WorldWideScience

Sample records for platelet lipid rafts

  1. C-type lectin like receptor 2 (CLEC-2) signals independently of lipid raft microdomains in platelets.

    Science.gov (United States)

    Manne, Bhanu Kanth; Badolia, Rachit; Dangelmaier, Carol A; Kunapuli, Satya P

    2015-01-15

    C-type lectin like receptor 2 (CLEC-2) has been reported to activate platelets through a lipid raft-dependent manner. Secreted ADP potentiates CLEC-2-mediated platelet aggregation. We have investigated whether the decrease in CLEC-2-mediated platelet aggregation, previously reported in platelets with disrupted rafts, is a result of the loss of agonist potentiation by ADP. We disrupted platelet lipid rafts with methyl-β-cyclodextrin (MβCD) and measured signaling events downstream of CLEC-2 activation. Lipid raft disruption decreases platelet aggregation induced by CLEC-2 agonists. The inhibition of platelet aggregation by the disruption of lipid rafts was rescued by the exogenous addition of epinephrine but not 2-methylthioadenosine diphosphate (2MeSADP), which suggests that lipid raft disruption effects P2Y12-mediated Gi activation but not Gz. Phosphorylation of Syk (Y525/526) and PLCγ2 (Y759), were not affected by raft disruption in CLEC-2 agonist-stimulated platelets. Furthermore, tyrosine phosphorylation of the CLEC-2 hemi-ITAM was not effected when MβCD disrupts lipid rafts. Lipid rafts do not directly contribute to CLEC-2 receptor activation in platelets. The effects of disruption of lipid rafts in in vitro assays can be attributed to inhibition of ADP feedback that potentiates CLEC-2 signaling.

  2. The association of thromboxane A2 receptor with lipid rafts is a determinant for platelet functional responses.

    Science.gov (United States)

    Moscardó, A; Vallés, J; Latorre, A; Santos, M T

    2014-08-25

    We have investigated the presence of thromboxane A2 (TXA2) receptor associated with lipid rafts in human platelets and the regulation of platelet function in response to TXA2 receptor agonists when lipid rafts are disrupted by cholesterol extraction. Platelet aggregation with TXA2 analogs U46619 and IBOP was almost blunted in cholesterol-depleted platelets, as well as αIIbβ3 integrin activation and P-selectin exposure. Raft disruption also inhibited TXA2-induced cytosolic calcium increase and nucleotide release, ruling out an implication of P2Y12 receptor. An important proportion of TXA2 receptor (40%) was colocalized at lipid rafts. The presence of the TXA2 receptor associated with lipid rafts in platelets is important for functional platelet responses to TXA2.

  3. Interactive protein network of FXIII-A1 in lipid rafts of activated and non-activated platelets.

    Science.gov (United States)

    Rabani, Vahideh; Montange, Damien; Davani, Siamak

    2016-09-01

    Lipid-rafts are defined as membrane microdomains enriched in cholesterol and glycosphingolipids within platelet plasma membrane. Lipid raft-mediated clot retraction requires factor XIII and other interacting proteins. The aim of this study was to investigate the proteins that interact with factor XIII in raft and non-raft domains of activated and non-activated platelet plasma membrane. By lipidomics analysis, we identified cholesterol- and sphingomyelin-enriched areas as lipid rafts. Platelets were activated by thrombin. Proteomics analysis provided an overview of the pathways in which proteins of rafts and non-rafts participated in the interaction network of FXIII-A1, a catalytic subunit of FXIII. "Platelet activation" was the principal pathway among KEGG pathways for proteins of rafts, both before and after activation. Network analysis showed four types of interactions (activation, binding, reaction, and catalysis) in raft and non-raft domains in interactive network of FXIII-A1. FXIII-A1 interactions with other proteins in raft domains and their role in homeostasis highlight the specialization of the raft domain in clot retraction via the Factor XIII protein network.

  4. Compartmentalisation of cAMP-dependent signalling in blood platelets: The role of lipid rafts and actin polymerisation.

    Science.gov (United States)

    Raslan, Zaher; Naseem, Khalid M

    2015-01-01

    Prostacyclin (PGI2) inhibits blood platelets through the activation of membrane adenylyl cyclases (ACs) and cyclic adenosine 3',5'-monophosphate (cAMP)-mediated signalling. However, the molecular mechanism controlling cAMP signalling in blood platelet remains unclear, and in particular how individual isoforms of AC and protein kinase A (PKA) are coordinated to target distinct substrates in order to modulate platelet activation. In this study, we demonstrate that lipid rafts and the actin cytoskeleton may play a key role in regulating platelet responses to cAMP downstream of PGI2. Disruption of lipid rafts with methyl-beta-cyclodextrin (MβCD) increased platelet sensitivity to PGI2 and forskolin, a direct AC cyclase activator, resulting in greater inhibition of collagen-stimulated platelet aggregation. In contrast, platelet inhibition by the direct activator of PKA, 8-CPT-6-Phe-cAMP was unaffected by MβCD treatment. Consistent with the functional data, lipid raft disruption increased PGI2-stimulated cAMP formation and proximal PKA-mediated signalling events. Platelet inhibition, cAMP formation and phosphorylation of PKA substrates in response to PGI2 were also increased in the presence of cytochalasin D, indicating a role for actin cytoskeleton in signalling in response to PGI2. A potential role for lipid rafts in cAMP signalling is strengthened by our finding that a pool of ACV/VI and PKA was partitioned into lipid rafts. Our data demonstrate partial compartmentalisation of cAMP signalling machinery in platelets, where lipid rafts and the actin cytoskeleton regulate the inhibitory effects induced by PGI2. The increased platelet sensitivity to cAMP-elevating agents signalling upon raft and cytoskeleton disruption suggests that these compartments act to restrain basal cAMP signalling.

  5. Alterations in cholesterol and ganglioside GM1 content of lipid rafts in platelets from patients with Alzheimer disease.

    Science.gov (United States)

    Liu, Li; Zhang, Ke; Tan, Liang; Chen, Yu-Hua; Cao, Yun-Peng

    2015-01-01

    The aim of this study was to investigate the changes in the protein, cholesterol, and ganglioside GM1 content of lipid rafts in platelets from patients with Alzheimer disease (AD), and identify potential blood biomarkers of the disease. A total of 31 Chinese patients with AD and 31 aged-matched control subjects were selected. Lipid rafts were isolated from platelets using Optiprep gradient centrifugation. The protein content of lipid rafts was evaluated using Micro BCA assay, the cholesterol content using molecular probes, ganglioside GM1 content using colorimetry and dot-blotting analysis. The results showed that the cholesterol and ganglioside GM1 content of lipid rafts from platelets was significantly higher in patients with AD than aged-matched control subjects, whereas the protein content of lipid rafts did not show any differences between the 2 groups. These results indicate that the increases in the cholesterol and ganglioside GM1 content of lipid rafts from the platelets of patients with AD might serve as a biochemical adjunct to the clinical diagnosis of AD.

  6. Lipid rafts are essential for the regulation of SOCE by plasma membrane resident STIM1 in human platelets.

    Science.gov (United States)

    Dionisio, Natalia; Galán, Carmen; Jardín, Isaac; Salido, Ginés M; Rosado, Juan A

    2011-03-01

    STIM1 is a transmembrane protein essential for the activation of store-operated Ca²+ entry (SOCE), a major Ca²+ influx mechanism. STIM1 is either located in the endoplasmic reticulum, communicating the Ca²+ concentration in the stores to plasma membrane channels or in the plasma membrane, where it might sense the extracellular Ca²+ concentration. Plasma membrane-located STIM1 has been reported to mediate the SOCE sensitivity to extracellular Ca²+ through its interaction with Orai1. Here we show that plasma membrane lipid raft domains are essential for the regulation of SOCE by extracellular Ca²+. Treatment of platelets with the SERCA inhibitor thapsigargin (TG) induced Mn²+ entry, which was inhibited by increasing concentrations of extracellular Ca²+. Platelet treatment with methyl-β-cyclodextrin, which removes cholesterol and disrupts the lipid raft domains, impaired the inactivation of Ca²+ entry induced by extracellular Ca²+. Methyl-β-cyclodextrin also abolished translocation of STIM1 to the plasma membrane stimulated by treatment with TG and prevented TG-evoked co-immunoprecipitation between plasma membrane-located STIM1 and the Ca²+ permeable channel Orai1. These findings suggest that lipid raft domains are essential for the inactivation of SOCE by extracellular Ca²+ mediated by the interaction between plasma membrane-located STIM1 and Orai1. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Association of membrane/lipid rafts with the platelet cytoskeleton and the caveolin PY14: participation in the adhesion process.

    Science.gov (United States)

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Maldonado-García, Deneb; Hernández-González, Enrique; Winder, Steve J

    2015-11-01

    Platelets are the most prominent elements of blood tissue involved in hemostasis at sites of blood vessel injury. Platelet cytoskeleton is responsible for their shape modifications observed during activation and adhesion to the substratum; therefore the interactions between cytoskeleton and plasma membrane are critical to modulate blood platelet functions. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to membrane/lipid rafts (MLR) and regulate lateral diffusion of membrane proteins and lipids. Resting, thrombin-activated, and adherent human platelets were processed for biochemical studies including western-blot and immunprecipitation assays and confocal analysis were performed to characterize the interaction of MLR with the main cytoskeleton elements and β-dystroglycan as well as with the association of caveolin-1 PY14 with focal adhesion proteins. We transfected a megakaryoblast cell line (Meg-01) to deplete β-dystroglycan, subsequent to their differentiation to the platelet progenitors. Our data showed a direct interaction of the MLR with cytoskeleton to regulate platelet shape, while an association of caveolin-1 PY14 with vinculin is needed to establish focal adhesions, which are modulated for β-dystroglycan. In conclusion, caveolin-1 PY14 in association with platelet cytoskeleton participate in focal adhesions dynamics.

  8. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation.

    Science.gov (United States)

    Ohtsuka, Hiroko; Iguchi, Tomohiro; Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.

  9. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation

    Science.gov (United States)

    Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation. PMID:28072855

  10. RaftProt: mammalian lipid raft proteome database.

    Science.gov (United States)

    Shah, Anup; Chen, David; Boda, Akash R; Foster, Leonard J; Davis, Melissa J; Hill, Michelle M

    2015-01-01

    RaftProt (http://lipid-raft-database.di.uq.edu.au/) is a database of mammalian lipid raft-associated proteins as reported in high-throughput mass spectrometry studies. Lipid rafts are specialized membrane microdomains enriched in cholesterol and sphingolipids thought to act as dynamic signalling and sorting platforms. Given their fundamental roles in cellular regulation, there is a plethora of information on the size, composition and regulation of these membrane microdomains, including a large number of proteomics studies. To facilitate the mining and analysis of published lipid raft proteomics studies, we have developed a searchable database RaftProt. In addition to browsing the studies, performing basic queries by protein and gene names, searching experiments by cell, tissue and organisms; we have implemented several advanced features to facilitate data mining. To address the issue of potential bias due to biochemical preparation procedures used, we have captured the lipid raft preparation methods and implemented advanced search option for methodology and sample treatment conditions, such as cholesterol depletion. Furthermore, we have identified a list of high confidence proteins, and enabled searching only from this list of likely bona fide lipid raft proteins. Given the apparent biological importance of lipid raft and their associated proteins, this database would constitute a key resource for the scientific community.

  11. You Sank My Lipid Rafts!

    Science.gov (United States)

    Campbell, Tessa N.

    2009-01-01

    The plasma membrane is the membrane that serves as a boundary between the interior of a cell and its extracellular environment. Lipid rafts are microdomains within a cellular membrane that possess decreased fluidity due to the presence of cholesterol, glycolipids, and phospholipids containing longer fatty acids. These domains are involved in many…

  12. Improved platelet survival after cold storage by prevention of glycoprotein Ibα clustering in lipid rafts

    NARCIS (Netherlands)

    Gitz, E.; Koekman, C.A.; van den Heuvel, D.J.; Deckmyn, H.; Akkerman, J.W.N.; Gerritsen, H.C.; Urbanus, R.T

    2012-01-01

    ABSTRACT Background Room temperature storage of platelets for transfusion increases the risk of microbial infection and decreases platelet functionality, leading to out-date discard rates of up to 20%. Cold storage may be a better alternative, but this treatment leads to rapid platelet clearance aft

  13. Anesthetics interacting with lipid rafts.

    Science.gov (United States)

    Bandeiras, Cátia; Serro, Ana Paula; Luzyanin, Konstantin; Fernandes, Anabela; Saramago, Benilde

    2013-01-23

    The exact mechanism by which anesthetics induce cell membrane-mediated modifications is still an open question. Although the fluidization effect of the anesthetic molecules on the cellular membrane is widely recognized, it is not known if anesthetics show any preference for specific membrane domains, namely the lipid rafts. The importance of these membrane micro-domains derives from the fact that they have been associated with cell signaling pathways, as well as with specific drug interactions. The objective of this work is to contribute for the elucidation of this question through the comparison of the anesthetic interactions with membranes of various lipid compositions. Liposomes prepared with an equimolar mixture of POPC, sphingomyelin and cholesterol, were chosen as models for lipid rafts. The interactions of these liposomes with two local anesthetics, tetracaine and lidocaine, and one general anesthetic, propofol, were studied. The effect of cholesterol was investigated by comparing anesthetic interactions with POPC/SM liposomes and POPC/SM/CHOL liposomes. The following experimental techniques were used: quartz crystal microbalance with dissipation, differential scanning calorimetry and phosphorus nuclear magnetic resonance. Although the liposomes investigated by the different techniques are not in the same conditions, it is possible to assemble the information obtained from all experimental techniques employed to reach a general conclusion. Tetracaine interacts more with raftlike domains, lidocaine induces stronger modifications on POPC/SM liposomes and the results for propofol are not fully conclusive but it seems to be the least prone to lipid interactions. The results were compared with those obtained with DMPC-containing liposomes, reported in a previous work.

  14. The lipid raft proteome of Borrelia burgdorferi.

    Science.gov (United States)

    Toledo, Alvaro; Pérez, Alberto; Coleman, James L; Benach, Jorge L

    2015-11-01

    Eukaryotic lipid rafts are membrane microdomains that have significant amounts of cholesterol and a selective set of proteins that have been associated with multiple biological functions. The Lyme disease agent, Borrelia burgdorferi, is one of an increasing number of bacterial pathogens that incorporates cholesterol onto its membrane, and form cholesterol glycolipid domains that possess all the hallmarks of eukaryotic lipid rafts. In this study, we isolated lipid rafts from cultured B. burgdorferi as a detergent resistant membrane (DRM) fraction on density gradients, and characterized those molecules that partitioned exclusively or are highly enriched in these domains. Cholesterol glycolipids, the previously known raft-associated lipoproteins OspA and OpsB, and cholera toxin partitioned into the lipid rafts fraction indicating compatibility with components of the DRM. The proteome of lipid rafts was analyzed by a combination of LC-MS/MS or MudPIT. Identified proteins were analyzed in silico for parameters that included localization, isoelectric point, molecular mass and biological function. The proteome provided a consistent pattern of lipoproteins, proteases and their substrates, sensing molecules and prokaryotic homologs of eukaryotic lipid rafts. This study provides the first analysis of a prokaryotic lipid raft and has relevance for the biology of Borrelia, other pathogenic bacteria, as well as for the evolution of these structures. All MS data have been deposited in the ProteomeXchange with identifier PXD002365 (http://proteomecentral.proteomexchange.org/dataset/PXD002365).

  15. Microdomains Associated to Lipid Rafts.

    Science.gov (United States)

    Pacheco, Jonathan; Ramírez-Jarquín, Josué O; Vaca, Luis

    2016-01-01

    Store Operated Ca(2+) Entry (SOCE), the main Ca(2+) influx mechanism in non-excitable cells, is implicated in the immune response and has been reported to be affected in several pathologies including cancer. The basic molecular constituents of SOCE are Orai, the pore forming unit, and STIM, a multidomain protein with at least two principal functions: one is to sense the Ca(2+) content inside the lumen of the endoplasmic reticulum(ER) and the second is to activate Orai channels upon depletion of the ER. The link between Ca(2+) depletion inside the ER and Ca(2+) influx from extracellular media is through a direct association of STIM and Orai, but for this to occur, both molecules have to interact and form clusters where ER and plasma membrane (PM) are intimately apposed. In recent years a great number of components have been identified as participants in SOCE regulation, including regions of plasma membrane enriched in cholesterol and sphingolipids, the so called lipid rafts, which recruit a complex platform of specialized microdomains, which cells use to regulate spatiotemporal Ca(2+) signals.

  16. Abnormal lipid rafts related ganglioside expression and signaling in T lymphocytes in immune thrombocytopenia patients.

    Science.gov (United States)

    Zhang, Xian; Zhang, Donglei; Liu, Wenjie; Li, Huiyuan; Fu, Rongfeng; Liu, Xiaofan; Xue, Feng; Yang, Renchi

    2016-01-01

    Aberrant T lymphocytes signaling is considered to play a crucial role in the abnormal immune state of primary immune thrombocytopenia (ITP). Lipid raft has been verified to engage in the T cell receptor (TCR)-mediated T lymphocytes signal transduction. Whether lipid raft-associated T cells signal transduction has impact on the pathogenesis of ITP is still unconfirmed. In this study, we aimed to reveal the abnormality in structure and function of lipid rafts (LRs) in CD4(+) and CD8(+) T lymphocytes of patients with ITP. Our results showed that there was an increased lipid raft aggregation in ITP patients, while this kind of increase would not be influenced by platelet counts or therapeutic regimes. Stimulation by anti-CD3/CD28 monoclonal antibodies promoted enhanced lipid raft clustering in T lymphocytes of ITP patients compared with negative controls. Methyl-β-cyclodextrin (MβCD) could block the abnormal lipid raft aggregation and disrupt the TCR-mediated T cells proliferation and cytokines secretion, including both proinflammatory cytokines and anti-inflammatory cytokines. The spontaneous activation of T lymphocytes from ITP patients might be due to the elevated co-localization of protein tyrosine phosphatase (PTP) CD45 and lipid rafts in patients' CD4(+) and CD8(+) T lymphocytes. These findings suggest that the autoactivation of T lymphocytes from ITP patients may lead to the abnormality in lipid raft structure and raft-anchored proteins, and the changes conversely promote the TCR-mediated T cells activation of ITP patients.

  17. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  18. Assessing the nature of lipid raft membranes.

    Directory of Open Access Journals (Sweden)

    Perttu S Niemelä

    2007-02-01

    Full Text Available The paradigm of biological membranes has recently gone through a major update. Instead of being fluid and homogeneous, recent studies suggest that membranes are characterized by transient domains with varying fluidity. In particular, a number of experimental studies have revealed the existence of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL. These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins. However, despite the proposed importance of these domains, their properties, and even the precise nature of the lipid phases, have remained open issues mainly because the associated short time and length scales have posed a major challenge to experiments. In this work, we employ extensive atom-scale simulations to elucidate the properties of ternary raft mixtures with CHOL, palmitoylsphingomyelin (PSM, and palmitoyloleoylphosphatidylcholine. We simulate two bilayers of 1,024 lipids for 100 ns in the liquid-ordered phase and one system of the same size in the liquid-disordered phase. The studies provide evidence that the presence of PSM and CHOL in raft-like membranes leads to strongly packed and rigid bilayers. We also find that the simulated raft bilayers are characterized by nanoscale lateral heterogeneity, though the slow lateral diffusion renders the interpretation of the observed lateral heterogeneity more difficult. The findings reveal aspects of the role of favored (specific lipid-lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads to intriguing lateral pressure profiles that are distinctly different from corresponding profiles in nonraft-like membranes. The results propose that the functioning of

  19. Spatial and temporal control of signaling through lipid rafts.

    Science.gov (United States)

    Golub, Tamara; Wacha, Stefan; Caroni, Pico

    2004-10-01

    Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes and have been implicated in most signaling processes at the cell surface, but the principles and mechanisms through which lipid rafts influence signaling are not well understood. Recent studies have revealed how lipid rafts are rapidly redistributed and assembled locally in response to extracellular signals, and how components of raft-based signaling domains undergo rapid and regulated rearrangements influencing signal quality, duration, and strength. These findings highlight the exquisitely dynamic properties of signaling domains based on lipid rafts, and suggest that processes of raft trafficking and assembly take central roles in mediating spatial and temporal control of signaling.

  20. Lipid raft: A floating island of death or survival

    Energy Technology Data Exchange (ETDEWEB)

    George, Kimberly S. [Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701 (United States); Department of Chemistry, Marietta College, Marietta, OH 45750 (United States); Wu, Shiyong, E-mail: wus1@ohio.edu [Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701 (United States)

    2012-03-15

    Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid raft microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid raft disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. -- Highlights: ► The role of lipid rafts in apoptosis ► The pro- and anti-apoptotic effects of lipid raft disruption ► Cancer treatments targeting lipid rafts.

  1. The Structure of Cholesterol in Lipid Rafts

    CERN Document Server

    Toppozini, Laura; Armstrong, Clare L; Yamani, Zahra; Kucerka, Norbert; Schmid, Friederike; Rheinstaedter, Maikel C

    2014-01-01

    Rafts, or functional domains, are transient nano- or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking and lipid/protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short-lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules we observe raft-like structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to orderin...

  2. The Continuing Mystery of Lipid Rafts.

    Science.gov (United States)

    Levental, Ilya; Veatch, Sarah L

    2016-12-04

    Since its initial formalization nearly 20 years ago, the concept of lipid rafts has generated a tremendous amount of attention and interest and nearly as much controversy. The controversy is perhaps surprising because the notion itself is intuitive: compartmentalization in time and space is a ubiquitous theme at all scales of biology, and therefore, the partitioning of cellular membranes into lateral subdivision should be expected. Nevertheless, the physicochemical principles responsible for compartmentalization and the molecular mechanisms by which they are functionalized remain nearly as mysterious today as they were two decades ago. Herein, we review recent literature on this topic with a specific focus on the major open questions in the field including: (1) what are the best tools to assay raft behavior in living membranes? (2) what is the function of the complex lipidome of mammalian cells with respect to membrane organization? (3) what are the mechanisms that drive raft formation and determine their properties? (4) how can rafts be modulated? (5) how is membrane compartmentalization integrated into cellular signaling? Despite decades of intensive research, this compelling field remains full of fundamental questions.

  3. Using NK Cell Lipid Raft Fractionation to Understand the Role of Lipid Rafts in NK Cell Receptor Signaling.

    Science.gov (United States)

    Serrano-Pertierra, Esther; López-Larrea, Carlos

    2016-01-01

    Lipid rafts were first defined as detergent-resistant membranes (DRMs) due to their relative insolubility in non-ionic detergents. Although they should not be confused with lipid rafts, DRMs are a valuable starting point for the study of these membrane domains and the interactions of proteins with rafts.Here we describe the isolation of DRMs by ultracentrifugation on a sucrose gradient, a method we have used to study the role of lipid rafts in NKG2D-mediated signaling. We also describe raft fractionation of NK cells involving the selective solubility of β-octylglucoside (β-OG). OG is a non-ionic detergent that efficiently dissolves DRMs but does not disrupt protein associations with the cytoskeleton. Using these two techniques may yield useful information about the proteins involved in receptor recruitment into lipid rafts and the interactions of the actin cytoskeleton with lipid rafts.

  4. Lipid Rafts in Mast Cell Biology

    Directory of Open Access Journals (Sweden)

    Adriana Maria Mariano Silveira e Souza

    2011-01-01

    Full Text Available Mast cells have long been recognized to have a direct and critical role in allergic and inflammatory reactions. In allergic diseases, these cells exert both local and systemic responses, including allergic rhinitis and anaphylaxis. Mast cell mediators are also related to many chronic inflammatory conditions. Besides the roles in pathological conditions, the biological functions of mast cells include roles in innate immunity, involvement in host defense mechanisms against parasites, immunomodulation of the immune system, tissue repair, and angiogenesis. Despite their growing significance in physiological and pathological conditions, much still remains to be learned about mast cell biology. This paper presents evidence that lipid rafts or raft components modulate many of the biological processes in mast cells, such as degranulation and endocytosis, play a role in mast cell development and recruitment, and contribute to the overall preservation of mast cell structure and organization.

  5. Lipid Rafts Identified on Synaptic Vesicles from Rat Brain

    Institute of Scientific and Technical Information of China (English)

    HE Li; L(U) Jihua; ZHOU Qinghua; SUI Senfang

    2006-01-01

    For a long time, lipid rafts have been thought to participate in regulating neurotransmitter release. However,the existence of lipid rafts on synaptic vesicles (SVs) and the mechanism by which exocytosis-relative proteins distribute on this structure have not been fully investigated. There is also much controversial data concerning rafts on SVs and synaptic vesicle proteins which makes the results difficult to interpret. This study systematically analyzed the existence and properties of lipid rafts on purified SVs by sucrose density gradient centrifugation, cholesterol depletion, and temperature variation. The data reveals that typical lipid rafts on SVs are both cholesterol dependent and temperature sensitive. Previous confusing results may have been caused by improper treatment or side effects of particular reagent. We also screened the lateral distribution of major exocytosis-related SV proteins and found that only the synaptobrevin (syb) and synaptotagmin (syt) produce detectable association with lipid rafts in 1% Triton X-100.

  6. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria.

    Science.gov (United States)

    Huang, Zhen; London, Erwin

    2016-09-01

    Sterols are important components of eukaryotic membranes, but rare in bacteria. Some bacteria obtain sterols from their host or environment. In some cases, these sterols form membrane domains analogous the lipid rafts proposed to exist in eukaryotic membranes. This review describes the properties and roles of sterols in Borrelia and Helicobacter.

  7. Assessing the nature of lipid raft membranes

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Ollila, Samuli; Hyvönen, Marja T

    2007-01-01

    to intriguing lateral pressure profiles that are distinctly different from corresponding profiles in nonraft-like membranes. The results propose that the functioning of certain classes of membrane proteins is regulated by changes in the lateral pressure profile, which can be altered by a change in lipid content....... of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins....... However, despite the proposed importance of these domains, their properties, and even the precise nature of the lipid phases, have remained open issues mainly because the associated short time and length scales have posed a major challenge to experiments. In this work, we employ extensive atom...

  8. Lipid rafts and detergent-resistant membranes in epithelial keratinocytes.

    Science.gov (United States)

    McGuinn, Kathleen P; Mahoney, Mỹ G

    2014-01-01

    Our understanding of the plasma membrane has markedly increased since Singer and Nicolson proposed the fluid mosaic model in 1972. While their revolutionary theory of the lipid bilayer remains largely valid, it is now known that lipids and proteins are not randomly dispersed throughout the plasma membrane but instead may be organized within membrane microdomains, commonly referred to as lipid rafts. Lipid rafts are highly dynamic, detergent resistant, and enriched with both cholesterol and glycosphingolipids. The two main types are flotillin-rich planar lipid rafts and caveolin-rich caveolae. It is proposed that flotillin and caveolin proteins regulate cell communication by compartmentalizing and interacting with signal transduction proteins within their respective lipid microdomains. Consequently, membrane rafts play an important role in vital cellular functions including migration, invasion, and signaling; thus, alterations in their microenvironment can initiate signaling pathways that affect cellular function and behavior. Therefore, the identification of lipid rafts and their associated proteins is integral to the study of transmembrane signaling. Here, we review the current standard protocols and biochemical approaches used to isolate and define raft proteins from epithelial cells and tissues. Furthermore, in Section 3 of this chapter, detailed protocols are offered for isolating lipid rafts by subjection to detergent and sucrose density centrifugation, as well as an approach for selectively isolating caveolae. Methods to manipulate rafts with treatments such as methyl-β-cyclodextrin and flotillin III are also described.

  9. Sphingolipid symmetry governs membrane lipid raft structure.

    Science.gov (United States)

    Quinn, Peter J

    2014-07-01

    Lipid domain formation in membranes underlies the concept of rafts but their structure is controversial because the key role of cholesterol has been challenged. The configuration of glycosphingolipid receptors for agonists, bacterial toxins and enveloped viruses in plasma membrane rafts appears to be an important factor governing ligand binding and infectivity but the details are as yet unresolved. I have used X-ray diffraction methods to examine how cholesterol affects the distribution of glycosphingolipid in aqueous dispersions of an equimolar mixture of cholesterol and egg-sphingomyelin containing different proportions of glucosylceramide from human extracts. Three coexisting liquid-ordered bilayer structures are observed at 37°C in mixtures containing up to 20mol% glycosphingolipid. All the cholesterol was sequestered in one bilayer with the minimum amount of sphingomyelin (33mol%) to prevent formation of cholesterol crystals. The other two bilayers consisted of sphingomyelin and glucosylceramide. Asymmetric molecular species of glucosylceramide with N-acyl chains longer than 20 carbons form an equimolar complex with sphingomyelin in which the glycosidic residues are arranged in hexagonal array. Symmetric molecular species mix with sphingomyelin in proportions less than equimolar to form quasicrystalline bilayers. When the glycosphingolipid exceeds equimolar proportions with sphingomyelin cholesterol is incorporated into the structure and formation of a gel phase of glucosylceramide is prevented. The demonstration of particular structural features of ceramide molecular species combined with the diversity of sugar residues of glycosphingolipid classes paves the way for a rational approach to understanding the functional specificity of lipid rafts and how they are coupled across cell membranes.

  10. Lipid Rafts Disruption Increases Ochratoxin A Cytotoxicity to Hepatocytes.

    Science.gov (United States)

    Zhang, Yu; Qi, Xiaozhe; Zheng, Juanjuan; Luo, Yunbo; Zhao, Changhui; Hao, Junran; Li, Xiaohong; Huang, Kunlun; Xu, Wentao

    2016-02-01

    Lipid rafts are microdomains in plasma membrane and can mediate cytotoxicity. In this study, the role of lipid rafts in ochratoxin A-induced toxicity was investigated using Hepatoblastoma Cell Line HepG-2 cells. Disruption of cholesterol-containing lipid rafts enhanced Ochratoxin A (OTA) toxicity, as shown by increased lactate dehydrogenase leakage, increased reactive oxygen species level and reduction of superoxide dismutase activity in a time-dependent manner. Isobaric tags for relative and absolute quantitation-based proteomics of the cell membranes showed that nearly 85.5% proteins were downregulated by OTA, indicating that OTA inhibited the membrane protein synthesis. Most of altered proteins were involved in Gene Ontology "transport", "cell adhesion" and "vesicle-mediated transport". In conclusion, lipid rafts play a key role in OTA-induced cytotoxicity. This study provides insight into how OTA toxicity is regulated by the plasma membrane, especially the lipid rafts.

  11. Lipid rafts in immune signalling: current progress and future perspective.

    Science.gov (United States)

    Varshney, Pallavi; Yadav, Vikas; Saini, Neeru

    2016-09-01

    Lipid rafts are dynamic assemblies of proteins and lipids that harbour many receptors and regulatory molecules and so act as a platform for signal transduction. They float freely within the liquid-disordered bilayer of cellular membranes and can cluster to form larger ordered domains. Alterations in lipid rafts are commonly found to be associated with the pathogenesis of several human diseases and recent reports have shown that the raft domains can also be perturbed by targeting raft proteins through microRNAs. Over the last few years, the importance of lipid rafts in modulating both innate and acquired immune responses has been elucidated. Various receptors present on immune cells like B cells, T cells, basophils and mast cells associate with lipid rafts on ligand binding and initiate signalling cascades leading to inflammation. Furthermore, disrupting lipid raft integrity alters lipopolysaccharide-induced cytokine secretion, IgE signalling, and B-cell and T-cell activation. The objective of this review is to summarize the recent progress in understanding the role of lipid rafts in the modulation of immune signalling and its related therapeutic potential for autoimmune diseases and inflammatory disorders.

  12. Localization and signaling of GPCRs in lipid rafts.

    Science.gov (United States)

    Villar, Van Anthony M; Cuevas, Santiago; Zheng, Xiaoxu; Jose, Pedro A

    2016-01-01

    The understanding of how biological membranes are organized and how they function has evolved. Instead of just serving as a medium in which certain proteins are found, portions of the lipid bilayer have been demonstrated to form specialized platforms that foster the assembly of signaling complexes by providing a microenvironment that is conducive for effective protein-protein interactions. G protein-coupled receptors (GPCRs) and relevant signaling molecules, including the heterotrimeric G proteins, key enzymes such as kinases and phosphatases, trafficking proteins, and secondary messengers, preferentially partition to these highly organized cell membrane microdomains, called lipid rafts. As such, lipid rafts are crucial for the trafficking and signaling of GPCRs. The study of GPCR biology in the context of lipid rafts involves the localization of the GPCR of interest in lipid rafts, at the basal state and upon receptor agonism, and the evaluation of the biological functions of the GPCR in appropriate cell lines. The lack of standardized methodology to study lipid rafts, in general, and of the workings of GPCRs in lipid rafts, in particular, and the inherent drawbacks of current methods have hampered the complete understanding of the underlying molecular mechanisms. Newer methodologies that allow the study of GPCRs in their native form are needed. The use of complementary approaches that produce mutually supportive results appear to be the best way for drawing conclusions with regards to the distribution and activity of GPCRs in lipid rafts.

  13. Lipid raft involvement in yeast cell growth and death.

    Science.gov (United States)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na(+), K(+), and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  14. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  15. Lipid rafts as major platforms for signaling regulation in cancer.

    Science.gov (United States)

    Mollinedo, Faustino; Gajate, Consuelo

    2015-01-01

    Cell signaling does not apparently occur randomly over the cell surface, but it seems to be integrated very often into cholesterol-rich membrane domains, termed lipid rafts. Membrane lipid rafts are highly ordered membrane domains that are enriched in cholesterol, sphingolipids and gangliosides, and behave as major modulators of membrane geometry, lateral movement of molecules, traffic and signal transduction. Because the lipid and protein composition of membrane rafts differs from that of the surrounding membrane, they provide an additional level of compartmentalization, serving as sorting platforms and hubs for signal transduction proteins. A wide number of signal transduction processes related to cell adhesion, migration, as well as to cell survival and proliferation, which play major roles in cancer development and progression, are dependent on lipid rafts. Despite lipid rafts harbor mainly critical survival signaling pathways, including insulin-like growth factor I (IGF-I)/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, recent evidence suggests that these membrane domains can also house death receptor-mediated apoptotic signaling. Recruitment of this death receptor signaling pathway in membrane rafts can be pharmacologically modulated, thus opening up the possibility to regulate cell demise with a therapeutic use. The synthetic ether phospholipid edelfosine shows a high affinity for cholesterol and accumulates in lipid rafts in a number of malignant hematological cells, leading to an efficient in vitro and in vivo antitumor activity by inducing translocation of death receptors and downstream signaling molecules to these membrane domains. Additional antitumor drugs have also been shown to act, at least in part, by recruiting death receptors in lipid rafts. The partition of death receptors together with downstream apoptotic signaling molecules in membrane rafts has led us to postulate the concept of a special liquid-ordered membrane platform coined as

  16. Designing the lipid raft marker protein for synaptic vesicles

    Institute of Scientific and Technical Information of China (English)

    Lv Jihua; Sui Senfang

    2009-01-01

    Lipid rafts are cholesterol-enriched microdomains and implicated in many essential physiological activities such as the neurotransmitter release. Many studies have been carried out on the function of rafts in the plasma membranes, whereas little is known about the information of such microdomains in subcellular compartments especially synaptic vesicles (SVs). In the well-studied plasma membranes, several proteins have been recognized as raft markers, which are used to label or trace rafts. But the raft marker protein on SVs has not been identified yet. Although some SV proteins, including VAMP and CPE, have been found in raft fractions, they cannot be used as markers due to their low abundance in rafts. In this work, we designed several chimera proteins and tested their characteristics for using as SV raft makers. First, we detected whether they located in SVs, and then the chimeras exhibiting the better localization in SVs were further examined for their enrichment in raft using detergent treatment and gradient density floatation analysis. Our results indicate that one of the chimeric proteins is primarily located in SVs and distributed in raft microdomains, which strongly suggests that it could be served as a raft marker for SVs.

  17. Modeling Signal Transduction and Lipid Rafts in Immune Cells

    Science.gov (United States)

    Prasad, Ashok

    2011-03-01

    Experimental evidence increasingly suggests that lipid rafts are nanometer sized cholesterol dependent dynamic assemblies enriched in sphingolipids and associated proteins. Lipid rafts are dynamic structures that break-up and reform on a relatively short time-scale, and are believed to facilitate the interactions of raft-associated proteins. The role of these rafts in signaling has been controversial, partly due to controversies regarding the existence and nature of the rafts themselves. Experimental evidence has indicated that in several cell types, especially T cells, rafts do influence signal transduction and T cell activation. Given the emerging consensus on the biophysical character of lipid rafts, the question can be asked as to what roles they possibly play in signal transduction. Here we carry out simulations of minimal models of the signal transduction network that regulates Src-family kinase dynamics in T cells and other cell types. By separately treating raft-based biochemical interactions, we find that rafts can indeed putatively play an important role in signal transduction, and in particular may affect the sensitivity of signal transduction. This illuminates possible functional consequences of membrane heterogeneities on signal transduction and points towards mechanisms for spatial control of signaling by cells.

  18. Dynamic Reorganization and Correlation among Lipid Raft Components.

    Science.gov (United States)

    Lozano, Mónica M; Hovis, Jennifer S; Moss, Frank R; Boxer, Steven G

    2016-08-10

    Lipid rafts are widely believed to be an essential organizational motif in cell membranes. However, direct evidence for interactions among lipid and/or protein components believed to be associated with rafts is quite limited owing, in part, to the small size and intrinsically dynamic interactions that lead to raft formation. Here, we exploit the single negative charge on the monosialoganglioside GM1, commonly associated with rafts, to create a gradient of GM1 in response to an electric field applied parallel to a patterned supported lipid bilayer. The composition of this gradient is visualized by imaging mass spectrometry using a NanoSIMS. Using this analytical method, added cholesterol and sphingomyelin, both neutral and not themselves displaced by the electric field, are observed to reorganize with GM1. This dynamic reorganization provides direct evidence for an attractive interaction among these raft components into some sort of cluster. At steady state we obtain an estimate for the composition of this cluster.

  19. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers

    CERN Document Server

    Meinhardt, Sebastian; Schmid, Friederike

    2013-01-01

    According to the lipid raft hypothesis, biological lipid membranes are laterally heterogeneous and filled with nanoscale ordered "raft" domains, which are believed to play an important role for the organization of proteins in membranes. However, the mechanisms stabilizing such small rafts are not clear, and even their existence is sometimes questioned. Here we report the observation of raft-like structures in a coarse-grained molecular model for multicomponent lipid bilayers. On small scales, our membranes demix into a liquid ordered (lo) and a liquid disordered (ld) phase. On large scales, phase separation is suppressed and gives way to a microemulsion-type state that contains nanometer size lo domains in a ld environment. Furthermore, we introduce a mechanism that generates rafts of finite size by a coupling between monolayer curvature and local composition. We show that mismatch between the spontaneous curvatures of monolayers in the lo and ld phase induces elastic interactions, which reduce the line tensi...

  20. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W;

    2011-01-01

    a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...... feature of vesicles carrying PM cargo and suggests a common lipid-based mechanism for their formation....

  1. Atom-scale molecular interactions in lipid raft mixtures

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Hyvönen, Marja T; Vattulainen, Ilpo

    2009-01-01

    We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecul....... As a particularly intriguing example of this, the lateral pressure profiles of raft-like and non-raft systems indicate that the lipid composition of membrane domains may have a major impact on membrane protein activation.......We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecular...

  2. Plasma membrane organization and function: moving past lipid rafts.

    Science.gov (United States)

    Kraft, Mary L

    2013-09-01

    "Lipid raft" is the name given to the tiny, dynamic, and ordered domains of cholesterol and sphingolipids that are hypothesized to exist in the plasma membranes of eukaryotic cells. According to the lipid raft hypothesis, these cholesterol- and sphingolipid-enriched domains modulate the protein-protein interactions that are essential for cellular function. Indeed, many studies have shown that cellular levels of cholesterol and sphingolipids influence plasma membrane organization, cell signaling, and other important biological processes. Despite 15 years of research and the application of highly advanced imaging techniques, data that unambiguously demonstrate the existence of lipid rafts in mammalian cells are still lacking. This Perspective summarizes the results that challenge the lipid raft hypothesis and discusses alternative hypothetical models of plasma membrane organization and lipid-mediated cellular function.

  3. DJ-1 associates with lipid rafts by palmitoylation and regulates lipid rafts-dependent endocytosis in astrocytes.

    Science.gov (United States)

    Kim, Kwang Soo; Kim, Jin Soo; Park, Ji-Young; Suh, Young Ho; Jou, Ilo; Joe, Eun-Hye; Park, Sang Myun

    2013-12-01

    Parkinson's disease (PD) is the second most common progressive neurodegenerative disease. Several genes have been associated with familial type PD, providing tremendous insights into the pathogenesis of PD. Gathering evidence supports the view that these gene products may operate through common molecular pathways. Recent reports suggest that many PD-associated gene products, such as α-synuclein, LRRK2, parkin and PINK1, associate with lipid rafts and lipid rafts may be associated with neurodegeneration. Here, we observed that DJ-1 protein also associated with lipid rafts. Palmitoylation of three cysteine residues (C46/53/106) and C-terminal region of DJ-1 were required for this association. Lipopolysaccharide (LPS) induced the localization of DJ-1 into lipid rafts in astrocytes. The LPS-TLR4 signaling was more augmented in DJ-1 knock-out astrocytes by the impairment of TLR4 endocytosis. Furthermore, lipid rafts-dependent endocytosis including the endocytosis of CD14, which play a major role in regulating TLR4 endocytosis was also impaired, but clathrin-dependent endocytosis was not. This study provides a novel function of DJ-1 in lipid rafts, which may contribute the pathogenesis of PD. Moreover, it also provides the possibility that many PD-related proteins may operate through common molecular pathways in lipid rafts.

  4. Lipid rafts prepared by different methods contain different connexin channels, but gap junctions are not lipid rafts.

    Science.gov (United States)

    Locke, Darren; Liu, Jade; Harris, Andrew L

    2005-10-04

    Cell extraction with cold nonionic detergents or alkaline carbonate prepares an insoluble membrane fraction whose buoyant density permits its flotation in discontinuous sucrose gradients. These lipid "rafts" are implicated in protein sorting and are attractive candidates as platforms that coordinate signal transduction pathways with intracellular substrates. Gap junctions form a direct molecular signaling pathway by end-to-end apposition of hemichannels containing one (homomeric) or more (heteromeric) connexin isoforms. Residency of channels composed of Cx26 and/or Cx32 in lipid rafts was assessed by membrane insolubility in alkaline carbonate or different concentrations of Triton X100, Nonidet P40 and Brij-58 nonionic detergents. Using Triton X100, insoluble raft membranes contained homomeric Cx32 channels, but Cx26-containing channels only when low detergent concentrations were used. Results were similar using Nonidet P40, except that Cx26-containing channels were excluded from raft membranes at all detergent concentrations. In contrast, homomeric Cx26 channels were enriched within Brij-58-insoluble rafts, whereas Cx32-containing channels partitioned between raft and nonraft membranes. Immunofluorescence microscopy showed prominent colocalization only of nonjunctional connexin channels with raft plasma membrane; junctional plaques were not lipid rafts. Rafts prepared by different extraction methods had considerable quantitative and qualitative differences in their lipid compositions. That functionally different nonjunctional connexin channels partition among rafts with distinct lipid compositions suggests that unpaired Cx26 and/or Cx32 channels exist in membrane domains of slightly different physicochemical character. Rafts may be involved in trafficking of plasma membrane connexin channels to gap junctions.

  5. Structure of Cholesterol in Lipid Rafts

    Science.gov (United States)

    Toppozini, Laura; Meinhardt, Sebastian; Armstrong, Clare L.; Yamani, Zahra; Kučerka, Norbert; Schmid, Friederike; Rheinstädter, Maikel C.

    2014-11-01

    Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  6. Lipid Raft Alterations in Aged-Associated Neuropathologies.

    Science.gov (United States)

    Marin, Raquel; Fabelo, Noemí; Fernández-Echevarría, Cecilia; Canerina-Amaro, Ana; Rodríguez-Barreto, Deiene; Quinto-Alemany, David; Mesa-Herrera, Fátima; Díaz, Mario

    2016-01-01

    Lipid rafts are membrane microdomains particularly enriched in cholesterol, sphingolipids and saturated fatty acids. These microstructures play a key role in a plethora of mechanisms involved in cell signaling, synapsis, cell-cell communication and cell survival. In the last years, increasing evidence indicate that lipid rafts may be altered in age-related neuropathologies, such as Alzheimer's disease and Parkinson disease even at asymptomatic stages. In particular, important changes in raft lipid composition are observed with the progression of these diseases, then inducing alterations in their physicochemical properties. Furthermore, these phenomena contribute to neuropathological events related to amyloidogenesis, aberrant protein aggregation and toxic cell signalling. In this review, we discuss some relevant data on the age-related molecular changes occurring in lipid rafts since the first stages of these neurodegenerative diseases. Further characterization of specific parameters associated with alterations of these microdomains may provide potential tools of diagnosis and prediction of these neuropathologies.

  7. Lipid rafts, caveolae and GPI-linked proteins.

    NARCIS (Netherlands)

    Reeves, V.L.; Thomas, C.M.G.; Smart, E.J.

    2012-01-01

    Lipid rafts and caveolae are specialized membrane microdomains enriched in sphingolipids and cholesterol. They function in a variety of cellular processes including but not limited to endocytosis, transcytosis, signal transduction and receptor recycling. Here, we outline the similarities and differe

  8. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts.

    Directory of Open Access Journals (Sweden)

    Timothy J LaRocca

    Full Text Available Lipid rafts in eukaryotic cells are sphingolipid and cholesterol-rich, ordered membrane regions that have been postulated to play roles in many membrane functions, including infection. We previously demonstrated the existence of cholesterol-lipid-rich domains in membranes of the prokaryote, B. burgdorferi, the causative agent of Lyme disease [LaRocca et al. (2010 Cell Host & Microbe 8, 331-342]. Here, we show that these prokaryote membrane domains have the hallmarks of eukaryotic lipid rafts, despite lacking sphingolipids. Substitution experiments replacing cholesterol lipids with a set of sterols, ranging from strongly raft-promoting to raft-inhibiting when mixed with eukaryotic sphingolipids, showed that sterols that can support ordered domain formation are both necessary and sufficient for formation of B. burgdorferi membrane domains that can be detected by transmission electron microscopy or in living organisms by Förster resonance energy transfer (FRET. Raft-supporting sterols were also necessary and sufficient for formation of high amounts of detergent resistant membranes from B. burgdorferi. Furthermore, having saturated acyl chains was required for a biotinylated lipid to associate with the cholesterol-lipid-rich domains in B. burgdorferi, another characteristic identical to that of eukaryotic lipid rafts. Sterols supporting ordered domain formation were also necessary and sufficient to maintain B. burgdorferi membrane integrity, and thus critical to the life of the organism. These findings provide compelling evidence for the existence of lipid rafts and show that the same principles of lipid raft formation apply to prokaryotes and eukaryotes despite marked differences in their lipid compositions.

  9. Lipid Rafts: Keys to Sperm Maturation, Fertilization, and Early Embryogenesis

    Directory of Open Access Journals (Sweden)

    Natsuko Kawano

    2011-01-01

    Full Text Available Cell membranes are composed of many different lipids and protein receptors, which are important for regulating intracellular functions and cell signaling. To orchestrate these activities, the cell membrane is compartmentalized into microdomains that are stably or transiently formed. These compartments are called “lipid rafts”. In gamete cells that lack gene transcription, distribution of lipids and proteins on these lipid rafts is focused during changes in their structure and functions such as starting flagella movement and membrane fusion. In this paper, we describe the role of lipid rafts in gamete maturation, fertilization, and early embryogenesis.

  10. Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes.

    Science.gov (United States)

    Dubois, Louise; Ronquist, Karl K Göran; Ek, Bo; Ronquist, Gunnar; Larsson, Anders

    2015-11-01

    Prostasomes are exosomes derived from prostate epithelial cells through exocytosis by multivesicular bodies. Prostasomes have a bilayered membrane and readily interact with sperm. The membrane lipid composition is unusual with a high contribution of sphingomyelin at the expense of phosphatidylcholine and saturated and monounsaturated fatty acids are dominant. Lipid rafts are liquid-ordered domains that are more tightly packed than the surrounding nonraft phase of the bilayer. Lipid rafts are proposed to be highly dynamic, submicroscopic assemblies that float freely within the liquid disordered membrane bilayer and some proteins preferentially partition into the ordered raft domains. We asked the question whether lipid rafts do exist in prostasomes and, if so, which proteins might be associated with them. Prostasomes of density range 1.13-1.19g/ml were subjected to density gradient ultracentrifugation in sucrose fabricated by phosphate buffered saline (PBS) containing 1% Triton X-100 with capacity for banding at 1.10 g/ml, i.e. the classical density of lipid rafts. Prepared prostasomal lipid rafts (by gradient ultracentrifugation) were analyzed by mass spectrometry. The clearly visible band on top of 1.10g/ml sucrose in the Triton X-100 containing gradient was subjected to liquid chromatography-tandem MS and more than 370 lipid raft associated proteins were identified. Several of them were involved in intraluminal vesicle formation, e.g. tetraspanins, ESCRTs, and Ras-related proteins. This is the first comprehensive liquid chromatography-tandem MS profiling of proteins in lipid rafts derived from exosomes. Data are available via ProteomeXchange with identifier PXD002163.

  11. Native low density lipoprotein promotes lipid raft formation in macrophages.

    Science.gov (United States)

    Song, Jian; Ping, Ling-Yan; Duong, Duc M; Gao, Xiao-Yan; He, Chun-Yan; Wei, Lei; Wu, Jun-Zhu

    2016-03-01

    Oxidized low‑density lipoprotein (LDL) has an important role in atherogenesis; however, the mechanisms underlying cell‑mediated LDL oxidation remain to be elucidated. The present study investigated whether native‑LDL induced lipid raft formation, in order to gain further insight into LDL oxidation. Confocal microscopic analysis revealed that lipid rafts were aggregated or clustered in the membrane, which were colocalized with myeloperoxidase (MPO) upon native LDL stimulation; however, in the presence of methyl‑β‑cyclodextrin (MβCD), LDL‑stimulated aggregation, translocation, and colocalization of lipid rafts components was abolished.. In addition, lipid raft disruptors MβCD and filipin decreased malondialdehyde expression levels. Density gradient centrifugation coupled to label‑free quantitative proteomic analysis identified 1,449 individual proteins, of which 203 were significantly upregulated following native‑LDL stimulation. Functional classification of the proteins identified in the lipid rafts revealed that the expression levels of translocation proteins were upregulated. In conclusion, the results of the present study indicated that native‑LDL induced lipid raft clustering in macrophages, and the expression levels of several proteins were altered in the stimulated macrophages, which provided novel insights into the mechanism underlying LDL oxidation.

  12. Lipid rafts and their possible involvements in neuroimmunological disorders.

    Science.gov (United States)

    Asakura, Kunihiko; Ueda, Akihiro; Mutoh, Tatsuro

    2015-01-01

    Multiple sclerosis (MS) and neuromyelitis optica (NMO) are presumed to be an autoimmune disease in the central nervous system (CNS). Although lipids are most abundant components in the nervous system, it has been believed that cellular and/or humoral immunity to various myelin proteins causes these neuroinflammatory diseases. Recent research advances enable us to study lipids in the membranes and some key molecules involved in various neurological disorders including Guillain-Barré syndrome, Alzheimer's disease, Parkinson's disease, and prion disease, are localized in lipid rafts. In MS and NMO, the key molecules for the pathogenesis or the target molecules for the treatments of MS and NMO are also localized in lipid rafts. Here in this article, we highlight on the possible involvement of lipid rafts in the pathogenesis and treatment of MS and NMO and introduce our recent observation of aquaporin 4 regarding NMO.

  13. Isolation and analysis of membrane lipids and lipid rafts in common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Brogden, Graham; Propsting, Marcus; Adamek, Mikolaj; Naim, Hassan Y; Steinhagen, Dieter

    2014-03-01

    Cell membranes act as an interface between the interior of the cell and the exterior environment and facilitate a range of essential functions including cell signalling, cell structure, nutrient uptake and protection. It is composed of a lipid bilayer with integrated proteins, and the inner leaflet of the lipid bilayer comprises of liquid ordered (Lo) and liquid disordered (Ld) domains. Lo microdomains, also named as lipid rafts are enriched in cholesterol, sphingomyelin and certain types of proteins, which facilitate cell signalling and nutrient uptake. Lipid rafts have been extensively researched in mammals and the presence of functional lipid rafts was recently demonstrated in goldfish, but there is currently very little knowledge about their composition and function in fish. Therefore a protocol was established for the analysis of lipid rafts and membranous lipids in common carp (Cyprinus carpio L.) tissues. Twelve lipids were identified and analysed in the Ld domain of the membrane with the most predominant lipids found in all tissues being; triglycerides, cholesterol, phosphoethanolamine and phosphatidylcholine. Four lipids were identified in lipid rafts in all tissues analysed, triglycerides (33-62%) always found in the highest concentration followed by cholesterol (24-32%), phosphatidylcholine and sphingomyelin. Isolation of lipid rafts was confirmed by identifying the presence of the lipid raft associated protein flotillin, present at higher concentrations in the detergent resistant fraction. The data provided here build a lipid library of important carp tissues as a baseline for further studies into virus entry, protein trafficking or environmental stress analysis.

  14. Functional Proteomic Analysis of Lipid Raft Kinase Complexes

    Science.gov (United States)

    2009-08-01

    distinct modes. J Cell Sci 2006;119:3833–44. Supplemental Data Proteome-scale Characterization of Human S-acylated Proteins in Lipid Raft...enriched and Non-raft Membrane Domains Wei Yang, Dolores Di Vizio, Marc Kirchner, Hanno Steen, and Michael R. Freeman Supplemental Tables include: 1...Carboxypeptidase M precursor Raft 2 18/443 – 0.5 0.5 1.0 1 1 1.0 0 0 0.0 181 + + IPI00032038 CPT1A Isoform 1 of Carnitine O-palmitoyltransferase I, liver isoform

  15. Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses.

    Science.gov (United States)

    Iwabuchi, Kazuhisa

    2015-01-01

    Glycosphingolipids (GSLs) are membrane components consisting of hydrophobic ceramide and hydrophilic sugar moieties. GSLs cluster with cholesterol in cell membranes to form GSL-enriched lipid rafts. Biochemical analyses have demonstrated that GSL-enriched lipid rafts contain several kinds of transducer molecules, including Src family kinases. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms, is highly expressed on the plasma membranes of human phagocytes, and forms lipid rafts containing the Src family tyrosine kinase Lyn. LacCer-enriched lipid rafts mediate immunological and inflammatory reactions, including superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. LacCer also serves as a signal transduction molecule for functions mediated by CD11b/CD18-integrin (αM/β2-integrin, CR3, Mac-1), as well as being associated with several key cellular processes. LacCer recruits PCKα/ε and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and their adhesion to endothelial cells, as well as regulating β1-integrin clustering and endocytosis on cell surfaces. This review describes the organizational and inflammation-related functions of LacCer-enriched lipid rafts.

  16. Lipid rafts and Alzheimer’s disease: protein-lipid interactions and perturbation of signalling

    Directory of Open Access Journals (Sweden)

    David A. Hicks

    2012-06-01

    Full Text Available Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein-protein interactions and for cellular signalling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses, axonal development and maintenance of synaptic integrity, rafts have also been implicated in the pathogenesis of several neurodegenerative diseases including Alzheimer’s disease (AD. Lipid rafts promote interaction of the amyloid precursor protein (APP with the secretase (BACE-1 responsible for generation of the amyloid β peptide, Aβ. Rafts also regulate cholinergic signalling as well as acetylcholinesterase and Aβ interaction. In addition, such major lipid raft components as cholesterol and GM1 ganglioside have been directly implicated in pathogenesis of the disease. Perturbation of lipid raft integrity can also affect various signalling pathways leading to cellular death and AD. In this review, we discuss modulation of APP cleavage by lipid rafts and their components, while also looking at more recent findings on the role of lipid rafts in signalling events.

  17. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    Science.gov (United States)

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function.

  18. y Human herpesvirus 6 envelope components enriched in lipid rafts: evidence for virion-associated lipid rafts

    Directory of Open Access Journals (Sweden)

    Yamanishi Koichi

    2009-08-01

    Full Text Available Abstract In general, enveloped viruses are highly dependent on their lipid envelope for entry into host cells. Here, we demonstrated that during the course of virus maturation, a significant proportion of human herpesvirus 6 (HHV-6 envelope proteins were selectively concentrated in the detergent-resistant glycosphingolipid- and cholesterol-rich membranes (rafts in HHV-6-infected cells. In addition, the ganglioside GM1, which is known to partition preferentially into lipid rafts, was detected in purified virions, along with viral envelope glycoproteins, gH, gL, gB, gQ1, gQ2 and gO indicating that at least one raft component was included in the viral particle during the assembly process.

  19. Caveolin interaction governs Kv1.3 lipid raft targeting.

    Science.gov (United States)

    Pérez-Verdaguer, Mireia; Capera, Jesusa; Martínez-Mármol, Ramón; Camps, Marta; Comes, Núria; Tamkun, Michael M; Felipe, Antonio

    2016-03-02

    The spatial localization of ion channels at the cell surface is crucial for their functional role. Many channels localize in lipid raft microdomains, which are enriched in cholesterol and sphingolipids. Caveolae, specific lipid rafts which concentrate caveolins, harbor signaling molecules and their targets becoming signaling platforms crucial in cell physiology. However, the molecular mechanisms involved in such spatial localization are under debate. Kv1.3 localizes in lipid rafts and participates in the immunological response. We sought to elucidate the mechanisms of Kv1.3 surface targeting, which govern leukocyte physiology. Kv1 channels share a putative caveolin-binding domain located at the intracellular N-terminal of the channel. This motif, lying close to the S1 transmembrane segment, is situated near the T1 tetramerization domain and the determinants involved in the Kvβ subunit association. The highly hydrophobic domain (FQRQVWLLF) interacts with caveolin 1 targeting Kv1.3 to caveolar rafts. However, subtle variations of this cluster, putative ancillary associations and different structural conformations can impair the caveolin recognition, thereby altering channel's spatial localization. Our results identify a caveolin-binding domain in Kv1 channels and highlight the mechanisms that govern the regulation of channel surface localization during cellular processes.

  20. Lipid rafts both in cellular membrane and viral envelope are critical for PRRSV efficient infection.

    Science.gov (United States)

    Yang, Qian; Zhang, Qiong; Tang, Jun; Feng, Wen-Hai

    2015-10-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) represents a significantly economical challenge to the swine industry worldwide. In this study, we investigated the importance of cellular and viral lipid rafts in PRRSV infection. First, we demonstrated that PRRSV glycoproteins, Gp3 and Gp4, were associated with lipid rafts during viral entry, and disruption of cellular lipid rafts inhibited PRRSV entry. We also showed the raft-location of CD163, which might contribute to the glycoproteins-raft association. Subsequently, raft disruption caused a significant reduction of viral RNA production. Moreover, Nsp9 was shown to be distributed in rafts, suggesting that rafts probably serve as a platform for PRRSV replication. Finally, we confirmed that disassembly of rafts on the virus envelope may affect the integrity of PRRSV particles and cause the leakage of viral proteins, which impaired PRRSV infectivity. These findings might provide insights on our understanding of the mechanism of PRRSV infection.

  1. Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling.

    Science.gov (United States)

    Gajate, Consuelo; Mollinedo, Faustino

    2015-05-01

    Membrane lipid rafts are highly ordered membrane domains enriched in cholesterol, sphingolipids and gangliosides that have the property to segregate and concentrate proteins. Lipid and protein composition of lipid rafts differs from that of the surrounding membrane, thus providing sorting platforms and hubs for signal transduction molecules, including CD95 death receptor-mediated signaling. CD95 can be recruited to rafts in a reversible way through S-palmitoylation following activation of cells with its physiological cognate ligand as well as with a wide variety of inducers, including several antitumor drugs through ligand-independent intracellular mechanisms. CD95 translocation to rafts can be modulated pharmacologically, thus becoming a target for the treatment of apoptosis-defective diseases, such as cancer. CD95-mediated signaling largely depends on protein-protein interactions, and the recruitment and concentration of CD95 and distinct downstream apoptotic molecules in membrane raft domains, forming raft-based supramolecular entities that act as hubs for apoptotic signaling molecules, favors the generation and amplification of apoptotic signals. Efficient CD95-mediated apoptosis involves CD95 and raft internalization, as well as the involvement of different subcellular organelles. In this review, we briefly summarize and discuss the involvement of lipid rafts in the regulation of CD95-mediated apoptosis that may provide a new avenue for cancer therapy.

  2. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    Science.gov (United States)

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  3. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    Directory of Open Access Journals (Sweden)

    E Michael Danielsen

    Full Text Available The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs, was absent from detergent resistant membranes (DRMs, implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  4. Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1

    NARCIS (Netherlands)

    Klappe, Karin; Dijkhuis, Anne-Jan; Hummel, Ina; van Dam, Annie; Ivanova, Pavlina T.; Milne, Stephen B.; Myers, David S.; Brown, H. Alex; Permentier, Hjalmar; Kok, Jan W.

    2010-01-01

    We show that highly efficient depletion of sphingolipids in two different cell lines does not abrogate the ability to isolate Lubrol-based DRMs (detergent-resistant membranes) or detergent-free lipid rafts from these cells. Compared with control, DRM/detergent-free lipid raft fractions contain equal

  5. Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes.

