WorldWideScience

Sample records for platelet membrane proteins

  1. Effect of membrane protein concentration on binding of 3H-imipramine in human platelets

    International Nuclear Information System (INIS)

    Barkai, A.I.; Kowalik, S.; Baron, M.

    1985-01-01

    Binding of 3 H-imipramine to platelet membranes has been implicated as a marker for depression. Comparing 3 H-IMI binding between depressed patients and normal subjects we observed an increase in the dissociation constant Kd with increasing membrane protein. This phenomenon was studied more rigorously in five normal subjects. Platelet membranes were prepared and adjusted to four concentrations of protein ranging from 100 to 800 micrograms/ml. The 3 H-IMI binding parameters of maximum binding sites number (Bmax) and Kd were obtained by Scatchard analysis at each membrane concentration. A positive linear relationship was found between K/sub d/ values and the concentration of membrane protein in the assay, but no change was observed in Bmax. The variability in Kd values reported in the literature may be accounted for in part by the different concentrations of membrane protein used in various studies

  2. Covalent modification of platelet proteins by palmitate

    International Nuclear Information System (INIS)

    Muszbek, L.; Laposata, M.

    1989-01-01

    Covalent attachment of fatty acid to proteins plays an important role in association of certain proteins with hydrophobic membrane structures. In platelets, the structure of many membrane glycoproteins (GPs) has been examined in detail, but the question of fatty acid acylation of platelet proteins has not been addressed. In this study, we wished to determine (a) whether platelet proteins could be fatty acid acylated; and, if so, (b) whether these modified proteins were present in isolated platelet membranes and cytoskeletal fractions; and (c) if the pattern of fatty acid acylated proteins changed on stimulation of the platelets with the agonist thrombin. We observed that in platelets allowed to incorporate 3H-palmitate, a small percentage (1.37%) of radioactivity incorporated into the cells became covalently bound to protein. Selective cleavage of thioester, thioester plus O-ester, and amide-linked 3H-fatty acids from proteins, and their subsequent analysis by high-performance liquid chromatography (HPLC) indicated that the greatest part of 3H-fatty acid covalently bound to protein was thioester-linked 3H-palmitate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography, at least ten major radiolabeled proteins were detected. Activation of platelets by thrombin greatly increased the quantity of 3H-palmitoylated proteins associated with the cytoskeleton. Nearly all radiolabeled proteins were recovered in the membrane fraction, indicating that these proteins are either integral or peripheral membrane proteins or proteins tightly associated to membrane constituents. Components of the GPIIb-IIIa complex were not palmitoylated. Thus, platelet proteins are significantly modified posttranslationally by 3H-palmitate, and incorporation of palmitoylated proteins into the cytoskeleton is a prominent component of the platelet response to thrombin stimulation

  3. Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins.

    Science.gov (United States)

    O'Connor, Marie N; Salles, Isabelle I; Cvejic, Ana; Watkins, Nicholas A; Walker, Adam; Garner, Stephen F; Jones, Chris I; Macaulay, Iain C; Steward, Michael; Zwaginga, Jaap-Jan; Bray, Sarah L; Dudbridge, Frank; de Bono, Bernard; Goodall, Alison H; Deckmyn, Hans; Stemple, Derek L; Ouwehand, Willem H

    2009-05-07

    In this study, we demonstrate the suitability of the vertebrate Danio rerio (zebrafish) for functional screening of novel platelet genes in vivo by reverse genetics. Comparative transcript analysis of platelets and their precursor cell, the megakaryocyte, together with nucleated blood cell elements, endothelial cells, and erythroblasts, identified novel platelet membrane proteins with hitherto unknown roles in thrombus formation. We determined the phenotype induced by antisense morpholino oligonucleotide (MO)-based knockdown of 5 of these genes in a laser-induced arterial thrombosis model. To validate the model, the genes for platelet glycoprotein (GP) IIb and the coagulation protein factor VIII were targeted. MO-injected fish showed normal thrombus initiation but severely impaired thrombus growth, consistent with the mouse knockout phenotypes, and concomitant knockdown of both resulted in spontaneous bleeding. Knockdown of 4 of the 5 novel platelet proteins altered arterial thrombosis, as demonstrated by modified kinetics of thrombus initiation and/or development. We identified a putative role for BAMBI and LRRC32 in promotion and DCBLD2 and ESAM in inhibition of thrombus formation. We conclude that phenotypic analysis of MO-injected zebrafish is a fast and powerful method for initial screening of novel platelet proteins for function in thrombosis.

  4. Thrombus imaging in a primate model with antibodies specific for an external membrane protein of activated platelets

    International Nuclear Information System (INIS)

    Palabrica, T.M.; Furie, B.C.; Konstam, M.A.; Aronovitz, M.J.; Connolly, R.; Brockway, B.A.; Ramberg, K.L.; Furie, B.

    1989-01-01

    The activated platelet is a potential target for the localization of thrombi in vivo since, after stimulation and secretion of granule contents, activated platelets are concentrated at sites of blood clot formation. In this study, we used antibodies specific for a membrane protein of activated platelets to detect experimental thrombi in an animal model. PADGEM (platelet activation-dependent granule-external membrane protein), a platelet alpha-granule membrane protein, is translocated to the plasma membrane during platelet activation and granule secretion. Since PADGEM is internal in unstimulated platelets, polyclonal anti-PADGEM and monoclonal KC4 antibodies do not bind to circulating resting platelets but do interact with activated platelets. Dacron graft material incubated with radiolabeled KC4 or anti-PADGEM antibodies in the presence of thrombin-activated platelet-rich plasma bound most of the antibody. Imaging experiments with 123I-labeled anti-PADGEM in baboons with an external arterial-venous Dacron shunt revealed rapid uptake in the thrombus induced by the Dacron graft; control experiments with 123I-labeled nonimmune IgG exhibited minimal uptake. Deep venous thrombi, formed by using percutaneous balloon catheters to stop blood flow in the femoral vein of baboons, were visualized with 123I-labeled anti-PADGEM. Thrombi were discernible against blood pool background activity without subtraction techniques within 1 hr. No target enhancement was seen with 123I-labeled nonimmune IgG. 123I-labeled anti-PADGEM cleared the blood pool with an initial half-disappearance time of 6 min and did not interfere with hemostasis. These results indicate that radioimmunoscintigraphy with anti-PADGEM antibodies can visualize thrombi in baboon models and is a promising technique for clinical thrombus detection in humans

  5. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    International Nuclear Information System (INIS)

    Walker, G.; Bourguignon, L.Y.

    1990-01-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation

  6. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G.; Bourguignon, L.Y. (Univ. of Miami Medical School, FL (USA))

    1990-08-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.

  7. Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane

    OpenAIRE

    1990-01-01

    The platelet plasma membrane is lined by a membrane skeleton that appears to contain short actin filaments cross-linked by actin-binding protein. Actin-binding protein is in turn associated with specific plasma membrane glycoproteins. The aim of this study was to determine whether the membrane skeleton regulates properties of the plasma membrane. Platelets were incubated with agents that disrupted the association of the membrane skeleton with membrane glycoproteins. The consequences of this c...

  8. FlnA binding to PACSIN2 F-BAR domain regulates membrane tubulation in megakaryocytes and platelets.

    Science.gov (United States)

    Begonja, Antonija Jurak; Pluthero, Fred G; Suphamungmee, Worawit; Giannini, Silvia; Christensen, Hilary; Leung, Richard; Lo, Richard W; Nakamura, Fumihiko; Lehman, William; Plomann, Markus; Hoffmeister, Karin M; Kahr, Walter H A; Hartwig, John H; Falet, Hervé

    2015-07-02

    Bin-Amphiphysin-Rvs (BAR) and Fes-CIP4 homology BAR (F-BAR) proteins generate tubular membrane invaginations reminiscent of the megakaryocyte (MK) demarcation membrane system (DMS), which provides membranes necessary for future platelets. The F-BAR protein PACSIN2 is one of the most abundant BAR/F-BAR proteins in platelets and the only one reported to interact with the cytoskeletal and scaffold protein filamin A (FlnA), an essential regulator of platelet formation and function. The FlnA-PACSIN2 interaction was therefore investigated in MKs and platelets. PACSIN2 associated with FlnA in human platelets. The interaction required FlnA immunoglobulin-like repeat 20 and the tip of PACSIN2 F-BAR domain and enhanced PACSIN2 F-BAR domain membrane tubulation in vitro. Most human and wild-type mouse platelets had 1 to 2 distinct PACSIN2 foci associated with cell membrane GPIbα, whereas Flna-null platelets had 0 to 4 or more foci. Endogenous PACSIN2 and transfected enhanced green fluorescent protein-PACSIN2 were concentrated in midstage wild-type mouse MKs in a well-defined invagination of the plasma membrane reminiscent of the initiating DMS and dispersed in the absence of FlnA binding. The DMS appeared less well defined, and platelet territories were not readily visualized in Flna-null MKs. We conclude that the FlnA-PACSIN2 interaction regulates membrane tubulation in MKs and platelets and likely contributes to DMS formation. © 2015 by The American Society of Hematology.

  9. Specific binding of [alpha-32P]GTP to cytosolic and membrane-bound proteins of human platelets correlates with the activation of phospholipase C

    International Nuclear Information System (INIS)

    Lapetina, E.G.; Reep, B.R.

    1987-01-01

    We have assessed the binding of [alpha- 32 P]GTP to platelet proteins from cytosolic and membrane fractions. Proteins were separated by NaDodSO 4 /PAGE and electrophoretically transferred to nitrocellulose. Incubation of the nitrocellulose blots with [alpha- 32 P]GTP indicated the presence of specific and distinct GTP-binding proteins in cytosol and membranes. Binding was prevented by 10-100 nM GTP and by 100 nM guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]) or GDP; binding was unaffected by 1 nM-1 microM ATP. One main GTP-binding protein (29.5 kDa) was detected in the membrane fraction, while three others (29, 27, and 21 kDa) were detected in the soluble fraction. Two cytosolic GTP-binding proteins (29 and 27 kDa) were degraded by trypsin; another cytosolic protein (21 kDa) and the membrane-bound protein (29.5 kDa) were resistant to the action of trypsin. Treatment of intact platelets with trypsin or thrombin, followed by lysis and fractionation, did not affect the binding of [alpha- 32 P]GTP to the membrane-bound protein. GTP[gamma S] still stimulated phospholipase C in permeabilized platelets already preincubated with trypsin. This suggests that trypsin-resistant GTP-binding proteins might regulate phospholipase C stimulated by GTP[gamma S

  10. The hemostatic agent ethamsylate enhances P-selectin membrane expression in human platelets and cultured endothelial cells.

    Science.gov (United States)

    Alvarez-Guerra, Miriam; Hernandez, Maria Rosa; Escolar, Ginés; Chiavaroli, Carlo; Garay, Ricardo P; Hannaert, Patrick

    2002-09-15

    Ethamsylate possesses antihemorrhagic properties, but whether or not it directly activates blood platelets is unclear. Here we investigated the platelet activation potential of ethamsylate, by measuring membrane P-selectin expression with flow cytometry in human whole blood and also by immunofluorescence imaging of isolated human platelets. Moreover, we measured membrane P-selectin expression in the SV40-transformed aortic rat endothelial cell line (SVAREC) and 14C-ethamsylate membrane binding and/or uptake in platelets and endothelial cells. Whole blood flow cytometry showed a modest, but statistically significant increase by ethamsylate in the percentage of platelets expressing P-selectin (from 2% to 4-5%, p ethamsylate tested (1 microM), with maximal enhancement of P-selectin expression (75-90%) at 10 microM ethamsylate. Similar results were obtained in SVAREC endothelial cells. 14C-ethamsylate specifically bound to platelets and endothelial cell membranes, without significant uptake into the cell interior. In conclusion, ethamsylate enhances membrane P-selectin expression in human platelets and in cultured endothelial cells. Ethamsylate specifically binds to some protein receptor in platelet and endothelial cell membranes, receptor which can signal for membrane P-selectin expression. These results support the view that ethamsylate acts on the first step of hemostasis, by improving platelet adhesiveness and restoring capillary resistance. Copyright 2002 Elsevier Science Ltd.

  11. Impact of ticagrelor on P2Y1 and P2Y12 localization and on cholesterol levels in platelet plasma membrane.

    Science.gov (United States)

    Rabani, Vahideh; Montange, Damien; Meneveau, Nicolas; Davani, Siamak

    2017-10-11

    Ticagrelor is an antiplatelet agent that inhibits platelet activation via P2Y12 antagonism. There are several studies showing that P2Y12 needs lipid rafts to be activated, but there are few data about how ticagrelor impacts lipid raft organization. Therefore, we aimed to investigate how ticagrelor could impact the distribution of cholesterol and consequently alter the organization of lipid rafts on platelet plasma membranes. We identified cholesterol-enriched raft fractions in platelet membranes by quantification of their cholesterol levels. Modifications in cholesterol and protein profiles (Flotillin 1, Flotillin 2, CD36, P2Y1, and P2Y12) were studied in platelets stimulated by ADP, treated by ticagrelor, or both. In ADP-stimulated and ticagrelor-treated groups, we found a decreased level of cholesterol in raft fractions of platelet plasma membrane compared to the control group. In addition, the peak of cholesterol in different experimental groups changed its localization on membrane fractions. In the control group, it was situated on fraction 2, while in ADP-stimulated platelets, it was located in fractions 3 to 5, and in fraction 4 in ticagrelor-treated group. The proteins studied also showed changes in their level of expression and localization in fractions of plasma membrane. Cholesterol levels of plasma membranes have a direct role in the organization of platelet membranes and could be modified by stimulation or drug treatment. Since ticagrelor and ADP both changed lipid composition and protein profile, investigating the lipid and protein composition of platelet membranes is of considerable importance as a focus for further research in anti-platelet management.

  12. Association of membrane/lipid rafts with the platelet cytoskeleton and the caveolin PY14: participation in the adhesion process.

    Science.gov (United States)

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Maldonado-García, Deneb; Hernández-González, Enrique; Winder, Steve J

    2015-11-01

    Platelets are the most prominent elements of blood tissue involved in hemostasis at sites of blood vessel injury. Platelet cytoskeleton is responsible for their shape modifications observed during activation and adhesion to the substratum; therefore the interactions between cytoskeleton and plasma membrane are critical to modulate blood platelet functions. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to membrane/lipid rafts (MLR) and regulate lateral diffusion of membrane proteins and lipids. Resting, thrombin-activated, and adherent human platelets were processed for biochemical studies including western-blot and immunprecipitation assays and confocal analysis were performed to characterize the interaction of MLR with the main cytoskeleton elements and β-dystroglycan as well as with the association of caveolin-1 PY14 with focal adhesion proteins. We transfected a megakaryoblast cell line (Meg-01) to deplete β-dystroglycan, subsequent to their differentiation to the platelet progenitors. Our data showed a direct interaction of the MLR with cytoskeleton to regulate platelet shape, while an association of caveolin-1 PY14 with vinculin is needed to establish focal adhesions, which are modulated for β-dystroglycan. In conclusion, caveolin-1 PY14 in association with platelet cytoskeleton participate in focal adhesions dynamics. © 2015 Wiley Periodicals, Inc.

  13. Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation.

    Science.gov (United States)

    Binsker, Ulrike; Palankar, Raghavendra; Wesche, Jan; Kohler, Thomas P; Prucha, Josephine; Burchhardt, Gerhard; Rohde, Manfred; Schmidt, Frank; Bröker, Barbara M; Mamat, Uwe; Pané-Farré, Jan; Graf, Anica; Ebner, Patrick; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-01

    Staphylococcus aureus can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic S. aureus infection are gaining importance. Using a repertoire of 52 recombinant S. aureus proteins in flow cytometry-based platelet activation and aggregation assays, we identified, in addition to the extracellular adherence protein Eap, three secreted staphylococcal proteins as novel platelet activating proteins. Eap and the chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the major autolysin Atl induced P-selectin expression in washed platelets and platelet-rich plasma. Similarly, AtlA, CHIPS and Eap induced platelet aggregation in whole blood. Fluorescence microscopy illustrated that P-selectin expression is associated with calcium mobilization and re-organization of the platelet actin cytoskeleton. Characterization of the functionally active domains of the major autolysin AtlA and Eap indicates that the amidase domain of Atl and the tandem repeats 3 and 4 of Eap are crucial for platelet activation. These results provide new insights in S. aureus protein interactions with platelets and identify secreted proteins as potential treatment targets in case of antibiotic-resistant S. aureus infection. Schattauer GmbH Stuttgart.

  14. Inhibition of the plasma SCUBE1, a novel platelet adhesive protein, protects mice against thrombosis.

    Science.gov (United States)

    Wu, Meng-Ying; Lin, Yuh-Charn; Liao, Wei-Ju; Tu, Cheng-Fen; Chen, Ming-Huei; Roffler, Steve R; Yang, Ruey-Bing

    2014-07-01

    Signal peptide-CUB-EGF domain-containing protein 1 (SCUBE1), a secreted and surface-exposed glycoprotein on activated platelets, promotes platelet-platelet interaction and supports platelet-matrix adhesion. Its plasma level is a biomarker of platelet activation in acute thrombotic diseases. However, the exact roles of plasma SCUBE1 in vivo remain undefined. We generated new mutant (Δ) mice lacking the soluble but retaining the membrane-bound form of SCUBE1. Plasma SCUBE1-depleted Δ/Δ mice showed normal hematologic and coagulant features and expression of major platelet receptors, but Δ/Δ platelet-rich plasma showed impaired platelet aggregation in response to ADP and collagen treatment. The addition of purified recombinant SCUBE1 protein restored the aggregation of platelets in Δ/Δ platelet-rich plasma and further enhanced platelet aggregation in +/+ platelet-rich plasma. Plasma deficiency of SCUBE1 diminished arterial thrombosis in mice and protected against lethal thromboembolism induced by collagen-epinephrine treatment. Last, antibodies directed against the epidermal growth factor-like repeats of SCUBE1, which are involved in trans-homophilic protein-protein interactions, protected mice against fatal thromboembolism without causing bleeding in vivo. We conclude that plasma SCUBE1 participates in platelet aggregation by bridging adjacent activated platelets in thrombosis. Blockade of soluble SCUBE1 might represent a novel antithrombotic strategy. © 2014 American Heart Association, Inc.

  15. Radioimmunoassay for platelet activation specific protein GMP-140 on the platelet surface and in plasma

    International Nuclear Information System (INIS)

    Wu Guoxin; Li Jianyong; Ruan Changgeng

    1991-08-01

    Using monoclonal antibody (McAb) SZ-51 which is specific for an alpha-granule membrane protein (GMP-140) on the surface of human activated platelets, the platelet GMP-140 expression in fixed whole blood was measured by direct radioimmunoassay and GMP-140 microparticles in plasma was measured by sandwich method. The GMP-140 molecules per platelet or milliliter (mL) were calculated for the following subjects; acute myocardial infarction; cerebro thrombosis; diabetic mellitus; asthma attack; epidemic hemorrhagic fever etc.. By comparing with the concentration of thromboxane B 2 (TXB 2 ) and von Willebrand factor (vWF) in plasma, it is confirmed that the measurement of GMP-140 molecules is better than that of TXB 2 and vWF. It is a sensitive and specific method for evaluating the platelet activation degree in vivo. The establishment of this method will be useful to diagnosing the thrombotic disorders and studying the pathogenesis of some other diseases

  16. Several adaptor proteins promote intracellular localisation of the transporter MRP4/ABCC4 in platelets and haematopoietic cells.

    Science.gov (United States)

    Schaletzki, Yvonne; Kromrey, Marie-Luise; Bröderdorf, Susanne; Hammer, Elke; Grube, Markus; Hagen, Paul; Sucic, Sonja; Freissmuth, Michael; Völker, Uwe; Greinacher, Andreas; Rauch, Bernhard H; Kroemer, Heyo K; Jedlitschky, Gabriele

    2017-01-05

    The multidrug resistance protein 4 (MRP4/ABCC4) has been identified as an important transporter for signalling molecules including cyclic nucleotides and several lipid mediators in platelets and may thus represent a novel target to interfere with platelet function. Besides its localisation in the plasma membrane, MRP4 has been also detected in the membrane of dense granules in resting platelets. In polarised cells it is localised at the basolateral or apical plasma membrane. To date, the mechanism of MRP4 trafficking has not been elucidated; protein interactions may regulate both the localisation and function of this transporter. We approached this issue by searching for interacting proteins by in vitro binding assays, followed by immunoblotting and mass spectrometry, and by visualising their co-localisation in platelets and haematopoietic cells. We identified the PDZ domain containing scaffold proteins ezrin-binding protein 50 (EBP50/NHERF1), postsynaptic density protein 95 (PSD95), and sorting nexin 27 (SNX27), but also the adaptor protein complex 3 subunit β3A (AP3B1) and the heat shock protein HSP90 as putative interaction partners of MRP4. The knock-down of SNX27, PSD95, and AP3B1 by siRNA in megakaryoblastic leukaemia cells led to a redistribution of MRP4 from intracellular structures to the plasma membrane. Inhibition of HSP90 led to a diminished expression and retention of MRP4 in the endoplasmic reticulum. These results indicate that MRP4 localisation and function are regulated by multiple protein interactions. Changes in the adaptor proteins can hence lead to altered localisation and function of the transporter.

  17. Calcium-binding proteins from human platelets

    International Nuclear Information System (INIS)

    Gogstad, G.O.; Krutnes, M.B.; Solum, N.O.

    1983-01-01

    Calcium-binding platelet proteins were examined by crossed immunoelectrophoresis of solubilized platelets against antibodies to whole platelets followed by incubation of the immunoplates with 45 Ca 2 + and autoradiography. When the immunoplates had been pretreated with EDTA at pH 9.0 in order to remove divalent cations, three immunoprecipitates were markedly labelled with 45 Ca 2 + . These corresponded to the glycoprotein IIb-IIIa complex, glycoprotein Ia and a presently unidentified antigen termed G18. These antigens were membrane-bound and surface-oriented. When an excess of EDTA was introduced in the incubation media the results revealed that the glycoprotein IIb-IIIa complex and antigen G18, but not glycoprotein Ia, contained sites with a stronger affinity for calcium than has EDTA at pH 7.4 Immunoprecipitates of the separate glycoproteins IIb and IIIa both bound calcium in the same manner as the glycoprotein IIb-IIIa complex. As another approach, platelet-rich plasma was incubated with 45 Ca 2 + prior to crossed immunoelectrophoresis of the solubilized platelets. A single immunoprecipitate was wekly labelled. This did not correspond to any of the immunoprecipitates which were visible after staining with Coomassie blue. The labelling of this antigen was markedly increased when the platelt-rich plasma had been preincubated with EDTA and in this case a weak labelling of the glycoprotein IIB-IIIa precipitate also became apparent. No increased incorporation of calcium occured in any of these immunoprecipitates when the platelets were aggregated with ADP in the presence of 45 Ca 2 + . (orig.)

  18. Exogenous modification of platelet membranes with the omega-3 fatty acids EPA and DHA reduces platelet procoagulant activity and thrombus formation.

    Science.gov (United States)

    Larson, Mark K; Tormoen, Garth W; Weaver, Lucinda J; Luepke, Kristen J; Patel, Ishan A; Hjelmen, Carl E; Ensz, Nicole M; McComas, Leah S; McCarty, Owen J T

    2013-02-01

    Several studies have implicated the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in inhibition of normal platelet function, suggesting a role for platelets in EPA- and DHA-mediated cardioprotection. However, it is unclear whether the cardioprotective mechanisms arise from alterations to platelet-platelet, platelet-matrix, or platelet-coagulation factor interactions. Our previous results led us to hypothesize that EPA and DHA alter the ability of platelets to catalyze the generation of thrombin. We tested this hypothesis by exogenously modifying platelet membranes with EPA and DHA, which resulted in compositional changes analogous to increased dietary EPA and DHA intake. Platelets treated with EPA and DHA showed reductions in the rate of thrombin generation and exposure of platelet phosphatidylserine. In addition, treatment of platelets with EPA and DHA decreased thrombus formation and altered the processing of thrombin precursor proteins. Furthermore, treatment of whole blood with EPA and DHA resulted in increased occlusion time and a sharply reduced accumulation of fibrin under flow conditions. These results demonstrate that EPA and DHA inhibit, but do not eliminate, the ability of platelets to catalyze thrombin generation in vitro. The ability of EPA and DHA to reduce the procoagulant function of platelets provides a possible mechanism behind the cardioprotective phenotype in individuals consuming high levels of EPA and DHA.

  19. Vinculin is a permanent component of the membrane skeleton and is incorporated into the (re)organising cytoskeleton upon platelet activation

    NARCIS (Netherlands)

    Asijee, G. M.; Sturk, A.; Bruin, T.; Wilkinson, J. M.; ten Cate, J. W.

    1990-01-01

    Vinculin, a 130-kDa protein discovered in chicken gizzard smooth-muscle cells and subsequently also described in platelets, is believed to be involved in membrane-cytoskeleton interactions. In this study we investigated vinculin distribution in human blood platelets. Two skeletal fractions and a

  20. Serotonin binding in vitro by releasable proteins from human blood platelets

    International Nuclear Information System (INIS)

    Heemstra, V.L.

    1983-11-01

    Among the substances released from human blood platelets are serotonin and various proteins. It was hypothesized that one of these proteins binds serotonin and that serotonin might be important to the protein's function or that the protein might be important to serotonin's function. Two platelet-specific proteins, platelet factor 4 (PF4) and β-thromboglobulin (βTG) were found to bind serotonin in vitro. Endogenous PF4 was isolated by serotonin-affinity chromatography and was identified by radioimmunoassay. Purified [ 125 I] -PF4 and native PF4 bound to and eluted from a serotonin-affinity column similarly. Ultrafiltration of the homologous protein, βTG, with [ 14 C]-serotonin demonstrated binding of about 8 moles serotonin per mole tetrameric βTG with a dissociation constant of about 4 X 10(sup-8) M. Equilibrium dialysis of PF4 with radiolabelled serotonin was attempted, but no binding constant values were obtained because serotonin apparently bound to the dialysis membrane. Since EDTA was one of the two agents that eluted PF4 from the serotonin-affinity gel, calcium binding by PF4 was investigated by equilibrium dialysis. Evidence was obtained for positively cooperative binding of calcium ions by PF4. It is concluded that PF4 and βTG bind serotonin in vitro, that they may also bind in vivo when platelets undergo release, and that the functions of serotonin, PF4 and βTG may be mediated in part by serotonin-protein associations

  1. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins.

    Science.gov (United States)

    Macaulay, Iain C; Tijssen, Marloes R; Thijssen-Timmer, Daphne C; Gusnanto, Arief; Steward, Michael; Burns, Philippa; Langford, Cordelia F; Ellis, Peter D; Dudbridge, Frank; Zwaginga, Jaap-Jan; Watkins, Nicholas A; van der Schoot, C Ellen; Ouwehand, Willem H

    2007-04-15

    To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.

  2. The dynamics of platelet α-granule membrane protein and serum thromboxane B2 in patients with acute myocardial infarction and unstable angina

    International Nuclear Information System (INIS)

    Pan Yizhi; Wu Baiming; Hong Xiaosu; Wu Guoxin; Guo Hengshan

    1997-01-01

    To evaluate the dynamics of platelet activation in patients with acute myocardial infarction (AMI) and unstable angina (UA), the levels of platelet α-granule membrane protein (GMP-140)and serum thromboxane B 2 (TXB 2 ) were studied by RIA in 20 AMI and 30 UA patients and 20 controls. The results are: 1) The levels of GMP-140 and TXB 2 were significantly higher in AMI patients within 12 h after the onset than those in controls (P 0.05). TXB 2 still remained at higher level in AMI patients on the 7th day after onset (P 2 were markedly higher in UA patients when angina episode than those in controls (P 0.05), but the peak level of GMP-140 and TXB 2 and its persistent duration of elevation in UA were much lower than those in AMI. The platelet is highly activated in the patients with AMI and UA. In AMI there are more thrombplastic factors in coronary artery than in UA

  3. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts.

    Science.gov (United States)

    Kasahara, Kohji; Kaneda, Mizuho; Miki, Toshiaki; Iida, Kazuko; Sekino-Suzuki, Naoko; Kawashima, Ikuo; Suzuki, Hidenori; Shimonaka, Motoyuki; Arai, Morio; Ohno-Iwashita, Yoshiko; Kojima, Soichi; Abe, Mitsuhiro; Kobayashi, Toshihide; Okazaki, Toshiro; Souri, Masayoshi; Ichinose, Akitada; Yamamoto, Naomasa

    2013-11-07

    Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction.

  4. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    International Nuclear Information System (INIS)

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H.

    1990-01-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-[ 3 H]ethylcarboxamidoadenosine [( 3 H]NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the [ 3 H]NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors

  5. The life cycle of platelet granules.

    Science.gov (United States)

    Sharda, Anish; Flaumenhaft, Robert

    2018-01-01

    Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types-dense granules, α-granules, and lysosomes-although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans -Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.

  6. Heterogeneity of rabbit platelets

    International Nuclear Information System (INIS)

    Karpatkin, S.

    1978-01-01

    Rabbits were injected intravenously with a cohort platelet label, 75 Se-selenomethionine. Platelet-rich plasma was separated into five different platelet density fractions on each of seven days by repetitively centrifuging the same sample of platelet-rich plasma at increasing gravitational force. The heaviest platelet sediment fraction was enriched with larger platelets. The lightest platelet sediment fraction was enriched with smaller platelets. Incorporation of isotope into the heaviest platelet fraction was considerably greater than incorporation into the lightest platelet fraction. The mean platelet survival of the lightest two fractions was significantly shorter than that of the heaviest three fractions. SDS-polyacrylamide gel electrophoresis of the platelet cell sap generally revealed 10 prominent protein bands for the heaviest platelet fractions. The lightest platelet fraction had six absent to markedly diminished platelet proteins. The data are compatible with two models, (1) heavy-large platelets are, on average, young platelets which become lighter-smaller platelets while losing platelet membranes and cell sap components with time. (2) Heavy-large platelets and light-small platelets are produced independently by specific megakarocytes. The heavy-large platelets incorporate more isotope that lighter-smaller platelets (possibly because of their megakarocyte precursor). However, they are released earlier into the circulation than lighter-smaller platelets and are therefore younger platelets. The light-smaller platelets which are released later into the circulation have a shorter survival. (author)

  7. Rapid Upregulation of Orai1 Abundance in the Plasma Membrane of Platelets Following Activation with Thrombin and Collagen Related Peptide

    Directory of Open Access Journals (Sweden)

    Guilai Liu

    2015-11-01

    Full Text Available Background: Blood platelets accomplish primary hemostasis following vascular injury and contribute to the orchestration of occlusive vascular disease. Platelets are activated by an increase of cytosolic Ca2+-activity ([Ca2+]i, which is accomplished by Ca2+-release from intracellular stores and subsequent store operated Ca2+ entry (SOCE through Ca2+ release activated Ca2+ channel moiety Orai1. Powerful activators of platelets include thrombin and collagen related peptide (CRP, which are in part effective by activation of small G- protein Rac1. The present study explored the influence of thrombin and CRP on Orai1 protein abundance and cytosolic Ca2+-activity ([Ca2+]i in platelets drawn from wild type mice. Methods: Orai1 protein surface abundance was quantified utilizing CF™488A conjugated antibodies, and [Ca2+]i was determined with Fluo3-fluorescence. Results: In resting platelets, Orai1 protein abundance and [Ca2+]i were low. Thrombin (0.02 U/ml and CRP (5ug/ml within 2 min increased [Ca2+]i and Orai1 protein abundance at the platelet surface. [Ca2+]i was further increased by Ca2+ ionophore ionomycin (1 µM and by store depletion with the sarcoendoplasmatic Ca2+ ATPase inhibitor thapsigargin (1 µM. However, Orai1 protein abundance at the platelet surface was not significantly affected by ionomycin and only slightly increased by thapsigargin. The effect of thrombin and CRP on Orai1 abundance and [Ca2+]i was significantly blunted by Rac1 inhibitor NSC23766 (50 µM. Conclusion: The increase of [Ca2+]i following stimulation of platelets with thrombin and collagen related peptide is potentiated by ultrarapid Rac1 sensitive translocation of Orai1 into the cell membrane.

  8. Inhibition of platelet [3H]- imipramine binding by human plasma protein fractions

    International Nuclear Information System (INIS)

    Strijewski, A.; Chudzik, J.; Tang, S.W.

    1988-01-01

    Inhibition of high-affinity [ 3 H]-imipramine binding to platelet membranes by human plasma fractions and isolated plasma proteins was investigated. Several plasma proteins were found to contribute to the observed apparent inhibition and this contribution was assessed in terms of inhibitor units. Alpha 1 acid glycoprotein, high density and low density lipoprotein, IgG and α 1 -antitrypsin were identified as effective non-specific inhibitors. Alpha-1-acid glycoprotein was confirmed to be the most potent plasma protein inhibitor. Cohn fractions were evaluated for the presence of the postulated endocoid of [ 3 H]-imipramine binding site

  9. Zinc and platelet membrane microviscosity in Alzheimer's disease ...

    African Journals Online (AJOL)

    Objectives. To investigate the effects of oral zinc supplementation on: (i) plasma zinc concentrations; (ii) platelet membrane microviscosity in vivo; and (iii) cognitive function of Alzheimer's disease (AD) patients. Design. An open-labelled pilot study. Setting. University of Stellenbosch Medical School and Stikland Hospital.

  10. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the α subunit of the stimulatory guanine nucleotide-binding regulatory protein

    International Nuclear Information System (INIS)

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G.

    1988-01-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the α subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5'-[α- 32 P]triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an α subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera

  11. Radioimmunoassay of platelet proteins

    International Nuclear Information System (INIS)

    Pepper, D.S.

    1987-01-01

    The radioimmunoassay of platelet-specific proteins has proven to be an excellent way of monitoring platelet activation in vivo. In contrast to earlier methods such as aggregometry, which has been the major tool used in the evaluation of antiplatelet drugs, the RIAs are capable of working with samples which have been subjected to physiological conditions such as haematocrit, oxygen tension, shear rate and ionized calcium concentration. Also, in contrast to aggregometry, no choice of agonist is necessary. Thus, for the first time it has been possible to monitor the effects of therapeutic intervention with drugs upon the platelet release reaction in vivo. It seems reasonable to equate the release reaction in vivo with activation in vivo, though the stimuli necessarily remain unknown. Nevertheless, the fact that a significant number of the compounds mentioned in Table 3 are indeed capable of reducing platelet activation in vivo and that this effect can be measured objectively is a major step forward in our understanding of platelet pharmacology. Two important goals remain to be achieved, however, the establishment of nonhuman animal models for the evaluation of newer compounds in vivo and longer-term goal of proving in the clinical setting the relevance or otherwise of platelet activation per se to the clinical outcome of a particular disease. In this respect, the availability of accurate, reliable and specific radioimmunoassays has a central role

  12. Stapled peptides as a new technology to investigate protein-protein interactions in human platelets.

    Science.gov (United States)

    Iegre, Jessica; Ahmed, Niaz S; Gaynord, Josephine S; Wu, Yuteng; Herlihy, Kara M; Tan, Yaw Sing; Lopes-Pires, Maria E; Jha, Rupam; Lau, Yu Heng; Sore, Hannah F; Verma, Chandra; O' Donovan, Daniel H; Pugh, Nicholas; Spring, David R

    2018-05-28

    Platelets are blood cells with numerous crucial pathophysiological roles in hemostasis, cardiovascular thrombotic events and cancer metastasis. Platelet activation requires the engagement of intracellular signalling pathways that involve protein-protein interactions (PPIs). A better understanding of these pathways is therefore crucial for the development of selective anti-platelet drugs. New strategies for studying PPIs in human platelets are required to overcome limitations associated with conventional platelet research methods. For example, small molecule inhibitors can lack selectivity and are often difficult to design and synthesise. Additionally, development of transgenic animal models is costly and time-consuming and conventional recombinant techniques are ineffective due to the lack of a nucleus in platelets. Herein, we describe the generation of a library of novel, functionalised stapled peptides and their first application in the investigation of platelet PPIs. Moreover, the use of platelet-permeable stapled Bim BH3 peptides confirms the part of Bim in phosphatidyl-serine (PS) exposure and reveals a role for the Bim protein in platelet activatory processes. Our work demonstrates that functionalised stapled peptides are a complementary alternative to conventional platelet research methods, and could make a significant contribution to the understanding of platelet signalling pathways and hence to the development of anti-platelet drugs.

  13. Granulocyte-platelet interactions and platelet fibrinogen receptor exposure

    International Nuclear Information System (INIS)

    Kornecki, E.; Ehrlich, Y.H.; Egbring, R.; Gramse, M.; Seitz, R.; Eckardt, A.; Lukasiewicz, H.; Niewiarowski, S.

    1988-01-01

    The authors have examined the interaction of human granulocyte elastase with human platelets. Incubation of human platelets with human granulocyte elastase exposed active fibrinogen-binding sites as evidenced by 125 I-labeled fibrinogen binding and spontaneous fibrinogen-induced platelet aggregation. The aggregation of platelets by fibrinogen occurred at low concentrations of human granulocyte elastase. Platelets pretreated with human granulocyte elastase exposed an average of 10,500 fibrinogen-binding sites per platelet, i.e., about one-third the number of binding sites exposed by optimal concentrations of ADP. With the use of a polyclonal antiplatelet membrane antibody, the glycoproteins IIb (GPIIb), IIIa (GPIIIa), and a 60,000-Da (60 kDa) protein (66 kDa in a reduced system) derived from GPIIIa were immunoprecipitated from the surface of detergent extracts of human 125 I-radiolabeled platelets pretreated with increasing concentrations of human granulocyte elastase. They conclude that (1) the proteolytic action of human granulocyte elastase on platelet GPIIIa results in the formation of two major hydrolytic products, and (2) human granulocyte elastase exposes active fibrongen-binding sites associated with the GPIIb/GPIIIa complex, resulting in direct platelet aggregation by fibrinogen

  14. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    Science.gov (United States)

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  15. Three-dimensional architecture and cell composition of a Choukroun's platelet-rich fibrin clot and membrane.

    Science.gov (United States)

    Dohan Ehrenfest, David M; Del Corso, Marco; Diss, Antoine; Mouhyi, Jaafar; Charrier, Jean-Baptiste

    2010-04-01

    Platelet-rich fibrin (PRF; Choukroun's technique) is a second-generation platelet concentrate for surgical use. This easy protocol allows the production of leukocyte and platelet-rich fibrin clots and membranes starting from 10-ml blood samples. The purposes of this study were to determine the cell composition and three-dimensional organization of this autologous biomaterial and to evaluate the influence of different collection tubes (dry glass or glass-coated plastic tubes) and compression procedures (forcible or soft) on the final PRF-membrane architecture. After centrifugation, blood analyses were performed on the residual waste plasmatic layers after collecting PRF clots. The PRF clots and membranes were processed for examination by light microscopy and scanning electron microscopy. Approximately 97% of the platelets and >50% of the leukocytes were concentrated in the PRF clot and showed a specific three-dimensional distribution, depending on the centrifugation forces. Platelets and fibrin formed large clusters of coagulation in the first millimeters of the membrane beyond the red blood cell base. The fibrin network was very mature and dense. Moreover, there was no significant difference in the PRF architecture between groups using the different tested collection tubes and compression techniques, even if these two parameters could have influenced the growth factor content and biologic matrix properties. The PRF protocol concentrated most platelets and leukocytes from a blood harvest into a single autologous fibrin biomaterial. This protocol offers reproducible results as long as the main production principles are respected.

  16. Selective elution of HLA antigens and beta 2-microglobulin from human platelets by chloroquine diphosphate

    International Nuclear Information System (INIS)

    Kao, K.J.

    1988-01-01

    To determine whether chloroquine can specifically elute HLA antigens and beta 2-microglobulin (beta 2-M) from the platelet surface, quantitative immunofluorescence flow cytometry and monoclonal antibodies were used to show that HLA antigens and beta 2-M were proportionally eluted from the platelet surface without affecting the membrane glycoproteins IIb and IIIa. Second, an autoradiogram of electrophoresed I-125-labeled platelets showed that only beta 2-M but not other I-125-labeled membrane proteins could be eluted. Although HLA antigens were poorly labeled by I-125 and could not be detected on the autoradiogram, the eluted HLA antigens could be detected by anti-HLA monoclonal antibody and immunoblotting techniques. No loss of plasma membrane integrity was observed by transmission electron microscopy after chloroquine treatment of platelets. The results indicate that chloroquine selectively elutes HLA antigens and their noncovalently associated beta 2-M without affecting other integral platelet membrane proteins

  17. Spontaneous release of soluble HL-A antigens from platelets during conservation.

    Science.gov (United States)

    Dautigny, A; Bernier, I; Colombani, J; Jollès, P

    1975-01-01

    Experiments with the aim of studying the solubilisation of HL-A antigens from blood platelets by methods which do not involve any biologically active processes (moderate, discontinuous agitation of a low concentration of platelets suspended in a saline medium, in the presence of an antiseptic; supernatants collected at frequent intervals) have shown that platelets release membrane proteins, including HL-A antigens, spontaneously. Optimal conditions for the treatment of membrane proteins have been perfected. The great stability of HL-A antigens under these conditions permits prolonged treatment. The products extracted are soluble and extremely complex. The molecular weight of the HL-A antigens is between 40,000 and 70,000.

  18. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5.

    Science.gov (United States)

    Huang, Jiqing; Kast, Juergen

    2015-08-07

    Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.

  19. The life cycle of platelet granules [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Anish Sharda

    2018-02-01

    Full Text Available Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types—dense granules, α-granules, and lysosomes—although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans-Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.

  20. Binding of (/sup 3/H)imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, O.M.; Wood, K.M.; Williams, D.C.

    1984-08-01

    Apparent specific binding of (/sup 3/H)imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high- and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding (KD less than 2 microM) of imipramine to human platelet membranes was demonstrated and its significance discussed.

  1. Association of vinculin to the platelet cytoskeleton during thrombin-induced aggregation

    NARCIS (Netherlands)

    Asyee, G. M.; Sturk, A.; Muszbek, L.

    1987-01-01

    Vinculin is a protein generally believed to be involved in membrane-cytoskeleton interaction, and its presence in platelets has been verified earlier. Here we show that in resting bovine platelets, vinculin is not associated with the Triton-insoluble cytoskeletal fraction but becomes incorporated

  2. The content of bone morphogenetic proteins in platelets varies greatly between different platelet donors

    International Nuclear Information System (INIS)

    Kalen, Anders; Wahlstroem, Ola; Linder, Cecilia Halling; Magnusson, Per

    2008-01-01

    Platelet derivates and platelet rich plasma have been used to stimulate bone formation and wound healing because of the rich content of potent growth factors. However, not all reports have been conclusive since some have not been able to demonstrate a positive effect. We investigated the interindividual variation of bone morphogenetic proteins (BMPs) in platelets from healthy donors, and the pH-dependent effect on the release of BMPs in preparations of lysed platelets in buffer (LPB). Platelet concentrates from 31 healthy donors were prepared in pH 4.3 and pH 7.4 buffers and investigated with respect to BMP-2, -4, -6, and -7. BMP-2 and BMP-4 were significantly more common in acidic LPBs in comparison with neutral preparations. We also observed a considerable variation among platelet donors with respect to the release of BMPs at pH 4.3 and 7.4. In conclusion, a considerable variation was found among platelet donors, which may be of importance considering the ambiguous results previously reported on osteoblast proliferation and differentiation

  3. Differential proteomics study of platelets in asymptomatic constitutional macrothrombocytopenia: altered levels of cytoskeletal proteins.

    Science.gov (United States)

    Karmakar, Shilpita; Saha, Sutapa; Banerjee, Debasis; Chakrabarti, Abhijit

    2015-01-01

    Harris platelet syndrome (HPS), also known as asymptomatic constitutional macrothrombocytopenia (ACMT), is an autosomal dominant platelet disorder characterized by mild-to-severe thrombocytopenia and giant platelets with normal platelet aggregation and absence of bleeding symptoms. We have attempted a comparative proteomics study for profiling of platelet proteins in healthy vs. pathological states to discover characteristic protein expression changes in macrothrombocytes and decipher the factors responsible for the functionally active yet morphologically distinct platelets. We have used 2-D gel-based protein separation techniques coupled with MALDI-ToF/ToF-based mass spectrometric identification and characterization of the proteins to investigate the differential proteome profiling of platelet proteins isolated from the peripheral blood samples of patients and normal volunteers. Our study revealed altered levels of actin-binding proteins such as myosin light chain, coactosin-like protein, actin-related protein 2/3 complex, and transgelin2 that hint toward the cytoskeletal changes necessary to maintain the structural and functional integrity of macrothrombocytes. We have also observed over expressed levels of peroxiredoxin2 that signifies the prevailing oxidative stress in these cells. Additionally, altered levels of protein disulfide isomerase and transthyretin provide insights into the measures adapted by the macrothrombocytes to maintain their normal functional activity. This first proteomics study of platelets from ACMT may provide an understanding of the structural stability and normal functioning of these platelets in spite of their large size. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Incorporation of a circulating protein into megakaryocyte and platelet granules

    Science.gov (United States)

    Handagama, P. J.; George, J. N.; Shuman, M. A.; McEver, R. P.; Bainton, D. F.

    1987-01-01

    To determine whether or not proteins circulating in plasma can be incorporated into megakaryocytes and platelets, horseradish peroxidase (HRP) was injected intravenously into guinea pigs and these cells were examined for its uptake by electron microscopy and cytochemistry. Enriched samples of megakaryocytes enabled ultrastructural analysis of large numbers of these rare cells. In megakaryocytes, 50% of alpha granules contained HRP between 75 min and 7 hr after injection. At 24 hr, 25% of the megakaryocyte granules were peroxidase-positive, less were positive by 48 hr, and there were none at 4 days. Thus, the findings demonstrate that a circulating protein can be endocytosed by megakaryocytes and rapidly packaged into alpha granules. Platelet granules also contain HRP by 7 hr after injection, and they can secrete it in response to thrombin. Unfortunately, our present studies do not allow us to distinguish between direct endocytosis by the platelet and/or shedding of new platelets from recently labeled megakaryocytes. It is concluded that while some alpha granule proteins are synthesized by megakaryocytes, others may be acquired from plasma by endocytosis. In addition to providing evidence that some of the proteins of alpha granules may be of exogenous origin, this study has allowed the definition of a pathway whereby plasma proteins may be temporarily sequestered in megakaryocytes before reentering the circulation in platelets.

  5. Platelet antiheparin activity. The isolation and characterisation of platelet factor 4 released from thrombin-aggregated washed human platelets and its dissociation into subunits and the isolation of membrane-bound antiheparin activity.

    Science.gov (United States)

    Moore, S; Pepper, D S; Cash, J D

    1975-02-27

    Platelet factor 4 was isolated by gel filtration from the soluble release products of thrombin-aggregated washed human platelets as a proteoglycan-platelet factor 4 complex of molecular weight 358 000, Stokes radius (r-s) of 14.0 nm, sedimentation coefficient (s) of 7.1 S and frictional ratio (f/f-o) of 3.04. The complex was dissociated at high ionic strength (I equals 0.75) and the proteoglycan separated from platelet factor 4 by gel filtration. Platelet factor 4 had a molecular weight of 27 100, r-s of 2.52 nm, s of 2.4 S and f/f-o of 1.26, was insoluble under physiological conditions but readily soluble at pH 3. Under these conditions platelet factor 4 dissociated into four subunits with a molecular weight of 6900, r-s of 1.92 nm, s of 0.8 S, and f/f-o of 1.52. Qualitative N-terminal amino acid analysis showed the presence of glutamic acid or glutamine as the major end group. Platelet factor 4 was compared with protamine sulphate, which has similar biological properties, by electrophoresis at pH 2.2, in which both migrated as single bands but with differing mobility, and by amino acid analysis which showed a more normal distribution of residues than occurred in protamine sulphate. Of the basic amino acids platelet factor 4 (molecular weight 27 100) contained 5.97% arginine, 3.18% histidine, and 12.31% lysine compared to protamine sulphate with 64.2% arginine, 0.6% lysine and no histidine. A partial specific volume (v) of 0.747 was calculated for platelet factor 4 from its amino acid analysis. A membrane fraction with antiheparin activity, an isopycnic density of 1.090-1.110 and r-s of 15-35 nm, was also isolated by sucrose density gradient centrifugation from the ultrasonicated insoluble platelet residue remaining after thrombin-induced aggregation of washed human platelets. Trypsin treatment of the membrane fraction neither solubilised nor destroyed the activity.

  6. Release of a human platelet specific protein measured by a radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, C A; Moore, S; Bolton, A E; Pepper, D S; Cash, J D

    1975-06-01

    Recent studies have demonstrated that it is possible to isolate and characterize a protein released from human platelets during thrombin-induced aggregation. This protein appeared to be unique to platelets and was named ..beta..-thromboglobulin (..beta..-TG). The following communication describes a radioimmunoassay for the measurement of ..beta..-TG and gives an account of preliminary studies to examine the potential application of this assay for the detection of platelet involvement in thromboembolic disorders.

  7. Platelet-rich fibrin or platelet-rich plasma – which one is better? an opinion

    Directory of Open Access Journals (Sweden)

    Shweta Bansal

    2017-01-01

    Full Text Available The healing of hard and soft tissue in mediated by a wide range of intracellular and extracellular events that are regulated by signaling proteins. Platelets can play a crucial role in periodontal regeneration as they are the reservoirs of growth factors and cytokines which are the key factors for regeneration of bone and maturation of soft tissue. Platelet-rich plasma (PRP is first generation platelet concentrate. However, the short duration of cytokine release and its poor mechanical properties have resulted in search of new material. Platelet-rich fibrin (PRF is a natural fibrin-based biomaterial prepared from an anticoagulant-free blood harvest without any artificial biochemical modification (no bovine thrombin is required that allows obtaining fibrin membranes enriched with platelets and growth factors. The slow polymerization during centrifugation, fibrin-based structure, ease of preparation, minimal expense makes PRF somewhat superior in some aspect to PRP.

  8. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes......-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...

  9. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2012-02-01

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  10. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2009-02-27

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  11. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  12. Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2.

    Science.gov (United States)

    Konopatskaya, Olga; Matthews, Sharon A; Harper, Matthew T; Gilio, Karen; Cosemans, Judith M E M; Williams, Christopher M; Navarro, Maria N; Carter, Deborah A; Heemskerk, Johan W M; Leitges, Michael; Cantrell, Doreen; Poole, Alastair W

    2011-07-14

    Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.

  13. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Responsiveness of platelets during storage studied with flow cytometry--formation of platelet subpopulations and LAMP-1 as new markers for the platelet storage lesion.

    Science.gov (United States)

    Södergren, A L; Tynngård, N; Berlin, G; Ramström, S

    2016-02-01

    Storage lesions may prevent transfused platelets to respond to agonists and arrest bleeding. The aim of this study was to evaluate and quantify the capacity of platelet activation during storage using flow cytometry and new markers of platelet activation. Activation responses of platelets prepared by apheresis were measured on days 1, 5, 7 and 12. In addition, comparisons were made for platelet concentrates stored until swirling was affected. Lysosome-associated membrane protein-1 (LAMP-1), P-selectin and phosphatidylserine (PS) exposure were assessed by flow cytometry on platelets in different subpopulations in resting state or following stimulation with platelet agonists (cross-linked collagen-related peptide (CRP-XL), PAR1- and PAR4-activating peptides). The ability to form subpopulations upon activation was significantly decreased already at day 5 for some agonist combinations. The agonist-induced exposure of PS and LAMP-1 also gradually decreased with time. Spontaneous exposure of P-selectin and PS increased with time, while spontaneous LAMP-1 exposure was unchanged. In addition, agonist-induced LAMP-1 expression clearly discriminated platelet concentrates with reduced swirling from those with retained swirling. This suggests that LAMP-1 could be a good marker to capture changes in activation capacity in stored platelets. The platelet activation potential seen as LAMP-1 exposure and fragmentation into platelet subpopulations is potential sensitive markers for the platelet storage lesion. © 2015 International Society of Blood Transfusion.

  15. Nanodisc-solubilized membrane protein library reflects the membrane proteome.

    Science.gov (United States)

    Marty, Michael T; Wilcox, Kyle C; Klein, William L; Sligar, Stephen G

    2013-05-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.

  16. RhoG protein regulates platelet granule secretion and thrombus formation in mice.

    Science.gov (United States)

    Goggs, Robert; Harper, Matthew T; Pope, Robert J; Savage, Joshua S; Williams, Christopher M; Mundell, Stuart J; Heesom, Kate J; Bass, Mark; Mellor, Harry; Poole, Alastair W

    2013-11-22

    Rho GTPases such as Rac, RhoA, and Cdc42 are vital for normal platelet function, but the role of RhoG in platelets has not been studied. In other cells, RhoG orchestrates processes integral to platelet function, including actin cytoskeletal rearrangement and membrane trafficking. We therefore hypothesized that RhoG would play a critical role in platelets. Here, we show that RhoG is expressed in human and mouse platelets and is activated by both collagen-related peptide (CRP) and thrombin stimulation. We used RhoG(-/-) mice to study the function of RhoG in platelets. Integrin activation and aggregation were reduced in RhoG(-/-) platelets stimulated by CRP, but responses to thrombin were normal. The central defect in RhoG(-/-) platelets was reduced secretion from α-granules, dense granules, and lysosomes following CRP stimulation. The integrin activation and aggregation defects could be rescued by ADP co-stimulation, indicating that they are a consequence of diminished dense granule secretion. Defective dense granule secretion in RhoG(-/-) platelets limited recruitment of additional platelets to growing thrombi in flowing blood in vitro and translated into reduced thrombus formation in vivo. Interestingly, tail bleeding times were normal in RhoG(-/-) mice, suggesting that the functions of RhoG in platelets are particularly relevant to thrombotic disorders.

  17. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  18. Platelet amyloid precursor protein isoform expression in Alzheimer's disease: evidence for peripheral marker.

    Science.gov (United States)

    Vignini, A; Sartini, D; Morganti, S; Nanetti, L; Luzzi, S; Provinciali, L; Mazzanti, L; Emanuelli, M

    2011-01-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by a progressive cognitive and memory decline. Among peripheral markers of AD, great interest has been focused on the amyloid precursor protein (APP). In this regard, platelets represent an important peripheral source of APP since it has been demonstrated that the three major isoforms, that are constituted of 770, 751 and 695 aa residues, are inserted in the membrane of resting platelets. APP 751 and APP 770 contain a Kunitz-type serine protease inhibitor domain (APP KPI) and APP 695 lacks this domain. To address this issue, we first examined the platelet APP isoform mRNAs prospectively as biomarker for the diagnosis of AD by means of real-time quantitative PCR, and then evaluated the correlation between APP mRNA expression levels and cognitive impairment of enrolled subjects. Differential gene expression measurements in the AD patient group (n=18) revealed a significant up-regulation of APP TOT (1.52-fold), APP KPI (1.32-fold), APP 770 (1.33-fold) and APP 751 (1.26-fold) compared to controls (n=22). Moreover, a statistically significant positive correlation was found between APP mRNA levels (TOT, KPI, 770 and 751) and cognitive impairment. Since AD definitive diagnosis still relies on pathological evaluation at autopsy, the present results are consistent with the hypothesis that platelet APP could be considered a potential reliable peripheral marker for studying AD and could contribute to define a signature for the presence of AD pathology.

  19. Partial purification and identification of the thrombozane A2/prostaglandin H2 receptor protein in human platelets

    International Nuclear Information System (INIS)

    Lim, C.T.; Kattelman, E.J.; Arora, S.K.; Venton, D.L.; Le Breton, G.C.

    1986-01-01

    The thromboxane A 2 /prostaglandin H 2 (TXA 2 /PGH 2 ) receptor antagonist [ 3 H]-13-azaprostanoic acid (13-APA) was used to identify and purify the platelet TXA 2 /PGH 2 receptor protein. Optimal solubilization of the 13-APA binding protein was achieved by extraction with 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate (CHAPS) detergent. Preliminary purification of the crude solubilized membrane fraction was performed by gel filtration chromatography using a Sepharose 4B column. Further purification was accomplished by high performance liquid chromatography (HPLC) using a Synchropak GPC-500 column. The HPLC protein profile revealed two protein peaks, only one of which was enriched in [ 3 H]-13-APA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of this peak revealed two bands with molecular weights of 65,000 and 60,000 daltons. In binding studies using the 60,000 dalton-enriched subfraction, unlabelled 13-APA, the TXA 2 /PGH 2 mimetic U46619 and the TXA 2 /PGH 2 antagonist SQ 29,548 all competed for [ 3 H]-13-APA binding whereas TXB 2 did not compete for binding. Heat denaturation of this subfraction resulted in a complete loss of binding activity. These findings indicate that a protein of approximately 60,000 daltons represents the human platelet TXA 2 /PGH 2 receptor

  20. Apheresis platelet concentrates contain platelet-derived and endothelial cell-derived microparticles

    NARCIS (Netherlands)

    Rank, A.; Nieuwland, R.; Liebhardt, S.; Iberer, M.; Grützner, S.; Toth, B.; Pihusch, R.

    2011-01-01

    Background and Objectives Microparticles (MP) are membrane vesicles with thrombogenic and immunomodulatory properties. We determined MP subgroups from resting platelets, activated platelets and endothelial cells in donors and apheresis platelet concentrates (PC). Material and Methods MP were double

  1. Deletion of Crry and DAF on murine platelets stimulates thrombopoiesis and increases factor H-dependent resistance of peripheral platelets to complement attack.

