for operation in the 50-200-nm range of optical wavelength possible.

  3. Machining and metrology systems for free-form laser printer mirrors

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    optical systems were designed and manufactured for the individual laser wavelength to be ... The design objective in utilizing a free-form mirror has resulted in a corresponding ... Since mass production of these free-form mirrors is required, the ...

  4. Effect of laser irradiation on the structure and valence states of copper in Cu-phosphate glass by XPS studies

    International Nuclear Information System (INIS)

    Khattak, G.D.; Mekki, A.; Gondal, M.A.

    2010-01-01

    The effect of laser irradiation using three different wavelengths (IR, visible and UV) generated from Nd:YAG laser on the local glass structure as well as on the valence state of the copper ions in copper phosphate glass containing CuO with the nominal composition 0.30(CuO)-(0.70)(P 2 O 5 ), has been investigated by X-ray photoelectron spectroscopy (XPS). The presence of asymmetry and satellite peaks in the Cu 2p spectrum for the unirradiated sample is an indication of the presence of two different valence states, Cu 2+ and Cu + . Hence, the Cu 2p 3/2 spectrum was fitted to two Gaussian-Lorentzian peaks and the corresponding ratio, Cu 2+ /Cu total , determined from these relative areas clearly shows that copper ions exist predominately (>86%) in the Cu 2+ state for the unirradiated glass sample under investigation. For the irradiated samples the symmetry and the absence of satellite peaks in the Cu 2p spectra indicate the existence of the copper ions mostly in Cu + state. The O 1s spectra show slight asymmetry for the irradiated as well as unirradiated glass samples which result from two contributions, one from the presence of oxygen atoms in the P-O-P environment (bridging oxygen BO) and the other from oxygen in an P-O-Cu and P=O environment (non-bridging oxygen NBO). The ratio of NBO to total oxygen was found to increase with laser power.

  5. Synthesis of Er and Er : Yb doped sol–gel derived silica glass and ...

    Indian Academy of Sciences (India)

    Unknown

    Materials Science Centre, †Central Research Facility, Optical Fibre Unit, Indian Institute of Technology,. Kharagpur 721 302, India. MS received 1 March 2004; revised 4 July 2004. Abstract. Er3+ and Er3+ : Yb3+ doped optical quality, crack and bubble free glasses for possible use in mak- ing laser material have been ...

  6. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-30

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  7. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-01

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  8. Application of laser ablation inductively coupled plasma multicollector mass spectometry in determination of lead isotope ratios in common glass for forensic purposes

    International Nuclear Information System (INIS)

    Sjåstad, Knut-Endre; Andersen, Tom; Simonsen, Siri Lene

    2013-01-01

    Samples of glass used as trace evidence in criminal cases are commonly small, with particle sizes below a millimeter. To perform chemical analysis suitable for forensic purposes, methods capable of analyzing such small samples are required. In this paper, analyses of lead isotope ratios by means of laser ablation inductively coupled multicollector mass spectrometry (LA-MC-ICP-MS) are presented. Sampling by use of laser ablation allows fragments down to 0.1 mg to be analyzed with sufficient precision to discriminate between glasses of different origin. In fact, the use of lead isotopes determined by LA-MC-ICP-MS approaches the discrimination attainable by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) analysis of dissolved samples of 5 mg or more. Further, we have obtained a probability distribution by two dimensional kernel density estimates for the collected data set as an alternative presentation method to the well-established bivariate plot. The underlying information available from kernel density estimates is of importance for forensic scientists involved in probabilistic interpretation of physical evidence. - Highlights: • Lead isotope ratios prove suitable to discriminate glass for forensic purposes. • 96% of glass samples from different sources were separated by lead isotopic ratios. • Laser ablation allows fragments of glass with extension of 0.5 mm to be analyzed. • Isotopic ratios of lead are well suited for statistical analysis of evidence

  9. Bunch decompression for laser-plasma driven free-electron laser demonstration schemes

    Directory of Open Access Journals (Sweden)

    T. Seggebrock

    2013-07-01

    Full Text Available X-ray free-electron lasers (FELs require a very high electron beam quality in terms of emittance and energy spread. Since 2004 high quality electrons produced by laser-wakefield accelerators have been demonstrated, but the electron quality up to now did not allow the operation of a compact x-ray FEL using these electrons. Maier et al. [Phys. Rev. X 2, 031019 (2012PRXHAE2160-330810.1103/PhysRevX.2.031019] suggested a concept for a proof-of-principle experiment allowing FEL operation in the vacuum ultraviolet range based on an optimized undulator and bunch decompression using electron bunches from a laser-plasma accelerator as currently available. In this paper we discuss in more detail how a chicane can be used as a bunch stretcher instead of a bunch compressor to allow the operation of a laser-wakefield accelerator driven FEL using currently available electrons. A scaling characterizing the impact of bunch decompression on the gain length is derived and the feasibility of the concept is tested numerically in a demanding scenario.

  10. Quantum aspects of the free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Gaiba, R.

    2007-03-15

    We study the role of Quantum Mechanics in the physics of Free Electron Lasers. While the Free Electron Laser (FEL) is usually treated as a classical device, we review the advantages of a quantum formulation of the FEL. We then show the existence of a regime of operation of the FEL that can only be described using Quantum Mechanics: if the dimensionless quantum parameter anti {rho} is smaller than 1, then in the 1-dimensional approximation the Hamiltonian that describes the FEL becomes equivalent to the Hamiltonian of a two-level system coupled to a radiation field. We give analytical and numerical solutions for the photon statistics of a Free Electron Laser operating in the quantum regime under various approximations. Since in the quantum regime the momentum of the electrons is discrete, we give a description of the electrons in phase space by introducing the Discrete Wigner Function. We then drop the assumption of a mono-energetic electron beam and describe the general case of a initial electron energy spread G({gamma}). Numerical analysis shows that the FEL quantum regime is observed only when the width of the initial momentum distribution is smaller than the momentum of the emitted photons. Both the analytical results in the linear approximation and the numerical simulations show that only the electrons close to a certain resonant energy start to emit photons. This generates the so-called Hole-burning effect in the electrons energy distribution, as it can be seen in the simulations we provide. Finally, we present a brief discussion about a fundamental uncertainty relation that ties the electron energy spread and the electron bunching. (orig.)

  11. Free-electron lasers with magnetized ion-wiggler

    International Nuclear Information System (INIS)

    Mehdian, H.; Jafari, S.; Hasanbeigi, A.; Ebrahimi, F.

    2009-01-01

    Significant progress has been made using laser ionized channels to guide electron beams in the ion focus regime in a free-electron laser. Propagation of an electron beam in the ion focusing regime (IFR) allows the beam to propagate without expanding from space-charge repulsion. The ninth-degree polynomial dispersion relation for electromagnetic and space-charge waves is derived analytically by solving the electron momentum transfer and wave equations. The variation of resonant frequencies and peak growth rates with axial magnetic field strength has been demonstrated. Substantial enhancement in peak growth rate is obtained as the axial field frequency approaches the gyroresonance frequency.

  12. Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics

    DEFF Research Database (Denmark)

    Morris, James M.; Mackenzie, Mark D.; Petersen, Christian Rosenberg

    2018-01-01

    Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 mu m were measured along with the waveguide dispersion in the 1 to 4.5 mu m range, which is used to estimate the zero-dispersi...... ultrafast laser inscribed waveguide devices in GASIR-1 for mid-IR integrated optics applications. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.......Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 mu m were measured along with the waveguide dispersion in the 1 to 4.5 mu m range, which is used to estimate the zero......-dispersion wavelength. Z-scan measurements of bulk samples have also been performed to determine the nonlinear refractive index. Finally, midIR supercontinuum generation has been shown when pumping the waveguides with femtosecond pulses centered at 4.6 mu m. Supercontinuum spanning approximately 4 mu m from 2.5 to 6...

  13. A study on fractional erbium glass laser therapy versus chemical peeling for the treatment of melasma in female patients

    Directory of Open Access Journals (Sweden)

    Neerja Puri

    2013-01-01

    Full Text Available Introduction: Melasma is a commonly acquired hypermelanosis and a common dermatologic skin disease that occurs on sun-exposed areas of face. Aims: To assess the efficacy and safety of non-ablative 1,550 nm Erbium glass fractional laser therapy and compare results with those obtained with chemical peeling. Materials and Methods: We selected 30 patients of melasma aged between 20 years and 50 years for the study. The patients were divided into two groups of 15 patients each. Group I patients were subjected to four sessions of 1,550 nm Erbium glass non-ablative fractional laser at 3 weeks interval. In group II patients, four sessions of chemical peeling with 70% glycolic acid was performed. Results: After 12 weeks of treatment, percentage reduction in Melasma Area and Severity Index (MASI score was seen in 62.9% in the laser group and 58.7% in the peels group. Conclusion: It was observed that 1,550 nm fractional laser is as effective as 70% glycolic acid peel in reducing MASI score in patients with melasma.

  14. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.

    Science.gov (United States)

    Long, Xuewen; Bai, Jing; Zhao, Wei; Stoian, Razvan; Hui, Rongqing; Cheng, Guanghua

    2012-08-01

    We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity.

  15. Laser deposition and direct-writing of thermoelectric misfit cobaltite thin films

    Science.gov (United States)

    Chen, Jikun; Palla-Papavlu, Alexandra; Li, Yulong; Chen, Lidong; Shi, Xun; Döbeli, Max; Stender, Dieter; Populoh, Sascha; Xie, Wenjie; Weidenkaff, Anke; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2014-06-01

    A two-step process combining pulsed laser deposition of calcium cobaltite thin films and a subsequent laser induced forward transfer as micro-pixel is demonstrated as a direct writing approach of micro-scale thin film structures for potential applications in thermoelectric micro-devices. To achieve the desired thermo-electric properties of the cobaltite thin film, the laser induced plasma properties have been characterized utilizing plasma mass spectrometry establishing a direct correlation to the corresponding film composition and structure. The introduction of a platinum sacrificial layer when growing the oxide thin film enables a damage-free laser transfer of calcium cobaltite thereby preserving the film composition and crystallinity as well as the shape integrity of the as-transferred pixels. The demonstrated direct writing approach simplifies the fabrication of micro-devices and provides a large degree of flexibility in designing and fabricating fully functional thermoelectric micro-devices.

  16. Titanophosphate glasses as lithium-free nonsilicate pH-responsive glasses—Compatibility between pH responsivity and self-cleaning properties

    International Nuclear Information System (INIS)

    Hashimoto, Tadanori; Wagu, Moe; Kimura, Kentaro; Nasu, Hiroyuki; Ishihara, Atsushi; Nishio, Yuji; Iwamoto, Yasukazu

    2012-01-01

    Highlights: ► Ti 3+ -containing TP glasses are lithium-free nonsilicate pH-responsive ones. ► TP glasses with a large amount of Ti 3+ ions show good pH responsivity. ► TP glasses with pH responsivity and self-cleaning properties are obtained. ► pH response of TP glasses is explained by phase boundary potential model. -- Abstract: Lithium silicate-based glasses have been widely used as commercially available pH glass electrodes. It was revealed that Ti 3+ -containing titanophosphate (TiO 2 –P 2 O 5 , TP) glasses are pH-responsive as lithium-free nonsilicate glasses for the first time. The absorption coefficient at 532 nm, α 532 as a measure of Ti 3+ content in TP glasses increased with increasing melting temperature. TP glasses with large α 532 tended to give low electrical resistivity, high pH sensitivity and the short pH response time. The first post-annealing (oxidation of Ti 3+ ) of TP glasses at 600–620 °C for 60–240 h resulted in the occurrence of the photo-induced hydrophilicity along with the disappearance of pH responsivity and the increase of electrical resistivity. The second post-annealing (reduction of Ti 4+ ) of the first post-annealed TP glasses at 600–620 °C for 48 h under vacuum recovered both pH responsivity and electrical resistivity to the level of the as-prepared TP glasses with maintaining the photo-induced hydrophilicity. Moreover, the second post-annealed TP glasses had photocatalytic activity for methylene blue (MB) comparable to commercially available self-cleaning glass. Thus, TP glasses with the compatibility between pH responsivity and self-cleaning properties were obtained by the sequential post-annealing (oxidation and reduction) of as-prepared glasses. From some circumstantial evidences, pH response of TP glasses was explained in terms of phase boundary potential model related to hopping conduction of electron from Ti 3+ to Ti 4+ via O 2− ion in TP glasses rather than diffusion potential model.

  17. Inverse Free Electron Laser accelerator

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; van Steenbergen, A.; Sandweiss, J.

    1992-09-01

    The study of the INVERSE FREE ELECTRON LASER, as a potential mode of electron acceleration, is being pursued at Brookhaven National Laboratory. Recent studies have focussed on the development of a low energy, high gradient, multi stage linear accelerator. The elementary ingredients for the IFEL interaction are the 50 MeV Linac e - beam and the 10 11 Watt CO 2 laser beam of BNL's Accelerator Test Facility (ATF), Center for Accelerator Physics (CAP) and a wiggler. The latter element is designed as a fast excitation unit making use of alternating stacks of Vanadium Permendur (VaP) ferromagnetic laminations, periodically interspersed with conductive, nonmagnetic laminations, which act as eddy current induced field reflectors. Wiggler parameters and field distribution data will be presented for a prototype wiggler in a constant period and in a ∼ 1.5 %/cm tapered period configuration. The CO 2 laser beam will be transported through the IFEL interaction region by means of a low loss, dielectric coated, rectangular waveguide. Short waveguide test sections have been constructed and have been tested using a low power cw CO 2 laser. Preliminary results of guide attenuation and mode selectivity will be given, together with a discussion of the optical issues for the IFEL accelerator. The IFEL design is supported by the development and use of 1D and 3D simulation programs. The results of simulation computations, including also wiggler errors, for a single module accelerator and for a multi-module accelerator will be presented

  18. Control system for JAERI Free Electron Laser

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1992-01-01

    A control system comprising of the personal computers network and the CAMAC stations for the JAERI Free Electron Laser is designed and is in the development stage. It controls the equipment and analyzes the electron and optical beam experiments. The concept and the prototype of the control system are described. (author)

  19. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO{sub 2} laser polishing

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hun-Kook [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Chosun University, Gwangju (Korea, Republic of); Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kim, Jin-Tae [Chosun University, Gwangju (Korea, Republic of); Ahsan, Shamim [Khulna University, Khulna (Bangladesh)

    2014-11-15

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO{sub 2} laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO{sub 2} laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO{sub 2} laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  20. Inverse free-electron laser accelerator development

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; Steenbergen, A. van; Sandweiss, J.; Fang, J.M.