    Science.gov (United States)

    Alsop, Richard J; Toppozini, Laura; Marquardt, Drew; Kučerka, Norbert; Harroun, Thad A; Rheinstädter, Maikel C

    2015-03-01

    Aspirin and other non-steroidal anti-inflammatory drugs have a high affinity for phospholipid membranes, altering their structure and biophysical properties. Aspirin has been shown to partition into the lipid head groups, thereby increasing membrane fluidity. Cholesterol is another well known mediator of membrane fluidity, in turn increasing membrane stiffness. As well, cholesterol is believed to distribute unevenly within lipid membranes leading to the formation of lipid rafts or plaques. In many studies, aspirin has increased positive outcomes for patients with high cholesterol. We are interested if these effects may be, at least partially, the result of a non-specific interaction between aspirin and cholesterol in lipid membranes. We have studied the effect of aspirin on the organization of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membranes containing cholesterol. Through Langmuir-Blodgett experiments we show that aspirin increases the area per lipid and decreases compressibility at 32.5 mol% cholesterol, leading to a significant increase of fluidity of the membranes. Differential scanning calorimetry provides evidence for the formation of meta-stable structures in the presence of aspirin. The molecular organization of lipids, cholesterol and aspirin was studied using neutron diffraction. While the formation of rafts has been reported in binary DPPC/cholesterol membranes, aspirin was found to locally disrupt membrane organization and lead to the frustration of raft formation. Our results suggest that aspirin is able to directly oppose the formation of cholesterol structures through non-specific interactions with lipid membranes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Amyloid beta-protein and lipid rafts: focused on biogenesis and catabolism.

    Science.gov (United States)

    Araki, Wataru; Tamaoka, Akira

    2015-01-01

    Cerebral accumulation of amyloid β-protein (Aβ) is thought to play a key role in the molecular pathology of Alzheimer's disease (AD). Three secretases (β-, γ-, and α-secretase) are proteases that control the production of Aβ from amyloid precursor protein. Increasing evidence suggests that cholesterol-rich membrane microdomains termed 'lipid rafts' are involved in the biogenesis and accumulation of Aβ as well as Aβ-mediated neurotoxicity. γ-Secretase is enriched in lipid rafts, which are considered an important site for Aβ generation. Additionally, Aβ-degrading peptidases located in lipid rafts, such as neprilysin, appear to play a role in Aβ catabolism. This mini-review focuses on the roles of lipid rafts in the biogenesis and catabolism of Aβ, covering recent research on the relationship between lipid rafts and the three secretases or Aβ-degrading peptidases. Furthermore, the significance of lipid rafts in Aβ aggregation and neurotoxicity is briefly summarized.

  7. Influence of lipid rafts on CD1d presentation by dendritic cells

    DEFF Research Database (Denmark)

    Peng, Wei; Martaresche, Cecile; Escande-Beillard, Nathalie

    2011-01-01

    corresponding to lipid rafts and we describe that alpha-GalCer enhanced CD1d amount in the low density detergent insoluble fraction. We conclude that the membrane environment of CD1d can influence antigen presentation mainly when the endocytic pathway is required. Flow cytometry analysis can provide additional...... information on lipid rafts in plasma membranes and allows a dynamics follow-up of lipid rafts partitioning. Using this method, we showed that CD1d plasma membrane expression was sensitive to low concentrations of detergent. This may suggest either that CD1d is associated with lipid rafts mainly......Our main objective was to analyze the role of lipid rafts in the activation of Valpha-14(-) and Valpha-14(+) T hybridomas by dendritic cells. We showed that activation of Valpha-14(+) hybridomas by dendritic cells or other CD1d-expressing cells was altered by disruption of lipid rafts...

  8. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process...... major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present....... In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature...

  9. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    Science.gov (United States)

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms.

  10. The influence of an antitumor lipid - erucylphosphocholine - on artificial lipid raft system modeled as Langmuir monolayer.

    Science.gov (United States)

    Wnętrzak, Anita; Łątka, Kazimierz; Makyła-Juzak, Katarzyna; Zemla, Joanna; Dynarowicz-Łątka, Patrycja

    2015-01-01

    Outer layer of cellular membrane contains ordered domains enriched in cholesterol and sphingolipids, called 'lipid rafts', which play various biological roles, i.e., are involved in the induction of cell death by apoptosis. Recent studies have shown that these domains may constitute binding sites for selected drugs. For example alkylphosphocholines (APCs), which are new-generation antitumor agents characterized by high selectivity and broad spectrum of activity, are known to have their molecular targets located at cellular membrane and their selective accumulation in tumor cells has been hypothesized to be linked with the alternation of biophysical properties of lipid rafts. To get a deeper insight into this issue, interactions between representative APC: erucylphosphocholine, and artificial lipid raft system, modeled as Langmuir monolayer (composed of cholesterol and sphingomyelin mixed in 1:2 proportion) were investigated. The Langmuir monolayer experiments, based on recording surface pressure-area isotherms, were complemented with Brewster angle microscopy results, which enabled direct visualization of the monolayers structure. In addition, the investigated monolayers were transferred onto solid supports and studied with AFM. The interactions between model raft system and erucylphosphocholine were analyzed qualitatively (with mean molecular area values) as well as quantitatively (with ΔG(exc) function). The obtained results indicate that erucylphosphocholine introduced to raft-mimicking model membrane causes fluidizing effect and weakens the interactions between cholesterol and sphingomyelin, which results in phase separation at high surface pressures. This leads to the redistribution of cholesterol molecules in model raft, which confirms the results observed in biological studies.

  11. Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts

    Directory of Open Access Journals (Sweden)

    Kennedy Colleen

    2011-12-01

    Full Text Available Abstract Background Lipid rafts present on the plasma membrane play an important role in spatiotemporal regulation of cell signaling. Physical and chemical characterization of lipid raft size and assessment of their composition before, and after cell stimulation will aid in developing a clear understanding of their regulatory role in cell signaling. We have used visual and biochemical methods and approaches for examining individual and lipid raft sub-populations isolated from a mouse CD4+ T cell line in the absence of detergents. Results Detergent-free rafts were analyzed before and after their interaction with antigen presenting cells. We provide evidence that the average diameter of lipid rafts isolated from un-stimulated T cells, in the absence of detergents, is less than 100 nm. Lipid rafts on CD4+ T cell membranes coalesce to form larger structures, after interacting with antigen presenting cells even in the absence of a foreign antigen. Conclusions Findings presented here indicate that lipid raft coalescence occurs during cellular interactions prior to sensing a foreign antigen.

  12. Edelfosine and miltefosine effects on lipid raft properties: membrane biophysics in cell death by antitumor lipids.

    Science.gov (United States)

    Castro, Bruno M; Fedorov, Aleksander; Hornillos, Valentin; Delgado, Javier; Acuña, A Ulises; Mollinedo, Faustino; Prieto, Manuel

    2013-07-03

    Edelfosine (1-O-octadecyl-2-O-methyl-sn-glycero-phosphocholine) and miltefosine (hexadecylphosphocholine) are synthetic alkylphospholipids (ALPs) that are reported to selectively accumulate in tumor cell membranes, inducing Fas clustering and activation on lipid rafts, triggering apoptosis. However, the exact mechanism by which these lipids elicit these events is still not fully understood. Recent studies propose that their mode of action might be related with alterations of lipid rafts biophysical properties caused by these lipid drugs. To achieve a clear understanding of this mechanism, we studied the effects of pharmacologically relevant amounts of edelfosine and miltefosine in the properties of model and cellular membranes. The influence of these molecules on membrane order, lateral organization, and lipid rafts molar fraction and size were studied by steady-state and time-resolved fluorescence methods, Förster resonance energy transfer (FRET), confocal and fluorescence lifetime imaging microscopy (FLIM). We found that the global membrane and lipid rafts biophysical properties of both model and cellular membranes were not significantly affected by both the ALPs. Nonetheless, in model membranes, a mild increase in membrane fluidity induced by both alkyl lipids was detected, although this effect was more noticeable for edelfosine than miltefosine. This absence of drastic alterations shows for the first time that ALPs mode of action is unlikely to be directly linked to alterations of lipid rafts biophysical properties caused by these drugs. The biological implications of this result are discussed in the context of ALPs effects on lipid metabolism, mitochondria homeostasis modulation, and their relationship with tumor cell death.

  13. Lipid raft disruption protects mature neurons against amyloid oligomer toxicity.

    Science.gov (United States)

    Malchiodi-Albedi, Fiorella; Contrusciere, Valentina; Raggi, Carla; Fecchi, Katia; Rainaldi, Gabriella; Paradisi, Silvia; Matteucci, Andrea; Santini, Maria Teresa; Sargiacomo, Massimo; Frank, Claudio; Gaudiano, Maria Cristina; Diociaiuti, Marco

    2010-04-01

    A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid beta oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca(2+) rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.

  14. Dependency of Lipid Raft Diffusion on System Size

    Science.gov (United States)

    Davis, Ryan

    2009-11-01

    An inherit limitation in molecular dynamics is a finite system size. Although periodic boundary conditions can be used to mimic an infinite space, minimizing the artificial effects created by the physical dimensions of the system still remains an issue. Here I will discuss the undesirable relationship between system properties and system size observed via a dissipative particle dynamics approach. In particular, results illustrate a strong dependence between the diffusion of a lipid raft along a membrane and the length of the axis perpendicular to it, even at relatively large system sizes. Methods for obtaining system properties independently of simulation size are crucial for accurate results.

  15. In Situ Visualization of Lipid Raft Domains by Fluorescent Glycol Chitosan Derivatives.

    Science.gov (United States)

    Jiang, Yao-Wen; Guo, Hao-Yue; Chen, Zhan; Yu, Zhi-Wu; Wang, Zhifei; Wu, Fu-Gen

    2016-07-01

    Lipid rafts are highly ordered small microdomains mainly composed of glycosphingolipids, cholesterol, and protein receptors. Optically distinguishing lipid raft domains in cell membranes would greatly facilitate the investigations on the structure and dynamics of raft-related cellular behaviors, such as signal transduction, membrane transport (endocytosis), adhesion, and motility. However, current strategies about the visualization of lipid raft domains usually suffer from the low biocompatibility of the probes, invasive detection, or ex situ observation. At the same time, naturally derived biomacromolecules have been extensively used in biomedical field and their interaction with cells remains a long-standing topic since it is closely related to various fundamental studies and potential applications. Herein, noninvasive visualization of lipid raft domains in model lipid bilayers (supported lipid bilayers and giant unilamellar vesicles) and live cells was successfully realized in situ using fluorescent biomacromolecules: the fluorescein isothiocyanate (FITC)-labeled glycol chitosan molecules. We found that the lipid raft domains in model or real membranes could be specifically stained by the FITC-labeled glycol chitosan molecules, which could be attributed to the electrostatic attractive interaction and/or hydrophobic interaction between the probes and the lipid raft domains. Since the FITC-labeled glycol chitosan molecules do not need to completely insert into the lipid bilayer and will not disturb the organization of lipids, they can more accurately visualize the raft domains as compared with other fluorescent dyes that need to be premixed with the various lipid molecules prior to the fabrication of model membranes. Furthermore, the FITC-labeled glycol chitosan molecules were found to be able to resist cellular internalization and could successfully visualize rafts in live cells. The present work provides a new way to achieve the imaging of lipid rafts and also

  16. Effect of docosahexaenoic acid on interleukin-2 receptor signaling pathway in lipid rafts

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Recent studies have shown that polyunsaturated fatty acids (PUFA) regulated the functions of membrane receptors in T cells and suppressed T cell -mediated immune responses. But the molecular mechanisms of immune regulation are not yet elucidated. Lipid rafts are plasma membrane microdomains, in which many receptors localized. The purpose of this study was to investigate the effect of DHA on IL-2R signaling pathway in lipid rafts. We isolated lipid rafts by discontinuous sucrose density gradient ultracentrifugation, and found that DHA could change the composition of lipid rafts and alter the distribution of key molecules of IL-2R signaling pathway, which transferred from lipid rafts to detergent-soluble membrane fractions. These results revealed that DHA treatment increased the proportion of polyunsaturated fatty acids especially n(3 polyunsaturated fatty acids in lipid rafts and changed the lipid environment of membrane microdomains in T cells. Compared with controls, DHA changed the localization of IL-2R, STAT5a and STAT5b in lipid rafts and suppressed the expression of JAK1, JAK3 and tyrosine phosphotyrosine in soluble membrane fractions. Summarily, this study concluded the effects of DHA on IL-2R signaling pathway in lipid rafts and explained the regulation of PUFAs in T cell-mediated immune responses.

  17. C2 domain of synaptotagminⅠassociates with lipid rafts of plasma membrane

    Institute of Scientific and Technical Information of China (English)

    L(U) JiHua; HE Li; SUI SenFang

    2008-01-01

    In this paper we report that the C2 domain of synaptotagmin I (syt I) could associate with lipid rafts of plasma membrane. We demonstrate that phosphatidylinositol 4,5-bisphosphate (PIP2) in the target membrane and Ca2+ are the key factors to enhance the raft association of the C2 domain. We also found that the raft association of the C2 domain could be fulfilled by either C2A or C2B alone, suggesting that their raft association might be complementary. Finally, we indicate that destroying lipid rafts or blocking syt I-raft association could significantly reduce the Ca2+-driven release of glutamates. Our data indicate that the raft association of the C2 domain might play an important role in the regulated exocytosis.

  18. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts.

    Science.gov (United States)

    Lorent, Joseph Helmuth; Levental, Ilya

    2015-11-01

    Increasing evidence supports the existence of lateral nanoscopic lipid domains in plasma membranes, known as lipid rafts. These domains preferentially recruit membrane proteins and lipids to facilitate their interactions and thereby regulate transmembrane signaling and cellular homeostasis. The functionality of raft domains is intrinsically dependent on their selectivity for specific membrane components; however, while the physicochemical determinants of raft association for lipids are known, very few systematic studies have focused on the structural aspects that guide raft partitioning of proteins. In this review, we describe biophysical and thermodynamic aspects of raft-mimetic liquid ordered phases, focusing on those most relevant for protein partitioning. Further, we detail the variety of experimental models used to study protein-raft interactions. Finally, we review the existing literature on mechanisms for raft targeting, including lipid post-translational modifications, lipid binding, and transmembrane domain features. We conclude that while protein palmitoylation is a clear raft-targeting signal, few other general structural determinants for raft partitioning have been revealed, suggesting that many discoveries lie ahead in this burgeoning field.

  19. Separation of actin-dependent and actin-independent lipid rafts

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Kok, Jan Willem

    2013-01-01

    Lipid rafts have been isolated on the basis of their resistance to various detergents and more recently by using detergent-free procedures. The actin cytoskeleton is now recognized as a dynamic regulator of lipid raft stability. We carefully analyzed the effects of the cortical actin-disrupting agen

  20. Are lipid rafts involved in ABC transporter-mediated drug resistance of tumor cells?

    NARCIS (Netherlands)

    Kok, Jan Willem; Klappe, Karin; Hummel, Ina; Kroesen, Bart-Jan; Sietsma, Hannie; Meszaros, Peter

    2008-01-01

    Since their discovery, lipid rafts have been implicated in several cellular functions, including protein transport in polarized cells and signal transduction. Also in multidrug resistance lipid rafts may be important with regard to the localization of ATP-binding cassette (ABC) transporters in these

  1. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  2. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2012-12-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  3. Single-molecule microscopy reveals heterogeneous dynamics of lipid raft components upon TCR engagement.

    Science.gov (United States)

    Drbal, Karel; Moertelmaier, Manuel; Holzhauser, Christa; Muhammad, Arshad; Fuertbauer, Elke; Howorka, Stefan; Hinterberger, Maria; Stockinger, Hannes; Schütz, Gerhard J

    2007-05-01

    The existence of lipid rafts and their importance for immunoreceptor signaling is highly debated. By non-invasive single molecule imaging, we analyzed the dynamics of the T-cell antigen receptor (TCR), the lipid raft-associated glycosylphosphatidylinositol (GPI) proteins CD48 and CD59 and the major leukocyte phosphatase CD45 in living naive T lymphocytes. TCR triggering induced the immobilization of CD45 and CD48 at different positions within the T-cell interface. The second GPI protein, CD59, did not co-immobilize indicating lipid raft heterogeneity in living T lymphocytes. A novel biochemical approach confirmed that lipid raft components are not associated in the plasma membrane of resting cells, and variably associate with specific receptors to distinct lipid rafts upon activation.

  4. Prion protein accumulation in lipid rafts of mouse aging brain.

    Directory of Open Access Journals (Sweden)

    Federica Agostini

    Full Text Available The cellular form of the prion protein (PrP(C is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C. In old mice, this change favors PrP(C accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C translocation into detergent-resistant membranes (DRMs, we looked at PrP(C compartmentalization in hippocampi from acid sphingomyelinase (ASM knockout (KO mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  5. Monte Carlo study of receptor-lipid raft formation on a cell membrane

    Science.gov (United States)

    Yu-Yang, Paul; Srinivas Reddy, A.; Raychaudhuri, Subhadip

    2012-02-01

    Receptors are cell surface molecules that bind with extracellular ligand molecules leading to propagation of downstream signals and cellular activation. Even though ligand binding-induced formation of receptor-lipid rafts has been implicated in such a process, the formation mechanism of such large stable rafts is not understood. We present findings from our Monte Carlo (MC) simulations involving (i) receptor interaction with the membrane lipids and (ii) lipid-lipid interactions between raft forming lipids. We have developed a hybrid MC simulation method that combines a probabilistic MC simulation with an explicit free energy-based MC scheme. Some of the lipid-mediated interactions, such as the cholesterol-lipid interactions, are simulated in an implicit way. We examine the effect of varying attractive interactions between raft forming lipids and ligand-bound receptors and show that strong coupling between receptor-receptor and receptor-sphingolipid molecules generate raft formation similar to that observed in recent biological experiments. We study the effect of variation of receptor affinity for ligands (as happens in adaptive immune cells) on raft formation. Such affinity dependence in receptor-lipid raft formation provides insight into important problems in B cell biology.

  6. Role of lipid rafts in neuronal differentiation of dental pulp-derived stem cells.

    Science.gov (United States)

    Mattei, Vincenzo; Santacroce, Costantino; Tasciotti, Vincenzo; Martellucci, Stefano; Santilli, Francesca; Manganelli, Valeria; Piccoli, Luca; Misasi, Roberta; Sorice, Maurizio; Garofalo, Tina

    2015-12-10

    Human dental pulp-derived stem cells (hDPSCs) are characterized by a typical fibroblast-like morphology. They express specific markers for mesenchymal stem cells and are capable of differentiation into osteoblasts, adipoblasts and neurons in vitro. Previous studies showed that gangliosides are involved in the induction of early neuronal differentiation of hDPSCs. This study was undertaken to investigate the role of lipid rafts in this process. Lipid rafts are signaling microdomains enriched in glycosphingolipids, cholesterol, tyrosine kinase receptors, mono- or heterotrimeric G proteins and GPI-anchored proteins. We preliminary showed that established cells expressed multipotent mesenchymal stromal-specific surface antigens. Then, we analyzed the distribution of lipid rafts, revealing plasma membrane microdomains with GM2 and EGF-R enrichment. Following stimulation with EGF/bFGF, neuronal differentiation was observed. To analyze the functional role of lipid rafts in EGF/bFGF-induced hDPSCs differentiation, cells were preincubated with lipid raft affecting agents, i.e. [D]-PDMP or methyl-β-cyclodextrin. These compounds significantly prevented neuronal-specific antigen expression, as well as Akt and ERK 1/2 phosphorylation, induced by EGF/bFGF, indicating that lipid raft integrity is essential for EGF/bFGF-induced hDPSCs differentiation. These results suggest that lipid rafts may represent specific chambers, where multimolecular signaling complexes, including lipids (gangliosides, cholesterol) and proteins (EGF-R), play a role in hDPSCs differentiation.

  7. Omega-3 fatty acids, lipid rafts, and T cell signaling.

    Science.gov (United States)

    Hou, Tim Y; McMurray, David N; Chapkin, Robert S

    2016-08-15

    n-3 polyunsaturated fatty acids (PUFA) have been shown in many clinical studies to attenuate inflammatory responses. Although inflammatory responses are orchestrated by a wide spectrum of cells, CD4(+) T cells play an important role in the etiology of many chronic inflammatory diseases such as inflammatory bowel disease and obesity. In light of recent concerns over the safety profiles of non-steroidal anti-inflammatory drugs (NSAIDs), alternatives such as bioactive nutraceuticals are becoming more attractive. In order for these agents to be accepted into mainstream medicine, however, the mechanisms by which nutraceuticals such as n-3 PUFA exert their anti-inflammatory effects must be fully elucidated. Lipid rafts are nanoscale, dynamic domains in the plasma membrane that are formed through favorable lipid-lipid (cholesterol, sphingolipids, and saturated fatty acids) and lipid-protein (membrane-actin cytoskeleton) interactions. These domains optimize the clustering of signaling proteins at the membrane to facilitate efficient cell signaling which is required for CD4(+) T cell activation and differentiation. This review summarizes novel emerging data documenting the ability of n-3 PUFA to perturb membrane-cytoskeletal structure and function in CD4(+) T cells. An understanding of these underlying mechanisms will provide a rationale for the use of n-3 PUFA in the treatment of chronic inflammation.

  8. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy.

    Science.gov (United States)

    Jaffrès, Paul-Alain; Gajate, Consuelo; Bouchet, Ana Maria; Couthon-Gourvès, Hélène; Chantôme, Aurélie; Potier-Cartereau, Marie; Besson, Pierre; Bougnoux, Philippe; Mollinedo, Faustino; Vandier, Christophe

    2016-09-01

    Synthetic alkyl lipids, such as the ether lipids edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) and ohmline (1-O-hexadecyl-2-O-methyl-rac-glycero-3-β-lactose), are forming a class of antitumor agents that target cell membranes to induce apoptosis and to decrease cell migration/invasion, leading to the inhibition of tumor and metastasis development. In this review, we present the structure-activity relationship of edelfosine and ohmline, and we point out differences and similarities between these two amphiphilic compounds. We also discuss the mechanisms of action of these synthetic alkyl ether lipids (involving, among other structures and molecules, membrane domains, Fas/CD95 death receptor signaling, and ion channels), and highlight a key role for lipid rafts in the underlying process. The reorganization of lipid raft membrane domains induced by these alkyl lipids affects the function of death receptors and ion channels, thus leading to apoptosis and/or inhibition of cancer cell migration. The possible therapeutic use of these alkyl lipids and the clinical perspectives for these lipids in prevention or/and treatment of tumor development and metastasis are also discussed.

  9. Lenalidomide induces lipid raft assembly to enhance erythropoietin receptor signaling in myelodysplastic syndrome progenitors.

    Science.gov (United States)

    McGraw, Kathy L; Basiorka, Ashley A; Johnson, Joseph O; Clark, Justine; Caceres, Gisela; Padron, Eric; Heaton, Ruth; Ozawa, Yukiyasu; Wei, Sheng; Sokol, Lubomir; List, Alan F

    2014-01-01

    Anemia remains the principal management challenge for patients with lower risk Myelodysplastic Syndromes (MDS). Despite appropriate cytokine production and cellular receptor display, erythropoietin receptor (EpoR) signaling is impaired. We reported that EpoR signaling is dependent upon receptor localization within lipid raft microdomains, and that disruption of raft integrity abolishes signaling capacity. Here, we show that MDS erythroid progenitors display markedly diminished raft assembly and smaller raft aggregates compared to normal controls (p = 0.005, raft number; p = 0.023, raft size). Because lenalidomide triggers raft coalescence in T-lymphocytes promoting immune synapse formation, we assessed effects of lenalidomide on raft assembly in MDS erythroid precursors and UT7 cells. Lenalidomide treatment rapidly induced lipid raft formation accompanied by EpoR recruitment into raft fractions together with STAT5, JAK2, and Lyn kinase. The JAK2 phosphatase, CD45, a key negative regulator of EpoR signaling, was displaced from raft fractions. Lenalidomide treatment prior to Epo stimulation enhanced both JAK2 and STAT5 phosphorylation in UT7 and primary MDS erythroid progenitors, accompanied by increased STAT5 DNA binding in UT7 cells, and increased erythroid colony forming capacity in both UT7 and primary cells. Raft induction was associated with F-actin polymerization, which was blocked by Rho kinase inhibition. These data indicate that deficient raft integrity impairs EpoR signaling, and provides a novel strategy to enhance EpoR signal fidelity in non-del(5q) MDS.

  10. Lenalidomide induces lipid raft assembly to enhance erythropoietin receptor signaling in myelodysplastic syndrome progenitors.

    Directory of Open Access Journals (Sweden)

    Kathy L McGraw

    Full Text Available Anemia remains the principal management challenge for patients with lower risk Myelodysplastic Syndromes (MDS. Despite appropriate cytokine production and cellular receptor display, erythropoietin receptor (EpoR signaling is impaired. We reported that EpoR signaling is dependent upon receptor localization within lipid raft microdomains, and that disruption of raft integrity abolishes signaling capacity. Here, we show that MDS erythroid progenitors display markedly diminished raft assembly and smaller raft aggregates compared to normal controls (p = 0.005, raft number; p = 0.023, raft size. Because lenalidomide triggers raft coalescence in T-lymphocytes promoting immune synapse formation, we assessed effects of lenalidomide on raft assembly in MDS erythroid precursors and UT7 cells. Lenalidomide treatment rapidly induced lipid raft formation accompanied by EpoR recruitment into raft fractions together with STAT5, JAK2, and Lyn kinase. The JAK2 phosphatase, CD45, a key negative regulator of EpoR signaling, was displaced from raft fractions. Lenalidomide treatment prior to Epo stimulation enhanced both JAK2 and STAT5 phosphorylation in UT7 and primary MDS erythroid progenitors, accompanied by increased STAT5 DNA binding in UT7 cells, and increased erythroid colony forming capacity in both UT7 and primary cells. Raft induction was associated with F-actin polymerization, which was blocked by Rho kinase inhibition. These data indicate that deficient raft integrity impairs EpoR signaling, and provides a novel strategy to enhance EpoR signal fidelity in non-del(5q MDS.

  11. Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jae-Sung; Choo, Hyo-Jung [College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Cho, Bong-Rae [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Hwan-Myung [Department of Chemistry, Ajou University, Suwon, Kyunggi-Do 443-749 (Korea, Republic of); Kim, Yong-Nyun [Division of Specific Organs Center, National Cancer Center, Kyunggi-Do 411-769 (Korea, Republic of); Ham, Young-Mi, E-mail: ymham2@hanmail.net [College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Ko, Young-Gyu, E-mail: ygko@korea.ac.kr [College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of)

    2009-07-24

    Lipid rafts are plasma membrane platforms mediating signal transduction pathways for cellular proliferation, differentiation and apoptosis. Here, we show that membrane fluidity was increased in HeLa cells following treatment with ginsenoside Rh2 (Rh2), as determined by cell staining with carboxy-laurdan (C-laurdan), a two-photon dye designed for measuring membrane hydrophobicity. In the presence of Rh2, caveolin-1 appeared in non-raft fractions after sucrose gradient ultracentrifugation. In addition, caveolin-1 and GM1, lipid raft landmarkers, were internalized within cells after exposure to Rh2, indicating that Rh2 might disrupt lipid rafts. Since cholesterol overloading, which fortifies lipid rafts, prevented an increase in Rh2-induced membrane fluidity, caveolin-1 internalization and apoptosis, lipid rafts appear to be essential for Rh2-induced apoptosis. Moreover, Rh2-induced Fas oligomerization was abolished following cholesterol overloading, and Rh2-induced apoptosis was inhibited following treatment with siRNA for Fas. This result suggests that Rh2 is a novel lipid raft disruptor leading to Fas oligomerization and apoptosis.

  12. Mature N-linked glycans facilitate UT-A1 urea transporter lipid raft compartmentalization.

    Science.gov (United States)

    Chen, Guangping; Howe, Ashley G; Xu, Gang; Fröhlich, Otto; Klein, Janet D; Sands, Jeff M

    2011-12-01

    The UT-A1 urea transporter is a glycoprotein with two different glycosylated forms of 97 and 117 kDa. In this study, we found the 117-kDa UT-A1 preferentially resides in lipid rafts, suggesting that the glycosylation status may interfere with UT-A1 lipid raft trafficking. This was confirmed by a site-directed mutagenesis study in MDCK cells. The nonglycosylated UT-A1 showed reduced localization in lipid rafts. By using sugar-specific binding lectins, we further found that the UT-A1 in nonlipid rafts contained a high amount of mannose, as detected by concanavalin A, while the UT-A1 in lipid rafts was the mature N-acetylglucosamine-containing form, as detected by wheat germ agglutinin. In the inner medulla (IM) of diabetic rats, the more abundant 117-kDa UT-A1 in lipid rafts was the mature glycosylation form, with high amounts of N-acetylglucosamine and sialic acid. In contrast, in the IM of normal rats, the predominant 97-kDa UT-A1 was the form enriched in mannose. Functionally, inhibition of glycosylation by tunicamycin or elimination of the glycosylation sites by mutation significantly reduced UT-A1 activity in oocytes. Taken together, our study reveals a new role of N-linked glycosylation in regulating UT-A1 activity by promoting UT-A1 trafficking into membrane lipid raft subdomains.

  13. Lipid Rafts: Linking Alzheimer's Amyloid-β Production, Aggregation, and Toxicity at Neuronal Membranes

    Directory of Open Access Journals (Sweden)

    Jo V. Rushworth

    2011-01-01

    Full Text Available Lipid rafts are membrane microdomains, enriched in cholesterol and sphingolipids, into which specific subsets of proteins and lipids partition, creating cell-signalling platforms that are vital for neuronal functions. Lipid rafts play at least three crucial roles in Alzheimer's Disease (AD, namely, in promoting the generation of the amyloid-β (Aβ peptide, facilitating its aggregation upon neuronal membranes to form toxic oligomers and hosting specific neuronal receptors through which the AD-related neurotoxicity and memory impairments of the Aβ oligomers are transduced. Recent evidence suggests that Aβ oligomers may exert their deleterious effects through binding to, and causing the aberrant clustering of, lipid raft proteins including the cellular prion protein and glutamate receptors. The formation of these pathogenic lipid raft-based platforms may be critical for the toxic signalling mechanisms that underlie synaptic dysfunction and neuropathology in AD.

  14. Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes

    DEFF Research Database (Denmark)

    Calay, Damien; Vind-Kezunovic, Dina; Frankart, Aurelie;

    2010-01-01

    of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Raft disruption was achieved in normal human keratinocytes and precancerous (HaCaT) or transformed (A431) keratinocytes by cholesterol extraction or inactivation with methyl-beta-cyclodextrin, filipin III, or 5-cholestene-5-beta-ol. Lipid raft disruption did not affect...

  15. Lipid raft disarrangement as a result of neuropathological progresses: a novel strategy for early diagnosis?

    Science.gov (United States)

    Marin, R; Rojo, J A; Fabelo, N; Fernandez, C E; Diaz, M

    2013-08-15

    Lipid rafts are the preferential site of numerous membrane signaling proteins which are involved in neuronal functioning and survival. These proteins are organized in multiprotein complexes, or signalosomes, in close contact with lipid classes particularly represented in lipid rafts (i.e. cholesterol, sphingolipids and saturated fatty acids), which may contribute to physiological responses leading to neuroprotection. Increasing evidence indicates that alteration of lipid composition in raft structures as a consequence of neuropathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), causes a dramatic increase in lipid raft order. These phenomena may correlate with perturbation of signalosome activities, likely contributing to neurodegenerative progression. Interestingly, significant disruption of stable raft microenvironments has been already observed in the first stages of either AD or PD, suggesting that these alterations may represent early events in the neuropathological development. In this regard, the search for biochemical markers, such as specific metabolic products altered in the brain at the first steps of the disease, presently represents an important challenge for early diagnostic strategies. Alterations of these biomarkers may be reflected in either plasma or cerebrospinal fluid, thus representing a potential strategy to predict an accurate diagnosis. We propose that pathologically-linked lipid raft markers may be interesting candidates to be explored at this level, although it has not been studied so far to what extent alteration of different signalosome components may be reflected in peripheral fluids. In this mini-review, we will discuss on relevant aspects of lipid rafts that contribute to the modulation of neuropathological events related to AD and PD. An interesting hypothesis is that anomalies on raft biomarkers measured at peripheral fluids might mirror the lipid raft pathology observed in early stages of AD and PD.

  16. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi.

    Science.gov (United States)

    Toledo, Alvaro; Crowley, Jameson T; Coleman, James L; LaRocca, Timothy J; Chiantia, Salvatore; London, Erwin; Benach, Jorge L

    2014-03-11

    Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ospA, ospB, and ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism's adaptation to changing environments. IMPORTANCE Lipid rafts are cholesterol-rich clusters within the membranes of cells. Lipid rafts contain proteins that have functions in sensing the cell environment and transmitting signals. Although selective proteins are present in

  17. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.

    Science.gov (United States)

    Sezgin, Erdinc; Levental, Ilya; Grzybek, Michal; Schwarzmann, Günter; Mueller, Veronika; Honigmann, Alf; Belov, Vladimir N; Eggeling, Christian; Coskun, Unal; Simons, Kai; Schwille, Petra

    2012-07-01

    Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GMI exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact

  18. Role of lipid rafts in liver health and disease

    Institute of Scientific and Technical Information of China (English)

    Angela Dolganiuc

    2011-01-01

    Liver diseases are an increasingly common cause of morbidity and mortality; new approaches for investigation of mechanisms of liver diseases and identification of therapeutic targets are emergent. Lipid rafts (LRs) are specialized domains of cellular membranes that are enriched in saturated lipids; they are small, mobile, and are key components of cellular architecture, protein partition to cellular membranes, and signaling events. LRs have been identified in the membranes of all liver cells, parenchymal and non-parenchymal; more importantly, LRs are active participants in multiple physiological and pathological conditions in individual types of liver cells. This article aims to review experimental-based evidence with regard to LRs in the liver, from the perspective of the liver as a whole organ composed of a multitude of cell types. We have gathered up-to-date information related to the role of LRs in individual types of liver cells, in liver health and diseases, and identified the possibilities of LR-dependent therapeutic targets in liver diseases.

  19. Lipid raft organization and function in the small intestinal brush border

    DEFF Research Database (Denmark)

    Danielsen, E M; Hansen, Gert Helge

    2008-01-01

    The enterocyte brush border of the small intestine is a highly specialized membrane designed to function both as a high capacity digestive/absorptive surface of dietary nutrients and a permeability barrier towards lumenal pathogens. It is characterized by an unusually high content of glycolipids...... (approximately 30% of the total microvillar membrane lipid), enabling the formation of liquid ordered microdomains, better known as lipid rafts. The glycolipid rafts are stabilized by galectin-4, a 36 kDa divalent lectin that cross-links galactosyl (and other carbohydrate) residues present on membrane lipids...... proteinases, are protected from untimely release into the gut lumen. Finally, anti-glycosyl antibodies, synthesized by plasma cells locally in the gut, are deposited on the brush border glycolipid rafts, protecting the epithelium from lumenal pathogens that exploit lipid rafts as portals for entry...

  20. The Role of Lipid Rafts in Cancer Cell Adhesion and Migration

    Directory of Open Access Journals (Sweden)

    Toshiyuki Murai

    2012-01-01

    Full Text Available Lipid rafts are cholesterol-enriched microdomains of the cell membrane and possess a highly dynamic nature. They have been involved in various cellular functions including the regulation of cell adhesion and membrane signaling through proteins within lipid rafts. The dynamic features of the cancer cell surface may modulate the malignant phenotype of cancer, including adhesion disorders and aggressive phenotypes of migration and invasion. Recently, it was demonstrated that lipid rafts play critical roles in cancer cell adhesion and migration. This article summarizes the important roles of lipid rafts in cancer cell adhesion and migration, with a focus on the current state of knowledge. This article will improve the understanding of cancer progression and lead to the development of novel targets for cancer therapy.

  1. Lipid rafts, caveolae, caveolin-1, and entry by Chlamydiae into host cells.

    Science.gov (United States)

    Stuart, Elizabeth S; Webley, Wilmore C; Norkin, Leonard C

    2003-07-01

    Obligate intracellular bacterial pathogens of the genus Chlamydia are reported to enter host cells by both clathrin-dependent and clathrin-independent processes. C. trachomatis serovar K recently was shown to enter cells via caveolae-like lipid raft domains. We asked here how widespread raft-mediated entry might be among the Chlamydia. We show that C. pneumoniae, an important cause of respiratory infections in humans that additionally is associated with cardiovascular disease, and C. psittaci, an important pathogen in domestic mammals and birds that also infects humans, each enter host cells via cholesterol-rich lipid raft microdomains. Further, we show that C. trachomatis serovars E and F also use these domains to enter host cells. The involvement of these membrane domains in the entry of these organisms was indicated by the sensitivity of their entry to the raft-disrupting agents Nystatin and filipin, and by their intracellular association with caveolin-1, a 22-kDa protein associated with the formation of caveolae in rafts. In contrast, caveolin-marked lipid raft domains do not mediate entry of C. trachomatis serovars A, 36B, and C, nor of LGV serovar L2 and MoPn. Finally, we show that entry of each of these chlamydial strains is independent of cellular expression of caveolin-1. Thus, entry via the Nystatin and filipin-sensitive pathway is dependent on lipid rafts containing cholesterol, rather than invaginated caveolae per se.

  2. Requirement of transmembrane domain for CD154 association to lipid rafts and subsequent biological events.

    Directory of Open Access Journals (Sweden)

    Nadir Benslimane

    Full Text Available Interaction of CD40 with CD154 leads to recruitment of both molecules into lipid rafts, resulting in bi-directional cell activation. The precise mechanism by which CD154 is translocated into lipid rafts and its impact on CD154 signaling remain largely unknown. Our aim is to identify the domain of CD154 facilitating its association to lipid rafts and the impact of such association on signaling events and cytokine production. Thus, we generated Jurkat cell lines expressing truncated CD154 lacking the cytoplasmic domain or chimeric CD154 in which the transmembrane domain was replaced by that of transferrin receptor I, known to be excluded from lipid rafts. Our results show that cell stimulation with soluble CD40 leads to the association of CD154 wild-type and CD154-truncated, but not CD154-chimera, with lipid rafts. This is correlated with failure of CD154-chimera to activate Akt and p38 MAP kinases, known effectors of CD154 signaling. We also found that CD154-chimera lost the ability to promote IL-2 production upon T cell stimulation with anti-CD3/CD28 and soluble CD40. These results demonstrate the implication of the transmembrane domain of CD154 in lipid raft association, and that this association is necessary for CD154-mediated Akt and p38 activation with consequent enhancement of IL-2 production.

  3. Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Mario L Diaz

    2012-11-01

    Full Text Available Alterations in the lipid composition of lipid rafts have been demonstrated both in human brain and transgenic mouse models, and it has been postulated that aberrant lipid composition in lipid rafts is partly responsible for neuronal degeneration. In order to assess the impact of lipid changes on lipid raft functional properties, we have aimed at determining relevant physicochemical modifications in lipid rafts purified from frontal cortex of wild type (WT and APP/PS1 double transgenic mice. By means of steady-state fluorescence anisotropy analyses using two lipid soluble fluorescent probes, TMA-DPH (1-[(4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene and DPH (1,6-diphenyl-1,3,5-hexatriene, we demonstrate that cortical lipid rafts from WT and APP/PS1 animals exhibit different biophysical behaviours, depending on genotype but also on age. Thus, aged APP/PS1 animals exhibited slightly more liquid-ordered lipid rafts than WT counterparts. Membrane microviscosity napp analyses demonstrate that WT lipid rafts are more fluid than APP/PS1 animals of similar age, both at the aqueous interface and hydrophobic core of the membrane. napp in APP/PS1 animals was higher for DPH than for TMA-DPH under similar experimental conditions, indicating that the internal core of the membrane is more viscous than the raft membrane at the aqueous interface. The most dramatic changes in biophysical properties of lipid rafts were observed when membrane cholesterol was depleted with methyl-beta-cyclodextrin. Overall, our results indicate that APP/PS1 genotype strongly affects physicochemical properties of lipid raft. Such alterations appear not to be homogeneous across the raft membrane axis, but rather are more prominent at the membrane plane. These changes correlate with aberrant proportions of sphingomyelin, cholesterol and saturated fatty acids, as well as polyunsaturated fatty acids, measured in lipid rafts from frontal cortex in this familial model of

  4. Rapid multiplex analysis of lipid raft components with single-cell resolution.

    Science.gov (United States)

    Schatzlmaier, Philipp; Supper, Verena; Göschl, Lisa; Zwirzitz, Alexander; Eckerstorfer, Paul; Ellmeier, Wilfried; Huppa, Johannes B; Stockinger, Hannes

    2015-09-22

    Lipid rafts, a distinct class of highly dynamic cell membrane microdomains, are integral to cell homeostasis, differentiation, and signaling. However, their quantitative examination is challenging when working with rare cells, developmentally heterogeneous cell populations, or molecules that only associate weakly with lipid rafts. We present a fast biochemical method, which is based on lipid raft components associating with the nucleus upon partial lysis during centrifugation through nonionic detergent. Requiring little starting material or effort, our protocol enabled the multidimensional flow cytometric quantitation of raft-resident proteins with single-cell resolution, thereby assessing the membrane components from a few cells in complex cell populations, as well as their dynamics resulting from cell signaling, differentiation, or genetic mutation.

  5. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy.

    Science.gov (United States)

    Ando, Jun; Kinoshita, Masanao; Cui, Jin; Yamakoshi, Hiroyuki; Dodo, Kosuke; Fujita, Katsumasa; Murata, Michio; Sodeoka, Mikiko

    2015-04-14

    Sphingomyelin (SM) and cholesterol (chol)-rich domains in cell membranes, called lipid rafts, are thought to have important biological functions related to membrane signaling and protein trafficking. To visualize the distribution of SM in lipid rafts by means of Raman microscopy, we designed and synthesized an SM analog tagged with a Raman-active diyne moiety (diyne-SM). Diyne-SM showed a strong peak in a Raman silent region that is free of interference from intrinsic vibrational modes of lipids and did not appear to alter the properties of SM-containing monolayers. Therefore, we used Raman microscopy to directly visualize the distribution of diyne-SM in raft-mimicking domains formed in SM/dioleoylphosphatidylcholine/chol ternary monolayers. Raman images visualized a heterogeneous distribution of diyne-SM, which showed marked variation, even within a single ordered domain. Specifically, diyne-SM was enriched in the central area of raft domains compared with the peripheral area. These results seem incompatible with the generally accepted raft model, in which the raft and nonraft phases show a clear biphasic separation. One of the possible reasons is that gradual changes of SM concentration occur between SM-rich and -poor regions to minimize hydrophobic mismatch. We believe that our technique of hyperspectral Raman imaging of a single lipid monolayer opens the door to quantitative analysis of lipid membranes by providing both chemical information and spatial distribution with high (diffraction-limited) spatial resolution.

  6. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes

    Science.gov (United States)

    Schmid, Friederike; Dolezel, Stefan; Lenz, Olaf; Meinhardt, Sebastian

    2014-03-01

    We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model.

  7. O-glycans direct selectin ligands to lipid rafts on leukocytes.

    Science.gov (United States)

    Shao, Bojing; Yago, Tadayuki; Setiadi, Hendra; Wang, Ying; Mehta-D'souza, Padmaja; Fu, Jianxin; Crocker, Paul R; Rodgers, William; Xia, Lijun; McEver, Rodger P

    2015-07-14

    Palmitoylated cysteines typically target transmembrane proteins to domains enriched in cholesterol and sphingolipids (lipid rafts). P-selectin glycoprotein ligand-1 (PSGL-1), CD43, and CD44 are O-glycosylated proteins on leukocytes that associate with lipid rafts. During inflammation, they transduce signals by engaging selectins as leukocytes roll in venules, and they move to the raft-enriched uropods of polarized cells upon chemokine stimulation. It is not known how these glycoproteins associate with lipid rafts or whether this association is required for signaling or for translocation to uropods. Here, we found that loss of core 1-derived O-glycans in murine C1galt1(-/-) neutrophils blocked raft targeting of PSGL-1, CD43, and CD44, but not of other glycosylated proteins, as measured by resistance to solubilization in nonionic detergent and by copatching with a raft-resident sphingolipid on intact cells. Neuraminidase removal of sialic acids from wild-type neutrophils also blocked raft targeting. C1galt1(-/-) neutrophils or neuraminidase-treated neutrophils failed to activate tyrosine kinases when plated on immobilized anti-PSGL-1 or anti-CD44 F(ab')2. Furthermore, C1galt1(-/-) neutrophils incubated with anti-PSGL-1 F(ab')2 did not generate microparticles. In marked contrast, PSGL-1, CD43, and CD44 moved normally to the uropods of chemokine-stimulated C1galt1(-/-) neutrophils. These data define a role for core 1-derived O-glycans and terminal sialic acids in targeting glycoprotein ligands for selectins to lipid rafts of leukocytes. Preassociation of these glycoproteins with rafts is required for signaling but not for movement to uropods.

  8. Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by "superrafts"

    DEFF Research Database (Denmark)

    Braccia, Anita; Villani, Maristella; Immerdal, Lissi

    2003-01-01

    and the transmembrane aminopeptidase N, whereas the peripheral lipid raft protein annexin 2 was essentially absent. In conclusion, in the microvillar membrane, galectin-4, functions as a core raft stabilizer/organizer for other, more loosely raft-associated proteins. The superraft analysis might be applicable to other...

  9. Lipid raft-dependent plasma membrane repair interferes with the activation of B lymphocytes.

    Science.gov (United States)

    Miller, Heather; Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Maugel, Timothy K; Andrews, Norma W; Song, Wenxia

    2015-12-21

    Cells rapidly repair plasma membrane (PM) damage by a process requiring Ca(2+)-dependent lysosome exocytosis. Acid sphingomyelinase (ASM) released from lysosomes induces endocytosis of injured membrane through caveolae, membrane invaginations from lipid rafts. How B lymphocytes, lacking any known form of caveolin, repair membrane injury is unknown. Here we show that B lymphocytes repair PM wounds in a Ca(2+)-dependent manner. Wounding induces lysosome exocytosis and endocytosis of dextran and the raft-binding cholera toxin subunit B (CTB). Resealing is reduced by ASM inhibitors and ASM deficiency and enhanced or restored by extracellular exposure to sphingomyelinase. B cell activation via B cell receptors (BCRs), a process requiring lipid rafts, interferes with PM repair. Conversely, wounding inhibits BCR signaling and internalization by disrupting BCR-lipid raft coclustering and by inducing the endocytosis of raft-bound CTB separately from BCR into tubular invaginations. Thus, PM repair and B cell activation interfere with one another because of competition for lipid rafts, revealing how frequent membrane injury and repair can impair B lymphocyte-mediated immune responses.

  10. Association between tetrodotoxin resistant channels and lipid rafts regulates sensory neuron excitability.

    Directory of Open Access Journals (Sweden)

    Alessandro Pristerà

    Full Text Available Voltage-gated sodium channels (VGSCs play a key role in the initiation and propagation of action potentials in neurons. Na(V1.8 is a tetrodotoxin (TTX resistant VGSC expressed in nociceptors, peripheral small-diameter neurons able to detect noxious stimuli. Na(V1.8 underlies the vast majority of sodium currents during action potentials. Many studies have highlighted a key role for Na(V1.8 in inflammatory and chronic pain models. Lipid rafts are microdomains of the plasma membrane highly enriched in cholesterol and sphingolipids. Lipid rafts tune the spatial and temporal organisation of proteins and lipids on the plasma membrane. They are thought to act as platforms on the membrane where proteins and lipids can be trafficked, compartmentalised and functionally clustered. In the present study we investigated Na(V1.8 sub-cellular localisation and explored the idea that it is associated with lipid rafts in nociceptors. We found that Na(V1.8 is distributed in clusters along the axons of DRG neurons in vitro and ex vivo. We also demonstrated, by biochemical and imaging studies, that Na(V1.8 is associated with lipid rafts along the sciatic nerve ex vivo and in DRG neurons in vitro. Moreover, treatments with methyl-β-cyclodextrin (MβCD and 7-ketocholesterol (7KC led to the dissociation between rafts and Na(V1.8. By calcium imaging we demonstrated that the lack of association between rafts and Na(V1.8 correlated with impaired neuronal excitability, highlighted by a reduction in the number of neurons able to conduct mechanically- and chemically-evoked depolarisations. These findings reveal the sub-cellular localisation of Na(V1.8 in nociceptors and highlight the importance of the association between Na(V1.8 and lipid rafts in the control of nociceptor excitability.

  11. Lipid raft regulates the initial spreading of melanoma A375 cells by modulating β1 integrin clustering.

    Science.gov (United States)

    Wang, Ruifei; Bi, Jiajia; Ampah, Khamal Kwesi; Zhang, Chunmei; Li, Ziyi; Jiao, Yang; Wang, Xiaoru; Ba, Xueqing; Zeng, Xianlu

    2013-08-01

    Cell adhesion and spreading require integrins-mediated cell-extracellular matrix interaction. Integrins function through binding to extracellular matrix and subsequent clustering to initiate focal adhesion formation and actin cytoskeleton rearrangement. Lipid raft, a liquid ordered plasma membrane microdomain, has been reported to play major roles in membrane motility by regulating cell surface receptor function. Here, we identified that lipid raft integrity was required for β1 integrin-mediated initial spreading of melanoma A375 cells on fibronectin. We found that lipid raft disruption with methyl-β-cyclodextrin led to the inability of focal adhesion formation and actin cytoskeleton rearrangement by preventing β1 integrin clustering. Furthermore, we explored the possible mechanism by which lipid raft regulates β1 integrin clustering and demonstrated that intact lipid raft could recruit and modify some adaptor proteins, such as talin, α-actinin, vinculin, paxillin and FAK. Lipid raft could regulate the location of these proteins in lipid raft fractions and facilitate their binding to β1 integrin, which may be crucial for β1 integrin clustering. We also showed that lipid raft disruption impaired A375 cell migration in both transwell and wound healing models. Together, these findings provide a new insight for the relationship between lipid raft and the regulation of integrins.

  12. Lipid Raft Size and Lipid Mobility in Non-raft Domains Increase during Aging and Are Exacerbated in APP/PS1 Mice Model of Alzheimer's Disease. Predictions from an Agent-Based Mathematical Model.

    Science.gov (United States)

    Santos, Guido; Díaz, Mario; Torres, Néstor V

    2016-01-01

    A connection between lipid rafts and Alzheimer's disease has been studied during the last decades. Mathematical modeling approaches have recently been used to correlate the effects of lipid composition changes in the physicochemical properties of raft-like membranes. Here we propose an agent based model to assess the effect of lipid changes in lipid rafts on the evolution and progression of Alzheimer's disease using lipid profile data obtained in an established model of familial Alzheimer's disease. We have observed that lipid raft size and lipid mobility in non-raft domains are two main factors that increase during age and are accelerated in the transgenic Alzheimer's disease mouse model. The consequences of these changes are discussed in the context of neurotoxic amyloid β production. Our agent based model predicts that increasing sterols (mainly cholesterol) and long-chain polyunsaturated fatty acids (LCPUFA) (mainly DHA, docosahexaenoic acid) proportions in the membrane composition might delay the onset and progression of the disease.

  13. Ethanol Enhances TGF-β Activity by Recruiting TGF-β Receptors From Intracellular Vesicles/Lipid Rafts/Caveolae to Non-Lipid Raft Microdomains.

    Science.gov (United States)

    Huang, Shuan Shian; Chen, Chun-Lin; Huang, Franklin W; Johnson, Frank E; Huang, Jung San

    2016-04-01

    Regular consumption of moderate amounts of ethanol has important health benefits on atherosclerotic cardiovascular disease (ASCVD). Overindulgence can cause many diseases, particularly alcoholic liver disease (ALD). The mechanisms by which ethanol causes both beneficial and harmful effects on human health are poorly understood. Here we demonstrate that ethanol enhances TGF-β-stimulated luciferase activity with a maximum of 0.5-1% (v/v) in Mv1Lu cells stably expressing a luciferase reporter gene containing Smad2-dependent elements. In Mv1Lu cells, 0.5% ethanol increases the level of P-Smad2, a canonical TGF-β signaling sensor, by ∼ 2-3-fold. Ethanol (0.5%) increases cell-surface expression of the type II TGF-β receptor (TβR-II) by ∼ 2-3-fold from its intracellular pool, as determined by I(125) -TGF-β-cross-linking/Western blot analysis. Sucrose density gradient ultracentrifugation and indirect immunofluorescence staining analyses reveal that ethanol (0.5% and 1%) also displaces cell-surface TβR-I and TβR-II from lipid rafts/caveolae and facilitates translocation of these receptors to non-lipid raft microdomains where canonical signaling occurs. These results suggest that ethanol enhances canonical TGF-β signaling by increasing non-lipid raft microdomain localization of the TGF-β receptors. Since TGF-β plays a protective role in ASCVD but can also cause ALD, the TGF-β enhancer activity of ethanol at low and high doses appears to be responsible for both beneficial and harmful effects. Ethanol also disrupts the location of lipid raft/caveolae of other membrane proteins (e.g., neurotransmitter, growth factor/cytokine, and G protein-coupled receptors) which utilize lipid rafts/caveolae as signaling platforms. Displacement of these membrane proteins induced by ethanol may result in a variety of pathologies in nerve, heart and other tissues.

  14. Dynamic changes in the mobility of LAT in aggregated lipid rafts upon T cell activation.

    Science.gov (United States)

    Tanimura, Natsuko; Nagafuku, Masakazu; Minaki, Yasuko; Umeda, Yukio; Hayashi, Fumie; Sakakura, Junko; Kato, Akiko; Liddicoat, Douglas R; Ogata, Masato; Hamaoka, Toshiyuki; Kosugi, Atsushi

    2003-01-06

    Lipid rafts are known to aggregate in response to various stimuli. By way of raft aggregation after stimulation, signaling molecules in rafts accumulate and interact so that the signal received at a given membrane receptor is amplified efficiently from the site of aggregation. To elucidate the process of lipid raft aggregation during T cell activation, we analyzed the dynamic changes of a raft-associated protein, linker for activation of T cells (LAT), on T cell receptor stimulation using LAT fused to GFP (LAT-GFP). When transfectants expressing LAT-GFP were stimulated with anti-CD3-coated beads, LAT-GFP aggregated and formed patches at the area of bead contact. Photobleaching experiments using live cells revealed that LAT-GFP in patches was markedly less mobile than that in nonpatched regions. The decreased mobility in patches was dependent on raft organization supported by membrane cholesterol and signaling molecule binding sites, especially the phospholipase C gamma 1 binding site in the cytoplasmic domain of LAT. Thus, although LAT normally moves rapidly at the plasma membrane, it loses its mobility and becomes stably associated with aggregated rafts to ensure organized and sustained signal transduction required for T cell activation.

  15. Phosphorylation and lipid raft association of fibroblast growth factor receptor-2 in oligodendrocytes.

    Science.gov (United States)

    Bryant, M R; Marta, C B; Kim, F S; Bansal, R

    2009-07-01

    Fibroblast growth factors (FGFs) and their receptors (FGFRs) initiate diverse cellular responses that contribute to the regulation of oligodendrocyte (OL) function. To understand the mechanisms by which FGFRs elicit these cellular responses, we investigated the phosphorylation of signal transduction proteins and the role of cholesterol-glycosphingolipid-enriched "lipid raft" microdomains in differentiated OLs. Surprisingly, we found that the most abundant tyrosine-phosphorylated protein in OLs was the 120-kd isoform of FGFR2 and that it was phosphorylated even in the absence of FGF2, suggesting a potential ligand-independent function for this receptor. Furthermore, FGFR2, but not FGFR1, was associated with lipid raft microdomains in OLs and myelin (but not in astrocytes). This provides the first evidence for the association of FGFR with TX-100-insoluble lipid raft fractions. FGFR2 phosphorylated the key downstream target, FRS2 in OLs. Raft disruption resulted in loss of phosphorylated FRS2 from lipid rafts, coupled with the loss of Akt but not of Mek or Erk phosphorylation. This suggests that FGFR2-FRS2 signaling in lipid rafts operates via the PI3-Kinase/Akt pathway rather than the Ras/Mek/Erk pathway, emphasizing the importance of microenvironments within the cell membrane. Also present in lipid rafts in OLs and myelin, but not in astrocytes, was a novel 52-kd isoform of FGFR2 that lacked the extracellular ligand-binding region. These results demonstrate that FGFR2 in OLs and myelin possess unique characteristics that are specific both to receptor type and to OLs and provide a novel mechanism to elicit distinct cellular responses that mediate both FGF-dependent and -independent functions.

  16. Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes

    DEFF Research Database (Denmark)

    Calay, Damien; Vind-Kezunovic, Dina; Frankart, Aurelie;

    2010-01-01

    in deactivation of mammalian target of rapamycin, activation of FoxO3a, and increased sensitivity to apoptosis stimuli. Lipid raft disruption abrogated the binding of Akt and the major Akt kinase, phosphatidylinositol-dependent kinase 1, to the membrane by pleckstrin-homology domains. Thus, the integrity of lipid...

  17. Effects of acrylonitrile on lymphocyte lipid rafts and RAS/RAF/MAPK/ERK signaling pathways.

    Science.gov (United States)

    Li, X J; Li, B; Huang, J S; Shi, J M; Wang, P; Fan, W; Zhou, Y L

    2014-09-26

    Acrylonitrile (ACN) is a widely used chemical in the production of plastics, resins, nitriles, acrylic fibers, and synthetic rubber. Previous epidemiological investigations and animal studies have confirmed that ACN affects the lymphocytes and spleen. However, the immune toxicity mechanism is unknown. Lipid rafts are cell membrane structures that are rich in cholesterol and involved in cell signal transduction. The B cell lymophoma-10 (Bcl10) protein is a joint protein that is important in lymphocyte development and signal pathways. This study was conducted to examine the in vitro effects of ACN. We separated lipid rafts, and analyzed Bcl10 protein and caveolin. Western blotting was used to detect mitogen-activated protein kinase (MAPK) and phosphorylated MAPK levels. The results indicated that with increasing ACN concentration, the total amount of Bcl10 remained stable, but was concentrated mainly in part 4 to part 11 in electrophoretic band district which is high density in gradient centrifugation. Caveolin-1 was evaluated as a lipid raft marker protein; caveolin-1 content and position were relatively unchanged. Western blotting showed that in a certain range, MAPK protein was secreted at a higher level. At some ACN exposure levels, MAPK protein secretion was significantly decreased compared to the control group (P lipid raft structures, causing Bcl10 protein and lipid raft separation and restraining Ras-Raf-MAPK-extracellular signal-regulated kinase signaling pathways.

  18. Uncoupling Neogenin association with lipid rafts promotes neuronal survival and functional recovery after stroke.

    Science.gov (United States)

    Shabanzadeh, A P; Tassew, N G; Szydlowska, K; Tymianski, M; Banerjee, P; Vigouroux, R J; Eubanks, J H; Huang, L; Geraerts, M; Koeberle, P D; Mueller, B K; Monnier, P P

    2015-05-07

    The dependence receptor Neogenin and its ligand, the repulsive guidance molecule a (RGMa), regulate apoptosis and axonal growth in the developing and the adult central nervous system (CNS). Here, we show that this pathway has also a critical role in neuronal death following stroke, and that providing RGMa to neurons blocks Neogenin-induced death. Interestingly, the Neogenin pro-death function following ischemic insult depends on Neogenin association with lipid rafts. Thus, a peptide that prevents Neogenin association with lipid rafts increased neuronal survival in several in vitro stroke models. In rats, a pro-survival effect was also observed in a model of ocular ischemia, as well as after middle cerebral artery occlusion (MCAO). Treatments that prevented Neogenin association with lipid rafts improved neuronal survival and the complexity of the neuronal network following occlusion of the middle artery. Toward the development of a treatment for stroke, we developed a human anti-RGMa antibody that also prevents Neogenin association with lipid rafts. We show that this antibody also protected CNS tissue from ischemic damage and that its application resulted in a significant functional improvement even when administrated 6 h after artery occlusion. Thus, our results draw attention to the role of Neogenin and lipid rafts as potential targets following stroke.

  19. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.

    Science.gov (United States)

    Chakraborty, Atanu; Jana, Nikhil R

    2015-09-17

    Nanoparticle interacts with live cells depending on their surface chemistry, enters into cell via endocytosis, and is commonly trafficked to an endosome/lysozome that restricts subcellular targeting options. Here we show that nanoparticle surface chemistry can be tuned to alter their cell uptake mechanism and subcellular trafficking. Quantum dot based nanoprobes of 20-30 nm hydrodynamic diameters have been synthesized with tunable surface charge (between +15 mV to -25 mV) and lipophilicity to influence their cellular uptake processes and subcellular trafficking. It is observed that cationic nanoprobe electrostatically interacts with cell membrane and enters into cell via clathrin-mediated endocytosis. At lower surface charge (between +10 mV to -10 mV), the electrostatic interaction with cell membrane becomes weaker, and additional lipid raft endocytosis is initiated. If a lipophilic functional group is introduced on a weakly anionic nanoparticle surface, the uptake mechanism shifts to predominant lipid raft-mediated endocytosis. In particular, the zwitterionic-lipophilic nanoprobe has the unique advantage as it weakly interacts with anionic cell membrane, migrates toward lipid rafts for interaction through lipophilic functional group, and induces lipid raft-mediated endocytosis. While predominate or partial clathrin-mediated entry traffics most of the nanoprobes to lysozome, predominate lipid raft-mediated entry traffics them to perinuclear region, particularly to the Golgi apparatus. This finding would guide in designing appropriate nanoprobe for subcellular targeting and delivery.