    Science.gov (United States)

    Barata, Lidia; Miwa, Takashi; Sato, Sayaka; Kim, David; Mohammed, Imran; Song, Wen-Chao

    2013-03-15

    Complement receptor 1-related gene/protein y (Crry) and decay-accelerating factor (DAF) are two murine membrane C3 complement regulators with overlapping functions. Crry deletion is embryonically lethal whereas DAF-deficient mice are generally healthy. Crry(-/-)DAF(-/-) mice were viable on a C3(-/-) background, but platelets from such mice were rapidly destroyed when transfused into C3-sufficient mice. In this study, we used the cre-lox system to delete platelet Crry in DAF(-/-) mice and studied Crry/DAF-deficient platelet development in vivo. Rather than displaying thrombocytopenia, Pf4-Cre(+)-Crry(flox/flox) mice had normal platelet counts and their peripheral platelets were resistant to complement attack. However, chimera mice generated with Pf4-Cre(+)-Crry(flox/flox) bone marrows showed platelets from C3(-/-) but not C3(+/+) recipients to be sensitive to complement activation, suggesting that circulating platelets in Pf4-Cre(+)-Crry(flox/flox) mice were naturally selected in a complement-sufficient environment. Notably, Pf4-Cre(+)-Crry(flox/flox) mouse platelets became complement susceptible when factor H function was blocked. Examination of Pf4-Cre(+)-Crry(flox/flox) mouse bone marrows revealed exceedingly active thrombopoiesis. Thus, under in vivo conditions, Crry/DAF deficiency on platelets led to abnormal platelet turnover, but peripheral platelet count was compensated for by increased thrombopoiesis. Selective survival of Crry/DAF-deficient platelets aided by factor H protection and compensatory thrombopoiesis demonstrates the cooperation between membrane and fluid phase complement inhibitors and the body's ability to adaptively respond to complement regulator deficiencies.

  2. A Novel Technique for Conjunctivoplasty in a Rabbit Model: Platelet-Rich Fibrin Membrane Grafting

    Directory of Open Access Journals (Sweden)

    Mehmet Erol Can

    2016-01-01

    Full Text Available Purpose. To investigate the effect of platelet-rich fibrin (PRF membrane on wound healing. Methods. Twenty-four right eyes of 24 New Zealand rabbits equally divided into 2 groups for the study design. After the creation of 5 × 5 mm conjunctival damage, it was secured with PRF membrane, which was generated from the rabbit’s whole blood samples in PRF membrane group, whereas damage was left unsutured in the control group. Three animals were sacrificed in each group on the 1st, 3rd, 7th, and 28th postoperative days. Immunohistochemical (IHC stainings and biomicroscopic evaluation were performed and compared between groups. Results. PRF membrane generated significant expressions of vascular endothelial growth factor (VEGF, transforming growth factor-beta (TGF-β, and platelet-derived growth factor (PDGF in the early postoperative period. However, the IHC evaluation allowed showing the excessive staining at day 28, in control group. Biomicroscopic evaluation revealed complete epithelialization in PRF membrane group, but none of the cases showed complete healing in the control group. Conclusions. This experimental study showed us the beneficial effects of the PRF membrane on conjunctival healing. Besides its chemical effects, it provides mechanical support as a scaffold for the migrating cells that are important for ocular surface regeneration. These overall results encourage us to apply autologous PRF membrane as a growth factor-enriched endogenous scaffold for ocular surface reconstruction.

  3. Effects of drugs on platelet function.

    Science.gov (United States)

    Morse, E E

    1977-01-01

    Numerous drugs and chemicals affect the function of human blood platelets. The mechanism of action of some medications is partly understood. Aspirin is the most frequently involved drug. It appears to interfere with the platelet release reaction by acetylation of a platelet membrane protein which may be involved in the synthesis of prostaglandins. Other anti-inflammatory drugs, including indomethacin, phenylbutazone, ibuprophen (Motrin) and clonixin, also interfere with the release reaction but have a shorter acting course than aspirin. Some drugs stimulate adenylcyclase (gliclazide) or block phosphodiesterase, (dipyridamole, caffeine) both of which actions lead to an increase in adenosine cyclic 3':5' monophosphate (cAMP) and decrease aggregation by adenosine diphosphate (ADP). These interactions should be known to clinical scientists since patients using these medicaments may manifest abnormal platelet function tests in the laboratory and mild hemorrhagic syndromes in the clinic.

  4. The hemostatic agent ethamsylate promotes platelet/leukocyte aggregate formation in a model of vascular injury.

    Science.gov (United States)

    Hernandez, Maria Rosa; Alvarez-Guerra, Miriam; Escolar, Ginés; Chiavaroli, Carlo; Hannaert, Patrick; Garay, Ricardo P

    2004-08-01

    The hemostatic agent ethamsylate enhances membrane expression of P-selectin in human platelets, but whether this promotes platelet-leukocyte aggregate formation is unknown. Here we investigated this point by flow cytometry determination of human platelet-leukocyte aggregates under basal conditions and after whole-blood perfusion through a damaged rabbit aorta segment. Actions of ethamsylate on adhesive molecules of platelets and leukocytes were investigated in parallel. Under basal conditions, ethamsylate was unable to modify whole-blood platelet-leukocyte aggregation, but following whole-blood perfusion through a damaged vessel, ethamsylate produced a modest, but significant increase in platelet-leukocyte aggregates (48+/-21 and 45+/-26% above control levels at ethamsylate 20 and 40 microm respectively). In isolated leukocyte plasma membranes, 14C-ethamsylate specifically bound up to an amount of 660 pmol/mg protein. Moreover, at concentrations > or =1 microm, ethamsylate induced an important (100-200%) and significant increase in the P-selectin glycoprotein ligand 1 (PSGL-1) fluorescence signal in isolated leukocytes and was unable to significantly modify the percentage of CD11b-positive cells. However, no significant changes in aggregate formation were found when ethamsylate was incubated with isolated leukocytes and blood was reconstituted and perfused. In isolated platelet cell membranes, anti-P-selectin antibody and the anti-integrin RGD-containing pentapeptide (GRDGS) were unable to displace 14C-ethamsylate binding. In conclusion, ethamsylate specifically binds to plasma membranes of leukocytes, enhances membrane PSGL-1 expression and promotes leukocyte-platelet aggregation in whole-blood perfused through a damaged vascular segment. These results together with the previously observed enhancement of platelet P-selectin membrane expression [Thromb. Res. (2002)107:329-335] confirms and extends the view that ethamsylate acts on the first step of hemostasis, by

  5. Comparative evaluation of coronally advanced flap using amniotic membrane and platelet-rich fibrin membrane in gingival recession: An 18-month clinical study

    Directory of Open Access Journals (Sweden)

    Mohd Rehan

    2018-01-01

    Full Text Available Background: An amnion membrane is a placenta-derived tissue that consists of numerous growth factors, proteins, and stem cell reserves which help in accelerated wound healing and regeneration. Platelet-rich fibrin (PRF also releases growth factors after activation from the platelets and gets trapped within fibrin matrix which has been shown to stimulate the mitogenic response in the periosteum for bone repair and regeneration during normal wound healing. This preliminary, controlled, randomized clinical trial with an 18-month follow-up was aimed to evaluate the effectiveness of coronally advanced flap (CAF with either PRF membrane or bioresorbable amniotic membrane (AM in treatment of localized gingival recession defects. Materials and Methods: Sixteen healthy adult patients presenting with Miller Class I recession defects were treated surgically with CAF along with AM (Group I or PRF (Group II for coverage of the recession defects. For all patients, plaque index, gingival index, bleeding on probing, clinical attachment level, depth of recession, width of recession, width of attached gingiva, and gingival thickness were evaluated at 6 months and 18 months postoperatively. Statistical analysis was done using paired t-test, repeated measure analysis of variance test, Bonferroni test for intragroup comparison and unpaired t-test for intergroup comparison. Results: The results showed statistically nonsignificant (P < 0.01 difference in all clinical parameters at the 6- and 18-month follow-ups in both groups. Gingival recession in both PRF and amnion group when evaluated individually, significantly reduced from baseline to 6 months (P = 0.000 and from baseline to 18 months (P = 0.000. However, the mean value from 6 months to 18 months was statistically nonsignificant. Conclusion: The present study demonstrated that both CAF + PRF and CAF + AM are equally effective in providing clinically significant outcomes with respect to root coverage with AM

  6. Estriol-induced fibrinolysis due to the activation of plasminogen to plasmin by nitric oxide synthesis in platelets.

    Science.gov (United States)

    Jana, Pradipta; Maiti, Smarajit; Kahn, Nighat N; Sinha, Asru K

    2015-04-01

    Estriol, an oestrogen, at 0.6 nmol/l was reported to inhibit ADP-induced platelet aggregation through nitric oxide synthesis. As nitric oxide has been reported to cause fibrinolysis due to the activation of plasminogen to plasmin, the role of estriol as a fibrinolytic agent was investigated. Also, the mechanism of estriol-induced nitric oxide synthesis in anucleated platelets was investigated. The estriol-induced lysis of platelet-rich plasma (PRP) clot was determined by photography of the clot lysis and by the assay of fibrin degradation products in the lysate and was obtained by SDS-PAGE. Nitric oxide was determined by methemoglobin method. The platelet membrane protein was isolated from the platelets by using Triton X-100 (0.05% v/v). The binding of estriol to the protein was determined by Scatchard plot by using an ELISA for estriol. Estriol at 0.6 nmol/l was found to lyse the clotted PRP due to fibrinolysis that produced fibrin degradation products in the lysate. The amino acid analysis of the platelet membrane protein, which resembles with nitric oxide synthase (NOS) activity, was activated nearly 10-fold over the control in the presence of estriol and was identified to be a human serum albumin precursor (Mr. 69 kDa) that binds to estriol with Kd1 of 6.0 × 10 mol/l and 39 ± 2 molecules of estriol bound the NOS molecule. The estriol-induced nitric oxide is capable of inducing fibrinolysis of the clotted PRP. The binding of estriol to platelet membrane NOS activated the enzyme in the absence of DNA in the platelet.

  7. The heterotrimeric G protein Gβ1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets.

    Science.gov (United States)

    Pradhan, Subhashree; Khatlani, Tanvir; Nairn, Angus C; Vijayan, K Vinod

    2017-08-11

    Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gβγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein Gβ 1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gβ 1 revealed that Gβ 1 interacts with the PP1c α, β, and γ1 isoforms. Purified PP1c bound to recombinant Gβ 1 -GST protein, and PP1c co-immunoprecipitated with Gβ 1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gβ 1 complex, which correlated with an association of PP1c with phospholipase C β3 (PLCβ3), along with a concomitant dephosphorylation of the inhibitory Ser 1105 residue in PLCβ3. siRNA-mediated depletion of GNB1 (encoding Gβ 1 ) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα -/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gβγ. Finally, disruption of PP1c-Gβ 1 complexes with myristoylated Gβ 1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gβ 1 protein enlists PP1c to modulate GPCR signaling in platelets.

  8. The measurement of platelet activation by radioimmunoassay in asthma

    International Nuclear Information System (INIS)

    Wu Guoxin; Sun Jian; Li Jianyong; Ruan Changgeng

    1992-02-01

    Radioimmunoassay with specific monoclonal antibody was used to evaluate the platelet activation in 14 cases of acute bronchial asthma. The result showed that the number of molecules of alpha-granule membrane protein (GMP-140) which was exposed on the surface of platelet following secretion significantly increased on the surface of platelet and in plasma, while the number of molecules of glycoprotein (GP) I b and GPIII a did not change significantly; the concentration of thromboxane B 2 in plasma was raised, while the concentration of 6-keto-PGF 1a was within the normal limits; the concentrations of β-thromboglobulin (β-TG) and platelet factor 4(PF 4 ) in plasma increased significantly; the number of platelets decreased. These results strongly confirmed that the degree of platelet activation was enhanced during acute asthmatic attack. The significance of platelet activation in the pathogenesis of asthma should be further investigated

  9. Platelet mimicry

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moein; Hunter, Alan Christy; Peer, Dan

    2016-01-01

    Here we critically examine whether coating of nanoparticles with platelet membranes can truly disguise them against recognition by elements of the innate immune system. We further assess whether the "cloaking technology" can sufficiently equip nanoparticles with platelet-mimicking functionalities...

  10. Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins.

    Science.gov (United States)

    Sun, Bingyun; Hood, Leroy

    2014-06-06

    The advent of proteomics technology has transformed our understanding of biological membranes. The challenges for studying membrane proteins have inspired the development of many analytical and bioanalytical tools, and the techniques of glycoproteomics have emerged as an effective means to enrich and characterize membrane and plasma-membrane proteomes. This Review summarizes the development of various glycoproteomics techniques to overcome the hurdles formed by the unique structures and behaviors of membrane proteins with a focus on N-glycoproteomics. Example contributions of N-glycoproteomics to the understanding of membrane biology are provided, and the areas that require future technical breakthroughs are discussed.

  11. Affinity column for purification of the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor

    International Nuclear Information System (INIS)

    Venton, D.L.; Arora, S.K.; Kim, S.O.; Lim, C.T.; Le Breton, G.C.

    1987-01-01

    The TXA 2 /PGH 2 receptor antagonist, 13-azaprostanoic acid (13-APA), was synthesized and used as the immobilized ligand in the affinity column purification of the 13-APA/U46619 binding component in human platelets. Diazo coupling of the ligand to the phenol of this tyr-gly-gly-NH-(CO)-O-Sepharose gave the affinity column material. Isolated platelet membranes were solubilized with detergent, applied directly to the affinity column and the eluate collected as 6 x 70 ml fractions. For each fraction, protein concentration and specific 3 H-13-APA/numberH-U46619 binding were determined. The majority of the applied protein (>98%) eluted in fraction number1. However, the specific 13-APA/U46619 binding per mg of protein was localized in fractions number4 and number5, representing approximately a 500-fold purification of this binding component. These results suggest that the platelet TXA 2 /PGH 2 receptor protein is retarded by this column, and that starting from crude, solubilized platelet membranes, a single pass through the column provides a 500-fold purification of the receptor

  12. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

    International Nuclear Information System (INIS)

    Hu Chuan; Hardee, Deborah; Minnear, Fred

    2007-01-01

    Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of α-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins

  13. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    Cellular membranes are complex structures, consisting of hundreds of different lipids and proteins. These membranes act as barriers between distinct environments, constituting hot spots for many essential functions of the cell, including signaling, energy conversion, and transport. These functions....... Discovered interactions were then probed on the level of the membrane using liposome-based assays. In the second part, a transmembrane protein was investigated. Assays to probe activity of the plasma membrane ATPase (Arabidopsis thaliana H+ -ATPase isoform 2 (AHA2)) in single liposomes using both giant...... are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...

  14. Nanodisc-solubilized membrane protein library reflects the membrane proteome

    OpenAIRE

    Marty, Michael T.; Wilcox, Kyle C.; Klein, William L.; Sligar, Stephen G.

    2013-01-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membr...

  15. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue.

    Directory of Open Access Journals (Sweden)

    Monique Ramos de Oliveira Trugilho

    2017-05-01

    Full Text Available Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet

  16. Role of platelets in maintenance of pulmonary vascular permeability to protein

    International Nuclear Information System (INIS)

    Lo, S.K.; Burhop, K.E.; Kaplan, J.E.; Malik, A.B.

    1988-01-01

    The authors examined the role of platelets in maintenance of pulmonary vascular integrity by inducing thrombocytopenia in sheep using antiplatelet serum (APS). A causal relationship between thrombocytopenia and increase in pulmonary vascular permeability was established by platelet repletion using platelet-rich plasma (PRP). Sheep were chronically instrumented and lung lymph fistulas prepared to monitor pulmonary lymph flow (Q lym ). A balloon catheter was positioned in the left atrium to assess pulmonary vascular permeability to protein after raising the left atrial pressure (P la ). Thrombocytopenia was maintained for 3 days by daily intramuscular APS injections. In studies using cultured bovine pulmonary artery endothelial monolayers, transendothelia permeability of 125 I-labeled albumin was reduced 50 and 95%, respectively, when 2.5 x 10 7 or 5 x 10 7 platelets were added onto endothelial monolayers. However, addition of 5 x 10 6 platelets or 5 x 10 7 red blood cells did not reduce endothelial monolayer albumin permeability. Results indicate that platelets are required for the maintenance of pulmonary vascular permeability. Reduction in permeability appears to involve an interaction of platelets with the endothelium

  17. Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor α-subunits and platelet glycoprotein IIb

    International Nuclear Information System (INIS)

    Fitzgerald, L.A.; Poncz, M.; Steiner, B.; Rall, S.C. Jr.; Bennett, J.S.; Phillips, D.R.

    1987-01-01

    The fibronectin receptor (FnR), the vitronectin receptor (VnR), and the platelet membrane glycoprotein (GP) IIb-IIIa complex are members of a family of cell adhesion receptors, which consist of noncovalently associated α- and β-subunits. The present study was designed to compare the cDNA-derived protein sequences of the α-subunits of human FnR, VnR, and platelet GP IIb. cDNA clones for the α-subunit of the FnR (FnR/sub α/) were obtained from a human umbilical vein endothelial (HUVE) cell library by using an oligonucleotide probe designed from a peptide sequence of platelet GP IIb. cDNA clones for platelet GP IIb were isolated from a cDNA expression library of human erythroleukemia cells by using antibodies. cDNA clones of the VnR α-subunit (VnR/sub α/) were obtained from the HUVE cell library by using an oligonucleotide probe from the partial cDNA sequence for the VnR/sub α/. Translation of these sequences showed that the FNR/sub α/, the VnR/sub α/, and GP IIb are composed of disulfide-linked large (858-871 amino acids) and small (137-158 amino acids) chains that are posttranslationally processed from a single mRNA. A single hydrophobic segment located near the carboxyl terminus of each small chain appears to be a transmembrane domain. The large chains appear to be entirely extracellular, and each contains four repeated putative Ca 2+ -binding domains of about 30 amino acids that have sequence similarities to other Ca 2+ -binding proteins. The identity among the protein sequences of the three receptor α-subunits ranges from 36.1% to 44.5%, with the Ca 2+ -binding domains having the greatest homology. These proteins apparently evolved by a process of gene duplication

  18. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    Directory of Open Access Journals (Sweden)

    Hou Ssu-Yu

    2010-06-01

    Full Text Available Abstract Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA reductase inhibitors (statins have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin. Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2 formation, and phospholipase C (PLCγ2, protein kinase C (PKC, and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP phosphorylation, and endothelial nitric oxide synthase (eNOS expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP

  19. Production and characterization of monoclonal antibodies against rat platelet GPIIb/IIIa

    International Nuclear Information System (INIS)

    Miyazaki, H.; Tamura, S.; Sudo, T.; Suzuki, T.

    1990-01-01

    Four murine monoclonal antibodies against rat platelets were produced by fusion of spleen cells from mice intravenously immunized with whole rat platelets. All four antibodies immunoprecipitated two major platelet membrane proteins with apparent molecular weights of 130,000 and 82,000 (nonreduced) and of 120,000 and 98,000 (reduced), which were structurally analogous to human glycoprotein (GP) IIb/IIIa, i.e. rat GPIIb/IIIa. Two of four antibodies, named P9 and P55, strongly inhibited adenosine diphosphate (ADP)-induced aggregation of washed rat platelets and caused approximately 50% inhibition of human fibrinogen binding to ADP-stimulated rat platelets, suggesting that rat GPIIb/IIIa serves as a fibrinogen receptor in ADP-induced aggregation. In contrast, two other antibodies, named P14 and P34, themselves caused aggregation of rat platelets in platelet-rich plasma (PRP) and the secretion of 14C-serotonin from 14C-serotonin-labeled PRP. These results indicate that rat GPIIb/IIIa plays an important role in platelet aggregation

  20. Platelet granule exocytosis: A comparison with chromaffin cells

    Directory of Open Access Journals (Sweden)

    Jennifer eFitch-Tewfik

    2013-06-01

    Full Text Available The rapid secretion of bioactive amines from chromaffin cells constitutes an important component of the fight or flight response of mammals to stress. Platelets respond to stresses within the vasculature by rapidly secreting cargo at sites of injury, inflammation, or infection. Although chromaffin cells derive from the neural crest and platelets from bone marrow megakaryocytes, both have evolved a heterogeneous assemblage of granule types and a mechanism for efficient release. This article will provide an overview of granule formation and exocytosis in platelets with an emphasis on areas in which the study of chromaffin cells has influenced that of platelets and on similarities between the two secretory systems. Commonalities include the use of transporters to concentrate bioactive amines and other cargos into granules, the role of cytoskeletal remodeling in granule exocytosis, and the use of granules to provide membrane for cytoplasmic projections. The SNAREs and SNARE accessory proteins used by each cell type will also be considered. Finally, we will discuss the newly appreciated role of dynamin family proteins in regulated fusion pore formation. This evaluation of the comparative cell biology of regulated exocytosis in platelets and chromaffin cells demonstrates a convergence of mechanisms between two disparate cell types both tasked with responding rapidly to physiological stimuli.

  1. Macroscopic domain formation in the platelet plasma membrane

    DEFF Research Database (Denmark)

    Bali, Rachna; Savino, Laura; Ramirez, Diego A.

    2009-01-01

    There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large d...

  2. Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: application to the platelet releasate.

    LENUS (Irish Health Repository)

    O'Connor, Roisin

    2010-01-01

    Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples.

  3. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    Science.gov (United States)

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  4. Characterising antimicrobial protein-membrane complexes

    International Nuclear Information System (INIS)

    Xun, Gloria; Dingley, Andrew; Tremouilhac, Pierre

    2009-01-01

    Full text: Antimicrobial proteins (AMPs) are host defence molecules that protect organisms from microbial infection. A number of hypotheses for AMP activity have been proposed which involve protein membrane interactions. However, there is a paucity of information describing AMP-membrane complexes in detail. The aim of this project is to characterise the interactions of amoebapore-A (APA-1) with membrane models using primarily solution-state NMR spectroscopy. APA-1 is an AMP which is regulated by a pH-dependent dimerisation event. Based on the atomic resolution solution structure of monomeric APA-1, it is proposed that this dimerisation is a prerequisite for ring-like hexameric pore formation. Due to the cytotoxicity of APA-1, we have developed a cell-free system to produce this protein. To facilitate our studies, we have adapted the cell-free system to isotope label APA-1. 13 C /15 N -enriched APA-1 sample was achieved and we have begun characterising APA-1 dimerisation and membrane interactions using NMR spectroscopy and other biochemical/biophysical methods. Neutron reflectometry is a surface-sensitive technique and therefore represents an ideal technique to probe how APA-1 interacts with membranes at the molecular level under different physiological conditions. Using Platypus, the pH-induced APA-1-membrane interactions should be detectable as an increase of the amount of protein adsorbed at the membrane surface and changes in the membrane properties. Specifically, detailed information of the structure and dimensions of the protein-membrane complex, the position and amount of the protein in the membrane, and the perturbation of the membrane phospholipids on protein incorporation can be extracted from the neutron reflectometry measurement. Such information will enable critical assessment of current proposed mechanisms of AMP activity in bacterial membranes and complement our NMR studies

  5. Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation.

    Science.gov (United States)

    Corduan, Aurélie; Plé, Hélène; Laffont, Benoit; Wallon, Thérèse; Plante, Isabelle; Landry, Patricia; Provost, Patrick

    2015-05-01

    Platelets play an important role in haemostasis, as well as in thrombosis and coagulation processes. They harbour a wide variety of messenger RNAs (mRNAs), that can template de novo protein synthesis, and an abundant array of microRNAs, which are known to mediate mRNA translational repression through proteins of the Argonaute (Ago) family. The relationship between platelet microRNAs and proteins capable of mediating translational repression, however, remains unclear. Here, we report that half of platelet microRNAs is associated to mRNA-regulatory Ago2 protein complexes, in various proportions. Associated to these Ago2 complexes are platelet mRNAs known to support de novo protein synthesis. Reporter gene activity assays confirmed the capacity of the platelet microRNAs, found to be associated to Ago2 complexes, to regulate translation of these platelet mRNAs through their 3'UTR. Neither the microRNA repertoire nor the microRNA composition of Ago2 complexes of human platelets changed upon activation with thrombin. However, under conditions favoring de novo synthesis of Plasminogen Activator Inhibitor-1 (PAI-1) protein, we documented a rapid dissociation of the encoding platelet SERPINE1 mRNA from Ago2 protein complexes as well as from the translational repressor protein T-cell-restricted intracellular antigen-1 (TIA-1). These findings are consistent with a scenario by which lifting of the repressive effects of Ago2 and TIA-1 protein complexes, involving a rearrangement of proteinmRNA complexes rather than disassembly of Ago2microRNA complexes, would allow translation of SERPINE1 mRNA into PAI-1 in response to platelet activation.

  6. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He+ ion implantation

    International Nuclear Information System (INIS)

    Kurotobi, K.; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M.

    2003-01-01

    He + ion implanted collagen-coated tubes with a fluence of 1 x 10 14 ions/cm 2 were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 . Platelet adhesion (using platelet rich plasma) was inhibited on the He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 x 10 13 , 1 x 10 15 and 1 x 10 16 ions/cm 2 . Platelet activation with washed platelets was observed on untreated collagen and He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and was inhibited with fluences of 1 x 10 13 , 1 x 10 15 and 1 x 10 16 ions/cm 2 . Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He + ion implanted collagen over a fluence of 1 x 10 13 ions/cm 2 . On the 1 x 10 14 ions/cm 2 implanted collagen, no platelet activation was observed due to the influence of plasma proteins. >From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and that plasma protein adsorption took an important role repairing the graft surface

  7. Peripheral Protein Unfolding Drives Membrane Bending.

    Science.gov (United States)

    Siaw, Hew Ming Helen; Raghunath, Gokul; Dyer, R Brian

    2018-06-20

    Dynamic modulation of lipid membrane curvature can be achieved by a number of peripheral protein binding mechanisms such as hy-drophobic insertion of amphipathic helices and membrane scaffolding. Recently, an alternative mechanism was proposed in which crowding of peripherally bound proteins induces membrane curvature through steric pressure generated by lateral collisions. This effect was enhanced using intrinsically disordered proteins that possess high hydrodynamic radii, prompting us to explore whether membrane bending can be triggered by the folding-unfolding transition of surface-bound proteins. We utilized histidine-tagged human serum albumin bound to Ni-NTA-DGS containing liposomes as our model system to test this hypothesis. We found that reduction of the disulfide bonds in the protein resulted in unfolding of HSA, which subsequently led to membrane tubule formation. The frequency of tubule formation was found to be significantly higher when the proteins were unfolded while being localized to a phase-separated domain as opposed to randomly distributed in fluid phase liposomes, indicating that the steric pressure generated from protein unfolding is directly responsible for membrane deformation. Our results are critical for the design of peripheral membrane protein-immobilization strategies and open new avenues for exploring mechanisms of membrane bending driven by conformational changes of peripheral membrane proteins.

  8. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    Science.gov (United States)

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  9. Heparin-associated thrombocytopenia: antibody binding specificity to platelet antigens.

    Science.gov (United States)

    Lynch, D M; Howe, S E

    1985-11-01

    Sera from four patients with heparin-associated thrombocytopenia (HAT) were evaluated by a quantitative enzyme-linked immunosorbent assay (ELISA) to detect heparin-dependent serum platelet-bindable immunoglobulin (S-PBIg) and by Western blotting and immunoprecipitation to investigate the specificity of the antibody binding. All HAT sera showed mildly increased S-PBIg (mean, 7.8 fg per platelet; normal, less than 6.0 fg per platelet) to intact target platelets in the ELISA, which was markedly increased in the presence of heparin (mean, 20.9 fg per platelet). This increase was 20-fold greater than normal control sera, which showed a mean differential increase of only 0.5 fg per platelet. Immunoglobulin binding specificity to platelet antigens was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis of platelet lysate with transfer of the platelet fractions onto nitrocellulose strips (Western blotting) and subsequent immunoassay using HAT and normal sera. In the presence of heparin, the four HAT patients demonstrated increased binding of immunoglobulin to platelet antigens of apparent molecular weights of 180, 124, and 82 kd. Radiolabeled heparin when incubated with HAT sera, normal sera, or albumin blanks bound to platelet proteins of the same apparent molecular weights. These observations are consistent with current hypotheses suggesting that HAT antibody is directed to heparin-platelet complexes or, alternatively, that heparin induces conformational change of antigenic sites on the platelet membrane.

  10. Blood Mixing Upregulates Platelet Membrane-Bound CD40 Ligand Expression in vitro Independent of Abo Compatibility.

    Science.gov (United States)

    Huang, Go-Shine; Hu, Mei-Hua; Lin, Tso-Chou; Lin, Yi-Chang; Tsai, Yi-Ting; Lin, Chih-Yuan; Ke, Hung-Yen; Zheng, Xu-Zhi; Tsai, Chien-Sung

    2017-11-30

    Platelets play a central role in the inflammation response via CD40 ligand (CD40L) expression, which may lead to transfusion reactions. The precise role of platelet CD40L-mediated inflammation in transfusion reactions is unclear. Therefore, we assessed the effects of in vitro blood mixing on platelet CD40L expression. In addition, we examined the effect of ABO compatibility on CD40L expression. Donor packed red blood cells were acquired from a blood bank, and recipient blood was obtained from patients undergoing cardiac surgery and prepared as washed platelets. Donor blood was mixed with suspended, washed recipient platelets to obtain a final mixing ratio of 1%, 5%, or 10% (vol/vol). The blood mixtures were divided into three groups: Group M, cross-matched blood-type mixing (n = 20); Group S, ABO type-specific uncross-matched blood (n = 20); and Group I, ABO incompatibility (not ABO type-specific blood and not process cross-matched) mixing (n = 20). The blood mixtures were used to detect platelet membrane-bound CD40L expression by flow cytometry. Blood mixing resulted in an increase in CD40L expression in Group M (P role in the induction of CD40L expression.

  11. Fps/Fes and Fer non-receptor protein-tyrosine kinases regulate collagen- and ADP-induced platelet aggregation.

    Science.gov (United States)

    Senis, Y A; Sangrar, W; Zirngibl, R A; Craig, A W B; Lee, D H; Greer, P A

    2003-05-01

    Fps/Fes and Fer proto-oncoproteins are structurally related non-receptor protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. We show that Fps/Fes and Fer are expressed in human and mouse platelets, and are activated following stimulation with collagen and collagen-related peptide (CRP), suggesting a role in GPVI receptor signaling. Fer was also activated following stimulation with thrombin and a protease-activated receptor4 (PAR4)-activating peptide, suggesting a role in signaling downstream from the G protein-coupled PAR4. There were no detectable perturbations in CRP-induced activation of Syk, PLCgamma2, cortactin, Erk, Jnk, Akt or p38 in platelets from mice lacking Fps/Fes, Fer, or both kinases. Platelets lacking Fps/Fes, from a targeted fps/fes null strain of mice, showed increased rates and amplitudes of collagen-induced aggregation, relative to wild-type platelets. P-Selectin expression was also elevated on the surface of Fps/Fes-null platelets in response to CRP. Fer-deficient platelets, from mice targeted with a kinase-inactivating mutation, disaggregated more rapidly than wild-type platelets in response to ADP. This report provides the first evidence that Fps/Fes and Fer are expressed in platelets and become activated downstream from the GPVI collagen receptor, and that Fer is activated downstream from a G-protein coupled receptor. Furthermore, using targeted mouse models we show that deficiency in Fps/Fes or Fer resulted in disregulated platelet aggregation and disaggregation, demonstrating a role for these kinases in regulating platelet functions.

  12. Imipramine binding in subpopulations of normal human blood platelets

    International Nuclear Information System (INIS)

    Arora, R.C.; Meltzer, H.Y.

    1984-01-01

    Imipramine binding was studied in platelet membranes isolated with different proportions of heavy (young) and light (old) platelets. The B/sub max/, a measure of the number of binding sites, was greater in the heavier platelets than in the light platelets. However, the dissociation constant K/sub d/ (a reflection of the affinity of imipramine binding) was greater in the lighter platelets compared to the heavy platelets. These results indicate that differences in K/sub d/ and B/sub max/ in particular membrane preparation, could be due to the differences in the relative proportion of heavy and light platelets

  13. Membrane shape modulates transmembrane protein distribution.

    Science.gov (United States)

    Aimon, Sophie; Callan-Jones, Andrew; Berthaud, Alice; Pinot, Mathieu; Toombes, Gilman E S; Bassereau, Patricia

    2014-01-27

    Although membrane shape varies greatly throughout the cell, the contribution of membrane curvature to transmembrane protein targeting is unknown because of the numerous sorting mechanisms that take place concurrently in cells. To isolate the effect of membrane shape, we used cell-sized giant unilamellar vesicles (GUVs) containing either the potassium channel KvAP or the water channel AQP0 to form membrane nanotubes with controlled radii. Whereas the AQP0 concentrations in flat and curved membranes were indistinguishable, KvAP was enriched in the tubes, with greater enrichment in more highly curved membranes. Fluorescence recovery after photobleaching measurements showed that both proteins could freely diffuse through the neck between the tube and GUV, and the effect of each protein on membrane shape and stiffness was characterized using a thermodynamic sorting model. This study establishes the importance of membrane shape for targeting transmembrane proteins and provides a method for determining the effective shape and flexibility of membrane proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. VacA, the vacuolating cytotoxin of Helicobacter pylori, binds to multimerin 1 on human platelets

    OpenAIRE

    Satoh, Kaneo; Hirayama, Toshiya; Takano, Katsuhiro; Suzuki-Inoue, Katsue; Sato, Tadashi; Ohta, Masato; Nakagomi, Junko; Ozaki, Yukio

    2013-01-01

    Platelets were activated under the infection with H. pylori in human and mice. We investigated the role of VacA, an exotoxin released by H. pylori in this context. Acid-activated VacA, but not heated VacA, induced platelet CD62P expression. However, VacA reacted with none of the alleged VacA receptors present on platelet membranes. We therefore analyzed VacA associated proteins obtained through VacA affinity chromatography, using MALDI-TOF-MS. Multimerin1 was detected in two consecutive exper...

  15. Kinetics and Thermodynamics of Membrane Protein Folding

    Directory of Open Access Journals (Sweden)

    Ernesto A. Roman

    2014-03-01

    Full Text Available Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.

  16. Effect of 60Co γ-ray irradiation on human platelets

    International Nuclear Information System (INIS)

    Wu Guoxin; Zhao Yiming; Ruan Changgeng

    1992-01-01

    Human platelet-rich plasma was irradiated with various doses (0, 1.25, 2.5, 5, 10, 20, 40 Gy) of 60 Co γ-rays in order to observe the changes of metabolites and the release of internal substance of platelets. At the dose of 5 Gy, alpha-granule membrane protein (GMP-140) molecules expressed on the surface of platelets increased significantly, while glycoproteins (GP) Ib and IIIa did not change apparently; at the dose as low as of 2.5 Gy, thromboxane B 2 production in plasma was remarkably increased; and, at the dose of over 5 Gy, the concentration of von Willebrand factor increased with increasing doses as in the case of GMP-140 molecules. These results indicate that platelets can be activated in vitro when the dose of 60 Co γ-rays exceeds 5 Gy

  17. Effects of 60Co γ-ray irradiation on human platelets

    International Nuclear Information System (INIS)

    Wu Guoxin; Zhao Yiming; Ruan Changgeng

    1991-02-01

    Human platelet-rich plasma was irradiated with various doses (0,1.25,2.5,5.0,10,20,40Gy) of 60 Co γ-ray so as to observing the changes of metabolites and releasing substances of platelets. Alpha-granule membrane protein (GMP-140) molecules on the surface of platelet was expressed significantly increasing when the dosage of 60 Co γ-ray was 5 Gy; however, the glycoprotein (GP) I b and III a was not changed significantly; thromboxane B 2 production in plasma was significantly elevated while the γ-ray was only 2.5 Gy; the concentration of von Willebrand factor was increased when the γ-ray was over 5 Gy, this is in accordance with the GMP-140 molecules. These results indicate that platelets could be activated in vitro when the dosage of 60 Co γ was over 5 Gy

  18. Shuttling of G protein subunits between the plasma membrane and intracellular membranes.

    Science.gov (United States)

    Chisari, Mariangela; Saini, Deepak Kumar; Kalyanaraman, Vani; Gautam, Narasimhan

    2007-08-17

    Heterotrimeric G proteins (alphabetagamma) mediate the majority of signaling pathways in mammalian cells. It is long held that G protein function is localized to the plasma membrane. Here we examined the spatiotemporal dynamics of G protein localization using fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and a photoswitchable fluorescent protein, Dronpa. Unexpectedly, G protein subunits shuttle rapidly (t1/2 plasma membrane and intracellular membranes. We show that consistent with such shuttling, G proteins constitutively reside in endomembranes. Furthermore, we show that shuttling is inhibited by 2-bromopalmitate. Thus, contrary to present thought, G proteins do not reside permanently on the plasma membrane but are constantly testing the cytoplasmic surfaces of the plasma membrane and endomembranes to maintain G protein pools in intracellular membranes to establish direct communication between receptors and endomembranes.

  19. Membrane skeletal proteins and their integral membrane protein anchors are targets for tyrosine and threonine kinases in Euglena.

    Science.gov (United States)

    Fazio, M J; Da Silva, A C; Rosiere, T K; Bouck, G B

    1995-01-01

    Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or gamma-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.

  20. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization.

    Science.gov (United States)

    Chang, Yung; Chang, Wan-Ju; Shih, Yu-Ju; Wei, Ta-Chin; Hsiue, Ging-Ho

    2011-04-01

    Development of nonfouling membranes to prevent nonspecific protein adsorption and platelet adhesion is critical for many biomedical applications. It is always a challenge to control the surface graft copolymerization of a highly polar monomer from the highly hydrophobic surface of a fluoropolymer membrane. In this work, the blood compatibility of poly(vinylidene fluoride) (PVDF) membranes with surface-grafted electrically neutral zwitterionic poly(sulfobetaine methacrylate) (PSBMA), from atmospheric plasma-induced surface copolymerization, was studied. The effect of surface composition and graft morphology, electrical neutrality, hydrophilicity and hydration capability on blood compatibility of the membranes were determined. Blood compatibility of the zwitterionic PVDF membranes was systematically evaluated by plasma protein adsorption, platelet adhesion, plasma-clotting time, and blood cell hemolysis. It was found that the nonfouling nature and hydration capability of grafted PSBMA polymers can be effectively controlled by regulating the grafting coverage and charge balance of the PSBMA layer on the PVDF membrane surface. Even a slight charge bias in the grafted zwitterionic PSBMA layer can induce electrostatic interactions between proteins and the membrane surfaces, leading to surface protein adsorption, platelet activation, plasma clotting and blood cell hemolysis. Thus, the optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and the best antifouling, anticoagulant, and antihemolytic activities when comes into contact with human blood. © 2011 American Chemical Society

  1. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets.

    Science.gov (United States)

    Makhoul, Stephanie; Walter, Elena; Pagel, Oliver; Walter, Ulrich; Sickmann, Albert; Gambaryan, Stepan; Smolenski, Albert; Zahedi, René P; Jurk, Kerstin

    2018-06-01

    Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome. We also showed that the sGC stimulator riociguat is in vitro a highly specific inhibitor, via cGMP, of various functions of human platelets. Here, we review the regulatory role of the cGMP/protein kinase G (PKG) system in human platelet function, and our current approaches to establish and analyze the phosphoproteome after selective stimulation of the sGC/cGMP pathway by NO donors and riociguat. Present data indicate an extensive and diverse NO/riociguat/cGMP phosphoproteome, which has to be compared with the cAMP phosphoproteome. In particular, sGC/cGMP-regulated phosphorylation of many membrane proteins, G-proteins and their regulators, signaling molecules, protein kinases, and proteins involved in Ca 2+ regulation, suggests that the sGC/cGMP system targets multiple signaling networks rather than a limited number of PKG substrate proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Delayed-onset of procoagulant signalling revealed by kinetic analysis of COAT platelet formation.

    Science.gov (United States)

    Alberio, Lorenzo; Ravanat, Catherine; Hechler, Béatrice; Mangin, Pierre H; Lanza, François; Gachet, Christian

    2017-06-02

    The combined action of collagen and thrombin induces the formation of COAT platelets, which are characterised by a coat of procoagulant and adhesive molecules on their surface. Although recent work has started to highlight their clinical relevance, the exact mechanisms regulating the formation of procoagulant COAT platelets remain unclear. Therefore, we employed flow cytometry in order to visualise in real time surface and intracellular events following simultaneous platelet activation with convulxin and thrombin. After a rapid initial response pattern characterised by the homogenous activation of the fibrinogen receptor glycoprotein IIb/IIIa in all platelets, starting with a delay of about 2 minutes an increasing fraction transforms to procoagulant COAT platelets. Their surface is characterised by progressive loss of PAC-1 binding, expression of negative phospholipids and retention of α-granule von Willebrand factor. Intracellular events in procoagulant COAT platelets are a marked increase of free calcium into the low micromolar range, concomitantly with early depolarisation of the mitochondrial membrane and activation of caspase-3, while non-COAT platelets keep the intracellular free calcium in the nanomolar range and maintain an intact mitochondrial membrane. We show for the first time that the flow-cytometrically distinct fractions of COAT and non-COAT platelets differentially phosphorylate two signalling proteins, PKCα and p38MAPK, which may be involved in the regulation of the different calcium fluxes observed in COAT versus non-COAT platelets. This study demonstrates the utility of concomitant cellular and signalling evaluation using flow cytometry in order to further dissect the mechanisms underlying the dichotomous platelet response observed after collagen/thrombin stimulation.

  3. Blood conservation with membrane oxygenators and dipyridamole.

    Science.gov (United States)

    Teoh, K H; Christakis, G T; Weisel, R D; Madonik, M M; Ivanov, J; Wong, P Y; Mee, A V; Levitt, D; Benak, A; Reilly, P

    1987-07-01

    Cardiopulmonary bypass induces platelet activation and dysfunction, which result in platelet deposition and depletion. Reduced platelet numbers and abnormal platelet function may contribute to postoperative bleeding. A membrane oxygenator may preserve platelets and reduce bleeding more than a bubble oxygenator, and the antiplatelet agent dipyridamole may protect platelets intraoperatively and reduce bleeding postoperatively. A prospective randomized trial was performed in 44 patients undergoing elective coronary artery bypass grafting to assess the effects of the membrane oxygenator and dipyridamole on platelet counts, platelet activation products, and postoperative bleeding. Patients who were randomized to receive a bubble oxygenator and no dipyridamole had the lowest postoperative platelet counts, the greatest blood loss, and the most blood products transfused. Platelet counts were highest and blood loss was least in patients randomized to receive a membrane oxygenator and dipyridamole (p less than .05). A bubble oxygenator with dipyridamole and a membrane oxygenator without dipyridamole resulted in intermediate postoperative platelet counts and blood loss. Arterial thromboxane B2 and platelet factor 4 concentrations were elevated on cardiopulmonary bypass in all groups. Both the membrane oxygenator and dipyridamole were independently effective (by multivariate analysis) in preserving platelets. Optimal blood conservation was achieved with a membrane oxygenator and dipyridamole.

  4. Beta 3 and PDI proteins isolated from human platelets bind with ECwt rotavirus in vitro

    International Nuclear Information System (INIS)

    Mayorga, Diana; Rubio, Linda; Guerrero-Fonseca, Carlos A; Acosta-Losada, Orlando

    2010-01-01

    Commercial integrin Beta 3 is currently not available and commercial PDI is too expensive, which is making access difficult to these proteins needed for conducting experiments aimed at the establishment of possible interactions between integrin Beta 3 and PDI and wild type rotavirus strains. Objective. To explore a methodology allowing isolation of proteins Beta 3 and PDI from human platelets to be used as antigens in the generation of rabbit polyclonal antibodies useful in the assessment of interactions between these proteins and rotavirus ECwt. Materials and methods. Proteins Beta 3 and PDI from human platelet lysates were separated using preparative electrophoresis under reducing conditions and then eluted. Interactions of these proteins with rotavirus ECwt were analyzed using co-immunoprecipitation, Western blotting and capture ELISA. Results. Proteins from human platelet lysates were separated by preparative electrophoresis under reducing conditions. The identification of proteins Beta 3 and PDI present in a gel slice was performed through their reaction with commercial antibodies in a Western blotting analysis. Protein purity was established after electro elution from a gel slice. Polyclonal antibodies against protein Beta 3 were generated in rabbit. Incubation of eluted proteins Beta 3 and PDI with rotavirus ECwt showed in co-immunoprecipitation and ELISA assays that these proteins bound virus in vitro. The same binding was showed to occur when rotavirus was incubated with isolated small intestinal villi from suckling mice. Conclusions. Relatively high amounts of proteins Beta 3 and PDI were partially purified from human platelets by preparative electrophoresis. The isolation of these proteins allowed the generation of polyclonal antibodies against Beta 3 in addition to the establishment of the in vitro interaction of proteins Beta 3 and PDI with rotavirus ECwt. This interaction was also demonstrated in vivo after incubating the virus with isolated small

  5. Characterization of Leukocyte-platelet Rich Fibrin, A Novel Biomaterial

    OpenAIRE

    Madurantakam, Parthasarathy; Yoganarasimha, Suyog; Hasan, Fadi K.

    2015-01-01

    Autologous platelet concentrates represent promising innovative tools in the field of regenerative medicine and have been extensively used in oral surgery. Unlike platelet rich plasma (PRP) that is a gel or a suspension, Leukocyte-Platelet Rich Fibrin (L-PRF) is a solid 3D fibrin membrane generated chair-side from whole blood containing no anti-coagulant. The membrane has a dense three dimensional fibrin matrix with enriched platelets and abundant growth factors. L-PRF is a popular adjunct in...

  6. Biomimetic devices functionalized by membrane channel proteins

    Science.gov (United States)

    Schmidt, Jacob

    2004-03-01

    We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.

  7. Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice.

    Science.gov (United States)

    Kahr, Walter H A; Lo, Richard W; Li, Ling; Pluthero, Fred G; Christensen, Hilary; Ni, Ran; Vaezzadeh, Nima; Hawkins, Cynthia E; Weyrich, Andrew S; Di Paola, Jorge; Landolt-Marticorena, Carolina; Gross, Peter L

    2013-11-07

    Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2(-/-) mouse. As in GPS, Nbeal2(-/-) mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2(-/-) platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2(-/-) platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2(-/-) bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2(-/-) mice has deleterious effects on megakaryocyte survival, development, and platelet production.

  8. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by using...... other kind of nonbiological amphiphilic molecules. An interesting possibility could be the use of self-assembled proteins in a lipid-free membrane mimicking the capside of some viruses. The membrane proteins that have been more actively used in combination with block copolymer membranes are gramicidin...

  9. Identification of a second putative receptor of platelet activating factor on human polymorphonuclear leukocytes

    International Nuclear Information System (INIS)

    Hwang, S.B.

    1987-01-01

    Due to multiple molecular species of platelet activating factor (PAF) and the existence of high affinity binding sites in a variety of cells and tissues, possible existence of PAF receptor subtypes has been suggested. This report shows differences between specific PAF receptors on human leukocytes and platelets. Human PMN leukocyte membranes showed high affinity binding sites for PAF with an equilibrium dissociation constant (Kd) of 4.7 (+/- 1.4) x 10 -10 M. The maximal number (B/sub max/) of receptor sites was estimated to be 3.13 (+/- 1.4) x 10 -13 mol/mg protein. They compared the relative potencies of several PAF agonists and receptor antagonists between human platelet and human leukocyte membranes. One antagonist (Ono-6240) was found to be 8 times less potent at inhibiting the [ 3 H]PAF specific receptor binding to human leukocytes than to human platelets. Mg 2+ , Ca 2+ and K + ions potentiated the [ 3 H]PAF specific binding in both systems. Na + ions inhibited the [ 3 H]PAF specific binding to human platelets but showed no effects in human leukocytes. K + ions decreased the Mg 2+ -potentiated [ 3 H]PAF binding in human leukocytes but showed no effects in human platelets. These results suggest that the PAF specific receptors in human leukocytes are different structurally and possibly functionally from the receptors identified in human platelets

  10. Membrane's Eleven: heavy-atom derivatives of membrane-protein crystals

    DEFF Research Database (Denmark)

    Morth, Jens Preben; Sørensen, Thomas Lykke-Møller; Nissen, Poul

    2006-01-01

    A database has been assembled of heavy-atom derivatives used in the structure determination of membrane proteins. The database can serve as a guide to the design of experiments in the search for heavy-atom derivatives of new membrane-protein crystals. The database pinpoints organomercurials...

  11. Platelet-to-lymphocyte ratio: A new inflammatory marker for the diagnosis of preterm premature rupture of membranes

    Science.gov (United States)

    Toprak, Erzat; Bozkurt, Murat; Dinçgez Çakmak, Burcu; Özçimen, Emel Ebru; Silahlı, Musa; Ender Yumru, Ayşe; Çalışkan, Eray

    2017-01-01

    Objective: Preterm premature rupture of membranes (PPROM) is closely related with maternal and fetal complications. Therefore, early diagnosis is extremely important to provide maternal and fetal well-being. Many inflammatory markers have been evaluated for their ability to diagnose membrane rupture at early stages. We aimed to investigate the relationship between the platelet-to-lymphocyte ratio (PLR) and preterm premature membrane rupture. Material and Methods: In this study, 121 pregnant women with PPROM and 96 age-matched pregnant women with spontaneous preterm labor who were admitted to our hospital between January 2014 and December 2015 were enrolled. Demographic data, complete blood cell count results, and neonatal outcomes were recorded. Results: The neutrophil and platelet counts were higher in the PPROM group (9948.4±3393.2 vs. 7466.1±1698.5/mm3 and 244.5±60 vs. 210.6±64.8/mm3, respectively, ppremature rupture of membranes was evaluated using an ROC curve. The sensitivity and specificity of the PLR was 57.8% and 73.7%, respectively, at a threshold >117.14 (p<0.001). Conclusion: The PLR might be a cost effective, easy to use, and practical marker for the early diagnosis of PPROM, which can help to determine the appropriate waiting time for delivery and provide maternal and fetal well-being. PMID:28890425

  12. In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yan Huang [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Lue Xiaoying [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)], E-mail: luxy@seu.edu.cn; Ma Jingwu [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Nan Huang [Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: nhuang@263.com

    2008-11-15

    The aim of this paper was to study the surface properties, protein adsorption and platelet adhesion behaviors of diamond-like carbon (DLC) and titanium (Ti) films. The surface energy and microstructures of these films were characterized by contact angle measurement and atomic force microscopy (AFM). A modified Coomassie brilliant blue (CBB) protein assay was used to study the amount of adsorbed proteins. Platelet adhesion was assessed by scanning electron microscopy (SEM). The AFM results show that the DLC film is smoother than Ti. Protein adsorption results from CBB protein assay show that the ratio of adsorbed albumin (Alb) to IgG (R{sub A/I}) on DLC is larger than Ti, which coincide with the sequence of the ratio of interfacial tension between solid surface and Alb ({gamma}{sub S,Alb}) to interfacial tension between surface and IgG ({gamma}{sub S,IgG}) ({gamma}{sub S,Alb}/{gamma}{sub S,IgG}). The DLC film has a preferential adsorption for Alb. The results suggest that the ratio of {gamma}{sub S,Alb}/{gamma}{sub S,IgG} may indicate an Alb/IgG affinity ratio of materials. More platelets adhere on Ti film than on DLC, which may correspond to the surface roughness of materials. The conclusion is the blood compatibility of DLC seems to be better than Ti.

  13. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly ...

  14. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis.

    Science.gov (United States)

    Watson, Steve P

    2009-01-01

    The prevention of excessive blood loss to avoid fatal haemorrhage is a pivotal process for all organisms possessing a circulatory system. Increased circulating blood volume and pressure, as required in larger animals, make this process all the more important and challenging. It is essential to have a powerful and rapid system to detect damage and generate an effective seal, and which is also exquisitely regulated to prevent unwanted, excessive or systemic activation so as to avoid blockage of vessels. Thus, a highly specialised and efficient haemostatic system has evolved that consists of cellular (platelets) and protein (coagulation factors) components. Importantly, this is able to support haemostasis in both the low shear environment of the venous system and the high shear environment of the arterial system. Endothelial cells, lining the entire circulation system, play a crucial role in the delicate balance between activation and inhibition of the haemostatic system. An intact and healthy endothelium supports blood flow by preventing attachment of cells and proteins which is required for initiation of coagulation and platelet activation. Endothelial cells produce and release the two powerful soluble inhibitors of platelet activation, nitric oxide and prostacyclin, and express high levels of CD39 which rapidly metabolises the major platelet feedback agonist, ADP. This antithrombotic environment however can rapidly change following activation or removal of endothelial cells through injury or rupture of atherosclerotic plaques. Loss of endothelial cells exposes the subendothelial extracellular matrix which creates strong signals for activation of the haemostatic system including powerful platelet adhesion and activation. Quantitative and qualitative changes in the composition of the subendothelial extracellular matrix influence these prothrombotic characteristics with life threatening thrombotic and bleeding complications, as illustrated by formation of

  15. Use of a platelet-rich fibrin membrane to repair traumatic tympanic membrane perforations: a comparative study.

    Science.gov (United States)

    Gür, Özer Erdem; Ensari, Nuray; Öztürk, Mehmet Türker; Boztepe, Osman Fatih; Gün, Taylan; Selçuk, Ömer Tarık; Renda, Levent

    2016-10-01

    (1) To evaluate the effects of a platelet-rich fibrin (PRF) membrane in the repair of traumatic tympanic membrane (TM) perforations; and (2) to compare the use of a PRF membrane with the paper patch technique with regard to recovery rates, healing time, and correction of the mean air-bone gap. A randomized, prospective analysis was performed for 60 patients who were treated for traumatic TM perforations using one of the two methods. Closure rate, speed of healing, and hearing gain were compared between the PRF (Group 1) and paper patch (Group 2) groups. Closure was obtained in 28 (93%) perforations in Group 1 and 25 (83%) perforations in Group 2 (p > 0.05). On day 10, full closure of the TM was observed in 24 (80%) patients in Group 1 and 16 (53%) patients in Group 2 (p < 0.05). The improvement in the mean air-bone gap was 14.1 dB in Group 1 and 12.4 dB in Group 2 on post-operative day 45 (p < 0.05). In comparison with the paper patch method, PRF, a new method, provided more rapid healing with more successful audiological results, and with no requirement for a second procedure.

  16. Novel Tripod Amphiphiles for Membrane Protein Analysis

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Kruse, Andrew C; Gotfryd, Kamil

    2013-01-01

    Integral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution...

  17. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lindsay A. [University of Oxford, Oxford Particle Imaging Centre, The Wellcome Trust Centre for Human Genetics, Division of Structural Biology, Nuffield Department of Medicine (United Kingdom); Daniëls, Mark; Cruijsen, Elwin A. W. van der; Folkers, Gert E.; Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-06-15

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR.

  18. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    International Nuclear Information System (INIS)

    Baker, Lindsay A.; Daniëls, Mark; Cruijsen, Elwin A. W. van der; Folkers, Gert E.; Baldus, Marc

    2015-01-01

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR

  19. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  20. Extracellular fibrinogen-binding protein (Efb) from staphylococcus aureus Inhibits the formation of platelet-leukocyte complexes

    NARCIS (Netherlands)

    Posner, M.G; Upadhyay, A.; Abubaker, A.A.; Fortunato, T.M.; Vara, D.; Canobbio, I.; Bagby, S.; Pula, G.

    2016-01-01

    Extracellular fibrinogen-binding protein (Efb) from Staphylococcus aureus inhibits platelet activation, although its mechanism of action has not been established. In this study, we discovered that the N-terminal region of Efb (Efb-N) promotes platelet binding of fibrinogen and that Efb-N binding to

  1. Regulator of G-protein signaling 18 controls both platelet generation and function.

    Directory of Open Access Journals (Sweden)

    Nathalie Delesque-Touchard

    Full Text Available RGS18 is a myeloerythroid lineage-specific regulator of G-protein signaling, highly expressed in megakaryocytes (MKs and platelets. In the present study, we describe the first generation of a RGS18 knockout mouse model (RGS18-/-. Interesting phenotypic differences between RGS18-/- and wild-type (WT mice were identified, and show that RGS18 plays a significant role in both platelet generation and function. RGS18 deficiency produced a gain of function phenotype in platelets. In resting platelets, the level of CD62P expression was increased in RGS18-/- mice. This increase correlated with a higher level of plasmatic serotonin concentration. RGS18-/- platelets displayed a higher sensitivity to activation in vitro. RGS18 deficiency markedly increased thrombus formation in vivo. In addition, RGS18-/- mice presented a mild thrombocytopenia, accompanied with a marked deficit in MK number in the bone marrow. Analysis of MK maturation in vitro and in vivo revealed a defective megakaryopoiesis in RGS18-/- mice, with a lower bone marrow content of only the most committed MK precursors. Finally, RGS18 deficiency was correlated to a defect of platelet recovery in vivo under acute conditions of thrombocytopenia. Thus, we highlight a role for RGS18 in platelet generation and function, and provide additional insights into the physiology of RGS18.

  2. Isomeric Detergent Comparison for Membrane Protein Stability

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.

    2016-01-01

    and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta...... and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility....../stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane...

  3. Novel platelet-agglutinating protein from a thrombotic thrombocytopenic purpura plasma.

    OpenAIRE

    Siddiqui, F A; Lian, E C

    1985-01-01

    A novel platelet-agglutinating protein (PAP) was purified approximately 2,000-fold from the plasma of a patient with thrombotic thrombocytopenic purpura (TTP) by ammonium sulfate fractionation, DEAE-Sephacel and concanavalin A-Sepharose chromatographies. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with and without reduction, this preparation revealed a major protein band with a molecular weight of 37,000, and a minor band with a molecular weight of 32,000-34,000. After eluti...