    1994-06-01

    The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 x 10 11 W) CO 2 laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 μsec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment

  1. Heat accumulation during high repetition rate ultrafast laser interaction: Waveguide writing in borosilicate glass

    International Nuclear Information System (INIS)

    Zhang, Haibin; Eaton, Shane M; Li, Jianzhao; Herman, Peter R

    2007-01-01

    During high repetition rate (>200 kHz) ultrafast laser waveguide writing, visible heat modified zones surrounding the formed waveguide occur as a result of heat accumulation. The radii of the heat-modified zones increase with the laser net fluence, and were found to correlate with the formation of low-loss and cylindrically symmetric optical waveguides. A numerical thermal model based on the finite difference method is applied here to account for cumulative heating and diffusion effects. The model successfully shows that heat propagation and accumulation accurately predict the radius of the 'heat modified' zones observed in borosilicate glass waveguides formed across a wide range of laser exposure conditions. Such modelling promises better control of thermal effects for optimizing the fabrication and performance of three-dimensional optical devices in transparent materials

  2. A Low-Energy-Spread Rf Accelerator for a Far-Infrared Free-Electron Laser

    NARCIS (Netherlands)

    van der Geer, C. A. J.; Bakker, R. J.; van der Meer, A. F. G.; van Amersfoort, P. W.; Gillespie, W. A.; Saxon, G.; Poole, M. W.

    1993-01-01

    A high electron current and a small energy spread are essential for the operation of a free electron laser (FEL). In this paper we discuss the design and performance of the accelerator for FELIX, the free electron laser for infrared experiments. The system consists of a thermionic gun, a prebuncher,

  3. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses.

    Science.gov (United States)

    Kapoor, Saurabh; Goel, Ashutosh; Tilocca, Antonio; Dhuna, Vikram; Bhatia, Gaurav; Dhuna, Kshitija; Ferreira, José M F

    2014-07-01

    We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Commissioning of Japanese x-ray free electron laser, SACLA and achieved laser performance

    International Nuclear Information System (INIS)

    Tanaka, Hitoshi; Amselem, Arnaud; Aoyagi, Hideki

    2012-01-01

    After 8 months of beam commissioning of SPring-8 Angstrom Compact free electron LAser, SACLA reached the primary target performance, i.e., a shortest laser wavelength of ∼0.6 Angstrom and a laser pulse energy value of sub-mJ at a wavelength of 1.2 Angstrom. This success was due to the following four factors; (1) performance estimation of each component of SACLA required for the target laser performance and its achievement, (2) elaboration of beam diagnostics and control systems enabling precise accelerator and undulator tuning, (3) a rational and strategic commissioning plan, (4) most adequate response to various accidental events during the beam commissioning period. This article, in order to light up the above four factors leading us to the success, starts with the features of SACLA and critical tolerance for the sub-system components, and then, explains our approach to achieve the target laser performance and how the beam commissioning of SACLA proceeded. At last, the article summarizes the present laser and operational status. (author)

  5. Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding

    International Nuclear Information System (INIS)

    Wang, H.S.; Chen, H.G.; Jang, J.S.C.; Chiou, M.S.

    2010-01-01

    Research highlights: → A liquid cooling device (LCD) helps to produce a lower initial welding temperature. → A lower initial welding temperature leads to a faster welding thermal cycle (WTC). → A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. - Abstract: Using pre-selected welding parameters, a crystallization-free weld for (Zr 53 Cu 30 Ni 9 Al 8 )Si 0.5 bulk metallic glass (BMG) was successfully produced by adopting a Nd:YAG pulse laser in combination with a liquid cooling device (LCD). When a LCD was employed, a faster cooling rate and shorter retention time for the crystallization temperature interval were produced, thus, no crystallization was observed in the weld fusion zone (WFZ) or heat affected zone (HAZ). The hardness in those areas did not differ significantly in comparison to the parent material (PM). For the room temperature laser weld (LCD was not employed), HAZ crystallization seemed unavoidable, although no crystallization occurred within the WFZ. The major crystalline phase in the HAZ was identified as Zr 2 Cu. When the precipitates were greater in the crystallized area (i.e., HAZ), cracks were more likely to form, thus, hardness in the area was decreased.

  6. UV laser deposition of metal films by photogenerated free radicals

    Science.gov (United States)

    Montgomery, R. K.; Mantei, T. D.

    1986-01-01

    A novel photochemical method for liquid-phase deposition of metal films is described. In the liquid phase deposition scheme, a metal containing compound and a metal-metal bonded carbonyl complex are dissolved together in a polar solvent and the mixture is irradiated using a UV laser. The optical arrangement consists of a HeCd laser which provides 7 mW of power at a wavelength of 325 nm in the TEM(OO) mode. The beam is attenuated and may be expanded to a diameter of 5-20 mm. Experiments with photochemical deposition of silver films onto glass and quartz substrates are described in detail. Mass spectrometric analysis of deposited silver films indicated a deposition rate of about 1 A/s at incident power levels of 0.01 W/sq cm. UV laser-induced copper and palladium films have also been obtained. A black and white photograph showing the silver Van Der Pauw pattern of a solution-deposited film is provided.

  7. Homogeneity testing and quantitative analysis of manganese (Mn in vitrified Mn-doped glasses by laser-induced breakdown spectroscopy (LIBS

    Directory of Open Access Journals (Sweden)

    V. K. Unnikrishnan

    2014-09-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS, an atomic emission spectroscopy method, has rapidly grown as one of the best elemental analysis techniques over the past two decades. Homogeneity testing and quantitative analysis of manganese (Mn in manganese-doped glasses have been carried out using an optimized LIBS system employing a nanosecond ultraviolet Nd:YAG laser as the source of excitation. The glass samples have been prepared using conventional vitrification methods. The laser pulse irradiance on the surface of the glass samples placed in air at atmospheric pressure was about 1.7×109 W/cm2. The spatially integrated plasma emission was collected and imaged on to the spectrograph slit using an optical-fiber-based collection system. Homogeneity was checked by recording LIBS spectra from different sites on the sample surface and analyzing the elemental emission intensities for concentration determination. Validation of the observed LIBS results was done by comparison with scanning electron microscope- energy dispersive X-ray spectroscopy (SEM-EDX surface elemental mapping. The analytical performance of the LIBS system has been evaluated through the correlation of the LIBS determined concentrations of Mn with its certified values. The results are found to be in very good agreement with the certified concentrations.

  8. Luminescent properties of Tb3+- doped TeO2-WO3-GeO2 glasses for green laser applications

    Science.gov (United States)

    Subrahmanyam, T.; Rama Gopal, K.; Padma Suvarna, R.; Jamalaiah, B. C.; Vijaya Kumar, M. V.

    2018-06-01

    Different concentrations of Tb3+ -doped oxyfluoro tellurite (TWGTb) glasses were prepared by conventional melt quenching technique and characterized for green laser applications. The Judd-Ofelt theory was applied to evaluate various spectroscopic and radiative parameters. The TWGTb glasses exhibit 5D3 → 7F5-3 and 5D4 → 7F6-0 transitions when excited at 316 nm radiation. The variation of intensity of 5D4 → 7F5 (Green) and 5D3 → 7F4 (Blue) transitions and the green to blue (IG/IB) intensity ratios were studied as a function of Tb3+ ions concentration. The laser characteristic parameters such as effective bandwidth (Δλeff), stimulated emission cross-section (σe), gain bandwidth (σe × Δλeff) and optical gain (σe × τR) were determined using the three phenomenological Judd-Ofelt intensity parameters. The fluorescence decay profiles of 5D4 metastable level exhibit single-exponential nature for all the samples. Based on the experimental results we suggest that the 1.0 mol% of Tb3+ -doped TWGTb glass could be a suitable laser host material to emit intense green luminescence at 545 nm.

  9. Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass

    International Nuclear Information System (INIS)

    Papon, G.; Marquestaut, N.; Royon, A.; Canioni, L.; Petit, Y.; Dussauze, M.; Rodriguez, V.; Cardinal, T.

    2014-01-01

    We depict a new approach for the localized creation in three dimensions (3D) of a highly demanded nonlinear optical function for integrated optics, namely second harmonic generation. We report on the nonlinear optical characteristics induced by single-beam femtosecond direct laser writing in a tailored silver-containing phosphate glass. The original spatial distribution of the nonlinear pattern, composed of four lines after one single laser writing translation, is observed and modeled with success, demonstrating the electric field induced origin of the second harmonic generation. These efficient second-order nonlinear structures (with χ eff (2)  ∼ 0.6 pm V −1 ) with sub-micron scale are impressively stable under thermal constraint up to glass transition temperature, which makes them very promising for new photonic applications, especially when 3D nonlinear architectures are desired

  10. Gain measurements at 182 /angstrom/ in C VI generated by a Nd/glass laser

    International Nuclear Information System (INIS)

    Kim, D.; Skinner, C.H.; Umesh, G.; Suckewer, S.

    1988-11-01

    We present recent gain measurements in C VI at 182 A for a soft x-ray amplifier produced by a line-focused glass laser(1.053 μm) on a solid carbon target. The maximum gain measured was 8 +- 1 cm/sup /minus/1/ in the recombining plasma column with additional radiation cooling by iron impurities. 10 refs., 3 figs

  11. Photo-induced changes of silicate glasses optical parameters at multi-photon laser radiation absorption

    International Nuclear Information System (INIS)

    Efimov, O.M.; Glebov, L.B.; Mekryukov, A.M.

    1995-01-01

    In this paper the results of investigations of the mechanisms of photo-induced changes of alkali-silicate (crown) and lead-silicate (flint) glasses optical parameters upon the exposure to the intense laser radiation, and the basic regularities of these processes are reported. These investigations were performed in Research Center open-quotes S. I. Vavilov State Optical Instituteclose quotes during last 15 years. The kinetics of stable and unstable CC formation and decay, the effect of widely spread impurity ions on these processes, the characteristics of fundamental and impure luminescence, the kinetics of refractive index change under conditions of multi-photon glass matrix excitation, and other properties are considered. On the basis of analysis of received regularities it was shown that the nonlinear coloration of alkali-silicate glasses (the fundamental absorption edge is nearly 6 eV) takes place only as a result of two-photon absorption. Important efforts were aimed at the detection of three- or more photon matrix ionization of these glasses, but they were failed. However it was established that in the lead silicate glasses the long-wave carriers mobility boundary (> 5.6 eV) is placed considerably higher the fundamental absorption edge (∼ 3.5 eV) of material matrix. This results in that the linear color centers formation in the lead silicate glasses is not observed. The coloration of these glasses arises only from the two- or three-photon matrix ionization, and the excitation occurs through virtual states that are placed in the fundamental absorption region. In the report the available mechanisms of photo-induced changes of glasses optical parameters, and some applied aspects of this problem are discussed

  12. Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.R.; Foger, K.; Breakspere, R.J.

    1979-05-01

    Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts was studied with 0.9-3Vertical Bar3< platinum on silica gel, aerosil, sodium and lanthanum Y zeolites, and ..gamma..-alumina, and on aerosil-supported gold-platinum alloys containing 2, 10, 24, 33, and 85Vertical Bar3< gold. Surface enrichment with gold in the alloy systems, as derived from hydrogen adsorption data and predicted from surface enrichment theory and electron microscopic measurements of particle size, were in good agreement, which indicated that equilibrium was achieved by the thermal treatment (oxygen at 573/sup 0/K, hydrogen at 620/sup 0/K, repeated cycles) used. Hydrogen spillover to gold was observed at the higher hydrogen pressures tested on the alloys with high gold content, and to the zeolite supports. The temperature-programed desorption profiles were independent of gold content, which indicated that gold acts only as diluent, and that isolated surface platinum atoms become populated with hydrogen atoms either by hydrogen atom spillover from platinum ensembles to gold and from the gold to the isolated platinum, and/or by adsorption of a molecule directly on the isolated platinum and chemisorption of one H atom at an adjacent gold atom. The distribution of surface platinum ensembles was evaluated by a computer simulation method.

  13. Proceedings of the national conference on functional glasses/glass-ceramics and ceramics: souvenir

    International Nuclear Information System (INIS)

    2015-01-01

    This conference deals with issues relevant to functional glasses and glass ceramics which are technologically important materials for lasers, radioactive waste immobilization, radiation shielding, bio-glasses etc. It covers wide range of subjects and their applications right from managing the side effects of nuclear wastes and shielding the radiation, to sol-gel based bio-glass and its composites. Papers relevant to INIS are indexed separately

  14. Dynamic fracture characteristics of Fe78Si9B13 metallic glass subjected to laser shock loading

    International Nuclear Information System (INIS)

    Zheng, Chao; Sun, Sheng; Song, Libin; Zhang, Guofang; Luan, Yiguo; Ji, Zhong; Zhang, Jianhua

    2013-01-01

    The response of the Fe 78 Si 9 B 13 metallic glass under different ratio of laser beam diameter (d) to die hole diameter (D) in micro scale laser punching was investigated. The typical fracture surface morphologies were observed using scanning electron microscope. The influence of the ratio d/D on dynamic deformation and fracture of metallic glasses foils was characterized. The results show that the dynamic fracture behavior of the Fe 78 Si 9 B 13 metallic glass is sensitive to the ratio d/D. In the case of d/D = 1.75, the fracture surface is occupied by numerous liquid droplets, indicating that the temperature rise in an adiabatic shear band is beyond the melting temperature of the material. On the other hand, the fracture surface is covered dominantly with a mixture of shear steps, cellular patterns, liquid droplets and melted belts at d/D = 0.70. According to the general mechanical analysis, the specimen fails in a shear fracture mode at d/D = 1.75 due to the existence of shear stresses, while the fracture occurs in a tensile fracture mode at d/D = 0.70 under the effect of bidirectional tensile stresses.