  20. The Functional Roles of Lipid Rafts in T-Cell Activation, Immune Diseases and HIV Infection and Prevention

    Institute of Scientific and Technical Information of China (English)

    Cheng Lou; Kou Wang; Dequan Liu; Yan Li; Qinshi Zhao

    2008-01-01

    The first appearance of lipid rafts, or lipid rafts-like structure, was occasionally observed by cryo-electronic microscopy in 1980s as cavity, such as caveolae. However, the fully understanding of lipid raft was attributed by the studies of T cell activation. virus entry/budding, and other membrane events. During the interaction of T cell and antigen presenting cell, a highly organized structure is formed at the interface of the two cells, where cholesterol and sphingolipids are enriched, and form a liquid ordered phase that facilitates the signaling proteins on and off. Lipid rafts are also involved in virus entry and assembly. In this review, we will discuss cholesterol sphingolipid floating micro domain, the lipid raft as a unique compartment of the plasma membrane, with biological functions that ensure correct intracellular traffic of proteins and lipids, such as protein-protein interactions by concentrating certain proteins in these micro domains, while excluding others. We also discuss the disruption of lipid rafts is re teed to different diseases and aging, and we especially exploit the lipid rafts as pharmaceutical targets for anti-virus and anti-inflammation. Particularly a new approach to control HIV infection for AIDS prevention and perfection by inhibition or disruption of lipid rafts. Cellular & Molecular Immunology 2008;5(1):1-7.

  1. Lipid Raft is required for PSGL-1 ligation induced HL-60 cell adhesion on ICAM-1.

    Directory of Open Access Journals (Sweden)

    Tingshuang Xu

    Full Text Available P-selectin glycoprotein ligand-1 (PSGL-1 and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD, we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk, a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.

  2. Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations.

    Directory of Open Access Journals (Sweden)

    Yong Chen

    Full Text Available Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59 for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the nanoscale size-enlargement (1/3- to 2/3-fold of the nanoclusters of lipid raft markers and even the colocalization of GM1 and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4 degrees C, and provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly, our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules.

  3. Role of lipid rafts/caveolae in the anticancer effect of endocannabinoids.

    Science.gov (United States)

    Grimaldi, Claudia; Capasso, Anna

    2012-10-01

    The endocannabinoid system comprises the cannabinoid receptors type 1 (CB1) and type 2 (CB2), their endogenous ligands (endocannabinoids) and the whole apparatus appointed of their synthesis and degradation. Recent studies investigated the possibility that drugs targeting the endocannabinoid system might be used to retard or block cancer growth. CB1, CB2 and metabolic enzymes of endocannabinoids, function in the context of lipid rafts, specialized membrane microdomains enriched in cholesterol, sphingolipids and glycosphingolipids which may be important in modulating signal transduction. Here, we analysed the role of lipid rafts/caveolae in the intracellular signaling and trafficking of cannabinoid receptor agonist in cancer cells. Perturbation of lipid rafts/caveolae may in fact represent a useful tool for the development of a novel therapy for endocannabinoids-related diseases, such as cancer. Also, we report the more recent developments of endocannabinoids in cancer drug discovery.

  4. Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease.

    Science.gov (United States)

    Labilloy, Anatália; Youker, Robert T; Bruns, Jennifer R; Kukic, Ira; Kiselyov, Kirill; Halfter, Willi; Finegold, David; do Monte, Semiramis Jamil Hadad; Weisz, Ora A

    2014-02-01

    Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease. Using siRNA technology, we have generated a polarized renal epithelial cell model of Fabry disease in Madin-Darby canine kidney cells. These cells present increased levels of Gb3 and enlarged lysosomes, and progressively accumulate zebra bodies. The polarized delivery of both raft-associated and raft-independent proteins was unaffected by α-gal A knockdown, suggesting that accumulation of Gb3 does not disrupt biosynthetic trafficking pathways. To assess the effect of α-gal A silencing on lipid raft dynamics, we employed number and brightness (N&B) analysis to measure the oligomeric status and mobility of the model glycosylphosphatidylinositol (GPI)-anchored protein GFP-GPI. We observed a significant increase in the oligomeric size of antibody-induced clusters of GFP-GPI at the plasma membrane of α-gal A silenced cells compared with control cells. Our results suggest that the interaction of GFP-GPI with lipid rafts may be altered in the presence of accumulated Gb3. The implications of our results with respect to the pathogenesis of Fabry disease are discussed.

  5. A role for lipid rafts in the protection afforded by docosahexaenoic acid against ethanol toxicity in primary rat hepatocytes.

    Science.gov (United States)

    Aliche-Djoudi, Fatiha; Podechard, Normand; Collin, Aurore; Chevanne, Martine; Provost, Emilie; Poul, Martine; Le Hégarat, Ludovic; Catheline, Daniel; Legrand, Philippe; Dimanche-Boitrel, Marie-Thérèse; Lagadic-Gossmann, Dominique; Sergent, Odile

    2013-10-01

    Previously, we demonstrated that eicosapentaenoic acid enhanced ethanol-induced oxidative stress and cell death in primary rat hepatocytes via an increase in membrane fluidity and lipid raft clustering. In this context, another n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA), was tested with a special emphasis on physical and chemical alteration of lipid rafts. Pretreatment of hepatocytes with DHA reduced significantly ethanol-induced oxidative stress and cell death. DHA protection could be related to an alteration of lipid rafts. Indeed, rafts exhibited a marked increase in membrane fluidity and packing defects leading to the exclusion of a raft protein marker, flotillin. Furthermore, DHA strongly inhibited disulfide bridge formation, even in control cells, thus suggesting a disruption of protein-protein interactions inside lipid rafts. This particular spatial organization of lipid rafts due to DHA subsequently prevented the ethanol-induced lipid raft clustering. Such a prevention was then responsible for the inhibition of phospholipase C-γ translocation into rafts, and consequently of both lysosome accumulation and elevation in cellular low-molecular-weight iron content, a prooxidant factor. In total, the present study suggests that DHA supplementation could represent a new preventive approach for patients with alcoholic liver disease based upon modulation of the membrane structures.

  6. Function of MRP1/ABCC1 is not dependent on cholesterol or cholesterol-stabilized lipid rafts

    NARCIS (Netherlands)

    Meszaros, Peter; Klappe, Karin; Hummel, Ina; Hoekstra, Dick; Kok, Jan Willem

    2011-01-01

    MRP1 (multidrug-resistance-related protein 1)/ABCC1 (ATP-binding cassette transporter C1) has been localized in cholesterol-enriched lipid rafts, which suggests a role for these lipid rafts and/or cholesterol in MRP1 function. In the present study, we have shown for the first time that nearly comple

  7. Dynamical clustering and a mechanism for raft-like structures in a model lipid membrane.

    Science.gov (United States)

    Starr, Francis W; Hartmann, Benedikt; Douglas, Jack F

    2014-05-01

    We use molecular dynamics simulations to examine the dynamical heterogeneity of a model single-component lipid membrane using a coarse-grained representation of lipid molecules. This model qualitatively reproduces the known phase transitions between disordered, ordered, and gel membrane phases, and the phase transitions are accompanied by significant changes in the nature of the lipid dynamics. In particular, lipid diffusion in the liquid-ordered phase is hindered by the transient trapping of molecules by their neighbors, similar to the dynamics of a liquid approaching its glass transition. This transient molecular caging gives rise to two distinct mobility groups within a single-component membrane: lipids that are transiently trapped, and lipids with displacements on the scale of the intermolecular spacing. Most significantly, lipids within these distinct mobility states spatially segregate, creating transient "islands" of enhanced mobility having a size and time scale compatible with lipid "rafts," dynamical structures thought to be important for cell membrane function. Although the dynamic lipid clusters that we observe do not themselves correspond to rafts (which are more complex, multicomponent structures), we hypothesize that such rafts may develop from the same universal mechanism, explaining why raft-like regions should arise, regardless of lipid structural or compositional details. These clusters are strikingly similar to the dynamical clusters found in glass-forming fluids, and distinct from phase-separation clusters. We also show that mobile lipid clusters can be dissected into smaller clusters of cooperatively rearranging molecules. The geometry of these clusters can be understood in the context of branched equilibrium polymers, related to percolation theory. We discuss how these dynamical structures relate to a range observations on the dynamics of lipid membranes.

  8. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer's disease and facilitates APP/BACE1 interactions.

    Science.gov (United States)

    Fabelo, Noemí; Martín, Virginia; Marín, Raquel; Moreno, Dolores; Ferrer, Isidre; Díaz, Mario

    2014-08-01

    The presence of lipid alterations in lipid rafts from the frontal cortex in late stages of Alzheimer's disease (AD) has been recently demonstrated. Here, we have isolated and analyzed the lipid composition of lipid rafts from different brain areas from control and AD subjects at initial neuropathologic stages. We have observed that frontal cortex lipid rafts are profoundly altered in AD brains from the earliest stages of AD, namely AD I/II. These changes in the lipid matrix of lipid rafts affected both lipid classes and fatty acids and were also detected in the entorhinal cortex, but not in the cerebellum from the same subjects. Paralleling these changes, lipid rafts from AD frontal and entorhinal cortices displayed higher anisotropy for environment-sensitive probes, indicating that lipid changes in AD lipid rafts increased membrane order and viscosity in these domains. The pathophysiological consequences of these alterations in the development and progression of AD were strengthened by the significant, and specific, accumulation of β-secretase within the lipid rafts of AD subjects even at the earliest stages. Our results provide a mechanistic connection between lipid alterations in these microdomains and amyloidogenic processing of amyloid precursor protein.

  9. Platelet lipidomics: a modern day perspective on lipid discovery and characterization in platelets

    OpenAIRE

    O’Donnell, Valerie B.; Murphy, Robert C.; Watson, Steve P.

    2014-01-01

    Lipids are diverse families of biomolecules that perform essential structural and signaling roles in platelets. Their formation and metabolism is tightly controlled by enzymes and signal transduction pathways, and their dysregulation leads to significant defects in platelet function and disease. Platelet activation is associated with significant changes to membrane lipids, and formation of diverse bioactive lipids that play essential roles in hemostasis. In recent years, new generation mass s...

  10. Antidepressants Accumulate in Lipid Rafts Independent of Monoamine Transporters to Modulate Redistribution of the G Protein, Gαs.

    Science.gov (United States)

    Erb, Samuel J; Schappi, Jeffrey M; Rasenick, Mark M

    2016-09-16

    Depression is a significant public health problem for which currently available medications, if effective, require weeks to months of treatment before patients respond. Previous studies have shown that the G protein responsible for increasing cAMP (Gαs) is increasingly localized to lipid rafts in depressed subjects and that chronic antidepressant treatment translocates Gαs from lipid rafts. Translocation of Gαs, which shows delayed onset after chronic antidepressant treatment of rats or of C6 glioma cells, tracks with the delayed onset of therapeutic action of antidepressants. Because antidepressants appear to specifically modify Gαs localized to lipid rafts, we sought to determine whether structurally diverse antidepressants accumulate in lipid rafts. Sustained treatment of C6 glioma cells, which lack 5-hydroxytryptamine transporters, showed marked concentration of several antidepressants in raft fractions, as revealed by increased absorbance and by mass fingerprint. Closely related molecules without antidepressant activity did not concentrate in raft fractions. Thus, at least two classes of antidepressants accumulate in lipid rafts and effect translocation of Gαs to the non-raft membrane fraction, where it activates the cAMP-signaling cascade. Analysis of the structural determinants of raft localization may both help to explain the hysteresis of antidepressant action and lead to design and development of novel substrates for depression therapeutics.

  11. Lipid raft-associated β-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin.

    Science.gov (United States)

    Xu, Tingshuang; Liu, Wenai; Yang, Chen; Ba, Xueqing; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu

    2015-02-01

    Lipid rafts, a liquid-ordered plasma membrane microdomain, are related to cell-surface receptor function. PSGL-1, a major surface receptor protein for leukocyte, also acts as a signaling receptor in leukocyte rolling. To investigate the role of lipid raft in PSGL-1 signaling in human neutrophils, we quantitatively analyzed lipid raft proteome of human promyelocytic leukemia cell line HL-60 cells and identified a lipid raft-associated protein β-adducin. PSGL-1 ligation induced dissociation of the raft-associated protein β-adducin from lipid rafts and actin, as well as phosphorylation of β-adducin, indicating a transient uncoupling of lipid rafts from the actin cytoskeleton. Knockdown of β-adducin greatly attenuated HL-60 cells rolling on P-selectin. We also showed that Src kinase is crucial for PSGL-1 ligation-induced β-adducin phosphorylation and relocation. Taken together, these results show that β-adducin is a pivotal lipid raft-associated protein in PSGL-1-mediated neutrophil rolling on P-selectin.

  12. Activation of c-Src and Fyn kinases by protein tyrosine phosphatase RPTPalpha is substrate-specific and compatible with lipid raft localization

    DEFF Research Database (Denmark)

    Vacaresse, Nathalie; Møller, Bente; Danielsen, Erik Michael;

    2008-01-01

    and the lipid raft scaffolding protein Cbp/PAG. A significant fraction of RPTPa is present in lipid rafts, where its targets Fyn and Cbp/PAG reside, and growth factor-mediated SFK activation within this compartment is strictly dependent on RPTPa. Forced concentration of RPTPa into lipid rafts is compatible...

  13. Dynamical Clustering and the Origin of Raft-like Structures in a Model Lipid Membrane

    Science.gov (United States)

    Starr, Francis

    2014-03-01

    We investigate the dynamical heterogeneity of a model single-component lipid membrane using simulations of a coarse-grained representation of lipid molecules. In the liquid-ordered (LO) phase, lipid diffusion is hindered by the transient trapping of molecules by their neighbors, giving rise to two distinct mobility groups: low-mobility lipids which are temporarily ``caged'', and lipids with displacements on the scale of the intermolecular spacing. The lipid molecules within these distinct mobility states cluster, giving rise to transient ``islands'' of enhanced mobility having the size and time scale expected for lipid ``rafts''. These clusters are strikingly similar to the dynamical clusters found in glass-forming fluids, and distinct from phase-separation clusters. Such dynamic heterogeneity is ubiquitous in disordered condensed-phase systems. Thus, we hypothesize that rafts may originate from this universal mechanism, explaining why raft-like regions should arise, regardless of lipid structural or compositional details. This perspective provides a new approach to understand membrane transport.

  14. Probing Lipid Membrane Rafts (Microdomains) with Fluorescent Phospholipids

    Science.gov (United States)

    Gu, Yongwen; Mitchel, Drake

    2011-10-01

    Membrane rafts are enriched in sphingolipids and cholesterol, they exist in a more ordered state (the liquid-ordered phase; lo) than the bulk membrane (the liquid-disordered phase; ld). Ternary mixtures of palmitoyl-oleoyl-phosphocholine (POPC; 16:0,18:1 PC), sphingomyelin (SPM), and cholesterol (Chol) form membrane rafts over a wide range of molar ratios. We are examining the ability of two fluorescent probes, NBD linked to di-16:0 PE which partitions into the lo phase, and NBD linked to di-18:1 PE which partitions into the ld phase, to detect these two phases. We are also examining the effect of the highly polyunsaturated phospholipid stearoyl-docosahexanoyl-phosphocholine (SDPC; 18:0, 22:6 PC) on the size and stability of POPC/SPM/Chol membrane rafts. We report on the fluorescence lifetime and anisotropy decay dynamics of two fluorescent probes. Data were acquired via frequency-domain measurements from 5 to 250 MHz.

  15. Further evidence that paroxysmal nocturnal haemoglobinuria is a disorder of defective cell membrane lipid rafts.

    Science.gov (United States)

    Ratajczak, Mariusz Z; Borkowska, Sylwia; Mierzejewska, Kasia; Kucia, Magda; Mendek-Czajkowska, Ewa; Suszynska, Malwina; Sharma, Vivek A; Deptala, Andrzej; Song, Wechao; Platzbecker, Uwe; Larratt, Loree; Janowska-Wieczorek, Anna; Maciejewski, Jarek; Ratajczak, Janina

    2015-09-01

    The glycolipid glycosylphosphatidylinositol anchor (GPI-A) plays an important role in lipid raft formation, which is required for proper expression on the cell surface of two inhibitors of the complement cascade, CD55 and CD59. The absence of these markers from the surface of blood cells, including erythrocytes, makes the cells susceptible to complement lysis, as seen in patients suffering from paroxysmal nocturnal haemoglobinuria (PNH). However, the explanation for why PNH-affected hematopoietic stem/progenitor cells (HSPCs) expand over time in BM is still unclear. Here, we propose an explanation for this phenomenon and provide evidence that a defect in lipid raft formation in HSPCs leads to defective CXCR4- and VLA-4-mediated retention of these cells in BM. In support of this possibility, BM-isolated CD34(+) cells from PNH patients show a defect in the incorporation of CXCR4 and VLA-4 into membrane lipid rafts, respond weakly to SDF-1 stimulation, and show defective adhesion to fibronectin. Similar data were obtained with the GPI-A(-) Jurkat cell line. Moreover, we also report that chimeric mice transplanted with CD55(-/-)  CD59(-/-) BM cells but with proper GPI-A expression do not expand over time in transplanted hosts. On the basis of these findings, we propose that a defect in lipid raft formation in PNH-mutated HSPCs makes these cells more mobile, so that they expand and out-compete normal HSPCs from their BM niches over time.

  16. Membrane lipid rafts, master regulators of hematopoietic stem cell retention in bone marrow and their trafficking.

    Science.gov (United States)

    Ratajczak, M Z; Adamiak, M

    2015-07-01

    Cell outer membranes contain glycosphingolipids and protein receptors, which are integrated into glycoprotein microdomains, known as lipid rafts, which float freely in the membrane bilayer. These structures have an important role in assembling signaling molecules (e.g., Rac-1, RhoH and Lyn) together with surface receptors, such as the CXCR4 receptor for α-chemokine stromal-derived factor-1, the α4β1-integrin receptor (VLA-4) for vascular cell adhesion molecule-1 and the c-kit receptor for stem cell factor, which together regulate several aspects of hematopoietic stem/progenitor cell (HSPC) biology. Here, we discuss the role of lipid raft integrity in the retention and quiescence of normal HSPCs in bone marrow niches as well as in regulating HSPC mobilization and homing. We will also discuss the pathological consequences of the defect in lipid raft integrity seen in paroxysmal nocturnal hemoglobinuria and the emerging evidence for the involvement of lipid rafts in hematological malignancies.

  17. The Role of Lipid Rafts in the Early Stage of Enterovirus 71 Infection

    Directory of Open Access Journals (Sweden)

    Yong-Zhe Zhu

    2015-02-01

    Full Text Available Background/Aims: Although it has been widely accepted that Enterovirus 71 (EV71 enters permissive cells via receptor-mediated endocytosis, the details of entry mechanism for EV71 still need more exploration. This study aimed to investigate the role of lipid rafts in the early stage of EV71 Infection. Methods: The effect of cholesterol depletion or addition of exogenous cholesterol was detected by immunofluorescence assays and quantitative real-time PCR. Effects of cholesterol depletion on the association of EV71 with lipid rafts were determined by flow cytometry and co-immunoprecipitation assays. Localization and internalization of EV71 and its receptor were assayed by confocal microscpoy and sucrose gradient analysis. The impact of cholesterol on the activation of phosphoinositide 3'-kinase/Akt signaling pathway during initial virus infection was analyzed by Western-blotting. Results: Disruption of membrane cholesterol by a pharmacological agent resulted in a significant reduction in the infectivity of EV71. The inhibitory effect could be reversed by the addition of exogenous cholesterol. Cholesterol depletion post-infection did not affect EV71 infection. While virus bound equally to cholesterol-depleted cells, EV71 particles failed to be internalized by cholesterol-depleted cells. EV71 capsid protein co-localized with cholera toxin B, a lipid-raft-dependent internalization marker. Conclusion: Lipid rafts play a critical role in virus endocytosis and in the activation of PI3K/Akt signaling pathway in the early stage of EV71 infection.

  18. Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease.

    Science.gov (United States)

    Hattersley, Kathryn J; Hein, Leanne K; Fuller, Maria

    2013-12-01

    Biological membranes are composed of functionally relevant liquid-ordered and liquid-disordered domains that coexist. Within the liquid-ordered domains are low-density microdomains known as rafts with a unique lipid composition that is crucial for their structure and function. Lipid raft composition is altered in sphingolipid storage disorders, and here we determined the lipid composition using a detergent and detergent-free method in spleen tissue, the primary site of pathology, in a mouse model of the sphingolipid storage disorder, Gaucher disease. The accumulating lipid, glucosylceramide, was 30- and 50-fold elevated in the rafts with the detergent and detergent-free method, respectively. Secondary accumulation of di- and trihexosylceramide resided primarily in the rafts with both methods. The phospholipids distributed differently with more than half residing in the rafts with the detergent-free method and less than 10% with the detergent method, with the exception of the fully saturated species that were primarily in the rafts. Individual isoforms of sphingomyelin correlated with detergent-free extraction and more than half resided in the raft fractions. However, this correlation was not seen with the detergent extraction method as sphingomyelin species were spread across both the raft and non-raft domains. Therefore caution must be exercised when interpreting phospholipid distribution in raft domains as it differs considerably depending on the method of isolation. Importantly, both methods revealed the same lipid alterations in the raft domains in the spleen of the Gaucher disease mouse model highlighting that either method is appropriate to determine membrane lipid changes in the diseased state.

  19. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    DEFF Research Database (Denmark)

    Zech, Tobias; Ejsing, Christer S.; Gaus, Katharina;

    2009-01-01

    domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate...... and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation...

  20. LIPID RAFTS, FLUID/FLUID PHASE SEPARATION, AND THEIR RELEVANCE TO PLASMA MEMBRANE STRUCTURE AND FUNCTION

    OpenAIRE

    Sengupta, Prabuddha; Baird, Barbara; Holowka, David

    2007-01-01

    Novel biophysical approaches combined with modeling and new biochemical data have helped to recharge the lipid raft field and have contributed to the generation of a refined model of plasma membrane organization. In this review, we summarize new information in the context of previous literature to provide new insights into the spatial organization and dynamics of lipids and proteins in the plasma membrane of live cells. Recent findings of large-scale separation of liquid-ordered and liquid-di...

  1. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging.

    Directory of Open Access Journals (Sweden)

    Shaoying Lu

    Full Text Available Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP experiments, we have developed a finite element (FE method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2/sec than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2/sec and outside: 0.18+/-0.02 microm(2/sec. The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.

  2. The synaptic recruitment of lipid rafts is dependent on CD19-PI3K module and cytoskeleton remodeling molecules.

    Science.gov (United States)

    Xu, Liling; Auzins, Arturs; Sun, Xiaolin; Xu, Yinsheng; Harnischfeger, Fiona; Lu, Yun; Li, Zhanguo; Chen, Ying-Hua; Zheng, Wenjie; Liu, Wanli

    2015-08-01

    Sphingolipid- and cholesterol-rich lipid raft microdomains are important in the initiation of BCR signaling. Although it is known that lipid rafts promote the coclustering of BCR and Lyn kinase microclusters within the B cell IS, the molecular mechanism of the recruitment of lipid rafts into the B cell IS is not understood completely. Here, we report that the synaptic recruitment of lipid rafts is dependent on the cytoskeleton-remodeling proteins, RhoA and Vav. Such an event is also efficiently regulated by motor proteins, myosin IIA and dynein. Further evidence suggests the synaptic recruitment of lipid rafts is, by principle, an event triggered by BCR signaling molecules and second messenger molecules. BCR-activating coreceptor CD19 potently enhances such an event depending on its cytoplasmic Tyr421 and Tyr482 residues. The enhancing function of the CD19-PI3K module in synaptic recruitment of lipid rafts is also confirmed in human peripheral blood B cells. Thus, these results improve our understanding of the molecular mechanism of the recruitment of lipid raft microdomains in B cell IS.

  3. Activation of integrin α5 mediated by flow requires its translocation to membrane lipid rafts in vascular endothelial cells.

    Science.gov (United States)

    Sun, Xiaoli; Fu, Yi; Gu, Mingxia; Zhang, Lu; Li, Dan; Li, Hongliang; Chien, Shu; Shyy, John Y-J; Zhu, Yi

    2016-01-19

    Local flow patterns determine the uneven distribution of atherosclerotic lesions. Membrane lipid rafts and integrins are crucial for shear stress-regulated endothelial function. In this study, we investigate the role of lipid rafts and integrin α5 in regulating the inflammatory response in endothelial cells (ECs) under atheroprone versus atheroprotective flow. Lipid raft proteins were isolated from ECs exposed to oscillatory shear stress (OS) or pulsatile shear stress, and then analyzed by quantitative proteomics. Among 396 proteins redistributed in lipid rafts, integrin α5 was the most significantly elevated in lipid rafts under OS. In addition, OS increased the level of activated integrin α5 in lipid rafts through the regulation of membrane cholesterol and fluidity. Disruption of F-actin-based cytoskeleton and knockdown of caveolin-1 prevented the OS-induced integrin α5 translocation and activation. In vivo, integrin α5 activation and EC dysfunction were observed in the atheroprone areas of low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice, and knockdown of integrin α5 markedly attenuated EC dysfunction in partially ligated carotid arteries. Consistent with these findings, mice with haploinsufficency of integrin α5 exhibited a reduction of atherosclerotic lesions in the regions under atheroprone flow. The present study has revealed an integrin- and membrane lipid raft-dependent mechanotransduction mechanism by which atheroprone flow causes endothelial dysfunction.

  4. The molecular face of lipid rafts in model membranes

    NARCIS (Netherlands)

    Risselada, H. Jelger; Marrink, Siewert J.

    2008-01-01

    Cell membranes contain a large number of different lipid species. Such a multicomponent mixture exhibits a complex phase behavior with regions of structural and compositional heterogeneity. Especially domains formed in ternary mixtures, composed of saturated and unsaturated lipids together with

  5. Effect of glycyrrhetinic acid on lipid raft model at the air/water interface.

    Science.gov (United States)

    Sakamoto, Seiichi; Uto, Takuhiro; Shoyama, Yukihiro

    2015-02-01

    To investigate an interfacial behavior of the aglycon of glycyrrhizin (GC), glycyrrhetinic acid (GA), with a lipid raft model consisting of equimolar ternary mixtures of N-palmitoyl sphingomyelin (PSM), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL), Langmuir monolayer techniques were systematically conducted. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms showed that the adsorbed GA at the air/water interface was desorbed into the bulk upon compression of the lipid monolayer. In situ morphological analysis by Brewster angle microscopy and fluorescence microscopy revealed that the raft domains became smaller as the concentrations of GA in the subphase (CGA) increased, suggesting that GA promotes the formation of fluid networks related to various cellular processes via lipid rafts. In addition, ex situ morphological analysis by atomic force microscopy revealed that GA interacts with lipid raft by lying down at the surface. Interestingly, the distinctive striped regions were formed at CGA=5.0 μM. This phenomenon was observed to be induced by the interaction of CHOL with adsorbed GA and is involved in the membrane-disrupting activity of saponin and its aglycon. A quantitative comparison of GA with GC (Sakamoto et al., 2013) revealed that GA interacts more strongly with the raft model than GC in the monolayer state. Various biological activities of GA are known to be stronger than those of GC. This fact allows us to hypothesize that differences in the interactions of GA/GC with the model monolayer correlate to their degree of exertion for numerous activities.

  6. Involvement of lipid rafts in adhesion-induced activation of Met and EGFR

    Directory of Open Access Journals (Sweden)

    Lu Ying-Che

    2011-10-01

    Full Text Available Abstract Background Cell adhesion has been shown to induce activation of certain growth factor receptors in a ligand-independent manner. However, the mechanism for such activation remains obscure. Methods Human epidermal carcinoma A431 cells were used as a model to examine the mechanism for adhesion-induced activation of hepatocyte growth factor receptor Met and epidermal growth factor receptor (EGFR. The cells were suspended and replated on culture dishes under various conditions. The phosphorylation of Met at Y1234/1235 and EGFR at Y1173 were used as indicators for their activation. The distribution of the receptors and lipid rafts on the plasma membrane were visualized by confocal fluorescent microscopy and total internal reflection microscopy. Results We demonstrate that Met and EGFR are constitutively activated in A431 cells, which confers proliferative and invasive potentials to the cells. The ligand-independent activation of Met and EGFR in A431 cells relies on cell adhesion to a substratum, but is independent of cell spreading, extracellular matrix proteins, and substratum stiffness. This adhesion-induced activation of Met and EGFR cannot be attributed to Src activation, production of reactive oxygen species, and the integrity of the cytoskeleton. In addition, we demonstrate that Met and EGFR are independently activated upon cell adhesion. However, partial depletion of Met and EGFR prevents their activation upon cell adhesion, suggesting that overexpression of the receptors is a prerequisite for their self-activation upon cell adhesion. Although Met and EGFR are largely distributed in 0.04% Triton-insoluble fractions (i.e. raft fraction, their activated forms are detected mainly in 0.04% Triton-soluble fractions (i.e. non-raft fraction. Upon cell adhesion, lipid rafts are accumulated at the cell surface close to the cell-substratum interface, while Met and EGFR are mostly excluded from the membrane enriched by lipid rafts. Conclusions

  7. Drug Uptake, Lipid Rafts, and Vesicle Trafficking Modulate Resistance to an Anticancer Lysophosphatidylcholine Analogue in Yeast*

    Science.gov (United States)

    Cuesta-Marbán, Álvaro; Botet, Javier; Czyz, Ola; Cacharro, Luis M.; Gajate, Consuelo; Hornillos, Valentín; Delgado, Javier; Zhang, Hui; Amat-Guerri, Francisco; Acuña, A. Ulises; McMaster, Christopher R.; Revuelta, José Luis; Zaremberg, Vanina; Mollinedo, Faustino

    2013-01-01

    The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane. PMID:23335509

  8. Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast.

    Science.gov (United States)

    Cuesta-Marbán, Álvaro; Botet, Javier; Czyz, Ola; Cacharro, Luis M; Gajate, Consuelo; Hornillos, Valentín; Delgado, Javier; Zhang, Hui; Amat-Guerri, Francisco; Acuña, A Ulises; McMaster, Christopher R; Revuelta, José Luis; Zaremberg, Vanina; Mollinedo, Faustino

    2013-03-22

    The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane.

  9. the role of the actin cytoskeleton and lipid rafts in the localization and function of the ABCC1 transporter

    NARCIS (Netherlands)

    Kok, Jan; Klappe, Katharina; Hummel, Ina

    2014-01-01

    ATP-binding cassette (ABC) transporters are known to be important factors in multidrug resistance of tumor cells. Lipid rafts have been implicated in their localization in the plasma membrane, where they function as drug efflux pumps. This specific localization in rafts may support the activity of A

  10. Hypoxia reduces the efficiency of elisidepsin by inhibiting hydroxylation and altering the structure of lipid rafts.

    Science.gov (United States)

    Király, Anna; Váradi, Tímea; Hajdu, Tímea; Rühl, Ralph; Galmarini, Carlos M; Szöllősi, János; Nagy, Peter

    2013-12-02

    The mechanism of action of elisidepsin (PM02734, Irvalec®) is assumed to involve membrane permeabilization via attacking lipid rafts and hydroxylated lipids. Here we investigate the role of hypoxia in the mechanism of action of elisidepsin. Culturing under hypoxic conditions increased the half-maximal inhibitory concentration and decreased the drug's binding to almost all cell lines which was reversed by incubation of cells with 2-hydroxy palmitic acid. The expression of fatty acid 2-hydroxylase was strongly correlated with the efficiency of the drug and inversely correlated with the effect of hypoxia. Number and brightness analysis and fluorescence anisotropy experiments showed that hypoxia decreased the clustering of lipid rafts and altered the structure of the plasma membrane. Although the binding of elisidepsin to the membrane is non-cooperative, its membrane permeabilizing effect is characterized by a Hill coefficient of ~3.3. The latter finding is in agreement with elisidepsin-induced clusters of lipid raft-anchored GFP visualized by confocal microscopy. We propose that the concentration of elisidepsin needs to reach a critical level in the membrane above which elisidepsin induces the disruption of the cell membrane. Testing for tumor hypoxia or the density of hydroxylated lipids could be an interesting strategy to increase the efficiency of elisidepsin.

  11. Cholesterol-rich lipid rafts play an important role in the Cyprinid herpesvirus 3 replication cycle.

    Science.gov (United States)

    Brogden, Graham; Adamek, Mikołaj; Proepsting, Marcus J; Ulrich, Reiner; Naim, Hassan Y; Steinhagen, Dieter

    2015-09-30

    The Cyprinus herpesvirus 3 (CyHV-3) is a member of the new Alloherpesviridae virus family in the Herpesvirales order. CyHV-3 has been implicated in a large number of disease outbreaks in carp populations causing up to 100% mortality. The aim of this study was to investigate the requirement of cholesterol-rich lipid rafts in CyHV-3 entry and replication in carp cells. Plasma membrane cholesterol was depleted from common carp brain (CCB) cells with methyl-β-cyclodextrin (MβCD). Treated and non-treated cells were infected with CyHV-3 and virus binding and infection parameters were assessed using RT-qPCR, immunocytochemistry and virus titration. The effect of cholesterol reduction severely stunted virus entry in vitro, however after cholesterol replenishment virus entry and subsequent replication rates were similar to the control infection. Furthermore, cholesterol depletion did not significantly influence virus binding and the subsequent post-entry replication stage, however had an impact on virus egress. Comparative analysis of the lipid compositions of CyHV-3 and CCB membrane fractions revealed strong similarities between the lipid composition of the CyHV-3 and CCB lipid rafts. The results presented here show that cholesterol-rich lipid rafts are important for the CyHV-3 replication cycle especially during entry and egress.

  12. Therapeutic MSC exosomes are derived from lipid raft microdomains in the plasma membrane

    Directory of Open Access Journals (Sweden)

    Soon Sim Tan

    2013-12-01

    Full Text Available Background: Mesenchymal stem cell (MSC was previously shown to secrete lipid vesicles that when purified by high performance liquid chromatography as a population of homogenously sized particles with a hydrodynamic radius of 55–65 nm reduce infarct size in a mouse model of myocardial ischemia/reperfusion injury. As these vesicles exhibit many biophysical and biochemical properties of exosomes, they were identified as exosomes. Here we investigated if these lipid vesicles were indeed exosomes that have an endosomal biogenesis. Method: In most cells, endocytosis is thought to occur at specialized microdomains known as lipid rafts. To demonstrate an endosomal origin for MSC exosomes, MSCs were pulsed with ligands e.g. transferrin (Tfs and Cholera Toxin B (CTB that bind receptors in lipid rafts. The endocytosed ligands were then chased to determine if they were incorporated into the exosomes. Results: A fraction of exogenous Tfs was found to recycle into MSC exosomes. When MSCs were pulsed with labelled Tfs in the presence of chlorpromazine, an inhibitor of clathrin-mediated endocytosis, Tf incorporation in CD81-immunoprecipitate was reduced during the chase. CTB which binds GM1 gangliosides that are enriched in lipid rafts extracted exosome-associated proteins, CD81, CD9, Alix and Tsg101 from MSC-conditioned medium. Exogenous CTBs were pulse-chased into secreted vesicles. Extraction of Tf- or CTB-binding vesicles in an exosome preparation mutually depleted each other. Inhibition of sphingomyelinases reduced CTB-binding vesicles. Conclusion: Together, our data demonstrated that MSC exosomes are derived from endocytosed lipid rafts and that their protein cargo includes exosome-associated proteins CD81, CD9, Alix and Tsg101.

  13. Lipid raft-mediated Fas/CD95 apoptotic signaling in leukemic cells and normal leukocytes and therapeutic implications.

    Science.gov (United States)

    Gajate, Consuelo; Mollinedo, Faustino

    2015-11-01

    Plasma membrane is now recognized to contain tightly packed cholesterol/sphingolipid-rich domains, known as lipid or membrane rafts, which are more ordered than the surrounding lipid bilayer. Lipid rafts are crucial for the compartmentalization of signaling processes in the membrane, mostly involved in cell survival and immune response. However, in the last 15 years, a large body of evidence has also identified raft platforms as scaffolds for the recruitment and clustering of death receptor Fas/CD95 and downstream signaling molecules, leading to the concept of death-promoting lipid rafts. This raft-Fas/CD95 coclustering was first described at the early 2000s as the underlying mechanism for the proapoptotic action of the alkylphospholipid analog edelfosine in leukemic cells, hence facilitating protein-protein interactions and conveying apoptotic signals independently of Fas/CD95 ligand. Edelfosine induces apoptosis in hematologic cancer cells and activated T-lymphocytes. Fas/CD95 raft coclustering is also promoted by Fas/CD95 ligand, agonistic Fas/CD95 antibodies, and additional antitumor drugs. Thus, death receptor recruitment in rafts is a physiologic process leading to cell demise that can be pharmacologically modulated. This redistribution and local accumulation of apoptotic molecules in membrane rafts, which are usually accompanied by displacement of survival signaling molecules, highlight how alterations in the apoptosis/survival signaling balance in specialized membrane regions modulate cell fate. Membrane rafts might also modulate apoptotic and nonapoptotic death receptor signaling. Here, we discuss the role of lipid rafts in Fas/CD95-mediated apoptotic cell signaling in hematologic cancer cells and normal leukocytes, with a special emphasis on their involvement as putative therapeutic targets in cancer and autoimmune diseases.

  14. Lipid raft localization of EGFR alters the response of cancer cells to the EGFR tyrosine kinase inhibitor gefitinib.

    Science.gov (United States)

    Irwin, Mary E; Mueller, Kelly L; Bohin, Natacha; Ge, Yubin; Boerner, Julie L

    2011-09-01

    Epidermal growth factor receptor (EGFR) is overexpressed in many cancer types including ~30% of breast cancers. Several small molecule tyrosine kinase inhibitors (TKIs) targeting EGFR have shown clinical efficacy in lung and colon cancers, but no benefit has been noted in breast cancer. Thirteen EGFR expressing breast cancer cell lines were analyzed for response to EGFR TKIs. Seven were found to be EGFR TKI resistant; while shRNA knockdown of EGFR determined that four of these cell lines retained the requirement of EGFR protein expression for growth. Interestingly, EGFR localized to plasma membrane lipid rafts in all four of these EGFR TKI-resistant cell lines, as determined by biochemical raft isolation and immunofluorescence. When lipid rafts were depleted of cholesterol using lovastatin, all four cell lines were sensitized to EGFR TKIs. In fact, the effects of the cholesterol biosynthesis inhibitors and gefitinib were synergistic. While gefitinib effectively abrogated phosphorylation of Akt- and mitogen-activated protein kinase in an EGFR TKI-sensitive cell line, phosphorylation of Akt persisted in two EGFR TKI-resistant cell lines, however, this phosphorylation was abrogated by lovastatin treatment. Thus, we have shown that lipid raft localization of EGFR correlates with resistance to EGFR TKI-induced growth inhibition and pharmacological depletion of cholesterol from lipid rafts decreases this resistance in breast cancer cell lines. Furthermore, we have presented evidence to suggest that when EGFR localizes to lipid rafts, these rafts provide a platform to facilitate activation of Akt signaling in the absence of EGFR kinase activity.

  15. NGF causes TrkA to specifically attract microtubules to lipid rafts.

    Directory of Open Access Journals (Sweden)

    Shona Pryor

    Full Text Available Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein composition. Although the nerve growth factor (NGF receptors, TrkA and p75(NTR collaborate with each other at the plasma membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75(NTR both reside in detergent-resistant membranes (DRMs, yet they responded differently to a variety of conditions. The ganglioside, GM1, caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75(NTR. When microtubules were induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75(NTR, was bound to microtubules in DRMs and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs, yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75(NTR partition into membrane rafts by different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon guidance.

  16. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  17. AFM of the ultrastructural and mechanical properties of lipid-raft-disrupted and/or cold-treated endothelial cells.

    Science.gov (United States)

    Wu, Li; Huang, Jie; Yu, Xiaoxue; Zhou, Xiaoqing; Gan, Chaoye; Li, Ming; Chen, Yong

    2014-02-01

    The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.

  18. Role of the lipid rafts in the life cycle of canine coronavirus.

    Science.gov (United States)

    Pratelli, Annamaria; Colao, Valeriana

    2015-02-01

    Coronaviruses are enveloped RNA viruses that have evolved complex relationships with their host cells, and modulate their lipid composition, lipid synthesis and signalling. Lipid rafts, enriched in sphingolipids, cholesterol and associated proteins, are special plasma membrane microdomains involved in several processes in viral infections. The extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to lipid rafts. Because cholesterol-rich microdomains appear to be a general feature of the entry mechanism of non-eneveloped viruses and of several coronaviruses, the purpose of this study was to analyse the contribution of lipids to the infectivity of canine coronavirus (CCoV). The CCoV life cycle is closely connected to plasma membrane cholesterol, from cell entry to viral particle production. The methyl-β-cyclodextrin (MβCD) was employed to remove cholesterol and to disrupt the lipid rafts. Cholesterol depletion from the cell membrane resulted in a dose-dependent reduction, but not abolishment, of virus infectivity, and at a concentration of 15 mM, the reduction in the infection rate was about 68 %. MβCD treatment was used to verify if cholesterol in the envelope was required for CCoV infection. This resulted in a dose-dependent inhibitory effect, and at a concentration of 9 mM MβCD, infectivity was reduced by about 73 %. Since viral entry would constitute a target for antiviral strategies, inhibitory molecules interacting with viral and/or cell membranes, or interfering with lipid metabolism, may have strong antiviral potential. It will be interesting in the future to analyse the membrane microdomains in the CCoV envelope.

  19. Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells

    OpenAIRE

    2016-01-01

    Cytomegalovirus (HCMV) contains cholesterol, but how HCMV interacts with host cholesterol metabolism is unknown. We found that, in human fibroblasts, HCMV infection increased the efflux of cellular cholesterol, despite reducing the abundance of ABCA1. Mechanistically, viral protein US28 was acting through CDC42, rearranging actin microfilaments, causing association of actin with lipid rafts, and leading to a dramatic change in the abundance and/or structure of lipid rafts. These changes displ...

  20. Disruption of Lipid Rafts Interferes with the Interaction of Toxoplasma gondii with Macrophages and Epithelial Cells

    Science.gov (United States)

    Cruz, Karla Dias; Cruz, Thayana Araújo; Veras de Moraes, Gabriela; Paredes-Santos, Tatiana Christina; Attias, Marcia; de Souza, Wanderley

    2014-01-01

    The intracellular parasite Toxoplasma gondii can penetrate any warm-blooded animal cell. Conserved molecular assemblies of host cell plasma membranes should be involved in the parasite-host cell recognition. Lipid rafts are well-conserved membrane microdomains that contain high concentrations of cholesterol, sphingolipids, glycosylphosphatidylinositol, GPI-anchored proteins, and dually acylated proteins such as members of the Src family of tyrosine kinases. Disturbing lipid rafts of mouse peritoneal macrophages and epithelial cells of the lineage LLC-MK2 with methyl-beta cyclodextrin (MβCD) and filipin, which interfere with cholesterol or lidocaine, significantly inhibited internalization of T. gondii in both cell types, although adhesion remained unaffected in macrophages and decreased only in LLC-MK2 cells. Scanning and transmission electron microscopy confirmed these observations. Results are discussed in terms of the original role of macrophages as professional phagocytes versus the LLC-MK2 cell lineage originated from kidney epithelial cells. PMID:24734239

  1. Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    2010-01-01

    Full Text Available Various animal models of Alzheimer's disease (AD have been created to assist our appreciation of AD pathophysiology, as well as aid development of novel therapeutic strategies. Despite the discovery of mutated proteins that predict the development of AD, there are likely to be many other proteins also involved in this disorder. Complex physiological processes are mediated by coherent interactions of clusters of functionally related proteins. Synaptic dysfunction is one of the hallmarks of AD. Synaptic proteins are organized into multiprotein complexes in high-density membrane structures, known as lipid rafts. These microdomains enable coherent clustering of synergistic signaling proteins. We have used mass analytical techniques and multiple bioinformatic approaches to better appreciate the intricate interactions of these multifunctional proteins in the 3xTgAD murine model of AD. Our results show that there are significant alterations in numerous receptor/cell signaling proteins in cortical lipid rafts isolated from 3xTgAD mice.

  2. Anti-glycosyl antibodies in lipid rafts of the enterocyte brush border: a possible host defense against pathogens

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Pedersen, Esben D K; Immerdal, Lissi;

    2005-01-01

    The pig small intestinal brush border is a glycoprotein- and glycolipid-rich membrane that functions as a digestive/absorptive surface for dietary nutrients as well as a permeability barrier for pathogens. The present work was performed to identify carbohydrate-binding (lectinlike) proteins...... a major part of the immunoglobulins at the lumenal surface of the gut. The antibodies were associated with lipid rafts at the brush border, and they frequently (52%) coclustered with the raft marker galectin 4. A lactose wash increased the susceptibility of the brush border toward lectin peanut agglutin...... the lipid raft microdomains of the brush border against pathogens....

  3. The stromal cell-surface protease fibroblast activation protein-α localizes to lipid rafts and is recruited to invadopodia.

    Science.gov (United States)

    Knopf, Julia D; Tholen, Stefan; Koczorowska, Maria M; De Wever, Olivier; Biniossek, Martin L; Schilling, Oliver

    2015-10-01

    Fibroblast activation protein alpha (FAPα) is a cell surface protease expressed by cancer-associated fibroblasts in the microenvironment of most solid tumors. As there is increasing evidence for proteases having non-catalytic functions, we determined the FAPα interactome in cancer-associated fibroblasts using the quantitative immunoprecipitation combined with knockdown (QUICK) method. Complex formation with adenosin deaminase, erlin-2, stomatin, prohibitin, Thy-1 membrane glycoprotein, and caveolin-1 was further validated by immunoblotting. Co-immunoprecipitation (co-IP) of the known stoichiometric FAPα binding partner dipeptidyl-peptidase IV (DPPIV) corroborated the proteomic strategy. Reverse co-IPs validated the FAPα interaction with caveolin-1, erlin-2, and stomatin while co-IP upon RNA-interference mediated knock-down of DPPIV excluded adenosin deaminase as a direct FAPα interaction partner. Many newly identified FAPα interaction partners localize to lipid rafts, including caveolin-1, a widely-used marker for lipid raft localization. We hypothesized that this indicates a recruitment of FAPα to lipid raft structures. In density gradient centrifugation, FAPα co-fractionates with caveolin-1. Immunofluorescence optical sectioning microscopy of FAPα and lipid raft markers further corroborates recruitment of FAPα to lipid rafts and invadopodia. FAPα is therefore an integral component of stromal lipid rafts in solid tumors. In essence, we provide one of the first interactome analyses of a cell surface protease and translate these results into novel biological aspects of a marker protein for cancer-associated fibroblasts.

  4. NCAM-140 Translocation into Lipid Rafts Mediates the Neuroprotective Effects of GDNF.

    Science.gov (United States)

    Li, Li; Chen, Huizhen; Wang, Meng; Chen, Fangfang; Gao, Jin; Sun, Shen; Li, Yunqing; Gao, Dianshuai

    2017-05-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for substantia nigra dopaminergic (DA) neuronal cells. Recent studies have demonstrated that neural cell adhesion molecule functions as a signal transduction receptor for GDNF. The purpose of this study is to reveal whether neural cell adhesion molecule (NCAM) mediates the protective effects of GDNF on DA neuronal cells and further explore the mechanisms involved. We utilized SH-SY5Y cell line to establish a model of 6-hydroxydopamine (6-OHDA)-injured DA neuronal cells. Lentiviral vectors were constructed to knockdown or overexpress NCAM-140, and a density gradient centrifugation method was employed to separate membrane lipid rafts. 3-(4,5-Dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), flow cytometric analysis, and western blotting were used to evaluate the protective effects of GDNF. The results showed that GDNF could protect 6-OHDA-injured SH-SY5Y cells via improving cell viability and decreasing the cell death rate and cleaved caspase-3 expression. NCAM-140 knockdown decreased cell viability and increased the cell death rate and cleaved caspase-3 expression, while its overexpression had the opposite effects. Notably, the amount of NCAM-140 located in lipid rafts increased after GDNF treatment. Pretreatment with 2-bromopalmitate, a specific inhibitor of protein palmitoylation, suppressed NCAM-140 translocation to lipid rafts and reduced the NCAM-mediated protective effects of GDNF on injured DA neuronal cells. Our results suggest that GDNF have the protective effects on injured DA cells by influencing NCAM-140 translocation into lipid rafts.

  5. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Thayanithy, Venugopal [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States); Babatunde, Victor [Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Dickson, Elizabeth L. [Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN 55455 (United States); Wong, Phillip [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States); Oh, Sanghoon; Ke, Xu; Barlas, Afsar; Fujisawa, Sho; Romin, Yevgeniy [Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Moreira, André L. [Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Downey, Robert J. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Steer, Clifford J. [Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States); Subramanian, Subbaya [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Manova-Todorova, Katia [Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Moore, Malcolm A.S. [Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Lou, Emil, E-mail: emil-lou@umn.edu [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States)

    2014-04-15

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and

  6. Syntaxin and VAMP association with lipid rafts depends on cholesterol depletion in capacitating sperm cells.

    Science.gov (United States)

    Tsai, Pei-Shiue; De Vries, Klaas J; De Boer-Brouwer, Mieke; Garcia-Gil, Nuria; Van Gestel, Renske A; Colenbrander, Ben; Gadella, Bart M; Van Haeften, Theo

    2007-01-01

    Sperm cells represent a special exocytotic system since mature sperm cells contain only one large secretory vesicle, the acrosome, which fuses with the overlying plasma membrane during the fertilization process. Acrosomal exocytosis is believed to be regulated by activation of SNARE proteins. In this paper, we identified specific members of the SNARE protein family, i.e., the t-SNAREs syntaxin1 and 2, and the v-SNARE VAMP, present in boar sperm cells. Both syntaxins were predominantly found in the plasma membrane whereas v-SNAREs are mainly located in the outer acrosomal membrane of these cells. Under non-capacitating conditions both syntaxins and VAMP are scattered in well-defined punctate structures over the entire sperm head. Bicarbonate-induced in vitro activation in the presence of BSA causes a relocalization of these SNAREs to a more homogeneous distribution restricted to the apical ridge area of the sperm head, exactly matching the site of sperm zona binding and subsequent induced acrosomal exocytosis. This redistribution of syntaxin and VAMP depends on cholesterol depletion and closely resembles the previously reported redistribution of lipid raft marker proteins. Detergent-resistant membrane isolation and subsequent analysis shows that a significant proportion of syntaxin emerges in the detergent-resistant membrane (raft) fraction under such conditions, which is not the case under those conditions where cholesterol depletion is blocked. The v-SNARE VAMP displays a similar cholesterol depletion-dependent lateral and raft redistribution. Taken together, our results indicate that redistribution of syntaxin and VAMP during capacitation depends on association of these SNAREs with lipid rafts and that such a SNARE-raft association may be essential for spatial control of exocytosis and/or regulation of SNARE functioning.

  7. Enhancement of Lytic Activity by Leptin Is Independent From Lipid Rafts in Murine Primary Splenocytes.

    Science.gov (United States)

    Collin, Aurore; Noacco, Audrey; Talvas, Jérémie; Caldefie-Chézet, Florence; Vasson, Marie-Paule; Farges, Marie-Chantal

    2017-01-01

    Leptin, a pleiotropic adipokine, is known as a regulator of food intake, but it is also involved in inflammation, immunity, cell proliferation, and survival. Leptin receptor is integrated inside cholesterol-rich microdomains called lipid rafts, which, if disrupted or destroyed, could lead to a perturbation of lytic mechanism. Previous studies also reported that leptin could induce membrane remodeling. In this context, we studied the effect of membrane remodeling in lytic activity modulation induced by leptin. Thus, primary mouse splenocytes were incubated with methyl-β-cyclodextrin (β-MCD), a lipid rafts disrupting agent, cholesterol, a major component of cell membranes, or ursodeoxycholic acid (UDCA), a membrane stabilizer agent for 1 h. These treatments were followed by splenocyte incubation with leptin (absence, 10 and 100 ng/ml). Unlike β-MCD or cholesterol, UDCA was able to block leptin lytic induction. This result suggests that leptin increased the lytic activity of primary spleen cells against syngenic EO771 mammary cancer cells independently from lipid rafts but may involve membrane fluidity. Furthermore, natural killer cells were shown to be involved in the splenocyte lytic activity. To our knowledge it is the first publication in primary culture that provides the link between leptin lytic modulation and membrane remodeling. J. Cell. Physiol. 232: 101-109, 2017. © 2016 Wiley Periodicals, Inc.

  8. HTLV-1 Tax deregulates autophagy by recruiting autophagic molecules into lipid raft microdomains.

    Science.gov (United States)

    Ren, T; Takahashi, Y; Liu, X; Loughran, T P; Sun, S-C; Wang, H-G; Cheng, H

    2015-01-15

    The retroviral oncoprotein Tax from human T-cell leukemia virus type 1 (HTLV-1), an etiological factor that causes adult T-cell leukemia and lymphoma, has a crucial role in initiating T-lymphocyte transformation by inducing oncogenic signaling activation. We here report that Tax is a determining factor for dysregulation of autophagy in HTLV-1-transformed T cells and Tax-immortalized CD4 memory T cells. Tax facilitated autophagic process by activating inhibitor of κB (IκB) kinase (IKK) complex, which subsequently recruited an autophagy molecular complex containing Beclin1 and Bif-1 to the lipid raft microdomains. Tax engaged a crosstalk between IKK complex and autophagic molecule complex by directly interacting with both complexes, promoting assembly of LC3+ autophagosomes. Moreover, expression of lipid raft-targeted Bif-1 or Beclin1 was sufficient to induce formation of LC3+ autophagosomes, suggesting that Tax recruitment of autophagic molecules to lipid rafts is a dominant strategy to deregulate autophagy in the context of HTLV-1 transformation of T cells. Furthermore, depletion of autophagy molecules such as Beclin1 and PI3 kinase class III resulted in impaired growth of HTLV-1-transformed T cells, indicating a critical role of Tax-deregulated autophagy in promoting survival and transformation of virally infected T cells.

  9. Lipid rafts-mediated endocytosis and physiology-based cell membrane traffic models of doxorubicin liposomes.

    Science.gov (United States)

    Li, Yinghuan; Gao, Lei; Tan, Xi; Li, Feiyang; Zhao, Ming; Peng, Shiqi

    2016-08-01

    The clathrin-mediated endocytosis is likely a major mechanism of liposomes' internalization. A kinetic approach was used to assess the internalization mechanism of doxorubicin (Dox) loaded cationic liposomes and to establish physiology-based cell membrane traffic mathematic models. Lipid rafts-mediated endocytosis, including dynamin-dependent or -independent endocytosis of noncaveolar structure, was a dominant process. The mathematic models divided Dox loaded liposomes binding lipid rafts (B) into saturable binding (SB) and nonsaturable binding (NSB) followed by energy-driven endocytosis. The intracellular trafficking demonstrated early endosome-late endosome-lysosome or early/late endosome-cytoplasm-nucleus pathways. The three properties of liposome structures, i.e., cationic lipid, fusogenic lipid, and pegylation, were investigated to compare their contributions to cell membrane and intracellular traffic. The results revealed great contribution of cationic lipid DOTAP and fusogenic lipid DOPE to cell membrane binding and internalization. The valid Dox in the nuclei of HepG2 and A375 cells treated with cationic liposomes containing 40mol% of DOPE were 1.2-fold and 1.5-fold higher than that in the nuclei of HepG2 and A375 cells treated with liposomes containing 20mol% of DOPE, respectively, suggesting the dependence of cell type. This tendency was proportional to the increase of cell-associated total liposomal Dox. The mathematic models would be useful to predict intracellular trafficking of liposomal Dox.

  10. Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains.

    Science.gov (United States)

    Carquin, Mélanie; D'Auria, Ludovic; Pollet, Hélène; Bongarzone, Ernesto R; Tyteca, Donatienne

    2016-04-01

    The concept of transient nanometric domains known as lipid rafts has brought interest to reassess the validity of the Singer-Nicolson model of a fluid bilayer for cell membranes. However, this new view is still insufficient to explain the cellular control of surface lipid diversity or membrane deformability. During the past decades, the hypothesis that some lipids form large (submicrometric/mesoscale vs nanometric rafts) and stable (>min vs s) membrane domains has emerged, largely based on indirect methods. Morphological evidence for stable submicrometric lipid domains, well-accepted for artificial and highly specialized biological membranes, was further reported for a variety of living cells from prokaryot es to yeast and mammalian cells. However, results remained questioned based on limitations of available fluorescent tools, use of poor lipid fixatives, and imaging artifacts due to non-resolved membrane projections. In this review, we will discuss recent evidence generated using powerful and innovative approaches such as lipid-specific toxin fragments that support the existence of submicrometric domains. We will integrate documented mechanisms involved in the formation and maintenance of these domains, and provide a perspective on their relevance on membrane deformability and regulation of membrane protein distribution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Hybrid and nonhybrid lipids exert common effects on membrane raft size and morphology.

    Science.gov (United States)

    Heberle, Frederick A; Doktorova, Milka; Goh, Shih Lin; Standaert, Robert F; Katsaras, John; Feigenson, Gerald W

    2013-10-01

    Nanometer-scale domains in cholesterol-rich model membranes emulate lipid rafts in cell plasma membranes (PMs). The physicochemical mechanisms that maintain a finite, small domain size are, however, not well understood. A special role has been postulated for chain-asymmetric or hybrid lipids having a saturated sn-1 chain and an unsaturated sn-2 chain. Hybrid lipids generate nanodomains in some model membranes and are also abundant in the PM. It was proposed that they align in a preferred orientation at the boundary of ordered and disordered phases, lowering the interfacial energy and thus reducing domain size. We used small-angle neutron scattering and fluorescence techniques to detect nanoscopic and modulated liquid phase domains in a mixture composed entirely of nonhybrid lipids and cholesterol. Our results are indistinguishable from those obtained previously for mixtures containing hybrid lipids, conclusively showing that hybrid lipids are not required for the formation of nanoscopic liquid domains and strongly implying a common mechanism for the overall control of raft size and morphology. We discuss implications of these findings for theoretical descriptions of nanodomains.

  12. Hybrid and Nonhybrid Lipids Exert Common Effects on Membrane Raft Size and Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Frederick A [ORNL; Doktorova, Milka [Cornell University; Goh, Shih Lin [Cornell University; Standaert, Robert F [ORNL; Katsaras, John [ORNL; Feigenson, Gerald [Cornell University

    2013-01-01

    Nanometer-scale domains in cholesterolrich model membranes emulate lipid rafts in cell plasma membranes (PMs). The physicochemical mechanisms that maintain a finite, small domain size are, however, not well understood. A special role has been postulated for chainasymmetric or hybrid lipids having a saturated sn-1 chain and an unsaturated sn-2 chain. Hybrid lipids generate nanodomains in some model membranes and are also abundant in the PM. It was proposed that they align in a preferred orientation at the boundary of ordered and disordered phases, lowering the interfacial energy and thus reducing domain size. We used small-angle neutron scattering and fluorescence techniques to detect nanoscopic and modulated liquid phase domains in a mixture composed entirely of nonhybrid lipids and cholesterol. Our results are indistinguishable from those obtained previously for mixtures containing hybrid lipids, conclusively showing that hybrid lipids are not required for the formation of nanoscopic liquid domains and strongly implying a common mechanism for the overall control of raft size and morphology. We discuss implications of these findings for theoretical descriptions of nanodomains.

  13. Deep-apical tubules: dynamic lipid-raft microdomains in the brush-border region of enterocytes

    DEFF Research Database (Denmark)

    Hansen, Gert H; Pedersen, Jens; Niels-Christiansen, Lise-Lotte

    2003-01-01

    microdomains. Deep-apical tubules were positioned close to the actin rootlets of adjacent microvilli in the terminal web region, which had a diameter of 50-100 nm, and penetrated up to 1 microm into the cytoplasm. Markers for transcytosis, IgA and the polymeric immunoglobulin receptor, as well as the resident...... lipid raft-containing compartments, but little is otherwise known about these raft microdomains. We therefore studied in closer detail apical lipid-raft compartments in enterocytes by immunogold electron microscopy and biochemical analyses. Novel membrane structures, deep-apical tubules, were visualized...... brush-border enzyme aminopeptidase N, were present in these deep-apical tubules. We propose that deep-apical tubules are a specialized lipid-raft microdomain in the brush-border region functioning as a hub in membrane trafficking at the brush border. In addition, the sensitivity to cholesterol depletion...

  14. The Role of the Actin Cytoskeleton and Lipid Rafts in the Localization and Function of the ABCC1 Transporter

    Directory of Open Access Journals (Sweden)

    Jan Willem Kok

    2014-01-01

    Full Text Available ATP-binding cassette (ABC transporters are known to be important factors in multidrug resistance of tumor cells. Lipid rafts have been implicated in their localization in the plasma membrane, where they function as drug efflux pumps. This specific localization in rafts may support the activity of ABC/Abc transporters. This raises questions regarding the nature and composition of the lipid rafts that harbor ABC/Abc transporters and the dependence of ABC/Abc transporters—concerning their localization and activity—on lipid raft constituents. Here we review our work of the past 10 years aimed at evaluating whether ABC/Abc transporters are dependent on a particular membrane environment for their function. What is the nature of this membrane environment and which of the lipid raft constituents are important for this dependency? It turns out that cortical actin is of major importance for stabilizing the localization and function of the ABC/Abc transporter, provided it is localized in an actin-dependent subtype of lipid rafts, as is the case for human ABCC1/multidrug resistance-related protein 1 (MRP1 and rodent Abcc1/Mrp1 but not human ABCB1/P-glycoprotein (PGP. On the other hand, sphingolipids do not appear to be modulators of ABCC1/MRP1 (or Abcc1/Mrp1, even though they are coregulated during drug resistance development.