  4. Controlling the shape of membrane protein polyhedra

    Science.gov (United States)

    Li, Di; Kahraman, Osman; Haselwandter, Christoph A.

    2017-03-01

    Membrane proteins and lipids can self-assemble into membrane protein polyhedral nanoparticles (MPPNs). MPPNs have a closed spherical surface and a polyhedral protein arrangement, and may offer a new route for structure determination of membrane proteins and targeted drug delivery. We develop here a general analytic model of how MPPN self-assembly depends on bilayer-protein interactions and lipid bilayer mechanical properties. We find that the bilayer-protein hydrophobic thickness mismatch is a key molecular control parameter for MPPN shape that can be used to bias MPPN self-assembly towards highly symmetric and uniform MPPN shapes. Our results suggest strategies for optimizing MPPN shape for structural studies of membrane proteins and targeted drug delivery.

  5. Enhancing Membrane Protein Identification Using a Simplified Centrifugation and Detergent-Based Membrane Extraction Approach.

    Science.gov (United States)

    Zhou, Yanting; Gao, Jing; Zhu, Hongwen; Xu, Jingjing; He, Han; Gu, Lei; Wang, Hui; Chen, Jie; Ma, Danjun; Zhou, Hu; Zheng, Jing

    2018-02-20

    Membrane proteins may act as transporters, receptors, enzymes, and adhesion-anchors, accounting for nearly 70% of pharmaceutical drug targets. Difficulties in efficient enrichment, extraction, and solubilization still exist because of their relatively low abundance and poor solubility. A simplified membrane protein extraction approach with advantages of user-friendly sample processing procedures, good repeatability and significant effectiveness was developed in the current research for enhancing enrichment and identification of membrane proteins. This approach combining centrifugation and detergent along with LC-MS/MS successfully identified higher proportion of membrane proteins, integral proteins and transmembrane proteins in membrane fraction (76.6%, 48.1%, and 40.6%) than in total cell lysate (41.6%, 16.4%, and 13.5%), respectively. Moreover, our method tended to capture membrane proteins with high degree of hydrophobicity and number of transmembrane domains as 486 out of 2106 (23.0%) had GRAVY > 0 in membrane fraction, 488 out of 2106 (23.1%) had TMs ≥ 2. It also provided for improved identification of membrane proteins as more than 60.6% of the commonly identified membrane proteins in two cell samples were better identified in membrane fraction with higher sequence coverage. Data are available via ProteomeXchange with identifier PXD008456.

  6. Cytoskeletal Components Define Protein Location to Membrane Microdomains*

    Science.gov (United States)

    Szymanski, Witold G.; Zauber, Henrik; Erban, Alexander; Gorka, Michal; Wu, Xu Na; Schulze, Waltraud X.

    2015-01-01

    The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases. PMID:26091700

  7. Platelet fibrinogen binding in Basset Hound Hereditary Thrombopathy

    International Nuclear Information System (INIS)

    Patterson, W.; Estry, D.; Schwartz, K.; Bell, T.

    1986-01-01

    Platelets from dogs with Basset Hound Hereditary Thrombopathy (BHT) display a thrombasthenia-like aggregation defect but have been shown to have normal amounts of platelet membrane glycoproteins IIb and IIIa (GP IIb-IIIa). In order to investigate the possibility of a functionally abnormal GPIIb-IIIa complex, which might be unable to bind fibrinogen after stimulation, fibrinogen binding in BHT was evaluated. Two canine fibrinogen preparations were used, one from BHT dogs and one from normal control dogs, as well as a human fibrinogen preparation. Platelets from BHT and normal dogs were activated with 1 x 10 -5 M ADP in the presence of 125 I-labeled fibrinogen and the surface bound radioactivity quantitated. For all fibrinogen preparations, the amount of fibrinogen bound by BHT platelets was not significantly different than that bound by normal dog platelets. BHT platelets bound 23,972 +/- 3612 and normal dog platelets bound 23,033 +/- 3971 molecules of fibrinogen per platelet. The BHT platelet aggregation defect does not seem to be caused by a functionally abnormal GP IIb-IIIa complex, since BHT platelets bind normal amounts of fibrinogen. The results suggest that fibrinogen binding is not sufficient for platelet aggregation, and other factors, perhaps receptor mobility and membrane phospholipid content should be investigated in BHT

  8. An inhibition of p38 mitogen activated protein kinase delays the platelet storage lesion.

    Directory of Open Access Journals (Sweden)

    Andrey Skripchenko

    Full Text Available BACKGROUND AND OBJECTIVES: Platelets during storage undergo diverse alterations collectively known as the platelet storage lesion, including metabolic, morphological, functional and structural changes. Some changes correlate with activation of p38 mitogen activated protein kinase (p38 MAPK. Another MAPK, extracellular signal-related kinase (ERK, is involved in PLT activation. The aim of this study was to compare the properties of platelets stored in plasma in the presence or absence of p38 and ERK MAPK inhibitors. MATERIALS AND METHODS: A single Trima apheresis platelet unit (n = 12 was aliquoted into five CLX storage bags. Two aliquots were continuously agitated with or without MAPK inhibitors. Two aliquots were subjected to 48 hours of interruption of agitation with or without MAPK inhibitors. One aliquot contained the same amount of solvent vehicle used to deliver the inhibitor. Platelets were stored at 20-24°C for 7 days and sampled on Days 1, 4, and 7 for 18 in vitro parameters. RESULTS: Inhibition of p38 MAPK by VX-702 leads to better maintenance of all platelet in vitro storage parameters including platelet mitochondrial function. Accelerated by interruption of agitation, the platelet storage lesion of units stored with VX-702 was diminished to that of platelets stored with continuous agitation. Inhibition of ERK MAPK did not ameliorate decrements in any in vitro platelet properties. CONCLUSION: Signaling through p38 MAPK, but not ERK, is associated with platelet deterioration during storage.

  9. Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation.

    Science.gov (United States)

    Chang, Yung; Shih, Yu-Ju; Ko, Chao-Yin; Jhong, Jheng-Fong; Liu, Ying-Ling; Wei, Ta-Chin

    2011-05-03

    In this work, the hemocompatibility of PEGylated poly(vinylidene fluoride) (PVDF) microporous membranes with varying grafting coverage and structures via plasma-induced surface PEGylation was studied. Network-like and brush-like PEGylated layers on PVDF membrane surfaces were achieved by low-pressure and atmospheric plasma treatment. The chemical composition, physical morphology, grafting structure, surface hydrophilicity, and hydration capability of prepared membranes were determined to illustrate the correlations between grafting qualities and hemocompatibility of PEGylated PVDF membranes in contact with human blood. Plasma protein adsorption onto different PEGylated PVDF membranes from single-protein solutions and the complex medium of 100% human plasma were measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Hemocompatibility of the PEGylated membranes was evaluated by the antifouling property of platelet adhesion observed by scanning electron microscopy (SEM) and the anticoagulant activity of the blood coagulant determined by testing plasma-clotting time. The control of grafting structures of PEGylated layers highly regulates the PVDF membrane to resist the adsorption of plasma proteins, the adhesion of platelets, and the coagulation of human plasma. It was found that PVDF membranes grafted with brush-like PEGylated layers presented higher hydration capability with binding water molecules than with network-like PEGylated layers to improve the hemocompatible character of plasma protein and blood platelet resistance in human blood. This work suggests that the hemocompatible nature of grafted PEGylated polymers by controlling grafting structures gives them great potential in the molecular design of antithrombogenic membranes for use in human blood.

  10. Platelet crossmatch tests using radiolabelled staphylococcal protein A or peroxidase anti-peroxidase in alloimmunised patients

    International Nuclear Information System (INIS)

    Yam, P.; Petz, L.D.; Scott, E.P.; Santos, S.

    1984-01-01

    Refractoriness to random-donor platelets as a result of alloimmunization remains a major problem in long-term platelet transfusion therapy despite the use of HLA-matched platelets. A study has been made of two methods for detection of platelet associated IgG as platelet crossmatch tests for the selection of platelet donors. These methods use radiolabelled staphylococcal protein A( 125 I-SPA) and peroxidase anti-peroxidase (PAP), respectively. One hundred and ten crossmatch tests using 125 I-SPA were performed retrospectively in 18 alloimmunized patients. The results indicated that the predictive value of a positive or a negative test was 87%; the sensitivity was 73% and the specificity was 95%. Results with the PAP test were similar. The HLA types were known for 48 donor-recipient pairs. With few exceptions, there was a correlation between the results of the platelet crossmatch tests and the effectiveness of platelet transfusion regardless of the degree of HLA match. These results indicate that platelet crossmatch tests may be valuable even when closely HLA matched donors are not available. A large-scale prospective study is warranted, particularly in highly immunized patients. (author)

  11. Characterization of membrane association of Rinderpest virus matrix protein

    International Nuclear Information System (INIS)

    Subhashri, R.; Shaila, M.S.

    2007-01-01

    Paramyxovirus matrix protein is believed to play a crucial role in the assembly and maturation of the virus particle by bringing the major viral components together at the budding site in the host cell. The membrane association capability of many enveloped virus matrix proteins has been characterized to be their intrinsic property. In this work, we have characterized the membrane association of Rinderpest virus matrix (M) protein. The M protein of Rinderpest virus when expressed in the absence of other viral proteins is present both in the cytoplasm and plasma membrane. When expressed as GFP fusion protein, the M protein gets localized into plasma membrane protrusions. High salt and alkaline conditions resulted in partial dissociation of M protein from cell membrane. Thus, M protein behaves like an integral membrane protein although its primary structure suggests it to be a peripheral membrane protein

  12. Current strategies for protein production and purification enabling membrane protein structural biology.

    Science.gov (United States)

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E; Liu, Xiang-Qin; Rainey, Jan K

    2016-12-01

    Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).

  13. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles

    Directory of Open Access Journals (Sweden)

    Katie L Lannan

    2015-02-01

    Full Text Available Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cell and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as cellular fragments is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryoctes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and nongenomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB family of proteins and peroxisome proliferator activated receptor gamma (PPARγ. In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the nongenomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and

  14. Production of membrane proteins without cells or detergents.

    Science.gov (United States)

    Rajesh, Sundaresan; Knowles, Timothy; Overduin, Michael

    2011-04-30

    The production of membrane proteins in cellular systems is besieged by several problems due to their hydrophobic nature which often causes misfolding, protein aggregation and cytotoxicity, resulting in poor yields of stable proteins. Cell-free expression has emerged as one of the most versatile alternatives for circumventing these obstacles by producing membrane proteins directly into designed hydrophobic environments. Efficient optimisation of expression and solubilisation conditions using a variety of detergents, membrane mimetics and lipids has yielded structurally and functionally intact membrane proteins, with yields several fold above the levels possible from cell-based systems. Here we review recently developed techniques available to produce functional membrane proteins, and discuss amphipols, nanodisc and styrene maleic acid lipid particle (SMALP) technologies that can be exploited alongside cell-free expression of membrane proteins. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Interaction between the Staphylococcus aureus extracellular adherence protein Eap and its subdomains with platelets.

    Science.gov (United States)

    Palankar, Raghavendra; Binsker, Ulrike; Haracska, Bianca; Wesche, Jan; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-18

    S. aureus associated bacteremia can lead to severe infections with high risk of mortality (e.g. sepsis, infective endocarditis). Many virulence factors and adhesins of S. aureus are known to directly interact with platelets. Extracellular adherence protein, Eap, one of the most important virulence factors in S. aureus mediated infections is a multi-tandem domain protein and has been shown to interact with almost all cell types in the human circulatory system. By using amine reactive fluorescent N-hydroxysuccinimidyl (NHS)-ester dyes and by direct detection with primary fluorescently conjugated anti-histidine (His-tag) antibodies against detect N-terminal His6, we show Eap subdomain Eap D 3 D 4 specifically interacts and rapidly activates human platelets. Furthermore, we validate our finding by using site directed directional immobilization of Eap D 3 D 4 through N-terminal His 6 on nickel (II)-nitrilotriacetic acid (Ni-NTA) functionalized bacteriomimetic microbead arrays to visualize real-time platelet activation through calcium release assay. These methods offer an easily adoptable protocols for screening of S.aureus derived virulence factors and adhesins with platelets. Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    Science.gov (United States)

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the

  17. Plasma membrane associated phospholipase C from human platelets: Synergistic stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis by thrombin and guanosine 5'-O-(3-thiotriphosphate)

    International Nuclear Information System (INIS)

    Baldassare, J.J.; Henderson, P.A.; Fisher, G.J.

    1989-01-01

    The effects of thrombin and GTPγS on the hydrolysis of phosphoinositides by membrane-associated phospholipase C (PLC) from human platelets were examined with endogenous [ 3 H]inositol-labeled membranes or with lipid vesicles containing either [ 3 H]phosphatidylinositol or [ 3 H]phosphatidylinositol 4,5-bisphosphate. GTPγS (1 μM) or thrombin (1 unit/mL) did not stimulate release of inositol trisphosphate (IP 3 ), inositol bisphosphate (IP 2 ), or inositol phosphate (IP) from [ 3 H]inositol-labeled membranes. IP 2 and IP 3 , but not IP, from [ 3 H]inositol-labeled membranes were, however, stimulated 3-fold by GTPγS (1 μM) plus thrombin (1 unit/mL). A higher concentration of GTPγS (100 μM) alone also stimulated IP 2 and IP 3 , but not IP, release. In the presence of 1 mM calcium, release of IP 2 and IP 3 was increased 6-fold over basal levels; however, formation of IP was not observed. At submicromolar calcium concentration, hydrolysis of exogenous phosphatidylinositol 4,5-bisphosphate (PIP 2 ) by platelet membrane associated PLC was also markedly enhanced by GTPγS (100 μM) or GTPγS (1 μM) plus thrombin (1 unit/mL). Under identical conditions, exogenous phosphatidylinositol (PI) was not hydrolyzed. The same substrate specificity was observed when the membrane-associated PLC was activated with 1 mM calcium. Thrombin-induced hydrolysis of PIP 2 was inhibited by treatment of the membranes with pertussis toxin or pretreatment of intact platelets with 12-O-tetradecanoyl-13-acetate (TPA) prior to preparation of membranes. Pertussis toxin did not inhibit GTPγS (100 μM) or calcium (1 mM) dependent PIP 2 breakdown, while TPA inhibited GTPγS-dependent but not calcium-dependent phospholipase C activity

  18. Influence of whole-body gamma irradiation upon arachidonic acid metabolism in rat platelets

    International Nuclear Information System (INIS)

    Lognonne, J.L.; Ducousso, R.; Rocquet, G.; Kergonou, J.F.

    1985-01-01

    The effects of whole-body gamma irradiation (8.4 Gy) were studied on arachidonic acid (AA) metabolism in rat's blood platelets, from day D + 1 to day D + 10 after irradiation. AA conversion into thromboxane B 2 (TxB 2 ) increased at D + 1 and then gradually decreased to very low values from D + 7 to D + 10. This decrease in the conversion of exogenous AA into TxB 2 was due to a lower AA incorporation into platelets and not to a decrease of cyclooxygenase and thromboxane-synthetase activities. AA incorporation into membrane phospholipids of blood platelets was much more decreased than AA incorporation into whole platelets; moreover, the lipid composition of the platelet membranes was markedly modified after irradiation, which must have resulted in structural and functional changes in these membranes; from these effects of whole-body gamma irradiation on platelets, the latter's membranes appeared as a major site of in vivo radiation damage in these cells

  19. Releasing growth factors from activated human platelets after chitosan stimulation: a possible bio-material for platelet-rich plasma preparation.

    Science.gov (United States)

    Shen, E-Chin; Chou, Tz-Chong; Gau, Ching-Hwa; Tu, Hsiao-Pei; Chen, Yen-Teen; Fu, Earl

    2006-10-01

    Thrombin is commonly used for activating the platelets and releasing the growth factors on the application of platelet-rich plasma (PRP). We have previously reported that chitosan can enhance rabbit platelet aggregation. In this study, the effects of chitosan on the subsequent growth factors release after human platelets activation were examined to evaluate the possibility of chitosan being used as a substitute for thrombin during PRP preparation. Human platelet activation was determined by aggregation, adhesion and alpha-granule membrane glycoprotein expression. Platelet aggregation was measured by the turbidimetric method, the adhesion was directly examined on chitosan-coated glass plates under light microscope and scanning electron microscope (SEM), and the alpha-granule membrane glycoprotein was detected by fluorescent isothiocyanate (FITC)-conjugated anti-CD61 antibody through flow cytometry. The subsequent epidermal growth factor (EGF), platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets were assayed by ELISA after mixing with chitosan. The enhancing effects on the platelet adhesion and the aggregation from chitosan were observed. Under both microscopes, the adhesive platelets on the chitosan-coated plates were not only greater in number but also earlier in activation than those on the control plates. With flow cytometry, increased glycoprotein IIIa expression in platelets was detected after chitosan treatment. Greater concentrations of growth factors were measured from PRP after chitosan treatment than after the solvent treatment. Because of the observations of growth factors releasing from activated human platelets after chitosan stimulation, we suggest that chitosan may be an appropriate substitute for thrombin in PRP preparation.

  20. Overcoming barriers to membrane protein structure determination.

    Science.gov (United States)

    Bill, Roslyn M; Henderson, Peter J F; Iwata, So; Kunji, Edmund R S; Michel, Hartmut; Neutze, Richard; Newstead, Simon; Poolman, Bert; Tate, Christopher G; Vogel, Horst

    2011-04-01

    After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ~30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.

  1. Fabrication of cell outer membrane mimetic polymer brush on polysulfone surface via RAFT technique

    International Nuclear Information System (INIS)

    Ma Qian; Zhang Hui; Zhao Jiang; Gong Yongkuan

    2012-01-01

    Highlights: ► Cell membrane mimetic antifouling polymer brush was grown on polysulfone surface. ► Graft density and polymerization degree were calculated from XPS results. ► Water contact angle measurements showed an extremely hydrophilic surface. ► Platelet adhesion and protein adsorption results suggested excellent antifouling ability. - Abstract: Cell membrane mimetic antifouling polymer brush was grown on polysulfone (PSF) membrane by surface-induced reversible addition–fragmentation chain transfer (RAFT) polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC). The RAFT agent immobilized PSF substrate was prepared by successive chloromethylation, amination with ethylenediamine (EDA) and amidation of the amine group of grafted EDA with the carboxylic group of 4-cyanopentanoic acid dithiobenzoate (CPAD). The surface RAFT polymerization of MPC was initiated in aqueous solution by 4,4′-azobis-4-cyanopentanoic acid (ACPA). The formation of PMPC brush coating is evidenced by X-ray photoelectron spectroscopy and water contact angle measurements. The degree of polymerization of PMPC and the polymer grafting density were calculated from the high resolution XPS spectra. The platelet adhesion and protein adsorption results showed that the PMPC-grafted PSF surface has excellent antifouling ability to resist platelet adhesion completely and suppress protein adsorption significantly. This biomimetic and bio-friendly surface RAFT polymerization strategy could be promising for a variety of biomedical applications.

  2. Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation.

    Science.gov (United States)

    Chae, Pil Seok; Bae, Hyoung Eun; Das, Manabendra

    2014-10-21

    We prepared adamantane-containing amphiphiles and evaluated them using a large membrane protein complex in terms of protein solubilisation and stabilization efficacy. These agents were superior to conventional detergents, especially in terms of the membrane protein solubilisation efficiency, implying a new detergent structure-property relationship.

  3. Identification of membrane proteins by tandem mass spectrometry of protein ions

    Science.gov (United States)

    Carroll, Joe; Altman, Matthew C.; Fearnley, Ian M.; Walker, John E.

    2007-01-01

    The most common way of identifying proteins in proteomic analyses is to use short segments of sequence (“tags”) determined by mass spectrometric analysis of proteolytic fragments. The approach is effective with globular proteins and with membrane proteins with significant polar segments between membrane-spanning α-helices, but it is ineffective with other hydrophobic proteins where protease cleavage sites are either infrequent or absent. By developing methods to purify hydrophobic proteins in organic solvents and by fragmenting ions of these proteins by collision induced dissociation with argon, we have shown that partial sequences of many membrane proteins can be deduced easily by manual inspection. The spectra from small proteolipids (1–4 transmembrane α-helices) are dominated usually by fragment ions arising from internal amide cleavages, from which internal sequences can be obtained, whereas the spectra from larger membrane proteins (5–18 transmembrane α-helices) often contain fragment ions from N- and/or C-terminal parts yielding sequences in those regions. With these techniques, we have, for example, identified an abundant protein of unknown function from inner membranes of mitochondria that to our knowledge has escaped detection in proteomic studies, and we have produced sequences from 10 of 13 proteins encoded in mitochondrial DNA. They include the ND6 subunit of complex I, the last of its 45 subunits to be analyzed. The procedures have the potential to be developed further, for example by using newly introduced methods for protein ion dissociation to induce fragmentation of internal regions of large membrane proteins, which may remain partially folded in the gas phase. PMID:17720804

  4. Modulation of P-selection and platelet aggregation in chronic periodontitis: A clinical study

    Science.gov (United States)

    Perumal, Ramesh; Rajendran, Maheashwari; Krishnamurthy, Malathi; Ganji, Kiran Kumar; Pendor, Sunil Dattuji

    2014-01-01

    Background: The primary etiologic factor of periodontitis is the subgingival infection with a group of Gram negative pathogens. Transient bacteremia in periodontitis patients underlie chronic production and systemic increases of various proinflammatory mediators, including Interleukin (IL)-1α, IL-6, C-reactive protein and Tumor necrosis factor (TNF)-α. P- selectin is a member of selectin family of cell surface receptor which is located in the membrane of the secretory granules (alpha granules) of platelets and in the membrane of the Weibel-Palade bodies of the vascular endothelial cells. P selectin redistributes from the membrane of the granules to the plasma membrane when platelets and endothelial cells are activated and thus degranulated. Aim: To compare the level of platelet activation, soluble P Selectin level and morphological changes and aggregation of platelets in patients in periodontitis patients compared to healthy controls. Materials and Methods: 80 patients were included in the study with the age group of 35-60. The patients were divided into 2 groups, 40 subjects with generalized chronic periodontitis and 40 healthy subjects taken as control. Periodontal Examination using clinical parameters namely, Bleeding Index, Plaque Index, Probing Pocket Depth and Clinical Attachment Level were recorded. Collection of blood samples for estimation of serum soluble P- selectin level by ELISA method. Evaluation of Platelet morphology and grading the platelet aggregation. Results: P-selectin expression shows that the mean value for control group is 4.97 ± 16.56 ng/mL and study group 13.05 ± 29.94 ng/mL which was significantly higher than control group with P value 0.001. Platelet morphological changes shows small form – mean value for control group is 75.83% ± 14.24% while for study group is 39.08%. ± 21.59; Big form – mean value for control group 0.80% ± 0.35% while for study group 0.48% ± 1.3%and Spider form- mean value for control group 23.88% ± 14

  5. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  6. Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen.

    Science.gov (United States)

    Gilio, Karen; Harper, Matthew T; Cosemans, Judith M E M; Konopatskaya, Olga; Munnix, Imke C A; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D; Heemskerk, Johan W M; Poole, Alastair W

    2010-07-23

    Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent alpha-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCalpha and PKCbeta, whereas the novel isoform, PKC, negatively regulates these events. PKCdelta also negatively regulates thrombus formation but not alpha-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCalpha or PKCbeta showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKC. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.

  7. Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen*

    Science.gov (United States)

    Gilio, Karen; Harper, Matthew T.; Cosemans, Judith M. E. M.; Konopatskaya, Olga; Munnix, Imke C. A.; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D.; Heemskerk, Johan W. M.; Poole, Alastair W.

    2010-01-01

    Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen. PMID:20479008

  8. cDNA for the human β2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor

    International Nuclear Information System (INIS)

    Kobilka, B.K.; Dixon, R.A.F.; Frielle, T.

    1987-01-01

    The authors have isolated and sequenced a cDNA encoding the human β 2 -adrenergic receptor. The deduced amino acid sequence (413 residues) is that of a protein containing seven clusters of hydrophobic amino acids suggestive of membrane-spanning domains. While the protein is 87% identical overall with the previously cloned hamster β 2 -adrenergic receptor, the most highly conserved regions are the putative transmembrane helices (95% identical) and cytoplasmic loops (93% identical), suggesting that these regions of the molecule harbor important functional domains. Several of the transmembrane helices also share lesser degrees of identity with comparable regions of select members of the opsin family of visual pigments. They have localized the gene for the β 2 -adrenergic receptor to q31-q32 on chromosome 5. This is the same position recently determined for the gene encoding the receptor for platelet-derived growth factor and is adjacent to that for the FMS protooncogene, which encodes the receptor for the macrophage colony-stimulating factor

  9. Studying Membrane Protein Structure and Function Using Nanodiscs

    DEFF Research Database (Denmark)

    Huda, Pie

    The structure and dynamic of membrane proteins can provide valuable information about general functions, diseases and effects of various drugs. Studying membrane proteins are a challenge as an amphiphilic environment is necessary to stabilise the protein in a functionally and structurally relevant...... form. This is most typically achieved through the use of detergent based reconstitution systems. However, time and again such systems fail to provide a suitable environment causing aggregation and inactivation. Nanodiscs are self-assembled lipoproteins containing two membrane scaffold proteins...... and a lipid bilayer in defined nanometer size, which can act as a stabiliser for membrane proteins. This enables both functional and structural investigation of membrane proteins in a detergent free environment which is closer to the native situation. Understanding the self-assembly of nanodiscs is important...

  10. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study

    DEFF Research Database (Denmark)

    Sadaf, Aiman; Du, Yang; Santillan, Claudia

    2017-01-01

    The critical contribution of membrane proteins in normal cellular function makes their detailed structure and functional analysis essential. Detergents, amphipathic agents with the ability to maintain membrane proteins in a soluble state in aqueous solution, have key roles in membrane protein...... alkyl chains by introducing dendronic hydrophobic groups connected to a trimaltoside head group, designated dendronic trimaltosides (DTMs). Representative DTMs conferred enhanced stabilization to multiple membrane proteins compared to the benchmark conventional detergent, DDM. One DTM (i.e., DTM-A6...

  11. Abnormal megakaryocyte development and platelet function in Nbeal2−/− mice

    Science.gov (United States)

    Lo, Richard W.; Li, Ling; Pluthero, Fred G.; Christensen, Hilary; Ni, Ran; Vaezzadeh, Nima; Hawkins, Cynthia E.; Weyrich, Andrew S.; Di Paola, Jorge; Landolt-Marticorena, Carolina; Gross, Peter L.

    2013-01-01

    Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2−/− mouse. As in GPS, Nbeal2−/− mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2−/− platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2−/− platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2−/− bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2−/− mice has deleterious effects on megakaryocyte survival, development, and platelet production. PMID:23861251

  12. Comparison of the Mechanical Properties of Early Leukocyte- and Platelet-Rich Fibrin versus PRGF/Endoret Membranes

    Directory of Open Access Journals (Sweden)

    Hooman Khorshidi

    2016-01-01

    Full Text Available Objectives. The mechanical properties of membranes are important factors in the success of treatment and clinical handling. The goal of this study was to compare the mechanical properties of early leukocyte- and platelet-rich fibrin (L-PRF versus PRGF/Endoret membrane. Materials and Methods. In this experimental study, membranes were obtained from 10 healthy male volunteers. After obtaining 20 cc venous blood from each volunteer, 10 cc was used to prepare early L-PRF (group 1 and the rest was used to get a membrane by PRGF-Endoret system (group 2. Tensile loads were applied to specimens using universal testing machine. Tensile strength, stiffness, and toughness of the two groups of membranes were calculated and compared by paired t-test. Results. The mean tensile strength and toughness were higher in group 1 with a significant difference (P0.05. Conclusions. The results showed that early L-PRF membranes had stronger mechanical properties than membranes produced by PRGF-Endoret system. Early L-PRF membranes might have easier clinical handling and could be a more proper scaffold in periodontal regenerative procedures. The real results of the current L-PRF should be in fact much higher than what is reported here.

  13. Comparison of the Mechanical Properties of Early Leukocyte- and Platelet-Rich Fibrin versus PRGF/Endoret Membranes.

    Science.gov (United States)

    Khorshidi, Hooman; Raoofi, Saeed; Bagheri, Rafat; Banihashemi, Hodasadat

    2016-01-01

    Objectives. The mechanical properties of membranes are important factors in the success of treatment and clinical handling. The goal of this study was to compare the mechanical properties of early leukocyte- and platelet-rich fibrin (L-PRF) versus PRGF/Endoret membrane. Materials and Methods. In this experimental study, membranes were obtained from 10 healthy male volunteers. After obtaining 20 cc venous blood from each volunteer, 10 cc was used to prepare early L-PRF (group 1) and the rest was used to get a membrane by PRGF-Endoret system (group 2). Tensile loads were applied to specimens using universal testing machine. Tensile strength, stiffness, and toughness of the two groups of membranes were calculated and compared by paired t-test. Results. The mean tensile strength and toughness were higher in group 1 with a significant difference (P 0.05). Conclusions. The results showed that early L-PRF membranes had stronger mechanical properties than membranes produced by PRGF-Endoret system. Early L-PRF membranes might have easier clinical handling and could be a more proper scaffold in periodontal regenerative procedures. The real results of the current L-PRF should be in fact much higher than what is reported here.

  14. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase.

    Science.gov (United States)

    Hatahet, Feras; Blazyk, Jessica L; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E; Beckwith, Jonathan; Boyd, Dana

    2015-12-08

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants.

  15. Cyclic nucleotide dependent dephosphorylation of regulator of G-protein signaling 18 in human platelets.

    LENUS (Irish Health Repository)

    Gegenbauer, Kristina

    2013-11-01

    Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein that turns off Gq signaling in platelets. RGS18 is regulated by binding to the adaptor protein 14-3-3 via phosphorylated serine residues S49 and S218 on RGS18. In this study we confirm that thrombin, thromboxane A2, or ADP stimulate the interaction of RGS18 and 14-3-3 by increasing the phosphorylation of S49. Cyclic AMP- and cyclic GMP-dependent kinases (PKA, PKG) inhibit the interaction of RGS18 and 14-3-3 by phosphorylating S216. To understand the effect of S216 phosphorylation we studied the phosphorylation kinetics of S49, S216, and S218 using Phos-tag gels and phosphorylation site-specific antibodies in transfected cells and in platelets. Cyclic nucleotide-induced detachment of 14-3-3 from RGS18 coincides initially with double phosphorylation of S216 and S218. This is followed by dephosphorylation of S49 and S218. Dephosphorylation of S49 and S218 might be mediated by protein phosphatase 1 (PP1) which is linked to RGS18 by the regulatory subunit PPP1R9B (spinophilin). We conclude that PKA and PKG induced S216 phosphorylation triggers the dephosphorylation of the 14-3-3 binding sites of RGS18 in platelets.

  16. Protein profiles of hatchery egg shell membrane.

    Science.gov (United States)

    Rath, N C; Liyanage, R; Makkar, S K; Lay, J O

    2016-01-01

    Eggshells which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of microbial and environmental origins. As feed supplements, during post hatch growth, the hatchery egg shell membranes (HESM) have shown potential for imparting resistance of chickens to endotoxin stress and exert positive health effects. Considering that these effects are mediated by the bioactive proteins and peptides present in the membrane, the objective of the study was to identify the protein profiles of hatchery eggshell membranes (HESM). Hatchery egg shell membranes were extracted with acidified methanol and a guanidine hydrochloride buffer then subjected to reduction/alkylation, and trypsin digestion. The methanol extract was additionally analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The tryptic digests were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS-MS) to identify the proteins. Our results showed the presence of several proteins that are inherent and abundant in egg white such as, ovalbumin, ovotransferrin, ovocleidin-116, and lysozyme, and several proteins associated with cytoskeletal, cell signaling, antimicrobial, and catalytic functions involving carbohydrate, nucleic acid, and protein metabolisms. There were some blood derived proteins most likely originating from the embryos and several other proteins identified with different aerobic, anaerobic, gram positive, gram negative, soil, and marine bacterial species some commensals and others zoonotic. The variety of bioactive proteins, particularly the cell signaling and enzymatic proteins along with the diverse microbial proteins, make the HESM suitable for nutritional and biological application to improve post hatch immunity of poultry.

  17. Lipid Directed Intrinsic Membrane Protein Segregation

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Thompson, James R.; Helix Nielsen, Claus

    2013-01-01

    We demonstrate a new approach for direct reconstitution of membrane proteins during giant vesicle formation. We show that it is straightforward to create a tissue-like giant vesicle film swelled with membrane protein using aquaporin SoPIP2;1 as an illustration. These vesicles can also be easily h...

  18. Electrostatics and N-glycan-mediated membrane tethering of SCUBE1 is critical for promoting bone morphogenetic protein signalling.

    Science.gov (United States)

    Liao, Wei-Ju; Tsao, Ku-Chi; Yang, Ruey-Bing

    2016-03-01

    SCUBE1 (S1), a secreted and membrane-bound glycoprotein, has a modular protein structure composed of an N-terminal signal peptide sequence followed by nine epidermal growth factor (EGF)-like repeats, a spacer region and three cysteine-rich (CR) motifs with multiple potential N-linked glycosylation sites, and one CUB domain at the C-terminus. Soluble S1 is a biomarker of platelet activation but an active participant of thrombosis via its adhesive EGF-like repeats, whereas its membrane-associated form acts as a bone morphogenetic protein (BMP) co-receptor in promoting BMP signal activity. However, the mechanism responsible for the membrane tethering and the biological importance of N-glycosylation of S1 remain largely unknown. In the present study, molecular mapping analysis identified a polycationic segment (amino acids 501-550) in the spacer region required for its membrane tethering via electrostatic interactions possibly with the anionic heparan sulfate proteoglycans. Furthermore, deglycosylation by peptide N-glycosidase F treatment revealed that N-glycans within the CR motif are essential for membrane recruitment through lectin-mediated surface retention. Injection of mRNA encoding zebrafish wild-type but not N-glycan-deficient scube1 restores the expression of haematopoietic and erythroid markers (scl and gata1) in scube1-knockdown embryos. We describe novel mechanisms in targeting S1 to the plasma membrane and demonstrate that N-glycans are required for S1 functions during primitive haematopoiesis in zebrafish. © 2016 Authors; published by Portland Press Limited.

  19. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins.

    Science.gov (United States)

    Wohlever, Matthew L; Mateja, Agnieszka; McGilvray, Philip T; Day, Kasey J; Keenan, Robert J

    2017-07-20

    Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Lipopolysaccharide Membranes and Membrane Proteins of Pseudomonas aeruginosa Studied by Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Straatsma, TP

    2006-12-01

    Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium with high metabolic versatility and an exceptional ability to adapt to a wide range of ecological environments, including soil, marches, coastal habitats, plant and animal tissues. Gram-negative microbes are characterized by the asymmetric lipopolysaccharide outer membrane, the study of which is important for a number of applications. The adhesion to mineral surfaces plays a central role in characterizing their contribution to the fate of contaminants in complex environmental systems by effecting microbial transport through soils, respiration redox chemistry, and ion mobility. Another important application stems from the fact that it is also a major opportunistic human pathogen that can result in life-threatening infections in many immunocompromised patients, such as lung infections in children with cystic fibrosis, bacteraemia in burn victims, urinary-tract infections in catheterized patients, hospital-acquired pneumonia in patients on respirators, infections in cancer patients receiving chemotherapy, and keratitis and corneal ulcers in users of extended-wear soft contact lenses. The inherent resistance against antibiotics which has been linked with the specific interactions in the outer membrane of P. aeruginosa makes these infections difficult to treat. Developments in simulation methodologies as well as computer hardware have enabled the molecular simulation of biological systems of increasing size and with increasing accuracy, providing detail that is difficult or impossible to obtain experimentally. Computer simulation studies contribute to our understanding of the behavior of proteins, protein-protein and protein-DNA complexes. In recent years, a number of research groups have made significant progress in applying these methods to the study of biological membranes. However, these applications have been focused exclusively on lipid bilayer membranes and on membrane proteins in lipid

  1. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation.

    Science.gov (United States)

    Cox, D; Kerrigan, S W; Watson, S P

    2011-06-01

    It has become clear that platelets are not simply cell fragments that plug the leak in a damaged blood vessel; they are, in fact, also key components in the innate immune system, which is supported by the presence of Toll-like receptors (TLRs) on platelets. As the cells that respond first to a site of injury, they are well placed to direct the immune response to deal with any resulting exposure to pathogens. The response is triggered by bacteria binding to platelets, which usually triggers platelet activation and the secretion of antimicrobial peptides. The main platelet receptors that mediate these interactions are glycoprotein (GP)IIb-IIIa, GPIbα, FcγRIIa, complement receptors, and TLRs. This process may involve direct interactions between bacterial proteins and the receptors, or can be mediated by plasma proteins such as fibrinogen, von Willebrand factor, complement, and IgG. Here, we review the variety of interactions between platelets and bacteria, and look at the potential for inhibiting these interactions in diseases such as infective endocarditis and sepsis. © 2011 International Society on Thrombosis and Haemostasis.

  2. Radioimmune assay of human platelet prostaglandin synthetase

    International Nuclear Information System (INIS)

    Roth, G.J.; Machuga, E.T.

    1982-01-01

    Normal platelet function depends, in part, on platelet PG synthesis. PG synthetase (cyclo-oxygenase) catalyzes the first step in PG synthesis, the formation of PGH 2 from arachidonic acid. Inhibition of the enzyme by ASA results in an abnormality in the platelet release reaction. Patients with pparent congenital abnormalities in the enzyme have been described, and the effects have been referred to as ''aspirin-like'' defects of the platelet function. These patients lack platelet PG synthetase activity, but the actual content of PG synthetase protein in these individuals' platelets is unknown. Therefore an RIA for human platelet PG synthetase would provide new information, useful in assessing the aspirin-like defects of platelet function. An RIA for human platelet PG synthetase is described. The assay utilizes a rabbit antibody directed against the enzyme and [ 125 I]-labelled sheep PG synthetase as antigen. The human platelet enzyme is assayed by its ability to inhibit precipitation of the [ 125 I]antigen. The assay is sensitive to 1 ng of enzyme. By the immune assay, human platelets contain approximately 1200 ng of PG synethetase protein per 1.5 mg of platelet protein (approximately 10 9 platelets). This content corresponds to 10,000 enzyme molecules per platelet. The assay provides a rapid and convenient assay for the human platelet enzyme, and it can be applied to the assessment of patients with apparent platelet PG synthetase (cyclo-oxygenase) deficiency

  3. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    Science.gov (United States)

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  4. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.

    Science.gov (United States)

    Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling

    2017-11-09

    Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.

  5. Expression of Angiogenesis Regulatory Proteins and Epithelial-Mesenchymal Transition Factors in Platelets of the Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Hui Han

    2014-01-01

    Full Text Available Platelets play a role in tumor angiogenesis and growth and are the main transporters of several angiogenesis regulators. Here, we aimed to determine the levels of angiogenesis regulators and epithelial-mesenchymal transition factors sequestered by circulating platelets in breast cancer patients and age-matched healthy controls. Platelet pellets (PP and platelet-poor plasma (PPP were collected by routine protocols. Vascular endothelial growth factor (VEGF, platelet-derived growth factor BB (PDGF-BB, thrombospondin-1 (TSP-1, platelet factor 4 (PF4, and transforming growth factor-β1 (TGF-β1 were measured by enzyme-linked immunosorbent assay. Angiogenesis-associated expression of VEGF (2.1 pg/106 platelets versus 0.9 pg/106 platelets, P < 0.001, PF4 (21.2 ng/106 platelets versus 10.2 ng/106 platelets, P < 0.001, PDGF-BB (42.9 pg/106 platelets versus 19.1 pg/106 platelets, P < 0.001, and TGF-β1 (15.3 ng/106 platelets versus 4.3 ng/106 platelets, P < 0.001 differed in the PP samples of cancer and control subjects. In addition, protein concentrations were associated with clinical characteristics (P<0.05. Circulating platelets in breast cancer sequester higher levels of PF4, VEGF, PDGF-BB, and TGF-β1, suggesting a possible target for early diagnosis. VEGF, PDGF, and TGF-β1 concentrations in platelets may be associated with prognosis.

  6. Disturbed vesicular trafficking of membrane proteins in prion disease.

    Science.gov (United States)

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  7. Improving Hemocompatibility of Membranes for Extracorporeal Membrane Oxygenators by Grafting Nonthrombogenic Polymer Brushes.

    Science.gov (United States)

    Obstals, Fabian; Vorobii, Mariia; Riedel, Tomáš; de Los Santos Pereira, Andres; Bruns, Michael; Singh, Smriti; Rodriguez-Emmenegger, Cesar

    2018-03-01

    Nonthrombogenic modifications of membranes for extracorporeal membrane oxygenators (ECMOs) are of key interest. The absence of hemocompatibility of these membranes and the need of anticoagulation of patients result in severe and potentially life-threatening complications during ECMO treatment. To address the lack of hemocompatibility of the membrane, surface modifications are developed, which act as barriers to protein adsorption on the membrane and, in this way, prevent activation of the coagulation cascade. The modifications are based on nonionic and zwitterionic polymer brushes grafted directly from poly(4-methyl-1-pentene) (TPX) membranes via single electron transfer-living radical polymerization. Notably, this work introduces the first example of well-controlled surface-initiated radical polymerization of zwitterionic brushes. The antifouling layers markedly increase the recalcification time (a proxy of initiation of coagulation) compared to bare TPX membranes. Furthermore, platelet and leukocyte adhesion is drastically decreased, rendering the ECMO membranes hemocompatible. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An Integrated Framework Advancing Membrane Protein Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Rebecca F Alford

    2015-09-01

    Full Text Available Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1 prediction of free energy changes upon mutation; (2 high-resolution structural refinement; (3 protein-protein docking; and (4 assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design.

  9. Organizing membrane-curving proteins: the emerging dynamical picture.

    Science.gov (United States)

    Simunovic, Mijo; Bassereau, Patricia; Voth, Gregory A

    2018-03-30

    Lipid membranes play key roles in cells, such as in trafficking, division, infection, remodeling of organelles, among others. The key step in all these processes is creating membrane curvature, typically under the control of many anchored, adhered or included proteins. However, it has become clear that the membrane itself can mediate the interactions among proteins to produce highly ordered assemblies. Computer simulations are ideally suited to investigate protein organization and the dynamics of membrane remodeling at near-micron scales, something that is extremely challenging to tackle experimentally. We review recent computational efforts in modeling protein-caused membrane deformation mechanisms, specifically focusing on coarse-grained simulations. We highlight work that exposed the membrane-mediated ordering of proteins into lines, meshwork, spirals and other assemblies, in what seems to be a very generic mechanism driven by a combination of short and long-ranged forces. Modulating the mechanical properties of membranes is an underexplored signaling mechanism in various processes deserving of more attention in the near future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    Science.gov (United States)

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  11. Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes

    Directory of Open Access Journals (Sweden)

    Bunai Christine L

    2009-02-01

    Full Text Available Abstract Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer (2.5 M NaBr, an alkaline solution (180 mM Na2CO3, pH 11.3 and membrane denaturants (8 M urea, 2 M thiourea and 1% amidosulfobetaine-14. Separation of proteins by 2D gel electrophoresis was followed by identification of more than 600 gene products by MS. Data from differential 2D gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three membrane fractions, were used to assign proteins found in the membrane fractions to three protein categories: (i integral membrane proteins and peripheral membrane proteins with low solubility in aqueous solutions (220 entries; (ii peripheral membrane proteins with moderate to high solubility in aqueous solutions (127 entries; (iii cytoplasmic or ribosomal membrane-contaminating proteins (80 entries. Thirty-one proteins were experimentally associated with the outer membrane (OM. Circa 50 proteins thought to be part of membrane-localized, multi-subunit complexes were identified in high Mr fractions of membrane extracts via size exclusion chromatography. This data supported biologically meaningful assignments of many proteins to the membrane periphery. Since only 32 inner membrane (IM proteins with two or more predicted transmembrane domains (TMDs were profiled in 2D gels, we resorted to a proteomic analysis by 2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The total number of proteins associated with Y. pestis membranes increased to 456 and included representatives of all six β-barrel OM protein families and 25 distinct IM transporter families.

  12. Conditions that allow for effective transfer of membrane proteins onto nitrocellulose membrane in Western blots.

    Science.gov (United States)

    Abeyrathne, Priyanka D; Lam, Joseph S

    2007-04-01

    A major hurdle in characterizing bacterial membrane proteins by Western blotting is the ineffectiveness of transferring these proteins from sodium dodecyl sulfate -- polyacrylamide gel electrophoresis (SDS-PAGE) gel onto nitrocellulose membrane, using standard Western blot buffers and electrophoretic conditions. In this study, we compared a number of modified Western blotting buffers and arrived at a composition designated as the SDS-PAGE-Urea Lysis buffer. The use of this buffer and specific conditions allowed the reproducible transfer of highly hydrophobic bacterial membrane proteins with 2-12 transmembrane-spanning segments as well as soluble proteins onto nitrocellulose membranes. This method should be broadly applicable for immunochemical studies of other membrane proteins.

  13. Overcoming bottlenecks in the membrane protein structural biology pipeline.

    Science.gov (United States)

    Hardy, David; Bill, Roslyn M; Jawhari, Anass; Rothnie, Alice J

    2016-06-15

    Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, leading to their aggregation. The use of orthologues, mutants and fusion tags has helped improve protein stability, but at the expense of not working with the sequence of interest. Novel detergents such as glucose neopentyl glycol (GNG), maltose neopentyl glycol (MNG) and calixarene-based detergents can improve protein stability without compromising their solubilizing properties. Styrene maleic acid lipid particles (SMALPs) focus on retaining the native lipid bilayer of a membrane protein during purification and biophysical analysis. Overcoming bottlenecks in the membrane protein structural biology pipeline, primarily by maintaining protein stability, will facilitate the elucidation of many more membrane protein structures in the near future. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  14. Functional dynamics of cell surface membrane proteins.

    Science.gov (United States)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. An autologously generated platelet-rich plasma suturable membrane may enhance peripheral nerve regeneration after neurorraphy in an acute injury model of sciatic nerve neurotmesis.

    Science.gov (United States)

    Giannessi, Elisabetta; Coli, Alessandra; Stornelli, Maria Rita; Miragliotta, Vincenzo; Pirone, Andrea; Lenzi, Carla; Burchielli, Silvia; Vozzi, Giovanni; De Maria, Carmelo; Giorgetti, Margherita

    2014-11-01

    The aim of this study was to investigate the ability of suturable platelet-rich plasma (PRP) membrane to promote peripheral nerve regeneration after neurotmesis and neurorraphy. A total of 36 rats were used: 32 animals underwent surgery and were split in two groups. An interim sacrifice was performed at 6 weeks postsurgery and final sacrifice at 12 weeks; four animals did not sustain nerve injury and served as control. Clinical, electromyographic (EMG), gross, and histological changes were assessed. The EMG signal was evaluated for its amplitude and frequency spectrum. Number of regenerating fibers, their diameter, and myelin thickness were histologically analyzed. Both EMG parameters showed a significant (p neurorraphy improves the nerve regeneration process in a rat sciatic nerve model. The use of PRP as a suturable membrane could perform an action not only as a source of bioactive proteins but also as a nerve guide to hold the scar reaction and thus improve axonal regeneration. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Alternatives to allogeneic platelet transfusion.

    Science.gov (United States)

    Desborough, Michael J R; Smethurst, Peter A; Estcourt, Lise J; Stanworth, Simon J

    2016-11-01

    Allogeneic platelet transfusions are widely used for the prevention and treatment of bleeding in thrombocytopenia. Recent evidence suggests platelet transfusions have limited efficacy and are associated with uncertain immunomodulatory risks and concerns about viral or bacterial transmission. Alternatives to transfusion are a well-recognised tenet of Patient Blood Management, but there has been less focus on different strategies to reduce bleeding risk by comparison to platelet transfusion. Direct alternatives to platelet transfusion include agents to stimulate endogenous platelet production (thrombopoietin mimetics), optimising platelet adhesion to endothelium by treating anaemia or increasing von Willebrand factor levels (desmopressin), increasing formation of cross-linked fibrinogen (activated recombinant factor VII, fibrinogen concentrate or recombinant factor XIII), decreasing fibrinolysis (tranexamic acid or epsilon aminocaproic acid) or using artificial or modified platelets (cryopreserved platelets, lyophilised platelets, haemostatic particles, liposomes, engineered nanoparticles or infusible platelet membranes). The evidence base to support the use of these alternatives is variable, but an area of active research. Much of the current randomised controlled trial focus is on evaluation of the use of thrombopoietin mimetics and anti-fibrinolytics. It is also recognised that one alternative strategy to platelet transfusion is choosing not to transfuse at all. © 2016 John Wiley & Sons Ltd.

  17. Characterization of Leukocyte-platelet Rich Fibrin, A Novel Biomaterial.

    Science.gov (United States)

    Madurantakam, Parthasarathy; Yoganarasimha, Suyog; Hasan, Fadi K

    2015-09-29

    Autologous platelet concentrates represent promising innovative tools in the field of regenerative medicine and have been extensively used in oral surgery. Unlike platelet rich plasma (PRP) that is a gel or a suspension, Leukocyte-Platelet Rich Fibrin (L-PRF) is a solid 3D fibrin membrane generated chair-side from whole blood containing no anti-coagulant. The membrane has a dense three dimensional fibrin matrix with enriched platelets and abundant growth factors. L-PRF is a popular adjunct in surgeries because of its superior handling characteristics as well as its suturability to the wound bed. The goal of the study is to demonstrate generation as well as provide detailed characterization of relevant properties of L-PRF that underlie its clinical success.

  18. Integral membrane protein structure determination using pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Crick, Duncan J.; Wang, Jue X. [University of Cambridge, Department of Biochemistry (United Kingdom); Graham, Bim; Swarbrick, James D. [Monash University, Monash Institute of Pharmaceutical Sciences (Australia); Mott, Helen R.; Nietlispach, Daniel, E-mail: dn206@cam.ac.uk [University of Cambridge, Department of Biochemistry (United Kingdom)

    2015-04-15

    Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary strategies highly beneficial for successful structure elucidation. Recently, lanthanide-induced pseudocontact shifts (PCSs) have been established as a structural tool for globular proteins. Here, we demonstrate that a PCS-based approach can be successfully applied for the structure determination of integral membrane proteins. Using the 7TM α-helical microbial receptor pSRII, we show that PCS-derived restraints from lanthanide binding tags attached to four different positions of the protein facilitate the backbone structure determination when combined with a limited set of NOEs. In contrast, the same set of NOEs fails to determine the correct 3D fold. The latter situation is frequently encountered in polytopical α-helical membrane proteins and a PCS approach is thus suitable even for this particularly challenging class of membrane proteins. The ease of measuring PCSs makes this an attractive route for structure determination of large membrane proteins in general.

  19. Platelet activation by bacterial phospholipase C involves phosphoinositide turnover and phosphorylation of 47,000 dalton but not 20,000 dalton protein

    International Nuclear Information System (INIS)

    Huzoor-Akbar; Anwer, K.

    1986-01-01

    This study was conducted to examine the role of phosphoinositides (PIns) and phosphorylation of 47,000 dalton (P47) and 20,000 dalton (P20) proteins in platelet activation by bacterial phospholipase C (PLC). PLC induced serotonin secretion (SS) and platelet aggregation (PA) in a concentration dependent manner. PLC (0.02 U/ml) caused phosphorylation of P47 in a time dependent manner (27% at 0.5 min to 378% at 7 min). PLC did not induce more than 15% phosphorylation of P20 by 7 min. Aspirin (500 μM) blocked phosphorylation of P20 but did not inhibit SS, PA or phosphorylation of P47. PLC (0.04 U/ml) decreased radioactivity (cpm) in 32 P labeled phosphatidylinositol (PI), PI-4,5-bis-PO4 (PIP2) and PI-4-PO4 (PIP) by 20%, 12% and 7.5% respectively at 15 sec. The level of PI but not that of PIP2 returned to base line in 3 min. PIP level increased above control values within one min. PLC increased phosphatidic acid level (75% at 0.5 min. to 1545% at 3 min). In other experiments PLC produced diacylglycerol (DAG) in a time and concentration dependent manner. However, no DAG was detectable in the first 60 sec. These data suggest that: (a) PIns turnover and phosphorylation of P47 but not that of P20 is involved in platelet activation by PLC; and (b) DAG production from outer membrane phospholipids is not a prerequisite for platelet activation by PLC

  20. Viability and Biomechanics of Diced Cartilage Blended With Platelet-Rich Plasma and Wrapped With Poly (Lactic-Co-Glycolic) Acid Membrane.

    Science.gov (United States)

    Liao, Jun-Lin; Chen, Jia; He, Bin; Chen, Yong; Xu, Jia-Qun; Xie, Hong-Ju; Hu, Feng; Wang, Ai-Jun; Luo, ChengQun; Li, Qing-Feng; Zhou, Jian-Da

    2017-09-01

    The objective of this study was to investigate the viability and biomechanics of diced cartilage blended with platelet-rich plasma (PRP) and wrapped with poly (lactic-co-glycolic) acid (PLGA) membrane in a rabbit model. A total of 10 New Zealand rabbits were used for the study. Cartilage grafts were harvested from 1 side ear. The grafts were divided into 3 groups for comparison: bare diced cartilage, diced cartilage wrapped with PLGA membrane, and diced cartilage blended with PRP and wrapped with PLGA membrane. Platelet-rich plasma was prepared using 8 mL of auricular blood. Three subcutaneous pockets were made in the backs of the rabbits, and the grafts were placed in these pockets. The subcutaneous implant tests were conducted for safety assessment of the PLGA membrane in vivo. All of the rabbits were sacrificed at the end of 3 months, and the specimens were collected. The sections were stained with hematoxylin and eosin, toluidin blue, and collagen II immunohistochemical. Simultaneously, biomechanical properties of grafts were assessed. This sample of PLGA membrane was conformed to the current standard of biological evaluation of medical devices. Moderate resorption was seen at the end of 3 months in the gross assessment in diced cartilage wrapped with PLGA membrane, while diced cartilage blended with PRP had no apparent resorption macroscopically and favorable viability in vivo after 3 months, and the histological parameters supported this. Stress-strain curves for the compression test indicated that the modulus of elasticity of bare diced cartilage was 7.65 ± 0.59 MPa; diced cartilage wrapped with PLGA membrane was 5.98 ± 0.45 MPa; and diced cartilage blended with PRP and wrapped with PLGA membrane was 7.48 ± 0.55 MPa, respectively. Diced cartilage wrapped with PLGA membrane had moderate resorption macroscopically after 3 months. However, blending with PRP has beneficial effects in improving the viability of diced cartilages. Additionally, the

  1. Detection of proteins on blot transfer membranes.

    Science.gov (United States)

    Sasse, Joachim; Gallagher, Sean R

    2003-11-01

    In the basic and alternate protocols of this unit, proteins are stained after electroblotting from polyacrylamide gels to blot transfer membranes. If the samples of interest are electrophoresed in duplicate and transferred to a blot transfer membrane, half of the membrane can be stained to determine the efficiency of transfer to the membrane and the other half can be used for immunoblotting (i.e., western blotting). Detection limits of each staining method are given along with a list of compatible blot transfer membranes and gels. A support protocol describes a method for alkali treatment that enhances subsequent staining of bound proteins.

  2. Analysis of Membrane Protein Topology in the Plant Secretory Pathway.

    Science.gov (United States)

    Guo, Jinya; Miao, Yansong; Cai, Yi

    2017-01-01

    Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.

  3. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism.

    Science.gov (United States)

    Carnevale, Roberto; Bartimoccia, Simona; Nocella, Cristina; Di Santo, Serena; Loffredo, Lorenzo; Illuminati, Giulio; Lombardi, Elisabetta; Boz, Valentina; Del Ben, Maria; De Marco, Luigi; Pignatelli, Pasquale; Violi, Francesco

    2014-11-01

    Platelets generate oxidized LDL (ox-LDL) via NOX2-derived oxidative stress. We investigated if once generated by activated platelets ox-LDL can propagate platelet activation. Experiments were performed in platelets from healthy subjects (HS), hyper-cholesterolemic patients and patients with NOX2 hereditary deficiency. Agonist-stimulated platelets from HS added with LDL were associated with a dose-dependent increase of reactive oxidant species and ox-LDL. Agonist-stimulated platelets from HS added with a fixed dose of LDL (57.14 μmol/L) or added with homogenized human atherosclerotic plaque showed enhanced ox-LDL formation (approximately +50% and +30% respectively), which was lowered by a NOX2 inhibitor (approximately -35% and -25% respectively). Compared to HS, ox-LDL production was more pronounced in agonist-stimulated platelet rich plasma (PRP) from hyper-cholesterolemic patients but was almost absent in PRP from NOX2-deficient patients. Platelet aggregation and 8-iso-PGF2α-ΙΙΙ formation increased in LDL-treated washed platelets (+42% and +53% respectively) and PRP (+31% and +53% respectively). Also, LDL enhanced platelet-dependent thrombosis at arterial shear rate (+33%) but did not affect platelet activation in NOX2-deficient patients. Platelet activation by LDL was significantly inhibited by CD36 or LOX1 blocking peptides, two ox-LDL receptor antagonists, or by a NOX2 inhibitor. LDL-added platelets showed increased p38MAPK (+59%) and PKC (+51%) phosphorylation, p47(phox) translocation to platelet membrane (+34%) and NOX2 activation (+30%), which were inhibited by ox-LDL receptor antagonists. Platelets oxidize LDL, which in turn amplify platelet activation via specific ox-LDL receptors; both effects are mediated by NOX2 activation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Challenges in the Development of Functional Assays of Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Sophie Demarche

    2012-11-01

    Full Text Available Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.