  15. Spectroscopic studies of Dy3 + ion doped tellurite glasses for solid state lasers and white LEDs

    Science.gov (United States)

    Himamaheswara Rao, V.; Syam Prasad, P.; Mohan Babu, M.; Venkateswara Rao, P.; Satyanarayana, T.; Luís F., Santos; Veeraiah, N.

    2018-01-01

    Rare earth ion Dy3 +-doped tellurite glasses were synthesised in the system of (75-x)TeO2-15Sb2O3-10WO3-xDy2O3 (TSWD glasses). XRD and FTIR characterizations were used to find the crystalline and structural properties. The intensities of the electronic transitions and the ligand environment around the Dy3 + ion were determined using the Judd-Ofelt (J-O) theory on the absorption spectra of the glasses. The measured luminescence spectra exhibit intense emissions at 574 and 484 nm along with less intense emissions around 662 and 751 nm. Various radiative properties of the 4F9/2 excited level of Dy3 + ion were calculated for the glasses. Decay profiles were measured to find the life times and quantum efficiencies. Yellow to blue intensity ratio (Y/B), CIE chromaticity coordinates and correlated color temperature (CCT) values are calculated using the emission spectra to evaluate the emitted light. The obtained results suggest the utility of the glasses for potential yellow laser and white LED's applications.

  16. Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber.

    Science.gov (United States)

    Li, Kefeng; Zhang, Guang; Hu, Lili

    2010-12-15

    We report, for the first time to the best of our knowledge, a watt level cw fiber laser at ~2 μm from a piece of 40-cm-long newly developed highly thulium-doped (3.76 × 10(20) ions/cm(3)) tungsten tellurite glass double cladding fiber pumped by a commercial 800 nm laser diode. The maximum output power of the fiber laser reaches 1.12 W. The slope efficiency and the optical-optical efficiency with respect to the absorbed pump are 20% and 16%, respectively. The lasing threshold is 1.46 W, and the lasing wavelength is centered at 1937 nm.

  17. Soft x-ray free-electron laser induced damage to inorganic scintillators

    Czech Academy of Sciences Publication Activity Database

    Burian, Tomáš; Hájková, Věra; Chalupský, Jaromír; Vyšín, Luděk; Boháček, Pavel; Přeček, Martin; Wild, J.; Özkan, C.; Coppola, N.; Farahani, S.D.; Schulz, J.; Sinn, H.; Tschentscher, T.; Gaudin, J.; Bajt, S.; Tiedtke, K.; Toleikis, S.; Chapman, H.N.; Loch, R.A.; Jurek, M.; Sobierajski, R.; Krzywinski, J.; Moeller, S.; Harmand, M.; Galasso, G.; Nagasono, M.; Saskl, K.; Sovák, P.; Juha, Libor

    2015-01-01

    Roč. 5, č. 2 (2015), 254-264 ISSN 2159-3930 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA MŠk EE2.3.30.0057 Grant - others:OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : fluorescent and luminescent materials * laser damage * free-electron lasers * soft x-rays * laser materials processing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.657, year: 2015

  18. Ablation of (GeS2)0.3(Sb2S3)0.7 glass with an ultra-violet nano-second laser

    International Nuclear Information System (INIS)

    Knotek, P.; Navesnik, J.; Cernohorsky, T.; Kincl, M.; Vlcek, M.; Tichy, L.

    2015-01-01

    Highlights: • The interaction of (GeS 2 ) 0.3 (Sb 2 S 3 ) 0.7 bulk glass and film with UV nanosecond laser. • Ablation process, topography of crater and structure of the material were studied. • Ablation threshold fluencies changed with the spot diameter and number of pulses. • The photo-thermal expansion of the material occurred for low laser fluency. • Laser direct writing process applicable for fabrication of passive optical elements. - Abstract: The results of an experimental study of the laser ablation of bulk and thin films of a GeSbS chalcogenide glass using UV nanosecond pulses are reported. The response of the samples to illumination conditions was studied through the use of atomic force spectroscopy, digital holographic microscopy, Raman scattering and scanning electron microscopy. The multi-pulse ablation thresholds were determined for both the bulk and thin film samples for varying number of pulses and illuminated spot diameter. The possible application of direct laser writing into the bulk and thin films of this material is presented

  19. Free electron laser on the ACO storage ring

    International Nuclear Information System (INIS)

    Elleaume, P.

    1984-06-01

    This dissertation presents the design and characteristics of a Free Electron Laser built on the electron storage ring ACO at Orsay. The weak optical gain available (approximately 0.1% per pass) necessitated the use of an optical klystron instead of an undulator and the use of mirror with extremely high reflectivity. The laser characteristics: spectra, micro and macro-temporal structures, transverse structure and power are presented. They are in very good agreement with a classical theory based on the Lorentz force and Maxwell equations [fr

  20. Applications for Energy Recovering Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  1. Progress toward the Wisconsin Free Electron Laser

    International Nuclear Information System (INIS)

    Bisognano, Joseph; Bosch, R.A.; Eisert, D.; Fisher, M.V.; Green, M.A.; Jacobs, K.; Kleman, K.J.; Kulpin, J.; Rogers, G.C.; Lawler, J.E.; Yavuz, D.; Legg, R.

    2011-01-01

    The University of Wisconsin-Madison/Synchrotron Radiation Center is advancing its design for a seeded VUV/soft X-ray Free Electron Laser facility called WiFEL. To support this vision of an ultimate light source, we are pursuing a program of strategic R and D addressing several crucial elements. This includes development of a high repetition rate, VHF superconducting RF electron gun, R and D on photocathode materials by ARPES studies, and evaluation of FEL facility architectures (e.g., recirculation, compressor scenarios, CSR dechirping, undulator technologies) with the specific goal of cost containment. Studies of high harmonic generation for laser seeding are also planned.

  2. High magnetic field measurement utilizing Faraday rotation in SF11 glass in simplified diagnostics.

    Science.gov (United States)

    Dey, Premananda; Shukla, Rohit; Venkateswarlu, D

    2017-04-01

    With the commercialization of powerful solid-state lasers as pointer lasers, it is becoming simpler nowadays for the launch and free-space reception of polarized light for polarimetric applications. Additionally, because of the high power of such laser diodes, the alignment of the received light on the small sensor area of a photo-diode with a high bandwidth response is also greatly simplified. A plastic sheet polarizer taken from spectacles of 3D television (commercially available) is simply implemented as an analyzer before the photo-receiver. SF11 glass is used as a magneto-optic modulating medium for the measurement of the magnetic field. A magnetic field of magnitude more than 8 Tesla, generated by a solenoid has been measured using this simple assembly. The measured Verdet constant of 12.46 rad/T-m is obtained at the wavelength of 672 nm for the SF11 glass. The complete measurement system is a cost-effective solution.

  3. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V. [School of Materials Science and Engineering, University of New South Wales, Sydney 2052 (Australia); Ihlefeld, J. [Electronic, Optical, and Nanomaterials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  4. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    International Nuclear Information System (INIS)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V.; Ihlefeld, J.

    2014-01-01

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO 2 /(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  5. Charged beam dynamics, particle accelerators and free electron lasers

    CERN Document Server

    Dattoli, Giuseppe; Sabia, Elio; Artioli, Marcello

    2017-01-01

    Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It is intended as a reference manual for the different aspects of FEL devices, explaining how to design both a FEL device and the accelerator providing the driving beam. It covers both theoretical and experimental aspects, allowing researchers to attempt a first design of a FEL device in different operating conditions. It provides an analysis of what is already available, what is needed, and what the challenges are to determine new progress in this field. All chapters contain complements and exercises that are designed in such a way that the reader will gradually acquire self-confidence with the matter treated in the book.

  6. Applications of Free Electron Lasers in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.; Tybor, K.R.; Nietubyc, R.; Wrochna, G.

    2010-01-01

    The advent of free electron lasers opens up new opportunities to probe the dynamics of ultrafast processes and the structure of matter with unprecedented spatial and temporal resolution. New methods inaccessible with other known types of radiation sources can be developed, resulting in a breakthrough in deep understanding the fundamentals of life as well as in numerous medical and biological applications. In the present work the properties of free electron laser radiation that make the sources excellent for probing biological matter at an arbitrary wavelength, in a wide range of intensities and pulse durations are briefly discussed. A number of biophysical and biomedical applications of the new sources, currently considered among the most promising in the field, are presented. (author)

  7. Conductors, semiconductors and insulators irradiated with short-wavelength free-electron laser

    Czech Academy of Sciences Publication Activity Database

    Krzywinski, J.; Sobierajski, R.; Jurek, M.; Nietubyc, R.; Pelka, J. B.; Juha, Libor; Bittner, Michal; Létal, V.; Vorlíček, Vladimír; Andrejczuk, A.; Feldhaus, J.; Keitel, B.; Saldin, E.; Schneidmiller, E.A.; Treusch, R.; Yurkov, M. V.

    2007-01-01

    Roč. 101, č. 4 (2007), 043107/1-043107/4 ISSN 0021-8979 R&D Projects: GA MŠk 1P04LA235; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : free-electron laser * extreme ultraviolet * ablation * laser-matter interaction Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.171, year: 2007

  8. Crystallographic data processing for free-electron laser sources

    International Nuclear Information System (INIS)

    White, Thomas A.; Barty, Anton; Stellato, Francesco; Holton, James M.; Kirian, Richard A.; Zatsepin, Nadia A.; Chapman, Henry N.

    2013-01-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam

  9. Crystallographic data processing for free-electron laser sources

    Energy Technology Data Exchange (ETDEWEB)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Holton, James M. [University of California, San Francisco, CA 94158 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kirian, Richard A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287 (United States); Zatsepin, Nadia A. [Arizona State University, Tempe, AZ 85287 (United States); Chapman, Henry N. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  10. The drive laser for the APS LEUTL FEL Rf photoinjector

    International Nuclear Information System (INIS)

    Arnold, N.; Koldenhoven, R.; Travish, G.

    1999-01-01

    The APS LEUTL free-electron laser (FEL) is a high-gain, short-wavelength device requiring a high-current, low-emittance beam. An rf photoinjector driven by a laser is used to provide the requisite beam. The drive laser consists of a diode-pumped Nd:Glass oscillator and a chirped pulse amplification (CPA) system consisting of a grating stretcher, a flashlamp-pumped Nd:Glass regenerative amplifier, and a grating compressor. The system generates 4-mj pulses in the R with a pulse length as short as 2 ps FWHM and a repetition rate of 6 Hz. Nonlinear doubling crystals are used to generate fourth-harmonic output of ∼500 microJ in the UV (263 nm), which is required to exceed the work function of the copper cathode in the gun. This paper describes the drive laser as well as the extensive controls implemented to allow for remote operation and monitoring. Performance measurements as well as the operating experience are presented

  11. Free-space laser communication technologies II; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1990-01-01

    Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.

  12. Free-space laser communication technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 11, 12, 1988

    Science.gov (United States)

    Koepf, Gerhard A.; Begley, David L.

    1988-01-01

    The present conference discusses topics in free-space laser communications, laser link characteristics, satellite laser communication systems, optoelectronic components for laser communications, and space laser subsystem technologies. Attention is given to Space Station-based deep-space communication experiments, the application of intersatellite links to operational satellite systems, high-power 0.87 micron channel substrate planar lasers for spaceborne communications, a ground experiment using a CO2 laser transceiver for free-space communications, studies of laser ranging to the TOPEX satellite, diffraction-limited tracking for space communications, and the compact implementation of a real-time, acoustooptic SAR processor.

  13. Effect of thermal lens on beam quality and mode matching in LD pumped Er-Yb-codoped phosphate glass microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Liu Shujing; Song Feng; Cai Hong; Li Teng; Tian Bin; Wu Zhaohui; Tian Jianguo [Photonics Center, Nankai University, Tianjin 300071 (China); Key Laboratory of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials (Ministry of Education), Nankai University, Tianjin 300457 (China)

    2008-02-07

    The theoretical values of the thermal focal length and laser beam waist are derived from the theoretical model and transformation theory, respectively. The values of thermal focal length, laser beam waist and the far field divergence angle were experimentally measured in a laser diode (LD) pumped erbium-ytterbium(Er-Yb)-codoped phosphate microchip glass laser. As an extension of thermal effect studies, we investigate the role of thermal lens on beam quality and the mode matching between the pump and the laser, which affects laser efficiency in TEM{sub 00} operation. The study shows that the experimental data are in good agreement with the theoretical predictions.

  14. Characterization of a glass frit free TiCuAg-thick film metallization applied on aluminium nitride

    International Nuclear Information System (INIS)

    Reicher, R.; Smetana, W.; Adlassnig, A.; Schuster, J. C.; Gruber, U.