  15. Concerted diffusion of lipids in raft-like membranes

    NARCIS (Netherlands)

    Apajalahti, Touko; Niemela, Perttu; Govindan, Praveen Nedumpully; Miettinen, Markus S.; Salonen, Emppu; Marrink, Siewert-Jan; Vattulainen, Ilpo

    2010-01-01

    Currently, there is no comprehensive model for the dynamics of cellular membranes. The understanding of even the basic dynamic processes, such as lateral diffusion of lipids, is still quite limited. Recent studies of one-component membrane systems have shown that instead of single-particle motions,

  16. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids?

    Science.gov (United States)

    Guéguinou, Maxime; Gambade, Audrey; Félix, Romain; Chantôme, Aurélie; Fourbon, Yann; Bougnoux, Philippe; Weber, Günther; Potier-Cartereau, Marie; Vandier, Christophe

    2015-10-01

    Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  17. The mystery of membrane organization: composition, regulation and roles of lipid rafts.

    Science.gov (United States)

    Sezgin, Erdinc; Levental, Ilya; Mayor, Satyajit; Eggeling, Christian

    2017-06-01

    Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance in vivo, owing primarily to the development of improved biochemical and biophysical technologies.

  18. Association of Vibrio parahaemolyticus thermostable direct hemolysin with lipid rafts is essential for cytotoxicity but not hemolytic activity.

    Science.gov (United States)

    Matsuda, Shigeaki; Kodama, Toshio; Okada, Natsumi; Okayama, Kanna; Honda, Takeshi; Iida, Tetsuya

    2010-02-01

    Thermostable direct hemolysin (TDH), a major virulence factor of Vibrio parahaemolyticus, induces cytotoxicity in cultured cells. However, the mechanism of TDH's cytotoxic effect including its target molecules on the plasma membrane of eukaryotic cells remains unclear. In this study, we identified the role of lipid rafts, cholesterol- and sphingolipid-enriched microdomains, in TDH cytotoxicity. Treatment of cells with methyl-beta-cyclodextrin (MbetaCD), a raft-disrupting agent, inhibited TDH cytotoxicity. TDH was associated with detergent-resistant membranes (DRMs), and MbetaCD eliminated this association. In contrast, there was no such association between a nontoxic TDH mutant and DRMs. The disruption of lipid rafts neither affected hemolysis nor inhibited Ca(2+) influx into HeLa cells induced by TDH. These findings indicate that the cytotoxicity but not the hemolytic activity of TDH is dependent on lipid rafts. The exogenous and endogenous depletion of cellular sphingomyelin also prevented TDH cytotoxicity, but a direct interaction between TDH and sphingomyelin was not detected with either a lipid overlay assay or a liposome absorption test. Treatment with sphingomyelinase (SMase) at 100 mU/ml disrupted the association of TDH with DRMs but did not affect the localization of lipid raft marker proteins (caveolin-1 and flotillin-1) with DRMs. These results suggest that sphingomyelin is important for the association of TDH with lipid rafts but is not a molecular target of TDH. We hypothesize that TDH may target a certain group of rafts that are sensitive to SMase at a certain concentration, which does not affect other types of rafts.

  19. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7.

    Science.gov (United States)

    Staubach, Simon; Razawi, Hanieh; Hanisch, Franz-Georg

    2009-05-01

    Apically expressed human MUC1 is known to become endocytosed and either to re-enter the secretory pathway for recycling to the plasma membrane or to be exported by the cells via the formation of multi-vesicular bodies and the release of exosomes. By using recombinant fusion-tagged MUC1 as a bait protein we followed an anti-myc affinity-based approach for isolating subpopulations of lipid rafts from the plasma membranes and exosomes of MCF-7 breast cancer cells. MUC1(+) lipid rafts were not only found to contain genuine raft proteins (flotillin-1, prohibitin, G protein, annexin A2), but also raft-associated proteins linking these to the cytoskeleton (ezrin/villin-2, profilin II, HSP27, gamma-actin, beta-actin) or proteins in complexes with raft proteins, including the bait protein (HSP60, HSP70). Major overlaps were revealed for the subproteomes of plasma membranous and exosomal lipid raft preparations, indicating that MUC1 is sorted into subpopulations of rafts for its trafficking via flotillin-dependent pathways and export via exosomes.

  20. Lipid profile of platelets and platelet-derived microparticles in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Qianghua Hu

    2016-12-01

    General significance: As far as we are aware, our study is the first study on platelet lipidomics in ovarian cancer. The importance of our findings for the future studies are: 1 a similar change in lipid profile of platelets and PMP may be responsible for hypercoagulability in other cancers, and 2 plasma level of high-risk lipids for venous thrombosis may be useful biomarkers.

  1. Constitutive and functional association of the platelet collagen receptor glycoprotein VI-Fc receptor gamma-chain complex with membrane rafts.

    Science.gov (United States)

    Ezumi, Yasuharu; Kodama, Kumi; Uchiyama, Takashi; Takayama, Hiroshi

    2002-05-01

    The platelet collagen receptor glycoprotein (GP) VI-Fc receptor gamma-chain (FcRgamma) complex transduces signals in an immunoreceptorlike manner. We examined a role for the Triton X-100-insoluble membrane rafts in GPVI-FcRgamma complex signaling. Methyl-beta-cyclodextrin (MbetaCD)-induced disruption of the membrane rafts inhibited not only platelet aggregation and secretion but also tyrosine phosphorylation of signaling molecules on stimulation through the GPVI-FcRgamma complex. The GPVI-FcRgamma complex was constitutively associated with membrane rafts wherein the Src family kinases and LAT were also present. Their association was not affected by the complex engagement but was highly sensitive to MbetaCD treatment. Thus, we provide the first evidence that the GPVI-FcRgamma complex is constitutively and functionally associated with membrane rafts.

  2. Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts.

    Science.gov (United States)

    Cerqueira, Débora M; Tran, Uyen; Romaker, Daniel; Abreu, José G; Wessely, Oliver

    2014-10-01

    The kidney is a homeostatic organ required for waste excretion and reabsorption of water, salts and other macromolecules. To this end, a complex series of developmental steps ensures the formation of a correctly patterned and properly proportioned organ. While previous studies have mainly focused on the individual signaling pathways, the formation of higher order receptor complexes in lipid rafts is an equally important aspect. These membrane platforms are characterized by differences in local lipid and protein compositions. Indeed, the cells in the Xenopus pronephric kidney were positive for the lipid raft markers ganglioside GM1 and Caveolin-1. To specifically interfere with lipid raft function in vivo, we focused on the Sterol Carrier Protein 2 (scp2), a multifunctional protein that is an important player in remodeling lipid raft composition. In Xenopus, scp2 mRNA was strongly expressed in differentiated epithelial structures of the pronephric kidney. Knockdown of scp2 did not interfere with the patterning of the kidney along its proximo-distal axis, but dramatically decreased the size of the kidney, in particular the proximal tubules. This phenotype was accompanied by a reduction of lipid rafts, but was independent of the peroxisomal or transcriptional activities of scp2. Finally, disrupting lipid micro-domains by inhibiting cholesterol synthesis using Mevinolin phenocopied the defects seen in scp2 morphants. Together these data underscore the importance for localized signaling platforms in the proper formation of the Xenopus kidney.

  3. Hydrostatic Pressure Promotes Domain Formation in Model Lipid Raft Membranes.

    Science.gov (United States)

    Worcester, David L; Weinrich, Michael

    2015-11-01

    Neutron diffraction measurements demonstrate that hydrostatic pressure promotes liquid-ordered (Lo) domain formation in lipid membranes prepared as both oriented multilayers and unilamellar vesicles made of a canonical ternary lipid mixture for which demixing transitions have been extensively studied. The results demonstrate an unusually large dependence of the mixing transition on hydrostatic pressure. Additionally, data at 28 °C show that the magnitude of increase in Lo caused by 10 MPa pressure is much the same as the decrease in Lo produced by twice minimum alveolar concentrations (MAC) of general anesthetics such as halothane, nitrous oxide, and xenon. Therefore, the results may provide a plausible explanation for the reversal of general anesthesia by hydrostatic pressure.

  4. Monolayer spontaneous curvature of raft-forming membrane lipids

    Science.gov (United States)

    Kollmitzer, Benjamin; Heftberger, Peter; Rappolt, Michael; Pabst, Georg

    Monolayer spontaneous curvatures for cholesterol, DOPE, POPE, DOPC, DPPC, DSPC, POPC, SOPC, and egg sphingomyelin were obtained using small-angle X-ray scattering (SAXS) on inverted hexagonal phases (HII). Spontaneous curvatures of bilayer forming lipids were estimated by adding controlled amounts to a HII forming template following previously established protocols. Spontanous curvatures of both phosphatidylethanolamines and cholesterol were found to be at least a factor of two more negative than those of phosphatidylcholines, whose J0 are closer to zero. Interestingly, a significant positive J0 value (+0.1 1/nm) was retrieved for DPPC at 25 {\\deg}C. We further determined the temperature dependence of the spontaneous curvatures J0(T) in the range from 15 to 55 \\degC, resulting in a quite narrow distribution of -1 to -3 * 10^-3 1/nm{\\deg}C for most investigated lipids. The data allowed us to estimate the monolayer spontaneous curvatures of ternary lipid mixtures showing liquid ordered / liquid disordered phase coexistence. We report spontaneous curvature phase diagrams for DSPC/DOPC/Chol, DPPC/DOPC/Chol and SM/POPC/Chol and discuss effects on protein insertion and line tension.

  5. Interaction of methionine-enkephalins with raft-forming lipids: monolayers and BAM experiments.

    Science.gov (United States)

    Tsanova, A; Jordanova, A; Dzimbova, T; Pajpanova, T; Golovinsky, E; Lalchev, Z

    2014-05-01

    Enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) are opioid peptides with proven antinociceptive action in organism. They interact with opioid receptors belonging to G-protein coupled receptor superfamily. It is known that these receptors are located preferably in membrane rafts composed mainly of sphingomyelin (Sm), cholesterol (Cho), and phosphatidylcholine. In the present work, using Langmuir's monolayer technique in combination with Wilhelmy's method for measuring the surface pressure, the interaction of synthetic methionine-enkephalin and its amidated derivative with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), Sm, and Cho, as well as with their double and triple mixtures, was studied. From the pressure/area isotherms measured, the compressional moduli of the lipids and lipid-peptide monolayers were determined. Our results showed that the addition of the synthetic enkephalins to the monolayers studied led to change in the lipid monolayers characteristics, which was more evident in enkephalinamide case. In addition, using Brewster angle microscopy (BAM), the surface morphology of the lipid monolayers, before and after the injection of both enkephalins, was determined. The BAM images showed an increase in surface density of the mixed surface lipids/enkephalins films, especially with double and triple component lipid mixtures. This effect was more pronounced for the enkephalinamide as well. These observations showed that there was an interaction between the peptides and the raft-forming lipids, which was stronger for the amidated peptide, suggesting a difference in folding of both enkephalins. Our research demonstrates the potential of lipid monolayers for elegant and simple membrane models to study lipid-peptide interactions at the plane of biomembranes.

  6. Antiproliferative effects of γ-tocotrienol are associated with lipid raft disruption in HER2-positive human breast cancer cells.

    Science.gov (United States)

    Alawin, Osama A; Ahmed, Rayan A; Ibrahim, Baher A; Briski, Karen P; Sylvester, Paul W

    2016-01-01

    A large percentage of human breast cancers are characterized by excessive or aberrant HER2 activity. Lipid rafts are specialized microdomains within the plasma membrane that are required for HER2 activation and signal transduction. Since the anticancer activity of γ-tocotrienol is associated with suppression in HER2 signaling, studies were conducted to examine the effects of γ-tocotrienol on HER2 activation within the lipid raft microdomain in HER2-positive SKBR3 and BT474 human breast cancer cells. Treatment with 0-5μM γ-tocotrienol induced a significant dose-dependent inhibition in cancer cell growth after a 5-day culture period, and these growth inhibitory effects were associated with a reduction in HER2 dimerization and phosphorylation (activation). Phosphorylated HER2 was found to be primarily located in the lipid raft microdomain of the plasma membrane in vehicle-treated control groups, whereas γ-tocotrienol treatment significantly inhibited this effect. Assay of plasma membrane subcellular fractions showed that γ-tocotrienol also accumulates exclusively within the lipid raft microdomain. Hydroxypropyl-β-cyclodextrin (HPβCD) is an agent that disrupts lipid raft integrity. Acute exposure to 3mM HPβCD alone had no effect, whereas an acute 24-h exposure to 20μM γ-tocotrienol alone significantly decreased SKBR3 and BT474 cell viability. However, combined treatment with these agents greatly reduced γ-tocotrienol accumulation in the lipid raft microdomain and cytotoxicity. In summary, these findings demonstrate that the anticancer effects of γ-tocotrienol are associated with its accumulation in the lipid raft microdomain and subsequent interference with HER2 dimerization and activation in SKBR3 and BT474 human breast cancer cells.

  7. The C1 and C2 domains target human type 6 adenylyl cyclase to lipid rafts and caveolae.

    Science.gov (United States)

    Thangavel, Muthusamy; Liu, Xiaoqiu; Sun, Shu Qiang; Kaminsky, Joseph; Ostrom, Rennolds S

    2009-02-01

    Previous data has shown that adenylyl cyclase type 6 (AC6) is expressed principally in lipid rafts or caveolae of cardiac myocytes and other cell types while certain other isoforms of AC are excluded from these microdomains. The mechanism by which AC6 is localized to lipid rafts or caveolae is unknown. In this study, we show AC6 is localized in lipid rafts of COS-7 cells (expressing caveolin-1) and in HEK-293 cells or cardiac fibroblasts isolated from caveolin-1 knock-out mice (both of which lack prototypical caveolins). To determine the region of AC6 that confers raft localization, we independently expressed each of the major intracellular domains, the N-terminus, C1 and C2 domains, and examined their localization with various approaches. The N-terminus did not associate with lipid rafts or caveolae of either COS-7 or HEK-293 cells nor did it immunoprecipitate with caveolin-1 when expressed in COS-7 cells. By contrast, the C1 and C2 domains each associated with lipid rafts to varying degrees and were present in caveolin-1 immunoprecipitates. There were no differences in the pattern of localization of either the C1 or C2 domains between COS-7 and HEK-293 cells. Further dissection of the C1 domain into four individual proteins indicated that the N-terminal half of this domain is responsible for its raft localization. To probe for a role of a putative palmitoylation motif in the C-terminal portion of the C2 domain, we expressed various truncated forms of AC6 lacking most or all of the C-terminal 41 amino acids. These truncated AC6 proteins were not altered in terms of their localization in lipid rafts or their catalytic activity, implying that this C-terminal region is not required for lipid raft targeting of AC6. We conclude that while the C1 domain may be most important, both the C1 and C2 domains of AC6 play a role in targeting AC6 to lipid rafts.

  8. Ligand binding alters dimerization and sequestering of urokinase receptors in raft-mimicking lipid mixtures.

    Science.gov (United States)

    Ge, Yifan; Siegel, Amanda P; Jordan, Rainer; Naumann, Christoph A

    2014-11-01

    Lipid heterogeneities, such as lipid rafts, are widely considered to be important for the sequestering of membrane proteins in plasma membranes, thereby influencing membrane protein functionality. However, the underlying mechanisms of such sequestration processes remain elusive, in part, due to the small size and often transient nature of these functional membrane heterogeneities in cellular membranes. To overcome these challenges, here we report the sequestration behavior of urokinase receptor (uPAR), a glycosylphosphatidylinositol-anchored protein, in a planar model membrane platform with raft-mimicking lipid mixtures of well-defined compositions using a powerful optical imaging platform consisting of confocal spectroscopy XY-scans, photon counting histogram, and fluorescence correlation spectroscopy analyses. This methodology provides parallel information about receptor sequestration, oligomerization state, and lateral mobility with single molecule sensitivity. Most notably, our experiments demonstrate that moderate changes in uPAR sequestration are not only associated with modifications in uPAR dimerization levels, but may also be linked to ligand-mediated allosteric changes of these membrane receptors. Our data show that these modifications in uPAR sequestration can be induced by exposure to specific ligands (urokinase plasminogen activator, vitronectin), but not via adjustment of the cholesterol level in the planar model membrane system. Good agreement of our key findings with published results on cell membranes confirms the validity of our model membrane approach. We hypothesize that the observed mechanism of receptor translocation in the presence of raft-mimicking lipid mixtures is also applicable to other glycosylphosphatidylinositol-anchored proteins.

  9. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts.

    Science.gov (United States)

    Krause, Martin R; Regen, Steven L

    2014-12-16

    CONSPECTUS: Defining the two-dimensional structure of cell membranes represents one of the most daunting challenges currently facing chemists, biochemists, and biophysicists. In particular, the time-averaged lateral organization of the lipids and proteins that make up these natural enclosures has yet to be established. As the classic Singer-Nicolson model of cell membranes has evolved over the past 40 years, special attention has focused on the structural role played by cholesterol, a key component that represents ca. 30% of the total lipids that are present. Despite extensive studies with model membranes, two fundamental issues have remained a mystery: (i) the mechanism by which cholesterol condenses low-melting lipids by uncoiling their acyl chains and (ii) the thermodynamics of the interaction between cholesterol and high- and low-melting lipids. The latter bears directly on one of the most popular notions in modern cell biology, that is, the lipid raft hypothesis, whereby cholesterol is thought to combine with high-melting lipids to form "lipid rafts" that float in a "sea" of low-melting lipids. In this Account, we first describe a chemical approach that we have developed in our laboratories that has allowed us to quantify the interactions between exchangeable mimics of cholesterol and low- and high-melting lipids in model membranes. In essence, this "nearest-neighbor recognition" (NNR) method involves the synthesis of dimeric forms of these lipids that contain a disulfide moiety as a linker. By means of thiolate-disulfide interchange reactions, equilibrium mixtures of dimers are then formed. These exchange reactions are initiated either by adding dithiothreitol to a liposomal dispersion to generate a small amount of thiol monomer or by including a small amount of thiol monomer in the liposomes at pH 5.0 and then raising the pH to 7.4. We then show how such NNR measurements have allowed us to distinguish between two very different mechanisms that have been

  10. Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts

    Energy Technology Data Exchange (ETDEWEB)

    Kosicek, Marko, E-mail: marko.kosicek@irb.hr [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Malnar, Martina, E-mail: martina.malnar@irb.hr [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Goate, Alison, E-mail: goate@icarus.wustl.edu [Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 (United States); Hecimovic, Silva, E-mail: silva.hecimovic@irb.hr [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)

    2010-03-12

    It has been suggested that cholesterol may modulate amyloid-{beta} (A{beta}) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD ({beta}-amyloid precursor protein (APP), {beta}-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/A{beta} formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1{sup -/-} cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, {gamma}-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards A{beta} occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.

  11. Effect of integral proteins in the phase stability of a lipid bilayer: Application to raft formation in cell membranes

    Science.gov (United States)

    Gómez, Jordi; Sagués, Francesc; Reigada, Ramon

    2010-04-01

    The existence of lipid rafts is a controversial issue. The affinity of cholesterol for saturated lipids is manifested in macroscopic phase separation in model membranes, and is believed to be the thermodynamic driving force for raft formation. However, there is no clear reason to explain the small (nanometric) size of raft domains in cell membranes. In a recent paper Yethiraj and Weisshaar [Biophys. J. 93, 3113 (2007)] proposed that the effect of neutral integral membrane proteins may prevent from the formation of large lipid domains. In this paper we extend this approach by studying the effect of the protein size, as well as the lipid-protein interaction. Depending on these factors, two different mechanisms for nanodomain stabilization are shown to be possible for static proteins. The application of these results to a biological context is discussed.

  12. High-density lipoprotein affects antigen presentation by interfering with lipid raft: a promising anti-atherogenic strategy.

    Science.gov (United States)

    Wang, S-H; Yuan, S-G; Peng, D-Q; Zhao, S-P

    2010-05-01

    Atherosclerosis is a chronic inflammatory disease. Immunomodulation of atherosclerosis emerges as a promising approach to prevention and treatment of this widely prevalent disease. The function of high-density lipoprotein (HDL) to promote reverse cholesterol transport may explain the ability of its protection against atherosclerosis. Findings that HDL and apolipoprotein A-I (apoA-I) inhibited the ability of antigen presenting cells (APCs) to stimulate T cells might be attributed to lipid raft, a cholesterol-rich microdomain exhibiting functional properties depending largely upon its lipid composition. Thus, modulating cholesterol in lipid raft may provide a promising anti-atherogenic strategy.

  13. Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1.

    Science.gov (United States)

    Yu, Cuijuan; Alterman, Michail; Dobrowsky, Rick T

    2005-08-01

    Addition of exogenous ceramide causes a significant displacement of cholesterol in lipid raft model membranes. However, whether ceramide-induced cholesterol displacement is sufficient to alter the protein composition of caveolin-enriched lipid raft membranes is unknown. Therefore, we examined whether increasing endogenous ceramide levels with bacterial sphingomyelinase (bSMase) depleted cholesterol and changed the protein composition of caveolin-enriched membranes (CEMs) isolated from immortalized Schwann cells. bSMase increased ceramide levels severalfold and decreased the cholesterol content of detergent-insoluble CEMs by 25-50% within 2 h. To examine the effect of ceramide on the protein composition of the CEMs, we performed a quantitative proteomic analysis using stable isotope labeling of cells in culture and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Although ceramide rapidly depleted lipid raft cholesterol, the levels of the cholesterol binding protein caveolin-1 (Cav-1) decreased by 25% only after 8 h. Importantly, replenishing the cells with cholesterol rapidly reversed the loss of Cav-1 from the CEMs. Ceramide-induced cholesterol depletion increased the association of 5'-nucleotidase and ATP synthase beta-subunit with the CEMs but had a minimal effect on changing the abundance of other lipid raft proteins, such as flotillin-1 and G-proteins. These results suggest that the ceramide-induced loss of cholesterol from CEMs may contribute to altering the lipid raft proteome.

  14. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts

    Directory of Open Access Journals (Sweden)

    Kalischuk Lisa D

    2009-02-01

    Full Text Available Abstract Background Campylobacter enteritis represents a risk factor for the development of inflammatory bowel disease (IBD via unknown mechanisms. As IBD patients exhibit inflammatory responses to their commensal intestinal microflora, factors that induce translocation of commensal bacteria across the intestinal epithelium may contribute to IBD pathogenesis. This study sought to determine whether Campylobacter induces translocation of non-invasive intestinal bacteria, and characterize underlying mechanisms. Methods Mice were infected with C. jejuni and translocation of intestinal bacteria was assessed by quantitative bacterial culture of mesenteric lymph nodes (MLNs, liver, and spleen. To examine mechanisms of Campylobacter-induced bacterial translocation, transwell-grown T84 monolayers were inoculated with non-invasive Escherichia coli HB101 ± wild-type Campylobacter or invasion-defective mutants, and bacterial internalization and translocation were measured. Epithelial permeability was assessed by measuring flux of a 3 kDa dextran probe. The role of lipid rafts was assessed by cholesterol depletion and caveolin co-localization. Results C. jejuni 81–176 induced translocation of commensal intestinal bacteria to the MLNs, liver, and spleen of infected mice. In T84 monolayers, Campylobacter-induced internalization and translocation of E. coli occurred via a transcellular pathway, without increasing epithelial permeability, and was blocked by depletion of epithelial plasma membrane cholesterol. Invasion-defective mutants and Campylobacter-conditioned cell culture medium also induced E. coli translocation, indicating that C. jejuni does not directly 'shuttle' bacteria into enterocytes. In C. jejuni-treated monolayers, translocating E. coli associated with lipid rafts, and this phenomenon was blocked by cholesterol depletion. Conclusion Campylobacter, regardless of its own invasiveness, promotes the translocation of non-invasive bacteria across

  15. TNAP, an Essential Player in Membrane Lipid Rafts of Neuronal Cells.

    Science.gov (United States)

    Ermonval, Myriam; Baychelier, Florence; Fonta, Caroline

    2015-01-01

    The tissue non-specific alkaline phosphatase (TNAP) is a glycosyl-phosphatidylinositol (GPI) anchored glycoprotein which exists under different forms and is expressed in different tissues. As the other members of the ecto-phosphatase family, TNAP is targeted to membrane lipid rafts. Such micro domains enriched in particular lipids, are involved in cell sorting, are in close contact with the cellular cytoskeleton and play the role of signaling platform. In addition to its location in functional domains, the extracellular orientation of TNAP and the fact this glycoprotein can be shed from plasma membranes, contribute to its different phosphatase activities by acting as a phosphomonoesterase on various soluble substrates (inorganic pyrophosphate -PPi-, pyridoxal phosphate -PLP-, phosphoethanolamine -PEA-), as an ectonucleotidase on nucleotide-phosphate and presumably as a phosphatase able to dephosphorylate phosphoproteins and phospholipids associated to cells or to extra cellular matrix. More and more data accumulate on an involvement of the brain TNAP both in physiological and pathological situations. This review will summarize what is known and expected from the TNAP localization in lipid rafts with a particular emphasis on the role of a neuronal microenvironment on its potential function in the central nervous system.

  16. Multidrug resistance protein 1 localization in lipid raft domains and prostasomes in prostate cancer cell lines

    Directory of Open Access Journals (Sweden)

    Gomà A

    2014-12-01

    Full Text Available Alba Gomà,1,* Roser Mir,1–3,* Fina Martínez-Soler,1,4 Avelina Tortosa,4 August Vidal,5,6 Enric Condom,5,6 Ricardo Pérez–Tomás,6 Pepita Giménez-Bonafé1 1Departament de Ciències Fisiològiques II, Faculty of Medicine, Campus of Health Sciences of Bellvitge, Universitat de Barcelona, IDIBELL, Barcelona, Spain; 2División de Investigación Básica, Instituto Nacional de Cancerología, México DF, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México (UNAM, México DF, Mexico; 4Department of Basic Nursing, School of Nursing of the Health Campus of Bellvitge, Universitat de Barcelona, 5Department of Pathology, Hospital Universitari de Bellvitge, 6Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, IDIBELL, Barcelona, Spain*These authors contributed equally to this work Background: One of the problems in prostate cancer (CaP treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1 play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype.Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent in order to understand its possible role in CaP chemoresistance.Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy.Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59

  17. Interaction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity.

    Science.gov (United States)

    Vogel, Alexander; Nikolaus, Jörg; Weise, Katrin; Triola, Gemma; Waldmann, Herbert; Winter, Roland; Herrmann, Andreas; Huster, Daniel

    2014-07-01

    Ternary lipid mixtures composed of cholesterol, saturated (frequently with sphingosine backbone), and unsaturated phospholipids show stable phase separation and are often used as model systems of lipid rafts. Yet, their ability to reproduce raft properties and function is still debated. We investigated the properties and functional aspects of three lipid raft model systems of varying degrees of biological relevance--PSM/POPC/Chol, DPPC/POPC/Chol, and DPPC/DOPC/Chol--using 2H solid-state nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, and atomic force microscopy. While some minor differences were observed, the general behavior and properties of all three model mixtures were similar to previously investigated influenza envelope lipid membranes, which closely mimic the lipid composition of biological membranes. For the investigation of the functional aspects, we employed the human N-Ras protein, which is posttranslationally modified by two lipid modifications that anchor the protein to the membrane. It was previously shown that N-Ras preferentially resides in liquid-disordered domains and exhibits a time-dependent accumulation in the domain boundaries of influenza envelope lipid membranes. For all three model mixtures, we observed the same membrane partitioning behavior for N-Ras. Therefore, we conclude that even relatively simple models of raft membranes are able to reproduce many of their specific properties and functions.

  18. Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells.

    Science.gov (United States)

    Low, Hann; Mukhamedova, Nigora; Cui, Huanhuan L; McSharry, Brian P; Avdic, Selmir; Hoang, Anh; Ditiatkovski, Michael; Liu, Yingying; Fu, Ying; Meikle, Peter J; Blomberg, Martin; Polyzos, Konstantinos A; Miller, William E; Religa, Piotr; Bukrinsky, Michael; Soderberg-Naucler, Cecilia; Slobedman, Barry; Sviridov, Dmitri

    2016-06-28

    Cytomegalovirus (HCMV) contains cholesterol, but how HCMV interacts with host cholesterol metabolism is unknown. We found that, in human fibroblasts, HCMV infection increased the efflux of cellular cholesterol, despite reducing the abundance of ABCA1. Mechanistically, viral protein US28 was acting through CDC42, rearranging actin microfilaments, causing association of actin with lipid rafts, and leading to a dramatic change in the abundance and/or structure of lipid rafts. These changes displaced ABCA1 from the cell surface but created new binding sites for apolipoprotein A-I, resulting in enhanced cholesterol efflux. The changes also reduced the inflammatory response in macrophages. HCMV infection modified the host lipidome profile and expression of several genes and microRNAs involved in cholesterol metabolism. In mice, murine CMV infection elevated plasma triglycerides but did not affect the level and functionality of high-density lipoprotein. Thus, HCMV, through its protein US28, reorganizes lipid rafts and disturbs cell cholesterol metabolism.

  19. Aβ promotes VDAC1 channel dephosphorylation in neuronal lipid rafts. Relevance to the mechanisms of neurotoxicity in Alzheimer's disease.

    Science.gov (United States)

    Fernandez-Echevarria, C; Díaz, M; Ferrer, I; Canerina-Amaro, A; Marin, R

    2014-10-10

    Voltage-dependent anion channel (VDAC) is a mitochondrial protein abundantly found in neuronal lipid rafts. In these membrane domains, VDAC is associated with a complex of signaling proteins that trigger neuroprotective responses. Loss of lipid raft integrity may result in disruption of multicomplex association and alteration of signaling responses that may ultimately promote VDAC activation. Some data have demonstrated that VDAC at the neuronal membrane may be involved in the mechanisms of amyloid beta (Aβ)-induced neurotoxicity, through yet unknown mechanisms. Aβ is generated from amyloid precursor protein (APP), and is released to the extracellular space where it may undergo self-aggregation. Aβ aggregate deposition in the form of senile plaques may lead to Alzheimer's disease (AD) neuropathology, although other pathological hallmarks (such as hyper-phosphorylated Tau deposition) also participate in this neurodegenerative process. The present study demonstrates that VDAC1 associates with APP and Aβ in lipid rafts of neurons. Interaction of VDAC1 with APP was observed in lipid rafts from the frontal and entorhinal cortex of human brains affected by AD at early stages (I-IV/0-B of Braak and Braak). Furthermore, Aβ exposure enhanced the dephosphorylation of VDAC1 that correlated with cell death. Both effects were reverted in the presence of tyrosine phosphatase inhibitors. VDAC1 dephosphorylation was corroborated in lipid rafts of AD brains. These results demonstrate that Aβ is involved in alterations of the phosphorylation state of VDAC in neuronal lipid rafts. Modulation of this channel may contribute to the development and progression of AD pathology.

  20. The reduced GM-CSF priming of ROS production in granulocytes from patients with myelodysplasia is associated with an impaired lipid raft formation

    NARCIS (Netherlands)

    Fuhler, Gwenny M.; Blom, Nel R.; Coffer, Paul J.; Drayer, A. Lyndsay; Vellenga, Edo

    2007-01-01

    Patients with myelodysplasia (MDS) show an impaired reactive oxygen species (ROS) production in response to fMLP stimulation of GMCSF-primed nentrophils. In this study, we investigated the involvement of lipid rafts in this process and showed that treatment of neutrophils with the lipid raft-disrupt

  1. Continuity of Monolayer-Bilayer Junctions for Localization of Lipid Raft Microdomains in Model Membranes.

    Science.gov (United States)

    Ryu, Yong-Sang; Wittenberg, Nathan J; Suh, Jeng-Hun; Lee, Sang-Wook; Sohn, Youngjoo; Oh, Sang-Hyun; Parikh, Atul N; Lee, Sin-Doo

    2016-05-27

    We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed between the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.

  2. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts.

    Science.gov (United States)

    Emanuele, Marco; Esposito, Alessandro; Camerini, Serena; Antonucci, Flavia; Ferrara, Silvia; Seghezza, Silvia; Catelani, Tiziano; Crescenzi, Marco; Marotta, Roberto; Canale, Claudio; Matteoli, Michela; Menna, Elisabetta; Chieregatti, Evelina

    2016-05-01

    Alpha-synuclein (αSyn) interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR) and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs.

  3. HSL-knockout mouse testis exhibits class B scavenger receptor upregulation and disrupted lipid raft microdomains.

    Science.gov (United States)

    Casado, María Emilia; Huerta, Lydia; Ortiz, Ana Isabel; Pérez-Crespo, Mirian; Gutiérrez-Adán, Alfonso; Kraemer, Fredric B; Lasunción, Miguel Ángel; Busto, Rebeca; Martín-Hidalgo, Antonia

    2012-12-01

    There is a tight relationship between fertility and changes in cholesterol metabolism during spermatogenesis. In the testis, class B scavenger receptors (SR-B) SR-BI, SR-BII, and LIMP II mediate the selective uptake of cholesterol esters from HDL, which are hydrolyzed to unesterified cholesterol by hormone-sensitive lipase (HSL). HSL is critical because HSL knockout (KO) male mice are sterile. The aim of the present work was to determine the effects of the lack of HSL in testis on the expression of SR-B, lipid raft composition, and related cell signaling pathways. HSL-KO mouse testis presented altered spermatogenesis associated with decreased sperm counts, sperm motility, and infertility. In wild-type (WT) testis, HSL is expressed in elongated spermatids; SR-BI, in Leydig cells and spermatids; SR-BII, in spermatocytes and spermatids but not in Leydig cells; and LIMP II, in Sertoli and Leydig cells. HSL knockout male mice have increased expression of class B scavenger receptors, disrupted caveolin-1 localization in lipid raft plasma membrane microdomains, and activated phospho-ERK, phospho-AKT, and phospho-SRC in the testis, suggesting that class B scavenger receptors are involved in cholesterol ester uptake for steroidogenesis and spermatogenesis in the testis.

  4. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Marco Emanuele

    2016-05-01

    Full Text Available Alpha-synuclein (αSyn interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs.

  5. Cutting Edge: Localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development.

    Science.gov (United States)

    Zhu, Minghua; Shen, Shudan; Liu, Yan; Granillo, Olivia; Zhang, Weiguo

    2005-01-01

    It has been proposed that upon T cell activation, linker for activation of T cells (LAT), a transmembrane adaptor protein localized to lipid rafts, orchestrates formation of multiprotein complexes and activates signaling cascades in lipid rafts. However, whether lipid rafts really exist or function remains controversial. To address the importance of lipid rafts in LAT function, we generated a fusion protein to target LAT to nonraft fractions using the transmembrane domain from a nonraft protein, linker for activation of X cells (LAX). Surprisingly, this fusion protein functioned well in TCR signaling. It restored MAPK activation, calcium flux, and NFAT activation in LAT-deficient cells. To further study the function of this fusion protein in vivo, we generated transgenic mice that express this protein. Analysis of these mice indicated that it was fully capable of replacing LAT in thymocyte development and T cell function. Our results demonstrate that LAT localization to lipid rafts is not essential during normal T cell activation and development.

  6. Regulating the Size and Stabilization of Lipid Raft-Like Domains and Using Calcium Ions as Their Probe

    Science.gov (United States)

    Raviv, Uri; Szekely, Or

    2012-02-01

    In this paper, we apply means to probe, stabilize and control the size of lipid raft-like domains in vitro. In biomembranes the size of lipid rafts is ca. 10 - 30 nm. In vitro, mixing saturated and unsaturated lipids results in micro-domains, which are unstable and coalesce. Using solution X-ray scattering, we studied the structure of binary and ternary lipid mixtures in the presence of calcium ions. Three lipids were used: saturated, unsaturated and a hybrid (1-saturated-2-unsaturated) lipid that is predominant in the phospholipids of cellular membranes. Only membranes composed of the saturated lipid can adsorb calcium ions, become charged and therefore considerably swell. The selective calcium affinity was used to show that binary mixtures, containing the saturated lipid, phase separated into large-scale domains. Our data suggests that by introducing the hybrid lipid to a mixture of the saturated and unsaturated lipids, the size of the domains decreased with the concentration of the hybrid lipid, until the three lipids could completely mix. We attribute this behavior to the tendency of the hybrid lipid to act as a line-active co-surfactant that can easily reside at the interface between the saturated and the unsaturated lipids and reduce the line-tension between them.

  7. Critical role of the lipid rafts in caprine herpesvirus type 1 infection in vitro.

    Science.gov (United States)

    Pratelli, Annamaria; Colao, Valeriana

    2016-01-01

    The fusion machinery for herpesvirus entry in the host cells involves the interactions of viral glycoproteins with cellular receptors, although additional viral and cellular domains are required. Extensive areas of the plasma membrane surface consist of lipid rafts organized into cholesterol-rich microdomains involved in signal transduction, protein sorting, membrane transport and in many processes of viruses infection. Because of the extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to the lipid rafts, we investigated the effect of cholesterol depletion by methyl-β-cyclodextrin (MβCD) on caprine herpesvirus 1 (CpHV.1) in three important phases of virus infection such as binding, entry and post-entry. MβCD treatment did not prejudice virus binding to cells, while a dose-dependent reduction of the virus yield was observed at the virus entry stage, and 30 mM MβCD reduced infectivity evidently. Treatment of MDBK after virus entry revealed a moderate inhibitory effect suggesting that cholesterol is mainly required during virus entry rather than during the post-entry stage. Alteration of the envelope lipid composition affected virus entry and a noticeable reduction in virus infectivity was detected in the presence of 15 mM MβCD. Considering that the recognition of a host cell receptor is a crucial step in the start-up phase of infection, these data are essential for the study of CpHV.1 pathogenesis. To date virus receptors for CpHV.1 have not yet been identified and further investigations are required to state that MβCD treatment affects the expression of the viral receptors.

  8. Liquid chromatography electrospray ionization and matrix-assisted laser desorption ionization tandem mass spectrometry for the analysis of lipid raft proteome of monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Nan [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada); Shaw, Andrew R.E. [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada)], E-mail: andrewsh@cancerboard.ab.ca; Li Nan; Chen Rui [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada); Mak, Allan; Hu Xiuying [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Young, Nelson; Wishart, David [Department of Computing Science, University of Alberta, Edmonton, Alberta (Canada); Li Liang, E-mail: Liang.Li@ualberta.ca

    2008-10-03

    Lipid rafts are dynamic assemblies of cholesterol and glycolipid that form detergent-insoluble microdomains within membrane lipid bilayers. Because rafts can be separated by flotation on sucrose gradients, interrogation by mass spectrometry (MS) provides a valuable new insight into lipid raft function. Here we combine liquid chromatography (LC) electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) MS/MS to corroborate and extend our previous description of lipid raft proteomes derived from the monocytic cell line THP-1. Interestingly, LC-ESI and MALDI MS/MS identify largely non-overlapping, and therefore, potentially complementary protein populations. Using the combined approach, we detected 277 proteins compared to 52 proteins obtained with the original gel-based MALDI MS. We confirmed the presence of 47 of the original 52 proteins demonstrating the consistency of the lipid raft preparations. We demonstrated by immunoblotting that Rac 1 and Rac 2, two of the 52 proteins we failed to confirm, were indeed absent from the lipid raft fractions. The majority of new proteins were cytoskeletal proteins and their regulators, proteins implicated in membrane fusion and vesicular trafficking or signaling molecules. Our results therefore, confirm and extend previous evidence indicating lipid rafts of monocytic cells are specialized for cytoskeletal assembly and vesicle trafficking. Of particular interest, we detected SNAP-23, basigin, Glut-4 and pantophysin in lipid rafts. Since these proteins are implicated in both vesicular trafficking and gamete fusion, lipid rafts may play a common role in these processes. It is evident that the combination of LC-ESI and LC-MALDI MS/MS increases the proteome coverage which allows better understanding of the lipid raft function.

  9. Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation.

    Science.gov (United States)

    Garofalo, Tina; Matarrese, Paola; Manganelli, Valeria; Marconi, Matteo; Tinari, Antonella; Gambardella, Lucrezia; Faggioni, Alberto; Misasi, Roberta; Sorice, Maurizio; Malorni, Walter

    2016-06-01

    Mitochondria-associated membranes (MAMs) are subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. This membrane scrambling between ER and mitochondria appears to play a critical role in the earliest steps of autophagy. Recently, lipid microdomains, i.e. lipid rafts, have been identified as further actors of the autophagic process. In the present work, a series of biochemical and molecular analyses has been carried out in human fibroblasts with the specific aim of characterizing lipid rafts in MAMs and to decipher their possible implication in the autophagosome formation. In fact, the presence of lipid microdomains in MAMs has been detected and, in these structures, a molecular interaction of the ganglioside GD3, a paradigmatic "brick" of lipid rafts, with core-initiator proteins of autophagy, such as AMBRA1 and WIPI1, was revealed. This association seems thus to take place in the early phases of autophagic process in which MAMs have been hypothesized to play a key role. The functional activity of GD3 was suggested by the experiments carried out by knocking down ST8SIA1 gene expression, i.e., the synthase that leads to the ganglioside formation. This experimental condition results in fact in the impairment of the ER-mitochondria crosstalk and the subsequent hindering of autophagosome nucleation. We thus hypothesize that MAM raft-like microdomains could be pivotal in the initial organelle scrambling activity that finally leads to the formation of autophagosome.

  10. Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts.

    Science.gov (United States)

    Kardash, Maria E; Dzuba, Sergei A

    2017-05-25

    The clustering of molecules is an important feature of plasma membrane organization. It is challenging to develop methods for quantifying membrane heterogeneities because of their transient nature and small size. Here, we obtained evidence that transient membrane heterogeneities can be frozen at cryogenic temperatures which allows the application of solid-state experimental techniques sensitive to the nanoscale distance range. We employed the pulsed version of electron paramagnetic resonance (EPR) spectroscopy, the electron spin echo (ESE) technique, for spin-labeled molecules in multilamellar lipid bilayers. ESE decays were refined for pure contribution of spin-spin magnetic dipole-dipolar interaction between the labels; these interactions manifest themselves at a nanometer distance range. The bilayers were prepared from different types of saturated and unsaturated lipids and cholesterol (Chol); in all cases, a small amount of guest spin-labeled substances 5-doxyl-stearic-acid (5-DSA) or 3β-doxyl-5α-cholestane (DChl) was added. The local concentration found of 5-DSA and DChl molecules was remarkably higher than the mean concentration in the bilayer, evidencing the formation of lipid-mediated clusters of these molecules. To our knowledge, formation of nanoscale clusters of guest amphiphilic molecules in biological membranes is a new phenomenon suggested only recently. Two-dimensional 5-DSA molecular clusters were found, whereas flat DChl molecules were found to be clustered into stacked one-dimensional structures. These clusters disappear when the Chol content is varied between the boundaries known for lipid raft formation at room temperatures. The room temperature EPR evidenced entrapping of DChl molecules in the rafts.

  11. Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts.

    Science.gov (United States)

    Cuddy, Leah K; Winick-Ng, Warren; Rylett, Rebecca Jane

    2014-03-01

    The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH-SY5Y cells expressing rat CHT with filipin, methyl-β-cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol-saturated MβC. Kinetic analysis of binding of [(3)H]hemicholinium-3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax ); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol-rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis. The sodium-coupled choline transporter CHT moves choline into cholinergic nerve terminals to serve as substrate for acetylcholine synthesis. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts, and decreasing membrane cholesterol significantly reduces both choline uptake activity and cell surface CHT protein levels. CHT association with cholesterol-rich rafts is critical for its function, and alterations in plasma membrane cholesterol could diminish cholinergic

  12. Localization of phosphatidylinositol 4,5-bisphosphate to lipid rafts and uroids in the human protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Koushik, Amrita B; Powell, Rhonda R; Temesvari, Lesly A

    2013-06-01

    Entamoeba histolytica is an intestinal protozoan parasite and is the causative agent of amoebiasis. During invasive infection, highly motile amoebae destroy the colonic epithelium, enter the blood circulation, and disseminate to other organs such as liver, causing liver abscess. Motility is a key factor in E. histolytica pathogenesis, and this process relies on a dynamic actomyosin cytoskeleton. In other systems, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is known to regulate a wide variety of cellular functions, including signal transduction, actin remodeling, and cell motility. Little is known about the role of PI(4,5)P2 in E. histolytica pathogenicity. In this study, we demonstrate that PI(4,5)P2 is localized to cholesterol-rich microdomains, lipid rafts, and the actin-rich fractions of the E. histolytica membrane. Microscopy revealed that the trailing edge of polarized trophozoites, uroids, are highly enriched in lipid rafts and their constituent lipid, PI(4,5)P2. Polarization and enrichment of uroids and rafts with PI(4,5)P2 were enhanced upon treatment of E. histolytica cells with cholesterol. Exposure to cholesterol also increased intracellular calcium, which is a downstream effector of PI(4,5)P2, with a concomitant increase in motility. Together, our data suggest that in E. histolytica, PI(4,5)P2 may signal from lipid rafts and cholesterol may play a role in triggering PI(4,5)P2-mediated signaling to enhance the motility of this pathogen.

  13. Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts.

    Directory of Open Access Journals (Sweden)

    Mathew G Lyman

    2008-05-01

    Full Text Available The pseudorabies virus (PRV Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF. In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs. Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system.

  14. The GM1 Ganglioside Forms GM1-Rich Gel Phase Microdomains within Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Lucia Becucci

    2014-07-01

    Full Text Available Mercury-supported, self-assembled monolayers (SAMs of the sole dioleoylphosphatidylcholine (DOPC and of a raft-forming mixture of DOPC, cholesterol (Chol and palmitoylsphingomyelin (PSM of (59:26:15 mol% composition, were investigated by electrochemical impedance spectroscopy (EIS, both in the absence and in the presence of the monosialoganglioside GM1. The impedance spectra of these four SAMs were fitted by a series of parallel combinations of a resistance and a capacitance (RC meshes and displayed on plots of ωZ′ against −ωZ″, where Z′ and Z″ are the in-phase and quadrature components of the impedance and ω is the angular frequency. A comparison among these different impedance spectra points to the formation of GM1-rich gel phase microdomains within the lipid rafts of the DOPC/Chol/PSM mixture, thanks to the unique molecular-level smooth support provided by mercury, which allows EIS to detect the protruding gel phase microdomains by averaging them over a macroscopically large area.

  15. Associations of B- and C-Raf with cholesterol, phosphatidylserine, and lipid second messengers: preferential binding of Raf to artificial lipid rafts.

    Science.gov (United States)

    Hekman, Mirko; Hamm, Heike; Villar, Ana V; Bader, Benjamin; Kuhlmann, Jurgen; Nickel, Joachim; Rapp, Ulf R

    2002-07-01

    The serine/threonine kinase C-Raf is a key mediator in cellular signaling. Translocation of Raf to membranes has been proposed to be facilitated by Ras proteins in their GTP-bound state. In this study we provide evidence that both purified B- and C-Raf kinases possess lipophilic properties and associate with phospholipid membranes. In the presence of phosphatidylserine and lipid second messengers such as phosphatidic acid and ceramides these associations were very specific with affinity constants (K(D)) in the range of 0.5-50 nm. Raf association with liposomes was accompanied by displacement of 14-3-3 proteins and inhibition of Raf kinase activities. Interactions of Raf with cholesterol are of particular interest, since cholesterol has been shown to be involved, together with sphingomyelin and glycerophospholipids in the formation of specialized lipid microdomains called rafts. We demonstrate here that purified Raf proteins have moderate binding affinity for cholesterol. However, under conditions of lipid raft formation, Raf association with cholesterol (or rafts) increased dramatically. Since ceramides also support formation of rafts and interact with Raf we propose that Raf may be present at the plasma membrane in two distinct microdomains: in raft regions via association with cholesterol and ceramides and in non-raft regions due to interaction with phosphatidylserine and phosphatidic acid. At either location Raf kinase activity was inhibited by lipid binding in the absence or presence of Ras. Ras-Raf interactions with full-length C-Raf were studied both in solution and in phospholipid environment. Ras association with Raf was GTP dependent as previously demonstrated for C-Raf-RBD fragments. In the presence of liposomes the recruitment of C-Raf by reconstituted Ras-farnesyl was only marginal, since almost 70% of added C-Raf was bound by the lipids alone. Thus Ras-Raf binding in response to activation of Ras-coupled receptors may utilize Raf protein that is

  16. The Important Role of Lipid Raft-Mediated Attachment in the Infection of Cultured Cells by Coronavirus Infectious Bronchitis Virus Beaudette Strain

    Science.gov (United States)

    Guo, Huichen; Huang, Mei; Yuan, Quan; Wei, Yanquan; Gao, Yuan; Mao, Lejiao; Gu, Lingjun; Tan, Yong Wah; Zhong, Yanxin; Liu, Dingxiang; Sun, Shiqi

    2017-01-01

    Lipid raft is an important element for the cellular entry of some viruses, including coronavirus infectious bronchitis virus (IBV). However, the exact role of lipid rafts in the cellular membrane during the entry of IBV into host cells is still unknown. In this study, we biochemically fractionated IBV-infected cells via sucrose density gradient centrifugation after depleting plasma membrane cholesterol with methyl-β-cyclodextrin or Mevastatin. Our results demonstrated that unlike IBV non-structural proteins, IBV structural proteins co-localized with lipid raft marker caveolin-1. Infectivity assay results of Vero cells illustrated that the drug-induced disruption of lipid rafts significantly suppressed IBV infection. Further studies revealed that lipid rafts were not required for IBV genome replication or virion release at later stages. However, the drug-mediated depletion of lipid rafts in Vero cells before IBV attachment significantly reduced the expression of viral structural proteins, suggesting that drug treatment impaired the attachment of IBV to the cell surface. Our results indicated that lipid rafts serve as attachment factors during the early stages of IBV infection, especially during the attachment stage. PMID:28081264

  17. Supramolecular Nanofibers Enhance Growth Factor Signaling by Increasing Lipid Raft Mobility.

    Science.gov (United States)

    Newcomb, Christina J; Sur, Shantanu; Lee, Sungsoo S; Yu, Jeong Min; Zhou, Yan; Snead, Malcolm L; Stupp, Samuel I

    2016-05-11

    The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is related to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets.

  18. Mammalian carboxylesterase (CES) releases GPI-anchored proteins from the cell surface upon lipid raft fluidization.

    Science.gov (United States)

    Orihashi, Kaoru; Tojo, Hiromasa; Okawa, Katsuya; Tashima, Yuko; Morita, Takashi; Kondoh, Gen

    2012-03-01

    Mammalian carboxylesterase (CES) is well known as a biotransformation enzyme for prodrugs and xenobiotics. Here, we purified CES as a GPI-anchored protein (GPI-AP)-releasing factor (GPIase) that releases such protein from the cell surface. All five isoforms of CES showed this activity to various degrees. When the serine residue of the catalytic triad for esterase was replaced by alanine, esterase activity was completely disrupted, while full GPIase activity remained, suggesting that these two activities are exhibited via different mechanisms. CES6, a new class of mammalian CES, exhibited the highest GPIase activity and released specific GPI-APs from the cell surface after lipid raft fluidization. The released product contained a GPI component, indicating that GPI-AP was released by cleavage in GPI. These results revealed for the first time that CES recognizes and catalyzes macromolecule GPI-AP as well as small molecules.

  19. Thiolated pyrimidine nucleotides may interfere thiol groups concentrated at lipid rafts of HIV-1 infected cells.

    Science.gov (United States)

    Kanizsai, Szilvia; Ongrádi, Joseph; Aradi, János; Nagy, Károly

    2014-12-01

    Upon HIV infection, cells become activated and cell surface thiols are present in increased number. Earlier we demonstrated in vitro anti-HIV effect of thiolated pyrimidine nucleotide UD29, which interferes thiol function. To further analyse the redox processes required for HIV-1 entry and infection, toxicity assays were performed using HIV-1 infected monolayer HeLaCD4-LTR/ β-gal cells and suspension H9 T cells treated with several thiolated nucleotide derivatives of UD29. Selective cytotoxicity of thiolated pyrimidines on HIV-1 infected cells were observed. Results indicate that thiolated pyrimidine derivates may interfere with -SH (thiol) groups concentrated in lipid rafts of cell membrane and interacts HIV-1 infected (activated) cells resulting in a selective cytotoxicity of HIV-1 infected cells, and reducing HIV-1 entry.

  20. Supramolecular Nanofibers Enhance Growth Factor Signaling by Increasing Lipid Raft Mobility

    Energy Technology Data Exchange (ETDEWEB)

    Newcomb, Christina J.; Sur, Shantanu; Lee, Sungsoo S.; Yu, Jeong Min; Zhou, Yan; Snead, Malcolm L.; Stupp, Samuel I.

    2016-04-12

    The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is related to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets.

  1. Candida albicans Targets a Lipid Raft/Dectin-1 Platform to Enter Human Monocytes and Induce Antigen Specific T Cell Responses.

    Science.gov (United States)

    de Turris, Valeria; Teloni, Raffaela; Chiani, Paola; Bromuro, Carla; Mariotti, Sabrina; Pardini, Manuela; Nisini, Roberto; Torosantucci, Antonella; Gagliardi, Maria Cristina

    2015-01-01

    Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.

  2. Candida albicans Targets a Lipid Raft/Dectin-1 Platform to Enter Human Monocytes and Induce Antigen Specific T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Valeria de Turris

    Full Text Available Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.

  3. Sustained Epigenetic Drug Delivery Depletes Cholesterol-Sphingomyelin Rafts from Resistant Breast Cancer Cells, Influencing Biophysical Characteristics of Membrane Lipids.

    Science.gov (United States)

    Raghavan, Vijay; Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Yamada, Masayoshi; Morisada, Megan; Labhasetwar, Vinod

    2015-10-27

    Cell-membrane lipid composition can greatly influence biophysical properties of cell membranes, affecting various cellular functions. We previously showed that lipid synthesis becomes altered in the membranes of resistant breast cancer cells (MCF-7/ADR); they form a more rigid, hydrophobic lipid monolayer than do sensitive cell membranes (MCF-7). These changes in membrane lipids of resistant cells, attributed to epigenetic aberration, significantly affected drug transport and endocytic function, thus impacting the efficacy of anticancer drugs. The present study's objective was to determine the effects of the epigenetic drug, 5-aza-2'-deoxycytidine (DAC), delivered in sustained-release nanogels (DAC-NGs), on the composition and biophysical properties of membrane lipids of resistant cells. Resistant and sensitive cells were treated with DAC in solution (DAC-sol) or DAC-NGs, and cell-membrane lipids were isolated and analyzed for lipid composition and biophysical properties. In resistant cells, we found increased formation of cholesterol-sphingomyelin (CHOL-SM) rafts with culturing time, whereas DAC treatment reduced their formation. In general, the effect of DAC-NGs was greater in changing the lipid composition than with DAC-sol. DAC treatment also caused a rise in levels of certain phospholipids and neutral lipids known to increase membrane fluidity, while reducing the levels of certain lipids known to increase membrane rigidity. Isotherm data showed increased lipid membrane fluidity following DAC treatment, attributed to decrease levels of CHOL-SM rafts (lamellar beta [Lβ] structures or ordered gel) and a corresponding increase in lipids that form lamellar alpha-structures (Lα, liquid crystalline phase). Sensitive cells showed marginal or insignificant changes in lipid profile following DAC-treatment, suggesting that epigenetic changes affecting lipid biosynthesis are more specific to resistant cells. Since membrane fluidity plays a major role in drug transport

  4. Key molecular requirements for raft formation in lipid/cholesterol membranes.

    Directory of Open Access Journals (Sweden)

    Davit Hakobyan

    Full Text Available The lipid mixture of DPPC (saturated lipid/DUPC (unsaturated lipid/CHOL (cholesterol is studied with respect to its ability to form liquid-ordered and liquid-disordered phases. We employ coarse-grained simulations with MARTINI force field. All three components are systematically modified in order to explore the relevant molecular properties, leading to phase separation. Specifically, we show that the DPPC/DUPC/CHOL system unmixes due to enthalpic DPPC-DPPC and DPPC-CHOL interactions. The phase separation remains unchanged, except for the formation of a gel phase at long times after decreasing the conformational degrees of freedom of the unsaturated DUPC. In contrast, the phase separation can be suppressed by softening the DPPC chains. In an attempt to mimic the ordering and unmixing effect of CHOL the latter is replaced by a stiff and shortened DPPC-like lipid. One still observes phase separation, suggesting that it is mainly the rigid and planar structure of CHOL which is important for raft formation. Addition of an extra bead to the head of CHOL has no notable impact on the phase separation of the system, supporting the irrelevance of the Umbrella model for the phase separation. Reduction of the conformational entropy of CHOL by stiffening its last bead results in a significant increase of the order of the DPPC/CHOL domain. This suggests that the conformational entropy of CHOL is important to prohibit the gelation process. The interleaflet interactions as mediated by the terminal molecular groups seem to have a strong impact on the possibility of a subsequent gelation process after phase separation.

  5. Probing membrane protein interactions with their lipid raft environment using single-molecule tracking and Bayesian inference analysis.

    Directory of Open Access Journals (Sweden)

    Silvan Türkcan

    Full Text Available The statistical properties of membrane protein random walks reveal information on the interactions between the proteins and their environments. These interactions can be included in an overdamped Langevin equation framework where they are injected in either or both the friction field and the potential field. Using a Bayesian inference scheme, both the friction and potential fields acting on the ε-toxin receptor in its lipid raft have been measured. Two types of events were used to probe these interactions. First, active events, the removal of cholesterol and sphingolipid molecules, were used to measure the time evolution of confining potentials and diffusion fields. Second, passive rare events, de-confinement of the receptors from one raft and transition to an adjacent one, were used to measure hopping energies. Lipid interactions with the ε-toxin receptor are found to be an essential source of confinement. ε-toxin receptor confinement is due to both the friction and potential field induced by cholesterol and sphingolipids. Finally, the statistics of hopping energies reveal sub-structures of potentials in the rafts, characterized by small hopping energies, and the difference of solubilization energy between the inner and outer raft area, characterized by higher hopping energies.

  6. Ceramide inhibits PKCθ by regulating its phosphorylation and translocation to lipid rafts in Jurkat cells.

    Science.gov (United States)

    Hage-Sleiman, Rouba; Hamze, Asmaa B; El-Hed, Aimée F; Attieh, Randa; Kozhaya, Lina; Kabbani, Sarah; Dbaibo, Ghassan

    2016-08-01

    Protein kinase C theta (PKCθ) is a novel, calcium-independent member of the PKC family of kinases that was identified as a central player in T cell signaling and proliferation. Upon T cell activation by antigen-presenting cells, PKCθ gets phosphorylated and activated prior to its translocation to the immunological synapse where it couples with downstream effectors. PKCθ may be regulated by ceramide, a crucial sphingolipid that is known to promote differentiation, growth arrest, and apoptosis. To further investigate the mechanism, we stimulated human Jurkat T cells with either PMA or anti-CD3/anti-CD28 antibodies following induction of ceramide accumulation by adding exogenous ceramide, bacterial sphingomyelinase, or Fas ligation. Our results suggest that ceramide regulates the PKCθ pathway through preventing its critical threonine 538 (Thr538) phosphorylation and subsequent activation, thereby inhibiting the kinase's translocation to lipid rafts. Moreover, this inhibition is not likely to be a generic effect of ceramide on membrane reorganization. Other lipids, namely dihydroceramide, palmitate, and sphingosine, did not produce similar effects on PKCθ. Addition of the phosphatase inhibitors okadaic acid and calyculin A reversed the inhibition exerted by ceramide, and this suggests involvement of a ceramide-activated protein phosphatase. Such previously undescribed mechanism of regulation of PKCθ raises the possibility that ceramide, or one of its derivatives, and may prove valuable in novel therapeutic approaches for disorders involving autoimmunity or excessive inflammation-where PKCθ plays a critical role.

  7. Super-Resolution Imaging and Quantitative Analysis of Membrane Protein/Lipid Raft Clustering Mediated by Cell-Surface Self-Assembly of Hybrid Nanoconjugates.

    Science.gov (United States)

    Hartley, Jonathan M; Chu, Te-Wei; Peterson, Eric M; Zhang, Rui; Yang, Jiyuan; Harris, Joel; Kopeček, Jindřich

    2015-08-17

    Super-resolution imaging was used to quantify organizational changes in the plasma membrane after treatment with hybrid nanoconjugates. The nanoconjugates crosslinked CD20 on the surface of malignant B cells, thereby inducing apoptosis. Super-resolution images were analyzed by using pair-correlation analysis to determine cluster size and to count the average number of molecules in the clusters. The role of lipid rafts was investigated by pre-treating cells with a cholesterol chelator and actin destabilizer to prevent lipid raft formation. Lipid raft cluster size correlated with apoptosis induction after treatment with the nanoconjugates. Lipid raft clusters had radii of ∼ 200 nm in cells treated with the hybrid nanoconjugates. Super-resolution images provided precise molecule location coordinates that could be used to determine density of bound conjugates, cluster size, and number of molecules per cluster.