  5. Biophysical EPR Studies Applied to Membrane Proteins

    Science.gov (United States)

    Sahu, Indra D; Lorigan, Gary A

    2015-01-01

    Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented. PMID:26855825

  6. Structuring detergents for extracting and stabilizing functional membrane proteins.

    Directory of Open Access Journals (Sweden)

    Rima Matar-Merheb

    Full Text Available BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12 were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein, a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM. They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux much more efficiently than SDS (sodium dodecyl sulphate, FC12 (Foscholine 12 or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state

  7. Tandem Facial Amphiphiles for Membrane Protein Stabilization

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Gotfryd, Kamil; Pacyna, Jennifer

    2010-01-01

    We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles....

  8. Discriminating lysosomal membrane protein types using dynamic neural network.

    Science.gov (United States)

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  9. The heat-compression technique for the conversion of platelet-rich fibrin preparation to a barrier membrane with a reduced rate of biodegradation.

    Science.gov (United States)

    Kawase, Tomoyuki; Kamiya, Mana; Kobayashi, Mito; Tanaka, Takaaki; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2015-05-01

    Platelet-rich fibrin (PRF) was developed as an advanced form of platelet-rich plasma to eliminate xenofactors, such as bovine thrombin, and it is mainly used as a source of growth factor for tissue regeneration. Furthermore, although a minor application, PRF in a compressed membrane-like form has also been used as a substitute for commercially available barrier membranes in guided-tissue regeneration (GTR) treatment. However, the PRF membrane is resorbed within 2 weeks or less at implantation sites; therefore, it can barely maintain sufficient space for bone regeneration. In this study, we developed and optimized a heat-compression technique and tested the feasibility of the resulting PRF membrane. Freshly prepared human PRF was first compressed with dry gauze and subsequently with a hot iron. Biodegradability was microscopically examined in vitro by treatment with plasmin at 37°C or in vivo by subcutaneous implantation in nude mice. Compared with the control gauze-compressed PRF, the heat-compressed PRF appeared plasmin-resistant and remained stable for longer than 10 days in vitro. Additionally, in animal implantation studies, the heat-compressed PRF was observed at least for 3 weeks postimplantation in vivo whereas the control PRF was completely resorbed within 2 weeks. Therefore, these findings suggest that the heat-compression technique reduces the rate of biodegradation of the PRF membrane without sacrificing its biocompatibility and that the heat-compressed PRF membrane easily could be prepared at chair-side and applied as a barrier membrane in the GTR treatment. © 2014 Wiley Periodicals, Inc.

  10. The platelet P2Y(12) receptor under normal and pathological conditions. Assessment with the radiolabeled selective antagonist [(3)H]PSB-0413.

    Science.gov (United States)

    Ohlmann, Philippe; Lecchi, Anna; El-Tayeb, Ali; Müller, Christa E; Cattaneo, Marco; Gachet, Christian

    2013-03-01

    Various radioligands have been used to characterize and quantify the platelet P2Y(12) receptor, which share several weaknesses: (a) they are metabolically unstable and substrates for ectoenzymes, (b) they are agonists, and (c) they do not discriminate between P2Y(1) and P2Y(12). We used the [(3)H]PSB-0413 selective P2Y(12) receptor antagonist radioligand to reevaluate the number of P2Y(12) receptors in intact platelets and in membrane preparations. Studies in humans showed that: (1) [(3)H]PSB-0413 bound to 425 ± 50 sites/platelet (K (D) = 3.3 ± 0.6 nM), (2) 0.5 ± 0.2 pmol [(3)H]PSB-0413 bound to 1 mg protein of platelet membranes (K (D) = 6.5 ± 3.6 nM), and (3) competition studies confirmed the known features of P2Y(12), with the expected rank order of potency: AR-C69931MX > 2MeSADP ≫ ADPβS > ADP, while the P2Y(1) ligand MRS2179 and the P2X(1) ligand α,β-Met-ATP did not displace [(3)H]PSB-0413 binding. Patients with severe P2Y(12) deficiency displayed virtually no binding of [(3)H]PSB-0413 to intact platelets, while a patient with a dysfunctional P2Y(12) receptor had normal binding. Studies in mice showed that: (1) [(3)H]PSB-0413 bound to 634 ± 87 sites/platelet (K (D) = 14 ± 4.5 nM) and (2) 0.7 pmol ± 0.3 [(3)H]PSB-0413 bound to 1 mg protein of platelet membranes (K (D) = 9.1 ± 5.3 nM). Clopidogrel and other thiol reagents like pCMBS or DTT abolished the binding both to intact platelets and membrane preparations. Therefore, [(3)H]PSB-0413 is an accurate and selective tool for radioligand binding studies aimed at quantifying P2Y(12) receptors, to identify patients with P2Y(12) deficiencies or quantify the effect of P2Y(12) targeting drugs.

  11. Localization of the fourth membrane spanning domain as a ligand binding site in the human platelet α2-adrenergic receptor

    International Nuclear Information System (INIS)

    Matsui, Hiroaki; Lefkowitz, R.J.; Caron, M.G.; Regan, J.W.

    1989-01-01

    The human platelet α 2 -adrenergic receptor is an integral membrane protein which binds epinephrine. The gene for this receptor has been cloned, and the primary structure is thus known. A model of its secondary structure predicts that the receptor has seven transmembrane spanning domains. By covalent labeling and peptide mapping, the authors have identified a region of the receptor that is directly involved with ligand binding. Partially purified preparations of the receptor were covalently radiolabeled with either of two specific photoaffinity ligands: [ 3 H]SKF 102229 (an antagonist) or p-azido[ 3 H]clonidine (an agonist). The radiolabeled receptors were then digested with specific endopeptidases, and peptides containing the covalently bound radioligands were identified. Lysylendopeptidase treatment of [ 3 H]SKF 102229 labeled receptor yielded one peptide of M r 2400 as the product of a complete digest. Endopeptidase Arg-C gave a labeled peptide of M r 4000, which was further digested to the M r 2400 peptide by additional treatment with lysylendopeptidase. Using p-azido[ 3 H]clonidine-labeled receptor, a similar M r 2400 peptide was obtained by lysylendopeptidase cleavage. This M r 2400 peptide corresponds to the fourth transmembrane spanning domain of the receptor. These data suggest that this region forms part of the ligand binding domain of the human platelet α 2 -adrenergic receptor

  12. Human platelet ( sup 125 I)R-DOI binding sites. Characterization by in vitro autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Himeno, A.; Saavedra, J.M. (National Institute of Mental Health, Bethesda, MD (USA))

    1990-02-01

    We quantified binding sites for 2,5-dimethoxy-4-iodo-phenylisopropylamine (DOI), a 5-HT2 agonist and hallucinogen, in human platelets. We incubated sections from human platelet pellets with ({sup 125}I)R-DOI with or without 1 mumol/L ketanserin, followed by autoradiography and computerized microdensitometry. We corrected the values of binding density by the protein content of each section with a densitometric protein assay. The present method revealed a single class of high affinity binding sites for ({sup 125}I)R-DOI, with a Kd of 6.4 +/- 0.7 nmol/L and a Bmax of 100 +/- 10 fmol/mg protein. Kd and Bmax for ({sup 125}I)R-DOI determined by the classical membrane binding assay, were 2.7 +/- 0.4 nmol/L and 100 +/- 10 fmol/mg protein, respectively. The present method is precise, very sensitive, and allows the characterization of ({sup 125}I)R-DOI binding in sections obtained from as little as 3 ml of blood. Standardization is possible after correction by the protein content of each individual section.

  13. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Science.gov (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  14. Plasma membrane of a marine T cell lymphoma: surface labelling, membrane isolation, separation of membrane proteins and distribution of surface label amongst these proteins

    International Nuclear Information System (INIS)

    Crumpton, M.J.; Marchalonis, J.J.; Haustein, D.; Atwell, J.L.; Harris, A.W.

    1976-01-01

    Two established techniques for analysis of plasma membranes, namely, lactoperoxidase catalyzed surface radioiodination of intact cells and bulk membrane isolation following disruption of cells by shear forces, were applied in studies of membrane proteins of continuously cultured cells of the monoclonal T lymphoma line WEHI-22. It was found that macromolecular 125 I-iodide incorporated into plasma membrane proteins of intact cells was at least as good a marker for the plasma as was the commonly used enzyme 5'-nucleotidase, T lymphoma plasma membrane proteins were complex when analysed by polyacrylamide gel electrophoresis in sodium dodecylsulphate-containing buffers and more than thirty distinct components were resolved. More than fifteen of the components observed on a mass basis were also labelled with 125 I-iodide. Certain bands, however, exhibited a degree of label disproportionate to their staining properties with Coomassie Blue. This was interpreted in terms of their accessibility to the solvent in the intact cells. (author)

  15. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Redox Proteomics and Platelet Activation: Understanding the Redox Proteome to Improve Platelet Quality for Transfusion

    Science.gov (United States)

    Sonego, Giona; Abonnenc, Mélanie; Tissot, Jean-Daniel; Prudent, Michel; Lion, Niels

    2017-01-01

    Blood banks use pathogen inactivation (PI) technologies to increase the safety of platelet concentrates (PCs). The characteristics of PI-treated PCs slightly differ from those of untreated PCs, but the underlying reasons are not well understood. One possible cause is the generation of oxidative stress during the PI process. This is of great interest since reactive oxygen species (ROS) act as second messengers in platelet functions. Furthermore, there are links between protein oxidation and phosphorylation, another mechanism that is critical for cell regulation. Current research efforts focus on understanding the underlying mechanisms and identifying new target proteins. Proteomics technologies represent powerful tools for investigating signaling pathways involving ROS and post-translational modifications such as phosphorylation, while quantitative techniques enable the comparison of the platelet resting state versus the stimulated state. In particular, redox cysteine is a key player in platelet activation upon stimulation by different agonists. This review highlights the experiments that have provided insights into the roles of ROS in platelet function and the implications for platelet transfusion, and potentially in diseases such as inflammation and platelet hyperactivity. The review also describes the implication of redox mechanism in platelet storage considerations. PMID:28208668

  17. Procoagulant expression in platelets and defects leading to clinical disorders.

    Science.gov (United States)

    Solum, N O

    1999-12-01

    Hemostasis is a result of interactions between fibrillar structures in the damaged vessel wall, soluble components in plasma, and cellular elements in blood represented mainly by platelets and platelet-derived material. During formation of a platelet plug at the damaged vessel wall, factors IXa and VIIIa form the "tenase" complex, leading to activation of factor X on the surface of activated platelets. Subsequently, factors Xa and Va form the "prothrombinase" complex, which catalyzes the formation of thrombin from prothrombin, leading to fibrin formation. An enhanced expression of negatively charged phosphatidylserine in the outer membrane leaflet resulting from a breakdown of the phospholipid asymmetry is essential for the formation of the procoagulant surface. An ATP-driven and inward-acting aminophospholipid "translocase" and a "floppase" counterbalancing this have been postulated to maintain the dynamic state of phospholipid asymmetry. A phospholipid-nonspecific "scramblase," believed to be responsible for the fast breakdown of the asymmetry during cell activation, has recently been isolated from erythrocytes, cloned, and characterized. An intracellular calcium-binding segment and one or more thioesterified fatty acids are probably of importance for calcium-induced activation of this transporter protein. Cytosolic calcium ions also activate the calcium-dependent protease calpain associated with shedding of microvesicles from the transformed platelet membrane. These are shed with a procoagulant surface and with surface-exposed P-selectin from the alpha-granules. Theoretically, therefore, microvesicles can be involved in both coagulation and inflammation. Scott syndrome is probably caused by a defect in the activation of an otherwise normal scramblase, resulting in a relatively severe bleeding tendency. In Stormorken syndrome, the patients demonstrate a spontaneous surface expression of aminophospholipids. Activated platelets and the presence of procoagulant

  18. Macrolide Resistance Mediated by a Bifidobacterium breve Membrane Protein

    OpenAIRE

    Margolles, Abelardo; Moreno, José Antonio; van Sinderen, Douwe; de los Reyes-Gavilán, Clara G.

    2005-01-01

    A gene coding for a hypothetical membrane protein from Bifidobacterium breve was expressed in Lactococcus lactis. Immunoblotting demonstrated that this protein is located in the membrane. Phenotypical changes in sensitivity towards 21 antibiotics were determined. The membrane protein-expressing cells showed higher levels of resistance to several macrolides.

  19. Phytochemicals perturb membranes and promiscuously alter protein function.

    Science.gov (United States)

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Koçer, Armağan; Sack, Jon T; Andersen, Olaf S

    2014-08-15

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.

  20. Fabrication of an Anti-Biofouling Plasma-Filtration Membrane by an Electrospinning Process Using Photo-Cross-linkable Zwitterionic Phospholipid Polymers.

    Science.gov (United States)

    Seo, Jiae; Seo, Ji-Hun

    2017-06-14

    The goal of this study is to fabricate a stable plasma filtration membrane with antibiofouling properties via an electrospinning process. To this end, a random-type copolymer consisting of zwitterionic phosphorylcholine (PC) groups and ultraviolet (UV)-cross-linkable phenyl azide groups was synthesized. The zwitterionic PC group provides antibiofouling properties, and the phenyl azide group enables the stable maintenance of the fibrous nanostructure of hydrophilic zwitterion polymers in aqueous medium via a simple UV curing process. To demonstrate the antibiofouling nature of the PC group, a polymer without antibiofouling PC groups was also prepared for comparison. The successful synthesis of the random-type copolymers containing phenyl azide groups was proven by 1 H nuclear magnetic resonance and Fourier transform infrared spectroscopy, and the fibrous structure of the prepared membranes was observed by field emission scanning electron microscopy. The antibiofouling properties were analyzed by fluorescein isothiocyanate-labeled bovine serum albumin adsorption and platelet adhesion tests. The experimental results show that membranes containing zwitterionic PC groups exhibited obvious decreases in platelet adhesion and protein adsorption. Platelet-rich plasma solution was filtered using the prepared membranes to test their filtration properties. The sequential filtration process removed 80% and almost 98% of the platelets. This finding confirmed that the membrane retained its blood-inert biomaterial surface in a complex medium that included blood plasma and platelets.

  1. Identification of frog photoreceptor plasma and disk membrane proteins by radioiodination

    International Nuclear Information System (INIS)

    Witt, P.L.; Bownds, M.D.

    1987-01-01

    Several functions have been identified for the plasma membrane of the rod outer segment, including control of light-dependent changes in sodium conductance and a sodium-calcium exchange mechanism. However, little is known about its constituent proteins. Intact rod outer segments substantially free of contaminants were prepared in the dark and purified on a density gradient of Percoll. Surface proteins were then labeled by lactoperoxidase-catalyzed radioiodination, and intact rod outer segments were reisolated. Membrane proteins were identified by polyacrylamide gel electrophoresis and autoradiography. The surface proteins labeled included rhodopsin, the major membrane protein, and 12 other proteins. To compare the protein composition of plasma membrane with that of the internal disk membrane, purified rod outer segments were lysed by hypotonic disruption or freeze-thawing, and plasma plus disk membranes were radioiodinated. In these membrane preparations, rhodopsin was the major iodinated constituent, with 12 other proteins also labeled. Autoradiographic evidence indicated some differences in protein composition between disk and plasma membranes. A quantitative comparison of the two samples showed that labeling of two proteins, 24 kilodaltons (kDa) and 13 kDa, was enriched in the plasma membrane, while labeling of a 220-kDa protein was enriched in the disk membrane. These plasma membrane proteins may be associated with important functions such as the light-sensitive conductance and the sodium-calcium exchanger

  2. Staurosporine potentiates platelet activating factor stimulated phospholipase C activity in rabbit platelets but does not block desensitization by platelet activating factor

    International Nuclear Information System (INIS)

    Morrison, W.J.; Dhar, A.; Shukla, S.D.

    1989-01-01

    The possible involvement of protein kinase C activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets. PAF stimulated incorporation of 32 P into proteins and caused [ 3 H]InsP 3 levels to increase about 260% of control. These responses were compared after platelets were pretreated with either PAF, phorbol 12-myristate 13-acetate (PMA) or staurosporine and also after pretreatments with staurosporine followed by PAF or PMA. Pretreating platelets with staurosporine potentiated PAF-stimulated [ 3 H]InsP 3 levels by 54% and blocked protein phosphorylation. Pretreatments with PAF and PMA caused PAF-stimulated [ 3 H]InsP 3 levels to decrease to 115 and 136%, respectively. Staurosporine pretreatment blocked the decrease caused by the PMA pretreatment but not that by PAF. This study demonstrates that PAF-stimulated PLC activity is negatively affected by protein kinase C (PKC) activation and that inhibition of PKC activity did not prevent desensitization of PLC by PAF

  3. Organization and Dynamics of Receptor Proteins in a Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Sansom, Mark S P

    2015-11-25

    The interactions of membrane proteins are influenced by their lipid environment, with key lipid species able to regulate membrane protein function. Advances in high-resolution microscopy can reveal the organization and dynamics of proteins and lipids within living cells at resolutions membranes of in vivo-like complexity. We explore the dynamics of proteins and lipids in crowded and complex plasma membrane models, thereby closing the gap in length and complexity between computations and experiments. Our simulations provide insights into the mutual interplay between lipids and proteins in determining mesoscale (20-100 nm) fluctuations of the bilayer, and in enabling oligomerization and clustering of membrane proteins.

  4. Apheresis platelet concentrates contain platelet-derived and endothelial cell-derived microparticles.

    Science.gov (United States)

    Rank, A; Nieuwland, R; Liebhardt, S; Iberer, M; Grützner, S; Toth, B; Pihusch, R

    2011-02-01

    Microparticles (MP) are membrane vesicles with thrombogenic and immunomodulatory properties. We determined MP subgroups from resting platelets, activated platelets and endothelial cells in donors and apheresis platelet concentrates (PC). MP were double stained with annexin V and CD61 (platelet-derived MP; PMP), P-selectin or CD63 (MP from activated platelets) and CD144 plus E-selectin (endothelial cell-derived MP; EMP) and detected by flow cytometry in platelet donors (n=36) and apheresis PC (n=11; Trima™). PC contained MP, mainly from resting platelets [93% (90-95)], and minor fractions of PMP from activated platelets [P-selectin(+) or CD63(+); 4·8% (3·2-7·7) and 2·6% (2·0-4·0)]. Compared to donors, levels of annexin V+ MP, PMP, P-selectin(+) and CD63(+) MP were 1·7-, 2·3-, 8·6- and 3·1-fold higher in PC (all P<0·05). During storage (1-5 days), levels of annexin V+ MP and PMP did not increase, although small increases in the fraction of P-selectin(+) or CD63(+) MP occurred (both P<0·05). PC also contained EMP, which were 2·6- to 3·7-fold enriched in PC compared to donors (P<0·05). Transfusion of apheresis PC also results in transfusion of HLA-carrying PMP and EMP. This might counteract the aim of reducing transfused HLA load by leucodepletion. The increases in PMP exposing P-selectin or CD63 reflect mild platelet activation during storage. We conclude that in leucodepleted platelet apheresis using fluidized particle bed technology, MP are harvested mainly from the donor by apheresis. Improvement in apheresis technology might reduce MP load. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.

  5. Isoforms of purified methyltransferase from human blood platelets ...

    African Journals Online (AJOL)

    ... purification from normal human blood platelets have not been investigated, hence, the aim of this study was to purify, characterise the enzyme from human blood platelets and determine its possible role in phospholipid transmethylation. The plasma membranes were purified by velocity and sucrose gradient centrifugation ...

  6. Glucose Transporter 3 Potentiates Degranulation and Is Required for Platelet Activation.

    Science.gov (United States)

    Fidler, Trevor P; Middleton, Elizabeth A; Rowley, Jesse W; Boudreau, Luc H; Campbell, Robert A; Souvenir, Rhonda; Funari, Trevor; Tessandier, Nicolas; Boilard, Eric; Weyrich, Andrew S; Abel, E Dale

    2017-09-01

    On activation, platelets increase glucose uptake, glycolysis, and glucose oxidation and consume stored glycogen. This correlation between glucose metabolism and platelet function is not well understood and even less is known about the role of glucose metabolism on platelet function in vivo. For glucose to enter a cell, it must be transported through glucose transporters. Here we evaluate the contribution of GLUT3 (glucose transporter 3) to platelet function to better understand glucose metabolism in platelets. Platelet-specific knockout of GLUT3 was generated by crossing mice harboring GLUT3 floxed allele to a PF4 (platelet factor 4)-driven Cre recombinase. In platelets, GLUT3 is localized primarily on α-granule membranes and under basal conditions facilitates glucose uptake into α-granules to be used for glycolysis. After activation, platelets degranulate and GLUT3 translocates to the plasma membrane, which is responsible for activation-mediated increased glucose uptake. In vivo, loss of GLUT3 in platelets increased survival in a collagen/epinephrine model of pulmonary embolism, and in a K/BxN model of autoimmune inflammatory disease, platelet-specific GLUT3 knockout mice display decreased disease progression. Mechanistically, loss of GLUT3 decreased platelet degranulation, spreading, and clot retraction. Decreased α-granule degranulation is due in part to an impaired ability of GLUT3 to potentiate exocytosis. GLUT3-mediated glucose utilization and glycogenolysis in platelets promotes α-granule release, platelet activation, and postactivation functions. © 2017 American Heart Association, Inc.

  7. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins

    DEFF Research Database (Denmark)

    Elortza, Felix; Nühse, Thomas S; Foster, Leonard J

    2003-01-01

    Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a functionally and structurally diverse family of post-translationally modified membrane proteins found mostly in the outer leaflet of the plasma membrane in a variety of eukaryotic cells. Although the general role of GPI-APs remains...... unclear, they have attracted attention because they act as enzymes and receptors in cell adhesion, differentiation, and host-pathogen interactions. GPI-APs may represent potential diagnostic and therapeutic targets in humans and are interesting in plant biotechnology because of their key role in root...... and 44 GPI-APs in an Arabidopsis thaliana membrane preparation, representing the largest experimental dataset of GPI-anchored proteins to date....

  8. Do methodological differences account for the current controversy on tissue factor expression in platelets?

    Science.gov (United States)

    Brambilla, Marta; Rossetti, Laura; Zara, Chiara; Canzano, Paola; Giesen, Peter L A; Tremoli, Elena; Camera, Marina

    2018-06-01

    Tissue factor (TF), the key activator of the blood coagulation cascade and of thrombus formation, is also expressed by circulating human platelets. Despite the documented in-depth characterization of platelet TF carried out in the past 15 years, some authors still fail to identify TF in platelets, especially when assessment in platelet-rich plasma (PRP) or washed platelets is carried out. This study aims to extend the characterization of the subset of TF-positive platelets in PRP from healthy subjects and to verify how different centrifugation forces, used to prepare the PRP, could affect the analysis of TF-positive platelets. Data indicate that large-size platelets express significantly higher amount of TF compared to small-size cells, in terms of both TF protein and TF mRNA. Upon stimulation, large platelets readily expose on the cell membrane TF, which is functionally active, i.e., able to generate factor Xa (FXa) as well as thrombin. By contrast, TF activity in small platelets is almost completely quenched by tissue factor pathway inhibitor (TFPI), becoming indeed detectable only after treatment with an anti-TFPI antibody. Our data highlight that particular attention must be paid to the preparation and collection of the PRP since such preanalytical variables may influence the platelet recovery and in turn affect subsequent analysis, whether it is flow cytometry, functional activity tests, proteome, or transcriptome analysis. Indeed, the TF-positive subset of large platelets can easily be lost if centrifugation protocols are not optimized, thus erroneously leading to a false-negative result.

  9. Structural adaptations of proteins to different biological membranes

    Science.gov (United States)

    Pogozheva, Irina D.; Tristram-Nagle, Stephanie; Mosberg, Henry I.; Lomize, Andrei L.

    2013-01-01

    To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and β) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, β-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31 Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5 Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22 Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4 Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8 Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds. PMID:23811361

  10. Alterations in membrane protein-profile during cold treatment of alfalfa

    International Nuclear Information System (INIS)

    Mohapatra, S.S.; Poole, R.J.; Dhindsa, R.S.

    1988-01-01

    Changes in pattern of membrane proteins during cold acclimation of alfalfa have been examined. Cold acclimation for 2 to 3 days increases membrane protein content. Labeling of membrane proteins in vivo with [ 35 S]methionine indicates increases in the rate of incorporation as acclimation progresses. Cold acclimation induces the synthesis of about 10 new polypeptides as shown by SDS-PAGE and fluorography of membrane proteins labeled in vivo

  11. Detection of activated platelets using activation-specific monoclonal antibody (SZ-51) in clinical disorders

    International Nuclear Information System (INIS)

    Wu Guoxin; Li Fugang; Li Jianyong; Ruan Changgeng

    1991-10-01

    A direct test for activated platelets in whole blood was developed by radioimmunoassay with 125 I labeled SZ-51, an antibody specific for an α-granule membrane protein (GMP-140) that associates with the platelet surface during secretion. The assay had sufficient sensitivity to detect as few as 2% activated platelets. In 50 normal subjects, minimal GMP-140 molecules per platelet were expressed on the surface of circulating platelets. Ten patients undergoing cardiopulmonary bypass had transiently increased expression of GMP-140 molecules during the bypass procedure, especially at the end of bypass. Evaluation of 18 patients with epidemic hemorrhagic fever (EHF) has shown that the number of GMP-140 molecules on the platelet surface was closely related to the four different phases of EHF. In six patients suffered from acute myocardial infarction (AMI), the number of GMP-140 molecules changed with the procession of AMI and the highest occurred 48 h after AMI. The GMP-140 molecules were also increased in patients with asthma attack (n = 14), but not in patients with idiopathic thrombocytopenic purpura (n = 11) and diabetic mellitus (n = 48). Taken together, these studies suggest that activated platelet can be reliably measured in whole blood using radiolabeled SZ-51 antibody and the detection of activated platelets is potentially useful in identifying patients with certain thrombotic disorders and others

  12. [Adsorption characteristics of proteins on membrane surface and effect of protein solution environment on permeation behavior of berberine].

    Science.gov (United States)

    Li, Yi-Qun; Xu, Li; Zhu, Hua-Xu; Tang, Zhi-Shu; Li, Bo; Pan, Yong-Lan; Yao, Wei-Wei; Fu, Ting-Ming; Guo, Li-Wei

    2017-10-01

    In order to explore the adsorption characteristics of proteins on the membrane surface and the effect of protein solution environment on the permeation behavior of berberine, berberine and proteins were used as the research object to prepare simulated solution. Low field NMR, static adsorption experiment and membrane separation experiment were used to study the interaction between the proteins and ceramic membrane or between the proteins and berberine. The static adsorption capacity of proteins, membrane relative flux, rejection rate of proteins, transmittance rate of berberine and the adsorption rate of proteins and berberine were used as the evaluation index. Meanwhile, the membrane resistance distribution, the particle size distribution and the scanning electron microscope (SEM) were determined to investigate the adsorption characteristics of proteins on ceramic membrane and the effect on membrane separation process of berberine. The results showed that the ceramic membrane could adsorb the proteins and the adsorption model was consistent with Langmuir adsorption model. In simulating the membrane separation process, proteins were the main factor to cause membrane fouling. However, when the concentration of proteins was 1 g•L⁻¹, the proteins had no significant effect on membrane separation process of berberine. Copyright© by the Chinese Pharmaceutical Association.

  13. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation†

    OpenAIRE

    Bae, Hyoung Eun; Mortensen, Jonas S.; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K.; Loland, Claus J.; Byrne, Bernadette; Chae, Pil Seok

    2016-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research.

  14. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation.

    Science.gov (United States)

    Bae, Hyoung Eun; Mortensen, Jonas S; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K; Loland, Claus J; Byrne, Bernadette; Chae, Pil Seok

    2016-10-04

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research.

  15. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation†

    Science.gov (United States)

    Bae, Hyoung Eun; Mortensen, Jonas S.; Ribeiro, Orquidea; Du, Yang; Ehsan, Muhammad; Kobilka, Brian K.; Loland, Claus J.; Byrne, Bernadette

    2017-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research. PMID:27711401

  16. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane

    Science.gov (United States)

    Saka, Sinem K.; Honigmann, Alf; Eggeling, Christian; Hell, Stefan W.; Lang, Thorsten; Rizzoli, Silvio O.

    2014-01-01

    Most proteins have uneven distributions in the plasma membrane. Broadly speaking, this may be caused by mechanisms specific to each protein, or may be a consequence of a general pattern that affects the distribution of all membrane proteins. The latter hypothesis has been difficult to test in the past. Here, we introduce several approaches based on click chemistry, through which we study the distribution of membrane proteins in living cells, as well as in membrane sheets. We found that the plasma membrane proteins form multi-protein assemblies that are long lived (minutes), and in which protein diffusion is restricted. The formation of the assemblies is dependent on cholesterol. They are separated and anchored by the actin cytoskeleton. Specific proteins are preferentially located in different regions of the assemblies, from their cores to their edges. We conclude that the assemblies constitute a basic mesoscale feature of the membrane, which affects the patterning of most membrane proteins, and possibly also their activity. PMID:25060237

  17. Protein diffusion in plant cell plasma membranes: the cell-wall corral.

    Science.gov (United States)

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  18. BaltDC: purification, characterization and infrared spectroscopy of an antiplatelet DC protein isolated from Bothrops alternatus snake venom.

    Science.gov (United States)

    Matias, Mariana Santos; de Sousa, Bruna Barbosa; da Cunha Pereira, Déborah Fernanda; Dias, Edigar Henrique Vaz; Mamede, Carla Cristine Neves; de Queiroz, Mayara Ribeiro; Silva, Anielle Christine Almeida; Dantas, Noelio Oliveira; Soares, Andreimar Martins; de Oliveira Costa, Júnia; de Oliveira, Fábio

    2017-01-01

    Snake venoms are a complex mixture of proteins, organic and inorganic compounds. Some of these proteins, enzymatic or non-enzymatic ones, are able to interact with platelet receptors, causing hemostatic disorders. The possible therapeutic potential of toxins with antiplatelet properties may arouse interest in the pharmacological areas. The present study aimed to purify and characterize an antiplatelet DC protein from Bothrops alternatus snake venom. The protein, called BaltDC (DC protein from B. alternatus snake venom), was purified by a combination of ion-exchange chromatography on DEAE-Sephacel column and gel filtration on Sephadex G-75. The molecular mass was estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE). The amino acid sequence of the N-terminal region was carried out by Edman degradation method. Platelet aggregation assays were performed in human platelet-rich plasma (PRP). Infrared (IR) spectroscopy was used in order to elucidate the interactions between BaltDC and platelet membrane. BaltDC ran as a single protein band on SDS-PAGE and showed apparent molecular mass of 32 kDa under reducing or non-reducing conditions. The N-terminal region of the purified protein revealed the amino acid sequence IISPPVCGNELLEVGEECDCGTPENCQNECCDA, which showed identity with other snake venom metalloproteinases (SVMPs). BaltDC was devoid of proteolytic, hemorrhagic, defibrinating or coagulant activities, but it showed a specific inhibitory effect on platelet aggregation induced by ristocetin and epinephrine in PRP. IR analysis spectra strongly suggests that PO 3 2- groups, present in BaltDC, form hydrogen bonds with the PO 2 - groups present in the non-lipid portion of the membrane platelets. BaltDC may be of medical interest since it was able to inhibit platelet aggregation.

  19. Platelet-rich-fibrin: A novel root coverage approach

    Directory of Open Access Journals (Sweden)

    Anilkumar K

    2009-01-01

    Full Text Available Treatment of gingival recession has become an important therapeutic issue due to increasing cosmetic demand. Multiple surgical procedures have been developed to obtain predictable esthetic root coverage. More specifically, after periodontal regenerative surgery, the aim is to achieve complete wound healing and regeneration of the periodontal unit. A recent innovation in dentistry is the preparation and use of platelet-rich plasma (PRP, a concentrated suspension of the growth factors, found in platelets. These growth factors are involved in wound healing and postulated as promoters of tissue regeneration. This paper reports the use of PRF membrane for root coverage on the labial surfaces of the mandibular anterior teeth. This was accomplished using laterally displaced flap technique with platelet rich fibrin (PRF membrane at the recipient site.

  20. The role of antioxidant-protein interactions in biological membrane

    International Nuclear Information System (INIS)

    McGillivray, Duncan J; Singh, Rachna; Melton, Laurence D.; Worcester, David L.; Gilbert, Elliot P.

    2009-01-01

    Full text: Oxidative damage of cellular membranes has been linked to a variety of disease pathologies, including cardiac disease, Alzheimer's and complications due to diabetes. The oxidation of unsaturated and polyunsaturated fatty acid chains found in cellular membranes leads to significant alteration in membrane physical properties, including lipid orientation and membrane permeability, which ultimately affect biological function. Polyphenols are naturally occurring phytochemicals present in a number of fruit and vegetables that are of interest for their anti-oxidative powers. These polyphenols inhibit lipid oxidation in cellular membrane surfaces, although the mechanism of this inhibition is not entirely clear. Moreover, the polyphenols have significant binding affinity for proteins, which can lead to the formation of soluble and insoluble protein-polyphenol complexes Significantly, in the presence of casein proteins the oxidation inhibition the polyphenols in the membrane is significantly enhanced (as assessed by Lipid Peroxidation Inhibition Capacity assays). Thus the antioxidant pathway appears to involve these protein/polyphenol complexes, as well as direct antioxidant action by the polyphenol. Here we discuss neutron and x-ray scattering results from phospholipid membranes, looking at the positioning of two examples of polyphenolic antioxidants in phospholipid membranes, quercetin and phloretin, the antioxidants' impact on the membrane organisation, and the interaction between antioxidant and extra-membranous protein. This information sheds light on the mechanism of antioxidant protection in these systems, which may be used to understand biological responses to oxidative stress.

  1. Membrane Proteins : The Key Players of a Cancer Cell

    NARCIS (Netherlands)

    Kampen, Kim R.

    Membrane proteins are involved in the prognosis of the most common forms of cancer. Membrane proteins are the hallmark of a cancer cell. The overexpressed membrane receptors are becoming increasingly important in cancer cell therapy. Current renewing therapy approaches based on receptor

  2. Neutrophil glycoprotein Mo1 is an integral membrane protein of plasma membranes and specific granules

    International Nuclear Information System (INIS)

    Stevenson, K.B.; Nauseef, W.M.; Clark, R.A.

    1987-01-01

    The glucoprotein Mo1 has previously been demonstrated to be on the cell surface and in the specific granule fraction of neutrophils and to be translocated to the cell surface during degranulation. It is not known, however, whether Mo1 is an integral membrane protein or a soluble, intragranular constituent loosely associated with the specific granule membrane. Purified neutrophils were disrupted by nitrogen cavitation and separated on Percoll density gradients into four fractions enriched for azurophilic granules, specific granules, plasma membrane, and cytosol, respectively. The glycoproteins in these fractions were labeled with 3 H-borohydride reduction, extracted with Triton X-114, and immunoprecipitated with 60.3, an anti-Mo1 monoclonal antibody. Mo1 was detected only in the specific granule and plasma membrane fractions and partitioned exclusively into the detergent-rich fraction consistent with Mo1 being an integral membrane protein. In addition, treatment of specific granule membranes with a high salt, high urea buffer to remove adsorbed or peripheral proteins failed to dissociate Mo1. These data support the hypothesis that Mo1 is an integral membrane protein of plasma and specific granule membranes in human neutrophils

  3. Exploring the Spatiotemporal Organization of Membrane Proteins in Living Plant Cells.

    Science.gov (United States)

    Wang, Li; Xue, Yiqun; Xing, Jingjing; Song, Kai; Lin, Jinxing

    2018-04-29

    Plasma membrane proteins have important roles in transport and signal transduction. Deciphering the spatiotemporal organization of these proteins provides crucial information for elucidating the links between the behaviors of different molecules. However, monitoring membrane proteins without disrupting their membrane environment remains difficult. Over the past decade, many studies have developed single-molecule techniques, opening avenues for probing the stoichiometry and interactions of membrane proteins in their native environment by providing nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we assess recent progress in the development of labeling and imaging technology for membrane protein analysis. We focus in particular on several single-molecule techniques for quantifying the dynamics and assembly of membrane proteins. Finally, we provide examples of how these new techniques are advancing our understanding of the complex biological functions of membrane proteins.

  4. Cryo-electron microscopy of membrane proteins.

    Science.gov (United States)

    Goldie, Kenneth N; Abeyrathne, Priyanka; Kebbel, Fabian; Chami, Mohamed; Ringler, Philippe; Stahlberg, Henning

    2014-01-01

    Electron crystallography is used to study membrane proteins in the form of planar, two-dimensional (2D) crystals, or other crystalline arrays such as tubular crystals. This method has been used to determine the atomic resolution structures of bacteriorhodopsin, tubulin, aquaporins, and several other membrane proteins. In addition, a large number of membrane protein structures were studied at a slightly lower resolution, whereby at least secondary structure motifs could be identified.In order to conserve the structural details of delicate crystalline arrays, cryo-electron microscopy (cryo-EM) allows imaging and/or electron diffraction of membrane proteins in their close-to-native state within a lipid bilayer membrane.To achieve ultimate high-resolution structural information of 2D crystals, meticulous sample preparation for electron crystallography is of outmost importance. Beam-induced specimen drift and lack of specimen flatness can severely affect the attainable resolution of images for tilted samples. Sample preparations that sandwich the 2D crystals between symmetrical carbon films reduce the beam-induced specimen drift, and the flatness of the preparations can be optimized by the choice of the grid material and the preparation protocol.Data collection in the cryo-electron microscope using either the imaging or the electron diffraction mode has to be performed applying low-dose procedures. Spot-scanning further reduces the effects of beam-induced drift. Data collection using automated acquisition schemes, along with improved and user-friendlier data processing software, is increasingly being used and is likely to bring the technique to a wider user base.

  5. Role for chlamydial inclusion membrane proteins in inclusion membrane structure and biogenesis.

    Directory of Open Access Journals (Sweden)

    Jeffrey Mital

    Full Text Available The chlamydial inclusion membrane is extensively modified by the insertion of type III secreted effector proteins. These inclusion membrane proteins (Incs are exposed to the cytosol and share a common structural feature of a long, bi-lobed hydrophobic domain but little or no primary amino acid sequence similarity. Based upon secondary structural predictions, over 50 putative inclusion membrane proteins have been identified in Chlamydia trachomatis. Only a limited number of biological functions have been defined and these are not shared between chlamydial species. Here we have ectopically expressed several C. trachomatis Incs in HeLa cells and find that they induce the formation of morphologically distinct membranous vesicular compartments. Formation of these vesicles requires the bi-lobed hydrophobic domain as a minimum. No markers for various cellular organelles were observed in association with these vesicles. Lipid probes were incorporated by the Inc-induced vesicles although the lipids incorporated were dependent upon the specific Inc expressed. Co-expression of Inc pairs indicated that some colocalized in the same vesicle, others partially overlapped, and others did not associate at all. Overall, it appears that Incs may have an intrinsic ability to induce membrane formation and that individual Incs can induce membranous structures with unique properties.

  6. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    or as sensor devices based on e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix....../separation technology, a unique class of membrane transport proteins is especially interesting the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells...... internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 109 molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other...

  7. A New Strain Collection for Improved Expression of Outer Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Ina Meuskens

    2017-11-01

    Full Text Available Almost all integral membrane proteins found in the outer membranes of Gram-negative bacteria belong to the transmembrane β-barrel family. These proteins are not only important for nutrient uptake and homeostasis, but are also involved in such processes as adhesion, protein secretion, biofilm formation, and virulence. As surface exposed molecules, outer membrane β-barrel proteins are also potential drug and vaccine targets. High production levels of heterologously expressed proteins are desirable for biochemical and especially structural studies, but over-expression and subsequent purification of membrane proteins, including outer membrane proteins, can be challenging. Here, we present a set of deletion mutants derived from E. coli BL21(DE3 designed for the over-expression of recombinant outer membrane proteins. These strains harbor deletions of four genes encoding abundant β-barrel proteins in the outer membrane (OmpA, OmpC, OmpF, and LamB, both single and in all combinations of double, triple, and quadruple knock-outs. The sequences encoding these outer membrane proteins were deleted completely, leaving only a minimal scar sequence, thus preventing the possibility of genetic reversion. Expression tests in the quadruple mutant strain with four test proteins, including a small outer membrane β-barrel protein and variants thereof as well as two virulence-related autotransporters, showed significantly improved expression and better quality of the produced proteins over the parent strain. Differences in growth behavior and aggregation in the presence of high salt were observed, but these phenomena did not negatively influence the expression in the quadruple mutant strain when handled as we recommend. The strains produced in this study can be used for outer membrane protein production and purification, but are also uniquely useful for labeling experiments for biophysical measurements in the native membrane environment.

  8. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  9. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery.

    Science.gov (United States)

    Yang, Yoosoo; Hong, Yeonsun; Cho, Eunji; Kim, Gi Beom; Kim, In-San

    2018-01-01

    Membrane proteins are of great research interest, particularly because they are rich in targets for therapeutic application. The suitability of various membrane proteins as targets for therapeutic formulations, such as drugs or antibodies, has been studied in preclinical and clinical studies. For therapeutic application, however, a protein must be expressed and purified in as close to its native conformation as possible. This has proven difficult for membrane proteins, as their native conformation requires the association with an appropriate cellular membrane. One solution to this problem is to use extracellular vesicles as a display platform. Exosomes and microvesicles are membranous extracellular vesicles that are released from most cells. Their membranes may provide a favourable microenvironment for membrane proteins to take on their proper conformation, activity, and membrane distribution; moreover, membrane proteins can cluster into microdomains on the surface of extracellular vesicles following their biogenesis. In this review, we survey the state-of-the-art of extracellular vesicle (exosome and small-sized microvesicle)-based therapeutics, evaluate the current biological understanding of these formulations, and forecast the technical advances that will be needed to continue driving the development of membrane protein therapeutics.

  10. Protein diffusion in plant cell plasma membranes: The cell-wall corral

    Directory of Open Access Journals (Sweden)

    Alexandre eMartinière

    2013-12-01

    Full Text Available Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  11. Heparin free coating on PLA membranes for enhanced hemocompatibility via iCVD

    Science.gov (United States)

    Wang, Hui; Shi, Xiao; Gao, Ailin; Lin, Haibo; Chen, Yongliang; Ye, Yumin; He, Jidong; Liu, Fu; Deng, Gang

    2018-03-01

    In the present work, we report one-step immobilization of nano-heparin coating on PLA membranes via initiated chemical vapor deposition (iCVD) for enhanced hemocompatibility. The nano-coating introduced onto the membrane surface via the crosslinking of P(MAA-EGDA) was confirmed by the FTIR, SEM and weight measurement respectively. The negative carboxyl groups could form the hydration interaction with the protein and platelets and electrostatic interaction with amide groups of thrombin by the mediation of antithrombin, which is similar but different with heparin. The P(MAA-EGDA) coated membranes showed suppressed platelet adhesion and prolonged clotting time (APTTs increased to 59 s, PTs increased to 20.4 s, TTs increased to 17.5 s, and the FIBs declined by 30 mg/dL). Moreover, the complement activation tests demonstrated the formation of C3a and C5a was inhibited. All results demonstrated that the nano-coating of P(MAA-EGDA) via iCVD significantly enhanced the hemocompatibility of PLA membranes, which is also applicable for various membranes.

  12. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition.

    Science.gov (United States)

    Hayat, Maqsood; Khan, Asifullah

    2011-02-21

    Membrane proteins are vital type of proteins that serve as channels, receptors, and energy transducers in a cell. Prediction of membrane protein types is an important research area in bioinformatics. Knowledge of membrane protein types provides some valuable information for predicting novel example of the membrane protein types. However, classification of membrane protein types can be both time consuming and susceptible to errors due to the inherent similarity of membrane protein types. In this paper, neural networks based membrane protein type prediction system is proposed. Composite protein sequence representation (CPSR) is used to extract the features of a protein sequence, which includes seven feature sets; amino acid composition, sequence length, 2 gram exchange group frequency, hydrophobic group, electronic group, sum of hydrophobicity, and R-group. Principal component analysis is then employed to reduce the dimensionality of the feature vector. The probabilistic neural network (PNN), generalized regression neural network, and support vector machine (SVM) are used as classifiers. A high success rate of 86.01% is obtained using SVM for the jackknife test. In case of independent dataset test, PNN yields the highest accuracy of 95.73%. These classifiers exhibit improved performance using other performance measures such as sensitivity, specificity, Mathew's correlation coefficient, and F-measure. The experimental results show that the prediction performance of the proposed scheme for classifying membrane protein types is the best reported, so far. This performance improvement may largely be credited to the learning capabilities of neural networks and the composite feature extraction strategy, which exploits seven different properties of protein sequences. The proposed Mem-Predictor can be accessed at http://111.68.99.218/Mem-Predictor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Proteomics of apheresis platelet supernatants during routine storage: Gender-related differences.

    Science.gov (United States)

    Dzieciatkowska, Monika; D'Alessandro, Angelo; Burke, Timothy A; Kelher, Marguerite R; Moore, Ernest E; Banerjee, Anirban; Silliman, Christopher C; West, Bernadette F; Hansen, Kirk C

    2015-01-01

    Proteomics has identified potential pathways involved in platelet storage lesions, which correlate with untoward effects in the recipient, including febrile non-haemolytic reactions. We hypothesize that an additional pathway involves protein mediators that accumulate in the platelet supernatants during routine storage in a donor gender-specific fashion. Apheresis platelet concentrates were collected from 5 healthy males and 5 females and routinely stored. The 14 most abundant plasma proteins were removed and the supernatant proteins from days 1 and 5 were analyzed via 1D-SDS-PAGE/nanoLC-MS/MS, before label-free quantitative proteomics analyses. Findings from a subset of 18 proteins were validated via LC-SRM analyses against stable isotope labeled standards. A total of 503 distinct proteins were detected in the platelet supernatants from the 4 sample groups: female or male donor platelets, either at storage day 1 or 5. Proteomics suggested a storage and gender-dependent impairment of blood coagulation mediators, pro-inflammatory complement components and cytokines, energy and redox metabolic enzymes. The supernatants from female donors demonstrated increased deregulation of structural proteins, extracellular matrix proteins and focal adhesion proteins, possibly indicating storage-dependent platelet activation. Routine storage of platelet concentrates induces changes in the supernatant proteome, which may have effects on the transfused patient, some of which are related to donor gender. The rationale behind this study is that protein components in platelet releasates have been increasingly observed to play a key role in adverse events and impaired homeostasis in transfused recipients. In this view, proteomics has recently emerged as a functional tool to address the issue of protein composition of platelet releasates from buffy coat-derived platelet concentrates in the blood bank. Despite early encouraging studies on buffy coat-derived platelet concentrates, platelet

  14. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    Science.gov (United States)

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Management of multiple recession defects in esthetic zone using platelet-rich fibrin membrane: A 36-month follow-up case report.

    Science.gov (United States)

    Singh, Prabhjeet; Shukla, Sagrika; Singh, Kuldeep

    2018-01-01

    A patient undergoing orthodontic treatment presented with multiple recession defects in maxillary anterior region. After thorough clinical examination and assessment, measurements were recorded. Maxillary anterior teeth with recession defects of 3-4 mm were treated with coronally advanced flap and platelet-rich fibrin (PRF) membrane. Regular follow-up was maintained for the patient at 3, 6 , 12, 18, 24, 30, and 36 months. After 36 months, significant root coverage of 100 percent was observed in four defects and 50% coverage in one defect. This shows that PRF membrane along with coronally advanced provides a predictable and significant result for management of recession defects.

  16. Genetic analysis of the role of protein kinase Ctheta in platelet function and thrombus formation.

    Directory of Open Access Journals (Sweden)

    Kellie J Hall

    2008-09-01

    Full Text Available PKCtheta is a novel protein kinase C isozyme, predominately expressed in T cells and platelets. PKCtheta(-/- T cells exhibit reduced activation and PKCtheta(-/- mice are resistant to autoimmune disease, making PKCtheta an attractive therapeutic target for immune modulation. Collagen is a major agonist for platelets, operating through an immunoreceptor-like signalling pathway from its receptor GPVI. Although it has recently been shown that PKCtheta positively regulates outside-in signalling through integrin alpha(IIbbeta(3 in platelets, the role of PKCtheta in GPVI-dependent signalling and functional activation of platelets has not been assessed.In the present study we assessed static adhesion, cell spreading, granule secretion, integrin alpha(IIbbeta(3 activation and platelet aggregation in washed mouse platelets lacking PKCtheta. Thrombus formation on a collagen-coated surface was assessed in vitro under flow. PKCtheta(-/- platelets exhibited reduced static adhesion and filopodia generation on fibrinogen, suggesting that PKCtheta positively regulates outside-in signalling, in agreement with a previous report. In contrast, PKCtheta(-/- platelets also exhibited markedly enhanced GPVI-dependent alpha-granule secretion, although dense granule secretion was unaffected, suggesting that PKCtheta differentially regulates these two granules. Inside-out regulation of alpha(IIbbeta(3 activation was also enhanced downstream of GPVI stimulation. Although this did not result in increased aggregation, importantly thrombus formation on collagen under high shear (1000 s(-1 was enhanced.These data suggest that PKCtheta is an important negative regulator of thrombus formation on collagen, potentially mediated by alpha-granule secretion and alpha(IIbbeta(3 activation. PKCtheta therefore may act to restrict thrombus growth, a finding that has important implications for the development and safe clinical use of PKCtheta inhibitors.

  17. Superoxide dismutase of human platelets

    International Nuclear Information System (INIS)

    Kimura, Akiro; Fujimura, Kingo; Kuramoto, Atsushi

    1979-01-01

    Superoxide dismutase (S.O.D.) is the enzyme to protect from destructive effect of superoxide (O 2 -) produced in many metabolic pathways related to oxygen. The purpose of this study was to investigate the possibility that S.O.D. may play an important role in the platelet function. The cytoplasmic and mitochondrial S.O.D. has been investigated spectrophotometrically and gel electrophoretically in human platelets from eleven patients of chronic myelogenous leukemia (CML) and three patients of primary thrombocythemia (P.Th.). Neither deficiency nor abnormality of cytoplasmic and mitochondrial S.O.D. has been found electrophoretically in any case compared to normal platelets. However, the total activity from three of the CML patients and one of the P.Th. patients were above 3 unit/mg platelet protein (normal subject: 2.11 - 2.70 unit/mg protein), suggesting the possibility either that more O 2 -production occurs in the platelets or that rather little O 2 -production due to much O 2 -deprivation by the increased S.O.D. The S.O.D. activity of human platelets has been also investigated in several conditions, where much O 2 -generation might occur in platelets. Sodium fluoride (2 mM), which increases platelet O 2 -production about 3 fold, had no effect on platelet S.O.D. The aggregated platelets induced by ADP (10 -5 M), epinephrin (50 μg/ml), ristocetin (1.5 mg/ml) or collagen (1 - 20 μg/ml) had no increase of S.O.D. activity compared to that from non aggregated platelets. X-ray irradiation (1,000 - 20,000R) had not induced its activity increase or decrease. These findings indicated the induction of platelet S.O.D. was not brought about under these conditions. (author)

  18. Electron microscopy of cyanobacterial membrane proteins

    NARCIS (Netherlands)

    Folea, Ioana Mihaela

    2008-01-01

    The main focus of this thesis is photosynthetic protein complexes, and their organization within the membrane of cyanobacteria. In cyanobacteria large proteins catalyze the light reactions of photosynthesis. One of the key proteins is photosystem II. We have found for the first time by electron

  19. Platelet-tumor cell interaction with the subendothelial extracellular matrix: relationship to cancer metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Yahalom, J; Biran, S; Fuks, Z; Vlodavsky, I [Hadassah University Hospital, Jerusalem (Israel). Dept. of Radiation and Clinical Oncology; Eldor, A [Hadassah University Hospital, Jerusalem (Israel). Dept. of Hematology

    1985-04-01

    Dissemination of neoplastic cells within the body involves invasion of blood vessels by tumor cells. This requires adhesion of blood-borne cells to the luminal surface of the vascular endothelium, invasion through the endothelial cell layer and local dissolution of the subendothelial basement membrane. The authors studied the interaction of platelets and tumor cells with cultured vascular endothelial cells and their secreted basement membrane-like extracellular matrix (ECM). Interaction of platelets with this ECM was associated with platelet activation, aggregation and degradation of heparan sulfate in the ECM by means of the platelet heparitinase. Biochemical and scanning electron microscopy (SEM) studies have demonstrated that platelets may detect even minor gaps between adjacent endothelial cells and degrade the ECM heparan sulfate. Platelets were also shown to recruit lymphoma cells into minor gaps in the vascular endothelium. It is suggested that the platelet heparitinase is involved in the impairment of the integrity of the vessel wall and thus play a role in tumor cell metastasis.

  20. Low level of procoagulant platelet microparticles is associated with impaired coagulation and transfusion requirements in trauma patients

    DEFF Research Database (Denmark)

    Windeløv, Nis Agerlin; Johansson, Pär Ingemar; Sørensen, Anne Marie

    2014-01-01

    BACKGROUND: Following activation, platelets release small vesicles called platelet-derived microparticles (PMPs). PMPs accelerate thrombin generation and thus clot formation at sites of injury by exposing the procoagulant membrane phospholipid phosphatidylserine (PS). The role of PMPs in coagulop......BACKGROUND: Following activation, platelets release small vesicles called platelet-derived microparticles (PMPs). PMPs accelerate thrombin generation and thus clot formation at sites of injury by exposing the procoagulant membrane phospholipid phosphatidylserine (PS). The role of PMPs...

  1. Identification and characterization of stable membrane protein complexes

    NARCIS (Netherlands)

    Spelbrink, R.E.J.

    2007-01-01

    Many membrane proteins exist as oligomers. Such oligomers play an important role in a broad variety of cellular processes such as ion transport, energy transduction, osmosensing and cell wall synthesis. We developed an electrophoresis-based method of identifying oligomeric membrane proteins that are

  2. Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study

    DEFF Research Database (Denmark)

    Das, Manabendra; Du, Yang; Ribeiro, Orquidea

    2017-01-01

    were generally better at stabilizing membrane proteins than short alkyl chain agents. Furthermore, use of one well-behaving NBM enabled us to attain a marked stabilization and clear visualization of a challenging membrane protein complex using electron microscopy. Thus, this study not only describes......Detergents are essential tools for functional and structural studies of membrane proteins. However, conventional detergents are limited in their scope and utility, particularly for eukaryotic membrane proteins. Thus, there are major efforts to develop new amphipathic agents with enhanced properties....... Here, a novel class of diastereomeric agents with a preorganized conformation, designated norbornane-based maltosides (NBMs), were prepared and evaluated for their ability to solubilize and stabilize membrane proteins. Representative NBMs displayed enhanced behaviors compared to n...

  3. Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus, Prevents Platelet Activation in Human Platelets

    Directory of Open Access Journals (Sweden)

    Ye-Ming Lee

    2012-01-01

    Full Text Available Xanthohumol is the principal prenylated flavonoid in the hop plant (Humulus lupulus L.. Xanthohumol was found to be a very potent cancer chemopreventive agent through regulation of diverse mechanisms. However, no data are available concerning the effects of xanthohumol on platelet activation. The aim of this paper was to examine the antiplatelet effect of xanthohumol in washed human platelets. In the present paper, xanthohumol exhibited more-potent activity in inhibiting platelet aggregation stimulated by collagen. Xanthohumol inhibited platelet activation accompanied by relative [Ca2+]i mobilization, thromboxane A2 formation, hydroxyl radical (OH● formation, and phospholipase C (PLCγ2, protein kinase C (PKC, mitogen-activated protein kinase (MAPK, and Akt phosphorylation. Neither SQ22536, an inhibitor of adenylate cyclase, nor ODQ, an inhibitor of guanylate cyclase, reversed the xanthohumol-mediated inhibitory effect on platelet aggregation. Furthermore, xanthohumol did not significantly increase nitrate formation in platelets. This study demonstrates for the first time that xanthohumol possesses potent antiplatelet activity which may initially inhibit the PI3-kinase/Akt, p38 MAPK, and PLCγ2-PKC cascades, followed by inhibition of the thromboxane A2 formation, thereby leading to inhibition of [Ca2+]i and finally inhibition of platelet aggregation. Therefore, this novel role of xanthohumol may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases.

  4. Molecular insight into human platelet antigens: structural and evolutionary conservation analyses offer new perspective to immunogenic disorders.

    Science.gov (United States)

    Landau, Meytal; Rosenberg, Nurit

    2011-03-01

    Human platelet antigens (HPAs) are polymorphisms in platelet membrane glycoproteins (GPs) that can stimulate production of alloantibodies once exposed to foreign platelets (PLTs) with different HPAs. These antibodies can cause neonatal alloimmune thrombocytopenia, posttransfusion purpura, and PLT transfusion refractoriness. Most HPAs are localized on the main PLT receptors: 1) integrin αIIbβ3, known as the fibrinogen receptor; 2) the GPIb-IX-V complex that functions as the receptor for von Willebrand factor; and 3) integrin α2β1, which functions as the collagen receptor. We analyzed the structural location and the evolutionary conservation of the residues associated with the HPAs to characterize the features that induce immunologic responses but do not cause inherited diseases. We found that all HPAs reside in positions located on the protein surface, apart from the ligand-binding site, and are evolutionary variable. Disease-causing mutations often reside in highly conserved and buried positions. In contrast, the HPAs affect residues on the protein surface that were not conserved throughout evolution; this explains their naive effect on the protein function. Nonetheless, the HPAs involve substitutions of solvent-exposed positions that lead to altered interfaces on the surface of the protein and might present epitopes foreign to the immune system. © 2010 American Association of Blood Banks.