    1997-01-01

    The metallization of aluminium nitride substrates by glass frit free Ti CuAg-thick film pastes were investigated. Adhesion properties of the conductor paste were tested by measuring tensile strength and compared with commercial Cu-thick film pastes (within glass frit). Also numerical analysis of temperature-distribution and thermal extension of metallized aluminium nitride ceramic, induced by a continuous and a pulsed working electronic device were made with a finite element program. (author)

  15. Field-free molecular alignment probed by the free electron laser in Hamburg (FLASH)

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, P; Rouzee, A; Siu, W; Huismans, Y; Vrakking, M J J [FOM Institute for Atomic and Molecular Physics (AMOLF), Science Park 113, 1098 XG Amsterdam (Netherlands); Lepine, F [Universite Lyon 1, CNRS, LASIM, UMR 5579, 43 bvd. du 11 novembre 1918, F-69622 Villeurbanne (France); Marchenko, T [Laboratoire d' Optique Applique, ENSTA/Ecole Polytechnique, Chemin de la Huniere, 91761 Palaiseau (France); Duesterer, S; Tavella, F; Stojanovic, N; Azima, A; Treusch, R [Hamburger Synchrotronstrahlungslabor (HASYLAB) at Deutsches Elektronen-Synchrotron (DESY) Notkestrasse 85, D-22607 Hamburg (Germany); Kling, M F [Max-Planck Institut fuer Quantenoptik, Hans-Kopfermann Strasse 1, D-85748 Garching (Germany)], E-mail: per.johnsson@fysik.lth.se

    2009-07-14

    High flux extreme ultraviolet (XUV) sources like the free electron laser (FEL) in Hamburg (FLASH) offer the possibility of diffractive imaging of small objects. Irrespective of whether the diffraction is based on the detection of photons or photoelectrons, it is required that the measurement is done in the reference frame of the molecule meaning that, for a sample of several molecules, it is necessary to pre-align the molecules in the sample. As a step towards performing molecular frame diffraction experiments, we report experiments on field-free molecular alignment performed at FLASH. The impulsive alignment induced by a 100 fs near-infrared laser pulse in a rotationally cold CO{sub 2} sample is characterized by ionizing and dissociating the molecules with a time-delayed XUV-FEL pulse. The time-dependent angular distributions of ionic fragments measured by a velocity map imaging spectrometer exhibit rapid changes associated with the induced rotational dynamics. The experimental results show hints of a dissociation process that depends nonlinearly on the XUV intensity.

  16. Optical modeling of induction-linac driven free-electron lasers

    International Nuclear Information System (INIS)

    Scharlemann, E.T.; Fawley, W.M.

    1986-01-01

    The free-electron laser (FEL) simulation code FRED, developed at Lawrence Livermore National Laboratory (LLNL) primarily to model single-pass FEL amplifiers driven by induction linear accelerators, is described. The main emphasis is on the modeling of optical propagation in the laser and on the differences between the requirements for modeling rf-linac-driven vs. induction-linac-driven FELs. Examples of optical guiding and mode cleanup are presented for a 50 μm FEL

  17. High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass.

    Science.gov (United States)

    Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A

    2003-09-10

    A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.

  18. Radially resolved simulation of a high-gain free electron laser amplifier

    International Nuclear Information System (INIS)

    Fawley, W.M.; Prosnitz, D.; Doss, S.; Gelinas, R.

    1983-01-01

    The results of a two-dimensional simulation of a high-gain free electron laser (FEL) amplifier is presented. The simulation solves the inhomogeneous paraxial wave equation. The source term is radially resolved and is obtained by tracking the interaction of the laser field with localized macroparticles

  19. Bevacizumab with or after chemotherapy for platinum-resistant recurrent ovarian cancer

    DEFF Research Database (Denmark)

    Bamias, A; Gibbs, E; Khoon Lee, C

    2017-01-01

    Background: In the open-label randomized phase III AURELIA trial, adding bevacizumab to chemotherapy for platinum-resistant ovarian cancer (PROC) significantly improved progression-free survival and response rate versus chemotherapy alone, but not overall survival (OS). We explored the effect of ...

  20. A hybrid nanostructure of platinum-nanoparticles/graphitic-nanofibers as a three-dimensional counter electrode in dye-sensitized solar cells.

    Science.gov (United States)

    Hsieh, Chien-Kuo; Tsai, Ming-Chi; Su, Ching-Yuan; Wei, Sung-Yen; Yen, Ming-Yu; Ma, Chen-Chi M; Chen, Fu-Rong; Tsai, Chuen-Horng

    2011-11-07

    We directly synthesized a platinum-nanoparticles/graphitic-nanofibers (PtNPs/GNFs) hybrid nanostructure on FTO glass. We applied this structure as a three-dimensional counter electrode in dye-sensitized solar cells (DSSCs), and investigated the cells' photoconversion performance. This journal is © The Royal Society of Chemistry 2011

  1. The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: Part I, free volume and glass transition.

    Science.gov (United States)

    Li, Jinjiang; Zhao, Junshu; Tao, Li; Wang, Jennifer; Waknis, Vrushali; Pan, Duohai; Hubert, Mario; Raghavan, Krishnaswamy; Patel, Jatin

    2015-02-01

    To investigate the structural effect of polymeric excipients on the behavior of free volume of drug-polymer dispersions in relation to glass transition. Two drugs (indomethacin and ketoconazole) were selected to prepare amorphous dispersions with PVP, PVPVA, HPC, and HPMCAS through spray drying. The physical attributes of the dispersions were characterized using SEM and PXRD. The free volume (hole-size) of the dispersions along with drugs and polymers was measured using positron annihilation lifetime spectroscopy (PALS). Their glass transition temperatures (Tgs) were determined using DSC and DMA. FTIR spectra were recorded to identify hydrogen bonding in the dispersions. The chain structural difference-flexible (PVP and PVPVA) vs. inflexible (HPC and HPMCAS)-significantly impacts the free volume and Tgs of the dispersions as well as their deviation from ideality. Relative to Tg, free volume seems to be a better measure of hydrogen bonding interaction for the dispersions of PVP, HPC, and HPMCAS. The free volume of polymers and their dispersions in general appears to be related to their conformations in solution. Both the backbone chain rigidity of polymers as well as drug-polymer interaction can impact the free volume and glass transition behaviors of the dispersions.

  2. The sealing of second mandibular temporary molar pits and fissure with the laser of Nd: YAG, phosphoric acid and the glass ionomer cement

    International Nuclear Information System (INIS)

    Toda, Maria Aparecida

    2003-01-01

    The main of our study was to check the sealing of second mandibular temporary molar pits and fissure, in vitro, with the laser of Nd: YAG, phosphoric acid at 37% and the glass ionomer cement (CIV, Fuji IX GC).The proposal was to check the structural morphologic changes in the laser irradiation upon the enamel surface to watch the pits and fissure sealing with the glass ionomer cement use after the laser irradiation and to verify the efficiency of the 'double conditioning' (phosphoric acid + Nd: YAG). At the same time we watch the evolution of the temperature in the pulp chamber's inside. Our desire was to achieve a therapeutic alternative technic to prevent the dental caries. The Nd: YAG laser parameters were the same: 79 mJ of energy per pulse; frequency of 5 Hz; mean power of 0,4 W; optical fiber on contact of 320 μm diameter; fluency of 99,52 J/ cm 2 , assuming that the only differential was the time of the laser application on the enamel surface. The samples were prepared with this way: Laser Nd: YAG (53 second) + acid + CIV (Fuji IX); Laser Nd: YAG (53 s); Laser Nd: YAG (20 s + 20 s) + acid + CIV; Laser Nd: YAG (20 s + 20 s); Acid + CIV; Control. Through the scanning electron microscopy (MEV) we noticed fusion and resolidification regions due to the laser irradiation and a better adaptation of the glass ionomer cement when we did the 'double conditioning'. Concerning the temperature increase we can conclude that the echeloned period was the best recommended because the temperature was found in a pattern that would not cause any damage to the dental pulp. For future studies we suggest a longer relaxing time between the laser irradiation, a comparative study of this method with other lasers, the use of other sealing materials and the study with the permanent teeth. (author)

  3. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers.

    Science.gov (United States)

    Yasui, Takeshi; Ichikawa, Ryuji; Hsieh, Yi-Da; Hayashi, Kenta; Cahyadi, Harsono; Hindle, Francis; Sakaguchi, Yoshiyuki; Iwata, Tetsuo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Minoshima, Kaoru; Inaba, Hajime

    2015-06-02

    Terahertz (THz) dual comb spectroscopy (DCS) is a promising method for high-accuracy, high-resolution, broadband THz spectroscopy because the mode-resolved THz comb spectrum includes both broadband THz radiation and narrow-line CW-THz radiation characteristics. In addition, all frequency modes of a THz comb can be phase-locked to a microwave frequency standard, providing excellent traceability. However, the need for stabilization of dual femtosecond lasers has often hindered its wide use. To overcome this limitation, here we have demonstrated adaptive-sampling THz-DCS, allowing the use of free-running femtosecond lasers. To correct the fluctuation of the time and frequency scales caused by the laser timing jitter, an adaptive sampling clock is generated by dual THz-comb-referenced spectrum analysers and is used for a timing clock signal in a data acquisition board. The results not only indicated the successful implementation of THz-DCS with free-running lasers but also showed that this configuration outperforms standard THz-DCS with stabilized lasers due to the slight jitter remained in the stabilized lasers.

  4. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading

  5. On the enzymatic formation of platinum nanoparticles

    International Nuclear Information System (INIS)

    Govender, Y.; Riddin, T. L.; Gericke, M.; Whiteley, C. G.

    2010-01-01

    A dimeric hydrogenase enzyme (44.5 and 39.4 kDa sub units) was isolated in a 39.5% yield from the fungus Fusarium oxysporum and purified 4.64-fold by ion exchange chromatography on Sephacryl S-200. Characterisation of the enzyme afforded pH and temperature optima of 7.5 and 38 o C, respectively, a half-life stability of 36 min and a V max and K m of 3.57 nmol min -1 mL -1 and 2.25 mM, respectively. This enzyme was inhibited (non-competitively) by hydrogen hexachloroplatinic acid (H 2 PtCl 6 ) at 1 or 2 mM with a K i value of 118 μM. Incubation of the platinum salt with the pure enzyme under an atmosphere of hydrogen and optimum enzyme conditions (pH 7.5, 38 o C) afforded o C) over 90% reduction took place after the same length of time. Cell-free extract from the fungal isolates produced nearly 90% bioreduction of the platinum salt under both pH and temperature conditions. The bioreduction of the platinum salt by a hydrogenase enzyme takes place by a passive process and not an active one as previously understood.

  6. Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers.

    Science.gov (United States)

    Grünbein, Marie Luise; Shoeman, Robert L; Doak, R Bruce

    2018-03-19

    To conduct X-ray Free-Electron Laser (XFEL) measurements at megahertz (MHz) repetition rates, sample solution must be delivered in a micron-sized liquid free-jet moving at up to 100 m/s. This exceeds by over a factor of two the jet speeds measurable with current high-speed camera techniques. Accordingly we have developed and describe herein an alternative jet velocimetry based on dual-pulse nanosecond laser illumination. Three separate implementations are described, including a small laser-diode system that is inexpensive and highly portable. We have also developed and describe analysis techniques to automatically and rapidly extract jet speed from dual-pulse images.

  7. Three-dimensional simulations of free-electron laser physics

    International Nuclear Information System (INIS)

    McVey, B.D.

    1985-09-01

    A computer code has been developed to simulate three-dimensional free-electron laser physics. A mathematical formulation of the FEL equations is presented, and the numerical solution of the problem is described. Sample results from the computer code are discussed. 23 refs., 6 figs., 2 tabs

  8. Coherent Startup of an Infrared Free-Electron Laser

    NARCIS (Netherlands)

    Jaroszynski, D. A.; Bakker, R. J.; van der Meer, A. F. G.; Oepts, D.; van Amersfoort, P. W.

    1993-01-01

    Coherent enhancement of the spontaneous undulator radiation by several orders of magnitude has been observed in a free-electron laser at wavelengths from 40 to 100 mum. The coherent emission can be explained by details of the electron-beam micropulse structure. Furthermore, it has been found that

  9. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Janek, Joanna, E-mail: janek.joanna@gmail.com; Sołtys, Marta; Żur, Lidia; Pietrasik, Ewa; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-09-01

    Series of lead-free borate glasses with different oxide modifiers and lanthanide ions were prepared. The effect of oxide modifiers MO (M = Ca, Sr, Ba) on spectroscopic properties of trivalent Ln{sup 3+} (Ln = Eu, Er, Pr) were systematically investigated. Especially, the luminescence spectra of Ln{sup 3+}-doped lead-free borate glasses are presented and discussed in relation to the impact of selective components (CaO, SrO and BaO). Several spectroscopic parameters, such as the fluorescence intensity ratio R/O (Eu{sup 3+}) and measured luminescence lifetimes for the {sup 5}D{sub 0} (Eu{sup 3+}), {sup 4}I{sub 13/2} (Er{sup 3+}) and {sup 1}D{sub 2} (Pr{sup 3+}) excited states of lanthanide ions were analyzed in details. The research proved that spectroscopic properties of trivalent Ln{sup 3+} depend significantly on kind of presence oxide modifiers MO (M = Ca, Sr, Ba) in glass host matrices. - Highlights: • Luminescence of Ln{sup 3+}-doped borate glasses was presented and discussed. • Effect of glass modifiers on spectroscopic properties of rare earths was studied. • Measured luminescence lifetimes of Ln{sup 3+} (Ln = Eu, Er, Pr) were analyzed. • Luminescence intensity ratios R/O (Eu{sup 3+}) were determined.

  10. Direct longitudinal laser acceleration of electrons in free space

    Directory of Open Access Journals (Sweden)

    Sergio Carbajo

    2016-02-01

    Full Text Available Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London 431, 535 (2004; T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006; S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: “Making the molecular movie,”, Phil. Trans. R. Soc. A 364, 741 (2006]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010; F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010; Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006; C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006; A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and

  11. Chaotic behaviour and controlling chaos in free electron lasers

    International Nuclear Information System (INIS)

    Wang Wenjie; Chen Shigang; Du Xiangwan; Wang Guangrui

    1995-01-01

    Chaos in free electron lasers (FEL) is reviewed. Special attention has been paid to the chaotic behaviour of the electrons and the laser field. The problem of controlling and utilizing chaotic motion of the electrons and the laser field has also been discussed. In order to find out the rules of instability and chaos in FEL, some typical methods of the chaotic theory are used. These methods include making the Poincare surface of section, drawing the phase space diagrams of the electron orbits, calculating the Liapunov exponents, and computing the power spectrum, etc. Finally, some problems in FEL research are discussed (103 refs., 54 figs.)