  8. Lipid raft localization of epidermal growth factor receptor alters matrix metalloproteinase-1 expression in SiHa cells via the MAPK/ERK signaling pathway

    Science.gov (United States)

    Zhang, Zongfeng; Wang, Lina; Du, Juan; Li, Yuanbo; Yang, Huilun; Li, Chenxi; Li, Hui; Hu, Haiyang

    2016-01-01

    Matrix metalloproteinase-1 (MMP-1) has been identified as an important participant in tumor invasion, metastasis and angiogenesis. The purpose of the present study was to investigate the effects of epidermal growth factor receptor (EGFR) localization to lipid rafts on signaling pathways involved in the regulation of MMP-1 expression in SiHa cells, a cervical cancer cell line. EGFR activation by EGF specifically induced MMP-1 expression at both the messenger RNA and protein levels. Additionally, it was observed that EGFR localized to lipid rafts, and that the redistribution of EGFR induced by lipid raft disruption strengthened EGF-induced MMP-1 expression. MMP-1 induction was blocked by the mitogen-activated protein kinase (MAPK) kinase inhibitors PD98059 and U0126. Our results suggested that lipid rafts provide a platform to inhibit EGFR regulation of MMP-1 in SiHa cells through the MAPK/extracellular signal-regulated kinase signaling pathway.

  9. Membrane lipid rafts and neurobiology: age-related changes in membrane lipids and loss of neuronal function.

    Science.gov (United States)

    Egawa, Junji; Pearn, Matthew L; Lemkuil, Brian P; Patel, Piyush M; Head, Brian P

    2016-08-15

    A better understanding of the cellular physiological role that plasma membrane lipids, fatty acids and sterols play in various cellular systems may yield more insight into how cellular and whole organ function is altered during the ageing process. Membrane lipid rafts (MLRs) within the plasma membrane of most cells serve as key organizers of intracellular signalling and tethering points of cytoskeletal components. MLRs are plasmalemmal microdomains enriched in sphingolipids, cholesterol and scaffolding proteins; they serve as a platform for signal transduction, cytoskeletal organization and vesicular trafficking. Within MLRs are the scaffolding and cholesterol binding proteins named caveolin (Cav). Cavs not only organize a multitude of receptors including neurotransmitter receptors (NMDA and AMPA receptors), signalling proteins that regulate the production of cAMP (G protein-coupled receptors, adenylyl cyclases, phosphodiesterases (PDEs)), and receptor tyrosine kinases involved in growth (Trk), but also interact with components that modulate actin and tubulin cytoskeletal dynamics (e.g. RhoGTPases and actin binding proteins). MLRs are essential for the regulation of the physiology of organs such as the brain, and age-related loss of cholesterol from the plasma membrane leads to loss of MLRs, decreased presynaptic vesicle fusion, and changes in neurotransmitter release, all of which contribute to different forms of neurodegeneration. Thus, MLRs provide an active membrane domain that tethers and reorganizes the cytoskeletal machinery necessary for membrane and cellular repair, and genetic interventions that restore MLRs to normal cellular levels may be exploited as potential therapeutic means to reverse the ageing and neurodegenerative processes.

  10. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Sung Yong, E-mail: seum@miami.edu; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  11. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2.

    Science.gov (United States)

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs.

  12. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Science.gov (United States)

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-01-01

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. PMID:26080028

  13. Cell confluence induces switching from proliferation to migratory signaling by site-selective phosphorylation of PDGF receptors on lipid raft platforms.

    Science.gov (United States)

    Szöőr, Árpád; Ujlaky-Nagy, László; Tóth, Gábor; Szöllősi, János; Vereb, György

    2016-02-01

    Platelet derived growth factor receptors (PDGFR) play an important role in tumor pathogenesis and are frequently overexpressed in glioblastoma. Earlier we have shown that only confluent glioblastoma cell cultures exhibit a biphasic calcium transient upon PDGF stimulation. Here, we examined how the change in cell density leads to differential cellular responses to the same PDGF stimulus. PDGF beta receptors and their specific phosphotyrosine residues were fluorescently co-labeled on A172 and T98G glioblastoma cells. The distribution in cell membrane microdomains (lipid rafts) and the phosphorylation state of PDGFR was measured by confocal microscopy and quantitated by digital image processing. Corresponding bulk data were obtained by Western blotting. Activation of relevant downstream signaling pathways was assessed by immunofluorescence in confocal microscopy and by Western blot analysis. Functional outcomes were confirmed with bulk and single cell proliferation assays and motility measurements. In non-confluent (sparse) cultures PDGF-BB stimulation significantly increased phosphorylation of Tyr716 specific for the Ras/MAPK pathway and Tyr751 specific for the phosphoinositide 3-kinase/Akt pathway. As cell monolayers reached confluence, Tyr771 and Tyr1021 were the prominently phosphorylated residues. Tyr771 serves as adaptor for Ras-GAP, which inactivates the MAPK pathway, and Tyr1021 feeds into the phospholipase C-gamma/PKC pathway. Coherent with this, MAPK phosphorylation, Ki-67 positivity and proliferation dominated in dispersed cells, and could be abolished with inhibitors of the MAPK pathway. At the same time, RhoA activation, redistribution of cortactin to leading edges, and increased motility were the prominent output features in confluent cultures. Importantly, the stimulus-evoked confluence-specific changes in the phosphorylation of tyrosine residues occurred mainly in GM1-rich lipid microdomains (rafts). These observations suggest that the same stimulus is

  14. LINGO-1 regulates oligodendrocyte differentiation by inhibiting ErbB2 translocation and activation in lipid rafts.

    Science.gov (United States)

    Lee, Xinhua; Shao, Zhaohui; Sheng, Guoqing; Pepinsky, Blake; Mi, Sha

    2014-05-01

    Oligodendrocyte differentiation is negatively regulated by LINGO-1 and positively regulated by the ErbB2 receptor tyrosine kinase. In wild-type oligodendrocytes, inhibition of ErbB2 blocks differentiation, whereas activation of ErbB2 promotes differentiation. In LINGO-1(-/-) oligodendrocytes, inhibition of ErbB2 blocks oligodendrocyte differentiation; whereas activation of ErbB2 does not enhance differentiation. Biological and biochemical evidence showing that LINGO-1 can directly bind to ErbB2, block ErbB2 translocation into lipid rafts, and inhibit its phosphorylation for activation. The study demonstrates a novel regulatory mechanism of ErbB2 function whereby LINGO-1 suppresses oligodendrocyte differentiation by inhibiting ErbB2 translocation and activation in lipid rafts.

  15. Lipid Rafts and Signal Transduction of Cell%脂筏与细胞信号转导

    Institute of Scientific and Technical Information of China (English)

    范玉贞

    2011-01-01

    论述了脂筏的组成、结构与功能,脂筏在细胞信号转导正负调控、T细胞的信号转导、精子膜的信号转导过程中的作用及其机制.小窝蛋白及其参与的信号转导过程与葡萄糖运输、糖尿病及其并发症有密切关系.%This article discusses the composition,structure and function of lipid rafts and the mechanism of lipid rafts in signal transduction plus or minus regulation,T cell signal transduction,signal transduction process of sperm membrane.Caveolins and its partic

  16. HIV-1 Vpu's lipid raft association is dispensable for counteraction of the particle release restriction imposed by CD317/Tetherin

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Joeelle V., E-mail: joelle.fritz@med.uni-heidelberg.de; Tibroni, Nadine, E-mail: nadine.tibroni@med.uni-heidelberg.de; Keppler, Oliver T., E-mail: oliver.keppler@med.uni-heidelberg.de; Fackler, Oliver T., E-mail: oliver.fackler@med.uni-heidelberg.de

    2012-03-01

    HIV-1 Vpu antagonizes the block to particle release mediated by CD317 (BST-2/HM1.24/Tetherin) via incompletely understood mechanisms. Vpu and CD317 partially reside in cholesterol-rich lipid rafts where HIV-1 budding preferentially occurs. Here we find that lipid raft association of ectopically expressed or endogenous CD317 was unaltered upon co-expression with Vpu or following HIV-1 infection. Similarly, Vpu's lipid raft association remained unchanged upon expression of CD317. We identify amino acids V25 and Y29 of Vpu as crucial for microdomain partitioning and single substitution of these amino acids resulted in Vpu variants with markedly reduced or undetectable lipid raft association. These mutations did not affect Vpu's subcellular distribution and binding capacity to CD317, nor its ability to downmodulate cell surface CD317 and promote HIV-1 release from CD317-positive cells. We conclude that (i) lipid raft incorporation is dispensable for Vpu-mediated CD317 antagonism and (ii) Vpu does not antagonize CD317 by extraction from lipid rafts.

  17. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size - implication for FasR-associated apoptosis.

    Science.gov (United States)

    Gilbert, Stéphane; Loranger, Anne; Omary, M Bishr; Marceau, Normand

    2016-09-01

    Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases.

  18. The Actin Cytoskeleton Is Involved in Glial Cell Line-Derived Neurotrophic Factor (GDNF-Induced Ret Translocation into Lipid Rafts in Dopaminergic Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-09-01

    Full Text Available Glial cell line-derived neurotrophic factor (GDNF, a potential therapeutic factor for Parkinson’s disease (PD, exerts its biological effects through the Ret receptor tyrosine kinase. The redistribution of Ret into lipid rafts substantially influences Ret signaling, but the mechanisms underlying Ret translocation remain unclear. The purpose of our study was to further explore the signaling mechanisms of GDNF and to determine whether the actin cytoskeleton is involved in the GDNF-induced Ret translocation into lipid rafts. In MN9D dopaminergic neuronal cells, we used density gradient centrifugation and immunofluorescence confocal microscopy to separate and visualize lipid rafts, co-immunoprecipitation to analyze protein-protein interactions, and latrunculin B (Lat B and jasplakinolide (Jas to disrupt and enhance the polymerization of the actin cytoskeleton, respectively. The results showed that Ret translocated into lipid rafts and coimmunoprecipitated with actin in response to GDNF treatment. After Lat B or Jas treatment, the Ret–F-actin association induced by GDNF was impaired or enhanced respectively and then the levels of Ret translocated into lipid rafts were correspondingly inhibited or promoted. These data indicate that actin polymerization and cytoskeletal remodeling are integral to GDNF-induced cell signaling in dopaminergic cells and define a new role of the actin cytoskeleton in promoting Ret redistribution into lipid rafts.

  19. Lipid raft/caveolae signaling is required for Cryptococcus neoformans invasion into human brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Long Min

    2012-02-01

    Full Text Available Abstract Background Cryptococcus neoformans has a predilection for central nervous system infection. C. neoformans traversal of the blood brain barrier, composed of human brain microvascular endothelial cells (HBMEC, is the crucial step in brain infection. However, the molecular mechanism of the interaction between Cryptococcus neoformans and HBMEC, relevant to its brain invasion, is still largely unknown. Methods In this report, we explored several cellular and molecular events involving the membrane lipid rafts and caveolin-1 (Cav1 of HBMEC during C. neoformans infection. Immunofluorescence microscopy was used to examine the roles of Cav1. The knockdown of Cav1 by the siRNA treatment was performed. Phosphorylation of Cav1 relevant to its invasion functions was investigated. Results We found that the host receptor CD44 colocalized with Cav1 on the plasma membrane, and knockdown of Cav1 significantly reduced the fungal ability to invade HBMEC. Although the CD44 molecules were still present, HBMEC membrane organization was distorted by Cav1 knockdown. Concomitantly, knockdown of Cav1 significantly reduced the fungal crossing of the HBMEC monolayer in vitro. Upon C. neoformans engagement, host Cav1 was phosphorylated in a CD44-dependent manner. This phosphorylation was diminished by filipin, a disrupter of lipid raft structure. Furthermore, the phosphorylated Cav1 at the lipid raft migrated inward to the perinuclear localization. Interestingly, the phospho-Cav1 formed a thread-like structure and colocalized with actin filaments but not with the microtubule network. Conclusion These data support that C. neoformans internalization into HBMEC is a lipid raft/caveolae-dependent endocytic process where the actin cytoskeleton is involved, and the Cav1 plays an essential role in C. neoformans traversal of the blood-brain barrier.

  20. Lipid rafts promote liver cancer cell proliferation and migration by up-regulation of TLR7 expression

    Science.gov (United States)

    Liu, Yuan; Guo, Xiaodong; Wu, Liyuan; Yang, Mei; Li, Zhiwei; Gao, Yinjie; Liu, Shuhong; Zhou, Guangde; Zhao, Jingmin

    2016-01-01

    Hepatocellular carcinoma (HCC) occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Toll-like receptors (TLRs) play an important role in innate immune responses and TLR signaling has been associated with various chronic liver diseases. Lipid rafts provide the necessary microenvironment for certain specialized signaling events to take place, such as the innate immune recognition. The purpose of this study was to determine the pattern of TLR7 expression in HCC, how to recruit TLR7 into lipid rafts responded to ligands and whether targeting TLR7 might have beneficial effects. The study group was comprised of 130 human liver tissues: 23 chronic hepatitis B (CHB), 18 liver cirrhosis (LC), 68 HCC and 21 normal livers. The expression of TLR7 was evaluated using immunohistochemistry, western blotting, and flow cytometry. Proliferation and migration of human HepG2 cells were studied following stimulation of TLR7 using the agonist gardiquimod and inhibition with a specific antagonist 20S-protopanaxadiol (aPPD). The activation of lipid raft-associated TLR7 signaling was measured using western blotting, double immunohistochemistry and immunoprecipitation in liver tissues and HepG2 cells. TLR7 expression was up-regulated in human HCC tissues and hepatoma cell line. Proliferation and migration of HepG2 cells in vitro increased significantly in response to stimulation of TLR7. TLR7 inhibition using aPPD significantly reduced HepG2 cell migration in vitro. The lipid raft protein caveolin-1 and flotillin-1 were involved with enhanced TLR7 signaling in HCC. Conclusions The data suggest that inhibiting TLR7 with antagonists, like aPPD, could potentially be used as a novel therapeutic approach for HCC. PMID:27588480

  1. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  2. Diminished Lipid Raft SNAP23 Increases Blood Pressure by Inhibiting the Membrane Fluidity of Vascular Smooth-Muscle Cells.

    Science.gov (United States)

    Yoon, Mi So; Won, Kyung-Jong; Kim, Do-Yoon; Hwang, Dae Il; Yoon, Seok Won; Jung, Seung Hyo; Lee, Kang Pa; Jung, Dongju; Choi, Wahn Soo; Kim, Bokyung; Lee, Hwan Myung

    2015-01-01

    Synaptosomal-associated protein 23 (SNAP23) is involved in microvesicle trafficking and exocytosis in various cell types, but its functional role in blood pressure (BP) regulation has not yet been defined. Here, we found that lipid raft SNAP23 expression was much lower in vascular smooth-muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) than in those from normotensive Wistar-Kyoto (WKY) rats. This led us to investigate the hypothesis that this lower expression may be linked to the spontaneous hypertension found in SHR. The expression level of lipid raft SNAP23 and the fluidity in the plasma membrane of VSMCs were lower in SHR than in WKY rats. Cholesterol content in the VSMC membrane was higher, but the secreted cholesterols found in VSMC-conditioned medium and in the blood serum were lower in SHR than in WKY rats. SNAP23 knockdown in WKY rat VSMCs reduced the membrane fluidity and increased the membrane cholesterol level. Systemic overexpression of SNAP23 in SHR resulted in an increase of cholesterol content in their serum, a decrease in cholesterol in their aorta and the reduction of their BP. Our findings suggest that the low expression of the lipid raft SNAP23 in VSMCs might be a potential cause for the characteristic hypertension of SHR.

  3. Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors.

    Science.gov (United States)

    Kaneko, Masahiro; Takimoto, Hiroaki; Sugiyama, Tsuyoshi; Seki, Yoko; Kawaguchi, Kiichiro; Kumazawa, Yoshio

    2008-01-01

    Quercetin (QUER) and luteolin (LUTE) are dietary flavonoids capable of regulating the production of cytokines, such as tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6). However, their mechanisms of action are not fully understood. In lipopolysaccharide-triggered (LPS)-triggered signaling via Toll-like receptor 4 (TLR4), QUER and LUTE suppresses not only the degradation of the inhibitor of kappaB (IkappaB), with resultant activation of nuclear factor-kappaB (NF-kappaB), but also the phosphorylation of p38 and Akt in bone marrow-derived macrophages that have been stimulated with LPS. We report here that, in TNF-alpha-induced signaling, QUER and LUTE significantly suppressed the production of IL-6 and activation of NF-kappaB. Accumulation of lipid rafts, the initial step in the signaling pathway, was significantly inhibited when macrophages were treated with QUER or with LUTE prior to exposure to LPS. Similarly, the accumulation of lipid rafts was inhibited by the flavonoids when B cells were activated via the membrane IgM and when T cells were activated via CD3. In contrast, QUER and LUTE did not inhibit the activation of phorbol myristate acetate-induced NF-kappaB in macrophages. Our observations suggest that QUER and LUTE interact with receptors on the cell surface and suppress the accumulation of lipid rafts that occurs downstream of the activation of the receptors.

  4. Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells

    Directory of Open Access Journals (Sweden)

    Hann Low

    2016-06-01

    Full Text Available Cytomegalovirus (HCMV contains cholesterol, but how HCMV interacts with host cholesterol metabolism is unknown. We found that, in human fibroblasts, HCMV infection increased the efflux of cellular cholesterol, despite reducing the abundance of ABCA1. Mechanistically, viral protein US28 was acting through CDC42, rearranging actin microfilaments, causing association of actin with lipid rafts, and leading to a dramatic change in the abundance and/or structure of lipid rafts. These changes displaced ABCA1 from the cell surface but created new binding sites for apolipoprotein A-I, resulting in enhanced cholesterol efflux. The changes also reduced the inflammatory response in macrophages. HCMV infection modified the host lipidome profile and expression of several genes and microRNAs involved in cholesterol metabolism. In mice, murine CMV infection elevated plasma triglycerides but did not affect the level and functionality of high-density lipoprotein. Thus, HCMV, through its protein US28, reorganizes lipid rafts and disturbs cell cholesterol metabolism.

  5. Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1.

    Science.gov (United States)

    Jardin, Isaac; Salido, Ginés M; Rosado, Juan A

    2008-01-01

    Store-operated Ca2+ entry (SOCE) is a mechanism regulated by the filling state of the intracellular Ca2+ stores that requires the participation of the Ca2+ sensor STIM1, which communicates the Ca2+ content of the stores to the plasma membrane Ca2+-permeable channels. We have recently reported that Orai1 mediates the communication between STIM1 and the Ca2+ channel hTRPC1. This event is important to confer hTRPC1 store depletion sensitivity, thus supporting the functional role of the STIM1-Orai1-hTRPC1 complex in the activation of SOCE. Here we have explored the relevance of lipid rafts in the formation of the STIM1-Orai1-hTRPC1 complex and the activation of SOCE. Disturbance of lipid raft domains, using methyl-beta-cyclodextrin, reduces the interaction between endogenously expressed Orai1 and both STIM1 and hTRPC1 upon depletion of the intracellular Ca2+ stores and attenuates thapsigargin-evoked Ca2+ entry. These findings suggest that TRPC1, Orai1 and STIM1 form a heteromultimer associated with lipid raft domains and regulated by the intracellular Ca2+ stores.

  6. Localization of lipid raft proteins to the plasma membrane is a major function of the phospholipid transfer protein Sec14.

    Science.gov (United States)

    Curwin, Amy J; Leblanc, Marissa A; Fairn, Gregory D; McMaster, Christopher R

    2013-01-01

    The Sec14 protein domain is a conserved tertiary structure that binds hydrophobic ligands. The Sec14 protein from Saccharomyces cerevisiae is essential with studies of S. cerevisiae Sec14 cellular function facilitated by a sole temperature sensitive allele, sec14(ts). The sec14(ts) allele encodes a protein with a point mutation resulting in a single amino acid change, Sec14(G266D). In this study results from a genome-wide genetic screen, and pharmacological data, provide evidence that the Sec14(G266D) protein is present at a reduced level compared to wild type Sec14 due to its being targeted to the proteosome. Increased expression of the sec14(ts) allele ameliorated growth arrest, but did not restore the defects in membrane accumulation or vesicular transport known to be defective in sec14(ts) cells. We determined that trafficking and localization of two well characterized lipid raft resident proteins, Pma1 and Fus-Mid-GFP, were aberrant in sec14(ts) cells. Localization of both lipid raft proteins was restored upon increased expression of the sec14(ts) allele. We suggest that a major function provided by Sec14 is trafficking and localization of lipid raft proteins.

  7. Biophysical alterations in lipid rafts from human cerebral cortex associate with increased BACE1/AβPP interaction in early stages of Alzheimer's disease.

    Science.gov (United States)

    Díaz, Mario; Fabelo, Noemí; Martín, Virginia; Ferrer, Isidre; Gómez, Tomás; Marín, Raquel

    2015-01-01

    In the present study, we have assessed the biophysical properties of lipid rafts from different brain areas in subjects exhibiting early neuropathological stages of Alzheimer's disease (AD). By means of steady-state fluorescence polarization analyses using two environment-sensitive fluorescent probes, we demonstrate that lipid rafts from cerebellum, and frontal and entorhinal cortices, exhibit different biophysical behaviors depending on the stage of the disease. Thus, while membrane anisotropies were similar in the cerebellum along stages, lipid rafts from frontal and entorhinal cortices at AD stages I/II and AD III were significantly more liquid-ordered than in control subjects, both at the aqueous interface and hydrophobic core of the raft membrane. Thermotropic analyses demonstrated the presence of Arrhenius breakpoints between 28.3-32.0 °C, which were not influenced by the disease stage. However, analyses of membrane microviscosity (ηapp) demonstrate that frontal and entorhinal lipid rafts are notably more viscous and liquid-ordered all across the membrane from early stages of the disease. These physicochemical alterations in lipid rafts do not correlate with changes in cholesterol or sphingomyelin levels, but to reduced unsaturation index and increased saturate/polyunsaturated ratios in phospholipid acyl chains. Moreover, we demonstrate that β-secretase/AβPP (amyloid-β protein precursor) interaction and lipid raft microviscosity are strongly, and positively, correlated in AD frontal and entorhinal cortices. These observations strengthens the hypothesis that physical properties of these microdomains modulate the convergence of amyloidogenic machinery toward lipid rafts, and also points to a critical role of polyunsaturated fatty acids in amyloidogenic processing of AβPP.

  8. Effects of Leucin-Enkephalins on Surface Characteristics and Morphology of Model Membranes Composed of Raft-Forming Lipids.

    Science.gov (United States)

    Tsanova, Asya; Jordanova, A; Lalchev, Z

    2016-06-01

    During the last decades opioid peptides, like enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) are subject to extensive studies due to their antinociceptive action in organism. According to the membrane catalysis theory, in order to adopt a proper conformation for binding to their receptors, opioid peptides interact with the lipid phase of the membrane receptor surrounding. With this regard, the aim of the present work was to study the effects of synthetic leucine-enkephalin and leucine-enkephalinamide on surface characteristics and morphology of lipid monolayers, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, sphingomyelin, and cholesterol alone and with their mixtures. The lipids were chosen to represent a model of a membrane raft, since it is known that G-protein-coupled receptors, including opioid receptors, are located preferably in membrane rafts. By using Langmuir's monolayer method, the change in surface pressure of the model membranes before and after the addition of the synthetic enkephalins was studied, and the compressional moduli of the lipids and lipid-peptides monolayers were determined. In addition, by Brewster angle microscopy, the surface morphology of the lipid monolayers alone and after the injection of both enkephalins was monitored. Our results showed that both leucine-enkephalins affected the lipid monolayers surface characteristics, and led to an increase in surface density of the mixed surface lipids/enkephalins films at loose lipid packing. This effect was more pronounced for the enkephalinamide, suggesting a different mechanism of interaction for the amidated enkephalin with the lipid phase, as compared to leucine-enkephalin.

  9. Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Immerdal, Lissi; Thorsen, Evy

    2001-01-01

    Glycosphingolipid/cholesterol-rich membranes ("rafts")can be isolated from many types of cells, but their existence as stable microdomains in the cell membrane has been elusive. Addressing this problem, we studied the distribution of galectin-4, a raft marker, and lactase, a protein excluded from...... rafts, on microvillar vesicles from the enterocyte brush border membrane. Magnetic beads coated with either anti-galectin-4 or anti-lactase antibodies were used for immunoisolation of vesicles followed by double immunogold labeling of the two proteins. A morphometric analysis revealed subpopulations...... of raft-rich and raft-poor vesicles by the following criteria: 1) the lactase/galectin-4 labeling ratio/vesicle captured by the anti-lactase beads was significantly higher (p

  10. Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts

    Directory of Open Access Journals (Sweden)

    Herrmann Thomas

    2008-08-01

    Full Text Available Abstract Background Mechanisms of long chain fatty acid uptake across the plasma membrane are important targets in treatment of many human diseases like obesity or hepatic steatosis. Long chain fatty acid translocation is achieved by a concert of co-existing mechanisms. These lipids can passively diffuse, but certain membrane proteins can also accelerate the transport. However, we now can provide further evidence that not only proteins but also lipid microdomains play an important part in the regulation of the facilitated uptake process. Methods Dynamic association of FAT/CD36 a candidate fatty acid transporter with lipid rafts was analysed by isolation of detergent resistant membranes (DRMs and by clustering of lipid rafts with antibodies on living cells. Lipid raft integrity was modulated by cholesterol depletion using methyl-β-cyclodextrin and sphingolipid depletion using myriocin and sphingomyelinase. Functional analyses were performed using an [3H]-oleate uptake assay. Results Overexpression of FAT/CD36 and FATP4 increased long chain fatty acid uptake. The uptake of long chain fatty acids was cholesterol and sphingolipid dependent. Floating experiments showed that there are two pools of FAT/CD36, one found in DRMs and another outside of these domains. FAT/CD36 co-localized with the lipid raft marker PLAP in antibody-clustered domains at the plasma membrane and segregated away from the non-raft marker GFP-TMD. Antibody cross-linking increased DRM association of FAT/CD36 and accelerated the overall fatty acid uptake in a cholesterol dependent manner. Another candidate transporter, FATP4, was neither present in DRMs nor co-localized with FAT/CD36 at the plasma membrane. Conclusion Our observations suggest the existence of two pools of FAT/CD36 within cellular membranes. As increased raft association of FAT/CD36 leads to an increased fatty acid uptake, dynamic association of FAT/CD36 with lipid rafts might regulate the process. There is no

  11. Glut-4 is translocated to both caveolae and non-caveolar lipid rafts, but is partially internalized through caveolae in insulin-stimulated adipocytes

    Institute of Scientific and Technical Information of China (English)

    Taichang Yuan; Shangyu Hong; Yao Yao; Kan Liao

    2007-01-01

    Caveolae and non-caveolar lipid rafts are two types of membrane lipid microdomains that play important roles in insulin-stimulated glucose uptake in adipocytes. In order to ascertain their specific functions in this process, caveolae were ablated by caveolin-1 RNA interference. In Cav-1 RNAi adipocytes, neither insulin-stimulated glucose uptake nor Glut-4 (glucose transporter 4) translocation to membrane lipid microdomains was affected by the ablation of caveolae. With a modified sucrose density gradient, caveolae and non-caveolar lipid rafts could be separated. In the wild-type 3T3-Ll adipocytes, Glut-4 was found to be translocated into both caveolae and non-caveolar lipid rafts. However, in Cav-1 RNAi adipocytes, Glut-4 was localized predominantly in non-caveolar lipid rafts. After the removal of insulin, caveolae-localized Glut-4 was internalized faster than non-caveolar lipid raft-associated Glut-4. The internalization of Glut-4 from plasma membrane was significantly decreased in Cav-1 RNAi adipocytes. These results suggest that insulin-stimulated Glut-4 translocation and glucose uptake are caveolae-independent events. Caveolae play a role in the internalization of Glut-4 from plasma membrane after the removal of insulin.

  12. The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders.

    Science.gov (United States)

    Morris, Gerwyn; Walder, Ken; Puri, Basant K; Berk, Michael; Maes, Michael

    2016-09-01

    Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer's and Parkinson's disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.

  13. Measuring the strength of interaction between the Ebola fusion peptide and lipid rafts: implications for membrane fusion and virus infection.

    Directory of Open Access Journals (Sweden)

    Mônica S Freitas

    Full Text Available The Ebola fusion peptide (EBO₁₆ is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently, several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO₁₆ and its mutant W8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM, a good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of EBO₁₆ to induce lipid mixing. On the other hand, EBO₁₆ was structurally sensitive to interaction with lipid rafts (DRMs, but the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote membrane aggregation in comparison to EBO₁₆. Single molecule AFM experiments showed a high affinity force pattern for the interaction of EBO₁₆ and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases.

  14. Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells.

    Science.gov (United States)

    Round, June L; Tomassian, Tamar; Zhang, Min; Patel, Viresh; Schoenberger, Stephen P; Miceli, M Carrie

    2005-02-07

    Lipid raft membrane compartmentalization and membrane-associated guanylate kinase (MAGUK) family molecular scaffolds function in establishing cell polarity and organizing signal transducers within epithelial cell junctions and neuronal synapses. Here, we elucidate a role for the MAGUK protein, Dlgh1, in polarized T cell synapse assembly and T cell function. We find that Dlgh1 translocates to the immune synapse and lipid rafts in response to T cell receptor (TCR)/CD28 engagement and that LckSH3-mediated interactions with Dlgh1 control its membrane targeting. TCR/CD28 engagement induces the formation of endogenous Lck-Dlgh1-Zap70-Wiskott-Aldrich syndrome protein (WASp) complexes in which Dlgh1 acts to facilitate interactions of Lck with Zap70 and WASp. Using small interfering RNA and overexpression approaches, we show that Dlgh1 promotes antigen-induced actin polymerization, synaptic raft and TCR clustering, nuclear factor of activated T cell activity, and cytokine production. We propose that Dlgh1 coordinates TCR/CD28-induced actin-driven T cell synapse assembly, signal transduction, and effector function. These findings highlight common molecular strategies used to regulate cell polarity, synapse assembly, and transducer organization in diverse cellular systems.

  15. Soft X-ray Laser Microscopy of Lipid Rafts towards GPCR-Based Drug Discovery Using Time-Resolved FRET Spectroscopy

    Directory of Open Access Journals (Sweden)

    Tatsuhiko Kodama

    2011-03-01

    Full Text Available Many signaling molecules involved in G protein-mediated signal transduction, which are present in the lipid rafts and believed to be controlled spatially and temporally, influence the potency and efficacy of neurotransmitter receptors and transporters. This has focus interest on lipid rafts and the notion that these microdomains acts as a kind of signaling platform and thus have an important role in the expression of membrane receptor-mediated signal transduction, cancer, immune responses, neurotransmission, viral infections and various other phenomena due to specific and efficient signaling according to extracellular stimuli. However, the real structure of lipid rafts has not been observed so far due to its small size and a lack of sufficiently sophisticated observation systems. A soft X-ray microscope using a coherent soft X-ray laser in the water window region (2.3–4.4 nm should prove to be a most powerful tool to observe the dynamic structure of lipid rafts of several tens of nanometers in size in living cells. We have developed for the X-ray microscope a new compact soft X-ray laser using strongly induced plasma high harmonic resonance. We have also developed a time-resolved highly sensitive fluorescence resonance energy transfer (FRET system and confirmed protein-protein interactions coupled with ligands. The simultaneous use of these new tools for observation of localization of G-protein coupled receptors (GPCRs in rafts has become an important and optimum tool system to analyze the dynamics of signal transduction through rafts as signaling platform. New technology to visualize rafts is expected to lead to the understanding of those dynamics and innovative development of drug discovery that targets GPCRs localized in lipid rafts.

  16. Sustained Epigenetic Drug Delivery Depletes Cholesterol-Sphingomyelin Rafts from Resistant Breast Cancer Cells, Influencing Biophysical Characteristics of Membrane Lipids

    Science.gov (United States)

    Raghavan, Vijay; Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Yamada, Masayoshi; Morisada, Megan; Labhasetwar, Vinod

    2016-01-01

    Cell-membrane lipid composition can greatly influence biophysical properties of cell membranes, affecting various cellular functions. We previously showed that lipid synthesis becomes altered in the membranes of resistant breast cancer cells (MCF-7/ADR); they form a more rigid, hydrophobic lipid monolayer than do sensitive cell membranes (MCF-7). These changes in membrane lipids of resistant cells, attributed to epigenetic aberration, significantly affected drug transport and endocytic function, thus impacting the efficacy of anticancer drugs. The present study’s objective was to determine the effects of the epigenetic drug 5-aza-2′-deoxycytidine (DAC), delivered in sustained-release nanogels (DAC-NGs), on the composition and biophysical properties of membrane lipids of resistant cells. Resistant and sensitive cells were treated with DAC in solution (DAC-sol) or DAC-NGs, and cell-membrane lipids were isolated and analyzed for lipid composition and biophysical properties. In resistant cells, we found increased formation of Cholesterol-Sphingomyelin (CHOL-SM) rafts with culturing time, whereas DAC treatment reduced their formation. In general, the effect of DAC-NGs was greater in changing the lipid composition than with DAC-sol. DAC treatment also caused a rise in levels of certain phospholipids and neutral lipids known to increase membrane fluidity while reducing the levels of certain lipids known to increase membrane rigidity. Isotherm data showed increased lipid membrane fluidity following DAC treatment, attributed to decrease levels of CHOL-SM rafts (lamellar beta [Lβ] structures or ordered gel) and a corresponding increase in lipids that form lamellar alpha structures (Lα, liquid crystalline phase). Sensitive cells showed marginal or insignificant changes in lipid profile following DAC-treatment, suggesting that epigenetic changes affecting lipid biosynthesis are more specific to resistant cells. Since membrane fluidity plays a major role in drug transport

  17. A novel form of Total Internal Reflection Fluorescence Microscopy (LG-TIRFM) reveals different and independent lipid raft domains in living cells.

    Science.gov (United States)

    Asanov, Alexander; Zepeda, Angélica; Vaca, Luis

    2010-02-01

    In the present study we have applied a novel form of Total Internal Reflection Fluorescence Microscopy (LG-TIRFM) in combination with fluorescently labeled cholera toxin to the study of lipid rafts dynamics in living cells. We demonstrate the usefulness of such approach by showing the dynamic formation/disaggregation of islands of cholera toxin on the surface of cells. Using multicolor LG-TIRFM with co-localization studies we show for the first time that two receptors previously identified as constituents of lipid rafts are found on different and independent "raft domains" on the cell plasma membrane. Furthermore, LG-TIRFM studies revealed limited association and dissociation of both domains overtime on different areas of the plasma membrane. The implications of different "raft domains" on cell physiology are discussed.

  18. L-plastin is involved in NKG2D recruitment into lipid rafts and NKG2D-mediated NK cell migration.

    Science.gov (United States)

    Serrano-Pertierra, Esther; Cernuda-Morollón, Eva; Brdička, Tomáš; Hoøejši, Václav; López-Larrea, Carlos

    2014-09-01

    Membrane rafts are microdomains of the plasma membrane that have multiple biological functions. The involvement of these structures in the biology of T cells, namely in signal transduction by the TCR, has been widely studied. However, the role of membrane rafts in immunoreceptor signaling in NK cells is less well known. We studied the distribution of the activating NKG2D receptor in lipid rafts by isolating DRMs in a sucrose density gradient or by raft fractionation by β-OG-selective solubility in the NKL cell line. We found that the NKG2D-DAP10 complex and pVav are recruited into rafts upon receptor stimulation. Qualitative proteomic analysis of these fractions showed that the actin cytoskeleton is involved in this process. In particular, we found that the actin-bundling protein L-plastin plays an important role in the clustering of NKG2D into lipid rafts. Moreover, coengagement of the inhibitory receptor NKG2A partially disrupted NKG2D recruitment into rafts. Furthermore, we demonstrated that L-plastin participates in NKG2D-mediated inhibition of NK cell chemotaxis.

  19. Phase diagrams of lipid mixtures relevant to the study of membrane rafts

    DEFF Research Database (Denmark)

    Goni, Felix; Alonso, Alicia; Bagatolli, Luis

    2008-01-01

    The present paper reviews the phase properties of phosphatidylcholine-sphingomyelin-cholesterol mixtures, that are often used as models for membrane "raft" microdomains. The available data based on X-ray, microscopic and spectroscopic observations, surface pressure and calorimetric measurements, ...

  20. Phase diagrams of lipid mixtures relevant to the study of membrane rafts

    DEFF Research Database (Denmark)

    Goni, Felix; Alonso, Alicia; Bagatolli, Luis

    2008-01-01

    The present paper reviews the phase properties of phosphatidylcholine-sphingomyelin-cholesterol mixtures, that are often used as models for membrane "raft" microdomains. The available data based on X-ray, microscopic and spectroscopic observations, surface pressure and calorimetric measurements, ...

  1. The novel chlamydial adhesin CPn0473 mediates the lipid raft-dependent uptake of Chlamydia pneumoniae.

    Science.gov (United States)

    Fechtner, Tim; Galle, Jan N; Hegemann, Johannes H

    2016-08-01

    Chlamydiae are Gram-negative, obligate intracellular pathogens that pose a serious threat to public health worldwide. Chlamydial surface molecules are essential for host cell invasion. The first interaction with the host cell is thereby accomplished by the Outer membrane complex protein B (OmcB) binding to heparan sulfate moieties on the host cell surface, followed by the interaction of the chlamydial polymorphic membrane proteins (Pmps) with host cell receptors. Specifically, the interaction of the Pmp21 adhesin and invasin with its human interaction partner, the epidermal growth factor receptor, results in receptor activation, down-stream signalling and finally internalization of the bacteria. Blocking both, the OmcB and Pmp21 adhesion pathways, did not completely abolish infection, suggesting the presence of additional factors relevant for host cell invasion. Here, we show that the novel surface protein CPn0473 of Chlamydia pneumoniae contributes to the binding and invasion of infectious chlamydial particles. CPn0473 is expressed late in the infection cycle and located on the infectious chlamydial cell surface. Soluble recombinant CPn0473 as well as rCPn0473-coupled fluorescent latex beads adhere to human epithelial HEp-2 cells. Interestingly, in classical infection blocking experiments pretreatment of HEp-2 cells with rCPn0473 does not attenuate adhesion but promotes dose-dependently internalization by C. pneumoniae suggesting an unusual mode of action for this adhesin. This CPn0473-dependent promotion of infection by C. pneumoniae depends on two different domains within the protein and requires intact lipid rafts. Thus, inhibition of the interaction of CPn0473 with the host cell could provide a way to reduce the virulence of C. pneumoniae.

  2. Oral PEG 15-20 protects the intestine against radiation : role of lipid rafts.

    Energy Technology Data Exchange (ETDEWEB)

    Valuckaite, V.; Zaborina, O.; Long, J.; Hauer-Jensen, M.; Wang, J.; Holbrook, C.; Zaborin, A.; Drabik, K.; Katdare, M.; Mauceri, H.; Weichselbaum, R.; Firestone, M. A.; Lee, K. Y.; Chang, E. B.; Matthews, J.; Alverdy, J. C.; Materials Science Division; Univ. of Chicago; Univ. of Arkansas

    2009-12-01

    Intestinal injury following abdominal radiation therapy or accidental exposure remains a significant clinical problem that can result in varying degrees of mucosal destruction such as ulceration, vascular sclerosis, intestinal wall fibrosis, loss of barrier function, and even lethal gut-derived sepsis. We determined the ability of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect the intestine against the early and late effects of radiation in mice and rats and to determine its mechanism of action by examining cultured rat intestinal epithelia. Rats were exposed to fractionated radiation in an established model of intestinal injury, whereby an intestinal segment is surgically placed into the scrotum and radiated daily. Radiation injury score was decreased in a dose-dependent manner in rats gavaged with 0.5 or 2.0 g/kg per day of PEG 15-20 (n = 9-13/group, P < 0.005). Complementary studies were performed in a novel mouse model of abdominal radiation followed by intestinal inoculation with Pseudomonas aeruginosa (P. aeruginosa), a common pathogen that causes lethal gut-derived sepsis following radiation. Mice mortality was decreased by 40% in mice drinking 1% PEG 15-20 (n = 10/group, P < 0.001). Parallel studies were performed in cultured rat intestinal epithelial cells treated with PEG 15-20 before radiation. Results demonstrated that PEG 15-20 prevented radiation-induced intestinal injury in rats, prevented apoptosis and lethal sepsis attributable to P. aeruginosa in mice, and protected cultured intestinal epithelial cells from apoptosis and microbial adherence and possible invasion. PEG 15-20 appeared to exert its protective effect via its binding to lipid rafts by preventing their coalescence, a hallmark feature in intestinal epithelial cells exposed to radiation.

  3. Adenylyl cyclase type 6 overexpression selectively enhances beta-adrenergic and prostacyclin receptor-mediated inhibition of cardiac fibroblast function because of colocalization in lipid rafts.

    Science.gov (United States)

    Liu, Xiaoqiu; Thangavel, Muthusamy; Sun, Shu Qiang; Kaminsky, Joseph; Mahautmr, Penden; Stitham, Jeremiah; Hwa, John; Ostrom, Rennolds S

    2008-06-01

    Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Fibroblasts are activated by factors such as transforming growth factor beta and inhibited by agents that elevate 3',5'-cyclic adenosine monophosphate (cAMP) levels. cAMP signal generation and response is known to be compartmentalized in many cell types in part through the colocalization of receptors and specific adenylyl cyclase isoforms in lipid rafts and caveolae. The present study sought to define the localization of key G protein-coupled receptors with adenylyl cyclase type 6 (AC6) in lipid rafts of rat cardiac fibroblasts and to determine if this colocalization was functionally relevant. We found that cardiac fibroblasts produce cAMP in response to agonists for beta-adrenergic (isoproterenol), prostaglandin EP2 (butaprost), adenosine (adenosine-5'-N-ethylcarboxamide, NECA), and prostacyclin (beraprost) receptors. Overexpression of AC6 increased cAMP production stimulated by isoproterenol and beraprost but not by butaprost or NECA. A key function of fibroblasts is the production of collagen. Isoproterenol- and beraprostmediated inhibition of collagen synthesis was also enhanced by AC6 overexpression, while inhibition by butaprost and NECA were unaltered. Lipid raft fractions from cardiac fibroblasts contain the preponderance of beta-adrenergic receptors and AC6 but exclude EP2 receptors. While we could not determine the localization of native prostacyclin receptors, we were able to determine that epitope-tagged prostanoid IP receptors (IPR) expressed in COS7 cells did localize, in part, in lipid raft fractions. These findings indicate that IP receptors are expressed in lipid rafts and can activate raft-localized AC isoforms. AC6 is completely compartmentized in lipid raft domains where it is activated solely by coresident G protein-coupled receptors to regulate cardiac fibroblast function.

  4. The β-subunit of cholera toxin has a high affinity for ganglioside GM1 embedded into solid supported lipid membranes with a lipid raft-like composition.

    Science.gov (United States)

    Margheri, G; D'Agostino, R; Trigari, S; Sottini, S; Del Rosso, M

    2014-02-01

    In this communication, we report on the fabrication of GM1-rich solid-supported bilayer lipid membranes (ssBLM) made of sphingomyelin and cholesterol, the main components of lipid rafts,which are the physiological hosting microenvironment of GM1 on the cell membrane. The functionality of the ganglioside has been checked by measuring the apparent dissociation constant K(D) of the complex formed by the β-subunit of the cholera toxin and GM1. The value found deviates less than one order of magnitude from that measured for in vivo cells, indicating the potential of these ssBLM as optimized in vitro biomimetic platforms.

  5. 脂筏在阿尔茨海默症中的作用%Emerging Roles of Lipid Rafts in Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    郑毅; 马芙蓉; 吉尚戎

    2012-01-01

    Lipid rafts are cholesterol-enriched micro-domains in cell membranes with critical functions in cellular signaling and transportation. Accumulating evidence indicates lipid rafts are intimately associated with the pathogenesis of Alzheimer's disease (AD). Because the abnormal metabolism and aggregation of amyloid p-peptide (Ap) is causally involved in the initiation and development of AD, lipid rafts regulate the production, aggregation and toxicity of A3, thus pinpointing a critical role of lipid rafts in AD.%脂筏(lipid raft)是细胞膜中富含胆固醇的功能性微区,在信号转导、物质运输等方面发挥着重要作用.大量证据显示脂筏与阿尔茨海默症(Alzheimer's disease,AD)的致病机理密切相关.β-淀粉样肽(amyloid β-peptide,Aβ)的异常代谢和聚集可能是AD的致病主因,而脂筏不但是Aβ产生的主要场所,还能调节Aβ的聚集行为及神经毒性,因而在AD的病理过程中扮演着关键角色.

  6. Push and pull forces in lipid raft formation: the push can be as important as the pull.

    Science.gov (United States)

    Wang, Chang; Krause, Martin R; Regen, Steven L

    2015-01-21

    Nearest-neighbor recognition measurements have been made using exchangeable mimics of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine in the liquid-ordered (lo) and liquid-disordered (ld) states. In the ld phase, the net interaction between these two lipids is repulsive. In the lo phase, their interactions are neither attractive nor repulsive. These results, together with previous nearest-neighbor measurements, imply that the overall driving force for lipid domain formation in bilayers composed of high-melting lipids, low-melting lipids, and cholesterol, corresponds to a strong pull (attraction) between the high-melting lipids and cholesterol, a significant push (repulsion) between the low-melting and high-melting lipids, and a significant push between the low-melting lipids and cholesterol. In a broader context, these results provide strong support for the notion that repulsive forces play a major role in the formation of lipid rafts.

  7. Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.

    Science.gov (United States)

    Fritzsching, Keith J; Kim, Jihyun; Holland, Gregory P

    2013-08-01

    The interaction between cholesterol (Chol) and phospholipids in bilayers was investigated for the ternary model lipid rafts, DOPC/eSM/Chol and DOPC/DPPC/Chol, with differential scanning calorimetry (DSC) and (13)C cross polarization magic angle spinning (CP-MAS) solid-state NMR. The enthalpy and transition temperature (Tm) of the Lα liquid crystalline phase transition from DSC was used to probe the thermodynamics of the different lipids in the two systems as a function of Chol content. The main chain (13)C (CH2)n resonance is resolved in the (13)C CP-MAS NMR spectra for the unsaturated (DOPC) and saturated (eSM or DPPC) chain lipid in the ternary lipid raft mixtures. The (13)C chemical shift of this resonance can be used to detect differences in chain ordering and overall interactions with Chol for the different lipid constituents in the ternary systems. The combination of DSC and (13)C CP-MAS NMR results indicate that there is a preferential interaction between SM and Chol below Tm for the DOPC/eSM/Chol system when the Chol content is ≤20mol%. In contrast, no preferential interaction between Chol and DPPC is observed in the DOPC/DPPC/Chol system above or below Tm. Finally, (13)C CP-MAS NMR resolves two Chol environments in the DOPC/eSM/Chol system below Tm at Chol contents >20mol% while, a single Chol environment is observed for DOPC/DPPC/Chol at all compositions.

  8. Lipid Rafts Are Physiologic Membrane Microdomains Necessary for the Morphogenic and Developmental Functions of Glial Cell Line-Derived Neurotrophic Factor In Vivo.

    Science.gov (United States)

    Tsui, Cynthia C; Gabreski, Nicole A; Hein, Sarah J; Pierchala, Brian A

    2015-09-23

    Glial cell line-derived neurotrophic factor (GDNF) promotes PNS development and kidney morphogenesis via a receptor complex consisting of the glycerophosphatidylinositol (GPI)-anchored, ligand binding receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Although Ret signal transduction in vitro is augmented by translocation into lipid rafts via GFRα1, the existence and importance of lipid rafts in GDNF-Ret signaling under physiologic conditions is unresolved. A knock-in mouse was produced that replaced GFRα1 with GFRα1-TM, which contains a transmembrane (TM) domain instead of the GPI anchor. GFRα1-TM still binds GDNF and promotes Ret activation but does not translocate into rafts. In Gfrα1(TM/TM) mice, GFRα1-TM is expressed, trafficked, and processed at levels identical to GFRα1. Although Gfrα1(+/TM) mice are viable, Gfrα1(TM/TM) mice display bilateral renal agenesis, lack enteric neurons in the intestines, and have motor axon guidance deficits, similar to Gfrα1(-/-) mice. Therefore, the recruitment of Ret into lipid rafts by GFRα1 is required for the physiologic functions of GDNF in vertebrates. Significance statement: Membrane microdomains known as lipid rafts have been proposed to be unique subdomains in the plasma membrane that are critical for the signaling functions of multiple receptor complexes. Their existence and physiologic relevance has been debated. Based on in vitro studies, lipid rafts have been reported to be necessary for the function of the Glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors. The receptor for GDNF comprises the lipid raft-resident, glycerophosphatidylinositol-anchored receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Here we demonstrate, using a knock-in mouse model in which GFRα1 is no longer located in lipid rafts, that the developmental functions of GDNF in the periphery require the translocation of the GDNF receptor complex

  9. By activating Fas/ceramide synthase 6/p38 kinase in lipid rafts, stichoposide D inhibits growth of leukemia xenografts.

    Science.gov (United States)

    Yun, Seong-Hoon; Park, Eun-Seon; Shin, Sung-Won; Ju, Mi-Ha; Han, Jin-Yeong; Jeong, Jin-Sook; Kim, Sung-Hyun; Stonik, Valentin A; Kwak, Jong-Young; Park, Joo-In

    2015-09-29

    Stichoposide D (STD) is a marine triterpene glycoside isolated from sea cucumbers. We examined the molecular mechanisms underlying the antitumor activity of STD in human leukemia cells. The role of Fas (CD95), ceramide synthase 6 (CerS6) and p38 kinase during STD-induced apoptosis was examined in human leukemia cells. In addition, the antitumor effects of STD in K562 and HL-60 leukemia xenograft models were investigated. We found that STD induces Fas translocation to lipid rafts, and thus mediates cell apoptosis. We also observed the activation of CerS6 and p38 kinase during STD-induced apoptosis. The use of methyl-β-cyclodextrin and nystatin to disrupt lipid rafts prevents the clustering of Fas and the activation of CerS6 and p38 kinase, and also inhibits STD-induced apoptosis. Specific inhibition by Fas, CerS6, and p38 kinase siRNA transfection partially blocked STD-induced apoptosis. In addition, STD has antitumor activity through the activation of CerS6 and p38 kinase without displaying any toxicity in HL-60 and K562 xenograft models. We observed that the anti-tumor effect of STD is partially prevented in CerS6 shRNA-silenced xenograft models. We first report that Fas/CerS6/p38 kinase activation in lipid rafts by STD is involved in its anti-leukemic activity. We also established that STD is able to enhance the chemosensitivity of K562 cells to etoposide or Ara-C. These data suggest that STD may be used alone or in combination with other chemotherapeutic agents to treat leukemia.

  10. Seladin-1/DHCR24 Is Neuroprotective by Associating EAAT2 Glutamate Transporter to Lipid Rafts in Experimental Stroke.

    Science.gov (United States)

    Hernández-Jiménez, Macarena; Martínez-López, Diego; Gabandé-Rodríguez, Enrique; Martín-Segura, Adrian; Lizasoain, Ignacio; Ledesma, María D; Dotti, Carlos G; Moro, María A

    2016-01-01

    3β-Hydroxysteroid-Δ24 reductase (DHCR24) or selective alzheimer disease indicator 1 (seladin-1), an enzyme of cholesterol biosynthetic pathway, has been implicated in neuroprotection, oxidative stress, and inflammation. However, its role in ischemic stroke remains unexplored. The aim of this study was to characterize the effect of seladin-1/DHCR24 using an experimental stroke model in mice. Dhcr24(+/-) and wild-type (WT) mice were subjected to permanent middle cerebral artery occlusion. In another set of experiments, WT mice were treated intraperitoneally either with vehicle or U18666A (seladin-1/DHCR24 inhibitor, 10 mg/kg) 30 minutes after middle cerebral artery occlusion. Brains were removed 48 h after middle cerebral artery occlusion for infarct volume determination. For protein expression determination, peri-infarct region was obtained 24 h after ischemia, and Western blot or cytometric bead array was performed. Dhcr24(+/-) mice displayed larger infarct volumes after middle cerebral artery occlusion than their WT littermates. Treatment of WT mice with the seladin-1/DHCR24 inhibitor U18666A also increased ischemic lesion. Inflammation-related mediators were increased after ischemia in Dhcr24(+/-) mice compared with WT counterparts. Consistent with a role of cholesterol in proper function of glutamate transporter EAAT2 in membrane lipid rafts, we found a decreased association of EAAT2 with lipid rafts after ischemia when DHCR24 is genetically deleted or pharmacologically inhibited. Accordingly, treatment with U18666A decreases [(3)H]-glutamate uptake in cultured astrocytes. These results support the idea that lipid raft integrity, ensured by seladin-1/DHCR24, plays a crucial protective role in the ischemic brain by guaranteeing EAAT2-mediated uptake of glutamate excess. © 2015 American Heart Association, Inc.

  11. Tuning the size of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for biophysical studies.

    Science.gov (United States)

    Craig, Andrew F; Clark, Emily E; Sahu, Indra D; Zhang, Rongfu; Frantz, Nick D; Al-Abdul-Wahid, M Sameer; Dabney-Smith, Carole; Konkolewicz, Dominik; Lorigan, Gary A

    2016-11-01

    Characterization of membrane proteins is challenging due to the difficulty in mimicking the native lipid bilayer with properly folded and functional membrane proteins. Recently, styrene-maleic acid (StMA) copolymers have been shown to facilitate the formation of disc-like lipid bilayer mimetics that maintain the structural and dynamic integrity of membrane proteins. Here we report the controlled synthesis and characterization of StMA containing block copolymers. StMA polymers with different compositions and molecular weights were synthesized and characterized by size exclusion chromatography (SEC). These polymers act as macromolecular surfactants for 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol (POPG) lipids, forming disc like structures of the lipids with the polymer wrapping around the hydrophobic lipid edge. A combination of dynamic light scattering (DLS), solid-state nuclear magnetic resonance (SSNMR) spectroscopy, and transmission electron microscopy (TEM) was used to characterize the size of the nanoparticles created using these StMA polymers. At a weight ratio of 1.25:1 StMA to lipid, the nanoparticle size created is 28+1nm for a 2:1 ratio, 10+1nm for a 3:1 StMA ratio and 32+1nm for a 4:1 StMA ratio independent of the molecular weight of the polymer. Due to the polymer acting as a surfactant that forms disc like nanoparticles, we term these StMA based block copolymers "RAFT SMALPs". RAFT SMALPs show promise as a new membrane mimetic with different nanoscale sizes, which can be used for a wide variety of biophysical studies of membrane proteins. Copyright © 2016. Published by Elsevier B.V.

  12. Dataset of differential lipid raft and global proteomes of SILAC-labeled cystic fibrosis cells upon TNF -α stimulation

    Directory of Open Access Journals (Sweden)

    C. Chhuon

    2016-12-01

    We used the Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC approach to quantify and identify 332 proteins in LRM upon TNF-a stimulation in CF cells and 1381 for the global proteome. We report two detailed tables containing lists of proteins obtained by mass spectrometry and the immunofluorescence validation results for one of these proteins, the G-protein coupled receptor 5A. These results are associated with the article “Changes in lipid raft proteome upon TNF-α stimulation of cystic fibrosis cells” (Chhuon et al., in press [1].

  13. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner.

    Science.gov (United States)

    Wong, Scott W; Kwon, Myung-Ja; Choi, Augustine M K; Kim, Hong-Pyo; Nakahira, Kiichi; Hwang, Daniel H

    2009-10-02

    The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies demonstrated that saturated and polyunsaturated fatty acids reciprocally modulate the activation of TLR4. However, the underlying mechanism has not been understood. Here, we report for the first time that the saturated fatty acid lauric acid induced dimerization and recruitment of TLR4 into lipid rafts, however, dimerization was not observed in non-lipid raft fractions. Similarly, LPS and lauric acid enhanced the association of TLR4 with MD-2 and downstream adaptor molecules, TRIF and MyD88, into lipid rafts leading to the activation of downstream signaling pathways and target gene expression. However, docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, inhibited LPS- or lauric acid-induced dimerization and recruitment of TLR4 into lipid raft fractions. Together, these results demonstrate that lauric acid and DHA reciprocally modulate TLR4 activation by regulation of the dimerization and recruitment of TLR4 into lipid rafts. In addition, we showed that TLR4 recruitment to lipid rafts and dimerization were coupled events mediated at least in part by NADPH oxidase-dependent reactive oxygen species generation. These results provide a new insight in understanding the mechanism by which fatty acids differentially modulate TLR4-mediated signaling pathway and consequent inflammatory responses which are implicated in the development and progression of many chronic diseases.

  14. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis

    Science.gov (United States)

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  15. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    Science.gov (United States)

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis.

  16. Influenza A Virus Hemagglutinin is Required for the Assembly of Viral Components Including Bundled vRNPs at the Lipid Raft.

    Science.gov (United States)

    Takizawa, Naoki; Momose, Fumitaka; Morikawa, Yuko; Nomoto, Akio

    2016-09-10

    The influenza glycoproteins, hemagglutinin (HA) and neuraminidase (NA), which are associated with the lipid raft, have the potential to initiate virion budding. However, the role of these viral proteins in infectious virion assembly is still unclear. In addition, it is not known how the viral ribonucleoprotein complex (vRNP) is tethered to the budding site. Here, we show that HA is necessary for the efficient progeny virion production and vRNP packaging in the virion. We also found that the level of HA does not affect the bundling of the eight vRNP segments, despite reduced virion production. Detergent solubilization and a subsequent membrane flotation analysis indicated that the accumulation of nucleoprotein, viral polymerases, NA, and matrix protein 1 (M1) in the lipid raft fraction was delayed without HA. Based on our results, we inferred that HA plays a role in the accumulation of viral components, including bundled vRNPs, at the lipid raft.

  17. Influenza A Virus Hemagglutinin is Required for the Assembly of Viral Components Including Bundled vRNPs at the Lipid Raft

    Science.gov (United States)

    Takizawa, Naoki; Momose, Fumitaka; Morikawa, Yuko; Nomoto, Akio

    2016-01-01

    The influenza glycoproteins, hemagglutinin (HA) and neuraminidase (NA), which are associated with the lipid raft, have the potential to initiate virion budding. However, the role of these viral proteins in infectious virion assembly is still unclear. In addition, it is not known how the viral ribonucleoprotein complex (vRNP) is tethered to the budding site. Here, we show that HA is necessary for the efficient progeny virion production and vRNP packaging in the virion. We also found that the level of HA does not affect the bundling of the eight vRNP segments, despite reduced virion production. Detergent solubilization and a subsequent membrane flotation analysis indicated that the accumulation of nucleoprotein, viral polymerases, NA, and matrix protein 1 (M1) in the lipid raft fraction was delayed without HA. Based on our results, we inferred that HA plays a role in the accumulation of viral components, including bundled vRNPs, at the lipid raft. PMID:27626438

  18. Influenza A Virus Hemagglutinin is Required for the Assembly of Viral Components Including Bundled vRNPs at the Lipid Raft

    Directory of Open Access Journals (Sweden)

    Naoki Takizawa

    2016-09-01

    Full Text Available The influenza glycoproteins, hemagglutinin (HA and neuraminidase (NA, which are associated with the lipid raft, have the potential to initiate virion budding. However, the role of these viral proteins in infectious virion assembly is still unclear. In addition, it is not known how the viral ribonucleoprotein complex (vRNP is tethered to the budding site. Here, we show that HA is necessary for the efficient progeny virion production and vRNP packaging in the virion. We also found that the level of HA does not affect the bundling of the eight vRNP segments, despite reduced virion production. Detergent solubilization and a subsequent membrane flotation analysis indicated that the accumulation of nucleoprotein, viral polymerases, NA, and matrix protein 1 (M1 in the lipid raft fraction was delayed without HA. Based on our results, we inferred that HA plays a role in the accumulation of viral components, including bundled vRNPs, at the lipid raft.

  19. Saikosaponin a inhibits lipopolysaccharide-oxidative stress and inflammation in Human umbilical vein endothelial cells via preventing TLR4 translocation into lipid rafts.

    Science.gov (United States)

    Fu, Yunhe; Hu, Xiaoyu; Cao, Yongguo; Zhang, Zecai; Zhang, Naisheng

    2015-12-01

    Saikosaponin a (SSa), the major triterpenoid saponin derivatives from Radix bupleuri (RB), has been reported to have anti-inflammatory effects. The aim of this study was to investigate the effects of SSa on lipopolysaccharide (LPS)-induced oxidative stress and inflammatory response in human umbilical vein endothelial cells (HUVECs). HUVECs were stimulated with LPS in the presence or absence of SSa. The levels of TNF-α and IL-8 were detected by ELISA. The expression of COX-2 and iNOS, NF-κB and IκB protein were determined by Western blotting. To investigate the protective mechanisms of SSa, TLR4 expression was detected by Western blotting and membrane lipid rafts were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The results showed that SSa dose-dependently inhibited the production of ROS, TNF-α, IL-8, COX-2 and iNOS in LPS-stimulated HUVECs. Western blot analysis showed that SSa suppressed LPS-induced NF-κB activation. SSa did not affect the expression of TLR4 induced by LPS. However, translocation of TLR4 into lipid rafts and oligomerization of TLR4 induce by LPS was inhibited by SSa. Furthermore, SSa disrupted the formation of lipid rafts by depleting cholesterol. Moreover, SSa activated LXRα-ABCA1 signaling pathway, which could induce cholesterol efflux from lipid rafts. Knockdown of LXRα abrogated the anti-inflammatory effects of SSa. In conclusion, the effects of SSa is associated with activating LXRα-ABCA1 signaling pathway which results in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts and oligomerization of TLR4, thereby attenuating LPS mediated oxidative and inflammatory responses.