  5. Membrane Protein Production in Lactococcus lactis for Functional Studies.

    Science.gov (United States)

    Seigneurin-Berny, Daphne; King, Martin S; Sautron, Emiline; Moyet, Lucas; Catty, Patrice; André, François; Rolland, Norbert; Kunji, Edmund R S; Frelet-Barrand, Annie

    2016-01-01

    Due to their unique properties, expression and study of membrane proteins in heterologous systems remains difficult. Among the bacterial systems available, the Gram-positive lactic bacterium, Lactococcus lactis, traditionally used in food fermentations, is nowadays widely used for large-scale production and functional characterization of bacterial and eukaryotic membrane proteins. The aim of this chapter is to describe the different possibilities for the functional characterization of peripheral or intrinsic membrane proteins expressed in Lactococcus lactis.

  6. Regulation of multispanning membrane protein topology via post-translational annealing.

    Science.gov (United States)

    Van Lehn, Reid C; Zhang, Bin; Miller, Thomas F

    2015-09-26

    The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis.

  7. NMR structural studies of peptides and proteins in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Opella, S J [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1994-12-31

    The use of NMR methodology in structural studies is described as applicable to larger proteins, considering that the majority of membrane proteins is constructed from a limited repertoire of structural and dynamic elements. The membrane associated domains of these proteins are made up of long hydrophobic membrane spanning helices, shorter amphipathic bridging helices in the plane of the bilayer, connecting loops with varying degrees of mobility, and mobile N- and C- terminal sections. NMR studies have been successful in identifying all of these elements and their orientations relative to each other and the membrane bilayer 19 refs., 9 figs.

  8. Monitoring Protein Fouling on Polymeric Membranes Using Ultrasonic Frequency-Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    Robin Fong

    2011-08-01

    Full Text Available Novel signal-processing protocols were used to extend the in situ sensitivity of ultrasonic frequency-domain reflectometry (UFDR for real-time monitoring of microfiltration (MF membrane fouling during protein purification. Different commercial membrane materials, with a nominal pore size of 0.2 µm, were challenged using bovine serum albumin (BSA and amylase as model proteins. Fouling induced by these proteins was observed in flat-sheet membrane filtration cells operating in a laminar cross-flow regime. The detection of membrane-associated proteins using UFDR was determined by applying rigorous statistical methodology to reflection spectra of ultrasonic signals obtained during membrane fouling. Data suggest that the total power reflected from membrane surfaces changes in response to protein fouling at concentrations as low as 14 μg/cm2, and results indicate that ultrasonic spectra can be leveraged to detect and monitor protein fouling on commercial MF membranes.

  9. Application of split-green fluorescent protein for topology mapping membrane proteins in Escherichia coli

    DEFF Research Database (Denmark)

    Toddo, Stephen; Soderstrom, Bill; Palombo, Isolde

    2012-01-01

    A topology map of a membrane protein defines the location of transmembrane helices and the orientation of soluble domains relative to the membrane. In the absence of a high-resolution structure, a topology map is an essential guide for studying structurefunction relationships. Although these maps....../periplasmic location of the N-terminus of a protein. Here, we show that the bimolecular split-green fluorescent protein complementation system can overcome this limitation and can be used to determine the location of both the N- and C-termini of inner membrane proteins in Escherichia coli....

  10. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain

    2014-01-01

    -ray scattering (SAXS) and small-angle neutron scattering (SANS) supported by coarse-grained molecular dynamics simulations. The detailed structure of the discs was determined in unprecedented detail and it was found that they adopt a discoidal structure very similar to the ApoA1 based nanodiscs. We furthermore...... show that, like the ApoA1 and derived nanodiscs, these peptide discs can accommodate and stabilize a membrane protein. Finally, we exploit their dynamic properties and show that the 18A discs may be used for transferring membrane proteins and associated phospholipids directly and gently......New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self...

  11. The effect of polyphenolic-polysaccharide conjugates from selected medicinal plants of Asteraceae family on the peroxynitrite-induced changes in blood platelet proteins.

    Science.gov (United States)

    Saluk-Juszczak, Joanna; Pawlaczyk, Izabela; Olas, Beata; Kołodziejczyk, Joanna; Ponczek, Michal; Nowak, Pawel; Tsirigotis-Wołoszczak, Marta; Wachowicz, Barbara; Gancarz, Roman

    2010-12-01

    Lots of plants belonging to Asteraceae family are very popular in folk medicine in Poland. These plants are also known as being rich in acidic polysaccharides, due to the presence of hexuronic acids or its derivatives. Our preliminary experiments have shown that the extract from Conyza canadensis L. possesses various biological activity, including antiplatelet, antiocoagulant and antioxidant properties. The aim of our study was to assess if macromolecular glycoconjugates from selected herbal plants of Asteraceae family: Achillea millefolium L., Arnica montana L., Echinacea purpurea L., Solidago virgaurea L., Chamomilla recutita (L.) Rauschert., and Conyza canadensis L. protect platelet proteins against nitrative and oxidative damage induced by peroxynitrite, which is responsible for oxidative/nitrative modifications of platelet proteins: the formation of 3-nitrotyrosine and carbonyl groups. These modifications may lead to changes of blood platelet functions and can have pathological consequences. The role of these different medicinal plants in the defence against oxidative/nitrative stress in human platelets is still unknown, therefore the oxidative damage to platelet proteins induced by peroxynitrite and protectory effects of tested conjugates by the estimation of carbonyl group level and nitrotyrosine formation (a marker of protein nitration) were studied in vitro. The antioxidative properties of the polyphenolic-polysaccharide conjugates from selected tested medicinal plants were also compared with the action of a well characterized antioxidative commercial polyphenol - resveratrol (3,4',5-trihydroxystilbene). The obtained results demonstrate that the compounds from herbal plants: A. millefolium, A. montana, E. purpurea, C. recutita, S. virgaurea, possess antioxidative properties and protect platelet proteins against peroxynitrite toxicity in vitro, similar to the glycoconjugates from C. canadensis. However, in the comparative studies, the polyphenolic

  12. Hypersensitivity to thrombin of platelets from hypercholesterolemic rats

    International Nuclear Information System (INIS)

    Winocour, P.D.; Rand, M.L.; Kinlough-Rathbone, R.L.; Mustard, J.F.

    1986-01-01

    Hypersensitivity of platelets to thrombin has been associated with hypercholesterolemia. The authors have examined the mechanisms involved in this hypersensitivity. Rats were given diets rich in milk fat and containing added cholesterol and taurocholate to produce hypercholesterolemia (HC) (262 +/- 25 mg%) or added sitosterol as a normocholesterolemic control (NC) (89 +/- 6 mg%). Washed platelets were prelabelled with 14 C-serotonin. In the presence of acetylsalicyclic acid (ASA) (to inhibit thromboxane A 2 (TXA 2 ) formation) and creatine phosphate/creatine phosphokinase (CP/CPK) (to remove released ADP), HC platelets aggregated more (26 +/- 1%) and released more 14 C (9.1 +/- 2.0%) than NC platelets (aggregation: 0%, p 14 C release: 1.5 +/- 0.5%, p 2 formation is involved in the hypersensitivity of HC platelets to thrombin. Total binding of 125 I-thrombin to HC platelets was less than that to NC platelets but HC platelets were smaller and had less protein than NC platelets; the thrombin binding per mg platelet protein was the same for HC and NC platelets, indicating that hypersensitivity to thrombin of HC platelets does not result from increased thrombin binding. Thus, hypersensitivity of HC platelets to thrombin is not due to TXA 2 formation, the action of released ADP or increased thrombin binding

  13. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Directory of Open Access Journals (Sweden)

    Sylvie Lalonde

    2010-09-01

    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  14. Genetic Analysis of the Role of Protein Kinase Cθ in Platelet Function and Thrombus Formation

    Science.gov (United States)

    Hall, Kellie J.; Harper, Matthew T.; Gilio, Karen; Cosemans, Judith M.; Heemskerk, Johan W. M.; Poole, Alastair W.

    2008-01-01

    Background PKCθ is a novel protein kinase C isozyme, predominately expressed in T cells and platelets. PKCθ−/− T cells exhibit reduced activation and PKCθ−/− mice are resistant to autoimmune disease, making PKCθ an attractive therapeutic target for immune modulation. Collagen is a major agonist for platelets, operating through an immunoreceptor-like signalling pathway from its receptor GPVI. Although it has recently been shown that PKCθ positively regulates outside-in signalling through integrin αIIbβ3 in platelets, the role of PKCθ in GPVI-dependent signalling and functional activation of platelets has not been assessed. Methodology/Principal Findings In the present study we assessed static adhesion, cell spreading, granule secretion, integrin αIIbβ3 activation and platelet aggregation in washed mouse platelets lacking PKCθ. Thrombus formation on a collagen-coated surface was assessed in vitro under flow. PKCθ−/− platelets exhibited reduced static adhesion and filopodia generation on fibrinogen, suggesting that PKCθ positively regulates outside-in signalling, in agreement with a previous report. In contrast, PKCθ−/− platelets also exhibited markedly enhanced GPVI-dependent α-granule secretion, although dense granule secretion was unaffected, suggesting that PKCθ differentially regulates these two granules. Inside-out regulation of αIIbβ3 activation was also enhanced downstream of GPVI stimulation. Although this did not result in increased aggregation, importantly thrombus formation on collagen under high shear (1000 s−1) was enhanced. Conclusions/Significance These data suggest that PKCθ is an important negative regulator of thrombus formation on collagen, potentially mediated by α-granule secretion and αIIbβ3 activation. PKCθ therefore may act to restrict thrombus growth, a finding that has important implications for the development and safe clinical use of PKCθ inhibitors. PMID:18815612

  15. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR.

    Science.gov (United States)

    Varkey, Jobin; Langen, Ralf

    2017-07-01

    The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single

  16. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR

    Science.gov (United States)

    Varkey, Jobin; Langen, Ralf

    2017-07-01

    The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single

  17. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification.

    Science.gov (United States)

    Wade, James H; Jones, Joshua D; Lenov, Ivan L; Riordan, Colleen M; Sligar, Stephen G; Bailey, Ryan C

    2017-08-22

    The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipid bilayer environment. The successful incorporation of membrane proteins within Nanodiscs requires experimental optimization of conditions. Standard protocols for Nanodisc formation can require large amounts of time and input material, limiting the facile screening of formation conditions. Capitalizing on the miniaturization and efficient mass transport inherent to microfluidics, we have developed a microfluidic platform for efficient Nanodisc assembly and purification, and demonstrated the ability to incorporate functional membrane proteins into the resulting Nanodiscs. In addition to working with reduced sample volumes, this platform simplifies membrane protein incorporation from a multi-stage protocol requiring several hours or days into a single platform that outputs purified Nanodiscs in less than one hour. To demonstrate the utility of this platform, we incorporated Cytochrome P450 into Nanodiscs of variable size and lipid composition, and present spectroscopic evidence for the functional active site of the membrane protein. This platform is a promising new tool for membrane protein biology and biochemistry that enables tremendous versatility for optimizing the incorporation of membrane proteins using microfluidic gradients to screen across diverse formation conditions.

  18. In vivo evaluation of titanium-prepared platelet-rich fibrin (T-PRF): a new platelet concentrate.

    Science.gov (United States)

    Tunalı, Mustafa; Özdemir, Hakan; Küçükodacı, Zafer; Akman, Serhan; Fıratlı, Erhan

    2013-07-01

    We have developed a new, titanium-prepared, platelet-rich fibrin (T-PRF) together with the protocol for forming it, which is based on the hypothesis that titanium tubes may be more effective at activating platelets than the glass tubes used by Chouckroun in his platelet-rich fibrin (PRF) method. The aim of this study was to find a suitable animal model in which to evaluate the method and to investigate the efficacy of T-PRF for wound healing. Blood samples from 6 rabbits were used to confirm the protocol for formation of T-PRF. We evaluated T-PRF or T-PRF-like clots morphologically using scanning electron microscopy (EM). Blood samples from 5 rabbits were used to develop an experiment in which to evaluate the effects of T-PRF on wound healing. The mucoperiosteal flaps were filled with autologous T-PRF membranes from the vestibule in the anterior mandibular regions. Samples collected from the surgical sites were stained with haematoxylin and eosin. We found a mature fibrin network in T-PRF clots that had been centrifuged for 15 min at 3500 rpm and, 15 days after placement of the membrane, we found newly-forming connective tissue and islets of bony tissue in the T-PRF membrane. These results show that T-PRF could induce the formation of new bone with new connective tissue in a rabbit model of wound healing within 30 days of treatment. Published by Elsevier Ltd.

  19. Cell activation and cellular-cellular interactions during hemodialysis: effect of dialyzer membrane.

    Science.gov (United States)

    Sirolli, V; Ballone, E; Di Stante, S; Amoroso, L; Bonomini, M

    2002-06-01

    During hemodialysis (HD), circulating blood cells can be activated and also engage in dynamic interplay. These phenomena may be important factors behind dialysis membrane bio(in)compatibility. In the present prospective cross-over study, we have used flow cytometry to evaluate the influence of different dialysis membranes on the activation of circulating blood cells (leukocytes, platelets) and their dynamic interactions (formation of circulating platelet-leukocyte and platelet-erythrocyte aggregates) during in vivo HD. Each patient (n = 10) was treated with dialyzers containing membranes of cellulose diacetate, polysulfone and ethylenevinylalcohol (EVAL) in a randomized order. Upregulation of adhesion receptor expression (CD15s, CD11b/CD18) occurred mainly with the cellulosic membrane, though an increase in CD11b/CD18 circulating on neutrophils was also found with both synthetic membranes. Circulating activated platelets (P-selectin/CD63-positive platelets) increased during HD sessions with cellulose diacetate and polysulfone. An increased formation of platelet-neutrophil aggregates was found at 15 and 30 min during dialysis with cellulose diacetate and polysulfone but not with EVAL. Platelet-erythrocyte aggregates also increased with cellulose diacetate and at 15 min with polysulfone as well. Generally in concomitance with the increase in platelet-neutrophil coaggregates, there was an increased hydrogen peroxide production by neutrophils. The results of this study indicate that cellular mechanisms can be activated during HD largely depending on the membrane material, EVAL causing less reactivity than the other two membranes. It appears that each dialysis membrane has multiple and different characteristics that may contribute to interactions with blood components. Our results also indicate that derivatizing cellulose (cellulose diacetate) may be a useful way to improve the biocompatibility of the cellulose polymer and that there may be great variability in the

  20. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    Science.gov (United States)

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  1. The dynamics of plant plasma membrane proteins: PINs and beyond.

    Science.gov (United States)

    Luschnig, Christian; Vert, Grégory

    2014-08-01

    Plants are permanently situated in a fixed location and thus are well adapted to sense and respond to environmental stimuli and developmental cues. At the cellular level, several of these responses require delicate adjustments that affect the activity and steady-state levels of plasma membrane proteins. These adjustments involve both vesicular transport to the plasma membrane and protein internalization via endocytic sorting. A substantial part of our current knowledge of plant plasma membrane protein sorting is based on studies of PIN-FORMED (PIN) auxin transport proteins, which are found at distinct plasma membrane domains and have been implicated in directional efflux of the plant hormone auxin. Here, we discuss the mechanisms involved in establishing such polar protein distributions, focusing on PINs and other key plant plasma membrane proteins, and we highlight the pathways that allow for dynamic adjustments in protein distribution and turnover, which together constitute a versatile framework that underlies the remarkable capabilities of plants to adjust growth and development in their ever-changing environment. © 2014. Published by The Company of Biologists Ltd.

  2. High-resolution diffraction from crystals of a membrane-protein complex: bacterial outer membrane protein OmpC complexed with the antibacterial eukaryotic protein lactoferrin

    International Nuclear Information System (INIS)

    Sundara Baalaji, N.; Acharya, K. Ravi; Singh, T. P.; Krishnaswamy, S.

    2005-01-01

    Crystals of the complex formed between the bacterial membrane protein OmpC and the antibacterial protein lactoferrin suitable for high-resolution structure determination have been obtained. The crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å. Crystals of the complex formed between the outer membrane protein OmpC from Escherichia coli and the eukaryotic antibacterial protein lactoferrin from Camelus dromedarius (camel) have been obtained using a detergent environment. Initial data processing suggests that the crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å, α = β = 90, γ = 120°. This indicated a Matthews coefficient (V M ) of 3.3 Å 3 Da −1 , corresponding to a possible molecular complex involving four molecules of lactoferrin and two porin trimers in the unit cell (4832 amino acids; 533.8 kDa) with 63% solvent content. A complete set of diffraction data was collected to 3 Å resolution at 100 K. Structure determination by molecular replacement is in progress. Structural study of this first surface-exposed membrane-protein complex with an antibacterial protein will provide insights into the mechanism of action of OmpC as well as lactoferrin

  3. Plasmid-Mediated Resistance to Thrombin-Induced Platelet Microbicidal Protein in Staphylococci: Role of the qacA Locus

    OpenAIRE

    Kupferwasser, Leon Iri; Skurray, Ronald A.; Brown, Melissa H.; Firth, Neville; Yeaman, Michael R.; Bayer, Arnold S.

    1999-01-01

    Thrombin-induced platelet microbicidal protein 1 (tPMP-1) is a small, cationic peptide released from rabbit platelets following thrombin stimulation. In vitro resistance to this peptide among strains of Staphylococcus aureus correlates with the survival advantage of such strains at sites of endothelial damage in humans as well as in experimental endovascular infections. The mechanisms involved in the phenotypic resistance of S. aureus to tPMP-1 are not fully delineated. The plasmid-encoded st...

  4. Functional discrimination of membrane proteins using machine learning techniques

    Directory of Open Access Journals (Sweden)

    Yabuki Yukimitsu

    2008-03-01

    Full Text Available Abstract Background Discriminating membrane proteins based on their functions is an important task in genome annotation. In this work, we have analyzed the characteristic features of amino acid residues in membrane proteins that perform major functions, such as channels/pores, electrochemical potential-driven transporters and primary active transporters. Results We observed that the residues Asp, Asn and Tyr are dominant in channels/pores whereas the composition of hydrophobic residues, Phe, Gly, Ile, Leu and Val is high in electrochemical potential-driven transporters. The composition of all the amino acids in primary active transporters lies in between other two classes of proteins. We have utilized different machine learning algorithms, such as, Bayes rule, Logistic function, Neural network, Support vector machine, Decision tree etc. for discriminating these classes of proteins. We observed that most of the algorithms have discriminated them with similar accuracy. The neural network method discriminated the channels/pores, electrochemical potential-driven transporters and active transporters with the 5-fold cross validation accuracy of 64% in a data set of 1718 membrane proteins. The application of amino acid occurrence improved the overall accuracy to 68%. In addition, we have discriminated transporters from other α-helical and β-barrel membrane proteins with the accuracy of 85% using k-nearest neighbor method. The classification of transporters and all other proteins (globular and membrane showed the accuracy of 82%. Conclusion The performance of discrimination with amino acid occurrence is better than that with amino acid composition. We suggest that this method could be effectively used to discriminate transporters from all other globular and membrane proteins, and classify them into channels/pores, electrochemical and active transporters.

  5. Dissection of membrane protein degradation mechanisms by reversible inhibitors

    International Nuclear Information System (INIS)

    Hare, J.F.

    1988-01-01

    The degradation of slowly turning over 125I-lactoperoxidase-labeled plasma membrane polypeptides in response to reversible temperature and lysosomotropic inhibitors was studied in rat hepatoma cultures. Cells were radiolabeled and left for 24 h to allow the removal of rapidly degraded proteins. Remaining trichloroacetic acid-precipitable protein was degraded (t 1/2 = 40-68 h) by an apparent first order process 60-86% sensitive to 10 mM NH4Cl or 5 mM methylamine and greater than 95% inhibited by temperature reduction to 18 degrees C. Thus, membrane proteins are selected for degradation in a time-dependent manner by a system which is sensitive to both 18 degrees C and to lysosomotropic amines. When inhibitory conditions were removed after 40-48 h, degradation of 125I-labeled protein resumed at the same rate as that seen in their absence. Since membrane proteins do not exhibit accelerated degradation after removal of inhibitory conditions, there can be no marking or sorting of those proteins destined for degradation during the 40-h exposure to inhibitory conditions. Exposure to amines or 18 degrees C did not affect the position of two-dimensionally resolved labeled polypeptides. Fractionation of labeled cells on Percoll gradients after 40 h of exposure to low temperature or amines showed that labeled protein remained in the plasma membrane fractions of the gradient although shifted to a slightly lower buoyant density in the presence of amines. These results support the notion that selection of plasma membrane proteins for degradation requires their internalization into acidic vesicles. Lysosomotropic amines and reduced temperature interfere with the selection process by preventing membrane fusion events

  6. Analysis of protein interactions at native chloroplast membranes by ellipsometry.

    Directory of Open Access Journals (Sweden)

    Verena Kriechbaumer

    Full Text Available Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE. We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.

  7. Protein secretion and membrane insertion systems in gram-negative bacteria.

    Science.gov (United States)

    Saier, Milton H

    2006-01-01

    In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.

  8. Detergent-associated solution conformations of helical and beta-barrel membrane proteins.

    Science.gov (United States)

    Mo, Yiming; Lee, Byung-Kwon; Ankner, John F; Becker, Jeffrey M; Heller, William T

    2008-10-23

    Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), the Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the beta-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparison provided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state.

  9. Association of Factor V Secretion with Protein Kinase B Signaling in Platelets from Horses with Atypical Equine Thrombasthenia.

    Science.gov (United States)

    Norris, J W; Pombo, M; Shirley, E; Blevins, G; Tablin, F

    2015-01-01

    Two congenital bleeding diatheses have been identified in Thoroughbred horses: Glanzmann thrombasthenia (GT) and a second, novel diathesis associated with abnormal platelet function in response to collagen and thrombin stimulation. Platelet dysfunction in horses with this second thrombasthenia results from a secretory defect. Two affected and 6 clinically normal horses. Ex vivo study. Washed platelets were examined for (1) expression of the αIIb-β3 integrin; (2) fibrinogen binding capacity in response to ADP and thrombin; (3) secretion of dense and α-granules; (4) activation of the mammalian target of rapamycin (mTOR)-protein kinase B (AKT) signaling pathway; and (5) cellular distribution of phosphatidylinositol-4-phosphate-3-kinase, class 2B (PIK3C2B) and SH2 containing inositol-5'-phosphatase 1 (SHIP1). Platelets from affected horses expressed normal amounts of αIIb-β3 integrin and bound fibrinogen normally in response to ADP, but bound 80% less fibrinogen in response to thrombin. α-granules only released 50% as much Factor V as control platelets, but dense granules released their contents normally. Protein kinase B (AKT) phosphorylation was reduced after thrombin activation, but mTOR Complex 2 (mTORC2) and phosphoinositide-dependent kinase 1 (PDK1) signaling were normal. SH2-containing inositol-5'-phosphatase 1 (SHIP1) did not localize to the cytoskeleton of affected platelets and was decreased overall consistent with reduced AKT phosphorylation. Defects in fibrinogen binding, granule secretion, and signal transduction are unique to this thrombasthenia, which we designate as atypical equine thrombasthenia. Copyright © The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  10. Function, expression and localization of annexin A7 in platelets and red blood cells: Insights derived from an annexin A7 mutant mouse

    Directory of Open Access Journals (Sweden)

    Zamparelli Carlotta

    2003-08-01

    Full Text Available Abstract Background Annexin A7 is a Ca2+- and phospholipid-binding protein expressed as a 47 and 51 kDa isoform, which is thought to be involved in membrane fusion processes. Recently the 47 kDa isoform has been identified in erythrocytes where it was proposed to be a key component in the process of the Ca2+-dependent vesicle release, a process with which red blood cells might protect themselves against an attack by for example complement components. Results The role of annexin A7 in red blood cells was addressed in erythrocytes from anxA7-/- mice. Interestingly, the Ca2+-mediated vesiculation process was not impaired. Also, the membrane organization appeared not to be disturbed as assessed using gradient fractionation studies. Instead, lack of annexin A7 led to an altered cell shape and increased osmotic resistance of red blood cells. Annexin A7 was also identified in platelets. In these cells its loss led to a slightly slower aggregation velocity which seems to be compensated by an increased number of platelets. The results appear to rule out an important role of annexin A7 in membrane fusion processes occurring in red blood cells. Instead the protein might be involved in the organization of the membrane cytoskeleton. Red blood cells may represent an appropriate model to study the role of annexin A7 in cellular processes. Conclusion We have demonstrated the presence of both annexin A7 isoforms in red blood cells and the presence of the small isoform in platelets. In both cell types the loss of annexin A7 impairs cellular functions. The defects observed are however not compatible with a crucial role for annexin A7 in membrane fusion processes in these cell types.

  11. Relationship between platelet phospholipid FA and mean platelet volume in healthy men.

    Science.gov (United States)

    Li, Duo; Turner, Alan; Sinclair, Andrew J

    2002-09-01

    Increased mean platelet volume (MPV) has been suggested as an independent risk factor for acute myocardial infarction and the increased reactivity of large platelets. The aim of this study was to investigate the correlation between platelet phospholipid (PL) PUFA composition and MPV in 139 free-living healthy men ages 20-55 yr (vegans, n = 18; ovolacto vegetarians, n = 43; moderate meat-eaters, n = 60; and high meateaters, n = 18). Each subject completed a semiquantitative Food Frequency Questionnaire and gave a blood sample. Platelet PL FA composition and MPV were determined by standard methods. MPV was significantly greater in the vegans than in the ovolacto vegetarian, moderate, or high meat-eater groups (P vegan and ovolacto vegetarian groups had significantly higher platelet PL 18:2n-6 and 22:4n-6, and lower 20:5n-3 and 22:6n-3 compared with the moderate and high meat-eater groups. The vegans demonstrated a significant reduction in 20:4n-6 and 22:5n-3 compared with the ovolacto vegetarian, high meat-eater, and moderate meat-eater groups. Bivariate analysis results showed that MPV was significantly positively correlated with platelet PL 18:2n-6 (P = 0.048) and negatively correlated with 20:3n-6 (P = 0.02), 20:5n-3 (P = 0.005), and 22:5n-3 (P< 0.0001), respectively. In a multiple linear regression analysis, after controlling for potential confounding factors such as dietary group, age, exercise, body mass index, and dietary polyunsaturated and saturated fat, cholesterol, carbohydrate, and fiber intake, the MPV was still strongly negatively correlated with platelet PL 20:3n-6 (P = 0.003) and 22:5n-3 (P = 0.001). The present data suggest that 22:5n-3 and 20:3n-6 may play a role in the structural function of the platelet membrane.

  12. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces

    International Nuclear Information System (INIS)

    Wylie, Benjamin J.; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2015-01-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces

  13. Topology of membrane proteins-predictions, limitations and variations.

    Science.gov (United States)

    Tsirigos, Konstantinos D; Govindarajan, Sudha; Bassot, Claudio; Västermark, Åke; Lamb, John; Shu, Nanjiang; Elofsson, Arne

    2017-10-26

    Transmembrane proteins perform a variety of important biological functions necessary for the survival and growth of the cells. Membrane proteins are built up by transmembrane segments that span the lipid bilayer. The segments can either be in the form of hydrophobic alpha-helices or beta-sheets which create a barrel. A fundamental aspect of the structure of transmembrane proteins is the membrane topology, that is, the number of transmembrane segments, their position in the protein sequence and their orientation in the membrane. Along these lines, many predictive algorithms for the prediction of the topology of alpha-helical and beta-barrel transmembrane proteins exist. The newest algorithms obtain an accuracy close to 80% both for alpha-helical and beta-barrel transmembrane proteins. However, lately it has been shown that the simplified picture presented when describing a protein family by its topology is limited. To demonstrate this, we highlight examples where the topology is either not conserved in a protein superfamily or where the structure cannot be described solely by the topology of a protein. The prediction of these non-standard features from sequence alone was not successful until the recent revolutionary progress in 3D-structure prediction of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Modulation of protein C activation by histones, platelet factor 4, and heparinoids: new insights into activated protein C formation.

    Science.gov (United States)

    Kowalska, M Anna; Zhao, Guohua; Zhai, Li; David, George; Marcus, Stephen; Krishnaswamy, Sriram; Poncz, Mortimer

    2014-01-01

    Histones are detrimental in late sepsis. Both activated protein C (aPC) and heparin can reverse their effect. Here, we investigated whether histones can modulate aPC generation in a manner similar to another positively charged molecule, platelet factor 4, and how heparinoids (unfractionated heparin or oxygen-desulfated unfractionated heparin with marked decrease anticoagulant activity) may modulate this effect. We measured in vitro and in vivo effects of histones, platelet factor 4, and heparinoids on aPC formation, activated partial thromboplastin time, and murine survival. In vitro, histones and platelet factor 4 both affect thrombin/thrombomodulin aPC generation following a bell-shaped curve, with a peak of >5-fold enhancement. Heparinoids shift these curves rightward. Murine aPC generation studies after infusions of histones, platelet factor 4, and heparinoids supported the in vitro data. Importantly, although unfractionated heparin and 2-O, 3-O desulfated heparin both reversed the lethality of high-dose histone infusions, only mice treated with 2-O, 3-O desulfated heparin demonstrated corrected activated partial thromboplastin times and had significant levels of aPC. Our data provide a new contextual model of how histones affect aPC generation, and how heparinoid therapy may be beneficial in sepsis. These studies provide new insights into the complex interactions controlling aPC formation and suggest a novel therapeutic interventional strategy.

  15. Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rana, Rohini R; Gotfryd, Kamil

    2013-01-01

    The development of a new class of surfactants for membrane protein manipulation, "GNG amphiphiles", is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo ...

  16. The mitochondrial membrane potential in human platelets: a sensitive parameter for platelet quality

    NARCIS (Netherlands)

    Verhoeven, Arthur J.; Verhaar, Robin; Gouwerok, Eric G. W.; de Korte, Dirk

    2005-01-01

    BACKGROUND: Deterioration of platelet (PLT) quality during storage is accompanied by an increase in lactate production, indicating a decrease in mitochondrial function. In this study, the optimal conditions under which the fluorescent dye JC-1 can be used to detect changes in mitochondrial function

  17. Adjunctive Effect of Autologus Platelet-Rich Fibrin to Barrier Membrane in the Treatment of Periodontal Intrabony Defects.

    Science.gov (United States)

    Panda, Saurav; Sankari, Malaiappan; Satpathy, Anurag; Jayakumar, Doraiswamy; Mozzati, Marco; Mortellaro, Carmen; Gallesio, Giorgia; Taschieri, Silvio; Del Fabbro, Massimo

    2016-05-01

    Autologous platelet-rich fibrin (PRF) and barrier membranes in the treatment of intrabony defects in chronic periodontitis patients have shown significant clinical benefits. This study evaluates the additive effect of autologous PRF in combination with a barrier membrane versus the use of barrier membrane alone for the treatment of intrabony defects in chronic periodontitis patients. A randomized split-mouth design was used. Sixteen patients with 32 paired intrabony defects were included. In each patient 1 defect was treated using a resorbable collagen membrane along with PRF (test group) and the other defect by guided tissue regeneration alone (control group). The following clinical parameters were measured at baseline and after 9 months: plaque index, modified sulcus bleeding index, probing pocket depth, clinical attachment level, and gingival marginal level. The radiographic defect depth was also assessed at baseline and after 9 months. Test group showed a statistically significant improvement for probing depth (P = 0.002), clinical attachment level (P = 0.001), and radiographic defect depth (P < 0.001) after 9 months as compared with the control sites. Radiographic defect depth reduction was 58.19 ± 13.24% in the test group as compared with 24.86 ± 9.94% reduction in the control group. The adjunctive use of PRF in combination with barrier membrane is more effective in the treatment of intrabony defects in chronic periodontitis as compared with barrier membrane alone.

  18. Periplasmic quality control in biogenesis of outer membrane proteins.

    Science.gov (United States)

    Lyu, Zhi Xin; Zhao, Xin Sheng

    2015-04-01

    The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.

  19. The role of hydrophobic interactions in positioning of peripheral proteins in membranes

    Directory of Open Access Journals (Sweden)

    Lomize Mikhail A

    2007-06-01

    Full Text Available Abstract Background Three-dimensional (3D structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined. Results We report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM database. Conclusion Positions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our

  20. Platelet-vessel wall interaction in health and disease

    NARCIS (Netherlands)

    Löwenberg, E. C.; Meijers, J. C. M.; Levi, M. [=Marcel M.

    2010-01-01

    Upon vessel wall injury platelets rapidly adhere to the exposed subendothelial matrix which is mediated by several cellular receptors present on platelets or endothelial cells and various adhesive proteins such as von Willebrand factor, collagen and fibrinogen. Subsequent platelet activation results

  1. Platelet thrombosis in cardiac-valve prostheses

    International Nuclear Information System (INIS)

    Dewanjee, M.K.

    1989-01-01

    The contribution of platelets and clotting factors in thrombosis on cardiovascular prostheses had been quantified with several tracers. Thrombus formation in vivo could be measured semiquantitatively in animal models and patients with indium-111, Technetium-99m labeled platelets, iodine-123, iodine-131 labeled fibrinogen, and In-111 and Tc-99m labeled antibody to the fibrinogen-receptor on the platelet- membrane, or fibrin. The early studies demonstrated that certain platelet-inhibitors, e.g. sulfinpyrazone, aspirin or aspirin- persantine increased platelet survival time with mechanical valves implanted in the baboon model and patients. Thrombus localization by imaging is possible for large thrombus on thrombogenic surface of prosthesis in the acute phase. The majority of thrombus was found in the sewing ring (Dacron) in the acute phase in both the mechanical and tissue valves. The amount of retained thrombus in both mechanical and tissue valves in our one-day study in the dog model was similar (< 1% if injected In-111 platelets = 5 billion platelets). As the fibrous ingrowth covered the sewing ring, the thrombus formation decreased significantly. Only a small amount of thrombus was found on the leaflets at one month in both the dog and calf models. 38 refs., 9 figs., 5 tabs

  2. Platelet thrombosis in cardiac-valve prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Dewanjee, M.K.

    1989-01-01

    The contribution of platelets and clotting factors in thrombosis on cardiovascular prostheses had been quantified with several tracers. Thrombus formation in vivo could be measured semiquantitatively in animal models and patients with indium-111, Technetium-99m labeled platelets, iodine-123, iodine-131 labeled fibrinogen, and In-111 and Tc-99m labeled antibody to the fibrinogen-receptor on the platelet- membrane, or fibrin. The early studies demonstrated that certain platelet-inhibitors, e.g. sulfinpyrazone, aspirin or aspirin- persantine increased platelet survival time with mechanical valves implanted in the baboon model and patients. Thrombus localization by imaging is possible for large thrombus on thrombogenic surface of prosthesis in the acute phase. The majority of thrombus was found in the sewing ring (Dacron) in the acute phase in both the mechanical and tissue valves. The amount of retained thrombus in both mechanical and tissue valves in our one-day study in the dog model was similar (< 1% if injected In-111 platelets = 5 billion platelets). As the fibrous ingrowth covered the sewing ring, the thrombus formation decreased significantly. Only a small amount of thrombus was found on the leaflets at one month in both the dog and calf models. 38 refs., 9 figs., 5 tabs.

  3. The synthesis of recombinant membrane proteins in yeast for structural studies.

    Science.gov (United States)

    Routledge, Sarah J; Mikaliunaite, Lina; Patel, Anjana; Clare, Michelle; Cartwright, Stephanie P; Bawa, Zharain; Wilks, Martin D B; Low, Floren; Hardy, David; Rothnie, Alice J; Bill, Roslyn M

    2016-02-15

    Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests that empirical methods are now available that can ensure the required protein supply for these difficult targets. This review focuses on methods that are available for protein production in yeast, which is an important source of recombinant eukaryotic membrane proteins. We provide an overview of approaches to optimize the expression plasmid, host cell and culture conditions, as well as the extraction and purification of functional protein for crystallization trials in preparation for structural studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Function of plasma membrane microdomain-associated proteins during legume nodulation.

    Science.gov (United States)

    Qiao, Zhenzhen; Libault, Marc

    2017-10-03

    Plasma membrane microdomains are plasma membrane sub-compartments enriched in sphingolipids and sterols, and composed by a specific set of proteins. They are involved in recognizing signal molecules, transducing these signals, and controlling endocytosis and exocytosis processes. In a recent study, applying biochemical and microscopic methods, we characterized the soybean GmFWL1 protein, a major regulator of soybean nodulation, as a new membrane microdomain-associated protein. Interestingly, upon rhizobia inoculation of the soybean root system, GmFWL1 and one of its interacting partners, GmFLOT2/4, both translocate to the root hair cell tip, the primary site of interaction and infection between soybean and Rhizobium. The role of GmFWL1 as a plasma membrane microdomain-associated protein is also supported by immunoprecipitation assays performed on soybean nodules, which revealed 178 GmFWL1 protein partners including a large number of microdomain-associated proteins such as GmFLOT2/4. In this addendum, we provide additional information about the identity of the soybean proteins repetitively identified as GmFWL1 protein partners. Their function is discussed especially in regard to plant-microbe interactions and microbial symbiosis. This addendum will provide new insights in the role of plasma membrane microdomains in regulating legume nodulation.

  5. Dietary fatty acids and membrane protein function.

    Science.gov (United States)

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  6. Silver and gold nanoparticle coated membranes applied to protein dot blots

    International Nuclear Information System (INIS)

    Xie, F.; Drozdowicz-Tomsia, K.; Shtoyko, T.; Goldys, E. M.

    2011-01-01

    Detection and identification of low abundance biomarker proteins is frequently based on various types of membrane-based devices. Lowering of the protein detection limits is vital in commercial applications such as lateral flow assays and in Western blots widely used in proteomics. These currently suffer from insufficient detection sensitivity and low retention for small 2–5 kDa proteins. In this study, we report the deposition of two types of metal nanoparticles: gold colloids (50–95 nm diameter) and silver fractals onto a range of commonly used types of membranes including polyvinylidene fluoride (PVDF). Due to strong affinity of proteins to noble metals, such modified membranes have the potential to effectively capture trace proteins preventing their loss. The membranes modified by metal particles were characterized optically and by SEM. The membrane performance in protein dot blots was evaluated using the protein—fluorophore conjugates Deep Purple-bovine serum albumin and fluorescein—human serum albumin. We found that the metal nanoparticles increase light extinction by metals, which is balanced by increased fluorescence, so that the effective fluorescence signal is unchanged. This feature combined with the capture of proteins by the nanoparticles embedded in the membrane increases the detection limit of membrane assays.

  7. Divalent cations and the protein surface co-ordinate the intensity of human platelet adhesion and P-selectin surface expression.

    Science.gov (United States)

    Whiss, P A; Andersson, R G G

    2002-07-01

    At sites of blood vessel injury, platelets adhere to exposed vessel components, such as collagen, or immobilized fibrinogen derived from plasma or activated platelets. The divalent cations Mg(2+) and Ca(2+) are essential for platelet adhesion and activation, but Mg(2+) can also inhibit platelet activation. The present study evaluates, by an enzymatic method, the effects of various divalent cations on the adhesion of isolated human platelets to collagen, fibrinogen, albumin or plastic in vitro. By enzyme-linked immunosorbent assay, platelet surface expression of P-selectin was measured to estimate the state of activation on adherence. Mg(2+) increased platelet adhesion exclusively to collagen and fibrinogen at physiologically relevant concentrations. At higher concentrations, the adhesion declined. Ca(2+) induced a weak adhesion only to fibrinogen at physiological doses and a peak of increased adhesion to all protein-coated surfaces at 10 mmol/l. Mn(2+) elicited dose-dependent adhesion only to collagen and fibrinogen. Zn(2+), Ni(2+) and Cu(2+) increased the adhesion of platelets independently of the surface. Ca(2+) dose-dependently inhibited adhesion elicited by Mg(2+) to collagen and fibrinogen. No other combination of divalent cations elicited such an effect. Mg(2+)-dependent platelet adhesion to collagen and Ca(2+)-dependent adhesion to fibrinogen increased P-selectin expression. Thus, the present study shows that the outcome of the platelet adhesion depends on the surface and the access of divalent cations, which co-ordinate the intensity of platelet adhesion and P-selectin surface expression.

  8. Identification and characterization of a putative human platelet thromboxane A2/prostaglandin H2 receptor

    International Nuclear Information System (INIS)

    Saussy, D.L. Jr.

    1986-01-01

    The thromboxane A 2 (TXA 2 ) analog, 9,11-dimethylmethano-11,12-methano-16-(3-iodo-4-hydroxyphenyl)-13,14-dihydro-13-aza-15αβ-omega-tetranor TXA 2 (I-PTA-OH) was characterized as a competitive antagonist of TXA 2 mimetic-induced platelet aggregation, with a K/sub d/ of 190 nM in platelet rich plasma. This antagonism was specific for the putative thromboxane A 2 /prostaglandin H 2 (TXA 2 /PGH 2 ) receptor, since I-PTA-OH had no inhibitory effects on platelet aggregation stimulated by agonists which act independently of TXA 2 /PGH 2 , and did not inhibit platelet TXA 2 synthesis. [ 125 I]-PTA-OH binding to a particulate fraction from human platelets was saturable, displaceable, and linear with protein concentration. Scatchard analysis of equilibrium binding revealed a single class of high affinity binding sites, with a K/sub d/ of 30 +/- 4 nM and a B/sub max/ of 1.8 +/- 0.3 pmol/mg protein. Kinetic analysis yielded a k 1 of 1.35 x 10 6 M -1 x min -1 and a k√ 1 of 0.032 min -1 , K/sub d/ = k√ 1 /k 1 = 24 nM. The subcellular localization of the putative TXA 2 /PGH 2 receptor was determined using [ 125 I]-PTA-OH binding as a marker for the receptor. [ 125 I]-PTA-OH binding as a marker for the receptor. [ 125 I]-PTA-OH binding, was coenriched with markers for plasma membranes and dense tubular system; but not with markers for cytoplasmic constituents, mitochondria, or granules

  9. CRISPR/Cas9-mediated conversion of human platelet alloantigen allotypes.

    Science.gov (United States)

    Zhang, Nanyan; Zhi, Huiying; Curtis, Brian R; Rao, Sridhar; Jobaliya, Chintan; Poncz, Mortimer; French, Deborah L; Newman, Peter J

    2016-02-11

    Human platelet alloantigens (HPAs) reside on functionally important platelet membrane glycoproteins and are caused by single nucleotide polymorphisms in the genes that encode them. Antibodies that form against HPAs are responsible for several clinically important alloimmune bleeding disorders, including fetal and neonatal alloimmune thrombocytopenia and posttransfusion purpura. The HPA-1a/HPA-1b alloantigen system, also known as the Pl(A1)/Pl(A2) polymorphism, is the most frequently implicated HPA among whites, and a single Leu33Pro amino acid polymorphism within the integrin β3 subunit is responsible for generating the HPA-1a/HPA-1b alloantigenic epitopes. HPA-1b/b platelets, like those bearing other low-frequency platelet-specific alloantigens, are relatively rare in the population and difficult to obtain for purposes of transfusion therapy and diagnostic testing. We used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9) gene-editing technology to transform Leu33 (+) megakaryocytelike DAMI cells and induced pluripotent stem cells (iPSCs) to the Pro33 allotype. CD41(+) megakaryocyte progenitors derived from these cells expressed the HPA-1b (Pl(A2)) alloantigenic epitope, as reported by diagnostic NciI restriction enzyme digestion, DNA sequencing, and western blot analysis using HPA-1b-specific human maternal alloantisera. Application of CRISPR/Cas9 technology to genetically edit this and other clinically-important HPAs holds great potential for production of designer platelets for diagnostic, investigative, and, ultimately, therapeutic use. © 2016 by The American Society of Hematology.

  10. Mass Spectrometry Method to Measure Membrane Proteins in Dried Blood Spots for the Detection of Blood Doping Practices in Sport.

    Science.gov (United States)

    Cox, Holly D; Eichner, Daniel

    2017-09-19

    The dried blood spot (DBS) matrix has significant utility for applications in the field where venous blood collection and timely shipment of labile blood samples is difficult. Unfortunately, protein measurement in DBS is hindered by high abundance proteins and matrix interference that increases with hematocrit. We developed a DBS method to enrich for membrane proteins and remove soluble proteins and matrix interference. Following a wash in a series of buffers, the membrane proteins are digested with trypsin and quantitated by parallel reaction monitoring mass spectrometry methods. The DBS method was applied to the quantification of four cell-specific cluster of differentiation (CD) proteins used to count cells by flow cytometry, band 3 (CD233), CD71, CD45, and CD41. We demonstrate that the DBS method counts low abundance cell types such as immature reticulocytes as well as high abundance cell types such as red blood cells, white blood cells, and platelets. When tested in 82 individuals, counts obtained by the DBS method demonstrated good agreement with flow cytometry and automated hematology analyzers. Importantly, the method allows longitudinal monitoring of CD protein concentration and calculation of interindividual variation which is difficult by other methods. Interindividual variation of band 3 and CD45 was low, 6 and 8%, respectively, while variation of CD41 and CD71 was higher, 18 and 78%, respectively. Longitudinal measurement of CD71 concentration in DBS over an 8-week period demonstrated intraindividual variation 17.1-38.7%. Thus, the method may allow stable longitudinal measurement of blood parameters currently monitored to detect blood doping practices.

  11. Nanodisc-Tm: Rapid functional assessment of nanodisc reconstituted membrane proteins by CPM assay.

    Science.gov (United States)

    Ashok, Yashwanth; Jaakola, Veli-Pekka

    2016-01-01

    Membrane proteins are generally unstable in detergents. Therefore, biochemical and biophysical studies of membrane proteins in lipidic environments provides a near native-like environment suitable for membrane proteins. However, manipulation of proteins embedded in lipid bilayer has remained difficult. Methods such as nanodiscs and lipid cubic phase have been developed for easy manipulation of membrane proteins and have yielded significant insights into membrane proteins. Traditionally functional reconstitution of receptors in nanodiscs has been studied with radioligands. We present a simple and faster method for studying the functionality of reconstituted membrane proteins for routine characterization of protein batches after initial optimization of suitable conditions using radioligands. The benefits of the method are •Faster and generic method to assess functional reconstitution of membrane proteins.•Adaptable in high throughput format (≥96 well format).•Stability measurement in near-native lipid environment and lipid dependent melting temperatures.

  12. Hunting for low abundant redox proteins in plant plasma membranes.

    Science.gov (United States)

    Lüthje, Sabine; Hopff, David; Schmitt, Anna; Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana

    2009-04-13

    Nowadays electron transport (redox) systems in plasma membranes appear well established. Members of the flavocytochrome b family have been identified by their nucleotide acid sequences and characterized on the transcriptional level. For their gene products functions have been demonstrated in iron uptake and oxidative stress including biotic interactions, abiotic stress factors and plant development. In addition, NAD(P)H-dependent oxidoreductases and b-type cytochromes have been purified and characterized from plasma membranes. Several of these proteins seem to belong to the group of hypothetical or unknown proteins. Low abundance and the lack of amino acid sequence data for these proteins still hamper their functional analysis. Consequently, little is known about the physiological function and regulation of these enzymes. In recent years evidence has been presented for the existence of microdomains (so-called lipid rafts) in plasma membranes and their interaction with specific membrane proteins. The identification of redox systems in detergent insoluble membranes supports the idea that redox systems may have important functions in signal transduction, stress responses, cell wall metabolism, and transport processes. This review summarizes our present knowledge on plasma membrane redox proteins and discusses alternative strategies to investigate the function and regulation of these enzymes.

  13. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Emilie eGauliard

    2015-02-01

    Full Text Available Chlamydiae are obligate intracellular pathogens of eukaryotes. The bacteria grow in an intracellular vesicle called an inclusion, the membrane of which is heavily modified by chlamydial proteins called Incs (Inclusion membrane proteins. Incs represent 7-10% of the genomes of Chlamydia and, given their localization at the interface between the host and the pathogen, likely play a key role in the development and pathogenesis of the bacterium. However, their functions remain largely unknown. Here, we characterized the interaction properties between various Inc proteins of C. trachomatis, using a bacterial two-hybrid (BACTH method suitable for detecting interactions between integral membrane proteins. To validate this approach, we first examined the oligomerization properties of the well-characterized IncA protein and showed that both the cytoplasmic domain and the transmembrane region independently contribute to IncA oligomerization. We then analyzed a set of Inc proteins and identified novel interactions between these components. Two small Incs, IncF and Ct222, were found here to interact with many other Inc proteins and may thus represent interaction nodes within the inclusion membrane. Our data suggest that the Inc proteins may assemble in the membrane of the inclusion to form specific multi-molecular complexes in an hierarchical and temporal manner. These studies will help to better define the putative functions of the Inc proteins in the infectious process of Chlamydia.

  14. The outer membrane protein assembly machinery of Neisseria meningitidis

    NARCIS (Netherlands)

    Volokhina, E.B.|info:eu-repo/dai/nl/304837202

    2009-01-01

    Gram-negative bacteria are characterized by a cell envelope consisting of an inner membrane (IM) and an outer membrane (OM), which are separated by the peptidoglycan-containing periplasm. While the integral IM proteins are alpha-helical, all but one known integral OM proteins (OMPs) are

  15. Novel Biosensor of Membrane Protein Proximity Based on Fluorogen Activated Proteins.

    Science.gov (United States)

    Vasilev, Kalin V; Gallo, Eugenio; Shank, Nathaniel; Jarvik, Jonathan W

    2016-01-01

    We describe a novel biosensor system for reporting proximity between cell surface proteins in live cultured cells. The biosensor takes advantage of recently developed fluorogen-activating proteins (FAPs) that display fluorescence only when bound to otherwise-nonfluorescent fluorogen molecules. To demonstrate feasibility for the approach, two recombinant rapamycin-binding proteins were expressed as single-pass plasma membrane proteins in HeLa cells; one of the proteins (scAvd- FRB) carried an extracellular avidin tag; the other (HL1-TO1-FKBP) carried an extracellular FAP. Cells were incubated with a membrane-impermeable bivalent ligand (biotin-PEG2000-DIR) consisting of biotin joined to a dimethyl-indole red (DIR) fluorogen by a polyethylene glycol linker, thus tethering the fluorogen to the scAvd-FRB fusion protein. Addition of rapamycin, which promotes FKBP-FRB dimerization and thereby brings the FAP in close proximity to the tethered fluorogen, led to a significant increase in DIR fluorescence. We call the new proximity assay TEFLA, for tethered fluorogen assay.

  16. A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study.

    Science.gov (United States)

    Sadaf, Aiman; Mortensen, Jonas S; Capaldi, Stefano; Tikhonova, Elena; Hariharan, Parameswaran; de Castro Ribeiro, Orquidea; Loland, Claus J; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok

    2016-03-01

    Membrane proteins are amphipathic bio-macromolecules incompatible with the polar environments of aqueous media. Conventional detergents encapsulate the hydrophobic surfaces of membrane proteins allowing them to exist in aqueous solution. Membrane proteins stabilized by detergent micelles are used for structural and functional analysis. Despite the availability of a large number of detergents, only a few agents are sufficiently effective at maintaining the integrity of membrane proteins to allow successful crystallization. In the present study, we describe a novel class of synthetic amphiphiles with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively. Members of this class conferred enhanced stability on target membrane proteins compared to conventional detergents. Because of straightforward synthesis of the novel agents and their favourable effects on a range of membrane proteins, these agents should be of wide applicability to membrane protein science.

  17. Blood platelets in the progression of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Nina S Gowert

    Full Text Available Alzheimer's disease (AD is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA. Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that might play an important role in AD pathology with neuronal loss and memory deficits. Platelets are the major players in hemostasis and thrombosis, but are also involved in neuroinflammatory diseases like AD. For many years, platelets were accepted as peripheral model to study the pathophysiology of AD because platelets display the enzymatic activities to generate amyloid-ß (Aß peptides. In addition, platelets are considered to be a biomarker for early diagnosis of AD. Effects of Aß peptides on platelets and the impact of platelets in the progression of AD remained, however, ill-defined. The present study explored the cellular mechanisms triggered by Aß in platelets. Treatment of platelets with Aß led to platelet activation and enhanced generation of reactive oxygen species (ROS and membrane scrambling, suggesting enhanced platelet apoptosis. More important, platelets modulate soluble Aß into fibrillar structures that were absorbed by apoptotic but not vital platelets. This together with enhanced platelet adhesion under flow ex vivo and in vivo and platelet accumulation at amyloid deposits of cerebral vessels of AD transgenic mice suggested that platelets are major contributors of CAA inducing platelet thrombus formation at vascular amyloid plaques leading to vessel occlusion critical for cerebrovascular events like stroke.

  18. Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study.

    Science.gov (United States)

    Chae, Pil Seok; Rana, Rohini R; Gotfryd, Kamil; Rasmussen, Søren G F; Kruse, Andrew C; Cho, Kyung Ho; Capaldi, Stefano; Carlsson, Emil; Kobilka, Brian; Loland, Claus J; Gether, Ulrik; Banerjee, Surajit; Byrne, Bernadette; Lee, John K; Gellman, Samuel H

    2013-03-21

    The development of a new class of surfactants for membrane protein manipulation, "GNG amphiphiles", is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo et al. (Science, 2012, 337, 473).

  19. Higher-order assemblies of BAR domain proteins for shaping membranes.

    Science.gov (United States)

    Suetsugu, Shiro

    2016-06-01

    Most cellular organelles contain lipid bilayer membranes. The earliest characterization of cellular organelles was performed by electron microscopy observation of such membranes. However, the precise mechanisms for shaping the membrane in particular subcellular organelles is poorly understood. Classically, the overall cellular shape, i.e. the shape of the plasma membrane, was thought to be governed by the reorganization of cytoskeletal components such as actin and microtubules. The plasma membrane contains various submicron structures such as clathrin-coated pits, caveolae, filopodia and lamellipodia. These subcellular structures are either invaginations or protrusions and are associated with the cytoskeleton. Therefore, it could be hypothesized that there are membrane-binding proteins that cooperates with cytoskeleton in shaping of plasma membrane organelles. Proteins with the Bin-Amphiphysin-Rvs (BAR) domain connect a variety of membrane shapes to actin filaments. The BAR domains themselves bend the membranes by their rigidity and then mold the membranes into tubules through their assembly as spiral polymers, which are thought to be involved in the various submicron structures. Membrane tubulation by polymeric assembly of the BAR domains is supposed to be regulated by binding proteins, binding lipids and the mechanical properties of the membrane. This review gives an overview of BAR protein assembly, describes the significance of the assembly and discusses how to study the assembly in the context of membrane and cellular morphology. The technical problems encountered in microscopic observation of BAR domain assembly are also discussed. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  1. Identification of functional VEGF receptors on human platelets.

    Science.gov (United States)

    Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S

    2002-02-13

    Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.

  2. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins

    DEFF Research Database (Denmark)

    Bhatia, Vikram Kjøller; Hatzakis, Nikos; Stamou, Dimitrios

    2010-01-01

    itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology....

  3. Proteomic analysis of GPI-anchored membrane proteins

    DEFF Research Database (Denmark)

    Jung, Hye Ryung; Jensen, Ole Nørregaard

    2006-01-01

    Glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs) represent a subset of post-translationally modified proteins that are tethered to the outer leaflet of the plasma membrane via a C-terminal GPI anchor. GPI-APs are found in a variety of eukaryote species, from pathogenic microorganisms...... to humans. GPI-APs confer important cellular functions as receptors, enzymes and scaffolding molecules. Specific enzymes and detergent extraction methods combined with separation technologies and mass spectrometry permit proteomic analysis of GPI-APs from plasma membrane preparations to reveal cell...

  4. Evaluation of the Effect of Platelet-Rich Fibrin on the Alveolar ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... ... 2018;21:201-5. This is an open access article distributed under the terms of the Creative Commons ... including pharmacological agents, platelet-rich plasma. Introduction ... Helsinki Declaration of 1975, as revised in 2008. Moreover, all ..... Platelet-rich plasma and resorbable membrane for prevention.

  5. A 39-kD plasma membrane protein (IP39) is an anchor for the unusual membrane skeleton of Euglena gracilis

    International Nuclear Information System (INIS)

    Rosiere, T.K.; Marrs, J.A.; Bouck, G.B.