  12. Prediction of ligand effects in platinum-amyloid-β coordination.

    Science.gov (United States)

    Turner, Matthew; Deeth, Robert J; Platts, James A

    2017-08-01

    Ligand field molecular mechanics (LFMM) and semi-empirical Parametric Model 7 (PM7) methods are applied to a series of six Pt II -Ligand systems binding to the N-terminal domain of the amyloid-β (Aβ) peptide. Molecular dynamics using a combined LFMM/Assisted Model Building with Energy Refinement (AMBER) approach is used to explore the conformational freedom of the peptide fragment, and identifies favourable platinum binding modes and peptide conformations for each ligand investigated. Platinum coordination is found to depend on the nature of the ligand, providing evidence that binding mode may be controlled by suitable ligand design. Boltzmann populations at 310K indicate that each Pt-Aβ complex has a small number of thermodynamically accessible states. Ramachandran maps are constructed for the sampled Pt-Aβ conformations and secondary structural analysis of the obtained complex structures is performed and contrasted with the free peptide; coordination of these platinum complexes disrupts existing secondary structure in the Aβ peptide and promotes formation of ligand-specific turn-type secondary structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Optical properties of Sm3+ -doped TeO2sbnd WO3sbnd GeO2 glasses for solid state lasers

    Science.gov (United States)

    Subrahmanyam, T.; Gopal, K. Rama; Suvarna, R. Padma; Jamalaiah, B. Chinna; Rao, Ch Srinivasa

    2018-03-01

    Sm3+ -doped oxyfluoride tellurite-tungsten (TWGSm) glasses were prepared by conventional melt quenching method. The optical properties were investigated through photoluminescence excitation, emission and luminescence decay analysis. The optical band gap energy was determined as ∼3.425 eV for 1.0 mol% of Sm3+ -doped TWGSm glass. Upon 404 nm excitation, the TWGSm glasses emit luminescence through 4G5/2 → 6H5/2 (563 nm), 4G5/2 → 6H7/2 (600 nm), 4G5/2 → 6H9/2 (645 nm) and 4G5/2 → 6H11/2 (705 nm) transitions. The Judd-Ofelt analysis was performed using absorption spectrum and obtained radiative parameters were used to estimate the laser characteristics of present glasses. The concentration of Sm3+ has been optimized as 1.0 mol% for efficient luminescence. The luminescence decay of 4G5/2 emission level was studied by monitoring the emission and excitation wavelengths at 600 and 404 nm, respectively. The experimental lifetime of 4G5/2 level was decrease with increase of Sm3+ concentration. The 1.0 mol% of Sm3+ -doped TWGSm glass could be the best choice for solid state visible lasers to emit orange luminescence.

  14. Free electron laser and fundamental physics

    Science.gov (United States)

    Dattoli, Giuseppe; Nguyen, Federico

    2018-03-01

    This review paper is devoted to the understanding of free-electron lasers (FEL) as devices for fundamental physics (FP) studies. After clarifying what FP stands for, we select some aspects of the FEL physics which can be viewed as fundamental. Furthermore, we discuss the perspective uses of the FEL in FP experiments. Regarding the FP aspects of the FEL, we analyze the quantum electrodynamics (QED) nature of the underlying laser mechanism. We look for the truly quantum signature in a process whose phenomenology is dominated by classical effects. As to the use of FEL as a tool for FP experiments we discuss the realization of a device dedicated to the study of non-linear effects in QED such as photon-photon scattering and shining-through-the-wall experiments planned to search for dark matter candidates like axions.

  15. From Storage Rings to Free Electron Lasers for Hard X-Rays

    International Nuclear Information System (INIS)

    Nuhn, H

    2004-01-01

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities

  16. From Storage Rings to Free Electron Lasers for Hard X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, H

    2004-01-09

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities.

  17. From storage rings to free electron lasers for hard x-rays

    International Nuclear Information System (INIS)

    Nuhn, Heinz-Dieter

    2004-01-01

    The intensity of x-ray sources has increased at a rapid rate since the late 1960s by ten orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed, a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the x-ray free electron laser based on the principle of self-amplified spontaneous emission will be the basis of fourth generation x-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, it will then discuss some of the differences between storage ring and free electron laser based approaches, and will close with an update of the present development of x-ray free electron laser user facilities

  18. Physics of laser fusion. Volume III. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO 2 , KrF, and I 2 , for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO 2 gas laser systems; these systems now deliver > 10 4 J and 20 x 10 12 W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10 12 W of 1-μm radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers

  19. Measurement of optical glasses

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1978-11-01

    The possibilities of measurement of the optical glasses parameters needed in building optical devices especially in lasers devices are presented. In the first chapter the general features of the main optical glasses as well as the modalities of obtaining them are given. Chapter two defines the optical glass parameters, and the third chapter describes the measuring methods of the optical glass parameters. Finally, the conclusions which point out the utilization of this paper are presented. (author)

  20. A control system for a free electron laser experiment

    International Nuclear Information System (INIS)

    Giove, D.

    1992-01-01

    The general layout of a control and data acquisition system for a Free Electron Laser experiment will be discussed. Some general considerations about the requirements and the architecture of the whole system will be developed. (author)

  1. An Inverse Free-Electron-Laser accelerator

    International Nuclear Information System (INIS)

    Fisher, A.S.; Gallardo, J.C.; van Steenbergen, A.; Ulc, S.; Woodle, M.; Sandweiss, J.; Fang, Jyan-Min

    1993-01-01

    Recent work at BNL on electron acceleration using the Inverse Free-Electron Laser (IFEL) has considered a low-energy, high-gradient, multi-stage linear accelerator. Experiments are planned at BNL's Accelerator Test Facility using its 50-MeV linac and 100-GW CO 2 laser. We have built and tested a fast-excitation wiggler magnet with constant field, tapered period, and overall length of 47 cm. Vanadium-Permendur ferromagnetic laminations are stacked in alternation with copper, eddy-current-induced, field reflectors to achieve a 1.4-T peak field with a 4-mm gap and a typical period of 3 cm. The laser beam will pass through the wiggler in a low-loss, dielectric-coated stainless-steel, rectangular waveguide. The attenuation and transverse mode has been measured in waveguide sections of various lengths, with and without the dielectric. Results of 1-D and 3-D IFEL simulations, including wiggler errors, will be presented for several cases: the initial, single-module experiment with ΔE = 39 MeV, a four-module design giving ΔE = 100 MeV in a total length of 2 m, and an eight-module IFEL with ΔE = 210 MeV

  2. Two-stage free electron laser research

    Science.gov (United States)

    Segall, S. B.

    1984-10-01

    KMS Fusion, Inc. began studying the feasibility of two-stage free electron lasers for the Office of Naval Research in June, 1980. At that time, the two-stage FEL was only a concept that had been proposed by Luis Elias. The range of parameters over which such a laser could be successfully operated, attainable power output, and constraints on laser operation were not known. The primary reason for supporting this research at that time was that it had the potential for producing short-wavelength radiation using a relatively low voltage electron beam. One advantage of a low-voltage two-stage FEL would be that shielding requirements would be greatly reduced compared with single-stage short-wavelength FEL's. If the electron energy were kept below about 10 MeV, X-rays, generated by electrons striking the beam line wall, would not excite neutron resonance in atomic nuclei. These resonances cause the emission of neutrons with subsequent induced radioactivity. Therefore, above about 10 MeV, a meter or more of concrete shielding is required for the system, whereas below 10 MeV, a few millimeters of lead would be adequate.

  3. Pseudorandom dynamics of frequency combs in free-running quantum cascade lasers

    Science.gov (United States)

    Henry, Nathan; Burghoff, David; Yang, Yang; Hu, Qing; Khurgin, Jacob B.

    2018-01-01

    Recent research has shown that free-running quantum cascade lasers are capable of producing frequency combs in midinfrared and THz regions of the spectrum. Unlike familiar frequency combs originating from mode-locked lasers, these do not require any additional optical elements inside the cavity and have temporal characteristics that are dramatically different from the periodic pulse train of conventional combs. Frequency combs from quantum cascade lasers are characterized by the absence of sharp pulses and strong frequency modulation, periodic with the cavity round trip time but lacking any periodicity within that period. To explicate for this seemingly perplexing behavior, we develop a model of the gain medium using optical Bloch equations that account for hole burning in spectral, spatial, and temporal domains. With this model, we confirm that the most efficient mode of operation of a free-running quantum cascade laser is indeed a pseudorandom frequency-modulated field with nearly constant intensity. We show that the optimum modulation period is commensurate with the gain recovery time of the laser medium and the optimum modulation amplitude is comparable to the gain bandwidth, behavior that has been observed in the experiments.

  4. Modified two beam accelerator driven by a D.C. pelletron free electron laser

    International Nuclear Information System (INIS)

    Larson, D.

    1985-01-01

    Assembling the next generation of linear particle accelerators requires progress in three areas. (1) Sources must be developed to provide the coherent electromagnetic radiation used to power the device. (2) Physical structures must be designed which efficiently transfer the power to the high energy beam. (3) Cooling techniques must be developed in order to enhance beam transport and to provide sufficient luminosity. This paper will describe a method of obtaining a highly efficient coherent radiation source by using a continuous wave Free Electron Laser (FEL). Several possibilities exist for an accelerating structure which could use this radiation as a power source. These include scaling down the size of traditional RF cavities, inverse free electron lasers, and surface grating schemes. Inverse free electron lasers have the possibility of intrinsic cooling of the high energy beam

  5. High-energy glass lasers

    International Nuclear Information System (INIS)

    Glaze, J.A.

    1975-01-01

    In order to investigate intense pulse propagation phenomena, as well as problems in laser and system design, a prototype single chain laser called CYCLOPS was constructed. This laser employs a 20-cm clear aperture disk amplifier in its final stage and produces a terawatt pulse whose brightness exceeds 10 18 watts/cm 2 -ster. The CYCLOPS system is summarized and aspects of nonlinear propagation phenomena that are currently being addressed are discussed. (MOW)

  6. Annual report to the Laser Facility Committee 1979

    International Nuclear Information System (INIS)

    1979-03-01

    The report covers the work done at the Central Laser Facility, Rutherford Laboratory during the year preceding 31 March 1979. Preliminary work already undertaken on the upgrade of the glass laser and target areas consisting of the relocation of the two beam target chamber and tests on phosphate glass and also the completion of the electron beam generator for use by researchers on high power gas laser systems, are described. Work of the groups using the glass laser facility are considered under the headings; glass laser development, gas laser development, laser plasma interactions, transport and particle emission, ablative compression studies, atomic and radiation physics, XUV lasers, theory and computation. (U.K.)

  7. Recovery of carrier-free gold-195

    International Nuclear Information System (INIS)

    Iofa, B.Z.; Ivanova, N.A.

    1995-01-01

    It is known that gold(III) is readily extracted from nitric acid solutions with ethers. The authors have studied extraction of trace amounts of gold(III) from nitric acid solutions with diethyl and diisopropyl ethers in the presence of significant excess of Pt(IV). Distribution coefficients of gold(III) were measured radiometrically using carrier-free gold-195 or spectrophotometrically in the presence of platinum(IV). Very high coefficients of gold separation from platinum may be achieved. Preliminary experiments have shown that zinc-65 was not extracted with ethers from nitric acid solutions. As an extraction system, the authors have chosen the system 10 M HNO 3 -diisopropyl ether. After model experiments, the authors have performed recovery of carrier-free gold-195 from a real platinum target irradiated with protons in a cyclotron

  8. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  9. Biocompatibility study on Ni-free Ti-based and Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.H. [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Wong, P.C. [Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan (China); Chang, S.F. [Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan (China); Tsai, P.H. [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Jang, J.S.C., E-mail: jscjang@ncu.edu.tw [Institute of Material Science and Engineering, National Central University, Taoyuan, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan (China); Huang, J.C. [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2017-06-01

    Safety and reliability are crucial issues for medical instruments and implants. In the past few decays, bulk metallic glasses (BMGs) have drawn attentions due to their superior mechanical properties, good corrosion resistance, antibacterial and good biocompatibility. However, most Zr-based and Ti-based BMGs contain Ni as an important element which is prone to human allergy problem. In this study, the Ni-free Ti-based and Zr-based BMGs, Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14}, and Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8}, were selected for systematical evaluation of their biocompatibility. Several biocompatibility tests, co-cultural with L929 murine fibroblast cell line, were carried out on these two BMGs, as well as the comparison samples of Ti6Al4V and pure Cu. The results in terms of cellular adhesion, cytotoxicity, and metallic ion release affection reveal that the Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14} BMG and Ti6Al4V exhibit the optimum biocompatibility; cells still being attached on the petri dish with good adhesion and exhibiting the spindle shape after direct contact test. Furthermore, the Ti{sub 40}Zr{sub 10}Cu{sub 36}Pd{sub 14} BMG showed very low Cu ion release level, in agreement with the MTT results. Based on the current findings, it is believed that Ni-free Ti-based BMG can act as an ideal candidate for medical implant. - Highlight: • Ni-free bulk metallic glass is promising material for medical implants. • Ni-free Ti-based BMG presents similar cellular adhesion as Ti6Al4V. • Ni-free Ti-based BMG shows less cytotoxicity, and metallic ion release than Ti6Al4V.

  10. High Harmonic Inverse Free-Electron-Laser Interaction at 800 NM

    CERN Document Server

    Sears, Chris M S; Colby, Eric R; Cowan, Benjamin; Plettner, Tomas; Siemann, Robert; Spencer, James

    2005-01-01

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and used as a short wavelength modulator forμbunching of beams for laser acceleration experiments*,**. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800 nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. We will also discuss diagnostics for obtaining beam overlap and statistical techniques used to account for machine drifts and analyze the data.

  11. Free electron lasers on superconducting linac

    International Nuclear Information System (INIS)

    Lapierrre, Y.