  20. Lipid rafts control P2X3 receptor distribution and function in trigeminal sensory neurons of a transgenic migraine mouse model

    Directory of Open Access Journals (Sweden)

    Fabbretti Elsa

    2011-09-01

    Full Text Available Abstract Background A genetic knock-in mouse model expressing the R192Q mutation of the α1-subunit of the CaV2.1 channels frequently found in patients with familial hemiplegic migraine shows functional upregulation of ATP-sensitive P2X3 receptors of trigeminal sensory neurons that transduce nociceptive inputs to the brainstem. In an attempt to understand the basic mechanisms linked to the upregulation of P2X3 receptor activity, we investigated the influence of the lipid domain of these trigeminal sensory neurons on receptor compartmentalization and function. Results Knock-in neurons were strongly enriched with lipid rafts containing a larger fraction of P2X3 receptors at membrane level. Pretreatment with the CaV2.1 channel blocker ω-agatoxin significantly decreased the lipid raft content of KI membranes. After pharmacologically disrupting the cholesterol component of lipid rafts, P2X3 receptors became confined to non-raft compartments and lost their functional potentiation typically observed in KI neurons with whole-cell patch-clamp recording. Following cholesterol depletion, all P2X3 receptor currents decayed more rapidly and showed delayed recovery indicating that alteration of the lipid raft milieu reduced the effectiveness of P2X3 receptor signalling and changed their desensitization process. Kinetic modeling could reproduce the observed data when slower receptor activation was simulated and entry into desensitization was presumed to be faster. Conclusions The more abundant lipid raft compartment of knock-in neurons was enriched in P2X3 receptors that exhibited stronger functional responses. These results suggest that the membrane microenvironment of trigeminal sensory neurons is an important factor in determining sensitization of P2X3 receptors and could contribute to a migraine phenotype by enhancing ATP-mediated responses.

  1. Caveolin-1 directly interacts with UT-A1 urea transporter: the role of caveolae/lipid rafts in UT-A1 regulation at the cell membrane.

    Science.gov (United States)

    Feng, Xiuyan; Huang, Haidong; Yang, Yuan; Fröhlich, Otto; Klein, Janet D; Sands, Jeff M; Chen, Guangping

    2009-06-01

    The cell plasma membrane contains specialized microdomains called lipid rafts which contain high amounts of sphingolipids and cholesterol. Lipid rafts are involved in a number of membrane protein functions. The urea transporter UT-A1, located in the kidney inner medullary collecting duct (IMCD), is important for urine concentrating ability. In this study, we investigated the possible role of lipid rafts in UT-A1 membrane regulation. Using sucrose gradient cell fractionation, we demonstrated that UT-A1 is concentrated in the caveolae-rich fraction both in stably expressing UT-A1 HEK293 cells and in freshly isolated kidney IMCD suspensions. In these gradients, UT-A1 at the cell plasma membrane is codistributed with caveolin-1, a major component of caveolae. The colocalization of UT-A1 in lipid rafts/caveolae was further confirmed in isolated caveolae from UT-A1-HEK293 cells. The direct association of UT-A1 and caveolin-1 was identified by immunoprecipitation and GST pull-down assay. Examination of internalized UT-A1 in pEGFP-UT-A1 transfected HEK293 cells fluorescent overlap with labeled cholera toxin subunit B, a marker of the caveolae-mediated endocytosis pathway. Disruption of lipid rafts by methyl-beta-cyclodextrin or knocking down caveolin-1 by small-interference RNA resulted in UT-A1 cell membrane accumulation. Functionally, overexpression of caveolin-1 in oocytes decreased UT-A1 urea transport activity and UT-A1 cell surface expression. Our results indicate that lipid rafts/caveolae participate in UT-A1 membrane regulation and this effect is mediated via a direct interaction of caveolin-1 with UT-A1.

  2. Oxidized LDL lipids increase β-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation.

    Science.gov (United States)

    Dias, Irundika H K; Mistry, Jayna; Fell, Shaun; Reis, Ana; Spickett, Corinne M; Polidori, Maria C; Lip, Gregory Y H; Griffiths, Helen R

    2014-10-01

    Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4μg oxLDL and 25µM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells.

  3. Paradoxical Condensation of Copper with Elevated β-Amyloid in Lipid Rafts under Cellular Copper Deficiency Conditions: IMPLICATIONS FOR ALZHEIMER DISEASE*

    OpenAIRE

    Hung, Ya Hui; Robb, Elysia L.; Volitakis, Irene; Ho, Michael; Evin, Genevieve; Li, Qiao-Xin; Janetta G Culvenor; Masters, Colin L.; Cherny, Robert A.; Bush, Ashley I.

    2009-01-01

    Redox-active copper is implicated in the pathogenesis of Alzheimer disease (AD), β-amyloid peptide (Aβ) aggregation, and amyloid formation. Aβ·copper complexes have been identified in AD and catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides. The site and mechanism of this abnormality is not known. Growing evidence suggests that amyloidogenic processing of the β-amyloid precursor protein (APP) occurs in lipid rafts, membrane microdomains enriched in cholesterol. ...

  4. Dataset of differential lipid raft and global proteomes of SILAC-labeled cystic fibrosis cells upon TNF -α stimulation.

    Science.gov (United States)

    Chhuon, C; Pranke, I; Borot, F; Tondelier, D; Lipecka, J; Fritsch, J; Chanson, M; Edelman, A; Ollero, M; Guerrera, I C

    2016-12-01

    Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane regulator (CFTR), F508del-CFTR being the most frequent. Lipid raft-like microdomains (LRM) are regions of the plasma membrane that present a high cholesterol content and are insoluble to non-ionic detergents. LRM are essential functional and structural platforms that play an important role in the inflammatory response. CFTR is a known modulator of inflammation in LRM. Here we provide mass spectrometry data on the global impact of CFTR mutation and TNF-a stimulation on the LRM proteome. We used the Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) approach to quantify and identify 332 proteins in LRM upon TNF-a stimulation in CF cells and 1381 for the global proteome. We report two detailed tables containing lists of proteins obtained by mass spectrometry and the immunofluorescence validation results for one of these proteins, the G-protein coupled receptor 5A. These results are associated with the article "Changes in lipid raft proteome upon TNF-α stimulation of cystic fibrosis cells" (Chhuon et al., in press [1]).

  5. Lipid raft-dependent FcepsilonRI ubiquitination regulates receptor endocytosis through the action of ubiquitin binding adaptors.

    Directory of Open Access Journals (Sweden)

    Rosa Molfetta

    Full Text Available The best characterized role for ubiquitination of membrane receptors is to negatively regulate signaling by targeting receptors for lysosomal degradation. The high affinity receptor for IgE (FcepsilonRI expressed on mast cells and basophils is rapidly ubiquitinated upon antigen stimulation. However, the nature and the role of this covalent modification are still largelly unknown. Here, we show that FcepsilonRI subunits are preferentially ubiquitinated at multiple sites upon stimulation, and provide evidence for a role of ubiquitin as an internalization signal: under conditions of impaired receptor ubiquitination a decrease of receptor entry is observed by FACS analysis and fluorescence microscopy. We also used biochemical approaches combined with fluorescence microscopy, to demonstrate that receptor endocytosis requires the integrity of specific membrane domains, namely lipid rafts. Additionally, by RNA interference we demonstrate the involvement of ubiquitin-binding endocytic adaptors in FcepsilonRI internalization and sorting. Notably, the triple depletion of Eps15, Eps15R and Epsin1 negatively affects the early steps of Ag-induced receptor endocytosis, whereas Hrs depletion retains ubiquitinated receptors into early endosomes and partially prevents their sorting into lysosomes for degradation. Our results are compatible with a scenario in which the accumulation of engaged receptor subunits into lipid rafts is required for receptor ubiquitination, a prerequisite for efficient receptor internalization, sorting and delivery to a lysosomal compartment.

  6. Targeting Cell Membrane Lipid Rafts by Stoichiometric Functionalization of Gold Nanoparticles With a Sphingolipid-Binding Domain Peptide.

    Science.gov (United States)

    Paramelle, David; Nieves, Daniel; Brun, Benjamin; Kraut, Rachel S; Fernig, David G

    2015-04-22

    A non-membrane protein-based nanoparticle agent for the tracking of lipid rafts on live cells is produced by stoichiometric functionalization of gold nanoparticles with a previously characterized sphingolipid- and cell membrane microdomain-binding domain peptide (SBD). The SBD peptide is inserted in a self-assembled monolayer of peptidol and alkane thiol ethylene glycol, on gold nanoparticles surface. The stoichiometric functionalization of nanoparticles with the SBD peptide, essential for single molecule tracking, is achieved by means of non-affinity nanoparticle purification. The SBD-nanoparticles have remarkable long-term resistance to electrolyte-induced aggregation and ligand-exchange and have no detectable non-specific binding to live cells. Binding and diffusion of SBD-nanoparticles bound to the membrane of live cells is measured by real-time photothermal microscopy and shows the dynamics of sphingolipid-enriched microdomains on cells membrane, with evidence for clustering, splitting, and diffusion over time of the SBD-nanoparticle labeled membrane domains. The monofunctionalized SBD-nanoparticle is a promising targeting agent for the tracking of lipid rafts independently of their protein composition and the labelling requires no prior modification of the cells. This approach has potential for further functionalization of the particles to manipulate the organization of, or targeting to microdomains that control signaling events and thereby lead to novel diagnostics and therapeutics.

  7. Involvement of Lipid Rafts and Cellular Actin in AcMNPV GP64 Distribution and Virus Budding

    Institute of Scientific and Technical Information of China (English)

    F. J. Haines; C. M. Griffiths; R. D. Possee; C. R. Hawes; L. A. King

    2009-01-01

    GP64 is the major envelope glycoprotein associated with the budded virus (BV) of Autographa californica nucleopolyhedrovirus (AcMNPV) and is essential for attachment and budding of BV particles.Confocal microscopy and flotation assays established the presence of lipid raft domains within the plasma membranes of AcMNPV-infected Sf9 cells and suggested the association of GP64 with lipid rafts during infection. GP64 and filamentous actin (F-actin) were found to co-localise at the cell cortex at 24 and 48 hpi and an additional restructuring of F-actin during infection was visualised, resulting in a strongly polarised distribution of both F-actin and GP64 at the cell cortex. Depletion of F-actin, achieved by treatment of St9 cells with latrunculin B (LB), resulted in the redistribution of GP64 with significant cytoplasmic aggregation and reduced presence at the plasma membrane. Treatment with LB also resulted in reduced production of BV in Sf9 cells. Analysis of virus gene transcription confirmed this reduction was not due to decreased trafficking of nucleocapsids to the nucleus or to decreased production of infectious progeny nucleoeapsids. Reduced BV production due to a lack of GP64 at the plasma membrane of AcMNPV-infected Sf9 cells treated with LB, suggests a key role for F-actin in the egress of BV.

  8. A Novel Mechanism of Sequestering Fibroblast Growth Factor 2 by Glypican in Lipid Rafts, Allowing Skeletal Muscle Differentiation▿

    Science.gov (United States)

    Gutiérrez, Jaime; Brandan, Enrique

    2010-01-01

    Heparan sulfate proteoglycans (HSPGs) are critical modulators of growth factor activities. Skeletal muscle differentiation is strongly inhibited by fibroblast growth factor 2 (FGF-2). We have shown that HSPGs present at the plasma membrane are expressed in myoblasts and are downregulated during muscle differentiation. An exception is glypican-1, which is present throughout the myogenic process. Myoblasts that do not express glypican-1 exhibit defective differentiation, with an increase in the receptor binding of FGF-2, concomitant with increased signaling. Glypican-1-deficient myoblasts show decreased expression of myogenin, the master gene that controls myogenesis, myosin, and the myoblast fusion index. Reversion of these defects was induced by expression of rat glypican-1. Glypican-1 is the only HSPG localized in lipid raft domains in myoblasts, resulting in the sequestration of FGF-2 away from FGF-2 receptors (FGFRs) located in nonraft domains. A chimeric glypican-1, containing syndecan-1 transmembrane and cytoplasmic domains, is located in nonraft domains interacting with FGFR-IV- and enhanced FGF-2-dependent signaling. Thus, glypican-1 acts as a positive regulator of muscle differentiation by sequestering FGF-2 in lipid rafts and preventing its binding and dependent signaling. PMID:20100867

  9. [Effect of acupuncture on transmembrane signal pathway in AD mice: an analysis based on lipid-raft proteomics].

    Science.gov (United States)

    Nie, Kun; Zhang, Xue-Zhu; Zhao, Lan; Jia, Yu-Jie; Han, Jing-Xian

    2014-08-01

    To reveal the transmembrane signal pathway participating in regulating neuron functions of treating Alzheimer's disease (AD) by acupuncture. SAMP8 mice was used for AD animal model. The effect of acupuncture method for qi benefiting, blood regulating, health supporting, and root strengthening on the amount and varieties of transmembrane signal proteins from hippocampal lipid rafts in SAMP8 mice was detected using HPLC MS/MS proteomics method. Compared with the control group, acupuncture increased 39 transmembrane signal proteins from hippocampal lipid rafts in SAMP8 mice, of them, 14 belonged to ionophorous protein, 8 to G protein, 8 to transmembrane signal receptor, and 9 to kinase protein. Totally 3 main cell signal pathways were involved, including G-protein-coupled receptors signal, enzyme linked receptor signal, and ion-channel mediated signal. Compared with the sham-acupuncture group, acupuncture resulted in significant increase of kinase signal protein amount. From the aspect of functions, they were dominant in regulating synapse functions relevant to cytoskeleton and secreting neurotransmitters. The cell biological mechanism for treating AD by acupuncture might be achieved by improving synapse functions and promoting the secretion of neurotransmitters through transmembrane signal transduction, thus improving cognitive function of AD patients.

  10. Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains

    DEFF Research Database (Denmark)

    Riemann, D; Hansen, Gert Helge; Niels-Christiansen, L;

    2001-01-01

    from about 60 to 160 nm. Cholesterol depletion of synoviocytes by methyl-beta-cyclodextrin disrupted >90% of the caveolae and reduced the raft localization of aminopeptidase N/CD13 without affecting Ala-p-nitroanilide-cleaving activity of confluent cell cultures. In co-culture experiments with T...

  11. Cholera toxin entry into pig enterocytes occurs via a lipid raft- and clathrin-dependent mechanism

    DEFF Research Database (Denmark)

    Hansen, Gert H; Dalskov, Stine-Mathilde; Rasmussen, Christina Rehné;

    2005-01-01

    accompanied the toxin internalization whereas no formation of caveolae was observed. CTB was strongly associated with the buoyant, detergent-insoluble fraction of microvillar membranes. Neither CTB's raft association nor uptake via clathrin-coated pits was affected by methyl-beta-cyclodextrin, indicating...

  12. Distribution of C16:0, C18:0, C24:1, and C24:0 sulfatides in central nervous system lipid rafts by quantitative ultra-high-pressure liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Moyano, Ana Lis; Li, Guannan; Lopez-Rosas, Aurora; Månsson, Jan-Eric; van Breemen, Richard B; Givogri, Maria Irene

    2014-12-15

    Sulfated galactosylceramides (sulfatides) are glycosphingolipids associated with cholesterol- and sphingolipid-enriched membrane microdomains (lipid rafts) and are highly expressed in brain tissue. Although it is known that sulfatide species show heterogeneity in their fatty acid acyl group composition throughout brain development, their lipid raft distribution and biological relevance is poorly understood. We validated a fast and sensitive ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method to measure developmentally regulated sulfatide species (C16:0, C18:0, C24:1, and C24:0) in central nervous system (CNS) lipid rafts isolated without using detergent. Our UHPLC-MS/MS assay showed good accuracy and precision with a linear range of 5 to 1,000 nM for C18:0 and C24:1 sulfatides and 10 to 1,000 nM for C16:0 and C24:0 sulfatides. We applied this quantitative analysis to detergent-free lipid rafts isolated from wild-type mice and arylsulfatase A-deficient (ASA knockout) mice that accumulate sulfatides. All four sulfatide species were more abundant in raft membranes than in non-raft membranes, with a significant increase in lipid rafts isolated from ASA knockout mice. This is the first description of an analytical method to study these sulfatide species in raft and non-raft membranes and has the potential to be applied to preparations from other tissues.

  13. Rafts - the current picture

    Directory of Open Access Journals (Sweden)

    Aleksander F. Sikorski

    2011-08-01

    Full Text Available Although evidences that cell membrane contains microdomains are accumulating, the exact properties, diversity and levels of organization of small lipid patches built mainly of cholesterol and sphingomyelin, termed rafts, remain to be elucidated. Our understanding of the cell membrane is increasing with each new raft feature discovered. Nowadays rafts are suggested to act as sites of cell signaling events, to be a part of protein sorting machinery but also they are used by several pathogens as gates into the cells. It is still unclear how rafts are connected to the membrane skeleton and cytoskeleton and with how many different types of rafts are we actually dealing with. This review summarizes some of the most recent discoveries trying to make a view of the complex raft properties.

  14. A new approach to comparing anti-CD20 antibodies: importance of the lipid rafts in their lytic efficiency

    Directory of Open Access Journals (Sweden)

    Mariam Hammadi

    2010-06-01

    Full Text Available Mariam Hammadi, Jacques-Olivier Pers, Christian Berthou, Pierre Youinou, Anne BordronCentre Hospitalier Universitaire EA2216 and IFR148, Université de Bretagne Occidentale and Université Européenne de Bretagne, BP824, 29609 Brest cedex, FranceAbstract: The view that B lymphocytes are pathogenic in diverse pathological settings is supported by the efficacy of B-cell-ablative therapy in lymphoproliferative disorders, autoimmune diseases and graft rejection. Anti-B-cell antibodies (Abs directed against CD20 have therefore been generated, and of these, rituximab was the first anti-CD20 monoclonal Ab (mAb to be applied. Rituximab-mediated apoptosis, complement-dependent cytotoxicity and Ab-dependent cellular cytotoxicity differ from one disease to another, and, for the same disease, from one patient to another. This knowledge has prompted the development of new anti-CD20 mAbs in the hope of improving B-cell depletion. The inclusion of CD20/anti-CD20 complexes in large lipid rafts (LRs enhances the results of some, but not all, anti-CD20 mAbs, and it may be possible to include smaller LRs. Lipid contents of membrane may be abnormal in malignant B-cells, and could explain resistance to treatment. The function of these mAbs and the importance of LRs warrant further investigation. A detailed understanding of them will increase results for B-cell depletion in lymphoproliferative diseases.Keywords: anti-CD20 antibodies, lymphocyte B, lipid rafts, B-cell disorders

  15. GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TLR4 translocation into lipid rafts.

    Science.gov (United States)

    Nikolaeva, Svetlana; Bayunova, Lubov; Sokolova, Tatyana; Vlasova, Yulia; Bachteeva, Vera; Avrova, Natalia; Parnova, Rimma

    2015-03-01

    Exogenous gangliosides are known to inhibit the effects of Escherichia coli lipopolysaccharide (LPS) in different cells exhibiting anti-inflammatory and immunosuppressive activities. The mechanisms underlying ganglioside action are not fully understood. Because LPS recognition and receptor complex formation occur in lipid rafts, and gangliosides play a key role in their maintenance, we hypothesize that protective effects of exogenous gangliosides would depend on inhibition of LPS signaling via prevention of TLR4 translocation into lipid rafts. The effect of GM1 and GD1a gangliosides on LPS-induced toxic and inflammatory reactions in PC12 cells, and in epithelial cells isolated from the frog urinary bladder, was studied. In PC12 cells, GD1a and GM1 significantly reduced the effect of LPS on the decrease of cell survival and on stimulation of reactive oxygen species production. In epithelial cells, gangliosides decreased LPS-stimulated iNOS expression, NO, and PGE2 production. Subcellular fractionation, in combination with immunoblotting, showed that pretreatment of cells with GM1, GD1a, or methyl-β-cyclodextrin, completely eliminated the effect of LPS on translocation of TLR4 into lipid rafts. The results are consistent with the hypothesis that ganglioside-induced prevention of TLR4 translocation into lipid rafts could be a mechanism of protection against LPS in various cells.

  16. Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Immerdal, Lissi; Niels-Christiansen, Lise-Lotte W;

    2005-01-01

    , reflecting clustering of the two proteins in separate membrane microdomains. Both proteins were observed in patchy "hot spots" at the cell surface as well as in isolated lipid rafts. Their insolubility in Brij 98 was only marginally affected by methyl-beta-cyclodextrin. In contrast, both the GABA(A) receptor...

  17. Impact of lipid rafts on the T -cell-receptor and peptide-major-histocompatibility-complex interactions under different measurement conditions

    Science.gov (United States)

    Li, Long; Xu, Guang-Kui; Song, Fan

    2017-01-01

    The interactions between T-cell receptor (TCR) and peptide-major-histocompatibility complex (pMHC), which enable T-cell development and initiate adaptive immune responses, have been intensively studied. However, a central issue of how lipid rafts affect the TCR-pMHC interactions remains unclear. Here, by using a statistical-mechanical membrane model, we show that the binding affinity of TCR and pMHC anchored on two apposing cell membranes is significantly enhanced because of the lipid raft-induced signaling protein aggregation. This finding may provide an alternative insight into the mechanism of T-cell activation triggered by very low densities of pMHC. In the case of cell-substrate adhesion, our results indicate that the loss of lateral mobility of the proteins on the solid substrate leads to the inhibitory effect of lipid rafts on TCR-pMHC interactions. Our findings help to understand why different experimental methods for measuring the impact of lipid rafts on the receptor-ligand interactions have led to contradictory conclusions.

  18. 脂筏结构在细胞内蛋白质运输中的作用%Function of lipid raft in protein transport

    Institute of Scientific and Technical Information of China (English)

    刘卫霞; 祝贺; 邢艳霞

    2015-01-01

    在细胞膜中存在由胆固醇、鞘糖脂以及蛋白质等成分组成的液态有序的结构,叫做脂筏.从内质网到高尔基体再到细胞质膜,脂筏结构在细胞膜中所占的比例越来越高.脂筏在高尔基体到细胞质膜的物质转运以及细胞内吞、再循环过程中发挥着重要的作用.本文将就脂筏结构在物质从高尔基体到质膜的转运和细胞内吞过程中的作用及其分子机制做一综述.%The ordered liquid structure composed of cholesterol, glycosphingolipid and protein in cell mem-brane is called lipid raft. The proportion of lipid raft in cell membrane becomes higher from endoplasmic reticulum to Golgi apparatus and then to plasma membrane. Lipid raft plays an important role in the protein transport from Golgi apparatus to plasma membrane, in endocytosis and recycling. This review will focus on the function and molecular mechanism of lipid raft in the protein transport from Golgi apparatus to plasma membrane and endocytosis.

  19. Expression of HIV-1 Vpu leads to loss of the viral restriction factor CD317/Tetherin from lipid rafts and its enhanced lysosomal degradation.

    Directory of Open Access Journals (Sweden)

    Ruth Rollason

    Full Text Available CD317/tetherin (aka BST2 or HM1.24 antigen is an interferon inducible membrane protein present in regions of the lipid bilayer enriched in sphingolipids and cholesterol (often termed lipid rafts. It has been implicated in an eclectic mix of cellular processes including, most notably, the retention of fully formed viral particles at the surface of cells infected with HIV and other enveloped viruses. Expression of the HIV viral accessory protein Vpu has been shown to lead to intracellular sequestration and degradation of tetherin, thereby counteracting the inhibition of viral release. There is evidence that tetherin interacts directly with Vpu, but it remains unclear where in the cell this interaction occurs or if Vpu expression affects the lipid raft localisation of tetherin. We have addressed these points using biochemical and cell imaging approaches focused on endogenous rather than ectopically over-expressed tetherin. We find i no evidence for an interaction between Vpu and endogenous tetherin at the cell surface, ii the vast majority of endogenous tetherin that is at the cell surface in control cells is in lipid rafts, iii internalised tetherin is present in non-raft fractions, iv expression of Vpu in cells expressing endogenous tetherin leads to the loss of tetherin from lipid rafts, v internalised tetherin enters early endosomes, and late endosomes, in both control cells and cells expressing Vpu, but the proportion of tetherin molecules destined for degradation rather than recycling is increased in cells expressing Vpu vi lysosomes are the primary site for degradation of endogenous tetherin in cells expressing Vpu. Our studies underlie the importance of studying endogenous tetherin and let us propose a model in which Vpu intercepts newly internalised tetherin and diverts it for lysosomal destruction rather than recycling to the cell surface.

  20. The structure of the CD3 ζζ transmembrane dimer in POPC and raft-like lipid bilayer: a molecular dynamics study.

    Science.gov (United States)

    Petruk, Ariel Alcides; Varriale, Sonia; Coscia, Maria Rosaria; Mazzarella, Lelio; Merlino, Antonello; Oreste, Umberto

    2013-11-01

    Plasma membrane lipids significantly affect assembly and activity of many signaling networks. The present work is aimed at analyzing, by molecular dynamics simulations, the structure and dynamics of the CD3 ζζ dimer in palmitoyl-oleoyl-phosphatidylcholine bilayer (POPC) and in POPC/cholesterol/sphingomyelin bilayer, which resembles the raft membrane microdomain supposed to be the site of the signal transducing machinery. Both POPC and raft-like environment produce significant alterations in structure and flexibility of the CD3 ζζ with respect to nuclear magnetic resonance (NMR) model: the dimer is more compact, its secondary structure is slightly less ordered, the arrangement of the Asp6 pair, which is important for binding to the Arg residue in the alpha chain of the T cell receptor (TCR), is stabilized by water molecules. Different interactions of charged residues with lipids at the lipid-cytoplasm boundary occur when the two environments are compared. Furthermore, in contrast to what is observed in POPC, in the raft-like environment correlated motions between transmembrane and cytoplasmic regions are observed. Altogether the data suggest that when the TCR complex resides in the raft domains, the CD3 ζζ dimer assumes a specific conformation probably necessary to the correct signal transduction.

  1. Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine.

    Science.gov (United States)

    Villa-Pulgarín, Janny A; Gajate, Consuelo; Botet, Javier; Jimenez, Alberto; Justies, Nicole; Varela-M, Rubén E; Cuesta-Marbán, Álvaro; Müller, Ingrid; Modolell, Manuel; Revuelta, José L; Mollinedo, Faustino

    2017-08-01

    Leishmaniasis is the world's second deadliest parasitic disease after malaria, and current treatment of the different forms of this disease is far from satisfactory. Alkylphospholipid analogs (APLs) are a family of anticancer drugs that show antileishmanial activity, including the first oral drug (miltefosine) for leishmaniasis and drugs in preclinical/clinical oncology trials, but their precise mechanism of action remains to be elucidated. Here we show that the tumor cell apoptosis-inducer edelfosine was the most effective APL, as compared to miltefosine, perifosine and erucylphosphocholine, in killing Leishmania spp. promastigotes and amastigotes as well as tumor cells, as assessed by DNA breakdown determined by flow cytometry. In studies using animal models, we found that orally-administered edelfosine showed a potent in vivo antileishmanial activity and diminished macrophage pro-inflammatory responses. Edelfosine was also able to kill Leishmania axenic amastigotes. Edelfosine was taken up by host macrophages and killed intracellular Leishmania amastigotes in infected macrophages. Edelfosine accumulated in tumor cell mitochondria and Leishmania kinetoplast-mitochondrion, and led to mitochondrial transmembrane potential disruption, and to the successive breakdown of parasite mitochondrial and nuclear DNA. Ectopic expression of Bcl-XL inhibited edelfosine-induced cell death in both Leishmania parasites and tumor cells. We found that the cytotoxic activity of edelfosine against Leishmania parasites and tumor cells was associated with a dramatic recruitment of FOF1-ATP synthase into lipid rafts following edelfosine treatment in both parasites and cancer cells. Raft disruption and specific FOF1-ATP synthase inhibition hindered edelfosine-induced cell death in both Leishmania parasites and tumor cells. Genetic deletion of FOF1-ATP synthase led to edelfosine drug resistance in Saccharomyces cerevisiae yeast. The present study shows that the antileishmanial and

  2. 去垢剂法提取脂筏的量化%The Quantification of Detergent Extraction Method of Lipid Rafts

    Institute of Scientific and Technical Information of China (English)

    曲由; 聂坤; 韩鹦赢; 沈鹏; 尚磊; 陈璐; 于建春; 韩景献

    2012-01-01

    Objective: To quantify the method of using non-ionic detergent for extracting lipid rafts. Methods: Based on the characteristic of that lipid rafts is not soluable in non-ionic detergents at 4℃, lipid rafts could be extracted and then delaminated by sucrose gradient centrifiigation. To validate the extract's characteristics, cholesterol absorbance and flotillin-1, a lipid rafts' specific markers, was detected. Results: A yellow lipide layer band located at the interface between 5 % and 30 % sucrose. It showed that there was a maximum absorbance value at 620 nm by light scattering and a band was visible at molecular mass 48 kDa site by Western blot. Conclusion: The extract corre- sponded with many characteristics of lipid rafts. The quantified operation of detergent method is a simple and stable approach for lipid rafts extraction.%目的:将去垢剂法提取脂筏的操作方法量化.方法:依据脂质筏在4℃时不溶于去垢剂的特性提取脂筏,再用蔗糖密度梯度离心法将去垢剂不溶组分分离出来.用胆固醇吸光度及浮舰蛋白1(flotillin-1)作为脂质筏的特异性标记,验证提取物的特性.结果:在离心管5%蔗糖与30%蔗糖分界处看到一层连成片状乳黄色脂质物质,光散射法显示该提取物在620 nm处有最大吸光值,Western blot结果显示在相对分子质量48 kDa处可见条带.结论:提取物符合脂筏的多种特性,操作方法量化的去垢剂法是一种简单、稳定提取脂质筏的方法.

  3. Sphingosylphosphorylcholine promotes the differentiation of resident Sca-1 positive cardiac stem cells to cardiomyocytes through lipid raft/JNK/STAT3 and β-catenin signaling pathways.

    Science.gov (United States)

    Li, Wenjing; Liu, Honghong; Liu, Pingping; Yin, Deling; Zhang, Shangli; Zhao, Jing

    2016-07-01

    Resident cardiac Sca-1-positive (+) stem cells may differentiate into cardiomyocytes to improve the function of damaged hearts. However, little is known about the inducers and molecular mechanisms underlying the myogenic conversion of Sca-1(+) stem cells. Here we report that sphingosylphosphorylcholine (SPC), a naturally occurring bioactive lipid, induces the myogenic conversion of Sca-1(+) stem cells, as evidenced by the increased expression of cardiac transcription factors (Nkx2.5 and GATA4), structural proteins (cardiac Troponin T), transcriptional enhancer (Mef2c) and GATA4 nucleus translocation. First, SPC activated JNK and STAT3, and the JNK inhibitor SP600125 or STAT3 inhibitor stattic impaired the SPC-induced expression of cardiac transcription factors and GATA4 nucleus translocation, which suggests that JNK and STAT3 participated in SPC-promoted cardiac differentiation. Moreover, STAT3 activation was inhibited by SP600125, whereas JNK was inhibited by β-cyclodextrin as a lipid raft breaker, which indicates a lipid raft/JNK/STAT3 pathway involved in SPC-induced myogenic transition. β-Catenin, degraded by activated GSK3β, was inhibited by SPC. Furthermore, GSK3β inhibitors weakened but the β-catenin inhibitor promoted SPC-induced differentiation. We found no crosstalk between the lipid raft/JNK/STAT3 and β-catenin pathway. Our study describes a lipid, SPC, as an endogenic inducer of myogenic conversion in Sca-1(+) stem cells with low toxicity and high efficiency for uptake.

  4. The involvement of P2Y12 receptors, NADPH oxidase, and lipid rafts in the action of extracellular ATP on synaptic transmission at the frog neuromuscular junction.

    Science.gov (United States)

    Giniatullin, A; Petrov, A; Giniatullin, R

    2015-01-29

    Adenosine 5'-triphosphate (ATP) is the main co-transmitter accompanying the release of acetylcholine from motor nerve terminals. Previously, we revealed the direct inhibitory action of extracellular ATP on transmitter release via redox-dependent mechanism. However, the receptor mechanism of ATP action and ATP-induced sources of reactive oxygen sources (ROS) remained not fully understood. In the current study, using microelectrode recordings of synaptic currents from the frog neuromuscular junction, we analyzed the receptor subtype involved in synaptic action of ATP, receptor coupling to NADPH oxidase and potential location of ATP receptors within the lipid rafts. Using subtype-specific antagonists, we found that the P2Y13 blocker 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde did not prevent the depressant action of ATP. In contrast, the P2Y12 antagonist 2-methylthioadenosine 5'-monophosphate abolished the inhibitory action of ATP, suggesting the key role of P2Y12 receptors in ATP action. As the action of ATP is redox-dependent, we also tested potential involvement of the NADPH oxidase, known as a common inducer of ROS. The depressant action of extracellular ATP was significantly reduced by diphenyleneiodonium chloride and 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, two structurally different inhibitors of NADPH oxidase, indicating that this enzyme indeed mediates the action of ATP. Since the location and activity of various receptors are often associated with lipid rafts, we next tested whether ATP-driven inhibition depends on lipid rafts. We found that the disruption of lipid rafts with methyl-beta-cyclodextrin reduced and largely delayed the action of ATP. Taken together, these data revealed key steps in the purinergic control of synaptic transmission via P2Y12 receptors associated with lipid rafts, and identified NADPH oxidase as the main source of ATP-induced inhibitory ROS at the neuromuscular

  5. Platelets recognize brain-specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Ilya Sotnikov

    Full Text Available Platelets respond to vascular damage and contribute to inflammation, but their role in the neurodegenerative diseases is unknown. We found that the systemic administration of brain lipid rafts induced a massive platelet activation and degranulation resulting in a life-threatening anaphylactic-like response in mice. Platelets were engaged by the sialated glycosphingolipids (gangliosides integrated in the rigid structures of astroglial and neuronal lipid rafts. The brain-abundant gangliosides GT1b and GQ1b were specifically recognized by the platelets and this recognition involved multiple receptors with P-selectin (CD62P playing the central role. During the neuroinflammation, platelets accumulated in the central nervous system parenchyma, acquired an activated phenotype and secreted proinflammatory factors, thereby triggering immune response cascades. This study determines a new role of platelets which directly recognize a neuronal damage and communicate with the cells of the immune system in the pathogenesis of neurodegenerative diseases.

  6. Sizes of lipid domains: What do we know from artificial lipid membranes? What are the possible shared features with membrane rafts in cells?

    Science.gov (United States)

    Rosetti, Carla M; Mangiarotti, Agustín; Wilke, Natalia

    2017-01-28

    In model lipid membranes with phase coexistence, domain sizes distribute in a very wide range, from the nanometer (reported in vesicles and supported films) to the micrometer (observed in many model membranes). Domain growth by coalescence and Ostwald ripening is slow (minutes to hours), the domain size being correlated with the size of the capture region. Domain sizes thus strongly depend on the number of domains which, in the case of a nucleation process, depends on the oversaturation of the system, on line tension and on the perturbation rate in relation to the membrane dynamics. Here, an overview is given of the factors that affect nucleation or spinodal decomposition and domain growth, and their influence on the distribution of domain sizes in different model membranes is discussed. The parameters analyzed respond to very general physical rules, and we therefore propose a similar behavior for the rafts in the plasma membrane of cells, but with obstructed mobility and with a continuously changing environment.

  7. Lipid raft facilitated ligation of K-{alpha}1-tubulin by specific antibodies on epithelial cells: Role in pathogenesis of chronic rejection following human lung transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Tiriveedhi, Venkataswarup; Angaswamy, Nataraju [Department of Surgery, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (United States); Weber, Joseph [Department of Medicine, Washington University School of Medicine, St. Louis, MO (United States); Mohanakumar, T., E-mail: kumart@wustl.edu [Department of Surgery, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (United States)

    2010-08-20

    Research highlights: {yields} Addition of KAT Abs (+) sera to NHBE culture causes upregulation of growth factors. {yields} Cholesterol depletion causes down regulation of growth factor expression. {yields} Cholesterol depletion is accompanied by loss of membrane bound caveolin. {yields} Thus, we demonstrate lipid raft are critical for efficient ligation of the KAT Abs. -- Abstract: Long term function of human lung allografts is hindered by development of chronic rejection manifested as Bronchiolitis Obliterans Syndrome (BOS). We have previously identified the development of antibodies (Abs) following lung transplantation to K-{alpha}1-tubulin (KAT), an epithelial surface gap junction cytoskeletal protein, in patients who develop BOS. However, the biochemical and molecular basis of the interactions and signaling cascades mediated by KAT Abs are yet to be defined. In this report, we investigated the biophysical basis of the epithelial cell membrane surface interaction between KAT and its specific Abs. Towards this, we analyzed the role of the lipid raft-domains in the membrane interactions which lead to cell signaling and ultimately increased growth factor expression. Normal human bronchial epithelial (NHBE) cells, upon specific ligation with Abs to KAT obtained either from the serum of BOS(+) patients or monoclonal KAT Abs, resulted in upregulation of growth factors VEGF, PDGF, and bFGF (6.4 {+-} 1.1-, 3.2 {+-} 0.9-, and 3.4 {+-} 1.1-fold increase, respectively) all of which are important in the pathogenesis of BOS. To define the role for lipid raft in augmenting surface interactions, we analyzed the changes in the growth factor expression pattern upon depletion and enrichment with lipid raft following the ligation of the epithelial cell membranes with Abs specific for KAT. NHBE cells cultured in the presence of {beta}-methyl cyclodextran ({beta}MCD) had significantly reduced growth factor expression (1.3 {+-} 0.3, vs {beta}MCD untreated being 6.4 {+-} 1.1-fold

  8. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells.

    Science.gov (United States)

    Lin, Meng-Liang; Lu, Yao-Cheng; Chen, Hung-Yi; Lee, Chuan-Chun; Chung, Jing-Gung; Chen, Shih-Shun

    2014-05-01

    Stromal cell-derived factor-1α (SDF-1α) is a ligand for C-X-C chemokine receptor type 4 (CXCR4), which contributes to the metastasis of cancer cells by promoting cell migration. Here, we show that the SDF-1α/CXCR4 axis can significantly increase invasion of esophageal carcinoma (EC) cells. We accomplished this by examining the effects of CXCR4 knockdown as well as treatment with a CXCR4-neutralizing antibody and the CXCR4-specific inhibitor AMD3100. Curcumin suppressed SDF-1α-induced cell invasion and matrix metalloproteinase-2 (MMP-2) promoter activity, cell surface localization of CXCR4 at lipid rafts, and lipid raft-associated ras-related C3 botulinum toxin substrate 1 (Rac1)/phosphatidylinositol 3-kinase (PI3K) p85α/Akt signaling. Curcumin inhibited SDF-1α-induced cell invasion by suppressing the Rac1-PI3K signaling complex at lipid rafts but did not abrogate lipid raft formation. We further demonstrate that the attenuation of lipid raft-associated Rac1 activity by curcumin was critical for the inhibition of SDF-1α-induced PI3K/Akt/NF-κB activation, cell surface localization of CXCR4 at lipid rafts, MMP-2 promoter activity, and cell invasion. Collectively, our results indicate that curcumin inhibits SDF-1α-induced EC cell invasion by suppressing the formation of the lipid raft-associated Rac1-PI3K-Akt signaling complex, the localization of CXCR4 with lipid rafts at the cell surface, and MMP-2 promoter activity, likely through the inhibition of Rac1 activity.

  9. Effect of Lipid Raft on Cardiovascular Diseases Induced by Trans Fatty Acids%脂筏在反式脂肪酸诱导心血管疾病过程中的研究

    Institute of Scientific and Technical Information of China (English)

    王青; 邱斌

    2013-01-01

    The effects of lipid raft on the TFA-induced cardiovascular diseases was studied to provide scientific data for the research on the relation between lipid raft and cardiovascular diseases.%探讨脂筏在反式脂肪酸诱导心血管疾病过程中的作用机制,为研究脂筏和心血管疾病的关系提供科学依据.

  10. Lipocalin 2 binds to membrane phosphatidylethanolamine to induce lipid raft movement in a PKA-dependent manner and modulates sperm maturation.

    Science.gov (United States)

    Watanabe, Hitomi; Takeo, Toru; Tojo, Hiromasa; Sakoh, Kazuhito; Berger, Thorsten; Nakagata, Naomi; Mak, Tak W; Kondoh, Gen

    2014-05-01

    Mammalian sperm undergo multiple maturation steps after leaving the testis in order to become competent for fertilization, but the molecular mechanisms underlying this process remain unclear. In terms of identifying factors crucial for these processes in vivo, we found that lipocalin 2 (Lcn2), which is known as an innate immune factor inhibiting bacterial and malarial growth, can modulate sperm maturation. Most sperm that migrated to the oviduct of wild-type females underwent lipid raft reorganization and glycosylphosphatidylinositol-anchored protein shedding, which are signatures of sperm maturation, but few did so in Lcn2 null mice. Furthermore, we found that LCN2 binds to membrane phosphatidylethanolamine to reinforce lipid raft reorganization via a PKA-dependent mechanism and promotes sperm to acquire fertility by facilitating cholesterol efflux. These observations imply that mammals possess a mode for sperm maturation in addition to the albumin-mediated pathway.

  11. Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Kahya, N; Scherfeld, D; Bacia, K; Poolman, B; Schwille, P

    2003-01-01

    Confocal fluorescence microscopy and fluorescence correlation spectroscopy (FCS) have been employed to investigate the lipid spatial and dynamic organization in giant unilamellar vesicles (GUVs) prepared from ternary mixtures of dioleoyl-phosphatidylcholine/sphingomyelin/ cholesterol. For a certain

  12. Lipid Raft-Mediated Membrane Tethering and Delivery of Hydrophobic Cargos from Liquid Crystal-Based Nanocarriers.

    Science.gov (United States)

    Nag, Okhil K; Naciri, Jawad; Oh, Eunkeu; Spillmann, Christopher M; Delehanty, James B

    2016-04-20

    A main goal of bionanotechnology and nanoparticle (NP)-mediated drug delivery (NMDD) continues to be the development of novel biomaterials that can controllably modulate the activity of the NP-associated therapeutic cargo. One of the desired subcellular locations for targeted delivery in NMDD is the plasma membrane. However, the controlled delivery of hydrophobic cargos to the membrane bilayer poses significant challenges including cargo precipitation and lack of specificity. Here, we employ a liquid crystal NP (LCNP)-based delivery system for the controlled partitioning of a model dye cargo from within the NP core into the plasma membrane bilayer. During synthesis of the NPs, the water-insoluble model dye cargo, 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), was efficiently incorporated into the hydrophobic LCNP core as confirmed by multiple spectroscopic analyses. Conjugation of a PEGylated cholesterol derivative to the NP surface (DiO-LCNP-PEG-Chol) facilitated the localization of the dye-loaded NPs to lipid raft microdomains in the plasma membrane in HEK 293T/17 cell. Analysis of DiO cellular internalization kinetics revealed that when delivered as a LCNP-PEG-Chol NP, the half-life of DiO membrane residence time (30 min) was twice that of free DiO (DiO(free)) (15 min) delivered from bulk solution. Time-resolved laser scanning confocal microscopy was employed to visualize the passive efflux of DiO from the LCNP core and its insertion into the plasma membrane bilayer as confirmed by Förster resonance energy transfer (FRET) imaging. Finally, the delivery of DiO as a LCNP-PEG-Chol complex resulted in the attenuation of its cytotoxicity; the NP form of DiO exhibited ∼30-40% less toxicity compared to DiO(free). Our data demonstrate the utility of the LCNP platform as an efficient vehicle for the combined membrane-targeted delivery and physicochemical modulation of molecular cargos using lipid raft-mediated tethering.

  13. Saltatory conduction in unmyelinated axons: Clustering of Na+ channels on lipid rafts allows micro-saltatory conduction in C-fibers

    Directory of Open Access Journals (Sweden)

    Ali eNeishabouri

    2014-10-01

    Full Text Available The action potential (AP, the fundamental signal of the nervous system, is carried by two types of axons: unmyelinated and myelinated fibers. In the former the action potential propagates continuously along the axon as established in large-diameter fibers. In the latter axons the AP jumps along the Nodes of Ranvier – discrete, anatomically specialized regions which contain very high densities of sodium ion (Na + channels. Therefore saltatory conduction is thought as the hallmark of myelinated axons, which enables faster and more reliable propagation of signals than in unmyelinated axons of same outer diameter.Recent molecular anatomy showed that in C-fibers, the very thin (0.1 μm diameter axons of the peripheral nervous system, Nav1.8 channels are clustered together on lipid rafts that float in the cell membrane. This localized concentration of Na+ channels resembles in structure the ion channel organization at the Nodes of Ranvier, yet it is currently unknown whether this translates into equivalent phenomenon of saltatory conduction or related-functional benefits and efficiencies. Therefore, we modeled biophysically realistic unmyelinated axons with both conventional and lipid-raft based organization of Na+ channels. We find that action potentials are reliably conducted in a micro-saltatory fashion along lipid rafts.Comparing APs in unmyelinated fibers with and without lipid rafts did not reveal any significant difference in either the metabolic cost or AP propagation velocity. By investigating the efficiency of AP propagation over Nav1.8 channels, we find however that the specific inactivation properties of these channels significantly increase the metabolic cost of signaling in C-fibers.

  14. Regulation of TrkB receptor translocation to lipid rafts by adenosine A2A receptors and its functional implications for BDNF-induced regulation of synaptic plasticity

    OpenAIRE

    Assaife-Lopes, Natália; Sousa, Vasco C.; Pereira, Daniela B.; Ribeiro, Joaquim A.; Sebastião, Ana M.

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) signalling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been shown to be necessary for the activation of specific signalling pathways and modulation of neurotransmitter release by BDNF. Since TrkB receptors are known to be modulated by adenosine A2A receptor activation, we hypothesized that activation of A2A receptors could influence TrkB receptor localization among different membrane microdoma...

  15. Adenylyl cyclase type 6 overexpression selectively enhances β-adrenergic and prostacyclin receptor-mediated inhibition of cardiac fibroblast function because of colocalization in lipid rafts

    OpenAIRE

    Liu, Xiaoqiu; Thangavel, Muthusamy; Sun, Shu Qiang; Kaminsky, Joseph; Mahautmr, Penden; Stitham, Jeremiah; Hwa, John; Ostrom, Rennolds S.

    2007-01-01

    Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Fibroblasts are activated by factors such as transforming growth factor β and inhibited by agents that elevate 3′,5′-cyclic adenosine monophosphate (cAMP) levels. cAMP signal generation and response is known to be compartmentalized in many cell types in part through the colocalization of receptors and specific adenylyl cyclase isoforms in lipid rafts and caveolae. Th...

  16. From the Cover: Tetrachlorobenzoquinone Exerts Neurological Proinflammatory Activity by Promoting HMGB1 Release, Which Induces TLR4 Clustering within the Lipid Raft.

    Science.gov (United States)

    Fu, Juanli; Shi, Qiong; Song, Xiufang; Liu, Zixuan; Wang, Yawen; Wang, Yuxin; Song, Erqun; Song, Yang

    2016-10-01

    Tetrachlorobenzoquinone (TCBQ) is a confirmed active metabolite of a well-known environmental pollutant pentachlorophenol (PCP). Unfortunately, there is insufficient knowledge present available on TCBQ's toxicity. Our previous studies indicated that TCBQ induces inflammatory response in vivo and in vitro; however, its exact mechanism needs further investigation. Toll-like receptors (TLRs) play a crucial role in conveying of inflammatory signaling, whilst high-mobility group box 1 (HMGB1) functions as a transcription-enhancing nuclear protein that regulates inflammation. Indeed, this study demonstrated that TCBQ induces the secretion/translocation of HMGB1, which in turn activates its receptors, TLR family gene (especially TLR4) and receptor for advanced glycation end-products (RAGE) expressions. Consistently, the binding affinity of HMGB1 with its receptors also increased. In the case of HMGB1 or TLR4 deficiency, there were decreases in TCBQ-induced neuroinflammatory cytokine production and neuropathological changes, eg, neuronal loss, astrocyte and macrophage cells activation. Moreover, we found the mobilization of TLR4 into lipid rafts occurs in response to TCBQ exposure, lipid rafts disruptors weakened this effect, suggested lipid rafts play an essential role for TLR4-mediated signal transduction and target inflammatory cytokines expressions. In summary, our current findings revealed a previously unknown mechanism of TCBQ-induced neurological inflammation related to HMGB1-TLR4 signaling.

  17. Vibrio vulnificus VvhA induces autophagy-related cell death through the lipid raft-dependent c-Src/NOX signaling pathway.

    Science.gov (United States)

    Song, Eun Ju; Lee, Sei-Jung; Lim, Hyeon Su; Kim, Jun Sung; Jang, Kyung Ku; Choi, Sang Ho; Han, Ho Jae

    2016-06-02

    VvhA, a virulent factor of Vibrio (V.) vulnificus, induces acute cell death in a destructive manner. Autophagy plays an important role in cell death, but the functional role of VvhA in autophagy-related cell death has not been elucidated yet. We found that rVvhA significantly increased LC3 puncta formation and autophagic flux in promoting the cell death of human intestinal epithelial Caco-2 cells. The cell death induced by rVvhA was independent of lysosomal permeabilizaton and caspase activation. rVvhA induced rapid phosphorylation of c-Src in the membrane lipid raft, which resulted in an increased interaction between lipid raft molecule caveolin-1 and NADPH oxidase (NOX) complex Rac1 for ROS production. NOX-mediated ROS signaling induced by rVvhA increased the phosphorylation of extracellular signal-regulated kinase (ERK) and eukaryotic translation initiation factor 2α (eIF2α) which are required for mRNA expression of Atg5 and Atg16L1 involved in autophagosome formation. In an in vivo model, VvhA increased autophagy activation and paracellular permeabilization in intestinal epithelium. Collectively, the results here show that VvhA plays a pivotal role in the pathogenesis and dissemination of V. vulnificus by autophagy upregulation, through the lipid raft-mediated c-Src/NOX signaling pathway and ERK/eIF2α activation.

  18. A retinoic acid receptor RARα pool present in membrane lipid rafts forms complexes with G protein αQ to activate p38MAPK.

    Science.gov (United States)

    Piskunov, A; Rochette-Egly, C

    2012-07-12

    Retinoic acid (RA) regulates several gene programs by nuclear RA receptors (RARs) that are ligand-dependent transcriptional transregulators. The basic mechanism for switching on transcription of cognate-target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes. In addition to these classical genomic effects, we recently demonstrated that RA also induces the rapid activation of the p38MAPK/MSK1 pathway, with characteristic downstream consequences on the phosphorylation of RARs and the expression of their target genes. Here, we aimed at deciphering the underlying mechanism of the rapid non-genomic effects of RA. We highlighted a novel paradigm in which a fraction of the cellular RARα pool is present in membrane lipid rafts, where it forms complexes with G protein alpha Q (Gαq) in response to RA. This rapid RA-induced formation of RARα/Gαq complexes in lipid rafts is required for the activation of p38MAPK that occurs in response to RA. Accordingly, in RA-resistant cancer cells, characterized by the absence of p38MAPK activation, RARα present in membrane lipid rafts does not associate with Gαq, pointing out the essential contribution of RARα/Gαq complexes in RA signaling.

  19. The Reorientation of T-Cell Polarity and Inhibition of Immunological Synapse Formation by CD46 Involves Its Recruitment to Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Mandy J. Ludford-Menting

    2011-01-01

    Full Text Available Many infectious agents utilize CD46 for infection of human cells, and therapeutic applications of CD46-binding viruses are now being explored. Besides mediating internalization to enable infection, binding to CD46 can directly alter immune function. In particular, ligation of CD46 by antibodies or by measles virus can prevent activation of T cells by altering T-cell polarity and consequently preventing the formation of an immunological synapse. Here, we define a mechanism by which CD46 reorients T-cell polarity to prevent T-cell receptor signaling in response to antigen presentation. We show that CD46 associates with lipid rafts upon ligation, and that this reduces recruitment of both lipid rafts and the microtubule organizing centre to the site of receptor cross-linking. These data combined indicate that polarization of T cells towards the site of CD46 ligation prevents formation of an immunological synapse, and this is associated with the ability of CD46 to recruit lipid rafts away from the site of TCR ligation.

  20. Determination of serum aluminum, platelet aggregation and lipid peroxidation in hemodialyzed patients

    Directory of Open Access Journals (Sweden)

    T.J.C. Neiva

    2002-03-01

    Full Text Available Aluminum (Al3+ overload is frequently associated with lipid peroxidation and neurological disorders. Aluminum accumulation is also reported to be related to renal impairment, anemia and other clinical complications in hemodialysis patients. The aim of the present study was to determine the degree of lipid peroxidation, platelet aggregation and serum aluminum in patients receiving regular hemodialytic treatment. The level of plasma lipid peroxidation was evaluated on the basis of thiobarbituric acid reactive substances (TBARS. Mean platelet peroxidation in patients undergoing hemodialysis was significantly higher than in normal controls (2.7 ± 0.03 vs 1.8 ± 0.06 nmol/l, P<0.05. Platelet aggregation and serum aluminum levels were determined by a turbidimetric method and atomic absorption spectrophotometry, respectively. Serum aluminum was significantly higher in patients than in normal controls (44.5 ± 29 vs 10.8 ± 2.5 µg/l, P<0.05. Human blood platelets were stimulated with collagen (2.2 µg/ml, adenosine diphosphate (6 µM and epinephrine (6 µM and showed reduced function with the three agonists utilized. No correlation between aluminum levels and platelet aggregation or between aluminum and peroxidation was observed in hemodialyzed patients.

  1. Sphingosylphosphorylcholine protects cardiomyocytes against ischemic apoptosis via lipid raft/PTEN/Akt1/mTOR mediated autophagy.

    Science.gov (United States)

    Yue, Hong-Wei; Liu, Jing; Liu, Ping-Ping; Li, Wen-Jing; Chang, Fen; Miao, Jun-Ying; Zhao, Jing

    2015-09-01

    Autophagy, evoked by diverse stresses including myocardial ischemia/reperfusion (I/R), profoundly affects the development of heart failure. However, the specific molecular basis of autophagy remains to be elucidated. Here we report that sphingosylphosphorylcholine (SPC), a bioactive sphingolipid, significantly suppressed apoptosis and induced autophagy in cardiomyocytes. Blocking this SPC evoked autophagy by 3-methyladenine (3MA)-sensitized cardiomyocytes to serum deprivation-induced apoptosis. Subsequent studies revealed that SPC downregulated the phosphorylation of p70S6K and 4EBP1 (two substrates of mTOR) but enhanced that of JNK when inducing autophagy. We identified SPC as a switch for the activity of Akt1, a supposed upstream modulator of both mTOR and JNK. Furthermore, β-cyclodextrin, which destroys membrane cholesterol, abolished the SPC-reduced phosphorylation of both Akt and PTEN, thus inhibiting SPC-induced autophagy. In conclusion, SPC is a novel molecule protecting cardiomyocytes against apoptosis by promoting autophagy. The lipid raft/PTEN/Akt1/mTOR signal pathway is the underlying mechanism and might provide novel targets for cardiac failure therapy.

  2. Ca2+ -regulated lysosome fusion mediates angiotensin II-induced lipid raft clustering in mesenteric endothelial cells.

    Science.gov (United States)

    Han, Wei-Qing; Chen, Wen-Dong; Zhang, Ke; Liu, Jian-Jun; Wu, Yong-Jie; Gao, Ping-Jin

    2016-04-01

    It has been reported that intracellular Ca2+ is involved in lysosome fusion and membrane repair in skeletal cells. Given that angiotensin II (Ang II) elicits an increase in intracellular Ca2+ and that lysosome fusion is a crucial mediator of lipid raft (LR) clustering, we hypothesized that Ang II induces lysosome fusion and activates LR formation in rat mesenteric endothelial cells (MECs). We found that Ang II acutely increased intracellular Ca2+ content, an effect that was inhibited by the extracellular Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) and the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release inhibitor 2-aminoethoxydiphenyl borate (2-APB). Further study showed that EGTA almost completely blocked Ang II-induced lysosome fusion, the translocation of acid sphingomyelinase (ASMase) to LR clusters, ASMase activation and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activation. In contrast, 2-APB had a slight inhibitory effect. Functionally, both the lysosome inhibitor bafilomycin A1 and the ASMase inhibitor amitriptyline reversed Ang II-induced impairment of vasodilation. We conclude that Ca2+ -regulated lysosome fusion mediates the Ang II-induced regulation of the LR-redox signaling pathway and mesenteric endothelial dysfunction.

  3. Reduced levels of folate transporters (PCFT and RFC) in membrane lipid rafts result in colonic folate malabsorption in chronic alcoholism.

    Science.gov (United States)

    Wani, Nissar Ahmad; Kaur, Jyotdeep

    2011-03-01

    We studied the effect of chronic ethanol ingestion on folate transport across the colonic apical membranes (CAM) in rats. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20%) solution orally for 3 months and folate transport was studied in the isolated colon apical membrane vesicles. The folate transport was found to be carrier mediated, saturable, with pH optima at 5.0. Chronic ethanol ingestion reduced the folate transport across the CAM by decreasing the affinity of transporters (high Km) for the substrate and by decreasing the number of transporter molecules (low Vmax) on the colon luminal surface. The decreased transport activity at the CAM was associated with down-regulation of the proton-coupled folate transporter (PCFT) and the reduced folate carrier (RFC) which resulted in decreased PCFT and RFC protein levels in the colon of rats fed alcohol chronically. Moreover, the PCFT and the RFC were found to be distributed in detergent insoluble fraction of the CAM in rats. Floatation experiments on Optiprep density gradients demonstrated the association of the PCFT and the RFC protein with lipid rafts (LR). Chronic alcoholism decreased the PCFT and the RFC protein levels in the CAM LR in accordance with the decreased synthesis. Hence, we propose that downregulation in the expression of the PCFT and the RFC in colon results in reduced levels of these transporters in colon apical membrane LR as a mechanism of folate malabsorption during chronic alcoholism.

  4. 质膜脂筏的研究进展%Research Progress of Lipid Raft on Plasma Membrane

    Institute of Scientific and Technical Information of China (English)

    姚茂平; 陈雄庭

    2007-01-01

    质膜具有一些被命名为"脂筏(lipid rafts)"和"质膜微囊(Caveolae)"的微区.脂筏由丰富的鞘糖脂、胆固醇和酰化的蛋白质动态聚集而成,形成相对稳定的具有一定功能的筹结构漂浮于二维流动的细胞质膜中,被人们形象地称之为"功能筏".具有参与胞吞胞饮、信号转导、运输胆固醇等重要功能,随着人们在分子水平上认识的不断深化,脂筏结构和功能的物理、化学基础研究方面也取得了初步的进展.

  5. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells.

    Science.gov (United States)

    Adebiyi, Adebowale; Soni, Hitesh; John, Theresa A; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca(2+) ([Ca(2+)]i) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca(2+)]i elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca(2+)]i chelator; KN-93, a Ca(2+)/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca(2+)]i-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Comparative Effects of α-, β-, and γ-Carbolines on Platelet Aggregation and Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Hironori Tsuchiya

    2011-01-01

    Full Text Available Cigarette smoking and alcohol consumption possibly affect platelet functions. To verify the hypothesis that some α-, β-, and γ-carboline components in cigarette smoke and alcoholic beverages may change platelet aggregability, their effects on human platelets were determined by aggregometry together with investigating their membrane effects by turbidimetry. Carbolines inhibited platelet aggregation induced by five agents with the potency being 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole > 3-amino-1-methyl-5H-pyrido[4,3-b]indole > 1-methyl-9H-pyrido[3,4-b]indole. The most potent 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole showed 50% aggregation-inhibitory concentrations of 6–172 μM. Both γ-carbolines interacted with phosphatidylcholine membranes to lower the lipid phase transition temperature with the potency correlating to the antiplatelet activity, suggesting that the interaction with platelet membranes to increase their fluidity underlies antiplatelet effects. Given their possible concentration and accumulation in platelets, γ- and β-carbolines would provide cigarette smokers and alcohol drinkers with reduced platelet aggregability, and they may be responsible for the occurrence of hemorrhagic diseases associated with heavy smoking and alcoholics.

  7. Platelet activation and lipid peroxidation in patients with acute ischemic stroke

    NARCIS (Netherlands)

    F. van Kooten (Fop); G. Ciabattoni; C. Patrono; D.W.J. Dippel (Diederik); P.J. Koudstaal (Peter Jan)

    1997-01-01

    textabstractBACKGROUND AND PURPOSE: Both platelet activation and lipid peroxidation are potential sources of vasoactive eicosanoids that can be produced via the cyclooxygenase pathway, ie, thromboxane (TX) A2, or by free radical-catalyzed peroxidation of arachidonic acid, ie, isoprostanes. We invest

  8. [The relationship between lipid peroxidation and platelet aggregation in atherosclerotic patients].

    Science.gov (United States)

    Gómez Calviño, C; Simón Carballo, R; Coma Alfonso, C; Sánchez de León, T; Montero Pacheco, E; Rodríguez Piloto, R

    1991-01-01

    We studied 58 patients with arterial esteno-occlusive disease, 32 diabetics and 26 nondiabetics. Some parameters of lipid metabolism and platelet function were evaluated. We show the correlations founded among these parameters and we offer a possible explanation which support this behaviour.

  9. Recombinant viral capsid protein VP1 suppresses migration and invasion of human cervical cancer by modulating phosphorylated prohibitin in lipid rafts.