    1990-01-01

    The major integral plasma membrane protein (IP39) of Euglena gracilis was radiolabeled, peptide mapped, and dissected with proteases to identify cytoplasmic domains that bind and anchor proteins of the cell surface. When plasma membranes were radioiodinated and extracted with octyl glucoside, 98% of the extracted label was found in IP39 or the 68- and 110-kD oligomers of IP39. The octyl glucoside extracts were incubated with unlabeled cell surface proteins immobilized on nitrocellulose (overlays). Radiolabel from the membrane extract bound one (80 kD) of the two (80 and 86 kD) major membrane skeletal protein bands. Resolubilization of the bound label yielded a radiolabeled polypeptide identical in Mr to IP39. Intact plasma membranes were also digested with papain before or after radioiodination, thereby producing a cytoplasmically truncated IP39. The octyl glucoside extract of truncated IP39 no longer bound to the 80-kD membrane skeletal protein in the nitrocellulose overlays. EM of intact or trypsin digested plasma membranes incubated with membrane skeletal proteins under stringent conditions similar to those used in the nitrocellulose overlays revealed a partially reformed membrane skeletal layer. Little evidence of a membrane skeletal layer was found, however, when plasma membranes were predigested with papain before reassociation. A candidate 80-kD binding domain of IP39 has been tentatively identified as a peptide fragment that was present after trypsin digestion of plasma membranes, but was absent after papain digestion in two-dimensional peptide maps of IP39. Together, these data suggest that the unique peripheral membrane skeleton of Euglena binds to the plasma membrane through noncovalent interactions between the major 80-kD membrane skeletal protein and a small, papain sensitive cytoplasmic domain of IP39

  6. Cyclophilin B binding to platelets supports calcium-dependent adhesion to collagen.

    Science.gov (United States)

    Allain, F; Durieux, S; Denys, A; Carpentier, M; Spik, G

    1999-08-01

    We have recently reported that cyclophilin B (CyPB), a secreted cyclosporine-binding protein, could bind to T lymphocytes through interactions with two types of binding sites. The first ones, referred to as type I, involve interactions with the conserved domain of CyPB and promote the endocytosis of surface-bound ligand, while the second type of binding sites, termed type II, are represented by glycosaminoglycans (GAG). Here, we further investigated the interactions of CyPB with blood cell populations. In addition to lymphocytes, CyPB was found to interact mainly with platelets. The binding is specific, with a dissociation constant (kd) of 9 +/- 3 nmol/L and the number of sites estimated at 960 +/- 60 per cell. Platelet glycosaminoglycans are not required for the interactions, but the binding is dramatically reduced by active cyclosporine derivatives. We then analyzed the biologic effects of CyPB and found a significant increase in platelet adhesion to collagen. Concurrently, CyPB initiates a transmembranous influx of Ca(2+) and induces the phosphorylation of the P-20 light chains of myosin. Taken together, the present results demonstrate for the first time that extracellular CyPB specifically interacts with platelets through a functional receptor related to the lymphocyte type I binding sites and might act by regulating the activity of a receptor-operated membrane Ca(2+) channel.

  7. Specific membrane binding of factor VIII is mediated by O-phospho-L-serine, a moiety of phosphatidylserine.

    Science.gov (United States)

    Gilbert, G E; Drinkwater, D

    1993-09-21

    Phosphatidylserine, a negatively charged lipid, is exposed on the platelet membrane following cell stimulation, correlating with the expression of factor VIII receptors. We have explored the importance of the negative electrostatic potential of phosphatidylserine vs chemical moieties of phosphatidylserine for specific membrane binding of factor VIII. Fluorescein-labeled factor VIII bound to membranes containing 15% phosphatidic acid, a negatively charged phospholipid, with low affinity compared to phosphatidylserine-containing membranes. Binding was not specific as it was inhibited by other proteins in plasma. Factor VIII bound to membranes containing 10% phosphatidylserine in spite of a varying net charge provided by 0-15% stearylamine, a positively charged lipid. The soluble phosphatidylserine moiety, O-phospho-L-serine, inhibited factor VIII binding to phosphatidylserine-containing membranes with a Ki of 20 mM, but the stereoisomer, O-phospho-D-serine, was 5-fold less effective. Furthermore, binding of factor VIII to membranes containing synthetic phosphatidyl-D-serine was 5-fold less than binding to membranes containing phosphatidyl-L-serine. Membranes containing synthetic phosphatidyl-L-homoserine, differing from phosphatidylserine by a single methylene, supported high-affinity binding, but it was not specific as factor VIII was displaced by other plasma proteins. O-Phospho-L-serine also inhibited the binding of factor VIII to platelet-derived microparticles with a Ki of 20 mM, and the stereoisomer was 4-fold less effective. These results indicate that membrane binding of factor VIII is mediated by a stereoselective recognition O-phospho-L-serine of phosphatidylserine and that negative electrostatic potential is of lesser importance.

  8. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation

    DEFF Research Database (Denmark)

    Bae, Hyoung Eun; Mortensen, Jonas S; Ribeiro, Orquidea

    2016-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared...

  9. Influence of ionizing radiation on the plasma membrane proteins

    International Nuclear Information System (INIS)

    Dreval', V.I.

    1992-01-01

    The effect of ionizing radiation on the meat cattle thymocytes plasma membranes was studied. Using fluorescence quenching technique the effect of irradiation of proteins conformation was investigated. The influence of ionizing radiation on the plasma membranes was shown to be followed by changes of the protein structure-dynamic organization

  10. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Borneman, Z.; Wessling, M.

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an

  11. Association of lipids with integral membrane surface proteins of Mycoplasma hyorhinis

    International Nuclear Information System (INIS)

    Bricker, T.M.; Boyer, M.J.; Keith, J.; Watson-McKown, R.; Wise, K.S.

    1988-01-01

    Triton X-114 (TX-114)-phase fractionation was used to identify and characterize integral membrane surface proteins of the wall-less procaryote Mycoplasma hyorhinis GDL. Phase fractionation of mycoplasmas followed by analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed selective partitioning of approximately 30 [ 35 S]methionine-labeled intrinsic membrane proteins into the TX-114 phase. Similar analysis of [ 3 H]palmitate-labeled cells showed that approximately 20 proteins of this organism were associated with lipid, all of which also efficiently partitioned as integral membrane components into the detergent phase. Immunoblotting and immunoprecipitation of TX-114-phase proteins from 125 I-surface-labeled cells with four monoclonal antibodies to distinct surface epitopes of M. hyorhinis identified surface proteins p120, p70, p42, and p23 as intrinsic membrane components. Immunoprecipitation of [ 3 H]palmitate-labeled TX-114-phase proteins further established that surface proteins p120, p70, and p23 (a molecule that mediates complement-dependent mycoplasmacidal monoclonal antibody activity) were among the lipid-associated proteins of this organism. Two of these proteins, p120 and p123, were acidic (pI less than or equal to 4.5), as shown by two-dimensional isoelectric focusing. This study established that M. hyorhinis contains an abundance of integral membrane proteins tightly associated with lipids and that many of these proteins are exposed at the external surface of the single limiting plasma membrane. Monoclonal antibodies are reported that will allow detailed analysis of the structure and processing of lipid-associated mycoplasma proteins

  12. DNA nanotubes for NMR structure determination of membrane proteins.

    Science.gov (United States)

    Bellot, Gaëtan; McClintock, Mark A; Chou, James J; Shih, William M

    2013-04-01

    Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling-based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you need a weak-alignment medium that is detergent-resistant and it has thus far been difficult to obtain such a medium suitable for weak alignment of membrane proteins. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400-nm-long six-helix bundles, each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, toward collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes using counter ions and small DNA-binding molecules. This detergent-resistant liquid-crystal medium offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility and structural programmability. Production of sufficient nanotubes for four or five NMR experiments can be completed in 1 week by a single individual.

  13. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes.

    Science.gov (United States)

    O'Neill, Patrick R; Karunarathne, W K Ajith; Kalyanaraman, Vani; Silvius, John R; Gautam, N

    2012-12-18

    Activation of G-protein heterotrimers by receptors at the plasma membrane stimulates βγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein βγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell. We used live cell imaging, mathematical modeling, and in vitro measurements of lipidated fluorescent peptide dissociation from vesicles to determine the mechanistic basis of the intermembrane movement and identify the interactions responsible for differential translocation kinetics in this family of evolutionarily conserved proteins. We found that the reversible translocation is mediated by the limited affinity of the βγ-subunits for membranes. The differential kinetics of the βγ-subunit types are determined by variations among a set of basic and hydrophobic residues in the γ-subunit types. G-protein signaling thus leverages the wide variation in membrane dissociation rates among different γ-subunit types to differentially control βγ-translocation kinetics in response to receptor activation. The conservation of primary structures of γ-subunits across mammalian species suggests that there can be evolutionary selection for primary structures that confer specific membrane-binding affinities and consequent rates of intermembrane movement.

  14. Evolved Escherichia coli strains for amplified, functional expression of membrane proteins.

    Science.gov (United States)

    Gul, Nadia; Linares, Daniel M; Ho, Franz Y; Poolman, Bert

    2014-01-09

    The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several advantages of this expression host, one major drawback is that the protein of interest does not always adopt its native conformation and may end up in large insoluble aggregates. We describe a robust strategy to increase the likelihood of overexpressing membrane proteins in a functional state. The method involves fusion in tandem of green fluorescent protein and the erythromycin resistance protein (23S ribosomal RNA adenine N-6 methyltransferase, ErmC) to the C-terminus of a target membrane protein. The fluorescence of green fluorescent protein is used to report the folding state of the target protein, whereas ErmC is used to select for increased expression. By gradually increasing the erythromycin concentration of the medium and testing different membrane protein targets, we obtained a number of evolved strains of which four (NG2, NG3, NG5 and NG6) were characterized and their genome was fully sequenced. Strikingly, each of the strains carried a mutation in the hns gene, whose product is involved in genome organization and transcriptional silencing. The degree of expression of (membrane) proteins correlates with the severity of the hns mutation, but cells in which hns was deleted showed an intermediate expression performance. We propose that (partial) removal of the transcriptional silencing mechanism changes the levels of proteins essential for the functional overexpression of membrane proteins. © 2013.

  15. The interaction of thrombin with platelet protease nexin

    International Nuclear Information System (INIS)

    Knupp, C.L.

    1989-01-01

    Thrombin interacts with a platelet protein which is immunologically related to fibroblast protease nexin and has been termed platelet protease nexin I (PNI). Conflicting hypotheses about the relationship of the thrombin-PNI complex formation to platelet activation have been proposed. The studies presented here demonstrate that the platelet-associated and supernatant complexes with added 125I-thrombin are formed only under conditions which produce platelet activation in normal and chymotrypsin-modified platelets. The platelet-associated complex is formed prior to the appearance of complexes in supernatants. Appearance of the supernatant complex coincides with the appearance of thrombospondin in the reaction supernatants. Excess native thrombin, dansylarginine N-(3-ethyl-1,5-pentanediyl) amide or hirudin can prevent radiolabeled platelet-associated complex formation if added before 125I-thrombin. DAPA or hirudin can prevent or dissociate complex formation if added up to one minute after thrombin but not at later time points. The surface associated complex is accessible to trypsin although a portion remains with the cytoskeletal proteins when thrombin-activated platelets are solubilized with Triton X 100. The surface-associated complex formation parallels many aspects of the specific measurable thrombin binding, yet it does not appear to involve other identified surface glycoprotein thrombin receptors or substrates. Although the time course of appearance of the complexes in supernatants is consistent with other data which suggest that PNI may be released from platelet granules during platelet activation, other explanations for the appearance of PNI on the platelet surface and in supernatants during platelet activation are possible

  16. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, P.A. [ILL, Grenoble (France); Pebay-Peyroula, E. [IBS-UJF Grenoble (France)

    1994-12-31

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H{sub 2}O/D{sub 2}O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished.

  17. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    International Nuclear Information System (INIS)

    Timmins, P.A.; Pebay-Peyroula, E.

    1994-01-01

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H 2 O/D 2 O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished

  18. Human platelet glycoprotein IX: An adhesive prototype of leucine-rich glycoproteins with flank-center-flank structures

    International Nuclear Information System (INIS)

    Hickey, M.J.; Williams, S.A.; Roth, G.J.

    1989-01-01

    The glycoprotein (GP) Ib-IX complex on the surface of human platelets functions as the von Willebrand factor receptor and mediates von Willebrand factor-dependent platelet adhesion to blood vessels. GPIX is a relatively small (M r , 17,000) protein that may provide for membrane insertion and orientation of the larger component of the complex. GPIb (M r , 165,000). Using antibody screening, the authors cloned a cDNA encoding GPIX from a human erythroleukemia cell cDNA library constructed in phage λgt11. Lacking a 5' untranslated region and start codon, the cDNA sequence includes 604 nucleotides, beginning with 495 bases at the 5' end coding for 165 amino acids, followed by a stop codon and 106 noncoding bases at the 3' end. By Northern blot analysis, the GPIX cDNA hybridizes with a single 1.0-kilobase species of platelet poly(A) + RNA. Translation of the cDNA sequence gives a predicted protein sequence beginning with a truncated putative signal sequence of 5 amino acids followed by a sequence of 17 amino acids matching that determined directly by Edman degradation of intact GPIX. GPIX contains a leucine-rich glycoprotein (LRG) sequence of 24 amino acids similar to conserved LRG sequences in GPIb and other proteins from humans, Drosophila, and yeast. The role of the flank-LRG center-flank structure in the evolution and function of the LRG proteins remains to be defined

  19. Interaction between La(III) and proteins on the plasma membrane of horseradish

    Science.gov (United States)

    Yang, Guang-Mei; Chu, Yun-Xia; Lv, Xiao-Fen; Zhou, Qing; Huang, Xiao-Hua

    2012-06-01

    Lanthanum (La) is an important rare earth element in the ecological environment of plant. The proteins on the plasma membrane control the transport of molecules into and out of cell. It is very important to investigate the effect of La(III) on the proteins on the plasma membrane in the plant cell. In the present work, the interaction between La(III) and proteins on the plasma membrane of horseradish was investigated using optimization of the fluorescence microscopy and fluorescence spectroscopy. It is found that the fluorescence of the complex system of protoplasts and 1-aniline Kenai-8-sulfonic acid in horseradish treated with the low concentration of La(III) is increased compared with that of the control horseradish. The opposite effect is observed in horseradish treated with the high concentration of La(III). These results indicated that the low concentration of La(III) can interact with the proteins on the plasma membrane of horseradish, causing the improvement in the structure of proteins on the plasma membrane. The high concentration of La(III) can also interact with the proteins on the plasma membrane of horseradish, leading to the destruction of the structure of proteins on the plasma membrane. We demonstrate that the proteins on the plasma membrane are the targets of La(III) action on plant cell.

  20. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions.

    Science.gov (United States)

    Tsachaki, Maria; Birk, Julia; Egert, Aurélie; Odermatt, Alex

    2015-07-01

    Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The coronavirus spike protein : mechanisms of membrane fusion and virion incorporation

    NARCIS (Netherlands)

    Bosch, B.J.

    2004-01-01

    The coronavirus spike protein is a membrane-anchored glycoprotein responsible for virus-cell attachment and membrane fusion, prerequisites for a successful virus infection. In this thesis, two aspects are described regarding the molecular biology of the coronavirus spike protein: its membrane fusion

  2. Isolation of Protein Storage Vacuoles and Their Membranes.

    Science.gov (United States)

    Shimada, Tomoo; Hara-Nishimura, Ikuko

    2017-01-01

    Protein-storage vacuoles (PSVs) are specialized vacuoles that sequester large amounts of storage proteins. During seed development, PSVs are formed de novo and/or from preexisting lytic vacuoles. Seed PSVs can be subdivided into four distinct compartments: membrane, globoid, matrix, and crystalloid. In this chapter, we introduce easy methods for isolation of PSVs and their membranes from pumpkin seeds. These methods facilitate the identification and characterization of PSV components.

  3. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation.

    Science.gov (United States)

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T; Mundell, Stuart J; Coxon, Carmen H

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.

  4. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation.

    Directory of Open Access Journals (Sweden)

    Clive Metcalfe

    Full Text Available Thioredoxin (Trx is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12 to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase. In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb. This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.

  5. Effect of Antrodia camphorata on Inflammatory Arterial Thrombosis-Mediated Platelet Activation: The Pivotal Role of Protein Kinase C

    Directory of Open Access Journals (Sweden)

    Wan-Jung Lu

    2014-01-01

    Full Text Available Antrodia camphorata is a rare Taiwanese medicinal mushroom. Antrodia camphorata extract has been reported to exhibit antioxidant, anti-inflammation, antimetastasis, and anticancer activities and plays a role in liver fibrosis, vasorelaxation, and immunomodulation. Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Platelet activation plays a crucial role in intravascular thrombosis, which is involved in a wide variety of cardiovascular diseases. However, the effect of Antrodia camphorata on platelet activation remains unclear. We examined the effects of Antrodia camphorata on platelet activation. In the present study, Antrodia camphorata treatment (56–224 μg/mL inhibited platelet aggregation induced by collagen, but not U46619, an analogue of thromboxane A2, thrombin, and arachidonic acid. Antrodia camphorata inhibited collagen-induced calcium (Ca2+ mobilization and phosphorylation of protein kinase C (PKC and Akt. In addition, Antrodia camphorata significantly reduced the aggregation and phosphorylation of PKC in phorbol-12, 13-dibutyrate (PDBu activated platelets. In conclusion, Antrodia camphorata may inhibit platelet activation by inhibiting of Ca2+ and PKC cascade and the Akt pathway. Our study suggests that Antrodia camphorata may be a potential therapeutic agent for preventing or treating thromboembolic disorders.

  6. The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes.

    Science.gov (United States)

    Swainsbury, David J K; Scheidelaar, Stefan; Foster, Nicholas; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2017-10-01

    Solubilisation of biological lipid bilayer membranes for analysis of their protein complement has traditionally been carried out using detergents, but there is increasing interest in the use of amphiphilic copolymers such as styrene maleic acid (SMA) for the solubilisation, purification and characterisation of integral membrane proteins in the form of protein/lipid nanodiscs. Here we survey the effectiveness of various commercially-available formulations of the SMA copolymer in solubilising Rhodobacter sphaeroides reaction centres (RCs) from photosynthetic membranes. We find that formulations of SMA with a 2:1 or 3:1 ratio of styrene to maleic acid are almost as effective as detergent in solubilising RCs, with the best solubilisation by short chain variants (membranes was uniformly low, but could be increased through a variety of treatments to increase the lipid:protein ratio. However, proteins isolated from such membranes comprised clusters of complexes in small membrane patches rather than individual proteins. We conclude that short-chain 2:1 and 3:1 formulations of SMA are the most effective in solubilising integral membrane proteins, but that solubilisation efficiencies are strongly influenced by the size of the target protein and the density of packing of proteins in the membrane. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Beta-lactam antibiotic-induced platelet dysfunction: Evidence for irreversible inhibition of platelet activation in vitro and in vivo after prolonged exposure to penicillin

    International Nuclear Information System (INIS)

    Burroughs, S.F.; Johnson, G.J.

    1990-01-01

    beta-Lactam antibiotics cause platelet dysfunction with bleeding complications. Previous in vitro studies documented reversible inhibition of agonist-receptor interaction. This mechanism is inadequate to explain the effect of beta-lactam antibiotics in vivo. Platelet function does not return to normal immediately after drug treatment, implying irreversible inhibition of platelet function. We report here evidence of irreversible platelet functional and biochemical abnormalities after in vitro and in vivo exposure to beta-lactam antibiotics. Irreversible binding of [14C]-penicillin (Pen) occurred in vitro. After 24 hours' in vitro incubation with 10 to 20 mmol/L Pen, or ex vivo after antibiotic treatment, irreversible functional impairment occurred; but no irreversible inhibition of alpha 2 adrenergic receptors, measured with [3H]-yohimbine, or high-affinity thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors, measured with agonist [3H]-U46619 and antagonist [3H]-SQ29548, occurred. However, low-affinity platelet TXA2/PGH2 receptors were decreased 40% after Pen exposure in vitro or in vivo, indicating irreversible membrane alteration. Two postreceptor biochemical events were irreversibly inhibited in platelets incubated with Pen for 24 hours in vitro or ex vivo after antibiotic treatment. Thromboxane synthesis was inhibited 28.3% to 81.7%. Agonist-induced rises in cytosolic calcium ([Ca2+]i) were inhibited 40.1% to 67.5% in vitro and 26.6% to 52.2% ex vivo. Therefore, Pen binds to platelets after prolonged exposure, resulting in irreversible dysfunction attributable to inhibition of TXA2 synthesis and impairment of the rise in [Ca2+]i. The loss of low-affinity TXA2/PGH2 receptors suggests that the primary site of action of these drugs is on the platelet membrane

  8. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    Science.gov (United States)

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  9. Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Song Lingjie [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao Jie; Yang Huawei; Jin Jing; Li Xiaomeng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Stagnaro, Paola [Istituto per Io Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova (Italy); Yin Jinghua, E-mail: yinjh@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2011-10-15

    This work described the graft polymerization of a sulfonic acid terminated monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), onto the surface of polypropylene non-woven (NWF PP) membrane by O{sub 2} plasma pretreatment and UV-induced photografting method. The chemical structure and composition of the modified surfaces were analyzed by FTIR-ATR and XPS, respectively. The wettability was investigated by water contact angle and equilibrium water adsorption. And the biocompatibility of the modified NWF PP membranes was evaluated by protein adsorption and platelet adhesion. It was found that the graft density increased with prolonging UV irradiation time and increasing AMPS concentration; the water contact angles of the membranes decreased from 124{sup o} to 26{sup o} with the increasing grafting density of poly(AMPS) from 0 to 884.2 {mu}g cm{sup -2}, while the equilibrium water adsorption raised from 5 wt% to 75 wt%; the protein absorption was effectively suppressed with the introduction of poly(AMPS) even at the low grafting density (132.4 {mu}g cm{sup -2}); the number of platelets adhering to the modified membrane was dramatically reduced when compared with that on its virgin surface. These results indicated that surface modification of NWF PP membrane with AMPS was a facile approach to construct biocompatible surface.

  10. Protein receptor-independent plasma membrane remodeling by HAMLET: a tumoricidal protein-lipid complex.

    Science.gov (United States)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L; James, Ho C S; Rydström, Anna; Ngassam, Viviane N; Klausen, Thomas Kjær; Pedersen, Stine Falsig; Lam, Matti; Parikh, Atul N; Svanborg, Catharina

    2015-11-12

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ''protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ''receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.

  11. MAMP (microbe-associated molecular pattern)-induced changes in plasma membrane-associated proteins.

    Science.gov (United States)

    Uhlíková, Hana; Solanský, Martin; Hrdinová, Vendula; Šedo, Ondrej; Kašparovský, Tomáš; Hejátko, Jan; Lochman, Jan

    2017-03-01

    Plant plasma membrane associated proteins play significant roles in Microbe-Associated Molecular Pattern (MAMP) mediated defence responses including signal transduction, membrane transport or energetic metabolism. To elucidate the dynamics of proteins associated with plasma membrane in response to cryptogein, a well-known MAMP of defence reaction secreted by the oomycete Phytophthora cryptogea, 2D-Blue Native/SDS gel electrophoresis of plasma membrane fractions was employed. This approach revealed 21 up- or down-regulated protein spots of which 15 were successfully identified as proteins related to transport through plasma membrane, vesicle trafficking, and metabolic enzymes including cytosolic NADP-malic enzyme and glutamine synthetase. Observed changes in proteins were also confirmed on transcriptional level by qRT-PCR analysis. In addition, a significantly decreased accumulation of transcripts observed after employment of a mutant variant of cryptogein Leu41Phe, exhibiting a conspicuous defect in induction of resistance, sustains the contribution of identified proteins in cryptogein-triggered cellular responses. Our data provide further evidence for dynamic MAMP-induced changes in plasma membrane associated proteins. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Thrombin-induced rabbit platelet microbicidal protein is fungicidal in vitro.

    Science.gov (United States)

    Yeaman, M R; Ibrahim, A S; Edwards, J E; Bayer, A S; Ghannoum, M A

    1993-03-01

    Platelet microbicidal protein (PMP) is released from platelets in response to thrombin stimulation. PMP is known to possess in vitro bactericidal activity against Staphylococcus aureus and viridans group streptococci. To determine whether PMP is active against other intravascular pathogens, we evaluated its potential fungicidal activity against strains of Candida species and Cryptococcus neoformans. Anionic resin adsorption and gel electrophoresis confirmed that the fungicidal activity of PMP resided in a small (approximately 8.5-kDa), cationic protein, identical to previous studies of PMP-induced bacterial killing (M.R. Yeaman, S.M. Puentes, D.C. Norman, and A.S. Bayer, Infect. Immun. 60:1202-1209, 1992). When assayed over a 180-min period in vitro, the susceptibilities of these fungi to PMP varied considerably. Generally, Candida albicans strains (mean survival, 33.5% +/- 6.9% [n = 6]) as well as isolates of Candida glabrata (mean survival, 50.8% +/- 2.9% [n = 2]) were the most susceptible to killing by PMP, while Candida guillermondii and Candida parapsilosis were relatively resistant to PMP-induced killing. Compared with C. albicans, C. neoformans was relatively resistant to the fungicidal activity of PMP, with a mean survival among the isolates studied of 77.4% +/- 12.4% (n = 6). Against C. albicans, PMP-induced fungicidal activity was time dependent (range, 0 to 180 min), PMP concentration dependent (range, 10 to 150 U/ml), and inversely related to the fungal inoculum (range, 5 x 10(3) to 1 x 10(5) CFU/ml). Scanning electron microscopy of PMP-exposed C. albicans and C. neoformans cells revealed extensive surface damage and collapse, suggesting that the site of PMP fungicidal action may directly or indirectly involve the fungal cell envelope.

  13. Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization.

    Science.gov (United States)

    Chen, Sheng-Han; Chang, Yung; Lee, Kueir-Rarn; Wei, Ta-Chin; Higuchi, Akon; Ho, Feng-Ming; Tsou, Chia-Chun; Ho, Hsin-Tsung; Lai, Juin-Yih

    2012-12-21

    In this work, the hemocompatibility of zwitterionic polypropylene (PP) fibrous membranes with varying grafting coverage of poly(sulfobetaine methacrylate) (PSBMA) via plasma-induced surface polymerization was studied. Charge neutrality of PSBMA-grafted layers on PP membrane surfaces was controlled by the low-pressure and atmospheric plasma treatment in this study. The effects of grafting composition, surface hydrophilicity, and hydration capability on blood compatibility of the membranes were determined. Protein adsorption onto the different PSBMA-grafted PP membranes from human fibrinogen solutions was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Blood platelet adhesion and plasma clotting time measurements from a recalcified platelet-rich plasma solution were used to determine if platelet activation depends on the charge bias of the grafted PSBMA layer. The charge bias of PSBMA layer deviated from the electrical balance of positively and negatively charged moieties can be well-controlled via atmospheric plasma-induced interfacial zwitterionization and was further tested with human whole blood. The optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and keeps its original blood-inert property of antifouling, anticoagulant, and antithrmbogenic activities when it comes into contact with human blood. This work suggests that the hemocompatible nature of grafted PSBMA polymers by controlling grafting quality via atmospheric plasma treatment gives a great potential in the surface zwitterionization of hydrophobic membranes for use in human whole blood.

  14. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.

    Science.gov (United States)

    Sinha, Sudhir; Kosalai, K; Arora, Shalini; Namane, Abdelkader; Sharma, Pawan; Gaikwad, Anil N; Brodin, Priscille; Cole, Stewart T

    2005-07-01

    Membrane-associated proteins of Mycobacterium tuberculosis offer a challenge, as well as an opportunity, in the quest for better therapeutic and prophylactic interventions against tuberculosis. The authors have previously reported that extraction with the detergent Triton X-114 (TX-114) is a useful step in proteomic analysis of mycobacterial cell membranes, and detergent-soluble membrane proteins of mycobacteria are potent stimulators of human T cells. In this study 1-D and 2-D gel electrophoresis-based protocols were used for the analysis of proteins in the TX-114 extract of M. tuberculosis membranes. Peptide mass mapping (using MALDI-TOF-MS, matrix assisted laser desorption/ionization time of flight mass spectrometry) of 116 samples led to the identification of 105 proteins, 9 of which were new to the M. tuberculosis proteome. Functional orthologues of 73 of these proteins were also present in Mycobacterium leprae, suggesting their relative importance. Bioinformatics predicted that as many as 73% of the proteins had a hydrophobic disposition. 1-D gel electrophoresis revealed more hydrophobic/transmembrane and basic proteins than 2-D gel electrophoresis. Identified proteins fell into the following major categories: protein synthesis, cell wall biogenesis/architecture and conserved hypotheticals/unknowns. To identify immunodominant proteins of the detergent phase (DP), 14 low-molecular-mass fractions prepared by continuous-elution gel electrophoresis were subjected to T cell activation assays using blood samples from BCG-vaccinated healthy donors from a tuberculosis endemic area. Analysis of the responses (cell proliferation and IFN-gamma production) showed that the immunodominance of certain DP fractions was most probably due to ribosomal proteins, which is consistent with both their specificity for mycobacteria and their abundance. Other membrane-associated proteins, including transmembrane proteins/lipoproteins and ESAT-6, did not appear to contribute

  15. Trypsin immobilization in ordered porous polymer membranes for effective protein digestion

    International Nuclear Information System (INIS)

    Qiao, Juan; Kim, Jin Yong; Wang, Yuan Yuan; Qi, Li; Wang, Fu Yi; Moon, Myeong Hee

    2016-01-01

    Fast and effective protein digestion is a vital process for mass spectrometry (MS) based protein analysis. This study introduces a porous polymer membrane enzyme reactor (PPMER) coupled to nanoflow liquid chromatography-tandem MS (nLC-ESI-MS/MS) for on-line digestion and analysis of proteins. Poly (styrene-co-maleic anhydride) (PS-co-MAn) was fabricated by the breath figure method to make a porous polymer membrane in which the MAn group was covalently bound to enzyme. Based on this strategy, microscale PPMER (μPPMER) was constructed for on-line connection with the nLC-ESI-MS/MS system. Its capability for enzymatic digestion with bovine serum albumin (BSA) was evaluated with varied digestion periods. The on-line proteolysis of BSA and subsequent analysis with μPPMER-nLC-ESI-MS/MS revealed that peptide sequence coverage increased from 10.3% (digestion time 10 min) to 89.1% (digestion time 30 min). μPPMER can efficiently digest proteins due to the microscopic confinement effect, showing its potential application in fast protein identification and protease immobilization. Applications of on-line digestion using μPPMER with human plasma and urinary proteome samples showed that the developed on-line method yielded equivalent or better performance in protein coverage and identified more membrane proteins than the in-solution method. This may be due to easy accommodation of hydrophobic membrane proteins within membrane pores. - Highlights: • A porous polymer membrane enzyme reactor was developed. • Breath figure method was used for the fabrication of porous polymer membrane. • The enzyme reactor was coupled to nLC-ESI-MS/MS for proteins on-line digestion.

  16. Trypsin immobilization in ordered porous polymer membranes for effective protein digestion

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Juan [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Kim, Jin Yong [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 120-749 (Korea, Republic of); Wang, Yuan Yuan [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Qi, Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Wang, Fu Yi [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Moon, Myeong Hee, E-mail: mhmoon@yonsei.ac.kr [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 120-749 (Korea, Republic of)

    2016-02-04

    Fast and effective protein digestion is a vital process for mass spectrometry (MS) based protein analysis. This study introduces a porous polymer membrane enzyme reactor (PPMER) coupled to nanoflow liquid chromatography-tandem MS (nLC-ESI-MS/MS) for on-line digestion and analysis of proteins. Poly (styrene-co-maleic anhydride) (PS-co-MAn) was fabricated by the breath figure method to make a porous polymer membrane in which the MAn group was covalently bound to enzyme. Based on this strategy, microscale PPMER (μPPMER) was constructed for on-line connection with the nLC-ESI-MS/MS system. Its capability for enzymatic digestion with bovine serum albumin (BSA) was evaluated with varied digestion periods. The on-line proteolysis of BSA and subsequent analysis with μPPMER-nLC-ESI-MS/MS revealed that peptide sequence coverage increased from 10.3% (digestion time 10 min) to 89.1% (digestion time 30 min). μPPMER can efficiently digest proteins due to the microscopic confinement effect, showing its potential application in fast protein identification and protease immobilization. Applications of on-line digestion using μPPMER with human plasma and urinary proteome samples showed that the developed on-line method yielded equivalent or better performance in protein coverage and identified more membrane proteins than the in-solution method. This may be due to easy accommodation of hydrophobic membrane proteins within membrane pores. - Highlights: • A porous polymer membrane enzyme reactor was developed. • Breath figure method was used for the fabrication of porous polymer membrane. • The enzyme reactor was coupled to nLC-ESI-MS/MS for proteins on-line digestion.

  17. Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Du, Yang; Scull, Nicola J

    2015-01-01

    Membrane proteins are key functional players in biological systems. These biomacromolecules contain both hydrophilic and hydrophobic regions and thus amphipathic molecules are necessary to extract membrane proteins from their native lipid environments and stabilise them in aqueous solutions...

  18. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Science.gov (United States)

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Self-assembly of nanoscale particles with biosurfactants and membrane scaffold proteins.

    Science.gov (United States)

    Faas, Ramona; Pohle, Annelie; Moß, Karin; Henkel, Marius; Hausmann, Rudolf

    2017-12-01

    Nanodiscs are membrane mimetics which may be used as tools for biochemical and biophysical studies of a variety of membrane proteins. These nanoscale structures are composed of a phospholipid bilayer held together by an amphipathic membrane scaffold protein (MSP). In the past, nanodiscs were successfully assembled with membrane scaffold protein 1D1 and 1,2-dipalmitoyl- sn -glycero-3-phosphorylcholine with a homogeneous diameter of ∼10 nm. In this study, the formation of nanoscale particles from MSP1D1 and rhamnolipid biosurfactants is investigated. Different protein to lipid ratios of 1:80, 1:90 and 1:100 were used for the assembly reaction, which were consecutively separated, purified and analyzed by size-exclusion chromatography (SEC) and dynamic light scattering (DLS). Size distributions were measured to determine homogeneity and confirm size dimensions. In this study, first evidence is presented on the formation of nanoscale particles with rhamnolipid biosurfactants and membrane scaffold proteins.

  20. Tandem malonate-based glucosides (TMGs) for membrane protein structural studies

    DEFF Research Database (Denmark)

    Hussain, Hazrat; Mortensen, Jonas S.; Du, Yang

    2017-01-01

    class of glucoside amphiphiles, designated tandem malonate-based glucosides (TMGs). A few TMG agents proved effective at both stabilizing a range of membrane proteins and extracting proteins from the membrane environment. These favourable characteristics, along with synthetic convenience, indicate...

  1. Membranes and mammalian glycolipid transferring proteins.

    Science.gov (United States)

    Tuuf, Jessica; Mattjus, Peter

    2014-02-01

    Glycolipids are synthesized in and on various organelles throughout the cell. Their trafficking inside the cell is complex and involves both vesicular and protein-mediated machineries. Most important for the bulk lipid transport is the vesicular system, however, lipids moved by transfer proteins are also becoming more characterized. Here we review the latest advances in the glycolipid transfer protein (GLTP) and the phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) field, from a membrane point of view. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Mechanisms of andrographolide-induced platelet apoptosis in human platelets: regulatory roles of the extrinsic apoptotic pathway.

    Science.gov (United States)

    Lien, Li-Ming; Su, Cheng-Chen; Hsu, Wen-Hsien; Lu, Wan-Jung; Chung, Chi-Li; Yen, Ting-Lin; Chiu, Hou-Chang; Sheu, Joen-Rong; Lin, Kuan-Hung

    2013-11-01

    Andrographolide, a novel nuclear factor-κB (NF-κB) inhibitor, is isolated from the leaves of Andrographis paniculata. Platelet activation is relevant to a variety of coronary heart diseases. Our recent studies revealed that andrographolide possesses potent antiplatelet activity by inhibition of the p38 MAPK/(●) HO-NF-κB-ERK2 cascade. Although platelets are anucleated cells, apoptotic machinery apparatus recently has been found to regulate platelet activation and limit platelet lifespan. Therefore, we further investigated the regulatory effects of andrographolide on platelet apoptotic events. In this study, apoptotic signaling events for caspase-3, -8, and Bid were time (10-60 min)- and dose (25-100 μΜ)-dependently activated by andrographolide in human platelets. Andrographolide could also disrupt mitrochondrial membrane potential. In addition, caspase-8 inhibitor (z-IETD-fmk, 50 μΜ) was found to reverse andrographolide-induced caspase-8 activation, whereas the antagonistic anti-Fas receptor (ZB4, 500 ng/mL) and anti-tumor necrosis factor-R1 (H398, 10 µg/mL) monoclonal antibodies did not. In conclusion, this study for the first time demonstrated that andrographolide might limit platelet lifespan by initiating the caspase-8-dependent extrinsic apoptotic pathway, in spite of no direct evidence that death receptors are involved in this process proved. Overall, the various medicinal properties of andrographolide suggest its potential value in treating patients with thromboembolic disorders. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Self-assembling layers created by membrane proteins on gold.

    Science.gov (United States)

    Shah, D S; Thomas, M B; Phillips, S; Cisneros, D A; Le Brun, A P; Holt, S A; Lakey, J H

    2007-06-01

    Membrane systems are based on several types of organization. First, amphiphilic lipids are able to create monolayer and bilayer structures which may be flat, vesicular or micellar. Into these structures membrane proteins can be inserted which use the membrane to provide signals for lateral and orientational organization. Furthermore, the proteins are the product of highly specific self-assembly otherwise known as folding, which mostly places individual atoms at precise places in three dimensions. These structures all have dimensions in the nanoscale, except for the size of membrane planes which may extend for millimetres in large liposomes or centimetres on planar surfaces such as monolayers at the air/water interface. Membrane systems can be assembled on to surfaces to create supported bilayers and these have uses in biosensors and in electrical measurements using modified ion channels. The supported systems also allow for measurements using spectroscopy, surface plasmon resonance and atomic force microscopy. By combining the roles of lipids and proteins, highly ordered and specific structures can be self-assembled in aqueous solution at the nanoscale.

  4. Concentration of platelets and growth factors in platelet-rich plasma from Goettingen minipigs.

    Science.gov (United States)

    Jungbluth, Pascal; Grassmann, Jan-Peter; Thelen, Simon; Wild, Michael; Sager, Martin; Windolf, Joachim; Hakimi, Mohssen

    2014-01-01

    In minipigs little is known about the concentration of growth factors in plasma, despite their major role in several patho-physiological processes such as healing of fractures. This prompted us to study the concentration of platelets and selected growth factors in plasma and platelet-rich plasma (PRP) preparation of sixteen Goettingen minipigs. Platelet concentrations increased significantly in PRP in comparison to native blood plasma. Generally, significant increase in the concentration of all growth factors tested was observed in the PRP in comparison to the corresponding plasma or serum. Five of the plasma samples examined contained detectable levels of bone morphogenic protein 2 (BMP-2) whereas eleven of the plasma or serum samples contained minimal amounts of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-bb) respectively. On the other hand variable concentrations of bone morphogenic protein 7 (BMP-7) and transforming growth factor β1 (TGF-β1) were measured in all plasma samples. In contrast, all PRP samples contained significantly increased amounts of growth factors. The level of BMP-2, BMP-7, TGF-β1, VEGF and PDGF-bb increased by 17.6, 1.5, 7.1, 7.2 and 103.3 fold, in comparison to the corresponding non-enriched preparations. Moreover significant positive correlations were found between platelet count and the concentrations of BMP-2 (r=0.62, pplatelet-rich plasma of minipigs which might thus serve as a source of autologous growth factors.

  5. Platelet kinetics with indium-111 platelets: comparison with chromium-51 platelets

    International Nuclear Information System (INIS)

    Peters, A.M.; Lavender, J.P.

    1983-01-01

    The application of 111In-oxine to platelet labeling has contributed to the understanding of platelet kinetics along three lines: 1. It allows the measurement of new parameters of splenic function, such as the intrasplenic platelet transit time, which has shed new light on the physiology of splenic blood cell handling. 2. It facilitates the measurement of platelet life span in conditions, such as ITP, in which 51Cr may undergo undesirable elution from the platelet as a result of platelet-antibody interaction. 3. It allows the determination of the fate of platelets, that is, the site of platelet destruction in conditions in which reduced platelet life span is associated with abnormal platelet consumption, as a result of either premature destruction of ''abnormal'' platelets by the RE system, or the consumption (or destruction) of normal platelets after their interaction with an abnormal vasculature. Future research using 111In platelets may yield further valuable information on the control as well as the significance of intrasplenic platelet pooling, on the role of platelets in the development of chronic vascular lesions, and on the sites of platelet destruction in ITP. With regard to the latter, methods will have to be developed for harvesting sufficient platelets representative of the total circulating platelet population from severely thrombocytopenic patients for autologous platelet labeling. This would avoid the use of homologous platelets, which is likely to be responsible for some of the contradictory data relating to the use of radiolabeled platelet studies for the prediction of the response of patients with ITP to splenectomy

  6. Evolutionary plasticity of plasma membrane interaction in DREPP family proteins.

    Science.gov (United States)

    Vosolsobě, Stanislav; Petrášek, Jan; Schwarzerová, Kateřina

    2017-05-01

    The plant-specific DREPP protein family comprises proteins that were shown to regulate the actin and microtubular cytoskeleton in a calcium-dependent manner. Our phylogenetic analysis showed that DREPPs first appeared in ferns and that DREPPs have a rapid and plastic evolutionary history in plants. Arabidopsis DREPP paralogues called AtMDP25/PCaP1 and AtMAP18/PCaP2 are N-myristoylated, which has been reported as a key factor in plasma membrane localization. Here we show that N-myristoylation is neither conserved nor ancestral for the DREPP family. Instead, by using confocal microscopy and a new method for quantitative evaluation of protein membrane localization, we show that DREPPs rely on two mechanisms ensuring their plasma membrane localization. These include N-myristoylation and electrostatic interaction of a polybasic amino acid cluster. We propose that various plasma membrane association mechanisms resulting from the evolutionary plasticity of DREPPs are important for refining plasma membrane interaction of these signalling proteins under various conditions and in various cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Polypropylene non-woven fabric membrane via surface modification with biomimetic phosphorylcholine in Ce(IV)/HNO{sub 3} redox system

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jie; Shi Qiang; Luan Shifang; Song Lingjie; Yang Huawei [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Stagnaro, Paola [Istituto per Io Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova (Italy); Yin Jinghua, E-mail: yinjh@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-10-01

    Surface modification of polypropylene non-woven fabric membrane (NWF) for improving its hemocompatibility was developed by grafting a biomimic monomer, 2-methacryloyloxyethyl phosphorycholine (MPC). The NWF membrane surface was first activated by potassium peroxydisulfate to form hydroxyl groups, and then grafted with MPC using ceric (IV) ammonium nitrate as the redox initiator. The surface chemical changes before and after modification were confirmed by Fourier transform infrared spectroscopy with an ATR unit (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS); the water contact angle results showed the gradual changes in wettability from hydrophobic to hydrophilic surface. Meanwhile, the hemocompatibility of these samples was also evaluated by protein adsorption and platelet adhesion. These experimental results exhibited that the introduction of poly(MPC) onto the NWF membrane surfaces substantially improved their hemocompatibility. The feasibility and simplicity of this procedure may lead to potential applications of NWF membranes in biomedical separation and blood purification. - Graphical abstract: 2-methacryloyloxyethyl phosphorycholine (MPC), was grafted onto non-woven fabric (NWF) membrane surface by Ce(IV)/HNO{sub 3} redox system. The protein adsorption and platelet adhesion were substantially suppressed by the introduction of poly(MPC). Highlights: Black-Right-Pointing-Pointer MPC was successfully grafted onto NWF PP membrane surface. Black-Right-Pointing-Pointer Obviously enhanced hemocompatibility was acquired by the modified samples. Black-Right-Pointing-Pointer A facile redox grafting was adopted in the whole process.

  8. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  9. Super liquid-repellent gas membranes for carbon dioxide capture and heart-lung machines.

    Science.gov (United States)

    Paven, Maxime; Papadopoulos, Periklis; Schöttler, Susanne; Deng, Xu; Mailänder, Volker; Vollmer, Doris; Butt, Hans-Jürgen

    2013-01-01

    In a gas membrane, gas is transferred between a liquid and a gas through a microporous membrane. The main challenge is to achieve a high gas transfer while preventing wetting and clogging. With respect to the oxygenation of blood, haemocompatibility is also required. Here we coat macroporous meshes with a superamphiphobic-or liquid repellent-layer to meet this challenge. The superamphiphobic layer consists of a fractal-like network of fluorinated silicon oxide nanospheres; gas trapped between the nanospheres keeps the liquid from contacting the wall of the membrane. We demonstrate the capabilities of the membrane by capturing carbon dioxide gas into a basic aqueous solution and in addition use it to oxygenate blood. Usually, blood tends to clog membranes because of the abundance of blood cells, platelets, proteins and lipids. We show that human blood stored in a superamphiphobic well for 24 h can be poured off without leaving cells or adsorbed protein behind.

  10. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    Science.gov (United States)

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  11. Effect of twenty minutes of aerobic exercise on in vivo platelet release in moderately trained females: radioimmunoassay of platelet factor 4 and beta-thromboglobulin

    International Nuclear Information System (INIS)

    Rudmann, S.V.

    1986-01-01

    Circulating blood platelets serve an important role in the physiological process of hemostasis. Physical exercise has been documented to result in alterations in many hemostatic parameters including platelet size, number and function. Most published research data support the hypotheses that both hemostasis and fibrinolysis become activated as a consequence of various levels of physical exercise. The purpose of this study was to determine the effect of twenty minutes aerobic exercise on platelet activation in vivo. Platelet activation in vivo is associated with the release of platelet granular contents. Platelet alpha granules contain two platelet specific proteins: platelet factor 4 (PF4) and beta-thromboglobulin (BTG). Elevated plasma levels of these proteins are a specific marker of in vivo platelet activation. Subjects were moderately trained female volunteers between the ages of 22 and 40 years. Subjects were exercised or twenty minutes on a bicycle ergometer at workloads that represented 65 to 75% of their functional capacity. Blood specimens were drawn within five minutes of exercise. Plasma samples from exercise and control subjects were assayed for PF4 and BTG using a sensitive competitive-binding radioimmunoassay procedure. The mean plasma levels of both proteins were significantly greater in the exercising subjects when compared with the non-exercising controls. Data from this study support the following research hypotheses: BTG plasma levels will be significantly higher in exercising subjects than in non-exercising controls, and PF4 plasma levels will be significantly higher in exercising subjects than in non-exercising controls

  12. Changes in exposed membrane proteins during in vitro capacitation of boar sperm

    International Nuclear Information System (INIS)

    Berger, T.

    1990-01-01

    Exposed plasma membrane proteins were labeled with 125 I before and after incubation of boar sperm under capacitating conditions. Labeled protein profiles were compared to the ability of the sperm to penetrate zona-free hamster ova. Quantitatively, the labeled sperm membrane proteins were primarily low Mr prior to capacitation. The majority of the labeled seminal plasma protein was also low Mr. After capacitation, two new proteins (64,000 Mr and 78,000 Mr) were labeled. Sperm did not exhibit these exposed membrane proteins when incubated under noncapacitating conditions. Appearance of these proteins was not correlated to the percentage of acrosome-reacted sperm. Although the 64,000 Mr protein was not consistently observed, the relative labeling of the 78,000 Mr protein was highly correlated with the ability of sperm to fuse with zona-free hamster ova. The 78,000 Mr protein may be a sperm protein involved in fusion with the egg plasma membrane

  13. Overcoming barriers to membrane protein structure determination

    NARCIS (Netherlands)

    Bill, Roslyn M.; Henderson, Peter J. F.; Iwata, So; Kunji, Edmund R. S.; Michel, Hartmut; Neutze, Richard; Newstead, Simon; Poolman, Bert; Tate, Christopher G.; Vogel, Horst

    After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new

  14. Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes

    OpenAIRE

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H. Peter

    2010-01-01

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under...

  15. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.

    Directory of Open Access Journals (Sweden)

    Ellen Wallace

    Full Text Available The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive

  16. Solubilization of rat kidney plasma membrane proteins associated with 3H-aldosterone

    International Nuclear Information System (INIS)

    Ozegovic, B.; Dobrovic-Jenik, D.; Milkovic, S.

    1988-01-01

    The treatment of rat kidney plasma membranes with sodium dodecyl sulphate (SDS) did not essentially affect the ability of the membranes for 3 H-aldosterone binding as compared with the intact plasma membranes (Ozegovic et al., 1977). A gel filtration of 3 H-aldosterone - kidney plasma membranes complex on Sepharose 6B yielded 2 protein and 2 3 H-aldosterone peaks. The proteins which were eluted in the first peak were associated with the first 3 H-aldosterone peak while the second 3 H-aldosterone peak was eluted with Ve corresponding to Ve of free 3 H-aldosterone. Spironolactone, a competitive antagonist of aldosterone, prevented the binding of 3 H-aldosterone to the membrane proteins. The results demonstrated a high affinity of the kidney plasma membranes solubilized with SDS and a specificity of aldosterone binding to the plasma membrane proteins of higher molecular mass. (author)

  17. ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants.

    Science.gov (United States)

    Isono, Erika; Kalinowska, Kamila

    2017-12-01

    To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS.

    Science.gov (United States)

    Takahashi, Daisuke; Li, Bin; Nakayama, Takato; Kawamura, Yukio; Uemura, Matsuo

    2014-01-01

    Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.

  19. Dimerization of glycoprotein Ibα is not sufficient to induce platelet clearance.

    Science.gov (United States)

    Liang, X; Syed, A K; Russell, S R; Ware, J; Li, R

    2016-02-01

    ESSENTIALS: Many anti-glycoprotein (GP)Ibα antibodies induce platelet clearance in a dimer-dependent manner. Characterization of monoclonal antibodies that bind the mechanosensitive domain (MSD) of GPIbα. An anti-MSD antibody binds two copies of GPIbα in platelets but does not induce platelet clearance. The prevailing clustering model of GPIbα signaling is incorrect or needs revision. The mechanism of platelet clearance is not clear. Many antibodies binding the membrane-distal ligand-binding domain of glycoprotein (GP)Ibα induce rapid clearance of platelets and acute thrombocytopenia, which requires the bifurcated antibody structure. It was thought that binding of these antibodies induced lateral dimerization or clustering of GPIbα in the plasma membrane, which leads to downstream signaling and platelet clearance. However, many antibodies targeting GPIbβ and GPIX, which are associated with GPIbα in the GPIb-IX complex, do not induce platelet clearance, which is in contradiction to the clustering model. To test whether dimerization or clustering of GPIbα is sufficient to transmit the signal that leads to platelet clearance. We have recently raised several mAbs targeting the mechanosensitive domain (MSD) of GPIbα. Binding of these anti-MSD antibodies was characterized with biochemical methods. Their ability to stimulate platelets and induce platelet clearance in mice was assessed. Infusion of anti-MSD antibodies does not cause thrombocytopenia in mice. These antibodies show no detectable effects on platelet activation and aggregation in vitro. Further biochemical investigation showed that the anti-MSD antibody 3D1 binds two copies of GPIbα on the platelet surface. Therefore, lateral dimerization of GPIbα induced by antibody binding is not sufficient to initiate GPIb-IX signaling and induce platelet clearance. Our results suggest that a factor other than or in addition to clustering of GPIbα is required to induce platelet clearance. © 2015 International

  20. The effect of sibutramine on platelet morphology of Spraque-Dawley rats fed a high energy diet.

    Science.gov (United States)

    Oberholzer, Hester Magdalena; Van Der Schoor, Ciska; Pretorius, Etheresia

    2013-06-01

    The aim of this study was to investigate the effect of Sibutramine on platelet ultrastructure and discuss the morphological observations in relation to known physiological effects of the compound. Six-week-old, female Spraque-Dawley rats were used in this study. The animals were placed on a high energy diet after which sibutramine administration followed. Blood was drawn on the day of termination and platelet rich plasma was obtained to prepare plasma smears for analysis. Scanning electron microscopy was used to investigate the ultrastructure of the platelets. Platelets of the Sibutramine-treated animals showed smooth surface with limited pseudopodia formation when compared with that of the control animals. Higher magnification of the platelet surface showed membrane tears and swelling, typically seen in necrotic cells. It can therefore be concluded from these results that Sibutramine alters the membrane morphology of platelets to that typical of necrotic cells. Copyright © 2013 Wiley Periodicals, Inc.

  1. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    Science.gov (United States)

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  2. High throughput platforms for structural genomics of integral membrane proteins.

    Science.gov (United States)

    Mancia, Filippo; Love, James

    2011-08-01

    Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Efficient preparation and analysis of membrane and membrane protein systems

    Czech Academy of Sciences Publication Activity Database

    Javanainen, M.; Martinez-Seara, Hector

    2016-01-01

    Roč. 1858, č. 10 (2016), s. 2468-2482 ISSN 0005-2736 Institutional support: RVO:61388963 Keywords : tools and software * membrane building * protein insertion * molecular dynamics * lipid bilayer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2016

  4. Structure and Dynamic Properties of Membrane Proteins using NMR

    DEFF Research Database (Denmark)

    Rösner, Heike; Kragelund, Birthe

    2012-01-01

    conformational changes. Their structural and functional decoding is challenging and has imposed demanding experimental development. Solution nuclear magnetic resonance (NMR) spectroscopy is one of the techniques providing the capacity to make a significant difference in the deciphering of the membrane protein...... structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches......-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012....

  5. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    Directory of Open Access Journals (Sweden)

    Marc Lenoir

    2015-10-01

    Full Text Available The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH and Tec homology (TH domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  6. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-10-23

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  7. Antiaggregant effects of Arbutus unedo extracts in human platelets.

    Science.gov (United States)

    El Haouari, Mohammed; López, José J; Mekhfi, Hassane; Rosado, Juan A; Salido, Ginés M

    2007-09-05

    Platelet hyperaggregability plays a pivotal role in the pathogenesis of cardiovascular diseases. Thrombin evokes aggregation through Ca(2+) mobilization, tyrosine phosphorylation and generation of reactive oxygen species (ROS). We have investigated the antiaggregant properties of Arbutus unedo extracts in human platelets. Changes in cytosolic Ca(2+) concentration and intracellular oxidants production were registered by espectrofluorimetry using fura-2 and dichlorodihydrofluorescein, respectively, platelet aggregation was assessed by aggregometry and protein tyrosine phosphorylation was detected by Western blotting. Platelet treatment with increasing concentrations (0.015-1.5mg/mL) of crude aqueous, ethyl acetate or diethyl ether extracts reduced platelet aggregation evoked by thrombin (0.5 U/mL) and show a potent ROS scavenger activity, preventing thrombin-evoked endogenous generation of ROS. Treatment with Arbutus unedo extracts did not alter thrombin-evoked Ca(2+) release from the intracellular stores but reduced store-operated Ca(2+) entry induced by thrombin or by selective depletion of the two Ca(2+) stores in platelets, the dense tubular system and the acidic stores. In addition, platelet treatment with extracts reduced both basal and thrombin-stimulated protein tyrosine phosphorylation. We conclude that Arbutus unedo extracts show antiaggregant actions due to attenuation of Ca(2+) mobilization, ROS production and protein tyrosine phosphorylation and might be used for the treatment and/or prevention of cardiovascular diseases.

  8. Comparative Membrane Proteomics Reveals a Nonannotated E. coli Heat Shock Protein.

    Science.gov (United States)

    Yuan, Peijia; D'Lima, Nadia G; Slavoff, Sarah A

    2018-01-09

    Recent advances in proteomics and genomics have enabled discovery of thousands of previously nonannotated small open reading frames (smORFs) in genomes across evolutionary space. Furthermore, quantitative mass spectrometry has recently been applied to analysis of regulated smORF expression. However, bottom-up proteomics has remained relatively insensitive to membrane proteins, suggesting they may have been underdetected in previous studies. In this report, we add biochemical membrane protein enrichment to our previously developed label-free quantitative proteomics protocol, revealing a never-before-identified heat shock protein in Escherichia coli K12. This putative smORF-encoded heat shock protein, GndA, is likely to be ∼36-55 amino acids in length and contains a predicted transmembrane helix. We validate heat shock-regulated expression of the gndA smORF and demonstrate that a GndA-GFP fusion protein cofractionates with the cell membrane. Quantitative membrane proteomics therefore has the ability to reveal nonannotated small proteins that may play roles in bacterial stress responses.

  9. BCL::MP-Fold: membrane protein structure prediction guided by EPR restraints

    Science.gov (United States)

    Fischer, Axel W.; Alexander, Nathan S.; Woetzel, Nils; Karakaş, Mert; Weiner, Brian E.; Meiler, Jens

    2016-01-01

    For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The protein-size-normalized root-mean-square-deviation (RMSD100) value of the most accurate model is better than 8 Å for twenty-seven, better than 6 Å for twenty-two, and better than 4 Å for fifteen out of twenty-nine proteins, demonstrating the algorithm’s ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data. PMID:25820805

  10. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    Science.gov (United States)

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  11. Structure, Function, Self-Assembly and Origin of Simple Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew

    2003-01-01

    Integral membrane proteins perform such essential cellular functions as transport of ions, nutrients and waste products across cell walls, transduction of environmental signals, regulation of cell fusion, recognition of other cells, energy capture and its conversion into high-energy compounds. In fact, 30-40% of genes in modem organisms codes for membrane proteins. Although contemporary membrane proteins or their functional assemblies can be quite complex, their transmembrane fragments are usually remarkably simple. The most common structural motif for these fragments is a bundle of alpha-helices, but occasionally it could be a beta-barrel. In a series of molecular dynamics computer simulations we investigated self-organizing properties of simple membrane proteins based on these structural motifs. Specifically, we studied folding and insertion into membranes of short, nonpolar or amphiphatic peptides. We also investigated glycophorin A, a peptide that forms sequence-specific dimers, and a transmembrane aggregate of four identical alpha-helices that forms an efficient and selective voltage-gated proton channel was investigated. Many peptides are attracted to water-membrane interfaces. Once at the interface, nonpolar peptides spontaneously fold to a-helices. Whenever the sequence permits, peptides that contain both polar and nonpolar amino also adopt helical structures, in which polar and nonpolar amino acid side chains are immersed in water and membrane, respectively. Specific identity of side chains is less important. Helical peptides at the interface could insert into the membrane and adopt a transmembrane conformation. However, insertion of a single helix is unfavorable because polar groups in the peptide become completely dehydrated upon insertion. The unfavorable free energy of insertion can be regained by spontaneous association of peptides in the membrane. The first step in this process is the formation of dimers, although the most common are aggregates of 4

  12. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins

    NARCIS (Netherlands)

    Macaulay, Iain C.; Tijssen, Marloes R.; Thijssen-Timmer, Daphne C.; Gusnanto, Arief; Steward, Michael; Burns, Philippa; Langford, Cordelia F.; Ellis, Peter D.; Dudbridge, Frank; Zwaginga, Jaap-Jan; Watkins, Nicholas A.; van der Schoot, C. Ellen; Ouwehand, Willem H.