    1986-01-01

    Analysing the results of several Free Electron Laser experiments, we show that the best accelerator should be a superconducting linear accelerator: it can provide a c.w. high quality beam (energy spread and emittance). The technology of RF superconductivity provide the opportunity to build such an accelerator. In this paper, we present the foreseen results one can expect from a FEL based on such a machine: - Average power > 1 Kw, - Total efficiency > 2.5%, - Tunability between 0.6 and 5 μm [fr

  12. Attosecond time-energy structure of X-ray free-electron laser pulses

    Science.gov (United States)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  13. Beam manipulation for compact laser wakefield accelerator based free-electron lasers

    International Nuclear Information System (INIS)

    Loulergue, A; Labat, M; Benabderrahmane, C; Couprie, M E; Evain, C; Malka, V

    2015-01-01

    Free-electron lasers (FELs) are a unique source of light, particularly in the x-ray domain. After the success of FELs based on conventional acceleration using radio-frequency cavities, an important challenge is the development of FELs based on electron bunching accelerated by a laser wakefield accelerator (LWFA). However, the present LWFA electron bunch properties do not permit use directly for a significant FEL amplification. It is known that longitudinal decompression of electron beams delivered by state-of-the-art LWFA eases the FEL process. We propose here a second order transverse beam manipulation turning the large inherent transverse chromatic emittances of LWFA beams into direct FEL gain advantage. Numerical simulations are presented showing that this beam manipulation can further enhance by orders of magnitude the peak power of the radiation. (paper)

  14. Reactions of neopentane and neohexane on platinum/Y-zeolite and platinum/silica catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Foger, K.; Anderson, J.R.

    1978-10-13

    The hydrocracking/hydroisomerization reaction of 20:1 hydrogen/neopentane at 455-625/sup 0/K was studied on platinum-exchanged sodium, calcium, and lanthanum Y zeolites and Aerosil-supported platinum of 1-20 nm average platinum particle size, by analysis of the product distribution, ESCA, and temperature-programed desorption. The results suggested that the reaction occurs only on platinum and that it proceeds by two parallel pathways which have different activation energies and whose relative proportion depends on the particle size. One pathway is the conventionally accepted one on low-index crystallite facets; the other proceeds on single-surface platinum atoms of low coordination (corner or edge atoms) which become more abundant at lower crystallite size. In both cases, the adsorbed intermediate may undergo either isomerization or hydrogenolysis; the selectivity depends on the hydrogen partial pressure and the relative strength of adsorption of hydrogen and neopentane. Neohexane isomerization selectivity on the same catalysts is consistent with a carbonium ion mechanism on a dual-function catalyst.

  15. Formation of Infrared Femtosecond Laser Induced Colour Centres in Tb3+-Doped and Tb3+/Ce3+-Codoped Heavy Germanate Glasses

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo-Rong(陈国荣); YANG Yun-Xia(杨云霞); QIU Jian-Rong(邱建荣); JIANG Xiong-Wei(姜雄伟); K.Hirao

    2003-01-01

    The formation of infrared femtosecond laser induced colour centres was observed in Tb3+-doped and Tb3+ /Ce3+-codoped heavy germanate glasses.A rectangular scan was made by focusing the laser beam inside the glass samples.A three-dimensional yellowish block was created from the path and it corresponded to the appearance of broad absorption bands in the absorption spectra.The irradiation induced absorption coefficient μ(λ)was used to characterize the distribution of radiation induced colour centres in the samples,whose peak was located at 380nm and extended to the longer wavelength.Ce3+ ions were found not only to inhibit the formation of colour centres,but also to enhance the recovery.

  16. Solubility of platinum-arsenide melt and sperrylite in synthetic basalt at 0.1 MPa and 1200 °C with implications for arsenic speciation and platinum sequestration in mafic igneous systems

    Science.gov (United States)

    Canali, A. C.; Brenan, J. M.; Sullivan, N. A.

    2017-11-01

    To better understand the Pt-As association in natural magmas, experiments were done at 1200 °C and 0.1 MPa to measure the solubility of Pt and Pt-arsenide phases (melt and sperrylite, PtAs2), as well as to determine the oxidation state, and identify evidence for Pt-As complexing, in molten silicate. Samples consisting of synthetic basalt contained in chromite crucibles were subject to three experimental procedures. In the first, platinum solubility in the synthetic basalt was determined without added arsenic by equilibrating the sample with a platinum source (embedded wire or bead) in a gas-mixing furnace. In the second, the sample plus a Pt-arsenide source was equilibrated in a vacuum-sealed fused quartz tube containing a solid-oxide oxygen buffer. The third approach involved two steps: first equilibrating the sample in a gas-mixing furnace, then with added arsenide melt in a sealed quartz tube. Oxygen fugacity was estimated in the latter step using chromite/melt partitioning of vanadium. Method two experiments done at high initial arsenic activity (PtAs melt + PtAs2), showed significant loss of arsenic from the sample, the result of vapour transfer to newly-formed arsenide phases in the buffer. Method three experiments showed no loss of arsenic, yielding a uniform final distribution in the sample. Analyses of run-product glasses from experiments which did not show arsenic loss reveal significant increase in arsenic concentrations with fO2, varying from ∼10 ppm (FMQ-3.25) to >10,000 ppm (FMQ + 5.5). Despite very high arsenic loadings (>1000 ppm), the solubility of Pt is similar in arsenic-bearing and arsenic-free glasses. The variation in arsenic solubility with fO2 shows a linear relationship, that when corrected for the change in the activity of dissolved arsenic with the melt ferric/ferrous ratio, yields a solubility-fO2 relationship consistent with As3+ as the dissolved species. This result is confirmed by X-ray absorption near edge structure (XANES

  17. Microdroplet deposition through a film-free laser forward printing technique

    International Nuclear Information System (INIS)

    Patrascioiu, A.; Fernández-Pradas, J.M.; Morenza, J.L.; Serra, P.

    2012-01-01

    Highlights: ► Circular droplets are obtained for a wide range of focusing depths at fixed energy. ► Focusing depth variation study reveals two abrupt transitions in droplet diameter. ► Liquid ejection mechanism is mediated by two types of jets of different origin. ► Evolution of jets depends on the focusing depth accounting for the seen transitions. - Abstract: A recently developed film-free laser forward microprinting technique allows printing transparent and weakly absorbing liquids with high resolution and reproducibility. Its operating principle consists in the tight focusing of ultrashort laser pulses inside the liquid, and near its free surface, such that all the laser energy is absorbed in a small region around the beam waist. A cavitation bubble is then created inside the liquid, whose subsequent expansion results into the ejection of liquid. The collection of the ejected liquid on a substrate leads to the deposition of micron-sized droplets. In this work, we investigate a relevant process parameter of the technique, namely the laser focusing depth, and its influence on the morphology of the deposited droplets. The study reveals that for a fixed laser pulse energy there exists a relatively wide range of focusing depths at which circular and uniform droplets can be printed. The process of liquid ejection is also investigated. Time-resolved images reveal that liquid ejection proceeds through the formation of two kinds of jets which display clearly differentiated dynamics, and which could provide an interpretation for the dependence observed between the morphology of the deposited droplets and the laser focusing depth.

  18. Pulse propagation in free-electron lasers with a tapered undulator

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered undulator devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristics are presented and are found to change considerably over this range

  19. Unveiling the relationships among the viscosity equations of glass liquids and colloidal suspensions for obtaining universal equations with the generic free volume concept.

    Science.gov (United States)

    Hao, Tian

    2015-09-14

    The underlying relationships among viscosity equations of glass liquids and colloidal suspensions are explored with the aid of free volume concept. Viscosity equations of glass liquids available in literature are focused and found to have a same physical basis but different mathematical expressions for the free volume. The glass transitions induced by temperatures in glass liquids and the percolation transition induced by particle volume fractions in colloidal suspensions essentially are a second order phase transition: both those two transitions could induce the free volume changes, which in turn determines how the viscosities are going to change with temperatures and/or particle volume fractions. Unified correlations of the free volume to both temperatures and particle volume fractions are thus proposed. The resulted viscosity equations are reducible to many popular viscosity equations currently widely used in literature; those equations should be able to cover many different types of materials over a wide temperature range. For demonstration purpose, one of the simplified versions of those newly developed equations is compared with popular viscosity equations and the experimental data: it can well fit the experimental data over a wide temperature range. The current work reveals common physical grounds among various viscosity equations, deepening our understanding on viscosity and unifying the free volume theory across many different systems.

  20. Discrimination of side-window glass of Korean autos by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lee, Sin-Woo; Ryu, Jong-Sik; Min, Ji-Sook; Choi, Man-Yong; Lee, Kwang-Sik; Shin, Woo-Jin

    2016-07-15

    Fragments of glass from cars are often found at crime scenes and can be crucial evidence for solving the crime. The glass fragments are important as trace evidence at crime scenes related to car accidents and burgled homes. By identifying the origin of glass fragments, it is possible to infer the identity of a suspect. Our results represent a promising approach to a thorough forensic investigation of car glass. Thirty-five samples from the side windows of cars produced and used in South Korea were collected from the official agencies of five car manufacturers and from two glassmakers. In addition, 120 samples from side mirrors were collected from the same suppliers as well as from small businesses. Their chemical compositions (including Pb isotopes) were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and linear discriminant analysis (LDA) was performed. The percentages of major elements (Si, Ca, and Fe) in side-window glass varied within narrow ranges (30.0 ± 2.36%, 5.93 ± 0.52%, and 0.33 ± 0.05%, respectively), while the differences among Pb isotope ratios were not significant. In contrast, light rare earth elements (LREEs) were different from each glassmaker. From the LDA, the types of side-window glass were successfully discriminated according to car manufacturer, glassmaker, and even glass thickness. However, glass from side mirrors cannot be used for good forensic identifiers. Discrimination techniques for side-window glass, although not for side mirrors, using chemical compositions combined with multivariate statistical analyses provide evidence for forensic investigations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Investigations on optical properties of Eu3+ ion doped magnesium telluroborate glasses for red laser applications

    Science.gov (United States)

    Arunkumar, S.; Annapoorani, K.; Marimuthu, K.

    2018-04-01

    Eu3+ doped Magnesium telluroborate glasses were prepared with the chemical composition (40-x)H3BO3+35 TeO2+15MgCO3+10MgF2+xEu2O3 (where x = 0.1, 0.5, 1.0 and 2.0 in wt%) following the melt quenching technique and labeled as MTB0.1Eu, MTB0.5Eu, MTB1.0Eu and MTB2.0Eu respectively. The absorption spectra exhibit seven peaks in the visible and NIR region. Five emission peaks corresponding to the 5D0→7FJ (J=0, 1, 2, 3, 4) transitions were observed while exciting at 465 nm. The luminescence intensity ratio (R) and Ω2 parameter values were found to be higher for the MTB0.5Eu glass thus indicates the higher asymmetry around the Eu3+ ions site compared to other prepared glasses. The CIE color chromaticity coordinates of the present glasses are found to lie in the prominent red region in the chromaticity diagram. The stimulated emission cross-section value of the MTB0.5Eu glass was found to be higher pertaining to the 5D0 → 7F2 transition compared to the other prepared glasses and reported literature thus suggests its suitability for red laser applications.

  2. Optical synchronization of a free-electron laser with femtosecond precision

    International Nuclear Information System (INIS)

    Loehl, F.

    2009-09-01

    High-gain free-electron lasers (FELs) are capable of generating sub-10 fs long light pulses. In order to take full advantage of these extremely short light pulses in time-resolved experiments, synchronization with a so far unprecedented timing accuracy is required. Within this thesis, an optical synchronization system providing sub-10 fs stability has been developed and was implemented at the ultra-violet and soft X-ray free-electron laser FLASH at DESY, Hamburg. The system uses a mode-locked laser as a timing reference. The laser pulses are distributed via length stabilized optical fiber-links to the remote locations. A key feature of the system is a bunch arrival-time monitor detecting the electron bunch arrival-time with an unrivaled resolution of 6 fs. A feedback system based on the arrival-time monitor was established, improving the arrival-time fluctuations from 200 fs in the unstabilized case to 25 fs with active feedback. In order to achieve the high peak current of several thousand amperes required for the FEL process, the electron bunches are longitudinally compressed in two magnetic chicanes. A second feedback system was developed stabilizing the bunch compression process based on measurements of diffraction radiation. The combination of both feedback systems improves the stability of the FEL radiation significantly. (orig.)

  3. Optical synchronization of a free-electron laser with femtosecond precision

    Energy Technology Data Exchange (ETDEWEB)

    Loehl, F.

    2009-09-15

    High-gain free-electron lasers (FELs) are capable of generating sub-10 fs long light pulses. In order to take full advantage of these extremely short light pulses in time-resolved experiments, synchronization with a so far unprecedented timing accuracy is required. Within this thesis, an optical synchronization system providing sub-10 fs stability has been developed and was implemented at the ultra-violet and soft X-ray free-electron laser FLASH at DESY, Hamburg. The system uses a mode-locked laser as a timing reference. The laser pulses are distributed via length stabilized optical fiber-links to the remote locations. A key feature of the system is a bunch arrival-time monitor detecting the electron bunch arrival-time with an unrivaled resolution of 6 fs. A feedback system based on the arrival-time monitor was established, improving the arrival-time fluctuations from 200 fs in the unstabilized case to 25 fs with active feedback. In order to achieve the high peak current of several thousand amperes required for the FEL process, the electron bunches are longitudinally compressed in two magnetic chicanes. A second feedback system was developed stabilizing the bunch compression process based on measurements of diffraction radiation. The combination of both feedback systems improves the stability of the FEL radiation significantly. (orig.)

  4. Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass: A phosphor for smart lighting

    Energy Technology Data Exchange (ETDEWEB)

    Lima, S.M., E-mail: smlima@uems.br [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C. P. 351, CEP 79804-970 Dourados, MS (Brazil); Andrade, L.H.C.; Rocha, A.C.P. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C. P. 351, CEP 79804-970 Dourados, MS (Brazil); Silva, J.R.; Farias, A.M.; Medina, A.N.; Baesso, M.L. [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR (Brazil); Nunes, L.A.O. [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP (Brazil); Guyot, Y.; Boulon, G. [Laboratoire de Physico-Chimie des Matériaux Luminescents, Université de Lyon 1, UMR 5620 CNRS, 69622 Villeurbanne (France)

    2013-11-15

    In this paper, a broad emission band from Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass is reported. By changing the excitation wavelengths, the results showed it is possible to tune the emission from green to orange, what combined with the scattered light from the same blue LED used for excitation, provided a color rendering index of 71 and a correlated color temperature of 6550 K. Our preliminary tests indicate this material as a promising phosphor towards the development of smart lighting devices. -- Highlights: • We report a broad emission band from Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass. • The maximum emission peak can be tune from green to orange region. • The test with a LED provided a color rendering index of 71 and a correlated color temperature of 6550 K.