    Science.gov (United States)

    Chiu, Ching-Feng; Peng, Jei-Ming; Hung, Shao-Wen; Liang, Chi-Ming; Liang, Shu-Mei

    2012-07-28

    Recombinant capsid protein VP1 (rVP1) of foot-and-mouth disease virus inhibits invasion/metastasis of cancer cells. Here we studied its mechanism of action on human cervical cancer cells. The inhibition of cell invasion by rVP1 was accompanied with reduction in phosphatidylinositol (3,4,5)-triphosphate (PIP3), phospho-Akt S473, phosphorylated prohibitin (phospho-PHB) T258 in lipid rafts, dissociation of phospho-PHB T258 with Raf-1 and the inactivation of Raf-1/ERK. Addition of PIP3 or overexpression of constitutively active Akt and raft-anchored PHB T258 but not PHB T258I mutant protein reversed the inhibitory effects of rVP1. rVP1 inhibited cervical tumor growth and metastasis, and prolonged survival in xenograft mouse models. These results suggest that rVP1 inhibits cancer metastasis via de-phosphorylation of Akt and PHB T258 in lipid rafts to downregulate Raf/ERK signaling.

  10. Platelets

    Science.gov (United States)

    ... tiny fraction of the blood volume. The principal function of platelets is to prevent bleeding. Red blood cells are ... forming a long string. This illustrates the basic function of platelets, to stick to any foreign surface and then ...

  11. Synthetic virus-like particles target dendritic cell lipid rafts for rapid endocytosis primarily but not exclusively by macropinocytosis.

    Directory of Open Access Journals (Sweden)

    Rajni Sharma

    Full Text Available DC employ several endocytic routes for processing antigens, driving forward adaptive immunity. Recent advances in synthetic biology have created small (20-30 nm virus-like particles based on lipopeptides containing a virus-derived coiled coil sequence coupled to synthetic B- and T-cell epitope mimetics. These self-assembling SVLP efficiently induce adaptive immunity without requirement for adjuvant. We hypothesized that the characteristics of DC interaction with SVLP would elaborate on the roles of cell membrane and intracellular compartments in the handling of a virus-like entity known for its efficacy as a vaccine. DC rapidly bind SVLP within min, co-localised with CTB and CD9, but not caveolin-1. In contrast, internalisation is a relatively slow process, delivering SVLP into the cell periphery where they are maintained for a number of hrs in association with microtubules. Although there is early association with clathrin, this is no longer seen after 10 min. Association with EEA-1(+ early endosomes is also early, but proteolytic processing appears slow, the SVLP-vesicles remaining peripheral. Association with transferrin occurs rarely, and only in the periphery, possibly signifying translocation of some SVLP for delivery to B-lymphocytes. Most SVLP co-localise with high molecular weight dextran. Uptake of both is impaired with mature DC, but there remains a residual uptake of SVLP. These results imply that DC use multiple endocytic routes for SVLP uptake, dominated by caveolin-independent, lipid raft-mediated macropinocytosis. With most SVLP-containing vesicles being retained in the periphery, not always interacting with early endosomes, this relates to slow proteolytic degradation and antigen retention by DC. The present characterization allows for a definition of how DC handle virus-like particles showing efficacious immunogenicity, elements valuable for novel vaccine design in the future.

  12. Phospholipase D promotes Arcanobacterium haemolyticum adhesion via lipid raft remodeling and host cell death following bacterial invasion

    Directory of Open Access Journals (Sweden)

    Carlson Petteri

    2010-10-01

    Full Text Available Abstract Background Arcanobacterium haemolyticum is an emerging bacterial pathogen, causing pharyngitis and more invasive infections. This organism expresses an unusual phospholipase D (PLD, which we propose promotes bacterial pathogenesis through its action on host cell membranes. The pld gene is found on a genomic region of reduced %G + C, suggesting recent horizontal acquisition. Results Recombinant PLD rearranged HeLa cell lipid rafts in a dose-dependent manner and this was inhibited by cholesterol sequestration. PLD also promoted host cell adhesion, as a pld mutant had a 60.3% reduction in its ability to adhere to HeLa cells as compared to the wild type. Conversely, the pld mutant appeared to invade HeLa cells approximately two-fold more efficiently as the wild type. This finding was attributable to a significant loss of host cell viability following secretion of PLD from intracellular bacteria. As determined by viability assay, only 15.6% and 82.3% of HeLa cells remained viable following invasion by the wild type or pld mutant, respectively, as compared to untreated HeLa cells. Transmission electron microscopy of HeLa cells inoculated with A. haemolyticum strains revealed that the pld mutant was contained within intracellular vacuoles, as compared to the wild type, which escaped the vacuole. Wild type-infected HeLa cells also displayed the hallmarks of necrosis. Similarly inoculated HeLa cells displayed no signs of apoptosis, as measured by induction of caspase 3/7, 8 or 9 activities. Conclusions These data indicate that PLD enhances bacterial adhesion and promotes host cell necrosis following invasion, and therefore, may be important in the disease pathogenesis of A. haemolyticum infections.

  13. Mono-ubiquitylated ORF45 Mediates Association of KSHV Particles with Internal Lipid Rafts for Viral Assembly and Egress.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2015-12-01

    Full Text Available Herpesviruses acquire their envelope by budding into the lumen of cytoplasmic membrane vesicles. This process is initiated by component(s on viral particles, which recognize the budding site where the viral glycoproteins are present and recruit cellular cargo transport and sorting machinery to the site to complete the budding process. Proteins in the tegument layer, connecting capsid and envelope, are candidates for the recognition of budding sites on vesicle membrane and induction of budding and final envelopment. We examined several outer and matrix tegument proteins of Kaposi's sarcoma-associated herpesvirus (KSHV and found that ORF45 associates with lipid rafts (LRs of cellular membrane. LRs are membrane micro-domains, which have been implicated as relay stations in intracellular signaling and transport including viral entry and virion assembly. The ability of ORF45 to target LR is dependent on the mono-ubiquitylation of ORF45 at Lys297 as the mutation at Lys297 (K297R abolished LR-association of ORF45. The K297R mutation also impairs ORF45 and viral particle co-localization with trans-Golgi network and endosomes, but facilitates ORF45 and viral particles co-localizing with lysosomes. More importantly, the recombinant KSHV carrying ORF45 K297R mutant (BAC-K297R was found severely defective in producing mature and infectious virion particles in comparison to wild type KSHV (BAC16. Taken together, our results reveal a new function of KSHV tegument protein ORF45 in targeting LR of host cell membrane, promoting viral particles co-localization with trans-Golgi and endosome vesicles and facilitating the maturation and release of virion particles, suggesting that ORF45 plays a role in bringing KSHV particles to the budding site on cytoplasmic vesicle membrane and triggering the viral budding process for final envelopment and virion maturation.

  14. Lipid raft involved in drug resistance: relationship between multidrug resistance ATP-binding cassette transporters and lipid raft%脂筏参与耐药: 多药耐药相关ABC转运蛋白与脂筏的关系

    Institute of Scientific and Technical Information of China (English)

    王琳; 贾宇; 姜远英

    2011-01-01

    Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. Recently ATP-binding cassette (ABC) transporters, which are associated with multidrug resistance, have been found in lipid rafts; therefore they might be related to drug resistance. Here we introduce the relationship between the localization and functions of three multi-drug related ABC transporters, including two relevant to multidrug resistance in tumor cells(Pgp/ABCB1 and MRP1/ABCC1) and one relevant to multidrug resistance in Candida albicans (Cdrlp). We also discuss the influence of sphingolipids and cholesterol, two major components of lipid rafts, on the localization and function of the above three ABC transporters.%脂筏(lipid raft)和细胞的许多功能,如信号转导、蛋白质和脂类的转运等都相关.近来有研究发现,与多药耐药密切相关的ABC转运蛋白(ATP-binding cassette transporter)定位于脂筏中,因此推测脂筏可能与耐药性有一定关系.本文综述了3种和耐药相关的ABC转运蛋白的定位与其功能之间的联系,分别是和肿瘤细胞多药耐药相关的ABC转运蛋白Pgp/ABCB1、MRP1/ABCC1以及与白假丝酵母菌(白念珠菌)多药耐药相关的ABC转运蛋白Cdr1p;并进一步讨论了脂筏的重要组成成分胆固醇和鞘脂对上述3种ABC转运蛋白的定位和功能的影响.

  15. Carbon nanoparticles induce ceramide- and lipid raft-dependent signalling in lung epithelial cells: a target for a preventive strategy against environmentally-induced lung inflammation

    Directory of Open Access Journals (Sweden)

    Peuschel Henrike

    2012-12-01

    Full Text Available Abstract Background Particulate air pollution in lung epithelial cells induces pathogenic endpoints like proliferation, apoptosis, and pro-inflammatory reactions. The activation of the epidermal growth factor receptor (EGFR is a key event responsible for signalling events involving mitogen activated protein kinases specific for these endpoints. The molecular events leading to receptor activation however are not well understood. These events are relevant for the toxicological evaluation of inhalable particles as well as for potential preventive strategies in situations when particulate air pollution cannot be avoided. The current study therefore had the objective to elucidate membrane-coupled events leading to EGFR activation and the subsequent signalling cascade in lung epithelial cells. Furthermore, we aimed to identify the molecular target of ectoine, a biophysical active substance which we described to prevent carbon nanoparticle-induced lung inflammation. Methods Membrane signalling events were investigated in isolated lipid rafts from lung epithelial cells with regard to lipid and protein content of the signalling platforms. Using positive and negative intervention approaches, lipid raft changes, subsequent signalling events, and lung inflammation were investigated in vitro in lung epithelial cells (RLE-6TN and in vivo in exposed animals. Results Carbon nanoparticle treatment specifically led to an accumulation of ceramides in lipid rafts. Detailed analyses demonstrated a causal link of ceramides and subsequent EGFR activation coupled with a loss of the receptor in the lipid raft fractions. In vitro and in vivo investigations demonstrate the relevance of these events for carbon nanoparticle-induced lung inflammation. Moreover, the compatible solute ectoine was able to prevent ceramide-mediated EGFR phosphorylation and subsequent signalling as well as lung inflammation in vivo. Conclusion The data identify a so far unknown event in pro

  16. Effect of lipid raft on the growth of cervical cancer cells%脂筏对子宫颈癌细胞生长的影响

    Institute of Scientific and Technical Information of China (English)

    程艳香; 徐红; 周利梅; 黄金玲; 李秉枢; 胡敏

    2012-01-01

    目的 探讨脂筏对子宫颈癌细胞生长的影响并初步探讨其作用机制.方法 将HeLa细胞系分为不处理对照组、脂筏干扰剂组及NADPH氧化酶抑制剂组,四甲基偶氮唑蓝(MTT)法测定各组培养24h后的细胞存活率,Western blot法检测各组细胞内缺氧诱导因子1α(HIF-1α)蛋白相对含量.结果 与对照组相比脂筏干扰剂组细胞的生长速度明显减慢(0.612±0.051与0.984±0.034),NADPH氧化酶抑制剂组显示了类似的效应(0.591±0.074与0.984±0.034),差异有统计学意义(t=4.062,P< 0.05).与对照组相比脂筏干扰剂组及NADPH氧化酶抑制剂组HIF-1α的表达量也明显降低(1.79±0.14与2.56±0.22; 1.54±0.12与2.56±0.22),差异有统计学意义(t=2.423,P< 0.05).结论 脂筏可能通过NADPH氧化酶激活途径激活HIF-1α及其下游原癌基因促进子宫颈癌细胞的生长,脂筏干扰剂及NADPH氧化酶抑制剂可能成为子宫颈癌药物治疗新的研究方向.%Objective To explore the effect of lipid raft on cervical cancer cell growth and its mechanisms Methods HeLa cells in logarithmic phase were divided into three groups including control group, lipid raft interference agent group,and NADPH oxidase inhibitors group.Cells were treated with fre sh medium,3 μmol/L Apocynin and 1 mmol/L M-beta CD, respectively, for 24 h.Cell survival rate was detected using the MTT method, and the HIF-1α level was examined by Western-blot. Results Cell growths of the lipid raft interference agent group and NADPH oxidase inhibitors group were significantly slower than control group,(0.612±0.051 vs 0.984±0.034,0.591 ±0.074 vs 0.984±0.034,t=4.062,P<0.05).HIF-1α expression in the lipid raft interference agent group and NADPH oxidase inhibitors group was also significantly reduced compared with control group (1.79±0.14 vs 2.56±0.22 and 1.54±0.12 vs 2.56±0.22) and the difference was significant (t=2.423,P<0.05). Conclusion Lipid raft-NADPH oxidase pathway may

  17. Pantethine Alters Lipid Composition and Cholesterol Content of Membrane Rafts, With Down-Regulation of CXCL12-Induced T Cell Migration.

    Science.gov (United States)

    van Gijsel-Bonnello, Manuel; Acar, Niyazi; Molino, Yves; Bretillon, Lionel; Khrestchatisky, Michel; de Reggi, Max; Gharib, Bouchra

    2015-10-01

    Pantethine, a natural low-molecular-weight thiol, shows a broad activity in a large range of essential cellular pathways. It has been long known as a hypolipidemic and hypocholesterolemic agent. We have recently shown that it exerts a neuroprotective action in mouse models of cerebral malaria and Parkinson's disease through multiple mechanisms. In the present study, we looked at its effects on membrane lipid rafts that serve as platforms for molecules engaged in cell activity, therefore providing a target against inappropriate cell response leading to a chronic inflammation. We found that pantethine-treated cells showed a significant change in raft fatty acid composition and cholesterol content, with ultimate downregulation of cell adhesion, CXCL12-driven chemotaxis, and transendothelial migration of various T cell types, including human Jurkat cell line and circulating effector T cells. The mechanisms involved include the alteration of the following: (i) CXCL12 binding to its target cells; (ii) membrane dynamics of CXCR4 and CXCR7, the two CXCL12 receptors; and (iii) cell redox status, a crucial determinant in the regulation of the chemokine system. In addition, we considered the linker for activation of T cells molecule to show that pantethine effects were associated with the displacement from the rafts of the acylated signaling molecules which had their palmitoylation level reduced.. In conclusion, the results presented here, together with previously published findings, indicate that due to its pleiotropic action, pantethine can downregulate the multifaceted process leading to pathogenic T cell activation and migration.

  18. Disruption of Lipid Raft Function Increases Expression and Secretion of Monocyte Chemoattractant Protein-1 in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Lu, Juu-Chin; Chiang, Yu-Ting; Lin, Yu-Chun; Chang, Yu-Tzu; Lu, Chia-Yun; Chen, Tzu-Yu; Yeh, Chia-Shan

    2016-01-01

    The adipocyte is unique in its capacity to store lipids. In addition to triglycerides, the adipocyte stores a significant amount of cholesterol. Moreover, obese adipocytes are characterized by a redistribution of cholesterol with depleted cholesterol in the plasma membrane, suggesting that cholesterol perturbation may play a role in adipocyte dysfunction. We used methyl-β-cyclodextrin (MβCD), a molecule with high affinity for cholesterol, to rapidly deplete cholesterol level in differentiated 3T3-L1 adipocytes. We tested whether this perturbation altered adipocyte secretion of monocyte chemoattractant protein-1 (MCP-1), a chemokine that is elevated in obesity and is linked to obesity-associated chronic diseases. Depletion of cholesterol by MβCD increased MCP-1 secretion as well as the mRNA and protein levels, suggesting perturbation at biosynthesis and secretion. Pharmacological inhibition revealed that NF-κB, but not MEK, p38 and JNK, was involved in MβCD-stimulated MCP-1 biosynthesis and secretion in adipocytes. Finally, another cholesterol-binding drug, filipin, also induced MCP-1 secretion without altering membrane cholesterol level. Interestingly, both MβCD and filipin disturbed the integrity of lipid rafts, the membrane microdomains enriched in cholesterol. Thus, the depletion of membrane cholesterol in obese adipocytes may result in dysfunction of lipid rafts, leading to the elevation of proinflammatory signaling and MCP-1 secretion in adipocytes.

  19. 脂筏与病毒感染的相关性研究进展%Advances in research on the relationship between lipid rafts and virus infections

    Institute of Scientific and Technical Information of China (English)

    史红艳; 秦鄂德

    2009-01-01

    脂筏(lipid raft)是细胞膜上的微结构域,参与细胞的多种生物学行为.脂筏在病毒感染中也具有重要作用,脂筏与病毒感染的相关性研究为阐明病毒与宿主细胞的相互作用机制和病毒感染的防治提供了新思路.本文综述了脂筏与病毒感染相关性研究的方法和进展.

  20. 脂筏标记蛋白flotillin-1的研究进展%Advance in marker protein of lipid raft flotiUin-1

    Institute of Scientific and Technical Information of China (English)

    赵峰; 张杰

    2011-01-01

    This article reviews the structure of gene and protein of flotillin-1 confirmed as a marker protein of lipid raft and its physiological functions in order to provide references for study on the relationship between flotillin-1 and some neurodegenerative diseases.%对脂筏标记蛋白flotillin-1的基因结构、蛋白结构及其生理功能进行了综述,旨在为进一步研究flotillin-1与某些神经系统疾病(如疯牛病等)的关系提供参考。

  1. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals.

    Science.gov (United States)

    Sághy, Éva; Szőke, Éva; Payrits, Maja; Helyes, Zsuzsanna; Börzsei, Rita; Erostyák, János; Jánosi, Tibor Zoltán; Sétáló, György; Szolcsányi, János

    2015-10-01

    Transient Receptor Potential (TRP) cation channels, such as TRP Vanilloid 1 and TRP Ankyrin repeat domain 1 (TRPV1 and TRPA1) are nocisensors playing important role to signal pain. Two "melastatin" TRP receptors, like TRPM8 and TRPM3 are also expressed in a subgroup of primary sensory neurons. These channels serve as thermosensors with unique thermal sensitivity ranges and are activated also by several exogenous and endogenous chemical ligands inducing conformational changes from various allosteric ("multisteric") sites. We analysed the role of plasma membrane microdomains of lipid rafts on isolated trigeminal (TRG) neurons and TRPV1-expressing CHO cell line by measuring agonist-induced Ca2+ transients with ratiometric technique. Stimulation-evoked calcitonin gene related peptide (CGRP) release from sensory nerve endings of the isolated rat trachea by radioimmunoassay was also measured. Lipid rafts were disrupted by cleaving sphingomyelin (SM) with sphingomyelinase (SMase), cholesterol depletion with methyl β-cyclodextrin (MCD) and ganglioside breakdown with myriocin. It has been revealed that intracellular Ca2+ increase responses evoked by the TRPV1 agonist capsaicin, the TRPA1 agonsits allyl isothiocyanate (AITC) and formaldehyde as well as the TRPM8 activator icilin were inhibited after SMase, MCD and myriocin incubation but the response to the TRPM3 agonist pregnenolon sulphate was not altered. Extracellular SMase treatment did not influence the thapsigargin-evoked Ca2+-release from intracellular stores. Besides the cell bodies, SMase also inhibited capsaicin- or AITC-evoked CGRP release from peripheral sensory nerve terminals, this provides the first evidence for the importance of lipid raft integrity in TRPV1 and TRPA1 gating on capsaicin-sensitive nerve terminals. SM metabolites, ceramide and sphingosine, did not influence TRPA1 and TRPV1 activation on TRG neurons, TRPV1-expressing CHO cell line, and nerve terminals. We suggest, that the hydrophobic

  2. Effects of simvastatin on lipid levels and platelet activation in elderly patients with hypercholesterolemia

    Institute of Scientific and Technical Information of China (English)

    Zhe Chen; Yuanping Hou; Miaobin Liu

    2007-01-01

    Background and Objective To investigate the effects of simvastatin on lipid lowering therapy and platelet activation in elderly patients with hypercholesterolemia. Methods Fasting serum lipids, CD63, CD41a, serum glucose, hepatic and renal function, routine urine analysis (UA) were measured in 50 healthy subjects, and in 50 elderly patients with hypercholesterolemia before and after 4 weeks treatment with simvastatin (20mg daily for 4 weeks). Results 1. After simvastatin treatment for 4 weeks, the fasting serum level of lipids in elderly patients with hypercholesterolemia was significantly lower than before treatment (P<0.01). 2. CD63 and CD41a were decreased after treatment compared with before, respectively (1.36 0.34) vs (4.26 1.06), (P<0.01) and (123.54 19.73) vs (253.78 16.75), (P<0.01).3. Changes in serum lipid level tended to be positively correlated with the declines in CD63 and CD41a, but there was no statistical significance (P>0.05). Conclusions The results suggested that lipid lowering therapy with simvastatin inhibit platelet activity.

  3. Lateral diffusion, function, and expression of the slow channel congenital myasthenia syndrome αC418W nicotinic receptor mutation with changes in lipid raft components.

    Science.gov (United States)

    Oyola-Cintrón, Jessica; Caballero-Rivera, Daniel; Ballester, Leomar; Baéz-Pagán, Carlos A; Martínez, Hernán L; Vélez-Arroyo, Karla P; Quesada, Orestes; Lasalde-Dominicci, José A

    2015-10-30

    Lipid rafts, specialized membrane microdomains in the plasma membrane rich in cholesterol and sphingolipids, are hot spots for a number of important cellular processes. The novel nicotinic acetylcholine receptor (nAChR) mutation αC418W, the first lipid-exposed mutation identified in a patient that causes slow channel congenital myasthenia syndrome was shown to be cholesterol-sensitive and to accumulate in microdomains rich in the membrane raft marker protein caveolin-1. The objective of this study is to gain insight into the mechanism by which lateral segregation into specialized raft membrane microdomains regulates the activable pool of nAChRs. We performed fluorescent recovery after photobleaching (FRAP), quantitative RT-PCR, and whole cell patch clamp recordings of GFP-encoding Mus musculus nAChRs transfected into HEK 293 cells to assess the role of cholesterol and caveolin-1 (CAV-1) in the diffusion, expression, and functionality of the nAChR (WT and αC418W). Our findings support the hypothesis that a cholesterol-sensitive nAChR might reside in specialized membrane microdomains that upon cholesterol depletion become disrupted and release the cholesterol-sensitive nAChRs to the pool of activable receptors. In addition, our results in HEK 293 cells show an interdependence between CAV-1 and αC418W that could confer end plates rich in αC418W nAChRs to a susceptibility to changes in cholesterol levels that could cause adverse drug reactions to cholesterol-lowering drugs such as statins. The current work suggests that the interplay between cholesterol and CAV-1 provides the molecular basis for modulating the function and dynamics of the cholesterol-sensitive αC418W nAChR.

  4. Glycyrrhetic acid synergistically enhances β₂-adrenergic receptor-Gs signaling by changing the location of Gαs in lipid rafts.

    Directory of Open Access Journals (Sweden)

    Qian Shi

    Full Text Available Glycyrrhetic acid (GA exerts synergistic anti-asthmatic effects via a β₂-adrenergic receptor (β₂AR-mediated pathway. Cholesterol is an important component of the structure and function of lipid rafts, which play critical roles in the β₂AR-Gs-adenylate cyclase (AC-mediated signaling pathway. Owing to the structural similarities between GA and cholesterol, we investigated the possibility that GA enhances β₂AR signaling by altering cholesterol distribution. Azide-terminal GA (ATGA was synthesized and applied to human embryonic kidney 293 (HEK293 cells expressing fusion β₂AR, and the electron spin resonance (ESR technique was utilized. GA was determined to be localized predominantly on membrane and decreased their cholesterol contents. Thus, the fluidity of the hydrophobic region increased but not the polar surface of the cell membrane. The conformations of membrane proteins were also changed. GA further changed the localization of Gαs from lipid rafts to non-raft regions, resulting the binding of β₂AR and Gαs, as well as in reduced β₂AR internalization. Co-localization of β₂AR, Gαs, and AC increased isoproterenol-induced cAMP production and cholesterol reloading attenuated this effect. A speculation wherein GA enhances beta-adrenergic activity by increasing the functional linkage between the subcomponents of the membrane β₂AR-protein kinase A (PKA signaling pathway was proposed. The enhanced efficacy of β₂AR agonists by this novel mechanism could prevent tachyphylaxis.

  5. Taraxasterol inhibits cigarette smoke-induced lung inflammation by inhibiting reactive oxygen species-induced TLR4 trafficking to lipid rafts.

    Science.gov (United States)

    Xueshibojie, Liu; Duo, Yu; Tiejun, Wang

    2016-10-15

    Taraxasterol, a pentacyclic-triterpene isolated from Taraxacum officinale, has been demonstrated to have anti-inflammatory effects. However, the protective effects of taraxasterol against cigarette smoke (CS)-induced lung inflammation have not been reported. This study aimed to investigate the protective effects and mechanism of taraxasterol on CS-induced lung inflammation in mice. CS-induced mouse lung inflammation model was used to investigate the protective effects of taraxasterol in vivo. Human bronchial epithelial cells (HBECs) were used to investigate the protective mechanism of taraxasterol in vitro. The results showed that taraxasterol attenuated CS-induced lung pathological changes, inflammatory cells infiltration, inflammatory cytokines TNF-α, IL-6 and IL-1β production. Taraxasterol also up-regulated CS-induced glutathione (GSH) production. In vitro, taraxasterol was found to inhibit CS-induced reactive oxygen species production, recruitment of TLR4 into lipid rafts, NF-κB activation, and IL-8 production. Furthermore, our results showed that antioxidant N-acetyl-L-cysteine (NAC) significantly inhibited CS-induced recruitment of TLR4 into lipid rafts as well as IL-8 production. In conclusion, our results suggested that taraxasterol had protective effects of CS-induced lung inflammation.

  6. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo [Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Komiya, Eriko [Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Dang, Nam H. [Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road- Box 100278, Room MSB M410A, Gainesville, FL, 32610 (United States); Iwao, Noriaki [Department of Hematology, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Ohnuma, Kei, E-mail: kohnuma@juntendo.ac.jp [Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Morimoto, Chikao [Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan)

    2016-05-20

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.

  7. NADPH OXIDASE AND LIPID RAFT-ASSOCIATED REDOX SIGNALING ARE REQUIRED FOR PCB153-INDUCED UPREGULATION OF CELL ADHESION MOLECULES IN HUMAN BRAIN ENDOTHELIAL CELLS

    Science.gov (United States)

    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS. PMID:19632255

  8. Isolation and use of rafts.

    Science.gov (United States)

    Brown, Deborah A

    2002-11-01

    This unit describes methods for isolating and analyzing rafts by detergent insolubility. To distinguish these rafts from raft-like membranes isolated by other methods, they are referred to here as detergent-resistant membranes (DRMs). DRMs can be isolated by flotation on sucrose density gradients or by pelleting after detergent extraction. DRM proteins can be analyzed by SDS-PAGE and immunoblotting. Additionally, radiolabeled DRM proteins can be analyzed, and lipids can be quantitated by high-performance thin layer chromatography. Support protocols needed for the lipid analysis are also provided. Finally, protocols for raft disruption by cholesterol removal and measuring the kinetics of such removal are included together with a method that reverses the cholesterol removal (cholesterol repletion).

  9. ApoER2 expression increases Aβ production while decreasing Amyloid Precursor Protein (APP endocytosis: Possible role in the partitioning of APP into lipid rafts and in the regulation of γ-secretase activity

    Directory of Open Access Journals (Sweden)

    Bu Guojun

    2007-07-01

    Full Text Available Abstract Background The generation of the amyloid-β peptide (Aβ through the proteolytic processing of the amyloid precursor protein (APP is a central event in the pathogenesis of Alzheimer's disease (AD. Recent studies highlight APP endocytosis and localization to lipid rafts as important events favoring amyloidogenic processing. However, the precise mechanisms underlying these events are poorly understood. ApoER2 is a member of the low density lipoprotein receptor (LDL-R family exhibiting slow endocytosis rate and a significant association with lipid rafts. Despite the important neurophysiological roles described for ApoER2, little is known regarding how ApoER2 regulates APP trafficking and processing. Results Here, we demonstrate that ApoER2 physically interacts and co-localizes with APP. Remarkably, we found that ApoER2 increases cell surface APP levels and APP association with lipid rafts. The increase of cell surface APP requires the presence of ApoER2 cytoplasmic domain and is a result of decreased APP internalization rate. Unexpectedly, ApoER2 expression correlated with a significant increase in Aβ production and reduced levels of APP-CTFs. The increased Aβ production was dependent on the integrity of the NPxY endocytosis motif of ApoER2. We also found that expression of ApoER2 increased APP association with lipid rafts and increased γ-secretase activity, both of which might contribute to increased Aβ production. Conclusion These findings show that ApoER2 negatively affects APP internalization. However, ApoER2 expression stimulates Aβ production by shifting the proportion of APP from the non-rafts to the raft membrane domains, thereby promoting β-secretase and γ-secretase mediated amyloidogenic processing and also by incrementing the activity of γ-secretase.

  10. Membrane-lipid therapy in operation: the HSP co-inducer BGP-15 activates stress signal transduction pathways by remodeling plasma membrane rafts.

    Directory of Open Access Journals (Sweden)

    Imre Gombos

    Full Text Available Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1 acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in 'membrane-lipid therapy' to combat many various protein-misfolding diseases associated with aging.

  11. The binding of Aβ1-42 to lipid rafts of RBC is enhanced by dietary docosahexaenoic acid in rats: Implicates to Alzheimer's disease.

    Science.gov (United States)

    Hashimoto, Michio; Hossain, Shahdat; Katakura, Masanori; Al Mamun, Abdullah; Shido, Osamu

    2015-06-01

    Once amyloid β peptides (Aβs) of the Alzheimer's disease build up in blood circulation, they are capable of binding to red blood cell (RBC) and inducing hemolysis of RBC. The mechanisms of the interactions between RBC and Aβ are largely unknown; however, it is very important for the therapeutic target of Aβ-induced hemolysis. In the present study, we investigated whether Aβ1-42 interacts with caveolin-1-containing detergent-resistant membranes (DRMs) of RBC and whether the interaction could be modulated by dietary pre-administration of docosahexaenoic acid (DHA). DHA pre-administration to rats inhibited hemolysis by Aβ1-42. This activity was accompanied by increased DHA levels and membrane fluidity and decreased cholesterol level, lipid peroxidation, and reactive oxygen species in the RBCs of the DHA-pretreated rats, suggesting that the antioxidative property of DHA may rescue RBCs from oxidative damage by Aβ1-42. The level of caveolin-1 was augmented in the DRMs of DHA-pretreated rats. Binding between Aβ1-42 and DRMs of RBC significantly increased in DHA-rats. When fluorescently labeled Aβ1-42 (TAMRA-Aβ1-42) was directly infused into the bloodstream, it again occupied the caveolin-1-containing DRMs of the RBCs from the DHA-rats to a greater extent, indicating that circulating Aβs interact with the caveolin-1-rich lipid rafts of DRMs and the interaction is stronger in the DHA-enriched RBCs. The levels of TAMRA-Aβ1-42 also increased in liver DRMs, whereas it decreased in plasma of DHA-pretreated rats. DHA might help clearance of circulating Aβs by increased lipid raft-dependent degradation pathways and implicate to therapies in Alzheimer's disease.

  12. Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: a study with bio-orthogonal chemical probes.

    Science.gov (United States)

    Ciana, Annarita; Achilli, Cesare; Hannoush, Rami N; Risso, Angela; Balduini, Cesare; Minetti, Giampaolo

    2013-03-01

    Erythrocyte lipid rafts are anchored to the underlying spectrin membrane skeleton [A. Ciana, C. Achilli, C. Balduini, G. Minetti, On the association of lipid rafts to the spectrin skeleton in human erythrocytes, Biochim. Biophys. Acta 1808 (2011) 183-190]. The nature of this linkage and the molecules involved are poorly understood. The interaction is sensitive to the increase in pH and ionic strength induced by carbonate. Given the role of palmitoylation in modulating the partitioning of certain proteins between various sub-cellular compartments and the plasma membrane, we asked whether palmitoylation of p55, a peripheral protein located at the junctional complex between spectrin-actin-protein 4.1 that anchors the membrane skeleton to the lipid bilayer via the transmembrane protein glycophorin C, could contribute to the anchoring of lipid rafts to the membrane skeleton. We adopted a new, non-radioactive method for studying protein palmitoylation, based on bio-orthogonal chemical analogues of fatty acids, containing an omega-alkynyl group, to metabolically label cell proteins, which are then revealed by a "click chemistry" reaction of the alkynyl moiety with an azide-containing reporter tag. We show that the membrane localization and palmitoylation levels of p55 did not change after carbonate treatment. 2-bromopalmitate and cerulenin, two known palmitoylation inhibitors, completely inhibited p55 palmitoylation, and protein palmitoyl thioesterase-1 (PPT1) reduced it, without affecting the association between lipid rafts and membrane-skeleton, indicating, on the one hand, that p55 palmitoylation is enzymatic, and, on the other, that it is not involved in the modulation of the linkage of lipid rafts to the membrane-skeleton.

  13. 脂筏及其在病原生物感染中的作用概述%A review of lipid rafts and their role in pathogen infection

    Institute of Scientific and Technical Information of China (English)

    吴寒宇

    2011-01-01

    Lipid rafts are microdomains in the cell membrane and are involved in many of a cell's biological activities. These rafts provide the structural platforms for numerous protein-protein and lipid -protein interactions at the cell surface. Lipid rafts play an important role in the process of infection by many pathogenic microorganisms. This paper provides reviews the structure and function of lipid rafts and their role in pathogen infection.%脂筏是细胞膜上的微结构域,参与细胞的多种生物学行为,为细胞表面发生的蛋白质-蛋白质和蛋白质-脂类分子间的相互作用提供了平台.脂筏在多种病原生物的感染过程中发挥着重要作用.本文对脂筏的结构功能及其在病原生物的感染过程中发挥的作用进行了概述.

  14. Localization of Kv4.2 and KChIP2 in lipid rafts and modulation of outward K+ currents by membrane cholesterol content in rat left ventricular myocytes.

    Science.gov (United States)

    Rudakova, Elena; Wagner, Michael; Frank, Magdalena; Volk, Tilmann

    2015-02-01

    Lipid rafts are cholesterol-enriched microdomains of the cell membrane. Here we investigate the localization of the pore forming K(+)-channel α-subunit Kv4.2 and the β-subunit KChIP2, underlying the transient outward K(+) current (I to), in lipid rafts in left ventricular myocytes. Furthermore, we explored the impact of membrane cholesterol depletion (using 20 mM methyl-beta-cyclodextrin (MBCD)) on K(+) outward currents. Cholesterol-saturated MBCD (20 mM) served as control. Myocytes were isolated from the left ventricular free wall of Wistar rats. The Triton X-100 (4 °C) insoluble fraction of whole cell protein was analyzed by sucrose density gradient centrifugation followed by Western blot. Kv4.2 and KChIP2 were partially detected in low-density fractions (lipid rafts). MBCD treatment (5 min) resulted in a shift of Kv4.2 and KChIP2 towards high-density fractions. K(+) currents were assessed by whole-cell patch-clamp. MBCD treatment resulted in a 29 ± 3 % decrease in I to (20.0 ± 1.6pApF(-1) vs. 28.5 ± 2.0pApF(-1), n = 15, p lipid rafts. Membrane cholesterol depletion results in ~12 % net reduction of I to, a redistribution of the channel proteins Kv4.2 and KChIP2 and an increased delayed rectifier current.

  15. High-density lipoprotein and apolipoprotein A-I inhibit palmitate-induced translocation of toll-like receptor 4 into lipid rafts and inflammatory cytokines in 3T3-L1 adipocytes.

    Science.gov (United States)

    Yamada, Hodaka; Umemoto, Tomio; Kawano, Mikihiko; Kawakami, Masanobu; Kakei, Masafumi; Momomura, Shin-Ichi; Ishikawa, San-E; Hara, Kazuo

    2017-03-04

    Saturated fatty acids (SFAs) activate toll-like receptor 4 (TLR4) signal transduction in macrophages and are involved in the chronic inflammation accompanying obesity. High-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I) produce anti-inflammatory effects via reverse cholesterol transport. However, the underlying mechanisms by which HDL and apoA-I inhibit inflammatory responses in adipocytes remain to be determined. Here we examined whether palmitate increases the translocation of TLR4 into lipid rafts and whether HDL and apoA-I inhibit inflammation in adipocytes. Palmitate exposure (250 μM, 24 h) increased interleukin-6 and tumor necrosis factor-α gene expressions and translocation of TLR4 into lipid rafts in 3T3-L1 adipocytes. Pretreatment with HDL and apoA-I (50 μg/mL, 6 h) suppressed palmitate-induced inflammatory cytokine expression and TLR4 translocation into lipid rafts. Moreover, HDL and apoA-I inhibited palmitate-induced phosphorylation of nuclear factor-kappa B. HDL showed an anti-inflammatory effect via ATP-binding cassette transporter G1 and scavenger receptor class B, member 1, whereas apoA-I showed an effect via ATP-binding cassette transporter A1. These results demonstrated that HDL and apoA-I reduced palmitate-potentiated TLR4 trafficking into lipid rafts and its related inflammation in adipocytes via these specific transporters.

  16. 脂筏微区超分子聚集体结构的稳定性%Stabilities of Supramolecular Complex Structures in Lipid Rafts Microdomains

    Institute of Scientific and Technical Information of China (English)

    孙润广; 张静; 郝长春; 陈莹莹; 杨谦

    2011-01-01

    The dynamic and stability characteristics of lipid raft microdomains dominate the functions of cell membranes. The flask-shaped caveolae, spherical and ellipsoidal structure of lipid rafts extracted from animal cells have been observed. The results of simulated experiments showed that the films of SM/Chol/DOPC took on obvious liquid ordered and liquid disordered coexisted phase. It could be induced to rearrangement by DOPE and ceramide on SM/Chol phase. In the mixed monolayers, the excess molecular area and excess Gibbs free energy determines the molecular interactions and stability respectively. The biological significance and the relationship between structure and function lipid rafts were explored on super-molecular level by combining extraction from cells in vivo and simulated in vitro method. This project conduction can provide theoretical evidence and experimental support for studying biomembrane.%脂筏微区结构的动态特征与稳定性决定着细胞膜的功能.脂筏在体分离形态观测呈现出烧瓶状凹陷、球状及椭球状结构.体外模拟实验表明,鞘磷脂( SM)/胆固醇(Chol )/1,2-二油酸甘油-3-磷脂酰胆碱( DOPC)呈现出明显的液态有序相和液态无序相共存的相分离膜结构.1,2-二油酸甘油-3-磷脂酰乙醇胺(DOPE)和神经酰胺(Ceramide)促使SM/Chol液态有序相发生重排.单层膜分析表明过量分子面积决定分子间的相互作用,过量吉布斯自由能决定膜的稳定性.通过动物细胞提取脂筏与体外模拟脂筏相结合的方法,从超分子水平阐述了脂筏微区结构与功能的生物学意义,为生物膜的研究提供了理论依据和实验支持.

  17. Chronic treatment with escitalopram but not R-citalopram translocates Galpha(s) from lipid raft domains and potentiates adenylyl cyclase: a 5-hydroxytryptamine transporter-independent action of this antidepressant compound.

    Science.gov (United States)

    Zhang, Lanqiu; Rasenick, Mark M

    2010-03-01

    Chronic antidepressant treatment has been shown to increase adenylyl cyclase activity, in part, due to translocation of Galpha(s) from lipid rafts to a nonraft fraction of the plasma membrane where they engage in a more facile stimulation of adenylyl cyclase. This effect holds for multiple classes of antidepressants, and for serotonin uptake inhibitors, it occurs in the absence of the serotonin transporter. In the present study, we examined the change in the amount of Galpha(s) in lipid raft and whole cell lysate after exposing C6 cells to escitalopram. The results showed that chronic (but not acute) escitalopram decreased the content of Galpha(s) in lipid rafts, whereas there was no change in overall Galpha(s) content. These effects were drug dose- and exposure time-dependent. Although R-citalopram has been reported to antagonize some effects of escitalopram, this compound was without effect on Galpha(s) localization in lipid rafts, and R-citalopram did not inhibit these actions of escitalopram. Escitalopram treatment increased cAMP accumulation, and this seemed due to increased coupling between Galpha(s) and adenylyl cyclase. Thus, escitalopram is potent, rapid and efficacious in translocating Galpha(s) from lipid rafts, and this effect seems to occur independently of 5-hydroxytryptamine transporters. Our results suggest that, although antidepressants display distinct affinities for well identified targets (e.g., monoamine transporters), several presynaptic and postsynaptic molecules are probably modified during chronic antidepressant treatment, and these additional targets may be required for clinical efficacy of these drugs.

  18. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains.

    Science.gov (United States)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo; Komiya, Eriko; Dang, Nam H; Iwao, Noriaki; Ohnuma, Kei; Morimoto, Chikao

    2016-05-20

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis.

  19. ATP Binding Cassette Transporter ABCA7 Regulates NKT Cell Development and Function by Controlling CD1d Expression and Lipid Raft Content

    Science.gov (United States)

    Nowyhed, Heba N.; Chandra, Shilpi; Kiosses, William; Marcovecchio, Paola; Andary, Farah; Zhao, Meng; Fitzgerald, Michael L.; Kronenberg, Mitchell; Hedrick, Catherine C.

    2017-01-01

    ABCA7 is an ABC transporter expressed on the plasma membrane, and actively exports phospholipid complexes from the cytoplasmic to the exocytoplasmic leaflet of membranes. Invariant NKT (iNKT) cells are a subpopulation of T lymphocytes that recognize glycolipid antigens in the context of CD1d-mediated antigen presentation. In this study, we demonstrate that ABCA7 regulates the development of NKT cells in a cell-extrinsic manner. We found that in Abca7−/− mice there is reduced expression of CD1d accompanied by an alteration in lipid raft content on the plasma membrane of thymocytes and antigen presenting cells. Together, these alterations caused by absence of ABCA7 negatively affect NKT cell development and function. PMID:28091533

  20. Phase separation of myelin sheath in Triton X-114 solution: predominant localization of the 21.5-kDa isoform of myelin basic protein in the lipid raft-associated domain.

    Science.gov (United States)

    Uruse, Michihiro; Yamamoto, Masahiro; Sugawa, Makoto; Matsuura, Keiko; Sato, Yurie; Seiwa, Chika; Watanabe, Kenji; Aiso, Sadakazu; Asou, Hiroaki

    2014-04-01

    Myelin basic protein (MBP) isoforms in the myelin sheath are known to have distinct intracellular expression patterns, which are profoundly related to functional specificity. Determining the differential localization of MBP isoforms is therefore important for understanding their pathophysiological roles. In this study, we have developed a new method for phase separation of myelin. The non-ionic detergent Triton X-114 is used to solubilize myelin sheath which then undergoes phase separation to yield four fractions. The lipid raft-associated proteins and lipids in each fraction were analysed by immunoblotting and lipid analysis, respectively. The present method gives two lipid raft-enriched fractions, one of them was found to contain only lipid raft-associated galactocerebroside and cholesterol as the major lipids. The 21.5-kDa MBP isoforms (21.5 MBP), both unphosphorylated and phosphorylated, were exclusively contained in this fraction. Phosphorylated 21.5 MBP (21.5 pMBP) has been shown to specifically disappear from demyelinated loci. The present analytical method clearly indicated that disappearance of 21.5 pMBP corresponded to demyelination and its reappearance corresponded to prevention of demyelination. Demyelination was also associated with aging and was prevented by the myelin-protecting herbal medicine, Chinpi, a type of dried citrus peel.

  1. Modulation of cell surface transport and lipid raft localization by the cytoplasmic tail of the influenza virus hemagglutinin.

    Science.gov (United States)

    Scolari, Silvia; Imkeller, Katharina; Jolmes, Fabian; Veit, Michael; Herrmann, Andreas; Schwarzer, Roland

    2016-01-01

    Viral glycoproteins are highly variable in their primary structure, but on the other hand feature a high functional conservation to fulfil their versatile tasks during the pathogenic life cycle. Typically, all protein domains are optimized in that indispensable functions can be assigned to small conserved motifs or even individual amino acids. The cytoplasmic tail of many viral spike proteins, although of particular relevance for the virus biology, is often only insufficiently characterized. Hemagglutinin (HA), the receptor-binding protein of the influenza virus comprises a short cytoplasmic tail of 13 amino acids that exhibits three highly conserved palmitoylation sites. However, the particular importance of these modifications and the tail in general for intracellular trafficking and lateral membrane organization remains elusive. In this study, we generated HA core proteins consisting of transmembrane domain, cytoplasmic tail and a minor part of the ectodomain, tagged with a yellow fluorescent protein. Different mutation and truncation variants of these chimeric proteins were investigated using confocal microscopy, to characterize the role of cytoplasmic tail and palmitoylation for the intracellular trafficking to plasma membrane and Golgi apparatus. In addition, we assessed raft partitioning of the variants by Foerster resonance energy transfer with an established raft marker. We revealed a substantial influence of the cytoplasmic tail length on the intracellular distribution and surface exposure of the proteins. A complete removal of the tail hampers a physiological trafficking of the protein, whereas a partial truncation can be compensated by cytoplasmic palmitoylations. Plasma membrane raft partitioning on the other hand was found to imperatively require palmitoylations, and the cysteine at position 551 turned out to be of most relevance. Our data shed further light on the tight interconnection between cytoplasmic elements and intracellular trafficking and

  2. Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast.

    Science.gov (United States)

    Gaigg, Barbara; Toulmay, Alexandre; Schneiter, Roger

    2006-11-10

    The proton-pumping H+-ATPase, Pma1p, is an abundant and very long lived polytopic protein of the yeast plasma membrane. Pma1p constitutes a major cargo of the secretory pathway and thus serves as a model to study plasma membrane biogenesis. Pma1p associates with detergent-resistant membrane domains (lipid "rafts") already in the ER, and a lack of raft association correlates with mistargeting of the protein to the vacuole, where it is degraded. We are analyzing the role of specific lipids in membrane domain formation and have previously shown that surface transport of Pma1p is independent of newly synthesized sterols but that sphingolipids with C26 very long chain fatty acid are crucial for raft association and surface transport of Pma1p (Gaigg, B., Timischl, B., Corbino, L., and Schneiter, R. (2005) J. Biol. Chem. 280, 22515-22522). We now describe a more detailed analysis of the function that sphingolipids play in this process. Using a yeast strain in which the essential function of sphingolipids is substituted by glycerophospholipids containing C26 very long chain fatty acids, we find that sphingolipids per se are dispensable for raft association and surface delivery of Pma1p but that the C26 fatty acid is crucial. We thus conclude that the essential function of sphingolipids for membrane domain formation and stable surface delivery of Pma1p is provided by the C26 fatty acid that forms part of the yeast ceramide.

  3. Regulation of Renal Organic Anion Transporter 3 (SLC22A8 Expression and Function by the Integrity of Lipid Raft Domains and their Associated Cytoskeleton

    Directory of Open Access Journals (Sweden)

    Chutima Srimaroeng

    2013-04-01

    Full Text Available Background/Aims: In humans and rodents, organic anion transporter 3 (Oat3 is highly expressed on the basolateral membrane of renal proximal tubules and mediates the secretion of exogenous and endogenous anions. Regulation of Oat3 expression and function has been observed in both expression system and intact renal epithelia. However, information on the local membrane environment of Oat3 and its role is limited. Lipid raft domains (LRD; cholesterol-rich domains of the plasma membrane play important roles in membrane protein expression, function and targeting. In the present study, we have examined the role of LRD-rich membranes and their associated cytoskeletal proteins on Oat3 expression and function. Methods: LRD-rich membranes were isolated from rat renal cortical tissues and from HEK-293 cells stably expressing human OAT3 (hOAT3 by differential centrifugation with triton X-100 extraction. Western blots were subsequently analyzed to determine protein expression. In addition, the effect of disruption of LRD-rich membranes was examined on functional Oat3 mediated estrone sulfate (ES transport in rat renal cortical slices. Cytoskeleton disruptors were investigated in both hOAT3 expressing HEK-293 cells and rat renal cortical slices. Results: Lipid-enriched membranes from rat renal cortical tissues and hOAT3-expressing HEK-293 cells showed co-expression of rOat3/hOAT3 and several lipid raft-associated proteins, specifically caveolin 1 (Cav1, β-actin and myosin. Moreover, immunohistochemistry in hOAT3-expressing HEK-293 cells demonstrated that these LRD-rich proteins co-localized with hOAT3. Potassium iodide (KI, an inhibitor of protein-cytoskeletal interaction, effectively detached cytoskeleton proteins and hOAT3 from plasma membrane, leading to redistribution of hOAT3 into non-LRD-rich compartments. In addition, inhibition of cytoskeleton integrity and membrane trafficking processes significantly reduced ES uptake mediated by both human and rat

  4. Hypocoagulant and lipid-lowering effects of dietary n-3 polyunsaturated fatty acids with unchanged platelet activation in rats

    NARCIS (Netherlands)

    Nieuwenhuys, C.M.A.; Béguin, S.; Offermans, R.F.G.; Emeis, J.J.; Hornstra, G.; Heemskerk, J.W.M.

    1998-01-01

    We investigated the effects of dietary polyunsaturated fatty acids (PUFAs) on blood lipids and processes that determine hemostatic potential: platelet activation, coagulation, and fibrinolysis. For 8 to 10 weeks, Wistar rats were fed a high-fat diet containing various amounts (2% to 16%) of n-3 PUFA

  5. Hypocoagulant and lipid-lowering effects of dietary n-3 polyunsaturated fatty acids with unchanged platelet activation in rats

    NARCIS (Netherlands)

    Nieuwenhuys, C.M.A.; Béguin, S.; Offermans, R.F.G.; Emeis, J.J.; Hornstra, G.; Heemskerk, J.W.M.

    1998-01-01

    We investigated the effects of dietary polyunsaturated fatty acids (PUFAs) on blood lipids and processes that determine hemostatic potential: platelet activation, coagulation, and fibrinolysis. For 8 to 10 weeks, Wistar rats were fed a high-fat diet containing various amounts (2% to 16%) of n-3

  6. Synaptic membrane rafts: traffic lights for local neurotrophin signalling?

    Directory of Open Access Journals (Sweden)

    Barbara eZonta

    2013-10-01

    Full Text Available Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signalling, plasticity and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signalling. The tyrosine kinase neurotrophin receptors (Trk and the low-affinity p75 neurotrophin receptor (p75NTR are enriched in neuronal lipid rafts together with the intermediates of downstream signalling pathways, suggesting a possible role of rafts in neurotrophin signalling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  7. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts.

    Science.gov (United States)

    da Luz, Camila Macedo; Boyles, Matthew Samuel Powys; Falagan-Lotsch, Priscila; Pereira, Mariana Rodrigues; Tutumi, Henrique Rudolf; de Oliveira Santos, Eidy; Martins, Nathalia Balthazar; Himly, Martin; Sommer, Aniela; Foissner, Ilse; Duschl, Albert; Granjeiro, José Mauro; Leite, Paulo Emílio Corrêa

    2017-01-31

    Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells' proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells' proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover

  8. Role of lipid raft components and actin cytoskeleton in fibronectin-binding, surface expression, and de novo synthesis of integrin subunits in PGE2- or 8-Br-cAMP-stimulated mastocytoma P-815 cells.

    Science.gov (United States)

    Okada, Yasuyo; Nishikawa, Jyun-ichi; Semma, Masanori; Ichikawa, Atsushi

    2014-04-01

    Integrins are heterodimeric adhesion receptors essential for adhesion of non-adherent cells to extracellular ligands such as extracellular matrix components. The affinity of integrins for ligands is regulated through a process termed integrin activation and de novo synthesis. Integrin activation is regulated by lipid raft components and the actin structure. However, there is little information on the relationship between integrin activation and its de novo synthesis. Cancerous mouse mast cells, mastocytoma P-815 cells (P-815 cells) are known to bind to fibronectin through de novo synthesis of integrin subtypes by prostaglandin (PG) E2 stimulation. The purpose of this study was to clarify the relationship between lipid raft components and the actin cytoskeleton, and PGE2-induced P-815 cells adhesion to fibronectin and the increase in surface expression and mRNA and protein levels of αvβ3 and αIIbβ3 integrins. Cholesterol inhibitor 6-O-α-maltosyl-β cyclodextrin, glycosylphosphatidylinositol-anchored proteins inhibitor phosphatidylinositol-specific phospholipase C and actin inhibitor cytochalasin D inhibited PGE2-induced cell adhesion to fibronectin, but did not regulate the surface expression and mRNA and protein levels of αv and αIIb, and β3 integrin subunits. In addition, inhibitor of integrin modulate protein CD47 had no effect on PGE2- and 8-Br-cAMP-induced cell adhesion. These results suggest that lipid raft components and the actin cytoskeleton are directly involved in increasing of adhesion activity of integrin αIIb, αv and β3 subunits to fibronectin but not in stimulating of de novo synthesis of them in PGE2-stimulated P-815 cells. The modulation of lipid rafts and the actin structure is essential for P-815 cells adhesion to fibronectin.

  9. The critical role of lipid rafts nanodomains in the cross-talk between calcium and reactive oxygen and nitrogen species in cerebellar granule neurons apoptosis by extracellular potassium deprivation

    Directory of Open Access Journals (Sweden)

    Carlos Gutierrez-Merino

    2016-01-01

    Full Text Available The apoptosis of cerebellar granule neurons (CGN induced by low-potassium in serum free medium in vitro has become a widely used model for neuronal apoptosis during in vivo brain development. In this review we shall summarize first the basic features of this model for neuronal apoptosis. Next, we shall focus on the L-type calcium channels (LTCC inactivation as the primary pro-apoptotic signal in low K+-induced CGN death. This apoptotic process can be split into two major and sequential cellular signaling phases: one reversible phase that offers a temporal window for therapeutic interventions to prevent neuronal death, and an irreversible later phase. Therefore, we shall comment next the critical role of reactive oxygen species (ROS production and major ROS sources triggering the entry of CGN in the irreversible stages of low K+-induced apoptosis. Then, we shall present the experimental evidences showing clustering of LTCC and ROS producing enzymes in plasma membrane lipid rafts of CGN matured in vitro, which have opened new perspectives for cell signaling in the early and reversible phase of this apoptosis. The role of lipid rafts nanodomains as fast response calcium/nitric oxide transducers of the switch of CGN to low K+ medium will be discussed next. The two major conclusions drawn from this review are: (1 deregulation of the pool of cytochrome b5 reductase associated to plasma membrane-lipid rafts, at least in part due to overexpression of cytochrome b5, can account for the critical superoxide anion overshot which triggers the entry in the irreversible phase of low K+ apoptosis of CGN, and (2 LTCC inactivation is rapidly transduced by lipid rafts nanodomains into a large drop of cytosolic calcium, a switch-off of nitric oxide production and subsequent inactivation of survival signaling pathways dependent on the activity of CaMKII, PKA and Akt/PKB kinases.

  10. Lipid Rafts Mediate Viruses Entering into Mammalian Cells%脂筏介导的病毒内吞

    Institute of Scientific and Technical Information of China (English)

    隋文; 黄敏; 孙长凯

    2007-01-01

    近几年的研究表明,病毒内吞进入细胞的途径是多样化的.除了经典的网格蛋白介导的病毒内吞,还有小窝(caveolae)或脂筏(1ipid raft)介导的病毒内吞.在研究过程中还发现了新的细胞器小窝体(caveosome).小窝体甚至还与网格蛋白介导的内吞相关的细胞器(如内体)存在着联系.这些研究加深了我们对病毒的认识,为我们发现新的抗病毒药物打下基础.同时病毒可以作为一个有用的工具来研究细胞内吞的路径和与之相关的细胞器,使人类更加了解细胞本身的奥秘.

  11. Synthetic Bichalcone TSWU-BR23 Induces Apoptosis of Human Colon Cancer HT-29 Cells by p53-Mediated Mitochondrial Oligomerization of BAX/BAK and Lipid Raft Localization of CD95/FADD.

    Science.gov (United States)

    Lin, Meng-Liang; Chen, Shih-Shun; Wu, Tian-Shung

    2015-10-01

    A synthetic bichalcone analog, (E)-1-(3-((4-(4-acetylphenyl)piperazin-1-yl)methyl)-4-hydroxy-5-methoxyphenyl)-3-(pyridin-3-yl)prop-2-en-1-one (TSWU-BR23), has been shown to induce apoptosis in human colon cancer HT-29 cells involving the induction of CD95 and FAS-associated protein death domain (FADD), but its precise mechanism of action has not been fully elucidated. Using cell-surface biotinylation and sucrose density-gradient-based membrane flotation techniques, we showed that the disruption of TSWU-BR23-induced lipid raft localization of CD95/FADD by cholesterol-depleting agent (methyl-β-cyclodextrin) was reversed by cholesterol replenishment. Blockade of p53 expression by short-hairpin RNA (shRNA) suppressed oligomeric Bcl-2-associated x protein (BAX)/Bcl-2 antagonist killer 1 (BAK)-mediated mitochondrial apoptosis but did not inhibit lipid raft localization of CD95/FADD and pro-caspase-8 cleavage induced by TSWU-BR23. Co-expression of p53 shRNA and dominant-negative mutant of FADD completely inhibited TSWU-BR32-induced mitochondrial apoptotic cell death. Collectively, these data demonstrate that TSWU-BR23 leads to HT-29 cell apoptosis by inducing p53-mediated mitochondrial oligomerization of BAX/BAK and the localization of CD95/FADD with lipid rafts at the cell surface.

  12. High glucose upregulates BACE1-mediated Aβ production through ROS-dependent HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization in SK-N-MC cells.

    Science.gov (United States)

    Lee, Hyun Jik; Ryu, Jung Min; Jung, Young Hyun; Lee, Sei-Jung; Kim, Jeong Yeon; Lee, Sang Hun; Hwang, In Koo; Seong, Je Kyung; Han, Ho Jae

    2016-11-10

    There is an accumulation of evidence indicating that the risk of Alzheimer's disease is associated with diabetes mellitus, an indicator of high glucose concentrations in blood plasma. This study investigated the effect of high glucose on BACE1 expression and amyloidogenesis in vivo, and we present details of the mechanism associated with those effects. Our results, using ZLC and ZDF rat models, showed that ZDF rats have high levels of amyloid-beta (Aβ), phosphorylated tau, BACE1, and APP-C99. In vitro result with mouse hippocampal neuron and SK-N-MC, high glucose stimulated Aβ secretion and apoptosis in a dose-dependent manner. In addition, high glucose increased BACE1 and APP-C99 expressions, which were reversed by a reactive oxygen species (ROS) scavenger. Indeed, high glucose increased intracellular ROS levels and HIF-1α expression, associated with regulation of BACE1 and Liver X Receptor α (LXRα). In addition, high glucose induced ATP-binding cassette transporter A1 (ABCA1) down-regulation, was associated with LXR-induced lipid raft reorganization and BACE1 localization on the lipid raft. Furthermore, silencing of BACE1 expression was shown to regulate Aβ secretion and apoptosis of SK-N-MC. In conclusion, high glucose upregulates BACE1 expression and activity through HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization, leading to Aβ production and apoptosis of SK-N-MC.

  13. Energetic modeling and single-molecule verification of dynamic regulation on receptor complexes by actin corrals and lipid raft domains

    Science.gov (United States)

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2014-12-01

    We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane of a living cell. Simulation results are presented to elaborate the confinement effects from actin corrals and protein-induced lipid domains. Single-molecule tracking data of epidermal growth factor receptors (EGFR) acquired on live HeLa cells agree with the simulation results and the mechanism that controls the diffusion of single-molecule receptors is clarified. We discovered that after ligand binding, EGFR molecules move into lipid nanodomains. The transition rates between different diffusion states of liganded EGFR molecules are regulated by the lipid domains. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

  14. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yijun [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan (China); Pattnaik, Asit K. [School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900 (United States); Song, Cheng [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Yoo, Dongwan, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Li, Gang, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing (China)

    2012-03-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 ({omega} - 2, where {omega} is the GPI moiety at E160), P159 ({omega} - 1), and M162 ({omega} + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide-anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  15. Effect of Leflunomide on the Abnormal Expression of Lipid Rafts and F-Actin in B Lymphocytes from Patients with Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Guang Fu Dong

    2015-01-01

    Full Text Available Purposes. To investigate the possible changes in B cell subsets and in B cell expression patterns of lipid rafts (LRs and F-actin in patients with SLE and whether leflunomide treatment may have effect on these changes. Methods. The B cell subsets and LRs expression were determined by flow cytometry and confocal microscopy, and F-actin expression was examined by confocal microscopy. Results. CD27+IgD+ B cell subsets were significantly decreased while CD38+CD95+ B cell subsets increased in SLE patients. The LRs levels of B cells were remarkably increased and positively correlated with SLEDAI and anti-dsDNA titer in SLE patients. The expression level of LRs was significantly higher in CD38+ B cells than CD38− B cells and negatively correlated with C3 levels. The increased expression of LRs was associated with reduced expression of F-actin in the B cells from active SLE patients. Furthermore, in vitro treatment of the cells with A771726 reduced the expression level of LRs, attenuated the overaggregation of LRs, and normalized the distribution of F-actin. Conclusions. There were abnormalities in B cell subsets and LRs and F-actin expression of B cell from SLE patients. Modulation of B cell expression of LRs and F-actin by LEF could be a potential therapeutic target for SLE.

  16. 生物膜的生物物理观--从微区到脂筏%Biophysical Viewpoint of Biomembrane:From Microdomains to Lipid Rafts

    Institute of Scientific and Technical Information of China (English)

    王景雪; 张兴堂; 蒋晓红; 李蕴才; 黄亚彬; 杜祖亮

    2004-01-01

    大量的实验表明,在细胞质膜中,由于不同成分具有不同的生物化学特性,发生相分离而局部形成微区.不同的微区可行使不同的功能.近年来一种富含胆固醇、鞘脂类以及大量的受体和信号分子的液态有序相的微区,即脂筏(lipid rafts),由于被发现参与信号转导和一些物质的生理循环过程而备受关注.随着实验手段的提高,人们对生物膜在分子水平上认识的不断深化,脂筏结构和功能的物理、化学基础研究方面也取得了初步的进展.