    2007-01-01

    To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of

  13. Using Förster-Resonance Energy Transfer to Measure Protein Interactions Between Bcl-2 Family Proteins on Mitochondrial Membranes.

    Science.gov (United States)

    Pogmore, Justin P; Pemberton, James M; Chi, Xiaoke; Andrews, David W

    2016-01-01

    The Bcl-2 family of proteins regulates the process of mitochondrial outer membrane permeabilization, causing the release of cytochrome c and committing a cell to apoptosis. The majority of the functional interactions between these proteins occur at, on, or within the mitochondrial outer membrane, complicating structural studies of the proteins and complexes. As a result most in vitro studies of these protein-protein interactions use truncated proteins and/or detergents which can cause artificial interactions. Herein, we describe a detergent-free, fluorescence-based, in vitro technique to study binding between full-length recombinant Bcl-2 family proteins, particularly cleaved BID (cBID) and BCL-XL, on the membranes of purified mitochondria.

  14. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling.

    Science.gov (United States)

    Parag-Sharma, Kshitij; Leyme, Anthony; DiGiacomo, Vincent; Marivin, Arthur; Broselid, Stefan; Garcia-Marcos, Mikel

    2016-12-30

    GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gα i3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients.

    Directory of Open Access Journals (Sweden)

    Ozge Cevik

    Full Text Available Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets' tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics. These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides

  16. Membrane proteins bind lipids selectively to modulate their structure and function.

    Science.gov (United States)

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  17. Folding DNA into a Lipid-Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins.

    Science.gov (United States)

    Dong, Yuanchen; Chen, Shuobing; Zhang, Shijian; Sodroski, Joseph; Yang, Zhongqiang; Liu, Dongsheng; Mao, Youdong

    2018-02-19

    Building upon DNA origami technology, we introduce a method to reconstitute a single membrane protein into a self-assembled DNA nanobarrel that scaffolds a nanodisc-like lipid environment. Compared with the membrane-scaffolding-protein nanodisc technique, our approach gives rise to defined stoichiometry, controlled sizes, as well as enhanced stability and homogeneity in membrane protein reconstitution. We further demonstrate potential applications of the DNA nanobarrels in the structural analysis of membrane proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    Science.gov (United States)

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647

  19. Oxidative alterations during human platelet storage

    OpenAIRE

    Göker, Bahar; Özsavcı, Derya; Şener, Azize; Aksoy, Halil; Bağışgil, Vedat; Yanıkkaya Demirel, Gülderen; Uras, Fikriye

    2014-01-01

    SUMMARY: During storage of platelet obtained by apheresis several changes occur. The aimof this study was to investigate the effect of storage on activation, apoptosis, protein pattern,lipid peroxidation, and the levels of nitric oxide (NO) and glutathione (GSH) of platelets. In thisstudy, platelets obtained from healty donors (n=7) by apheresis were kept in an agitator fornine days at 20-24°C. The samples were taken on the 1st, 3 rd, 5 th and 9 th days and plateletswere precipitated. Platele...

  20. [Better performance of Western blotting: quick vs slow protein transfer, blotting membranes and the visualization methods].

    Science.gov (United States)

    Kong, Ling-Quan; Pu, Ying-Hui; Ma, Shi-Kun

    2008-01-01

    To study how the choices of the quick vs slow protein transfer, the blotting membranes and the visualization methods influence the performance of Western blotting. The cellular proteins were abstracted from human breast cell line MDA-MB-231 for analysis with Western blotting using quick (2 h) and slow (overnight) protein transfer, different blotting membranes (nitrocellulose, PVDF and nylon membranes) and different visualization methods (ECL and DAB). In Western blotting with slow and quick protein transfer, the prestained marker presented more distinct bands on nitrocellulose membrane than on the nylon and PVDF membranes, and the latter also showed clear bands on the back of the membrane to very likely cause confusion, which did not occur with nitrocellulose membrane. PVDF membrane allowed slightly clearer visualization of the proteins with DAB method as compared with nitrocellulose and nylon membranes, and on the latter two membranes, quick protein transfer was likely to result in somehow irregular bands in comparison with slow protein transfer. With slow protein transfer and chemiluminescence for visualization, all the 3 membranes showed clear background, while with quick protein transfer, nylon membrane gave rise to obvious background noise but the other two membranes did not. Different membranes should be selected for immunoblotting according to the actual needs of the experiment. Slow transfer of the proteins onto the membranes often has better effect than quick transfer, and enhanced chemiluminescence is superior to DAB for protein visualization and allows highly specific and sensitive analysis of the protein expressions.

  1. Generation of Platelet Microparticles after Cryopreservation of Apheresis Platelet Concentrates Contributes to Hemostatic Activity

    Directory of Open Access Journals (Sweden)

    İbrahim Eker

    2017-03-01

    Full Text Available Objective: In the last decade, substantial evidence has accumulated about the use of cryopreserved platelet concentrates, especially in trauma. However, little reference has been made in these studies to the morphological and functional changes of platelets. Recently platelets have been shown to be activated by cryopreservation processes and to undergo procoagulant membrane changes resulting in the generation of platelet-derived microparticles (PMPs, platelet degranulation, and release of platelet-derived growth factors (PDGFs. We assessed the viabilities and the PMP and PDGF levels of cryopreserved platelets, and their relation with thrombin generation. Materials and Methods: Apheresis platelet concentrates (APCs from 20 donors were stored for 1 day and cryopreserved with 6% dimethyl sulfoxide. Cryopreserved APCs were kept at -80 °C for 1 day. Thawed APCs (100 mL were diluted with 20 mL of autologous plasma and specimens were analyzed for viabilities and PMPs by flow cytometry, for thrombin generation by calibrated automated thrombogram, and for PDGFs by enzyme-linked immunosorbent assay testing. Results: The mean PMP and PDGF levels in freeze-thawed APCs were significantly higher (2763±399.4/μL vs. 319.9±80.5/μL, p<0.001 and 550.9±73.6 pg/mL vs. 96.5±49 pg/mL, p<0.001, respectively, but the viability rates were significantly lower (68.2±13.7% vs. 94±7.5%, p<0.001 than those of fresh APCs. The mean endogenous thrombin potential (ETP of freeze-thawed APCs was significantly higher than that of the fresh APCs (3406.1±430.4 nM.min vs. 2757.6±485.7 nM.min, p<0.001. Moreover, there was a significant positive poor correlation between ETP levels and PMP levels (r=0.192, p=0.014. Conclusion: Our results showed that, after cryopreservation, while levels of PMPs were increasing, significantly higher and earlier thrombin formation was occurring in the samples analyzed despite the significant decrease in viability. Considering the damage caused

  2. Impulsivity, gender, and the platelet serotonin transporter in healthy subjects

    Directory of Open Access Journals (Sweden)

    Donatella Marazziti

    2009-12-01

    Full Text Available Donatella Marazziti, Stefano Baroni, Irene Masala, Francesca Golia, Giorgio Consoli, Gabriele Massimetti, Michela Picchetti, Mario Catena Dell’Osso, Gino Giannaccini, Laura Betti, Antonio Lucacchini, Antonio CiapparelliDipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, University of Pisa, Pisa, ItalyAbstract: The present study explored the possible relationships between impulsivity, gender, and a peripheral serotonergic marker, the platelet serotonin (5-HT transporter (SERT, in a group of 32 healthy subjects. The impulsivity was measured by means of the Barratt Impulsivity Scale, version 11 (BIS-11, a widely used self-report questionnaire, and the platelet SERT was evaluated by means of the specific binding of 3H-paroxetine (3H-Par to platelet membranes, according to standardized protocols. The results showed that women had a higher BIS-11 total score than men, and also higher scores of two factors of the same scale: the motor impulsivity and the cognitive complexity. The analysis of the correlations revealed that the density of the SERT proteins, as measured by the maximum binding capacity (Bmax of 3H-Par, was significantly and positively related to the cognitive complexity factor, but only in men. Men showed also a significant and negative correlation with the dissociation constant, Kd, of (3H-Par binding, and the motor impulsivity factor. These findings suggest that women are generally more impulsive than men, but that the 5-HT system is more involved in the impulsivity of men than in that of women.Keywords: impulsivity, gender, serotonin transporter, Barratt Impulsivity Scale, platelets, 3H-paroxetine

  3. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junfen, E-mail: junfensun@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, North People Road 2999, Shanghai 201620 (China); Wu, Lishun [Department of Chemistry and Chemical Engineering, Heze University, Daxue Road 2269, Heze, Shandong Province 274015 (China)

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  4. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    Directory of Open Access Journals (Sweden)

    Morita Mizuki

    2011-12-01

    Full Text Available Abstract Background Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. Results To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. Conclusions We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function.

  5. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    International Nuclear Information System (INIS)

    Morita, Mizuki; Katta, AVSK Mohan; Ahmad, Shandar; Mori, Takaharu; Sugita, Yuji; Mizuguchi, Kenji

    2011-01-01

    Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function

  6. The Origin and Early Evolution of Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  7. Single-particle electron microscopy in the study of membrane protein structure.

    Science.gov (United States)

    De Zorzi, Rita; Mi, Wei; Liao, Maofu; Walz, Thomas

    2016-02-01

    Single-particle electron microscopy (EM) provides the great advantage that protein structure can be studied without the need to grow crystals. However, due to technical limitations, this approach played only a minor role in the study of membrane protein structure. This situation has recently changed dramatically with the introduction of direct electron detection device cameras, which allow images of unprecedented quality to be recorded, also making software algorithms, such as three-dimensional classification and structure refinement, much more powerful. The enhanced potential of single-particle EM was impressively demonstrated by delivering the first long-sought atomic model of a member of the biomedically important transient receptor potential channel family. Structures of several more membrane proteins followed in short order. This review recounts the history of single-particle EM in the study of membrane proteins, describes the technical advances that now allow this approach to generate atomic models of membrane proteins and provides a brief overview of some of the membrane protein structures that have been studied by single-particle EM to date. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Chemical synthesis of membrane proteins by the removable backbone modification method.

    Science.gov (United States)

    Tang, Shan; Zuo, Chao; Huang, Dong-Liang; Cai, Xiao-Ying; Zhang, Long-Hua; Tian, Chang-Lin; Zheng, Ji-Shen; Liu, Lei

    2017-12-01

    Chemical synthesis can produce membrane proteins bearing specifically designed modifications (e.g., phosphorylation, isotope labeling) that are difficult to obtain through recombinant protein expression approaches. The resulting homogeneously modified synthetic membrane proteins are valuable tools for many advanced biochemical and biophysical studies. This protocol describes the chemical synthesis of membrane proteins by condensation of transmembrane peptide segments through native chemical ligation. To avoid common problems encountered due to the poor solubility of transmembrane peptides in almost any solvent, we describe an effective procedure for the chemical synthesis of membrane proteins through the removable-backbone modification (RBM) strategy. Two key steps of this protocol are: (i) installation of solubilizing Arg4-tagged RBM groups into the transmembrane peptides at any primary amino acid through Fmoc (9-fluorenylmethyloxycarbonyl) solid-phase peptide synthesis and (ii) native ligation of the full-length sequence, followed by removal of the RBM tags by TFA (trifluoroacetic acid) cocktails to afford the native protein. The installation of RBM groups is achieved by using 4-methoxy-5-nitrosalicyladehyde by reduction amination to incorporate an activated O-to-N acyl transfer auxiliary. The Arg4-tag-modified membrane-spanning peptide segments behave like water-soluble peptides to facilitate their purification, ligation and mass characterization.

  9. Physico-Pathologic Mechanisms Involved in Neurodegeneration: Misfolded Protein-Plasma Membrane Interactions.

    Science.gov (United States)

    Shrivastava, Amulya Nidhi; Aperia, Anita; Melki, Ronald; Triller, Antoine

    2017-07-05

    Several neurodegenerative disorders, such as Alzheimer's and Parkinson's disease, are characterized by prominent loss of synapses and neurons associated with the presence of abnormally structured or misfolded protein assemblies. Cell-to-cell transfer of misfolded proteins has been proposed for the intra-cerebral propagation of these diseases. When released, misfolded proteins diffuse in the 3D extracellular space before binding to the plasma membrane of neighboring cells, where they diffuse on a 2D plane. This reduction in diffusion dimension and the cell surface molecular crowding promote deleterious interactions with native membrane proteins, favoring clustering and further aggregation of misfolded protein assemblies. These processes open up new avenues for therapeutics development targeting the initial interactions of deleterious proteins with the plasma membrane or the subsequent pathological signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Soft tissue regeneration using leukocyte-platelet rich fibrin after exeresis of hyperplastic gingival lesions: two case reports.

    Science.gov (United States)

    di Lauro, A E; Abbate, D; Dell'Angelo, B; Iannaccone, G A; Scotto, F; Sammartino, G

    2015-11-02

    Leukocyte-platelet rich fibrin belongs to a second generation of platelet concentrates that does not need biochemical blood manipulation. It is used for tissue healing and regeneration in periodontal and oral-maxillofacial surgery. We report two cases of hyperplastic gingival lesions treated by exeresis and application of leukocyte-platelet rich fibrin membranes in order to improve and accelerate tissue healing. Two patients (a 78-year-old Caucasian woman and a 30-year-old Caucasian man) were treated for hyperplastic gingival lesions. They underwent to exeresis of lesions and application of leukocyte-platelet rich fibrin membranes. Tissue healing was clinically evaluated after 1, 3, 7, 14 and 30 postoperative days. No recurrences were observed after 2 years of semi-annual follow up. We obtained rapid and good healing of soft tissues probably due to the elevated content of leukocytes, platelets and growth factors in the leukocyte-platelet rich fibrin. Based on our results we suggest the use of leukocyte-platelet rich fibrin to cover wounds after exeresis of oral neoformations such as hyperplastic gingival lesions.

  11. Platelet inhibition by nitrite is dependent on erythrocytes and deoxygenation.

    Directory of Open Access Journals (Sweden)

    Sirada Srihirun

    Full Text Available Nitrite is a nitric oxide (NO metabolite in tissues and blood, which can be converted to NO under hypoxia to facilitate tissue perfusion. Although nitrite is known to cause vasodilation following its reduction to NO, the effect of nitrite on platelet activity remains unclear. In this study, the effect of nitrite and nitrite+erythrocytes, with and without deoxygenation, on platelet activity was investigated.Platelet aggregation was studied in platelet-rich plasma (PRP and PRP+erythrocytes by turbidimetric and impedance aggregometry, respectively. In PRP, DEANONOate inhibited platelet aggregation induced by ADP while nitrite had no effect on platelets. In PRP+erythrocytes, the inhibitory effect of DEANONOate on platelets decreased whereas nitrite at physiologic concentration (0.1 µM inhibited platelet aggregation and ATP release. The effect of nitrite+erythrocytes on platelets was abrogated by C-PTIO (a membrane-impermeable NO scavenger, suggesting an NO-mediated action. Furthermore, deoxygenation enhanced the effect of nitrite as observed from a decrease of P-selectin expression and increase of the cGMP levels in platelets. The ADP-induced platelet aggregation in whole blood showed inverse correlations with the nitrite levels in whole blood and erythrocytes.Nitrite alone at physiological levels has no effect on platelets in plasma. Nitrite in the presence of erythrocytes inhibits platelets through its reduction to NO, which is promoted by deoxygenation. Nitrite may have role in modulating platelet activity in the circulation, especially during hypoxia.

  12. Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane.

    Science.gov (United States)

    Leser, George P; Lamb, Robert A

    2017-05-01

    Influenza virus assembles and buds at the plasma membrane of virus-infected cells. The viral proteins assemble at the same site on the plasma membrane for budding to occur. This involves a complex web of interactions among viral proteins. Some proteins, like hemagglutinin (HA), NA, and M2, are integral membrane proteins. M1 is peripherally membrane associated, whereas NP associates with viral RNA to form an RNP complex that associates with the cytoplasmic face of the plasma membrane. Furthermore, HA and NP have been shown to be concentrated in cholesterol-rich membrane raft domains, whereas M2, although containing a cholesterol binding motif, is not raft associated. Here we identify viral proteins in planar sheets of plasma membrane using immunogold staining. The distribution of these proteins was examined individually and pairwise by using the Ripley K function, a type of nearest-neighbor analysis. Individually, HA, NA, M1, M2, and NP were shown to self-associate in or on the plasma membrane. HA and M2 are strongly coclustered in the plasma membrane; however, in the case of NA and M2, clustering depends upon the expression system used. Despite both proteins being raft resident, HA and NA occupy distinct but adjacent membrane domains. M2 and M1 strongly cocluster, but the association of M1 with HA or NA is dependent upon the means of expression. The presence of HA and NP at the site of budding depends upon the coexpression of other viral proteins. Similarly, M2 and NP occupy separate compartments, but an association can be bridged by the coexpression of M1. IMPORTANCE The complement of influenza virus proteins necessary for the budding of progeny virions needs to accumulate at budozones. This is complicated by HA and NA residing in lipid raft-like domains, whereas M2, although an integral membrane protein, is not raft associated. Other necessary protein components such as M1 and NP are peripherally associated with the membrane. Our data define spatial relationships

  13. Fast iodide-SAD phasing for high-throughput membrane protein structure determination.

    Science.gov (United States)

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A; Gordeliy, Valentin; Popov, Alexander

    2017-05-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide-single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins-the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein-coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques.

  14. Steric exclusion and protein conformation determine the localization of plasma membrane transporters.

    Science.gov (United States)

    Bianchi, Frans; Syga, Łukasz; Moiset, Gemma; Spakman, Dian; Schavemaker, Paul E; Punter, Christiaan M; Seinen, Anne-Bart; van Oijen, Antoine M; Robinson, Andrew; Poolman, Bert

    2018-02-05

    The plasma membrane (PM) of Saccharomyces cerevisiae contains membrane compartments, MCC/eisosomes and MCPs, named after the protein residents Can1 and Pma1, respectively. Using high-resolution fluorescence microscopy techniques we show that Can1 and the homologous transporter Lyp1 are able to diffuse into the MCC/eisosomes, where a limited number of proteins are conditionally trapped at the (outer) edge of the compartment. Upon addition of substrate, the immobilized proteins diffuse away from the MCC/eisosomes, presumably after taking a different conformation in the substrate-bound state. Our data indicate that the mobile fraction of all integral plasma membrane proteins tested shows extremely slow Brownian diffusion through most of the PM. We also show that proteins with large cytoplasmic domains, such as Pma1 and synthetic chimera of Can1 and Lyp1, are excluded from the MCC/eisosomes. We hypothesize that the distinct localization patterns found for these integral membrane proteins in S. cerevisiae arises from a combination of slow lateral diffusion, steric exclusion, and conditional trapping in membrane compartments.

  15. Glycoprotein biosynthesis by human normal platelets

    International Nuclear Information System (INIS)

    Rodriguez, P.; Bello, O.; Apitz-Castro, R.

    1987-01-01

    Incorporation of radioactive Man, Gal, Fuc, Glc-N, and NANA into washed human normal platelets and endogenous glycoproteins has been found. Both parameters were time dependent. Analysis of hydrolyzed labeled glycoproteins by paper chromatography revealed that the radioactive monosaccharide incubated with the platelets had not been converted into other sugars. Acid hydrolysis demonstrates the presence of a glycosidic linkage. All the effort directed to the demonstration of the existence of a lipid-sugar intermediate in intact human platelets yielded negative results for Man and Glc-N used as precursors. The incorporation of these sugars into glycoproteins is insensitive to bacitracin, suggesting no involvement of lipid-linked saccharides in the synthesis of glycoproteins in human blood platelets. The absence of inhibition of the glycosylation process in the presence of cycloheximide suggests that the sugars are added to proteins present in the intact platelets. These results support the contention that glycoprotein biosynthesis in human blood platelets observed under our experimental conditions is effected through direct sugar nucleotide glycosylation

  16. Synthesis and characterization of tethered lipid assemblies for membrane protein reconstitution (Review).

    Science.gov (United States)

    Veneziano, Rémi; Rossi, Claire; Chenal, Alexandre; Brenner, Catherine; Ladant, Daniel; Chopineau, Joël

    2017-09-28

    Biological membranes and their related molecular mechanisms are essential for all living organisms. Membranes host numerous proteins and are responsible for the exchange of molecules and ions, cell signaling, and cell compartmentation. Indeed, the plasma membrane delimits the intracellular compartment from the extracellular environment and intracellular membranes. Biological membranes also play a major role in metabolism regulation and cellular physiology (e.g., mitochondrial membranes). The elaboration of membrane based biomimetic systems allows us to reconstitute and investigate, in controlled conditions, biological events occurring at the membrane interface. A whole variety of model membrane systems have been developed in the last few decades. Among these models, supported membranes were developed on various hydrophilic supports. The use of solid supports enables the direct use of surface sensitive techniques (e.g., surface plasmon resonance, quartz crystal microbalance, and atomic force microscopy) to monitor and quantify events occurring at the membrane surface. Tethered bilayer membranes (tBLMs) could be considered as an achievement of the first solid supported membranes described by the McConnell group. Tethered bilayers on solid supports were designed to delimit an inside compartment from an outside one. They were used for measuring interactions with ligands or incorporating large membrane proteins or complexes without interference with the support. In this context, the authors developed an easy concept of versatile tBLMs assembled on amino coated substrates that are formed upon the vesicle fusion rupture process applicable to protein-free vesicles as well as proteoliposomes. The phospholipid bilayer (natural or synthetic lipids) incorporated 5% of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly ethylene glycol-N-hydroxy succinimide to ensure the anchorage of the bilayer to the amino coated surface. The conditions for the formation of tBLMs on amino

  17. Quantitative Proteomic Analysis of Sulfolobus solfataricus Membrane Proteins

    NARCIS (Netherlands)

    Pham, T.K.; Sierocinski, P.; Oost, van der J.; Wright, P.C.

    2010-01-01

    A quantitative proteomic analysis of the membrane of the archaeon Sulfolobus solfataricus P2 using iTRAQ was successfully demonstrated in this technical note. The estimated number of membrane proteins of this organism is 883 (predicted based on Gravy score), corresponding to 30 % of the total

  18. High yield cell-free production of integral membrane proteins without refolding or detergents.

    Science.gov (United States)

    Wuu, Jessica J; Swartz, James R

    2008-05-01

    Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.

  19. Influence of Oxidative Stress on Stored Platelets

    Directory of Open Access Journals (Sweden)

    K. Manasa

    2016-01-01

    Full Text Available Platelet storage and its availability for transfusion are limited to 5-6 days. Oxidative stress (OS is one of the causes for reduced efficacy and shelf-life of platelets. The studies on platelet storage have focused on improving the storage conditions by altering platelet storage solutions, temperature, and materials. Nevertheless, the role of OS on platelet survival during storage is still unclear. Hence, this study was conducted to investigate the influence of storage on platelets. Platelets were stored for 12 days at 22°C. OS markers such as aggregation, superoxides, reactive oxygen species, glucose, pH, lipid peroxidation, protein oxidation, and antioxidant enzymes were assessed. OS increased during storage as indicated by increments in aggregation, superoxides, pH, conjugate dienes, and superoxide dismutase and decrements in glucose and catalase. Thus, platelets could endure OS till 6 days during storage, due to the antioxidant defense system. An evident increase in OS was observed from day 8 of storage, which can diminish the platelet efficacy. The present study provides an insight into the gradual changes occurring during platelet storage. This lays the foundation towards new possibilities of employing various antioxidants as additives in storage solutions.

  20. Ligand binding to G protein-coupled receptors in tethered cell membranes

    DEFF Research Database (Denmark)

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud

    2003-01-01

    for the surface immobilization of membrane proteins was developed using the prototypic seven transmembrane neurokinin-1 receptor. The receptor was expressed as a biotinylated protein in mammalian cells. Membranes from cell homogenates were selectively immobilized on glass surfaces covered with streptavidin. TIRF...... measurements showed that a fluorescent agonist binds to the receptor on the sensor surface with similar affinity as to the receptor in live cells. This approach offers the possibility to investigate minute amounts of membrane protein in an active form and in its native environment without purification....

  1. Palmitoylation of POTE family proteins for plasma membrane targeting

    International Nuclear Information System (INIS)

    Das, Sudipto; Ise, Tomoko; Nagata, Satoshi; Maeda, Hiroshi; Bera, Tapan K.; Pastan, Ira

    2007-01-01

    The POTE gene family is composed of 13 paralogs and likely evolved by duplications and remodeling of the human genome. One common property of POTE proteins is their localization on the inner aspect of the plasma membrane. To determine the structural elements required for membrane localization, we expressed mutants of different POTEs in 293T cells as EGFP fusion proteins. We also tested their palmitoylation by a biotin-switch assay. Our data indicate that the membrane localizations of different POTEs are mediated by similar 3-4 short cysteine rich repeats (CRRs) near the amino-terminuses and that palmitoylation on paired cysteine residues in each CRR motif is responsible for the localization. Multiple palmitoylation in the small CRRs can result in the strong association of whole POTEs with plasma membrane

  2. Controlling the rejection of protein during membrane filtration by adding selected polyelectrolytes

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Ferrer Roca, Carme; Meyer, Anne S.

    2012-01-01

    Electrostatic interactions among the charged groups on proteins and/or between proteins and other solutes significantly affect the aggregation/deposition phenomena that induce fouling and decrease permeate flux during membrane purification of proteins. Such interactions can be turned...... help enhance the performance of membrane filtration for fractionation/purification of a target protein by significantly reducing fouling and modifying rejection/selectivity.......) changing the pH, on the permeate flux and membrane transmission of bovin serum albumina (BSA) through a PVDF membrane. The addition of PS-co-AA to the feed solution resulted in significant increases of the BSA transmission at pH 7.4 as compared to the transmission of a pure BSA solution (1g...

  3. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    International Nuclear Information System (INIS)

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E.

    1987-01-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of [ 3 H]serotonin, or alter the dose-responsive binding of 125 I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF

  4. Training-induced changes in membrane transport proteins of human skeletal muscle

    DEFF Research Database (Denmark)

    Juel, C.

    2006-01-01

    Training improves human physical performance by inducing structural and cardiovascular changes, metabolic changes, and changes in the density of membrane transport proteins. This review focuses on the training-induced changes in proteins involved in sarcolemmal membrane transport. It is concluded...

  5. Isolation of monodisperse nanodisc-reconstituted membrane proteins using free flow electrophoresis

    DEFF Research Database (Denmark)

    Justesen, Bo Højen; Laursen, Tomas; Weber, Gerhard

    2013-01-01

    Free flow electrophoresis is used for rapid and high-recovery isolation of homogeneous preparations of functionally active membrane proteins inserted into nanodiscs. The approach enables isolation of integral and membrane anchored proteins and is also applicable following introduction of, e...

  6. Interactions of Ras proteins with the plasma membrane and their roles in signaling.

    Science.gov (United States)

    Eisenberg, Sharon; Henis, Yoav I

    2008-01-01

    The complex dynamic structure of the plasma membrane plays critical roles in cellular signaling; interactions with the membrane lipid milieu, spatial segregation within and between cellular membranes and/or targeting to specific membrane-associated scaffolds are intimately involved in many signal transduction pathways. In this review, we focus on the membrane interactions of Ras proteins. These small GTPases play central roles in the regulation of cell growth and proliferation, and their excessive activation is commonly encountered in human tumors. Ras proteins associate with the membrane continuously via C-terminal lipidation and additional interactions in both their inactive and active forms; this association, as well as the targeting of specific Ras isoforms to plasma membrane microdomains and to intracellular organelles, have recently been implicated in Ras signaling and oncogenic potential. We discuss biochemical and biophysical evidence for the roles of specific domains of Ras proteins in mediating their association with the plasma membrane, and consider the potential effects of lateral segregation and interactions with membrane-associated protein assemblies on the signaling outcomes.

  7. Ex vivo expansion of bovine corneal endothelial cells in xeno-free medium supplemented with platelet releasate.

    Directory of Open Access Journals (Sweden)

    Ming-Li Chou

    Full Text Available Clinical-grade ex vivo expansion of corneal endothelial cells can increase the availability of corneal tissues for transplantation and treatment of corneal blindness. However, these cells have very limited proliferative capacity. Successful propagation has required so far to use very complex growth media supplemented with fetal bovine serum and other xenocomponents. We hypothesized that human platelet releasates rich in multiple growth factors, and in particular neurotrophins, could potentially be a useful supplement for ex vivo expansion of corneal endothelium cells due to their neural crest origin. Platelet releasates were prepared by calcium salt activation of apheresis platelet concentrates, subjected or not to complement inactivation by heat treatment at 56°C for 30 minutes. Platelet releasates were characterized for their content in proteins and were found to contain high amount of growth factors including platelet-derived growth factor-AB (30.56 to 39.08 ng/ml and brain-derived neurotrophic factor (30.57 to 37.11 ng/ml neurotrophins. We compared the growth and viability of corneal endothelium cells in DMEM-F12 medium supplemented with different combinations of components, including 2.5%∼10% of the platelet releasates. Corneal endothelium cells expanded in platelet releasates exhibited good adhesion and a typical hexagonal morphology. Their growth and viability were enhanced when using the complement-inactivated platelet releasate at a concentration of 10%. Immunostaining and Western blots showed that CECs maintained the expressions of four important membrane markers: Na-K ATPase α1, zona occludens-1, phospho-connexin 43 and N-cadherin. In conclusion, our study provides the first proof-of-concept that human platelet releasates can be used for ex vivo expansion of corneal endothelium cells. These findings open a new paradigm for ex vivo propagation protocols of corneal endothelium cells in compliance with good tissue culture practices

  8. Clusters of proteins in bio-membranes: insights into the roles of interaction potential shapes and of protein diversity

    OpenAIRE

    Meilhac, Nicolas; Destainville, Nicolas

    2011-01-01

    It has recently been proposed that proteins embedded in lipidic bio-membranes can spontaneously self-organize into stable small clusters, or membrane nano-domains, due to the competition between short-range attractive and longer-range repulsive forces between proteins, specific to these systems. In this paper, we carry on our investigation, by Monte Carlo simulations, of different aspects of cluster phases of proteins in bio-membranes. First, we compare different long-range potentials (includ...

  9. Dual mechanism of integrin αIIbβ3 closure in procoagulant platelets.

    Science.gov (United States)

    Mattheij, Nadine J A; Gilio, Karen; van Kruchten, Roger; Jobe, Shawn M; Wieschhaus, Adam J; Chishti, Athar H; Collins, Peter; Heemskerk, Johan W M; Cosemans, Judith M E M

    2013-05-10

    Inactivation of integrin αIIbβ3 reverses platelet aggregate formation upon coagulation. Platelets from patient (Scott) and mouse (Capn1(-/-) and Ppif(-/-)) blood reveal a dual mechanism of αIIbβ3 inactivation: by calpain-2 cleavage of integrin-associated proteins and by cyclophilin D/TMEM16F-dependent phospholipid scrambling. These data provide novel insight into the switch mechanisms from aggregating to procoagulant platelets. Aggregation of platelets via activated integrin αIIbβ3 is a prerequisite for thrombus formation. Phosphatidylserine-exposing platelets with a key role in the coagulation process disconnect from a thrombus by integrin inactivation via an unknown mechanism. Here we show that αIIbβ3 inactivation in procoagulant platelets relies on a sustained high intracellular Ca(2+), stimulating intracellular cleavage of the β3 chain, talin, and Src kinase. Inhibition of calpain activity abolished protein cleavage, but only partly suppressed αIIbβ3 inactivation. Integrin αIIbβ3 inactivation was unchanged in platelets from Capn1(-/-) mice, suggesting a role of the calpain-2 isoform. Scott syndrome platelets, lacking the transmembrane protein TMEM16F and having low phosphatidylserine exposure, displayed reduced αIIbβ3 inactivation with the remaining activity fully dependent on calpain. In platelets from Ppif(-/-) mice, lacking mitochondrial permeability transition pore (mPTP) formation, agonist-induced phosphatidylserine exposure and αIIbβ3 inactivation were reduced. Treatment of human platelets with cyclosporin A gave a similar phenotype. Together, these data point to a dual mechanism of αIIbβ3 inactivation via calpain(-2) cleavage of integrin-associated proteins and via TMEM16F-dependent phospholipid scrambling with an assistant role of mPTP formation.

  10. Fouling kinetics in microfiltration of protein solutions using different membrane configurations

    DEFF Research Database (Denmark)

    Jakobsen, Sune; Jonsson, Gunnar Eigil

    1997-01-01

    Protein fouling in microfiltration has a large impact on the permeate flux and observed retention of the proteins despite the fact that the protein molecule is several times smaller than the average pore size in microfiltration membranes. This is due to adsorption and deposition of protein...... molecules and aggregates. The effect of membrane configuration upon protein fouling was investigated in crossflow filtration with asymmetric membranes either in a normal mode or in a reverse mode. It was observed by Jonsson et al. [1] that beer filtration in a reverse mode results in a smaller decrease...... in the flux compared to beer filtration in a normal mode. Similar results for protein filtration were observed by Bowen et al. [2]. One possible way to avoid fouling is the novel backshock technique (see Jonsson et al. [1]). The effect of backshock on protein filtration was investigated using a hollow fiber...

  11. A Finite Element Solution of Lateral Periodic Poisson–Boltzmann Model for Membrane Channel Proteins

    Science.gov (United States)

    Xu, Jingjie; Lu, Benzhuo

    2018-01-01

    Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson–Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z-axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations. PMID:29495644

  12. SURVEY REGARDING THE ULTRAFILTRATION OF PROTEINES THROUGH MEMBRANE BASED PROCEDURES

    Directory of Open Access Journals (Sweden)

    CAMELIA HODOSAN

    2008-05-01

    Full Text Available This work is based on examples that emphasize the complexity of the proteins ultrafiltration process, pointing out the first 10-15 minutes of ultrafiltration. The knowledgement of the factors that influence the separation through ultrafiltration of proteins will allow to choose the right type of membrane, the frequent use of the same membrane and the operation in mechanical and chemical conditions adequate to the ultrafiltration system, when it is separated a protein with certain molecular weight.

  13. Revolutionizing membrane protein overexpression in bacteria

    NARCIS (Netherlands)

    Schlegel, Susan; Klepsch, Mirjam; Gialama, Dimitra; Wickstrom, David; Slotboom, Dirk Jan; de Gier, Jan-Willem; Wickström, David

    The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory,

  14. A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells.

    Science.gov (United States)

    Dormeyer, Wilma; van Hoof, Dennis; Mummery, Christine L; Krijgsveld, Jeroen; Heck, Albert J R

    2008-10-01

    The identification of (plasma) membrane proteins in cells can provide valuable insights into the regulation of their biological processes. Pluripotent cells such as human embryonic stem cells and embryonal carcinoma cells are capable of unlimited self-renewal and share many of the biological mechanisms that regulate proliferation and differentiation. The comparison of their membrane proteomes will help unravel the biological principles of pluripotency, and the identification of biomarker proteins in their plasma membranes is considered a crucial step to fully exploit pluripotent cells for therapeutic purposes. For these tasks, membrane proteomics is the method of choice, but as indicated by the scarce identification of membrane and plasma membrane proteins in global proteomic surveys it is not an easy task. In this minireview, we first describe the general challenges of membrane proteomics. We then review current sample preparation steps and discuss protocols that we found particularly beneficial for the identification of large numbers of (plasma) membrane proteins in human tumour- and embryo-derived stem cells. Our optimized assembled protocol led to the identification of a large number of membrane proteins. However, as the composition of cells and membranes is highly variable we still recommend adapting the sample preparation protocol for each individual system.

  15. Evolved Lactococcus lactis Strains for Enhanced Expression of Recombinant Membrane Proteins

    NARCIS (Netherlands)

    Martinez Linares, Daniel; Geertsma, Eric R.; Poolman, Bert

    2010-01-01

    The production of complex multidomain (membrane) proteins is a major hurdle in structural genomics and a generic approach for optimizing membrane protein expression is still lacking. We have devised a selection method to isolate mutant strains with improved functional expression of recombinant

  16. Salivary Thromboxane A2-Binding Proteins from Triatomine Vectors of Chagas Disease Inhibit Platelet-Mediated Neutrophil Extracellular Traps (NETs Formation and Arterial Thrombosis.

    Directory of Open Access Journals (Sweden)

    Daniella M Mizurini

    Full Text Available The saliva of blood-feeding arthropods contains a notable diversity of molecules that target the hemostatic and immune systems of the host. Dipetalodipin and triplatin are triatomine salivary proteins that exhibit high affinity binding to prostanoids, such as TXA2, thus resulting in potent inhibitory effect on platelet aggregation in vitro. It was recently demonstrated that platelet-derived TXA2 mediates the formation of neutrophil extracellular traps (NETs, a newly recognized link between inflammation and thrombosis that promote thrombus growth and stability.This study evaluated the ability of dipetalodipin and triplatin to block NETs formation in vitro. We also investigated the in vivo antithrombotic activity of TXA2 binding proteins by employing two murine models of experimental thrombosis. Remarkably, we observed that both inhibitors abolished the platelet-mediated formation of NETs in vitro. Dipetalodipin and triplatin significantly increased carotid artery occlusion time in a FeCl3-induced injury model. Treatment with TXA2-binding proteins also protected mice from lethal pulmonary thromboembolism evoked by the intravenous injection of collagen and epinephrine. Effective antithrombotic doses of dipetalodipin and triplatin did not increase blood loss, which was estimated using the tail transection method.Salivary TXA2-binding proteins, dipetalodipin and triplatin, are capable to prevent platelet-mediated NETs formation in vitro. This ability may contribute to the antithrombotic effects in vivo. Notably, both molecules inhibit arterial thrombosis without promoting excessive bleeding. Our results provide new insight into the antihemostatic effects of TXA2-binding proteins and may have important significance in elucidating the mechanisms of saliva to avoid host's hemostatic responses and innate immune system.

  17. Platelet transfusions reduce fibrinolysis but do not restore platelet function during trauma hemorrhage.

    Science.gov (United States)

    Vulliamy, Paul; Gillespie, Scarlett; Gall, Lewis S; Green, Laura; Brohi, Karim; Davenport, Ross A

    2017-09-01

    Platelets play a critical role in hemostasis with aberrant function implicated in trauma-induced coagulopathy. However, the impact of massive transfusion protocols on platelet function during trauma hemorrhage is unknown. The aim of this study was to characterize the effects of platelet transfusion on platelet aggregation and fibrinolytic markers during hemostatic resuscitation. Trauma patients enrolled into the prospective Activation of Coagulation and Inflammation in Trauma study between January 2008 and November 2015 who received at least four units of packed red blood cells (PRBCs) were included. Blood was drawn in the emergency department within 2 hours of injury and at intervals after every four units of PRBCs transfused. Platelet aggregation was assessed in whole blood with multiple electrode aggregometry. Plasma proteins were quantified by enzyme-linked immunosorbent assay. Of 161 patients who received four or more PRBCs as part of their initial resuscitation, 44 received 8 to 11 units and 28 received 12 units or more. At each timepoint during bleeding, platelet aggregation was similar in patients who had received a platelet transfusion compared with those who had only received other blood products (p > 0.05 for all timepoints). Platelet transfusion during the four PRBC intervals was associated with a decrease in maximum lysis on rotational thromboelastometry (start of interval, 6% [2-12] vs. end of interval, 2% [0-5]; p = 0.001), an increase in plasminogen activator inhibitor-1 (start of interval, 35.9 ± 14.9 vs. end of interval, 66.7 ± 22.0; p = 0.007) and a decrease in tissue plasminogen activator (start of interval, 26.2 ± 10.5 vs. end of interval, 19.0 +/- 5.1; p = 0.04). No statistically significant changes in these parameters occurred in intervals which did not contain platelets. Current hemostatic resuscitation strategies do not appear to restore platelet aggregation during active hemorrhage. However, stored platelets may attenuate fibrinolysis

  18. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors.

    Science.gov (United States)

    Jones, Matthew L; Norman, Jane E; Morgan, Neil V; Mundell, Stuart J; Lordkipanidzé, Marie; Lowe, Gillian C; Daly, Martina E; Simpson, Michael A; Drake, Sian; Watson, Steve P; Mumford, Andrew D

    2015-04-01

    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes.

  19. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    Science.gov (United States)

    Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi

    2014-01-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this

  20. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins.

    Science.gov (United States)

    Ramakrishnan, N; Sunil Kumar, P B; Radhakrishnan, Ravi

    2014-10-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this

  1. Human Platelets Exhibit Chemotaxis using Functional N-Formyl Peptide Receptors

    National Research Council Canada - National Science Library

    Czapiga, Meggan; Gao, Ji-Liang; Kirk, Allen; Lekstrom-Himes, Julie

    2005-01-01

    Activated platelets participate in inflammatory and microbicidal processes by upregulation of surface selectins, shedding of CD40 ligand, and release of platelet microbicidal proteins and microparticles...

  2. Guanine nucleotide binding proteins in zucchini seedlings: Characterization and interactions with the NPA receptor

    International Nuclear Information System (INIS)

    Lindeberg, M.; Jacobs, M.

    1989-01-01

    A microsomal membrane preparation from hypocotyls of dark-grown Cucurbita pepo L. seedlings contains specific high-affinity binding sites for the non-hydrolyzable GTP analog guanosine 5'-[γ-thio] triphosphate (GTP-γ-S). Both the binding affinity and the pattern of binding specificity for GTP and GTP analogs are similar to animal G-proteins, and two zucchini membrane proteins are recognized in western blots by antiserum specific for the σ subunit of platelet G s protein. GTP-γ-S can increase specific naphthylphthalamic acid (NPA) binding in zucchini microsomal membrane preparations, with its stimulation increasing with large tissue age. Al +3 and F - agents known to activate G-proteins - decreased NPA specific binding by ca. 15%. In tests of in vitro auxin transport employing zucchini plasma membrane vesicles, AlF - 4 strongly inhibited 3 H-indoleacetic acid nor accumulation; GTP-γ-S effects on this system will be discussed

  3. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. Membrane alterations induced by nonstructural proteins of human norovirus.

    Directory of Open Access Journals (Sweden)

    Sylvie Y Doerflinger

    2017-10-01

    Full Text Available Human noroviruses (huNoV are the most frequent cause of non-bacterial acute gastroenteritis worldwide, particularly genogroup II genotype 4 (GII.4 variants. The viral nonstructural (NS proteins encoded by the ORF1 polyprotein induce vesical clusters harboring the viral replication sites. Little is known so far about the ultrastructure of these replication organelles or the contribution of individual NS proteins to their biogenesis. We compared the ultrastructural changes induced by expression of norovirus ORF1 polyproteins with those induced upon infection with murine norovirus (MNV. Characteristic membrane alterations induced by ORF1 expression resembled those found in MNV infected cells, consisting of vesicle accumulations likely built from the endoplasmic reticulum (ER which included single membrane vesicles (SMVs, double membrane vesicles (DMVs and multi membrane vesicles (MMVs. In-depth analysis using electron tomography suggested that MMVs originate through the enwrapping of SMVs with tubular structures similar to mechanisms reported for picornaviruses. Expression of GII.4 NS1-2, NS3 and NS4 fused to GFP revealed distinct membrane alterations when analyzed by correlative light and electron microscopy. Expression of NS1-2 induced proliferation of smooth ER membranes forming long tubular structures that were affected by mutations in the active center of the putative NS1-2 hydrolase domain. NS3 was associated with ER membranes around lipid droplets (LDs and induced the formation of convoluted membranes, which were even more pronounced in case of NS4. Interestingly, NS4 was the only GII.4 protein capable of inducing SMV and DMV formation when expressed individually. Our work provides the first ultrastructural analysis of norovirus GII.4 induced vesicle clusters and suggests that their morphology and biogenesis is most similar to picornaviruses. We further identified NS4 as a key factor in the formation of membrane alterations of huNoV and

  5. Automated builder and database of protein/membrane complexes for molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Sunhwan Jo

    2007-09-01

    Full Text Available Molecular dynamics simulations of membrane proteins have provided deeper insights into their functions and interactions with surrounding environments at the atomic level. However, compared to solvation of globular proteins, building a realistic protein/membrane complex is still challenging and requires considerable experience with simulation software. Membrane Builder in the CHARMM-GUI website (http://www.charmm-gui.org helps users to build such a complex system using a web browser with a graphical user interface. Through a generalized and automated building process including system size determination as well as generation of lipid bilayer, pore water, bulk water, and ions, a realistic membrane system with virtually any kinds and shapes of membrane proteins can be generated in 5 minutes to 2 hours depending on the system size. Default values that were elaborated and tested extensively are given in each step to provide reasonable options and starting points for both non-expert and expert users. The efficacy of Membrane Builder is illustrated by its applications to 12 transmembrane and 3 interfacial membrane proteins, whose fully equilibrated systems with three different types of lipid molecules (DMPC, DPPC, and POPC and two types of system shapes (rectangular and hexagonal are freely available on the CHARMM-GUI website. One of the most significant advantages of using the web environment is that, if a problem is found, users can go back and re-generate the whole system again before quitting the browser. Therefore, Membrane Builder provides the intuitive and easy way to build and simulate the biologically important membrane system.

  6. Protein permeation through an electrically tunable membrane

    International Nuclear Information System (INIS)

    Jou, Ining A; Melnikov, Dmitriy V; Gracheva, Maria E

    2016-01-01

    Protein filtration is important in many fields of science and technology such as medicine, biology, chemistry, and engineering. Recently, protein separation and filtering with nanoporous membranes has attracted interest due to the possibility of fast separation and high throughput volume. This, however, requires understanding of the protein’s dynamics inside and in the vicinity of the nanopore. In this work, we utilize a Brownian dynamics approach to study the motion of the model protein insulin in the membrane–electrolyte electrostatic potential. We compare the results of the atomic model of the protein with the results of a coarse-grained and a single-bead model, and find that the coarse-grained representation of protein strikes the best balance between the accuracy of the results and the computational effort required. Contrary to common belief, we find that to adequately describe the protein, a single-bead model cannot be utilized without a significant effort to tabulate the simulation parameters. Similar to results for nanoparticle dynamics, our findings also indicate that the electric field and the electro-osmotic flow due to the applied membrane and electrolyte biases affect the capture and translocation of the biomolecule by either attracting or repelling it to or from the nanopore. Our computational model can also be applied to other types of proteins and separation conditions. (paper)

  7. Time-dependent association between platelet-bound fibrinogen and the Triton X-100 insoluble cytoskeleton

    International Nuclear Information System (INIS)

    Peerschke, E.I.

    1991-01-01

    Previous studies indicated a correlation between the formation of EDTA-resistant (irreversible) platelet-fibrinogen interactions and platelet cytoskeleton formation. The present study explored the direct association of membrane-bound fibrinogen with the Triton X-100 insoluble cytoskeleton of aspirin-treated, gel-filtered platelets, activated but not aggregated with 20 mumol/L adenosine diphosphate (ADP) or 150 mU/mL human thrombin (THR) when bound fibrinogen had become resistant to dissociation by EDTA. Conversion of exogenous 125I-fibrinogen to fibrin was prevented by adding Gly-Pro-Arg and neutralizing THR with hirudin before initiating binding studies. After 60 minutes at 22 degrees C, the cytoskeleton of ADP-treated platelets contained 20% +/- 12% (mean +/- SD, n = 14) of membrane-bound 125I-fibrinogen, representing 10% to 50% of EDTA-resistant fibrinogen binding. The THR-activated cytoskeleton contained 45% +/- 15% of platelet bound fibrinogen, comprising 80% to 100% of EDTA-resistant fibrinogen binding. 125I-fibrinogen was not recovered with platelet cytoskeletons if binding was inhibited by the RGDS peptide, excess unlabeled fibrinogen, or disruption of the glycoprotein (GP) IIb-IIIa complex by EDTA-treatment. Both development of EDTA-resistant fibrinogen binding and fibrinogen association with the cytoskeleton were time dependent and reached maxima 45 to 60 minutes after fibrinogen binding to stimulated platelets. Although a larger cytoskeleton formed after platelet stimulation with thrombin as compared with ADP, no change in cytoskeleton composition was noted with development of EDTA-resistant fibrinogen binding

  8. Topological analysis of Chlamydia trachomatis L2 outer membrane protein 2

    DEFF Research Database (Denmark)

    Mygind, P; Christiansen, Gunna; Birkelund, Svend

    1998-01-01

    Using monospecific polyclonal antisera to different parts of Chlamydia trachomatis L2 outer membrane protein 2 (Omp2), we show that the protein is localized at the inner surface of the outer membrane. Omp2 becomes immunoaccessible when Chlamydia elementary bodies are treated with dithiothreitol...

  9. A protein anomaly in erythrocyte membranes of patients with Duchenne muscular dystrophy

    Science.gov (United States)

    1983-01-01

    Raman spectroscopic comparisons of erythrocyte membranes from 20 patients with Duchenne muscular dystrophy and 8 age-matched controls indicate a prominent and consistent protein anomaly in the patient samples. This was apparent in the following: (a) CH-stretching signals from control membranes reveal a thermotropic transition at 15.6 degrees C, attributable to a protein/lipid phase that is lacking in dystrophic membranes. (b) CH-stretching signals from control membranes also show a protein transition at 39 degrees C [pH 7.4] that is shifted to 45 degrees in dystrophic membranes. (c) A reduction in pH to 5.7 shifts this transition from 39 degrees C to 7 degrees C in normal membranes and from 45 degrees C to 24 degrees C in dystrophic membranes. (d) The Amide I/Amide III regions indicate a significant proportion of beta- structured peptide in dystrophic but not normal membranes. (e) Analysis of tyrosine signals indicates greater polar exposure of tyrosine hydroxyl groups in dystrophic vs normal membranes. All of the differences between dystrophic and normal membranes are highly significant (P less than 0.001). PMID:6854213

  10. Preliminary crystallographic studies of yeast mitochondrial peripheral membrane protein Tim44p

    Energy Technology Data Exchange (ETDEWEB)

    Josyula, Ratnakar [Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham (United States); Jin, Zhongmin [SER-CAT, APS, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); McCombs, Deborah; DeLucas, Lawrence [Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham (United States); Sha, Bingdong, E-mail: bdsha@uab.edu [Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham (United States)

    2006-02-01

    Tim44p is an essential mitochondrial peripheral membrane protein. To investigate the mechanism by which Tim44p functions in the TIM23 translocon to deliver the mitochondrial protein precursors, the yeast Tim44p has been crystallized. Protein translocations across mitochondrial membranes play critical roles in mitochondrion biogenesis. Protein transport from the cell cytosol to the mitochondrial matrix is carried out by the translocase of the outer membrane (TOM) complex and the translocase of the inner membrane (TIM) complexes. Tim44p is an essential mitochondrial peripheral membrane protein and a major component of the TIM23 translocon. To investigate the mechanism by which Tim44p functions in the TIM23 translocon to deliver the mitochondrial protein precursors, the yeast Tim44p was crystallized. The crystals diffract to 3.2 Å using a synchrotron X-ray source and belong to space group P6{sub 3}22, with unit-cell parameters a = 124.25, c = 77.83 Å. There is one Tim44p molecule in one asymmetric unit, which corresponds to a solvent content of approximately 43%. Structure determination by MAD methods is under way.

  11. Detergent-Mediated Reconstitution of Membrane Proteins

    NARCIS (Netherlands)

    Knol, J; Sjollema, K.A; Poolman, B.

    1998-01-01

    The efficiency of reconstitution of the lactose transport protein (LacS) of Streptococcus thermophilus is markedly higher with Triton X-100 than with other detergents commonly employed to mediate the membrane insertion. To rationalize these differences, the lipid/detergent structures that are formed

  12. [Inhibitory mechanism of ifenprodil tartrate on rabbit platelet aggregation].

    Science.gov (United States)

    Irino, O; Saitoh, K; Hayashi, T; Ohkubo, K

    1985-05-01

    The effects of dl-erythro-4-benzyl-alpha-(4-hydroxyphenyl)-beta-methyl-l-piperidine-eth anol tartrate (ifenprodil tartrate) on rabbit platelet aggregation in vitro and ex vivo were studied. Ifenprodil tartrate inhibited platelet aggregation in vitro induced by ADP, collagen and epinephrine. It also inhibited 5-hydroxytryptamine (5-HT) uptake into platelets and 5-HT release from platelets. Since these inhibitory effects of ifenprodil tartrate on the functions of rabbit platelets were similar to the effects of imipramine, the effects of ifenprodil tartrate may be due to the stabilizing action of ifenprodil tartrate on the platelet membrane. The platelet aggregation by ADP was significantly inhibited in rabbits after oral administration of ifenprodil tartrate, the maximal plasma level of ifenprodil being reached at 20 ng/ml ex vivo, while the maximal level was only 1/40 of the minimal concentration of ifenprodil tartrate necessary to inhibit platelet aggregation in vitro. These results indicate that factors other than ifenprodil tartrate acting directly on the platelets (e.g., PGI2 which is an endogenous inhibitor of platelet aggregation) are involved in inducing the inhibitory effects of ifenprodil tartrate on platelet aggregation ex vivo. The effects of ifenprodil tartrate on both PGI2 release from the aorta and the inhibitory effects of PGI2 on platelet aggregation in vitro were investigated: PGI2 was found to intensify the inhibitory effects of ifenprodil tartrate on platelet aggregation in vitro, but there was little effect, if any, on PGI2 release. Therefore, it is considered that the ex vivo effects of ifenprodil tartrate might be due to its interaction with endogenous PGI2 in the blood.

  13. Serial Millisecond Crystallography of Membrane Proteins.

    Science.gov (United States)

    Jaeger, Kathrin; Dworkowski, Florian; Nogly, Przemyslaw; Milne, Christopher; Wang, Meitian; Standfuss, Joerg

    2016-01-01

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a powerful method to determine high-resolution structures of pharmaceutically relevant membrane proteins. Recently, the technology has been adapted to carry out serial millisecond crystallography (SMX) at synchrotron sources, where beamtime is more abundant. In an injector-based approach, crystals grown in lipidic cubic phase (LCP) or embedded in viscous medium are delivered directly into the unattenuated beam of a microfocus beamline. Pilot experiments show the application of microjet-based SMX for solving the structure of a membrane protein and compatibility of the method with de novo phasing. Planned synchrotron upgrades, faster detectors and software developments will go hand-in-hand with developments at free-electron lasers to provide a powerful methodology for solving structures from microcrystals at room temperature, ligand screening or crystal optimization for time-resolved studies with minimal or no radiation damage.

  14. Denaturation of membrane proteins and hyperthermic cell killing

    NARCIS (Netherlands)

    Burgman, Paulus Wilhelmus Johannes Jozef

    1993-01-01

    Summarizing: heat induced denaturation of membrane proteins is probably related to hyperthermic cell killing. Induced resistance of heat sensitive proteins seems to be involved in the development of thermotolerance. Although many questions remain still to be answered, it appears that HSP72, when

  15. Role of rab proteins in epithelial membrane traffic

    NARCIS (Netherlands)

    van Ijzendoorn, SCD; Mostov, KE; Hoekstra, D

    2003-01-01

    Small GTPase rab proteins play an important role in various aspects of membrane traffic, including cargo selection, vesicle budding, vesicle motility, tethering, docking, and fusion. Recent data suggest also that rabs, and their divalent effector proteins, organize organelle subdomains and as such

  16. The study of membrane-protein /detergent interactions by neutron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, P A; Penel, S [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Pebay-Peyroula, E [IBS- UJF Grenoble (France)

    1997-04-01

    Proteins which are found embedded in membranes can usually only be purified and studied from the point of view of structure by dissolving them in detergents. The structure of the resulting mixed protein-detergent complexes are poorly understood. An important method for studying them is through neutron diffraction of the crystalline complexes. This allows us to understand better how the proteins behave in the natural membrane as well as allowing us to visualize and hopefully improve the crystallisation process. Studies on the pore-forming protein porin using data collected on the diffractometer DB21 are described. (author). 4 refs.

  17. Dose- and time-related platelet response with apheresis platelet concentrates and pooled platelets

    Directory of Open Access Journals (Sweden)

    Mohammad Mizanur Rahman

    2017-02-01

    Full Text Available This study was carried out to compare the post-transfusion platelet increment between the apheresis platelet concentrate (n=74 and pooled platelets (n=54. Pre- and post-transfusion platelet count of the recipient were carried out by automated hematology analyzer. In apheresis platelet concentrate group, the mean 24 hours post-transfusion platelet increment was 47 x 109/L which was statistically significant (p<0.001. On the other hand, in pooled platelets group, the mean 24 hours post–transfusions platelet count increment was 11.0 x 109/L which was also statistically significant (p<0.001. This study concluded that the transfusion of apheresis platelet concentrate was more useful than the transfusion of pooled platelets in terms of platelet count increment and requirement of donor.

  18. Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.

    Science.gov (United States)

    Zhang, Rongfu; Sahu, Indra D; Liu, Lishan; Osatuke, Anna; Comer, Raven G; Dabney-Smith, Carole; Lorigan, Gary A

    2015-01-01

    Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment

  19. Protein transport across and into cell membranes in bacteria and archaea

    NARCIS (Netherlands)

    Yuan, Jijun; Zweers, Jessica C.; van Dijl, Jan Maarten; Dalbey, Ross E.