  5. S-1 monotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck after progression on platinum-based chemotherapy

    International Nuclear Information System (INIS)

    Yokota, Tomoya; Onozawa, Yusuke; Boku, Narikazu

    2011-01-01

    Platinum compounds play pivotal roles in treatment for squamous cell carcinoma of the head and neck. The objective was to evaluate the efficacy of S-1 monotherapy in patients with recurrent or metastatic squamous cell carcinoma of the head and neck after failure of platinum-based chemotherapy. We retrospectively analyzed 39 consecutive patients with recurrent or metastatic squamous cell carcinoma of the head and neck who received S-1 monotherapy after failure of platinum-based chemotherapy or chemoradiotherapy at the Shizuoka Cancer Center between August 2003 and October 2010. S-1 was given orally twice daily (80 mg/m 2 /day) for 28 days followed by a 14-day rest. The median follow-up period in survivors was 31.5 months. Among 38 patients with measurable lesions, 9 (24%) showed partial response and 15 (39%) showed stable disease. The median progression-free survival was 4.9 months and the median overall survival was 13.2 months. The median progression-free survival for oropharyngeal cancer (n=7) was significantly longer than for other cancers (n=32) (14.9 vs. 4.7 months, P=0.035). The response rate in patients with a recurrence-free interval since the last platinum administration >6.0 months was significantly better than with a recurrence-free interval 6.0 months also showed a significantly better progression-free survival (6.0 vs. 2.6 months, P=0.045). The frequency of Grade 3/4 toxicities was less than 10%. S-1 monotherapy shows promising signs of efficacy and tolerability in patients with recurrent or metastatic squamous cell carcinoma of the head and neck after failure of platinum-based chemotherapy in this retrospective cohort and warrants further investigation in this population. (author)

  6. Free-space laser communication technologies III; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1991

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1991-01-01

    The present volume on free-space laser communication technologies discusses system analysis, performance, and applications, pointing, acquisition, and tracking in beam control, laboratory demonstration systems, and transmitter and critical component technologies. Attention is given to a space station laser communication transceiver, meeting intersatellite links mission requirements by an adequate optical terminal design, an optical approach to proximity-operations communications for Space Station Freedom, and optical space-to-ground link availability assessment and diversity requirements. Topics addressed include nonmechanical steering of laser beams by multiple aperture antennas, a free-space simulator for laser transmission, heterodyne acquisition and tracking in a free-space diode laser link, and laser terminal attitude determination via autonomous star tracking. Also discussed are stability considerations in relay lens design for optical communications, liquid crystals for lasercom applications, and narrowband optical interference filters.

  7. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers

    International Nuclear Information System (INIS)

    Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.; Zastrau, Ulf; Blinne, Alexander; Feigl, Torsten; Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Förster, Eckhart

    2013-01-01

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed

  8. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers.

    Science.gov (United States)

    Hilbert, Vinzenz; Blinne, Alexander; Fuchs, Silvio; Feigl, Torsten; Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Paulus, Gerhard G; Förster, Eckhart; Zastrau, Ulf

    2013-09-01

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

  9. Laser method of free atom nuclei orientation

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1987-01-01

    Orientation process of free atom (atoms in beams) nuclei, scattering quanta of circularly polarized laser radiation is considered. A method for the evaluation of nuclei orientation parameters is developed. It is shown that in the process of pumping between the ground and first excited atomic states with electron shell spins J 1 and J 2 , so that J 2 = J 1 + 1, a complete orientation of nuclei can be attained

  10. Free-Free Transitions of e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  11. Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model.

    Science.gov (United States)

    Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R

    2016-06-09

    The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.

  12. Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gyorgy, E. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania) and Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona, Campus UAB, 08193 Bellaterra (Spain)]. E-mail: egyorgy@icmab.es; Grigorescu, S. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Socol, G. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Janackovic, D. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Dindune, A. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Kanepe, Z. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Palcevskis, E. [Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Zdrentu, E.L. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania); Petrescu, S.M. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania)

    2007-07-31

    Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO{sub 2} doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF{sup *} ({lambda} = 248 nm, {tau} {>=} 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 deg. C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.

  13. Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses

    International Nuclear Information System (INIS)

    Da-Yong, Liu; Yan, Li; Yan-Ping, Dou; Heng-Chang, Guo; Hong, Yang; Qi-Huang, Gong

    2008-01-01

    Multi-mode interference waveguides are fabricated inside silica glass by transverse writing geometry with femtosecond laser pulses. The influences of several writing and reading factors on the output mode are systematically studied. The experimental results of straight waveguides are in good agreement with the simulations by the beam propagation method. By integrating a straight waveguide with a bent waveguide, a 1 × 2 multi-mode splitter is formed and 2 × 3 lobes are observed in the output mode. (fundamental areas of phenomenology (including applications))

  14. Infrared spectroscopy of gas-phase clusters using a free-electron laser

    International Nuclear Information System (INIS)

    Heijnsbergen, D. van; Helden, G. von; Meijer, G.

    2002-01-01

    Most clusters produced in the gas phase, especially those containing metals, remain largely uncharaterized, among these are transition metal - carbide, -oxide and -nitride clusters. A method for recording IR spectra of strongly bound gas-phase clusters is presented. It is based on a free-electron laser called Felix, characterized by wide wavelength tuning range, covering almost the full 'molecular finger print' region, high power and fluence which make it suited to excite gas-phase species i.e. gas -phase clusters. Neutral clusters were generated by laser vaporization technique, ions that were created after the interaction with the free-electron laser were analyzed in a flight mass spectrometer. Experiments were run with titanium carbide clusters and their IR spectra given. It was shown that this method is suited to strongly bound clusters with low ionization energies, a condition met for many pure metal clusters and metal compound clusters. (nevyjel)

  15. Production of flat KrF laser focal profiles with echelon free-induced spatial incoherence

    International Nuclear Information System (INIS)

    Deniz, A.V.; Obenschain, S.P.; Pronko, M.; Lehmberg, R.H.

    1990-01-01

    High gain direct-drive laser fusion requires a uniform spherical pellet implosion. This in turn requires that the focal profile of each driving beam be sufficiently uniform and controlled. Several methods for producing uniform beams have been proposed. One promising technique, echelon free-induced spatial incoherence (ISI), consists of propagating a broadband spatially incoherent beam through an entire laser system. This technique will be used in the Nike laser, which is a twenty-four- to forty-eight-beam multikilojoule KrF system currently under construction at the Naval Research Laboratory (NRL). This paper presents measurements of focal profiles of laser light smoothed by echelon free ISI from a KrF oscillator and amplifier. The initial implementation is shown

  16. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-02-01

    This paper reports a flexible fabrication method for 3D solenoid microcoils in silica glass. The method consists of femtosecond laser wet etching (FLWE) and microsolidics process. The 3D microchannel with high aspect ratio is fabricated by an improved FLWE method. In the microsolidics process, an alloy was chosen as the conductive metal. The microwires are achieved by injecting liquid alloy into the microchannel, and allowing the alloy to cool and solidify. The alloy microwires with high melting point can overcome the limitation of working temperature and improve the electrical property. The geometry, the height and diameter of microcoils were flexibly fabricated by the pre-designed laser writing path, the laser power and etching time. The 3D microcoils can provide uniform magnetic field and be widely integrated in many magnetic microsystems.

  17. Hydrogenation of hexene over platinum on alumina vs. platinum in a Na-Y zeolite

    International Nuclear Information System (INIS)

    Miner, R.S. Jr.; Ione, K.G.; Namba, S.; Turkevich, J.

    1978-01-01

    In order to study the efficacy of zeolites as supports, several platinum H--Y zeolites were prepared by ion exchanging an H--Y zeolite with Pt(NH 3 ) 4 Cl 2 and reducing these products with hydrazine hydrate (A, B, C). Another preparation was made by adsorbing 32-A platinum sol on the zeolite crystallites (D). These catalysts were studied for hydrogenation and isomerization of hexene-1, ethylene hydrogenation, hydrogen chemisorption, and poison titration. They were compared with monodisperse Pt (32 A diameter) on alumina. A marked difference was found between the behavior of hexene-1 with the platinum-in-zeolite and with the platinum-on-alumina

  18. Platinum nanoparticles: a non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering.

    Science.gov (United States)

    Samadi, Akbar; Klingberg, Henrik; Jauffred, Liselotte; Kjær, Andreas; Bendix, Poul Martin; Oddershede, Lene B

    2018-05-17

    Absorption of near infrared (NIR) light by metallic nanoparticles can cause extreme heating and is of interest for instance in cancer treatment since NIR light has a relatively large penetration depth into biological tissue. Here, we quantify the extraordinary thermoplasmonic properties of platinum nanoparticles and demonstrate their efficiency in photothermal cancer therapy. Although platinum nanoparticles are extensively used for catalysis, they are much overlooked in a biological context. Via direct measurements based on a biological matrix we show that individual irradiated platinum nanoparticles with diameters of 50-70 nm can easily reach surface temperatures up to 900 K. In contrast to gold nanoshells, which are often used for photothermal purposes, we demonstrate that the platinum particles remain stable at these extreme temperatures. The experiments are paralleled by finite element modeling confirming the experimental results and establishing a theoretical understanding of the particles' thermoplasmonic properties. At extreme temperatures it is likely that a vapor layer will form around the plasmonic particle, and we show this scenario to be consistent with direct measurements and simulations. Viability studies demonstrate that platinum nanoparticles themselves are non-toxic at therapeutically relevant concentrations, however, upon laser irradiation we show that they efficiently kill human cancer cells. Therefore, platinum nanoparticles are highly promising candidates for thermoplasmonic applications in the life sciences, in nano-medicine, and for bio-medical engineering.

  19. Free-electron lasers in ultraviolet photobiology

    International Nuclear Information System (INIS)

    Coohill, T.P.; Sutherland, J.C.

    1989-01-01

    The potential uses for a free-electron laser (FEL), tunable in wavelength from 10 to 400 nm, for photobiological experiments is discussed. Inherent problems of cell and molecular absorption, especially in certain regions of the ultraviolet (UV), are addressed. Absorption values for living cells and viruses at selected wavelengths in the UV are tabulated, and a calculation of the flux needed to inactivate mammalian cells is included. A comparison is made of the UV output of a proposed rf-linac FEL with those of a monochromator, a tunable dye laser, and a synchrotron. The advantages of a UV FEL are apparent, especially in the wavelength regions where the cross section for absorption by biological molecules is low, i.e., 300 to 400 nm and 10 to 200 nm. It is apparent that a UV FEL would be an ideal source for a variety of biological studies that use both intact organisms and isolated cells and viruses

  20. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    Energy Technology Data Exchange (ETDEWEB)

    WANG,X.J.; MURPHY,J.B.; YU,L.H.; FAATZ,B.; HUANG,Z.; REICHE,S.; ZOLOTOREV,M.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherence of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).

  1. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  2. Investigation of matrix effects in 193 nm laser ablation-inductively coupled plasma-mass spectrometry analysis using reference glasses of different transparencies

    International Nuclear Information System (INIS)

    Czas, J.; Jochum, K.P.; Stoll, B.; Weis, U.; Yang, Q.-C.; Jacob, D.E.; Andreae, M.O.

    2012-01-01

    The degree of transparency of glasses, which depends on the Fe content, may influence the ablation behavior during laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis. To test possible matrix effects when using a 193 nm Nd:YAG laser, we have analyzed transparent and opaque NIST, BAM and USGS reference glasses. These reference materials are ideal for such investigations, because they are well characterized, most elements are homogeneously distributed at the micrometer scale, and their Fe content varies over a very large range, from 16 to 130,000 μg g −1 . Our measurements show that the fractionation factors of refractory and volatile lithophile elements, such as Sr, Ba, and Rb, are 1.00 ± 0.03 and independent of the degree of transparency. However, for volatile chalcophile/siderophile elements (e.g., Zn and Pb) the fractionation factors vary significantly between 0.7 and 1, depending on the spot sizes and the transparency of the material. Mass-load-induced matrix effects may also influence the accuracy of LA-ICP-MS analysis. They are less than 2% for the lithophile and up to 10% for volatile chalcophile/siderophile elements when the mass load varies by a factor 2.4. Relative sensitivity factors used for calibration of lithophile elements agree within uncertainty limits for transparent and opaque glasses when using a 193 nm laser. Even for volatile/chalcophile elements they differ only by 5–10%. The reliability of the LA-ICP-MS analyses is demonstrated by presenting concentration data of 27 trace elements in the NIST, BAM and USGS reference glasses using NIST SRM 612 for calibration, where highly accurate reference values are available. For trace element concentrations in the range between 1 and 500 μg g −1 , the reproducibility and the uncertainties at the 95% confidence level of the measurements vary between 1–4%, and 7–10%, respectively. - Highlights: ► Matrix effects are low for lithophile elements using a 193 nm laser

  3. Parametric study of self-forming ZnO Nanowall network with honeycomb structure by Pulsed Laser Deposition

    KAUST Repository

    El Zein, B.; Boulfrad, Samir; Jabbour, Ghassan E.; Doghè che, Elhadj Hadj

    2014-01-01

    The successful synthesis of catalyst free zinc oxide (ZnO) Nanowall networks with honeycomb like structure by Pulsed Laser Deposition (PLD) is demonstrated in this paper. The synthesis was conducted directly on Silicon (Si) (1 0 0) and Glass

  4. Microdroplet deposition through a film-free laser forward printing technique

    Energy Technology Data Exchange (ETDEWEB)

    Patrascioiu, A.; Fernandez-Pradas, J.M.; Morenza, J.L. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Serra, P., E-mail: pserra@ub.edu [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Circular droplets are obtained for a wide range of focusing depths at fixed energy. Black-Right-Pointing-Pointer Focusing depth variation study reveals two abrupt transitions in droplet diameter. Black-Right-Pointing-Pointer Liquid ejection mechanism is mediated by two types of jets of different origin. Black-Right-Pointing-Pointer Evolution of jets depends on the focusing depth accounting for the seen transitions. - Abstract: A recently developed film-free laser forward microprinting technique allows printing transparent and weakly absorbing liquids with high resolution and reproducibility. Its operating principle consists in the tight focusing of ultrashort laser pulses inside the liquid, and near its free surface, such that all the laser energy is absorbed in a small region around the beam waist. A cavitation bubble is then created inside the liquid, whose subsequent expansion results into the ejection of liquid. The collection of the ejected liquid on a substrate leads to the deposition of micron-sized droplets. In this work, we investigate a relevant process parameter of the technique, namely the laser focusing depth, and its influence on the morphology of the deposited droplets. The study reveals that for a fixed laser pulse energy there exists a relatively wide range of focusing depths at which circular and uniform droplets can be printed. The process of liquid ejection is also investigated. Time-resolved images reveal that liquid ejection proceeds through the formation of two kinds of jets which display clearly differentiated dynamics, and which could provide an interpretation for the dependence observed between the morphology of the deposited droplets and the laser focusing depth.