    In the three domains of life, the Sec, YidC/Oxa1, and Tat translocases play important roles in protein translocation across membranes and membrane protein insertion. While extensive studies have been performed on the endoplasmic reticular and Escherichia coli systems, far fewer studies have been

  20. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    Science.gov (United States)

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  1. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, N., E-mail: ramn@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Bioengineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA-19104 (United States); Sunil Kumar, P.B., E-mail: sunil@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai, 600036 (India); Radhakrishnan, Ravi, E-mail: rradhak@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Bioengineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA-19104 (United States)

    2014-10-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein–lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham–Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description

  2. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    International Nuclear Information System (INIS)

    Ramakrishnan, N.; Sunil Kumar, P.B.; Radhakrishnan, Ravi

    2014-01-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein–lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham–Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description

  3. Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis

    Science.gov (United States)

    Yoshida, Aiko; Sakai, Nobuaki; Uekusa, Yoshitsugu; Imaoka, Yuka; Itagaki, Yoshitsuna; Suzuki, Yuki

    2018-01-01

    Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open–close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME. PMID:29723197

  4. Identification of lipopolysaccharide-interacting plasma membrane-type proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Vilakazi, Cornelius S; Dubery, Ian A; Piater, Lizelle A

    2017-02-01

    Lipopolysaccharide (LPS) is an amphiphatic bacterial glycoconjugate found on the external membrane of Gram-negative bacteria. This endotoxin is considered as a microbe-associated molecular pattern (MAMP) molecule and has been shown to elicit defense responses in plants. Here, LPS-interacting proteins from Arabidopsis thaliana plasma membrane (PM)-type fractions were captured and identified in order to investigate those involved in LPS perception and linked to triggering of innate immune responses. A novel proteomics-based affinity-capture strategy coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed for the enrichment and identification of LPS-interacting proteins. As such, LPS isolated from Burkholderia cepacia (LPS B.cep. ) was immobilized on three independent and distinct affinity-based matrices to serve as bait for interacting proteins from A. thaliana leaf and callus tissue. These were resolved by 1D electrophoresis and identified by mass spectrometry. Proteins specifically bound to LPS B.cep. have been implicated in membrane structure (e.g. COBRA-like and tubulin proteins), membrane trafficking and/or transport (e.g. soluble NSF attachment protein receptor (SNARE) proteins, patellin, aquaporin, PM instrinsic proteins (PIP) and H + -ATPase), signal transduction (receptor-like kinases and calcium-dependent protein kinases) as well as defense/stress responses (e.g. hypersensitive-induced response (HIR) proteins, jacalin-like lectin domain-containing protein and myrosinase-binding proteins). The novel affinity-capture strategy for the enrichment of LPS-interacting proteins proved to be effective, especially in the binding of proteins involved in plant defense responses, and can thus be used to elucidate LPS-mediated molecular recognition and disease mechanism(s). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. MODIFICATION OF ERYTHROCYTE MEMBRANE PROTEINS WITH POLYETHYLENE GLYCOL 1500

    Directory of Open Access Journals (Sweden)

    N. G. Zemlianskykh

    2016-10-01

    Full Text Available The aim of the work was to study the effect of polyethylene glycol PEG-1500 on the Ca2+-ATPase activity and changes in CD44 surface marker expression in human erythrocyte membranes. Determination of the Ca2+-ATPase activity was carried out in sealed erythrocyte ghosts by the level of accumulation of inorganic phosphorus. Changes in the expression of CD44 and amount of CD44+-erythrocytes were evaluated by flow cytometry. The inhibition of Ca2+-ATPase activity and a reduction in the level of CD44 expression and also the decrease in the amount CD44+-cells were found, reflecting a fairly complex restructuring in the membrane-cytoskeleton complex of erythrocytes under the influence of PEG-1500. Effect of PEG-1500 on the surface CD44 marker could be mediated by modification of proteins of membrane-cytoskeleton complex, as indicated by accelerated loss of CD44 in erythrocyte membranes after application of protein cross-linking reagent diamide. Reduced activity of Ca2+-ATPase activity may contribute to the increase in intracellular Ca2+ level and thus leads to a modification of interactions of integral proteins with cytoskeletal components that eventually could result in membrane vesiculation and decreasing in expression of the CD44 marker, which is dynamically linked to the cytoskeleton.

  6. Biophysical characterization of membrane protein-small molecule interactions

    NARCIS (Netherlands)

    Chen, Dan

    2015-01-01

    Membrane proteins are account for up to two thirds of known druggable targets. Traditionally, new drugs against this class of proteins have been discovered through HTS. However, not all GPCRs are amenable to traditional screening methods. Recently, fragment-based drug discovery (FBDD) has emerged as

  7. Knowns and unknowns of plasma membrane protein degradation in plants.

    Science.gov (United States)

    Liu, Chuanliang; Shen, Wenjin; Yang, Chao; Zeng, Lizhang; Gao, Caiji

    2018-07-01

    Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Channel crossing: how are proteins shipped across the bacterial plasma membrane?

    Science.gov (United States)

    Collinson, Ian; Corey, Robin A; Allen, William J

    2015-10-05

    The structure of the first protein-conducting channel was determined more than a decade ago. Today, we are still puzzled by the outstanding problem of protein translocation--the dynamic mechanism underlying the consignment of proteins across and into membranes. This review is an attempt to summarize and understand the energy transducing capabilities of protein-translocating machines, with emphasis on bacterial systems: how polypeptides make headway against the lipid bilayer and how the process is coupled to the free energy associated with ATP hydrolysis and the transmembrane protein motive force. In order to explore how cargo is driven across the membrane, the known structures of the protein-translocation machines are set out against the background of the historic literature, and in the light of experiments conducted in their wake. The paper will focus on the bacterial general secretory (Sec) pathway (SecY-complex), and its eukaryotic counterpart (Sec61-complex), which ferry proteins across the membrane in an unfolded state, as well as the unrelated Tat system that assembles bespoke channels for the export of folded proteins. © 2015 The Authors.

  9. Invisible detergents for structure determination of membrane proteins by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Darwish, Tamim A.; Pedersen, Martin Cramer

    2018-01-01

    A novel and generally applicable method for determining structures of membrane proteins in solution via small-angle neutron scattering (SANS) is presented. Common detergents for solubilizing membrane proteins were synthesized in isotope-substituted versions for utilizing the intrinsic neutron sca...... solution structure determination of membrane proteins by SANS and subsequent data analysis available to non-specialists. This article is protected by copyright. All rights reserved....

  10. Molecular organization in bacterial cell membranes. Specific labelling and topological distribution of glycoproteins and proteins in Streptomyces albus membranes

    Energy Technology Data Exchange (ETDEWEB)

    Larraga, V; Munoz, E [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Instituto de Biologia Celular

    1975-05-01

    The paper reports about an investigation into the question of the specific labelling and topological distribution of glycoproteins and proteins in Streptomyces albus membranes. The method of sample preparation is described: Tritium labelling of glycoproteins in protoplasts and membranes, iodination of proteins, trypsin treatment and polyacrylamide gel electrophoresis. The findings suggest an asymmetrical distribution of the glycoproteins in membranes and a weak accessibility to iodine label. A structural model of the plasma membranes of Streptomyces albus is proposed similar to the general 'fluid mosaic' model of Singer and Nicholson.

  11. Refractive-index-based screening of membrane-protein-mediated transfer across biological membranes.

    Science.gov (United States)

    Brändén, Magnus; Tabaei, Seyed R; Fischer, Gerhard; Neutze, Richard; Höök, Fredrik

    2010-07-07

    Numerous membrane-transport proteins are major drug targets, and therefore a key ingredient in pharmaceutical development is the availability of reliable, efficient tools for membrane transport characterization and inhibition. Here, we present the use of evanescent-wave sensing for screening of membrane-protein-mediated transport across lipid bilayer membranes. This method is based on a direct recording of the temporal variations in the refractive index that occur upon a transfer-dependent change in the solute concentration inside liposomes associated to a surface plasmon resonance (SPR) active sensor surface. The applicability of the method is demonstrated by a functional study of the aquaglyceroporin PfAQP from the malaria parasite Plasmodium falciparum. Assays of the temperature dependence of facilitated diffusion of sugar alcohols on a single set of PfAQP-reconstituted liposomes reveal that the activation energies for facilitated diffusion of xylitol and sorbitol are the same as that previously measured for glycerol transport in the aquaglyceroporin of Escherichia coli (5 kcal/mole). These findings indicate that the aquaglyceroporin selectivity filter does not discriminate sugar alcohols based on their length, and that the extra energy cost of dehydration of larger sugar alcohols, upon entering the pore, is compensated for by additional hydrogen-bond interactions within the aquaglyceroporin pore. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane.

    Science.gov (United States)

    Kriechbaumer, Verena; Botchway, Stanley W; Slade, Susan E; Knox, Kirsten; Frigerio, Lorenzo; Oparka, Karl; Hawes, Chris

    2015-11-01

    The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Living target of Ce(III) action on horseradish cells: proteins on/in cell membrane.

    Science.gov (United States)

    Yang, Guangmei; Sun, Zhaoguo; Lv, Xiaofen; Deng, Yunyun; Zhou, Qing; Huang, Xiaohua

    2012-12-01

    Positive and negative effects of rare earth elements (REEs) in life have been reported in many papers, but the cellular mechanisms have not been answered, especially the action sites of REEs on plasma membrane are unknown. Proteins on/in the plasma membrane perform main functions of the plasma membrane. Cerium (Ce) is the richest REEs in crust. Thus, the interaction between Ce(III) and the proteins on/in the plasma membrane, the morphology of protoplast, and the contents of nutrient elements in protoplast of horseradish were investigated using the optimized combination of the fluorescence microscopy, fluorescence spectroscopy, circular dichroism, scanning electron microscopy, and X-ray energy dispersive spectroscopy. It was found that Ce(III) at the low concentrations (10, 30 μM) could interact with proteins on/in the plasma membrane of horseradish, leading to the improvement in the structure of membrane proteins and the plasma membrane, which accelerated the intra-/extra-cellular substance exchange and further promoted the development of cells. When horseradish was treated with Ce(III) at the high concentrations (60, 80 μM), Ce(III) also could interact with the proteins on/in the plasma membrane of horseradish, leading to the destruction in the structure of membrane proteins and the plasma membrane. These effects decelerated the intra-/extra-cellular substance exchange and further inhibited the development of cells. Thus, the interaction between Ce(III) and proteins on/in the plasma membrane in plants was an important reason of the positive and negative effects of Ce(III) on plants. The results would provide some references for understanding the cellular effect mechanisms of REEs on plants.

  14. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release.

    Science.gov (United States)

    van Kuppeveld, F J; Hoenderop, J G; Smeets, R L; Willems, P H; Dijkman, H B; Galama, J M; Melchers, W J

    1997-01-01

    Digital-imaging microscopy was performed to study the effect of Coxsackie B3 virus infection on the cytosolic free Ca2+ concentration and the Ca2+ content of the endoplasmic reticulum (ER). During the course of infection a gradual increase in the cytosolic free Ca2+ concentration was observed, due to the influx of extracellular Ca2+. The Ca2+ content of the ER decreased in time with kinetics inversely proportional to those of viral protein synthesis. Individual expression of protein 2B was sufficient to induce the influx of extracellular Ca2+ and to release Ca2+ from ER stores. Analysis of mutant 2B proteins showed that both a cationic amphipathic alpha-helix and a second hydrophobic domain in 2B were required for these activities. Consistent with a presumed ability of protein 2B to increase membrane permeability, viruses carrying a mutant 2B protein exhibited a defect in virus release. We propose that 2B gradually enhances membrane permeability, thereby disrupting the intracellular Ca2+ homeostasis and ultimately causing the membrane lesions that allow release of virus progeny. PMID:9218794

  15. Functional display of platelet-binding VWF fragments on filamentous bacteriophage.

    Directory of Open Access Journals (Sweden)

    Andrew Yee

    Full Text Available von Willebrand factor (VWF tethers platelets to sites of vascular injury via interaction with the platelet surface receptor, GPIb. To further define the VWF sequences required for VWF-platelet interaction, a phage library displaying random VWF protein fragments was screened against formalin-fixed platelets. After 3 rounds of affinity selection, DNA sequencing of platelet-bound clones identified VWF peptides mapping exclusively to the A1 domain. Aligning these sequences defined a minimal, overlapping segment spanning P1254-A1461, which encompasses the C1272-C1458 cystine loop. Analysis of phage carrying a mutated A1 segment (C1272/1458A confirmed the requirement of the cystine loop for optimal binding. Four rounds of affinity maturation of a randomly mutagenized A1 phage library identified 10 and 14 unique mutants associated with enhanced platelet binding in the presence and absence of botrocetin, respectively, with 2 mutants (S1370G and I1372V common to both conditions. These results demonstrate the utility of filamentous phage for studying VWF protein structure-function and identify a minimal, contiguous peptide that bind to formalin-fixed platelets, confirming the importance of the VWF A1 domain with no evidence for another independently platelet-binding segment within VWF. These findings also point to key structural elements within the A1 domain that regulate VWF-platelet adhesion.

  16. Xanthophylls as modulators of membrane protein function.

    Science.gov (United States)

    Ruban, Alexander V; Johnson, Matthew P

    2010-12-01

    This review discusses the structural aspect of the role of photosynthetic antenna xanthophylls. It argues that xanthophyll hydrophobicity/polarity could explain the reason for xanthophyll variety and help to understand their recently emerging function--control of membrane organization and the work of membrane proteins. The structure of a xanthophyll molecule is discussed in relation to other amphiphilic compounds like lipids, detergents, etc. Xanthophyll composition of membrane proteins, the role of their variety in protein function are discussed using as an example for the major light harvesting antenna complex of photosystem II, LHCII, from higher plants. A new empirical parameter, hydrophobicity parameter (H-parameter), has been introduced as an effective measure of the hydrophobicity of the xanthophyll complement of LHCII from different xanthophyll biosynthesis mutants of Arabidopsis. Photosystem II quantum efficiency was found to correlate well with the H-parameter of LHCII xanthophylls. PSII down-regulation by non-photochemical chlorophyll fluorescence quenching, NPQ, had optimum corresponding to the wild-type xanthophyll composition, where lutein occupies intrinsic sites, L1 and L2. Xanthophyll polarity/hydrophobicity alteration by the activity of the xanthophyll cycle explains the allosteric character of NPQ regulation, memory of illumination history and the hysteretic nature of the relationship between the triggering factor, ΔpH, and the energy dissipation process. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1.

    Science.gov (United States)

    McDonald, Christopher; Jovanovic, Goran; Ces, Oscar; Buck, Martin

    2015-09-01

    Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled, in vitro methodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins' differing roles in vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. This in vitro recapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mounted in vivo when a cell's inner membrane experiences increased SCE stress. All cell types maintain the integrity of their membrane systems. One widely distributed membrane stress response system in bacteria is the phage shock protein (Psp) system. The central component, peripheral membrane protein PspA, which mitigates inner membrane stress in bacteria, has a counterpart, Vipp1, which functions for membrane maintenance and thylakoid biogenesis in plants and photosynthetic bacteria. Membrane association of both these proteins is accepted as playing a pivotal role in their functions. Here we show that direct membrane binding by

  18. An investigation of hierachical protein recruitment to the inhibitory platelet receptor, G6B-b.

    Directory of Open Access Journals (Sweden)

    Carmen H Coxon

    Full Text Available Platelet activation is regulated by both positive and negative signals. G6B-b is an inhibitory platelet receptor with an immunoreceptor tyrosine-based inhibitory motif (ITIM and an immunoreceptor tyrosine-based switch motif (ITSM. The molecular basis of inhibition by G6B-b is currently unknown but thought to involve the SH2 domain-containing tyrosine phosphatase SHP-1. Here we show that G6B-b also associates with SHP-2, as well as SHP-1, in human platelets. Using a number of biochemical approaches, we found these interactions to be direct and that the tandem SH2 domains of SHP-2 demonstrated a binding affinity for G6B-b 100-fold higher than that of SHP-1. It was also observed that while SHP-1 has an absolute requirement for phosphorylation at both motifs to bind, SHP-2 can associate with G6B-b when only one motif is phosphorylated, with the N-terminal SH2 domain and the ITIM being most important for the interaction. A number of other previously unreported SH2 domain-containing proteins, including Syk and PLCγ2, also demonstrated specificity for G6B-b phosphomotifs and may serve to explain the observation that G6B-b remains inhibitory in the absence of both SHP-1 and SHP-2. In addition, the presence of dual phosphorylated G6B-b in washed human platelets can reduce the EC(50 for both CRP and collagen.

  19. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily.

    Directory of Open Access Journals (Sweden)

    Aleksander F Sikorski

    2007-01-01

    Full Text Available The review is focused on the domain structure and function of protein 4.1, one of the proteins belonging to the membrane skeleton. The protein 4.1 of the red blood cells (4.1R is a multifunctional protein that localizes to the membrane skeleton and stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability, via lateral interactions with spectrin, actin, glycophorin C and protein p55. Protein 4.1 binding is modulated through the action of kinases and/or calmodulin-Ca2+. Non-erythroid cells express the 4.1R homologues: 4.1G (general type, 4.1B (brain type, and 4.1N (neuron type, and the whole group belongs to the protein 4.1 superfamily, which is characterized by the presence of a highly conserved FERM domain at the N-terminus of the molecule. Proteins 4.1R, 4.1G, 4.1N and 4.1B are encoded by different genes. Most of the 4.1 superfamily proteins also contain an actin-binding domain. To date, more than 40 members have been identified. They can be divided into five groups: protein 4.1 molecules, ERM proteins, talin-related molecules, protein tyrosine phosphatase (PTPH proteins and NBL4 proteins. We have focused our attention on the main, well known representatives of 4.1 superfamily and tried to choose the proteins which are close to 4.1R or which have distinct functions. 4.1 family proteins are not just linkers between the plasma membrane and membrane skeleton; they also play an important role in various processes. Some, such as focal adhesion kinase (FAK, non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells, play the role in cell adhesion. The other members control or take part in tumor suppression, regulation of cell cycle progression, inhibition of cell proliferation, downstream signaling of the glutamate receptors, and establishment of cell polarity; some are also involved in cell proliferation, cell motility, and/or cell-to-cell communication.

  20. Membrane and inclusion body targeting of lyssavirus matrix proteins.

    Science.gov (United States)

    Pollin, Reiko; Granzow, Harald; Köllner, Bernd; Conzelmann, Karl-Klaus; Finke, Stefan

    2013-02-01

    Lyssavirus matrix proteins (M) support virus budding and have accessory functions that may contribute to host cell manipulation and adaptation to specific hosts. Here, we show that rabies virus (RABV) and European Bat Lyssavirus Type 1 (EBLV-1) M proteins differ in targeting and accumulation at cellular membranes. In contrast to RABV M, EBLV-1 M expressed from authentic EBLV-1 or chimeric RABV accumulated at the Golgi apparatus. Chimeric M proteins revealed that Golgi association depends on the integrity of the entire EBLV-1 M protein. Since RABV and EBLV-1 M differ in the use of cellular membranes for particle formation, differential membrane targeting and transport of M might determine the site of virus production. Moreover, both RABV and EBLV-1 M were for the first time detected within the nucleus and in Negri body-like inclusions bodies. Whereas nuclear M may imply hitherto unknown functions of lyssavirus M in host cell manipulation, the presence of M in inclusion bodies may correlate with regulatory functions of M in virus RNA synthesis. The data strongly support a model in which targeting of lyssavirus M proteins to distinctintracellular sites is a key determinant of diverse features in lyssavirus replication, host adaptation and pathogenesis. © 2012 Blackwell Publishing Ltd.

  1. Blood platelet kinetics and platelet transfusion.

    Science.gov (United States)

    Aster, Richard H

    2013-11-01

    The discovery of citrate anticoagulant in the 1920s and the development of plastic packs for blood collection in the 1960s laid the groundwork for platelet transfusion therapy on a scale not previously possible. A major limitation, however, was the finding that platelet concentrates prepared from blood anticoagulated with citrate were unsuitable for transfusion because of platelet clumping. We found that this could be prevented by simply reducing the pH of platelet-rich plasma to about 6.5 prior to centrifugation. We used this approach to characterize platelet kinetics and sites of platelet sequestration in normal and pathologic states and to define the influence of variables such as anticoagulant and ABO incompatibility on post-transfusion platelet recovery. The "acidification" approach enabled much wider use of platelet transfusion therapy until alternative means of producing concentrates suitable for transfusion became available.

  2. Characterization of the ectodomain of the envelope protein of dengue virus type 4: expression, membrane association, secretion and particle formation in the absence of precursor membrane protein.

    Directory of Open Access Journals (Sweden)

    Szu-Chia Hsieh

    Full Text Available The envelope (E of dengue virus (DENV is the major target of neutralizing antibodies and vaccine development. After biosynthesis E protein forms a heterodimer with precursor membrane (prM protein. Recent reports of infection enhancement by anti-prM monoclonal antibodies (mAbs suggest anti-prM responses could be potentially harmful. Previously, we studied a series of C-terminal truncation constructs expressing DENV type 4 prM/E or E proteins and found the ectodomain of E protein alone could be recognized by all 12 mAbs tested, suggesting E protein ectodomain as a potential subunit immunogen without inducing anti-prM response. The characteristics of DENV E protein ectodomain in the absence of prM protein remains largely unknown.In this study, we investigated the expression, membrane association, glycosylation pattern, secretion and particle formation of E protein ectodomain of DENV4 in the presence or absence of prM protein. E protein ectodomain associated with membrane in or beyond trans-Golgi and contained primarily complex glycans, whereas full-length E protein associated with ER membrane and contained high mannose glycans. In the absence of prM protein, E protein ectodomain can secrete as well as form particles of approximately 49 nm in diameter, as revealed by sucrose gradient ultracentrifugation with or without detergent and electron microscopy. Mutational analysis revealed that the secretion of E protein ectodomain was affected by N-linked glycosylation and could be restored by treatment with ammonia chloride.Considering the enhancement of DENV infectivity by anti-prM antibodies, our findings provide new insights into the expression and secretion of E protein ectodomain in the absence of prM protein and contribute to future subunit vaccine design.

  3. Protein cleavage strategies for an improved analysis of the membrane proteome

    Directory of Open Access Journals (Sweden)

    Poetsch Ansgar

    2006-03-01

    Full Text Available Abstract Background Membrane proteins still remain elusive in proteomic studies. This is in part due to the distribution of the amino acids lysine and arginine, which are less frequent in integral membrane proteins and almost absent in transmembrane helices. As these amino acids are cleavage targets for the commonly used protease trypsin, alternative cleavage conditions, which should improve membrane protein analysis, were tested by in silico digestion for the three organisms Saccharomyces cerevisiae, Halobacterium sp. NRC-1, and Corynebacterium glutamicum as hallmarks for eukaryotes, archea and eubacteria. Results For the membrane proteomes from all three analyzed organisms, we identified cleavage conditions that achieve better sequence and proteome coverage than trypsin. Greater improvement was obtained for bacteria than for yeast, which was attributed to differences in protein size and GRAVY. It was demonstrated for bacteriorhodopsin that the in silico predictions agree well with the experimental observations. Conclusion For all three examined organisms, it was found that a combination of chymotrypsin and staphylococcal peptidase I gave significantly better results than trypsin. As some of the improved cleavage conditions are not more elaborate than trypsin digestion and have been proven useful in practice, we suppose that the cleavage at both hydrophilic and hydrophobic amino acids should facilitate in general the analysis of membrane proteins for all organisms.

  4. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  5. A simple detection method for low-affinity membrane protein interactions by baculoviral display.

    Directory of Open Access Journals (Sweden)

    Toshiko Sakihama

    Full Text Available BACKGROUND: Membrane protein interactions play an important role in cell-to-cell recognition in various biological activities such as in the immune or neural system. Nevertheless, there has remained the major obstacle of expression of the membrane proteins in their active form. Recently, we and other investigators found that functional membrane proteins express on baculovirus particles (budded virus, BV. In this study, we applied this BV display system to detect interaction between membrane proteins important for cell-to-cell interaction in immune system. METHODOLOGY/PRINCIPAL FINDINGS: We infected Sf9 cells with recombinant baculovirus encoding the T cell membrane protein CD2 or its ligand CD58 and recovered the BV. We detected specific interaction between CD2-displaying BV and CD58-displaying BV by an enzyme-linked immunosorbent assay (ELISA. Using this system, we also detected specific interaction between two other membrane receptor-ligand pairs, CD40-CD40 ligand (CD40L, and glucocorticoid-induced TNFR family-related protein (GITR-GITR ligand (GITRL. Furthermore, we observed specific binding of BV displaying CD58, CD40L, or GITRL to cells naturally expressing their respective receptors by flowcytometric analysis using anti-baculoviral gp64 antibody. Finally we isolated CD2 cDNA from a cDNA expression library by magnetic separation using CD58-displaying BV and anti-gp64 antibody. CONCLUSIONS: We found the BV display system worked effectively in the detection of the interaction of membrane proteins. Since various membrane proteins and their oligomeric complexes can be displayed on BV in the native form, this BV display system should prove highly useful in the search for natural ligands or to develop screening systems for therapeutic antibodies and/or compounds.

  6. Platelet-rich fibrin in the treatment of periodontal bone defects.

    Science.gov (United States)

    Ranganathan, Aravindhan T; Chandran, Chitraa R

    2014-05-01

    Periodontitis is characterized by the formation of true pockets, bone loss and attachment loss. Various techniques have been attempted in the past to truly regenerate the lost periodontal structures, albeit with variable outcome. In this evolution, the technique being tried out widely is the use of platelet rich concentrates, namely platelet-rich fibrin (PRF). In this report, we present a case of surgical treatment of osseous bone defects namely two walled crater and dehiscence treated in posterior teeth with autologously prepared platelet rich fibrin mixed with hydroxy apatite bone graft and PRF in the form of a membrane. Our results showed clinical improvements in all the clinical parameters postoperatively namely the pocket depth reduction and gain in attachment level and hence, PRF can be used alone or in combination with the bone graft to yield successful clinical results in treating periodontal osseous defects. Platelet-rich fibrin is an effective alternative to platelet-rich plasma (PRP) in reconstructing bone defects.

  7. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    Science.gov (United States)

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein–protein and protein–lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid–protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status. PMID:24672530

  8. Plasma Membrane Protein Profiling in Beta-Amyloid-Treated Microglia Cell Line.

    Science.gov (United States)

    Correani, Virginia; Di Francesco, Laura; Mignogna, Giuseppina; Fabrizi, Cinzia; Leone, Stefano; Giorgi, Alessandra; Passeri, Alessia; Casata, Roberto; Fumagalli, Lorenzo; Maras, Bruno; Schininà, M Eugenia

    2017-09-01

    In the responsiveness of microglia to toxic stimuli, plasma membrane proteins play a key role. In this study we treated with a synthetic beta amyloid peptide murine microglial cells metabolically differently labelled with stable isotope amino acids (SILAC). The plasma membrane was selectively enriched by a multi-stage aqueous two-phase partition system. We were able to identify by 1D-LC-MS/MS analyses 1577 proteins, most of them are plasma membrane proteins according to the Gene Ontology annotation. An unchanged level of amyloid receptors in this data set suggests that microglia preserve their responsiveness capability to the environment even after 24-h challenge with amyloid peptides. On the other hand, 14 proteins were observed to change their plasma membrane abundance to a statistically significant extent. Among these, we proposed as reliable biomarkers of the inflammatory microglia phenotype in AD damaged tissues MAP/microtubule affinity-regulating kinase 3 (MARK3), Interferon-induced transmembrane protein 3 (IFITM3), Annexins A5 and A7 (ANXA5, ANXA7) and Neuropilin-1 (NRP1), all proteins known to be involved in the inflammation processes and in microtubule network assembly rate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

  10. Correlation Study of PVDF Membrane Morphology with Protein Adsorption: Quantitative Analysis by FTIR/ATR Technique

    Science.gov (United States)

    Ideris, N.; Ahmad, A. L.; Ooi, B. S.; Low, S. C.

    2018-05-01

    Microporous PVDF membranes were used as protein capture matrices in immunoassays. Because the most common labels in immunoassays were detected based on the colour change, an understanding of how protein concentration varies on different PVDF surfaces was needed. Herein, the correlation between the membrane pore size and protein adsorption was systematically investigated. Five different PVDF membrane morphologies were prepared and FTIR/ATR was employed to accurately quantify the surface protein concentration on membranes with small pore sizes. SigmaPlot® was used to find a suitable curve fit for protein adsorption and membrane pore size, with a high correlation coefficient, R2, of 0.9971.

  11. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations.

    Science.gov (United States)

    Huang, Feiran; Fang, Zhihui; Mast, Jason; Chen, Wei

    2013-05-01

    In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field-induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity. Copyright © 2013 Wiley Periodicals, Inc.

  12. Sulfatides partition disabled-2 in response to platelet activation.

    Directory of Open Access Journals (Sweden)

    Karen E Drahos

    Full Text Available BACKGROUND: Platelets contact each other at the site of vascular injury to stop bleeding. One negative regulator of platelet aggregation is Disabled-2 (Dab2, which is released to the extracellular surface upon platelet activation. Dab2 inhibits platelet aggregation through its phosphotyrosine-binding (PTB domain by competing with fibrinogen for alphaIIbbeta3 integrin receptor binding by an unknown mechanism. METHODOLOGY/PRINCIPAL FINDINGS: Using protein-lipid overlay and liposome-binding assays, we identified that the N-terminal region of Dab2, including its PTB domain (N-PTB, specifically interacts with sulfatides. Moreover, we determined that such interaction is mediated by two conserved basic motifs with a dissociation constant (K(d of 0.6 microM as estimated by surface plasmon resonance (SPR analysis. In addition, liposome-binding assays combined with mass spectroscopy studies revealed that thrombin, a strong platelet agonist, cleaved N-PTB at a site located between the basic motifs, a region that becomes protected from thrombin cleavage when bound to sulfatides. Sulfatides on the platelet surface interact with coagulation proteins, playing a major role in haemostasis. Our results show that sulfatides recruit N-PTB to the platelet surface, sequestering it from integrin receptor binding during platelet activation. This is a transient recruitment that follows N-PTB internalization by an actin-dependent process. CONCLUSIONS/SIGNIFICANCE: Our experimental data support a model where two pools of Dab2 co-exist at the platelet surface, in both sulfatide- and integrin receptor-bound states, and their balance controls the extent of the clotting response.

  13. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Directory of Open Access Journals (Sweden)

    Marciniak Bogumiła C

    2012-05-01

    Full Text Available Abstract Background Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe status, its genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins still faces limitations. Results This study aimed at the identification of bottlenecks in secretory protein production by analyzing the response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli, membrane proteins (LmrA of L. lactis and XylP of Lactobacillus pentosus and lipoproteins (MntA and YcdH of B. subtilis. Responses specific for proteins with a common localization as well as more general stress responses were observed. The latter include upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes. Specific responses include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins overproduction; and ykrL (encoding an HtpX homologue specifically under membrane proteins overproduction. Conclusions The results give better insights into B. subtilis responses to protein overproduction stress and provide potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.

  14. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    International Nuclear Information System (INIS)

    Moaddel, Ruin; Wainer, Irving W.

    2006-01-01

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K d values) and non-linear chromatography can be used to assess the association (k on ) and dissociation (k off ) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein

  15. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    Energy Technology Data Exchange (ETDEWEB)

    Moaddel, Ruin [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States); Wainer, Irving W. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States)]. E-mail: Wainerir@grc.nia.nih.gov

    2006-03-30

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K {sub d} values) and non-linear chromatography can be used to assess the association (k {sub on}) and dissociation (k {sub off}) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.

  16. A positive feedback-based gene circuit to increase the production of a membrane protein

    Directory of Open Access Journals (Sweden)

    Gennis Robert B

    2010-05-01

    Full Text Available Abstract Background Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses. Results In this paper, we demonstrate that synthetic gene circuits designed specifically to overexpress certain genes can be applied to manipulate the expression kinetics of a model membrane protein, cytochrome bd quinol oxidase in E. coli, resulting in increased expression rates. The synthetic circuit involved is an engineered, autoinducer-independent variant of the lux operon activator LuxR from V. fischeri in an autoregulatory, positive feedback configuration. Conclusions Our proof-of-concept experiments indicate a statistically significant increase in the rate of production of the bd oxidase membrane protein. Synthetic gene networks provide a feasible solution for the problem of membrane protein production.

  17. Tumor promoter induced membrane-bound protein kinase C - its influence on hematogenous metastasis

    International Nuclear Information System (INIS)

    Gopalakrishna, R.; Barsky, S.H.

    1987-01-01

    A correlation between the amount of membrane-bound detergent-extractable protein kinase C activity in various B16 melanoma sublines (F10, F1, BL6) and their lung metastasizing abilities following intravenous injection was found. The F10 subline which exhibits higher metastasizing ability was found to have higher membrane-bound protein kinase C compared to the lower metastasizing subline, F1. Treatment of F1 cells with 100 nM 12-0 tetradecanoylphorbol-13-acetate (TPA) for 1h resulted in 90% decrease in protein kinase C activity in the cytosol with a concommitent increase in membrane-bound activity. These TPA-treated cells when injected intravenously in C57BL/6 mice produced 6-fold increase in pulmonary metastases compared to untreated F1 cells. However, biologically inactive analogues 4 α-phorbol 12,13-didecanoate and phorbol 13-acetate had no effect on either membrane-bound protein kinase C activity or pulmonary metastases. Treating F1 cells with the second-stage tumor promoter, mezerin, resulted in increase in both membrane association of protein kinase C and also lung metastases. Thus, these results strongly suggests that membrane associated protein kinase C activity influences hematogenous metastasis of these melanoma cells

  18. A proteomics study reveals a predominant change in MaoB expression in platelets of healthy volunteers after high protein meat diet

    DEFF Research Database (Denmark)

    Zellner, Maria; Babeluk, Rita; Jakobsen, Lene Holm

    2011-01-01

    Studies investigating the impact of high meat intake on cognition have yielded contradictory results as some show improved cognitive performance, whereas others report an increase of risk factors for dementia. However, few studies were designed to directly assess the effect of a high protein (HP...... reproducibly studied platelet proteins only the level of monoamine oxidase B (MaoB), a neurotransmitter degrading enzyme, decreased by 26% significantly (adjusted P value diet. In addition, we found a correlation (r = 0.477; P ...) diet on both cognitive performance and corresponding biochemical parameters. A randomised intervention study was conducted with 23 healthy males (aged 19-31 years) to investigate the effects of a usual (UP) versus a HP diet on cognitive function and on the platelet proteome a well-established model...

  19. Platelet size and age determine platelet function independently

    International Nuclear Information System (INIS)

    Thompson, C.B.; Jakubowski, J.A.; Quinn, P.G.; Deykin, D.; Valeri, C.R.

    1984-01-01

    A study was undertaken to examine the interaction of platelet size and age in determining in vitro platelet function. Baboon megakaryocytes were labeled in vivo by the injection of 75Se-methionine. Blood was collected when the label was predominantly associated with younger platelets (day 2) and with older platelets (day 9). Size-dependent platelet subpopulations were prepared on both days by counterflow centrifugation. The reactivity of each platelet subpopulation was determined on both days by measuring thrombin-induced aggregation. Platelets were fixed after partial aggregation had occurred by the addition of EDTA/formalin. After removal of the aggregated platelets by differential centrifugation, the supernatant medium was assayed for remaining platelets and 75Se radioactivity. Comparing day 2 and day 9, no significant difference was seen in the rate of aggregation of a given subpopulation. However, aggregation was more rapid in the larger platelet fractions than in the smaller ones on both days. A greater percentage of the 75Se radioactivity appeared in the platelet aggregates on day 2 than on day 9. This effect was independent of platelet size, as it occurred to a similar extent in the unfractionated platelets and in each of the size-dependent platelet subpopulations. The data indicate that young platelets are more active than older platelets. This study demonstrates that size and age are both determinants of platelet function, but by independent mechanisms

  20. Platelet factor 4 activity against P. falciparum and its translation to nonpeptidic mimics as antimalarials.

    Science.gov (United States)

    Love, Melissa S; Millholland, Melanie G; Mishra, Satish; Kulkarni, Swapnil; Freeman, Katie B; Pan, Wenxi; Kavash, Robert W; Costanzo, Michael J; Jo, Hyunil; Daly, Thomas M; Williams, Dewight R; Kowalska, M Anna; Bergman, Lawrence W; Poncz, Mortimer; DeGrado, William F; Sinnis, Photini; Scott, Richard W; Greenbaum, Doron C

    2012-12-13

    Plasmodium falciparum pathogenesis is affected by various cell types in the blood, including platelets, which can kill intraerythrocytic malaria parasites. Platelets could mediate these antimalarial effects through human defense peptides (HDPs), which exert antimicrobial effects by permeabilizing membranes. Therefore, we screened a panel of HDPs and determined that human platelet factor 4 (hPF4) kills malaria parasites inside erythrocytes by selectively lysing the parasite digestive vacuole (DV). PF4 rapidly accumulates only within infected erythrocytes and is required for parasite killing in infected erythrocyte-platelet cocultures. To exploit this antimalarial mechanism, we tested a library of small, nonpeptidic mimics of HDPs (smHDPs) and identified compounds that kill P. falciparum by rapidly lysing the parasite DV while sparing the erythrocyte plasma membrane. Lead smHDPs also reduced parasitemia in a murine malaria model. Thus, identifying host molecules that control parasite growth can further the development of related molecules with therapeutic potential. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Effect of Adsorbed Protein on the Hydraulic Permeability, Membrane and Streaming Potential Values Measured across a Microporous Membrane

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    1998-01-01

    permeability decreases strongly when the pH decreases, having its minimum value at the isoelectric point of the protein; the apparent zeta potential values are also dependent on both pH and salt concentration. Differences in the streaming potential coefficient determined for two membranes fouled under......The effect of the adsorption of a protein, bovine serum albumin (BSA), on the membrane potential, flux reduction and streaming potential measured across a microporous polysulphone membrane with different NaCl solutions and pH values is studied. From electrokinetic phenomena, information about...... the electrical properties of the membrane (fixed charge concentration and ionic transport numbers) or the membrane/solute interactions (streaming and zeta potentials) can be obtained. The influence of pH and ionic strength on volume flux and streaming potential values is considered. Results show that hydraulic...

  3. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    Directory of Open Access Journals (Sweden)

    McClafferty Heather

    2005-01-01

    Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP

  4. Removal process of prion and parvovirus from human platelet lysates used as clinical-grade supplement for ex vivo cell expansion.

    Science.gov (United States)

    Kao, Yu-Chun; Bailey, Andy; Samminger, Bernhard; Tanimoto, Junji; Burnouf, Thierry

    2016-07-01

    Pooled human platelet lysate (HPL) is becoming the new gold standard as supplement for ex vivo cell culture for clinical protocols. However, the risk of pathogen contamination of HPL increases with the platelet pool size. We hypothesized that hollow fiber anion exchange membrane chromatography using QyuSpeed D (QSD) could remove resistant and untested bloodborne pathogens, such as parvoviruses and prions, from HPL-supplemented growth media without substantially affecting their capacity to support ex vivo cell expansion. Frozen or thawed platelet concentrates were serum-converted and centrifuged for obtaining HPL that was added to various growth media (ca. 100 mL), filtered through a 0.6-mL QSD membrane and characterized for proteins, growth factors and chemical composition. Capacity to expand Chinese hamster ovary, periodontal ligament, gingival fibroblast cells and Wharton's jelly mesenchymal stromal cells was studied. Removal of porcine parvovirus (PPV) and of the 263K prion strain of hamster-adapted scrapie was studied by spiking experiments following international guidelines. QSD had minimal impact on HPL-supplemented medium composition in proteins, growth factors and chemical content, nor capacity to expand and differentiate cells. In addition, QSD could remove ≥5.58 log10 [TCID50/mL] and ≥3.72 log10 of PPV and the 263K prion, respectively. QSD hollow fiber chromatography can be used to improve the virus and prion safety of HPL-supplemented media to safely expand cells for clinical protocols. These data bring new perspectives for increasingly safer use of pooled HPL in cell therapy and regenerative medicine applications. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins

    Science.gov (United States)

    Chun, Chan; Haohua, Wen; Lanyuan, Lu; Jun, Fan

    2016-01-01

    Membrane curvature is no longer thought of as a passive property of the membrane; rather, it is considered as an active, regulated state that serves various purposes in the cell such as between cells and organelle definition. While transport is usually mediated by tiny membrane bubbles known as vesicles or membrane tubules, such communication requires complex interplay between the lipid bilayers and cytosolic proteins such as members of the Bin/Amphiphysin/Rvs (BAR) superfamily of proteins. With rapid developments in novel experimental techniques, membrane remodeling has become a rapidly emerging new field in recent years. Molecular dynamics (MD) simulations are important tools for obtaining atomistic information regarding the structural and dynamic aspects of biological systems and for understanding the physics-related aspects. The availability of more sophisticated experimental data poses challenges to the theoretical community for developing novel theoretical and computational techniques that can be used to better interpret the experimental results to obtain further functional insights. In this review, we summarize the general mechanisms underlying membrane remodeling controlled or mediated by proteins. While studies combining experiments and molecular dynamics simulations recall existing mechanistic models, concurrently, they extend the role of different BAR domain proteins during membrane remodeling processes. We review these recent findings, focusing on how multiscale molecular dynamics simulations aid in understanding the physical basis of BAR domain proteins, as a representative of membrane-remodeling proteins. Project supported by the National Natural Science Foundation of China (Grant No. 21403182) and the Research Grants Council of Hong Kong, China (Grant No. CityU 21300014).

  6. Fluorescent in situ folding control for rapid optimization of cell-free membrane protein synthesis.

    Directory of Open Access Journals (Sweden)

    Annika Müller-Lucks

    Full Text Available Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD, proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality.

  7. The cell-based L-glutathione protection assays to study endocytosis and recycling of plasma membrane proteins.

    Science.gov (United States)

    Cihil, Kristine M; Swiatecka-Urban, Agnieszka

    2013-12-13

    Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.

  8. High fat diet-induced modifications in membrane lipid and mitochondrial-membrane protein signatures precede the development of hepatic insulin resistance in mice.

    Science.gov (United States)

    Kahle, M; Schäfer, A; Seelig, A; Schultheiß, J; Wu, M; Aichler, M; Leonhardt, J; Rathkolb, B; Rozman, J; Sarioglu, H; Hauck, S M; Ueffing, M; Wolf, E; Kastenmueller, G; Adamski, J; Walch, A; Hrabé de Angelis, M; Neschen, S

    2015-01-01

    Excess lipid intake has been implicated in the pathophysiology of hepatosteatosis and hepatic insulin resistance. Lipids constitute approximately 50% of the cell membrane mass, define membrane properties, and create microenvironments for membrane-proteins. In this study we aimed to resolve temporal alterations in membrane metabolite and protein signatures during high-fat diet (HF)-mediated development of hepatic insulin resistance. We induced hepatosteatosis by feeding C3HeB/FeJ male mice an HF enriched with long-chain polyunsaturated C18:2n6 fatty acids for 7, 14, or 21 days. Longitudinal changes in hepatic insulin sensitivity were assessed via the euglycemic-hyperinsulinemic clamp, in membrane lipids via t-metabolomics- and membrane proteins via quantitative proteomics-analyses, and in hepatocyte morphology via electron microscopy. Data were compared to those of age- and litter-matched controls maintained on a low-fat diet. Excess long-chain polyunsaturated C18:2n6 intake for 7 days did not compromise hepatic insulin sensitivity, however, induced hepatosteatosis and modified major membrane lipid constituent signatures in liver, e.g. increased total unsaturated, long-chain fatty acid-containing acyl-carnitine or membrane-associated diacylglycerol moieties and decreased total short-chain acyl-carnitines, glycerophosphocholines, lysophosphatidylcholines, or sphingolipids. Hepatic insulin sensitivity tended to decrease within 14 days HF-exposure. Overt hepatic insulin resistance developed until day 21 of HF-intervention and was accompanied by morphological mitochondrial abnormalities and indications for oxidative stress in liver. HF-feeding progressively decreased the abundance of protein-components of all mitochondrial respiratory chain complexes, inner and outer mitochondrial membrane substrate transporters independent from the hepatocellular mitochondrial volume in liver. We assume HF-induced modifications in membrane lipid- and protein-signatures prior to and

  9. Sphingolipid topology and the dynamic organization and function of membrane proteins.

    Science.gov (United States)

    van Meer, Gerrit; Hoetzl, Sandra

    2010-05-03

    When acquiring internal membranes and vesicular transport, eukaryotic cells started to synthesize sphingolipids and sterols. The physical differences between these and the glycerophospholipids must have enabled the cells to segregate lipids in the membrane plane. Localizing this event to the Golgi then allowed them to create membranes of different lipid composition, notably a thin, flexible ER membrane, consisting of glycerolipids, and a sturdy plasma membrane containing at least 50% sphingolipids and sterols. Besides sorting membrane proteins, in the course of evolution the simple sphingolipids obtained key positions in cellular physiology by developing specific interactions with (membrane) proteins involved in the execution and control of signaling. The few signaling sphingolipids in mammals must provide basic transmission principles that evolution has built upon for organizing the specific regulatory pathways tuned to the needs of the different cell types in the body. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy

    International Nuclear Information System (INIS)

    Zhou, Donghua H.; Nieuwkoop, Andrew J.; Berthold, Deborah A.; Comellas, Gemma; Sperling, Lindsay J.; Tang, Ming; Shah, Gautam J.; Brea, Elliott J.; Lemkau, Luisel R.; Rienstra, Chad M.

    2012-01-01

    Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution.

  11. Effects of altered platelet number on pulmonary hypertension and platelet sequestration in monocrotaline pyrrole-treated rats

    International Nuclear Information System (INIS)

    White, S.M.; Wagner, J.G.; Roth, R.A.

    1989-01-01

    To study the role of platelets in monocrotaline pyrrole (MCTP)-induced pulmonary hypertension, pulmonary sequestration of 111In-labeled platelets in rats treated with MCTP and anti-rat platelet serum (PAS) was examined. Lung injury from a single, intravenous injection of MCTP (3.5 mg/kg) at Day 8 was evident as elevated lung weight and lavage fluid protein and lactate dehydrogenase activity. Additionally, right ventricular hypertrophy and elevated pulmonary arterial pressures (PAP) occurred. Treatment with PAS on Days 6-8 did not affect the lung injury but resulted in an attenuation of the pulmonary hypertensive response. Pulmonary platelet sequestration was also decreased in PAS-treated rats, yet the sequestration in the lungs of MCTP-treated rats that received PAS was significantly higher than that in the lungs of N,N-dimethylformamide (DMF) controls. MCTP-treated rats receiving control serum (CS) tended to sequester more 111In-labeled platelets than respective DMF controls, but this was not statistically significant. Blood platelet half-life was unaltered in rats receiving CS. When rats were treated similarly with MCTP and PAS and were killed at 18 days, the attenuation of the pulmonary hypertensive response previously described was not observed, and lung injury was more extensive than when CS was given. Apparently, platelet depletion delayed the development of the pulmonary hypertensive response. Supranormal platelet numbers produced by splenectomy did not affect MCTP-induced lung injury or the elevation in PAP. These results support the hypothesis that the development of MCTP-induced pulmonary hypertension is mediated in part by platelets

  12. Vesicle-associated membrane protein 2 mediates trafficking of α5β1 integrin to the plasma membrane

    International Nuclear Information System (INIS)

    Hasan, Nazarul; Hu, Chuan

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of α5β1 integrin. VAMP2 was present on vesicles containing endocytosed β1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface α5β1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of α5β1, without altering cell surface expression of α2β1 integrin or α3β1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of α5β1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.

  13. Protein-lipid interactions: from membrane domains to cellular networks

    National Research Council Canada - National Science Library

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  14. Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins.

    Science.gov (United States)

    Sahu, Indra D; Zhang, Rongfu; Dunagan, Megan M; Craig, Andrew F; Lorigan, Gary A

    2017-06-01

    EPR spectroscopic studies of membrane proteins in a physiologically relevant native membrane-bound state are extremely challenging due to the complexity observed in inhomogeneity sample preparation and dynamic motion of the spin-label. Traditionally, detergent micelles are the most widely used membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is often difficult to examine whether the protein structure in a micelle environment is the same as that of the respective membrane-bound state. Recently, lipodisq nanoparticles have been introduced as a potentially good membrane mimetic system for structural studies of membrane proteins. However, a detailed characterization of a spin-labeled membrane protein incorporated into lipodisq nanoparticles is still lacking. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the integral membrane protein KCNE1 using site-directed spin labeling EPR spectroscopy. The characterization of spin-labeled KCNE1 incorporated into lipodisq nanoparticles was carried out using CW-EPR titration experiments for the EPR spectral line shape analysis and pulsed EPR titration experiment for the phase memory time (T m ) measurements. The CW-EPR titration experiment indicated an increase in spectral line broadening with the addition of the SMA polymer which approaches close to the rigid limit at a lipid to polymer weight ratio of 1:1, providing a clear solubilization of the protein-lipid complex. Similarly, the T m titration experiment indicated an increase in T m values with the addition of SMA polymer and approaches ∼2 μs at a lipid to polymer weight ratio of 1:2. Additionally, CW-EPR spectral line shape analysis was performed on six inside and six outside the membrane spin-label probes of KCNE1 in lipodisq nanoparticles. The results indicated significant

  15. Depressed reticuloendothelial clearance of platelets in rats after trauma.

    Science.gov (United States)

    Kaplan, J E; Moon, D G; Minnear, F L; Saba, T M

    1984-02-01

    Platelet microembolization may contribute to microcirculatory and organ damage following trauma and shock. It is hypothesized that posttraumatic reticuloendothelial depression predisposes to such microembolization by failure to clear altered platelets from the circulation. The present study evaluated the short-term (1 h) clearance and organ localization of radiolabeled homologous damaged platelets in normal rats and in rats following sublethal Noble-Collip drum trauma. Platelets were collected in citrated platelet-rich plasma from normal rats and labeled with 51Cr in citrated saline. Platelets were altered by repeated centrifugation in protein-free medium. These platelets differed functionally and morphologically from normal platelets. Disappearance of iv injected damaged platelets conformed to a two-compartment exponential clearance. Velocity of clearance in the rapid compartment correlated with hepatic platelet localization, whereas velocity of clearance in the second compartment correlated with splenic platelet localization. Clearance rate of the rapid compartment was depressed at 1 h after trauma and elevated at 24 h. These changes were associated with a decrease in hepatic platelet localization at 1 h and an increase above normal at 24 h. Splenic platelet localization was decreased by 3 h following trauma. Pulmonary platelet localization was increased at all times following trauma. It is concluded that the posttrauma state is associated with a defect in the reticuloendothelial system clearance of altered platelets, which may augment embolization of platelets in the lung.

  16. PI 3-kinase signalling in platelets: the significance of synergistic, autocrine stimulation.

    Science.gov (United States)

    Selheim, F; Holmsen, H; Vassbotn, F S

    2000-03-01

    Phosphoinositide 3-kinases (PI 3Ks) play a key role in regulation of intracellular signalling and cellular function, including cell proliferation, apoptosis, chemotaxis, membrane trafficking and platelet activation. The PI 3Ks are grouped into three classes on the basis on their structure and in vitro substrate specificity. Class I are activated by a variety of agonists which mediate their effect through tyrosine kinase-linked or G-protein-linked receptors. In vivo class I PI 3Ks seem to preferentially phosphorylate the D3 hydroxyls of the inositol moiety of PtdIns(4,5)P2 to produce PtdIns(3,4,5)P3. However, class II PI 3Ks preferentially phosphorylate the D3 hydroxyl of PtdIns and PtdIns(4)P to produce PtdIns(3)P and PtdIns(3,4)P2, respectively. The late accumulation of PtdIns(3,4)P2 has been suggested to play an important role in irreversible platelet aggregation. In human platelets the class II PI 3K isoform HsC2-PI 3K is activated in an integrin alpha IIb beta 3 + fibrinogen-dependent manner. Class III PI 3Ks phosphorylate PtdIns to produce PtdIns(3)P, which play a crucial role in vesicular trafficking. Recent work has suggested that crosstalk between individual receptors and their downstream signal pathways play a central role in PI 3K signalling responses. In this review, we will concentrate on recent advances regarding the regulation of platelet PI 3Ks.

  17. Glucose-Neopentyl Glycol (GNG) Amphiphiles for Membrane Protein Solubilization, Stabilization and Crystallization

    OpenAIRE

    Chae, Pil Seok; Rana, Rohini R.; Gotfryd, Kamil; Rasmussen, Søren G. F.; Kruse, Andrew C.; Cho, Kyung Ho; Capaldi, Stefano; Carlsson, Emil; Kobilka, Brian; Loland, Claus J.; Gether, Ulrik; Banerjee, Surajit; Byrne, Bernadette; Lee, John K.; Gellman, Samuel H.

    2013-01-01

    The development of a new class of surfactants for membrane protein manipulation, “GNG amphiphiles”, is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo et al.

  18. Modulation of Membrane Protein Lateral Mobility by Polyphosphates and Polyamines

    Science.gov (United States)

    Schindler, Melvin; Koppel, Dennis E.; Sheetz, Michael P.

    1980-03-01

    The lateral mobility of fluorescein-labeled membrane glycoproteins was measured in whole unlysed erythrocytes and erythrocyte ghosts by the technique of ``fluorescence redistribution after fusion.'' Measurements were made on polyethylene glycol-fused cell pairs in which only one member of the couplet was initially fluorescently labeled. Diffusion coefficients were estimated from the rate of fluorescence redistribution determined from successive scans with a focused laser beam across individual fused pairs. This technique allows for the analysis of diffusion within cell membranes without the possible damaging photochemical events caused by photobleaching. It was found that lateral mobility of erythrocyte proteins can be increased by the addition of polyphosphates (i.e., ATP and 2,3-diphosphoglycerate) and decreased by the addition of organic polyamines (i.e., neomycin and spermine). This control is exerted by these molecules only when they contact the cytoplasmic side of the membrane and is not dependent upon high-energy phosphates. Microviscosity experiments employing diphenylhexatriene demonstrated no changes in membrane lipid state as a function of these reagents. Our results, in conjunction with data on the physical interactions of cytoskeletal proteins, suggest that the diffusion effector molecules alter the lateral mobility of erythrocyte membrane proteins through modifications of interactions in the shell, which is composed of spectrin, actin, and component 4.1.

  19. Cellulose membranes are more effective in holding back vital proteins and exhibit less interaction with plasma proteins during hemodialysis.

    Science.gov (United States)

    Pešić, Ivana; Müller, Gerhard A; Baumann, Cosima; Dihazi, Gry H; Koziolek, Michael J; Eltoweissy, Marwa; Bramlage, Carsten; Asif, Abdul R; Dihazi, Hassan

    2013-04-01

    The vast majority of patients with end-stage renal disease are treated with intermittent hemodialysis as a form of renal replacement therapy. To investigate the impact of hemodialysis membrane material on vital protein removal, dialysates from 26 well-characterized hemodialysis patients were collected 5 min after beginning, during 5h of treatment, as well as 5 min before ending of the dialysis sessions. Dialysis sessions were performed using either modified cellulose (n=12) (low-flux and high flux) or synthetic Polyflux (n=14) (low-flux and high-flux) dialyzer. Protein removal during hemodialysis was quantified and the dialysate proteome patterns were analyzed by 2-DE, MS and Western blot. There was a clear correlation between the type of membrane material and the amount of protein removed. Synthetic Polyflux membranes exhibit strong interaction with plasma proteins resulting in a significantly higher protein loss compared to modified cellulosic membrane. Moreover, the proteomics analysis showed that the removed proteins represented different molecular weight range and different functional groups: transport proteins, protease inhibitors, proteins with role in immune response and regulations, constructive proteins and as a part of HLA immune complex. The effect of this protein removal on hemodialysis treatment outcome should be investigated in further studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Increasing platelet concentrations in leukocyte-reduced platelet-rich plasma decrease collagen gene synthesis in tendons.

    Science.gov (United States)

    Boswell, Stacie G; Schnabel, Lauren V; Mohammed, Hussni O; Sundman, Emily A; Minas, Tom; Fortier, Lisa A

    2014-01-01

    Platelet-rich plasma (PRP) is used for the treatment of tendinopathy. There are numerous PRP preparations, and the optimal combination of platelets and leukocytes is not known. Within leukocyte-reduced PRP (lrPRP), there is a plateau effect of platelet concentration, with increasing platelet concentrations being detrimental to extracellular matrix synthesis. Controlled laboratory study. Different formulations of lrPRP with respect to the platelet:leukocyte ratio were generated from venous blood of 8 horses. Explants of the superficial digital flexor tendon were cultured in lrPRP products for 96 hours. Platelet-derived growth factor-BB (PDGF-BB), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and interleukin-1β (IL-1β) concentrations were determined in the media by enzyme-linked immunosorbent assay. Gene expression in tendon tissue for collagen type I and III (COL1A1 and COL3A1, respectively), matrix metalloproteinase-3 and -13 (MMP-3 and MMP-13, respectively), cartilage oligomeric matrix protein (COMP), and IL-1β was determined. Data were divided into 3 groups of lrPRP based on the ratio of platelets:leukocytes and evaluated to determine the effect of platelet concentration. Complete blood counts verified leukocyte reduction and platelet enrichment in all PRP preparations. In the lrPRP preparation, the anabolic growth factors PDGF-BB and TGF-β1 were increased with increasing platelet concentrations, and the catabolic cytokine IL-1β was decreased with increasing platelet concentrations. Increasing the platelet concentration resulted in a significant reduction in COL1A1 and COL3A1 synthesis in tendons. Increasing the platelet concentration within lrPRP preparations results in the delivery of more anabolic growth factors and less proinflammatory cytokines, but the biological effect on tendons is diminished metabolism as indicated by a decrease in the synthesis of both COL1A1 and COL3A1. Together, this information suggests that