  5. Radiation safety aspects of new X-ray free electron laser facility, SACLA

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2013-01-01

    In the safety point of view, X-ray free electron laser facilities have some characteristics in comparison with 3 rd generation synchrotron radiation facilities. One is that the high energy electrons are always injected into the beam dump and the beamlines must be constructed in the direction of the movements of electrons, and another is that the total number of accelerated electrons of X-ray free electron laser facilities is much larger than that of synchrotron radiation facilities. In addition to the importance of safety interlock systems, therefore, it is important that high energy electrons never invade into X-ray free electron laser beamlines and the amount of accelerated electron beam losses must be reduced as much as possible. At SACLA, a safety permanent magnet was installed into the X-ray light beam axis, and a beam halo monitor and beam loss monitors were installed within and around the electron transport pipes, respectively. In comparison with the SPring-8 synchrotron radiation facility, shielding design of SACLA, outline of the radiation safety systems including the monitors will be presented

  6. The waveguide Free-Electron Laser. 14

    International Nuclear Information System (INIS)

    Walsh, J.E.

    1990-01-01

    The general characteristics of free-electron lasers (FELs) which employ a waveguiding structure to confine electromagnetic fields and to couple them to the electron beam is discussed. The mode structure of the basic parallel plate waveguide and its adaptation via quasi-optical techniques to FEL resonator design are considered in detail. A summary of the theory of FEL systems which depend intrinsically on a guide structure (micro-undulator, Cerenkov and metal-grating FELs) and a review of progress on waveguide FEL experiments are also presented. (author). 44 refs.; 16 figs

  7. Femtosecond laser direct writing of gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass

    International Nuclear Information System (INIS)

    Vishnubhatla, K C; Kumar, R Sai Santosh; Rao, D Narayana; Rao, S Venugopal; Osellame, R; Ramponi, R; Bhaktha, S N B; Mattarelli, M; Montagna, M; Turrell, S; Chiappini, A; Chiasera, A; Ferrari, M; Righini, G C

    2009-01-01

    The femtosecond laser direct writing technique was employed to inscribe gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass. Using the butt coupling technique, a systematic study of waveguide loss with respect to input pulse energy and writing speed was performed to achieve the best waveguide with low propagation loss (PL). By pumping at 980 nm, we observed signal enhancement in these active waveguides in the telecom spectral region. The refractive index change was smooth and we estimated it to be ∼10 -3 . The high quantum efficiency (∼80%) and a best PL of ∼0.9 dB cm -1 combined with signal enhancement makes Baccarat glass a potential candidate for application in photonics.

  8. Hemostatic properties of the free-electron laser

    International Nuclear Information System (INIS)

    Cram, G.P. Jr.; Copeland, M.L.

    1998-01-01

    We have investigated the hemostatic properties of the free-electron laser (FEL) and compared these properties to the most commonly used commercial lasers in neurosurgery, CO 2 and Nd:YAG, using an acute canine model. Arterial and venous vessels, of varying diameters from 0.1 to 1.0 mm, were divided with all three lasers. Analysis of five wavelengths of the FEL (3.0, 4.5, 6.1, 6.45, and 7.7 microns) resulted in bleeding without evidence of significant coagulation, regardless of whether the vessel was an artery or vein. Hemorrhage from vessels less than 0.4 mm diameter was subsequently easily controlled with Gelfoam registered (topical hemostatic agent) alone, whereas larger vessels required bipolar electrocautery. No significant charring, or contraction of the surrounding parenchyma was noted with any of the wavelengths chosen from FEL source. The CO 2 laser, in continuous mode, easily coagulated vessels with diameters of 4 mm and less, while larger vessels displayed significant bleeding requiring bipolar electrocautery for control. Tissue charring was noted with application of the CO 2 laser. In super pulse mode, the CO 2 laser exhibited similar properties, including significant charring of the surrounding parenchyma. The Nd:YAG coagulated all vessels tested up to 1.4 mm, which was the largest diameter cortical artery found, however this laser displayed significant and extensive contraction and retraction of the surrounding parenchyma. In conclusion, the FEL appears to be a poor hemostatic agent. Our results did not show any benefit of the FEL over current conventional means of achieving hemostasis. However, control of hemorrhage was easily achieved with currently used methods of hemostasis, namely Gelfoam registered or bipolar electrocuatery. Although only cortical vessels in dogs were tested, we feel this data can be applied to all animals, including humans, and the peripheral, as well as central, vasculature, as our data on the CO 2 and Nd:YAG appear to closely

  9. Mechanisms of two-color laser-induced field-free molecular orientation.

    Science.gov (United States)

    Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul

    2012-09-14

    Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of ≳0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanisms lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally.

  10. Phosphoric acid fuel cell platinum use study

    Science.gov (United States)

    Lundblad, H. L.

    1983-05-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  11. Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique

    International Nuclear Information System (INIS)

    Wiedlocher, D.E.; Kinser, D.L.

    1992-01-01

    Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic

  12. Electrochemical behavior of titanium implanted with platinum

    International Nuclear Information System (INIS)

    Thompson, N.G.; Lichter, B.D.; Appleton, B.R.; Kelly, E.J.; White, C.W.

    1979-01-01

    The following conclusions apply to Ti(Pt) near-surface alloys studied. (1) Open-circuit corrosion measurements show that accumulation of platinum may occur at a surface concentration of 0.32 atomic percent Pt while no accumulation occurs at 0.16 atomic percent Pt. However, these results do not allow a distinction as to cause of accumulation to be made between concentration effects and effects due to the presence of an oxide film. (2) Potentiostatic corrosion at -0.450 V (active corrosion) establish that little or no accumulation of platinum occurs at an oxide-free surface for concentrations less than 0.086 atomic percent Pt; whereas, a large amount of accumulation occurs for a distribution with a peak concentration of 0.83 atomic percent Pt. (3) An initial distribution having a peak concentration of 0.32 atomic percent platinum is sufficient to induce natural passivity in titanium and bring a freely corroding sample to a potential of 0.269 V. This is nearly the applicable reversible potential (-0.260 V) for the hydrogen reaction in 1N H 2 SO 4 . (4) Of three samples which showed accumulation, platinum was eventually lost for two of these samples (0.32 atomic percent, open-circuit corrosion; 0.83 atomic percent, potentiostatic corrosion). The remaining sample (9.1 atomic percent, open-circuit corrosion) maintained the maximum possible potential of -0.260 V for the length of the experiment (approx. 30 days). (5) For samples which had been polarized at -0.300 to -0.340 V and which had eventually reverted to the behavior of pure Ti, post corrosion RBS measurements reveal that a substantial fraction of the Pt fluence is retained on the surface in an electrochemically inactive state

  13. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    Science.gov (United States)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  14. A combined radiation and platinum chemotherapy for esophageal carcinoma

    International Nuclear Information System (INIS)

    Takamura, Akio; Saito, Hiroya; Sakurai, Yasuo; Horio, Keiji; Mizoe, Junetsu.

    1993-01-01

    The prognosis of the patients with advanced esophageal carcinoma treated by definitive radiotherapy is still dismal with a reported 5-year survival rate of 5-10% in most series. Since 1986, combined radiotherapy with chemotherapy using platinum analogue was initiated at Asahikawa and Obihiro Kosei Hospitals in order to improve local-regional control and the survival of the patients. From 1980 to 1992, 81 patients with unresectable esophageal carcinoma were treated with radiotherapy. Since April 1986, 37 out of the 81 patients received both radiotherapy and chemotherapy with platinum. Platinum was used during the course of radiotherapy. The method of administration of platinum was as follows; Cisplatin intravenously (50 mg, weekly, total 200 mg) in 9 patients, Carboplatin intravenously (100-150 mg, weekly, total 400-900 mg) in 11 patients and Cisplatin intraarterially (100 mg, at a 3-4 week interval, total 100-300 mg) in 17 patients. These 37 patients (Group A) were compared to 44 patients treated by radiotherapy alone (Group B) with respect to initial response and survival rate. Response was defined according to the guidelines recommended by Japanese Society for Esophageal Diseases. Response rates were 59.1% (19 CR and 7 PR) in Group B and 70.3% (7 CR and 19 PR) in Group A. Primary relapse-free rates were 36.4% in Group B and 37.8% in Group A. The cumulative survival at 3 years were 11.7% in Group B and 10.6% in Group A. Enhancement of side effects by chemotherapy was minimal and acceptable. Improvement of local-regional control and survival was not obvious by adding a concomitant platinum-chemotherapy. A definite conclusion, however, could not be drawn because of the retrospective, non-controlled nature of this study. Introduction of more intensive, multiple agents chemotherapy seems necessary if one aims at improving the results. (author)

  15. Mask-free and programmable patterning of graphene by ultrafast laser direct writing

    International Nuclear Information System (INIS)

    Chen, Hao-Yan; Han, Dongdong; Tian, Ye; Shao, Ruiqiang; Wei, Shu

    2014-01-01

    Graphical abstract: - Highlights: • We present a mask-free and programmable patterning of graphene. • Ultrafast laser can homogeneously reduce graphene oxides into micropatterns. • Desired graphene micropatterns could be created on flexible substrates. • Laser exposure duration shows influence on the conductivity of reduced graphene. • The method holds promise for fabrication and integration of graphene electronics. - Abstract: Reported here is a mask-free and programmable patterning of graphene by using femtosecond laser direct writing on graphene oxide (GO) films. Take advantage of the ultrahigh instantaneous intensity of the femtosecond laser pulse, and especially its nonlinear interactions with materials, the GO could be efficiently reduced under atmospheric condition at room temperature. Moreover, the designability of femtosecond laser direct writing (FsLDW) technique allow making graphene micropatterns arbitrarily according to the preprogrammed structures, which provides the feasibility for rational design, flexible fabrication and integration of graphene-based micro-devices. Raman spectra show that the reduced and patterned region is very homogeneous, which is confirmed by the almost consistent I D /I G ratio. The novel graphene patterning technique would provide a technical support for the development of graphene-based micro-devices for future electronics

  16. Laser Shock Peening on Zr-based Bulk Metallic Glass and Its Effect on Plasticity: Experiment and Modeling

    Science.gov (United States)

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.

    2015-05-01

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and good wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via the micro-slot cutting method, and then predict them using a three-dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analyses of serrated flows reveal plentiful and useful information of the underlying deformation process. Our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.

  17. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, Valerio; Grigutis, Robertas [Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 11, I-22100 Como (Italy); Jukna, Vytautas [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); LOA, ENSTA-ParisTech, CNRS, Ecole Polytechnique, Université Paris Saclay, F-91762 Palaiseau (France); Couairon, Arnaud [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); Di Trapani, Paolo [Dipartimento di Scienza e Alta Tecnologia, University of Insubria and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy); Jedrkiewicz, Ottavia, E-mail: ottavia.jedrkiewicz@ifn.cnr.it [Istituto di Fotonica e Nanotecnologie, CNR and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy)

    2016-07-07

    We investigate the generation of high aspect ratio microstructures across 0.7 mm thick glass by means of single shot Bessel beam laser direct writing. We study the effect on the photoinscription of the cone angle, as well as of the energy and duration of the ultrashort laser pulse. The aim of the study is to optimize the parameters for the writing of a regular microstructure due to index modification along the whole sample thickness. By using a spectrally resolved single pulse transmission diagnostics at the output surface of the glass, we correlate the single shot material modification with observations of the absorption in different portions of the retrieved spectra, and with the absence or presence of spectral modulation. Numerical simulations of the evolution of the Bessel pulse intensity and of the energy deposition inside the sample help us interpret the experimental results that suggest to use picosecond pulses for an efficient and more regular energy deposition. Picosecond pulses take advantage of nonlinear plasma absorption and avoid temporal dynamics effects which can compromise the stationarity of the Bessel beam propagation.

  18. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    Science.gov (United States)

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  19. Single-step fabrication of stressed waveguides with tubular depressed-cladding in phosphate glasses using ultrafast vortex laser beams

    Directory of Open Access Journals (Sweden)

    Cheng Guanghua

    2013-11-01

    Full Text Available We report on the fabrication of the stressed optical waveguide with tubular depressed-refractive-index cladding in phosphate glasses by use of femtosecond vortex beam. Strained regions were emerged in domains surrounding the tubular track. Waveguiding occurs mainly within the tube induced by femtosecond laser.

  20. Pulsed Nd:YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Lee, Changhee; Lee, D.M.; Sun, J.H.; Shin, S.Y.; Bae, J.C.

    2007-01-01

    Pulsed Nd:YAG laser was used to weld Cu 54 Ni 6 Zr 22 Ti 18 (numbers indicate at.%) metallic glass with glass forming ability of 6 mm. Through a single pulse irradiation on the glassy plate, the pulse condition for welding without crystallization was investigated. Under the selected pulse condition, the Cu 54 Ni 6 Zr 22 Ti 18 plate was periodically welded with different welding speeds. For the welding speed of 60 mm/min, no crystallization was observed in both weldment and heat-affected zone. For the 20 mm/min, the crystallized areas with a band shape were observed along the welding direction