  17. T细胞膜脂肪微区域与白细胞介素-2α受体%Interleukin-2α receptor in membrane lipid rafts

    Institute of Scientific and Technical Information of China (English)

    李秋荣; 马健; 汪灏; 黎介寿

    2004-01-01

    目的:确定T细胞膜脂肪微区域(lipid rafts)是IL-2Rα的功能性区域.方法:应用流式细胞仪检测T细胞表面分子CD25(IL-2Rα)的表达,分离T细胞膜脂肪微区域,应用蛋白质印迹法检测分析IL-2Rα所在的T细胞膜脂肪微区域分离组分.结果:在IL-2刺激下,T细胞膜表面分子CD25(IL-2Rα)阳性表达率为37.08%,蛋白质印迹法检测确定IL-2Rα存在于脂肪微区域组分.结论:T细胞膜脂肪微区域是IL-2Rα的功能性区域.

  18. CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway.

    Directory of Open Access Journals (Sweden)

    Juin-Hua Huang

    2015-07-01

    Full Text Available Collaboration between heterogeneous pattern recognition receptors (PRRs leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3 and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA, genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.

  19. 多巴胺受体和脂筏对高血压患者细胞NADPH氧化酶的作用%Dopamine receptor and raft lipids regulate NADPH oxidase activity in hypertensive renal proximal tubule cells

    Institute of Scientific and Technical Information of China (English)

    鹿敏; 刘晓颖; 韩卫星

    2013-01-01

    目的 探讨还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NADPH氧化酶即Nox)亚单位在高血压患者肾脏近曲小管细胞中的表达及其活性变化,以及多巴胺受体和脂筏在其中的调节作用.方法 细胞分为正常组和高血压组,未经任何药物刺激的两组细胞分别作为正常对照组和高血压对照组,采用葡萄糖浓度梯度超速离心法提取细胞膜的脂筏和非脂筏区蛋白,经Western blot检测Nox亚单位蛋白的表达,光泽精化学发光法动态测定细胞膜Nox的活性.结果 多巴胺受体激动剂fenoldopam明显减少gp91phox在正常对照组[(17±3.3)%]和高血压对照组[(20±3.4)%,P<0.05]细胞膜脂筏区域的表达,降低正常对照组p22phox[(15±2.0)%,P<0.05]、p67phox、rac1在脂筏区的表达,但不能减少高血压对照组p22phox、p67phox、rac1蛋白的表达;胆固醇耗竭剂β-CD减少正常对照组gp91phox、p22phox在脂筏区的表达,不能减少高血压对照组Nox亚单位的表达;高血压对照组Nox的基础活性是正常对照组的5倍.结论 高血压患者肾脏近曲小管细胞具有较高的Nox亚单位的活性,多巴胺受体和脂筏对Nox亚单位的抑制作用减弱.%Objective To investigate the expression and activity of NADPH oxidase ( Nox ) subunit in hypertensive renal proximal tubule cells ( HT ) and the regulatory role of dopamine receptors and lipid boat. Methods Cells were seperated into normotensive group( NT ) and hypertensive group ( HT ), and their respective control group was established by learing the cells intact. Glucose concentration gradient was used to extract cell membrane lipid rafts and non-lipid rafts region. The expression levels of Nox subunits were detected by Western blot, and NADPH oxidase activity were measured by Lucigenin Chemiluminescence. Results Compared with control group, dopamine receptor agonist of fenoldopam significantly reduced gp91 expression in membrane lipid raft regions both in NT[ (17 ±3

  20. FATTY ACIDS MODULATE TOLL-LIKE RECEPTOR 4 ACTIVATION THROUGH REGULATION OF RECEPTOR DIMERIZATION AND RECRUITMENT INTO LIPID RAFTS

    Science.gov (United States)

    The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies (J Biol Chem 2003, 2004) demonstrated that saturated ...

  1. Platelet lipidomic.

    Science.gov (United States)

    Dolegowska, B; Lubkowska, A; De Girolamo, L

    2012-01-01

    Lipids account for 16-19 percent dry platelet matter and includes 65 percent phospholipids, 25 percent neutral lipids and about 8 percent glycosphingolipids. The cell membrane that surrounds platelets is a bilayer that contains different types phospholipids symmetrically distributed in resting platelets, such as phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine, and sphingomyelin. The collapse of lipid asymmetry is exposure of phosphatidylserine in the external leaflet of the plasma bilayer, where it is known to serve at least two major functions: providing a platform for development of the blood coagulation cascade and presenting the signal that induces phagocytosis of apoptotic cells. During activation, this asymmetrical distribution becomes disrupted, and PS and PE become exposed on the cell surface. The transbilayer movement of phosphatidylserine is responsible for the platelet procoagulant activity. Exposure of phosphatidylserine is a flag for macrophage recognition and clearance from the circulation. Platelets, stored at room temperature for transfusion for more than 5 days, undergo changes collectively known as platelet storage lesions. Thus, the platelet lipid composition and its possible modifications over time are crucial for efficacy of platelet rich plasma therapy. Moreover, a number of substances derived from lipids are contained into platelets. Eicosanoids are lipid signaling mediators generated by the action of lipoxygenase and include prostaglandins, thromboxane A2, 12-hydroxyeicosatetraenoic acid. Isoprostanes have a chemical structure similar to this of prostanoids, but are differently produced into the particle, and are ligands for prostaglandins receptors, exhibiting biological activity like thromboxane A2. Endocannabinoids are derivatives from arachidonic acid which could reduce local pain. Phospholipids growth factors (sphingolipids, lysophosphatidic acid, platelet-activating factor) are involved in tissue

  2. Prediction of glycolipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpaA, a protein involved in the adhesion of Helicobacter pylori to gastrointestinal cells.

    Science.gov (United States)

    Fantini, Jacques; Garmy, Nicolas; Yahi, Nouara

    2006-09-12

    Protein-glycolipid interactions mediate the attachment of various pathogens to the host cell surface as well as the association of numerous cellular proteins with lipid rafts. Thus, it is of primary importance to identify the protein domains involved in glycolipid recognition. Using structure similarity searches, we could identify a common glycolipid-binding domain in the three-dimensional structure of several proteins known to interact with lipid rafts. Yet the three-dimensional structure of most raft-targeted proteins is still unknown. In the present study, we have identified a glycolipid-binding domain in the amino acid sequence of a bacterial adhesin (Helicobacter pylori adhesin A, HpaA). The prediction was based on the major properties of the glycolipid-binding domains previously characterized by structural searches. A short (15-mer) synthetic peptide corresponding to this putative glycolipid-binding domain was synthesized, and we studied its interaction with glycolipid monolayers at the air-water interface. The synthetic HpaA peptide recognized LacCer but not Gb3. This glycolipid specificity was in line with that of the whole bacterium. Molecular modeling studies gave some insights into this high selectivity of interaction. It also suggested that Phe147 in HpaA played a key role in LacCer recognition, through sugar-aromatic CH-pi stacking interactions with the hydrophobic side of the galactose ring of LacCer. Correspondingly, the replacement of Phe147 with Ala strongly affected LacCer recognition, whereas substitution with Trp did not. Our method could be used to identify glycolipid-binding domains in microbial and cellular proteins interacting with lipid shells, rafts, and other specialized membrane microdomains.

  3. 肌动蛋白结合脂筏促进巨噬细胞摄入土拉弗朗西斯菌%Advancement of Actin Binding with Lipid Rafts in the Uptake Francisella tularensis by Mouse Macrophages

    Institute of Scientific and Technical Information of China (English)

    潘欣; 曾思良; 蔡家麟; 吴鉴今; 杨光; 黄通来

    2011-01-01

    观察土拉弗朗西斯菌LVS借助脂筏以肌动蛋白为动力被鼠巨噬细胞摄入的过程.细胞胆固醇用菲律平Ⅲ染色,结合神经节苷酯GM1的霍乱毒素B亚基用键合了Alexa 594的免抗霍乱毒素B亚基二抗显色:肌动蛋白用键合了Alexa 594的鬼笔环肽显色.免疫荧光显微镜观察到脂筏成分中的胆固醇、神经节苷酯GM1均可与细菌共定位;胆固醇可与肌动蛋白共定位.随着感染时同的延长,细菌可离开脂筏.离开脂筏的细菌囊泡可与肌动蛋白共定位.这些发现提示肌动蛋白与脂筏结合,在弗朗西新菌早期进入巨噬细胞期间发辉重要作用.%The process of the uptake Franciselia tularensis LVS by mouse macrophages with the aid of lipid rafts powered by actin was observed. Cell cholesterol was stained with filipin H and combined with cholera toxin sub-radical B of gangliosides CM1 were detected and visualized with Alexa Fluor 594 conjugated rabbit-anti-cholera toxin sub-radical B antibodies. Actins were visualized with phalloidin conjugated to Alexa 594. The results indicated thai under fluorescence microscope cholesterol, gangliosides GM1 of the component of lipid rafts could be colocalized with the bacterium, and cholesterol could be colocalized with actin. As ihe prolongation of the infection, bacterium could leave the lipid rafts. Bacterial saccule thai left the lipid rafts could be colocalized with actin. These findings suggested that actin combined with lipid rafts played an important role in Franciselia early entering into macrophages.

  4. Insights on raft behavior from minimal phenomenological models

    Science.gov (United States)

    Garbès Putzel, G.; Schick, M.

    2011-07-01

    We construct a simple phenomenological theory of phase separation in ternary mixtures of cholesterol and saturated and unsaturated lipids. Such separation is relevant to the formation of 'rafts' in the plasma membrane. We also show how simple cross-linking of proteins which prefer one form of lipid to the other can trigger raft-formation, the first step in a signaling pathway.

  5. 液质联用蛋白组学技术分析脑组织脂筏样品的属性*%Properties of Lipid Rafts from Cerebral Cortex Based on HPLC MS/MS Proteomics

    Institute of Scientific and Technical Information of China (English)

    聂坤; 张雪竹; 赵岚; 贾玉洁; 韩景献

    2013-01-01

      目的验证蔗糖密度梯度超速离心法提取脑组织脂筏的有效性。方法用蔗糖密度梯度超速离心法提取小鼠脑组织脂筏,采用免疫印迹法、双酶胆固醇检测法结合光散射度分析样品的脂筏属性,采用液质联用蛋白组学技术和生物信息学手段,对脂筏中的蛋白质细胞定位进行分析。结果超速离心法提取的脑组织脂筏具有典型的高散色度、高胆固醇和高表达Flotillin-1的脂筏特性;液质联用蛋白组学分析从脂筏样本中鉴定出647种蛋白质,这些蛋白质细胞定位大多是细胞膜、内质网、细胞骨架和细胞浆等常见的脂筏蛋白来源,这种脂筏样品是含有杂质的混合物,鉴定出的647种总蛋白中,有21%是细胞核、线粒体和核糖体等非脂筏来源蛋白。结论超速离心法是提取脑组织脂筏的有效方法,但应用中要考虑杂蛋白的影响。%Objective To verify the validity of the sucrose density gradient ultracentrifugation method for lipid rafts from cerebral cortex. Methods Extract lipid rafts from cerebral cortex in mouse were extracted by the sucrose density gradi-ent ultracentrifugation method. The properties of lipid rafts were detected by Western blotting method, double enzyme and light scattering methods. HPLC MS/MS proteomics and bioinformatics were used to locate proteins of lipid rafts in cells. Re-sults Lipid rafts from cerebral cortex were provided with the model properties of lipid rafts such as high light scattering and cholesterol and high expression of Flotillin-1. HPLC MS/MS proteomics identified total 647 proteins. Most of these pro-teins were from plasma membrane, endoplasmic reticulum, cytoskeleton and cytosol, however, there were 21% proteins among total 647 proteins were from nucleus, mitochondria and ribosomes. Conclusion The sucrose density gradient ultra-centrifugation method is a effective method to extract lipid rafts from cerebral cortex, however

  6. LIPID PROFILE, PLASMA FIBRINOGEN, AND PLATELET COUNT AS MARKERS OF CARDIO VASCULAR DISEASE IN SMOKERS DUE TO FREE RADICAL GENERATION

    Directory of Open Access Journals (Sweden)

    N Kannan

    2013-06-01

    Full Text Available Cigarette smoking & tobacco chewing are risk factors not only for oral and lung tumours but also for the development of systemic disorders like atherosclerosis, coronary artery disease and peripheral vascular disease. This study was undertaken to evaluate the lipid profile, plasma fibrinogen and platelet count in male smokers, compared with healthy non smokers in rural area of south India, Out of 100 male healthy volunteers, 50 members were healthy smokers and 50 healthy non smokers, subjects were divided in both groups in age around 30 to 45yrs, with no past history of diabetes mellitus, hypertension, hepatic disorders and were neither on anti hypertensive, lipid lowering drugs were included in the study. Lipid profile, plasma fibrinogen and platelet count were analyzed by standard methods. Our results showed mean platelet count for smokers is 2, 86,345per mm3 and for non-smokers 2, 04,484.6per mm3. The mean plasma fibrinogen concentration for smokers is 3.48gm/dl and for non smokers is 3.12gm/dl. The platelet count and plasma fibrinogen concentration shows a higher value for smokers when compared to non- smokers. This is statistically significant. The mean total cholesterol level for smokers (186±30.10 mg/dl and non smokers (166.3±24.26 mg/dl and the mean triglyceride level for smokers (175±59.43 mg/dl and non smokers (132.09±+33.80 mg/dl are also statistically significant. The mean HDL level for smokers (40.4±4.13 mg/dl and for non smokers (44.68±4.13 mg/dl, the mean LDL level for smokers (105.8±28.16 mg/dl and non smokers (89.68±16.50 mg/dl and the mean VLDL level for smokers (28.4± 8.16 mg/dl and non smokers (14.3.±3.2 mg/dl indicate that the Lipid profile also is statistically significant between the two groups. We concluded that there is an elevated lipid profile; plasma fibrinogen and platelet count in smokers when compared to non smokers, which shows that smokers have high risk of prevalence of cardiovascular and vessel wall

  7. A New Membrane Lipid Raft Gene SpFLT-1 Facilitating the Endocytosis of Vibrio alginolyticus in the Crab Scylla paramamosain.

    Science.gov (United States)

    Chen, Fangyi; Bo, Jun; Ma, Xiaowan; Dong, Lixia; Shan, Zhongguo; Cui, Qian; Chen, Huiyun; Wang, Kejian

    2015-01-01

    Pathogens can enter their host cells by way of endocytosis in which the membrane lipid raft gene flotillins are probably involved in the invasion process and this is an important way to cause infection. In this study, a new gene SpFLT-1 was identified in Scylla paramamosain, which shared high identity with the flotillin-1 of other species. The SpFLT-1 gene was widely distributed in tissues and showed the highest level of mRNA transcripts in the hemocytes. This gene might be a maternal gene based on the evident results that it was highly expressed in maternal ovaries and in the early developmental stages of the zygote and early embryo stage whereas it gradually decreased in zoea 1. SpFLT-1 positively responded to the challenge of Vibrio alginolyticus with a significantly increased level of mRNA expression in the hemocytes and gills at 3 hours post infection (hpi). The SpFLT-1 protein was detected densely in the same fraction layer where the Vibrio protein was most present in the hemocytes and gills at 3 hpi. Furthermore, it was found that the expression of SpFLT-1 decreased to the base level following disappearance of the Vibrio protein at 6 hpi in the gills. Silencing SpFLT-1 inhibited the endocytosis rate of V. alginolyticus but overexpression of the gene could facilitate bacterial entry into the epithelioma papulosum cyprinid cells. Our study indicated that SpFLT-1 may act as a key protein involved in the process of bacterial infection and this sheds light on clarifying the pathogenesis of pathogens infecting S. paramamosain.

  8. Research progress on the lipid rafts in plant cells%脂筏及其在植物细胞中的研究进展

    Institute of Scientific and Technical Information of China (English)

    崔亚宁; 李晓娟; 林金星; 李瑞丽

    2014-01-01

    脂筏(lipid rafts)是细胞质膜上富含固醇类和鞘脂类的微结构域,其大小为10~ 200 nm,是一种高度动态的结构.脂筏假说认为,质膜上一些小而动态的纳米级异质性结构可以通过脂类-脂类、蛋白-脂类和蛋白-蛋白之间的相互作用形成大的反应平台,进而可以介导细胞信号的转导过程.研究表明脂筏具有多种重要的生物学功能,其中包括参与信号转导、跨膜转运、胞吞和胞吐平衡调节、细胞骨架组织以及病原菌入侵等.目前对脂筏的研究还只是近几年才得到快速发展的一个领域,但已经受到越来越多的重视,并且取得初步的研究进展.本文主要介绍了脂筏的特性和生物学功能,尤其对脂筏在植物细胞中的研究进展进行了总结,为今后系统开展脂筏的研究提供理论参考.

  9. Neohesperidin dihydrochalcone down-regulates MyD88-dependent and -independent signaling by inhibiting endotoxin-induced trafficking of TLR4 to lipid rafts.

    Science.gov (United States)

    Xia, Xiaomin; Fu, Juanli; Song, Xiufang; Shi, Qiong; Su, Chuanyang; Song, Erqun; Song, Yang

    2015-12-01

    Fulminant hepatic failure (FHF) is a lethal clinical syndrome characterized by the activation of macrophages and the increased production of inflammatory mediators. The purpose of this study was to investigate the effects of neohesperidin dihydrochalcone (NHDC), a widely-used low caloric artificial sweetener against FHF. An FHF experimental model was established in mice by intraperitoneal injection of D-galactosamine (d-GalN) (400mg/kg)/lipopolysaccharides (LPS) (10 μg/kg). Mice were orally administered NHDC for 6 continuous days and at 1h before d-GalN/LPS administration. RAW264.7 macrophages were used as an in vitro model. Cells were pre-treated with NHDC for 1h before stimulation with LPS (10 μg/ml) for 6h. d-GalN/LPS markedly increased the serum transaminase activities and levels of oxidative and inflammatory markers, which were significantly attenuated by NHDC. Mechanistic analysis indicated that NHDC inhibited LPS-induced myeloid differentiation factor 88 (MyD88) and TIR-containing adapter molecule (TRIF)-dependent signaling. Transient transfection of TLR4 or MyD88 siRNA inhibited the downstream inflammatory signaling. This effect could also be achieved by the pretreatment with NHDC. The fluorescence microscopy and flow cytometry results suggested that NHDC potently inhibited the binding of LPS to TLR4 in RAW264.7 macrophages. In addition, the inhibitory effect of NHDC on LPS-induced translocation of TLR4 into lipid raft domains played an important role in the amelioration of production of downstream pro-inflammatory molecules. Furthermore, the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) by NHDC inhibited TLR4 signaling. In conclusion, our results suggest that NHDC attenuates d-GalN/LPS-induced FHF by inhibiting the TLR4-mediated inflammatory pathway, demonstrating a new application of NHDC as a hepatoprotective agent.

  10. Purification and Preliminary Identification of Seminolipid in the Lipid-raft of Germ Cell Membrane%生殖细胞膜脂筏中精原糖脂质的分离纯化及初步鉴定

    Institute of Scientific and Technical Information of China (English)

    张彦龙

    2011-01-01

    目的 哺乳动物的硫酸化糖脂质由负电荷硫酸离子和两亲性的鞘糖脂组成,硫酸盐半乳糖神经酰胺的硫酸糖脂质和硫酸盐半乳糖烷基甘油酯的精原糖脂质是存在与哺乳动物的两种主要糖脂质,为验证它是否以脂筏形式存在于生殖细胞膜上,提纯生殖细胞的精原糖脂质及其脂筏.方法 应用DEAE-Sephadex A-25和硅胶交替层析法,提纯牛的睾丸中精原糖脂质;在裂解缓冲液下应用匀浆机裂解生殖细胞,在5%~40%的蔗糖密度梯度离心下,提取生殖细胞中的脂筏;在氯仿/甲醇/水=10/20/1溶剂下分离脂筏的脂类和蛋白质,经薄层层析(TLC)和蛋白电泳(SDS-PACE)检测精原糖脂质存在方式.结果 经离子交换层析和硅胶层析,获得高纯度的精原糖脂质;经蔗糖梯度离心,在离心管中可见的脂筏两条带被回收,经薄层层析(TLC)检验,精原糖脂质存在于生殖细胞膜脂筏中.结论 由此推测精原糖脂质在生殖细胞细胞膜内,作为一个为受体信号传导和运输的功能性平台,并作为脂筏的组成部分而发挥关键作用.%Objective The sulfatides of mammals are composed of anionic and amphiphilie glycosphingolipids (GSLs). Sulfated galactosylceramide (galactosylsulfatide,SM4s;Sulfatide) and sulfated galactosylalkylacylglycerol (seminolipid,SM4g) are two major sulfoglycolipids in mammals. To certify the seminolipid in the germ cell membrane as lipid raft,we purified the seminolipid in the germ cells. Methods Seminolipid was purified the bovine testicles by silica gel chromatography and DEAE-Sephadex A-25. The germ cells were separated with a refiner in lysate buffer and the lipid rafts were purified by gradient centrifugation of the 5-40% sucrose density. Finally, protein and lipid of the lipid rafts were separated by the Chloroform / methanol / water = 0/20/1 solvent and then subjected to thin-layer chromatography (TLC)and SDS-PAGE to confirm the existence of the seminolipid

  11. The impact of vitamin C on the relationship among inflammation, lipid peroxidation, and platelet activation during analgesic nephropathy in rats.

    Science.gov (United States)

    Hadzi-Petrushev, Nikola; Mitrov, Dine; Kostovski, Vladimir; Mladenov, Mitko

    2017-08-03

    Oxidative stress and inflammation are involved in the pathogenesis of paracetamol-induced renal damage. This study examines the relationship between 8-iso-prostaglandin F2α (8-iso-PGF2α) and platelet activation as well as the relative contribution of the pro-inflammatory markers interleukin (IL)-1β and tumor necrosis factor-α (TNF-α) in enhanced 8-iso-PGF2α biosynthesis, as a complementary onset during analgesic nephropathy induced by chronic treatment with paracetamol. The protective effects of vitamin C on the aforementioned settings are also investigated. Analgesic nephropathy was induced in Wistar rats. Renal function markers and the activity of antioxidant enzymes were determined spectrophotometrically. Immunoassays were used to measure the pro-inflammatory markers and the markers of lipid peroxidation and platelet activation. The chronic treatment with paracetamol led to renal dysfunction, represented by the elevation of plasma urea and creatinine and the decline in the enzymatic antioxidant status, but did not cause a significant increase in TNF-α and IL-1β. The paracetamol-induced lipid peroxidation and enhanced production of 8-iso-PGF2α was not sufficient to cause changes in platelet activation represented by the level of 11-dehydro thromboxane B2. Our results suggest that oxidative stress cannot circumvent the need of stimulation by circulatory cytokines in order to induce inflammatory response and changes in platelet activation during analgesic nephropathy. Vitamin C proved to be beneficial in restoring the renal function markers to normal, increasing the renal enzymatic antioxidant potential, inhibiting lipid peroxidation, and lowering cytokine production and 11-dehydro thromboxane B2 excretion. The observed effects of vitamin C offer support for its potential use as protective treatment in cases of chronic paracetamol overdose.

  12. Analyses of lipid rafts, Toll-like receptors 2 and 4, and cytokines in foals vaccinated with Virulence Associated Protein A/CpG oligonucleotide vaccine against Rhodococcus equi.

    Science.gov (United States)

    Kaur, Navjot; Townsend, Hugh; Lohmann, Katharina; Marques, Fernando; Singh, Baljit

    2013-12-15

    Rhodococcus equi establishes long-term pulmonary infection, survives in phagolysosomes of alveolar macrophages and causes pneumonia in foals. The failure of the foal to clear R. equi bacteria is believed to be due to its inability to produce IFN-γ and defects in Toll-like receptor(TLR) signaling. Lipid rafts sequester immune receptors such as TLRs and facilitate efficient cell signaling and therefore, a deficiency in accumulation of receptors in lipid rafts may result in failure to activate. We tested whether a Virulence Associated Protein A (VapA)/CpG vaccine against R. equi would impact the production of IL-10, IFN-γ and TNF-α in lung tissue and fluid samples, alter expression of TLR2 and TLR4 and alter their association with the lipid rafts in broncho-alveolar lavage (BAL) cells. Eight foals, 1–6 days of age, were vaccinated against R. equi followed by a booster at day 14 and challenged with R. equi (5 x 10(6) CFU/ml;10 ml) on day 28. This group was termed "vaccinated pre-challenge" before the infection and "vaccinated post-challenge" after the infection. A second group of foals (n = 7) was not vaccinated but challenged with R. equi on day 28 of the study. This group was termed "non-vaccinated pre-challenge" and after infection with R. equi was named "non-vaccinated post-challenged. We report adaptation of previous protocols to isolate plasma membrane fractions from BAL cells and identification of lipid raft fractions based on the presence of flotillin-1 and GM-1 and absence of transferrin receptor. TLR2 and TLR4 were restricted to plasma membrane fractions 7–9 of alveolar cells collected from vaccinated foals before and after the challenge. Western blots showed that vaccinated post-challenge foals had higher expression of TLR2 in their lung tissues compared to non-vaccinated pre-challenge foals. TNF- concentration was higher in BAL fluid collected from the vaccinated compared to the non-vaccinated foals on day 28. Lung tissue extracts collected on day 49

  13. Evidence that a lipolytic enzyme--hematopoietic-specific phospholipase C-β2--promotes mobilization of hematopoietic stem cells by decreasing their lipid raft-mediated bone marrow retention and increasing the promobilizing effects of granulocytes.

    Science.gov (United States)

    Adamiak, M; Poniewierska-Baran, A; Borkowska, S; Schneider, G; Abdelbaset-Ismail, A; Suszynska, M; Abdel-Latif, A; Kucia, M; Ratajczak, J; Ratajczak, M Z

    2016-04-01

    Hematopoietic stem/progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment and are retained there by the interaction of membrane lipid raft-associated receptors, such as the α-chemokine receptor CXCR4 and the α4β1-integrin (VLA-4, very late antigen 4 receptor) receptor, with their respective specific ligands, stromal-derived factor 1 and vascular cell adhesion molecule 1, expressed in BM stem cell niches. The integrity of the lipid rafts containing these receptors is maintained by the glycolipid glycosylphosphatidylinositol anchor (GPI-A). It has been reported that a cleavage fragment of the fifth component of the activated complement cascade, C5a, has an important role in mobilizing HSPCs into the peripheral blood (PB) by (i) inducing degranulation of BM-residing granulocytes and (ii) promoting their egress from the BM into the PB so that they permeabilize the endothelial barrier for subsequent egress of HSPCs. We report here that hematopoietic cell-specific phospholipase C-β2 (PLC-β2) has a crucial role in pharmacological mobilization of HSPCs. On the one hand, when released during degranulation of granulocytes, it digests GPI-A, thereby disrupting membrane lipid rafts and impairing retention of HSPCs in BM niches. On the other hand, it is an intracellular enzyme required for degranulation of granulocytes and their egress from BM. In support of this dual role, we demonstrate that PLC-β2-knockout mice are poor mobilizers and provide, for the first time, evidence for the involvement of this lipolytic enzyme in the mobilization of HSPCs.

  14. Fusion of raft-like lipid bilayers operated by a membranotropic domain of the HSV-type I glycoprotein gH occurs through a cholesterol-dependent mechanism.

    Science.gov (United States)

    Vitiello, Giuseppe; Falanga, Annarita; Petruk, Ariel Alcides; Merlino, Antonello; Fragneto, Giovanna; Paduano, Luigi; Galdiero, Stefania; D'Errico, Gerardino

    2015-04-21

    A wealth of evidence indicates that lipid rafts are involved in the fusion of the viral lipid envelope with the target cell membrane. However, the interplay between these sterol- and sphingolipid-enriched ordered domains and viral fusion glycoproteins has not yet been clarified. In this work we investigate the molecular mechanism by which a membranotropic fragment of the glycoprotein gH of the Herpes Simplex Virus (HSV) type I (gH625) drives fusion of lipid bilayers formed by palmitoyl oleoyl phosphatidylcholine (POPC)-sphingomyelin (SM)-cholesterol (CHOL) (1 : 1 : 1 wt/wt/wt), focusing on the role played by each component. The comparative analysis of the liposome fusion assays, Dynamic Light Scattering (DLS), spectrofluorimetry, Neutron Reflectivity (NR) and Electron Spin Resonance (ESR) experiments, and Molecular Dynamics (MD) simulations shows that CHOL is fundamental for liposome fusion to occur. In detail, CHOL stabilizes the gH625-bilayer association by specific interactions with the peptide Trp residue. The interaction with gH625 causes an increased order of the lipid acyl chains, whose local rotational motion is significantly hampered. SM plays only a minor role in the process, favoring the propagation of lipid perturbation to the bilayer inner core. The stiffening of the peptide-interacting bilayer leaflet results in an asymmetric perturbation of the membrane, which is locally destabilized thus favoring fusion events. Our results show that viral fusion glycoproteins are optimally suited to exert a high fusogenic activity on lipid rafts and support the relevance of cholesterol as a key player of membrane-related processes.

  15. Evidence for Lipid Packaging in the Crystal Structure of the GM2-Activator Complex with Platelet Activating Factor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Christine S.; Mi, Li-Zhi; Rastinejad, Fraydoon (Virginia)

    2010-11-16

    GM2-activator protein (GM2-AP) is a lipid transfer protein that has the ability to stimulate the enzymatic processing of gangliosides as well as T-cell activation through lipid presentation. Our previous X-ray crystallographic studies of GM2-AP have revealed a large lipid binding pocket as the central overall feature of the structure with non-protein electron density within this pocket suggesting bound lipid. To extend these studies, we present here the 2 {angstrom} crystal structure of GM2-AP complexed with platelet activating factor (PAF). PAF is a potent phosphoacylglycerol whose toxic patho-physiological effects can be inhibited by GM2-AP. The structure shows an ordered arrangement of two bound lipids and a fatty acid molecule. One PAF molecule binds in an extended conformation within the hydrophobic channel that has an open and closed conformation, and was seen to contain bound phospholipid in the low pH apo structure. The second molecule is submerged inside the pocket in a U-shaped conformation with its head group near the single polar residue S141. It was refined as lyso-PAF as it lacks electron density for the sn-2 acetate group. The alkyl chains of PAF interact through van der Waals contacts, while the head groups bind in different environments with their phosphocholine moieties in contact with aromatic rings (Y137, F80). The structure has revealed further insights into the lipid binding properties of GM2-AP, suggesting an unexpected unique mode of lipid packaging that may explain the efficiency of GM2-AP in inhibiting the detrimental biological effects of PAF.

  16. Insights on raft behavior from minimal phenomenological models

    Energy Technology Data Exchange (ETDEWEB)

    Garbes Putzel, G; Schick, M [Department of Physics, University of Washington, Box 351560, Seattle, WA 98195-1560 (United States)

    2011-07-20

    We construct a simple phenomenological theory of phase separation in ternary mixtures of cholesterol and saturated and unsaturated lipids. Such separation is relevant to the formation of 'rafts' in the plasma membrane. We also show how simple cross-linking of proteins which prefer one form of lipid to the other can trigger raft-formation, the first step in a signaling pathway.

  17. Life raft stabilizer

    Science.gov (United States)

    Radnofsky, M. I.; Barnett, J. H., Jr.; Harrison, F. L.; Marak, R. J. (Inventor)

    1973-01-01

    An improved life raft stabilizer for reducing rocking and substantially precluding capsizing is discussed. The stabilizer may be removably attached to the raft and is defined by flexible side walls which extend a considerable depth downwardly to one another in the water. The side walls, in conjunction with the floor of the raft, form a ballast enclosure. A weight is placed in the bottom of the enclosure and water port means are provided in the walls. Placement of the stabilizer in the water allows the weighted bottom to sink, producing submerged deployment thereof and permitting water to enter the enclosure through the port means, thus forming a ballast for the raft.

  18. Effect of ginger (Zingiber officinale Rosc.) and fenugreek (Trigonella foenumgraecum L.) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease.

    Science.gov (United States)

    Bordia, A; Verma, S K; Srivastava, K C

    1997-05-01

    In a placebo-controlled study the effect of ginger and fenugreek was examined on blood lipids, blood sugar, platelet aggregation, fibrinogen and fibrinolytic activity. The subjects included in this study were healthy individuals, patients with coronary artery disease (CAD), and patients with non-insulin-dependent diabetes mellitus (NIDDM) who either had CAD or were without CAD. In patients with CAD powdered ginger administered in a dose of 4 g daily for 3 months did not affect ADP- and epinephrine-induced platelet aggregation. Also, no change in the fibrinolytic activity and fibrinogen level was observed. However, a single dose of 10 g powdered ginger administered to CAD patients produced a significant reduction in platelet aggregation induced by the two agonists. Ginger did not affect the blood lipids and blood sugar. Fenugreek given in a dose of 2.5 g twice daily for 3 months to healthy individuals did not affect the blood lipids and blood sugar (fasting and post prandial). However, administered in the same daily dose for the same duration to CAD patients also with NIDDM, fenugreek decreased significantly the blood lipids (total cholesterol and triglycerides) without affecting the HDL-c. When administered in the same daily dose to NIDDM (non-CAD) patients (mild cases), fenugreek reduced significantly the blood sugar (fasting and post prandial). In severe NIDDM cases, blood sugar (both fasting and post prandial) was only slightly reduced. The changes were not significant. Fenugreek administration did not affect platelet aggregation, fibrinolytic activity and fibrinogen.

  19. 脂筏在柯萨奇B3病毒感染心肌细胞中作用%Function of lipid rafts in CVB3 infection on cardiocytes

    Institute of Scientific and Technical Information of China (English)

    王槐栋; 张莹; 许东洙; 黄红兰

    2013-01-01

    目的 探讨脂筏在柯萨奇B3病毒(CVB3)感染心肌细胞中的作用,旨在为阐明CVB3致病的分子机理及寻找新的抗病毒靶点提供依据.方法 用甲基-β-环糊精(MβCD)去除细胞膜维持脂筏稳定性的胆固醇分子后感染CVB3,用Western blot法检测CVB3 VP1蛋白的表达并测定病毒的滴度,同时观察补充外源性胆固醇恢复MβCD对CVB3感染的抑制作用.结果 用MβCD去除胆固醇分子破坏细胞膜脂筏结构,可抑制CVB3感染细胞;1.2、5.5和10 mmol/L MβCD去除细胞膜胆固醇CVB3滴度分别为(4.2±0.06)、(3.5±1.05)、(3.0±0.15)和(2.0±0.15)lgPFU/mL,均低于无MβCD处理对照组的(5.7 ±0.06) lgPFU/mL(P <0.001);补充外源性胆固醇可恢复MβCD对CVB3感染的抑制作用.结论 细胞膜脂筏在CVB3感染心肌细胞中起重要作用,是病毒进入细胞的关键因素.%Objective To explore the role of lipid rafts in coxsackievirus B3(CVB3)-infected cardiocytes. Methods Methyl-p-cyclodextrin(MβCD) was used to remove the cholesterol molecules maitaining the stability of lipid rafts on cell membrane,then the cells were infected with CVB3;western blot was adopted to detect the expression of CVB3 VP1 protein. Virus titer was determined after adding exogenous choleserol to observe inhibitive effect of MβCD on CVB3 infection. Results The damage of cell membrane lipid rafts duo to the removement of the cholesterol molecules by MβCD could inhibit the infection of CVB3 to cells and reduce the virus titer,and exogenous cholesterol could regain the inhibition of MβCD to CVB3 infection. Conclusion The lipid rafts on cardiocytes membrane plays an important role in CVB3 infection to the host cell.

  20. Detergent-Based Isolation of Yeast Membrane Rafts: An Inquiry-Based Laboratory Series for the Undergraduate Cell Biology or Biochemistry Lab

    Science.gov (United States)

    Willhite, D. Grant; Wright, Stephen E.

    2009-01-01

    Lipid rafts have been implicated in numerous cellular processes including cell signaling, endocytosis, and even viral infection. Isolation of these lipid rafts often involves detergent treatment of the membrane to dissolve nonraft components followed by separation of raft regions in a density gradient. We present here an inquiry-based lab series…

  1. Detergent-Based Isolation of Yeast Membrane Rafts: An Inquiry-Based Laboratory Series for the Undergraduate Cell Biology or Biochemistry Lab

    Science.gov (United States)

    Willhite, D. Grant; Wright, Stephen E.

    2009-01-01

    Lipid rafts have been implicated in numerous cellular processes including cell signaling, endocytosis, and even viral infection. Isolation of these lipid rafts often involves detergent treatment of the membrane to dissolve nonraft components followed by separation of raft regions in a density gradient. We present here an inquiry-based lab series…

  2. How Capillary Rafts Sink

    CERN Document Server

    Protiere, S; Aristoff, J; Stone, H

    2010-01-01

    We present a fluid dynamics video showing how capillary rafts sink. Small objects trapped at an interface are very common in Nature (insects walking on water, ant rafts, bubbles or pollen at the water-air interface, membranes...) and are found in many multiphase industrial processes. Thanks to Archimedes principle we can easily predict whether an object sinks or floats. But what happens when several small particles are placed at an interface between two fluids. In this case surface tension also plays an important role. These particles self-assemble by capillarity and thus form what we call a "capillary raft". We show how such capillary rafts sink for varying sizes of particles and define how this parameter affects the sinking process.

  3. Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes?

    DEFF Research Database (Denmark)

    Rog, T.; Vattulainen, I.

    2014-01-01

    Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units...... emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible...... with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has...

  4. Differential modulation of transforming growth factor-betas and cyclooxygenases in the platelet lysates of male F344 rats by dietary lipids and piroxicam.

    Science.gov (United States)

    Raju, Jayadev; Bird, Ranjana P

    2002-02-01

    Platelets are implicated in the pathogenesis of various chronic diseases including cancer. The main objective of the present study was to determine if dietary fish oil and piroxicam, known modulators of colon tumorigenesis, effect transforming growth factor (TGF)-betas and cyclooxygenase (COX) isozymes in the platelets of colon tumor-bearing male F344 rats. TGF-betas and COXs are important in the development of chronic illnesses including colon cancer. Animals harboring preneoplastic colonic lesions were randomly allocated to a low fat diet (5% by weight--low corn oil, LFC) and three high fat diets (23% by weight--high corn oil, HFC; high corn oil containing 150-ppm piroxicam, HFC+P; and high fish oil, HFF) for 16 weeks. TGF-beta1, TGF-beta2, COX-1 and COX-2 protein levels were assessed in the platelets by Western blot analysis. Active TGF-beta1 (12.5 kDa) level was significantly lower in the platelets of the HFC+P group (p level was significantly lower in the platelets of the HFF group (p protein in the platelets. However a 29-kDa protein, potentially a precursor of TGF-beta2, was detected in the platelets of all the groups and was significantly lower in the HFC+P and HFF groups than in LFC and HFC (p level was significantly lower in the HFF group than the other three groups (p protein was detected in the platelets of all diet groups. Piroxicam in the presence of high corn oil (HFC+P) significantly lowered the level of COX-2 (p level. These findings conclusively show that LFC and HFC differ from HFF and HFC+P, and piroxicam differs from fish oil, in regulating the levels of TGF-betas and COX in the platelets. This supports the conjecture that the levels of bioactive constituents of the platelets are profoundly modulated by dietary lipids, which in turn could influence the pathogenesis of chronic illnesses.

  5. Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets.

    Science.gov (United States)

    Pienimaeki-Roemer, Annika; Kuhlmann, Katja; Böttcher, Alfred; Konovalova, Tatiana; Black, Anne; Orsó, Evelyn; Liebisch, Gerhard; Ahrens, Maike; Eisenacher, Martin; Meyer, Helmut E; Schmitz, Gerd

    2015-03-01

    Platelets (PLTs) in stored PLT concentrates (PLCs) release PLT extracellular vesicles (PL-EVs) induced by senescence and activation, resembling the PLT storage lesion. No comprehensive classification or molecular characterization of senescence-induced PL-EVs exists to understand PL-EV heterogeneity. PL-EVs from 5-day-stored PLCs from healthy individuals were isolated and subfractionated by differential centrifugation, filtration, and density gradient ultracentrifugation into five PLT microvesicle (PL-MV) subfractions (Fraction [F]1-F5) and PLT exosomes (PL-EXs). PL-EV size, concentration, and composition were analyzed by nanoparticle tracking analysis, flow cytometry, and lipid and protein mass spectrometry. Protein data were verified by Western blot. PL-EVs showed overlapping mean particle sizes of 180 to 260 nm, but differed significantly in composition. Less dense, intermediate, and dense PL-MVs enriched specific lipidomic and proteomic markers related to the plasma membrane, intracellular membranes, PLT granules, mitochondria, and PLT activation. α-Synuclein (81% of total) accumulated in F1 and F2, amyloid-β (Aβ) precursor protein in F3 and F4 (84%), and apolipoprotein (Apo)E (88%) and ApoJ (92%) in F3 to F5. PL-EXs enriched lipid species and proteins, with high abundance of lipid raft, PLT adhesion, and immune response-related markers. Differential lipid and protein compositions of PL-EVs suggest their unique cellular origins and functions, partly overlapping with PLT granule secretion. Dense PL-MVs might represent autophagic vesicles released during PLT activation and apoptosis and PL-EXs resemble lipid rafts, with a potential role in PLT aggregation and immunity. Segregation of α-synuclein and Aβ precursor protein, ApoE, and ApoJ into less dense and dense PL-MVs, respectively, show their differential carrier role of neurologic disease-related cargo. © 2014 AABB.

  6. Dynamics of putative raft-associated proteins at the cell surface.

    Science.gov (United States)

    Kenworthy, Anne K; Nichols, Benjamin J; Remmert, Catha L; Hendrix, Glenn M; Kumar, Mukesh; Zimmerberg, Joshua; Lippincott-Schwartz, Jennifer

    2004-06-07

    Lipid rafts are conceptualized as membrane microdomains enriched in cholesterol and glycosphingolipid that serve as platforms for protein segregation and signaling. The properties of these domains in vivo are unclear. Here, we use fluorescence recovery after photobleaching to test if raft association affects a protein's ability to laterally diffuse large distances across the cell surface. The diffusion coefficients (D) of several types of putative raft and nonraft proteins were systematically measured under steady-state conditions and in response to raft perturbations. Raft proteins diffused freely over large distances (> 4 microm), exhibiting Ds that varied 10-fold. This finding indicates that raft proteins do not undergo long-range diffusion as part of discrete, stable raft domains. Perturbations reported to affect lipid rafts in model membrane systems or by biochemical fractionation (cholesterol depletion, decreased temperature, and cholesterol loading) had similar effects on the diffusional mobility of raft and nonraft proteins. Thus, raft association is not the dominant factor in determining long-range protein mobility at the cell surface.

  7. 抗体交联作用促进Nephrin簇集于细胞膜脂筏微区%Nephrin Clustered in Lipid Raft-associated Microdomain on the Cell Membrane by Antibody Induced Cross-linking

    Institute of Scientific and Technical Information of China (English)

    秦晓松; 刘勇; 佟威威; 岳丹; 刘建华; 刘岩

    2010-01-01

    为研究nephrin在细胞膜上的表达特点,构建nephrin和podocin的表达质粒,转染COS-7细胞.采用胞吞摄取和抗体交联实验,发现nephrin的内吞囊泡与GM1神经节苷脂的十价配体CTxB及podocin囊泡共存;特异性抗体交联促进nephrin与脂筏(lipid raft)标记物CTxB共同聚集于脂筏微区;蔗糖密度梯度离心显示无论是表达nephrin的COS-7细胞还是大鼠肾小球细胞中部分nephrin与脂筏标志物小窝蛋白(caveolin)等均存在于去污剂抵抗膜成分中.结果提示nephrin为脂筏相关蛋白,并且特异抗体交联促进nephrin聚集于脂筏微区.

  8. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling.

    Science.gov (United States)

    Huang, Yen-Ning; Lin, Ching-I; Liao, Hsiang; Liu, Chin-Yu; Chen, Yue-Hua; Chiu, Wan-Chun; Lin, Shyh-Hsiang

    2016-07-22

    Epidemiological investigations have shown that Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. It has been indicated that the cholesterol concentration in the brain of AD patients is higher than that in normal people. In this study, we investigated the effects of cholesterol concentrations, 0, as the control, 3.125, 12.5, and 25μM, on cholesterol metabolism, neuron survival, AD-related protein expressions, and cell morphology and apoptosis using SH-SY5Y human neuroblastoma cells. We observed that expressions of cholesterol hydroxylase (Cyp46), flotillin-2 (a marker of lipid raft content), and truncated tyrosine kinase B (TrkBtc) increased, while expressions of brain-derived neurotrophic factor (BDNF) and full-length TrkB (TrkBfl) decreased as the concentration of cholesterol loading increased. Down-regulation of the PI3K-Akt-glycogen synthase kinase (GSK)-3β cascade and cell apoptosis were also observed at higher concentrations of cholesterol, along with elevated levels of β-amyloid (Aβ), β-secretase (BACE), and reactive oxygen species (ROS). In conclusion, we found that cholesterol overload in neuronal cells imbalanced the cholesterol homeostasis and increased the protein expressions causing cell apoptosis, which illustrates the neurodegenerative pathology of abnormally elevated cholesterol concentrations found in AD patients.

  9. Advances in study on physiological functions of marker protein of lipid raft flotillin-2%脂筏标记蛋白flotillin-2生理功能的研究进展

    Institute of Scientific and Technical Information of China (English)

    赵峰; 张杰; 李丽

    2012-01-01

    This article reviews the structure and major physiological functions of flotillin-2 confirmed as a marker protein of lipid raft in order to provide references for studying the relationship between flotillin-2 and some neurodegenerative diseases(i, e. spongiform encephalopathy,etc. ). It was pointed out that it was important for further studying of the relationship of flotillin-2 with neurodegenerative diseases and tumor,which was of great important studying on pathogenesis and treatment approaches of bovine spongiform encephalopathy,Creutzfeld-Jakob disease, Alzheimer ' s disease and tumor.%为了给进一步研究flotillin-2与某些神经退行性疾病(如海绵状脑病等)的关系提供参考,对脂筏标记蛋白flotillin-2的结构及其主要的生理功能进行了综述,提出,进一步研究flotillin-2与某些神经组织退化疾病及肿瘤的关系,对疯牛疯、克雅病、阿尔兹罕默氏病以及肿瘤病的发病机制及治疗研究具有重要意义。

  10. Feeding long-chain n-3 polyunsaturated fatty acids to obese leptin receptor-deficient JCR:LA- cp rats modifies immune function and lipid-raft fatty acid composition.

    Science.gov (United States)

    Ruth, Megan R; Proctor, Spencer D; Field, Catherine J

    2009-05-01

    Dietary EPA and DHA modulate immunity and thereby may improve the aberrant immune function in obese states. To determine the effects of feeding fish oil (FO) containing EPA and DHA on splenocyte phospholipid (PL) and lipid-raft fatty acid composition, phenotypes and cytokine production, 14-week-old obese, leptin receptor-deficient JCR:LA-cp rats (cp/cp; n 10) were randomised to one of three nutritionally adequate diets for 3 weeks: control (Ctl, 0 % EPA+DHA); low FO (LFO, 0.8 % (w/w) EPA+DHA); high FO (HFO, 1.4 % (w/w) EPA+DHA). Lean JCR:LA-cp (+/ - or +/+) rats (n 5) were fed the Ctl diet. Obese Ctl rats had a higher proportion of n-3 PUFA in splenocyte PL than lean rats fed the same diet (P JCR:LA-cp rats. Feeding FO lowered the ex vivo inflammatory response, without altering IL-2 production from ConA-stimulated splenocytes which may occur independent of leptin signalling.

  11. Cholesterol depletion disorganizes oocyte membrane rafts altering mouse fertilization.

    Directory of Open Access Journals (Sweden)

    Jorgelina Buschiazzo

    Full Text Available Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assessed by cholesterol modulation using methyl-β-cyclodextrin. Cholesterol removal induced: (1 a decrease of the fertilization rate and index; and (2 a delay in the extrusion of the second polar body. Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures, by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its dependence on cholesterol.

  12. Energetic modeling and single-molecule verification of dynamic regulation on receptor protein diffusion by actin corrals and lipid raft domains receptor

    Science.gov (United States)

    Lin, Chien Yu; Huang, Jung Y.; Lo, Leu-Wei

    2015-03-01

    To faithfully estimate a signal that varies in both space and time, the optimization strategy used by a live cell is to organize a collection of distributed and mobile receptors into a mobile active clustering. However, living eukaryotic cells are highly heterogeneous and stochastically dynamic. It is therefore important to develop an energetic model based on fundamental laws to verify that the underlying processes are energetically favorable. We developed an energetic model based on the generalized Langevin equation and the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane with a hierarchical structure of actin corrals, lipid domains, and receptor proteins. Single-molecule tracking data of EGFR acquired on live HeLa cells agrees with the simulation results. We discovered that after ligand binding, EGFR molecules move into lipid nanodomains. The transition rates between different diffusion states of liganded EGFR molecules are regulated by the lipid domains. Our method captures both the sensitivity of single-molecule processes, statistic accuracy of data analysis, and the hierarchical structure of plasma membranes.

  13. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation.

    Science.gov (United States)

    Lattif, Ali Abdul; Mukherjee, Pranab K; Chandra, Jyotsna; Roth, Mary R; Welti, Ruth; Rouabhia, Mahmoud; Ghannoum, Mahmoud A

    2011-11-01

    Candida albicans-associated bloodstream infections are linked to the ability of this yeast to form biofilms. In this study, we used lipidomics to compare the lipid profiles of C. albicans biofilms and planktonic cells, in early and mature developmental phases. Our results showed that significant differences exist in lipid composition in both developmental phases. Biofilms contained higher levels of phospholipid and sphingolipids than planktonic cells (nmol per g biomass, Pbiofilms compared to planktonic cells (P≤0.05). The ratio of phosphatidylcholine to phosphatidylethanolamine was lower in biofilms compared to planktonic cells in both early (1.17 vs 2.52, P≤0.001) and late (2.34 vs 3.81, P≤0.001) developmental phases. The unsaturation index of phospholipids decreased with time, with this effect being particularly strong for biofilms. Inhibition of the biosynthetic pathway for sphingolipid [mannosyl diinositolphosphoryl ceramide, M(IP)₂C] by myriocin or aureobasidin A, and disruption of the gene encoding inositolphosphotransferase (Ipt1p), abrogated the ability of C. albicans to form biofilms. The differences in lipid profiles between biofilms and planktonic Candida cells may have important implications for the biology and antifungal resistance of biofilms.

  14. Differential Association of the Na+/H+ Exchanger Regulatory Factor (NHERF Family of Adaptor Proteins with the Raft- and the Non-Raft Brush Border Membrane Fractions of NHE3

    Directory of Open Access Journals (Sweden)

    Ayesha Sultan

    2013-11-01

    Full Text Available Background/Aims: Trafficking, brush border membrane (BBM retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50, NHERF2 (E3KARP, and NHERF3 (PDZK1 with lipid rafts in murine small intestinal BBM. Methods: Detergent resistant membranes (“lipid rafts” were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3- mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. Results: NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. Conclusions: The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs.

  15. 抗癌药SN38通过脂筏促进Fas介导的细胞凋亡%Anti-cancer drug SN 38, augments FAS-mediated apoptosis through lipid raft

    Institute of Scientific and Technical Information of China (English)

    曹妍; 王大南; 孙玥; 梅原久範; 吕昌龙

    2012-01-01

    Objective:To investigate the mechanisms of anti-cancer drug, SN38, on Fas-mediated apoptosis and to study the role of lipid raft in such progress. Methods: WR/FAS-SM (-) cells and WR/FAS-SMS1 cells were treated by SN38 and/or CH11. DNA damage-associated moleculars and caspase were studied for further investigation for activation level and characteristics of such mo-leculars by Western blot. Results: Combination of SN38 and CH11 could induce the activation of ATM-Chkl -p53 pathway and caspase-3,8 in WR/Fas-SMSl cells and the inactivation of p21. Whereas the activation of Chkl-p53 and caspase-3,8 did not induce the inacti-vation of p21 in WR/Fas-SM(-) cells. Conclusion;The stronger apoptosis in WR/Fas-SMSl cells induced by the combination of SN38 and CH11 was caused by the activation of ATM-Chkl-p53 pathway and caspase-3,8 and the inactivation of p21. Lipid raft induced stronger apoptosis in WR/Fas-SMSl cells than in WR/Fas-SM(-) cells by decreasing the expression of phospho-p21 with the treatment of SN38 and CH11.%目的:探讨抗癌药SN38对Fas介导凋亡的影响机制,并进一步探讨脂筏在该过程的作用.方法:单独或者联合应用SN38和CH11(Fas抗体)作用于脂筏阴性和脂筏阳性的细胞株WR/FAS-SM(-)细胞和WR/FAS-SMS1细胞,通过Western blot的方法检测细胞内部DNA损伤的信号分子以及caspase分子的活化情况,并分析它们的活化强度和作用特点.结果:在SN38和CH11的共同作用下,WR/FAS-SMS1细胞ATM-Chk1-p53途径及caspase-3.8活化,p21活化水平降低,而WR/FAS-SM(-)细胞的Chk1-p53途径以及caspase-3.8活化,而p21活化水平则未见降低.结论:SN38和CH11的共同应用与SN38单独应用相比,通过活化ATM-Chk1-p53途径,导致p21活化水平降低,进而活化caspase-3,8,从而促进WR/Fas-SMS1细胞的凋亡;该过程中脂筏可能通过调控p21的不同活化状态最终导致了WR/FAS-SM(-)细胞和WR/FAS-SMS1细胞间凋亡率的差异.

  16. 成骨细胞膜脂筏在TNFR1介导信号转导中的作用%The role of lipid raft in TNFR1-media-ted signal transduction in osteoblasts

    Institute of Scientific and Technical Information of China (English)

    王海芳; Fredrick M.Pavalko; 梅其炳

    2011-01-01

    目的:初步研究细胞膜脂筏在MC3T3成骨细胞TNFRl介导信号转导中的作用.方法:应用MCD(10 g/L,60 min)消耗细胞膜胆固醇,以TNF-α(10 μg/L)刺激MC313成骨细胞0、5、10、15、30 rain或以TNF-α+CHX(10ms/L)处理4 h诱导凋亡,以SDS-PAGE/Western blot法检测IKBot、ph-AKT、ph-ERK、ph-p38及caspase-3活性片段表达水平的变化,分析膜胆固醇在TNFRI介导信号转导中的作用.结果:MCD(10 g/L)处理60 min可将膜胆固醇水平减少至约35%.降低膜胆固醇水平不影响TNFRI介导的IKBa信号,但显著抑制TNFRl介导的AKT磷酸化激活;不影响TNFRl介导的caspase03活化和细胞凋亡;也不影响TNFRI介导的ERK和p38磷酸化激活.结论:消耗膜胆固醇可破坏脂筏结构,提示成骨细胞膜脂筏在TNFR1介导AKT激活的过程中发挥重要作用,而TNFR1介导的NF-kB和ERK、p38及凋亡信号通路的激活并不依赖脂筏.%AIM: To investigate the role of membrane cholesterol in TNFR1-mediated signal transduction in osteoblastic MC3T3 cells.METHODS: MCD binds cholesterol specifically and was commonly used to deplete cholesterol from cell plasma membrane.MC3T3 cells were serumstarved for 22 h, treated with MCD ( 10 g/L) for 60 min followed by TNF-α ( 10 μg/L) for 0, 5, 10, 15 or 30 min, or TNF-α plus CHX (10 mg/L) for 4 h to induce apoptosis,then TNFR1-mediated IκBα degradation, phosphorylation of AKT, ERK or p38, and processing of caspase-3 were analyzed by using SDS-PAGE/Western blotting method.RESULTS: MC3T3 cell membrane cholesterol level was reduced to 35% within 60 min by MCD ( 10 g/L).Reduction of MC3T3 cell surface cholesterol dramatically inhibited TNFR1-mediated AKT phosphorylation, while did not affect the degradation of IκBα, activation of ERK or p38, and processing of caspase-3 induced by TNF-α.CONCLUSION: Cholesterol depletion can destruct lipid rafts; therefore our results suggest that lipid raft is essential for TNFR1-mediated AKT phosphorylation, but is

  17. The inlfuence of murine pathogenicity of Trichosporon asahii after inhibiting lipid raft formation%抑制阿萨希毛孢子菌脂筏形成后对其致病性的影响研究

    Institute of Scientific and Technical Information of China (English)

    李梅; 王文岭; 吕运通; 杨蓉娅; 田艳丽

    2014-01-01

    Objective To investigate the relationships between inhibititing lipid raft formation and pathogencity of (Trichosporon asahii, T. asahii) in murine model. Methods Fifty mice were immunosuppressed and divided into 5 groups randomly on the basis of the different suspensions. The experimental groups were inoculated suspensions dealing with amphotericin B which concentrations were 0.2 μg/ml, 0.5μg/ml, 1.0μg/ml, 2.0μg/ml respectively, and the control group was not processed. The death of each group were written down within three weeks, and then the main viscera of the mice were examined by mycologic culture and histopathology. Finally the infection rate were counted. Results The fatality rate and infection rate of countrol group were 80%and 90%respectively. While the number of two groups dealing with amphotericin B which density were 1.0μg/ml, 2.0μg/ml was 37.5%to 20%and 50%to 40%respectively, and was signiifcantly less than the control group(P0.05). Histopathology showed acute pyogenous inlfammation and granuloma with arthrospores and mycelia in the tissues. Conclusion Inhibited the lipid raft formation by amphotericin B, the pathogencity of T. asahii decreased apparently. With the increasing of density of amphotericin B, the fatality rate and infection rate of mice decreased gradiently. It was indicated that inhibititing the lipid raft of T. asahii can result in lowering the pathogencity. This discovery provide a clue for a new target of anti-fungal drug.%目的:观察阿萨希毛孢子菌(Trichosporon asahii, T. asahii)脂筏形成被抑制后对其致病性的影响。方法建立小鼠免疫抑制模型,将50只小鼠随机分为5组,每组10只。实验组分别接种经0.2、0.5、1.0、2.0μg/ml两性霉素B处理的菌悬液,对照组接种正常生长的菌悬液。连续观察3周,统计不同组别小鼠致死率,同时将内脏进行组织真菌培养及组织病理检查,计算感染率。结果对照组致死率为80%

  18. Mini-Raft Backpack Development.

    Science.gov (United States)

    1983-01-01

    AD-R14i 301 MINI-RAFT BACKPACK DEVELOPMENT(U) NAVAL AIRil IIIDEVELOPMENT CENTER WARMINSTER PA AIRCRAFT AND CREW SYSTEMS TECHNOLOGY DIRECTORATE G P...GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER NADC-83097-60 4. TITLE (and Sublitle) S. TYPE OF REPORT & PERIOD COVERED MINI-RAFT BACKPACK ...number) Mini-Raft, Backpack , Mini-Boat, Life Raft, One !-an, Vee Bottom RW" 24. ABSTRACT (Contnue on revere eld* i necessary and Identify by block number

  19. 脂筏在CB2受体介导的内源性大麻素AEA抑制大鼠肝星状细胞增殖活性中的作用%Lipid Rafts and Cannabinoid 2 Receptors-mediated Inhibitory Effects of Endogenous AEA on Proliferation of Hepatic Stellate Cells in Rats

    Institute of Scientific and Technical Information of China (English)

    吴文杰; 王密; 刘萍; 阳乔; 唐望先

    2012-01-01

    目的 探讨脂筏在内源性大麻素受体2(CB2)介导的内源性大麻素(AEA)抑制大鼠肝星状细胞(HSC)增殖活性中的作用及作用机制.方法 构建大麻素受体2 shRNA(Cnr2-shRNA)转染HSC细胞,干扰CB2受体的表达,采用MTT法检测转染前后不同浓度的AEA和甲基-β-环糊精(MCD)对HSC的作用效应;采用Western blot检测不同浓度AEA及MCD作用后HSC中P38 丝裂原活化蛋白激酶(p-P38MAPK)和c-Jun氨基端激酶/应激活化蛋白激酶(p-JNK)的表达量;采用激光共聚焦法检测HSC上的脂筏(LRs)以及CB2受体的表达;蔗糖密度梯度离心法提取脂筏,Western blot鉴定脂筏并检测脂筏中CB2受体的表达.结果 成功构建Cnr2-shRNA转染筛选Cnr2-单克隆细胞株,MTT检测发现转染后CB2受体的减少能减弱AEA对HSC细胞增殖的抑制作用,然而用MCD预处理HSC细胞后CB2受体的减少对AEA的效应无明显影响.p-P38MAPK和p-JNK的表达与AEA浓度有依赖关系,且可以被MCD部分拮抗.CB2受体在HSC膜脂筏和胞质中均有表达,但用蔗糖密度梯度离心法提取AEA刺激前HSC细胞脂筏,发现未受AEA刺激时脂筏中含有的CB2受体量很少,CB2受体大部分存在于HSC细胞胞质中.结论 CB2受体参与AEA 抑制HSC细胞增殖的过程与脂筏相偶联,通过脂筏这个信号平台AEA的刺激可能使CB2受体聚集或增多从而发挥级联放大效应,且这一效应与细胞中p-P38MAPK和p-JNK信号途径的激活有关.脂筏和CB2受体介导的信号传导途径可能成为治疗肝纤维化有效的作用靶点.%Objective To investigate the roles of lipid rafts in cannabinoid receptor 2(CB2)-mediated inhibitory effects of endogenous anadamide(AEA)on proliferation of hepatic stellate cells in rats and the action mechanism. Methods Cell viability was measured by using MTT assay. CB2-shRNA(Cnr2-shRNA) was designed to decrease the amount of CB2 and methyl-β-cy-clodextrin(MCD)treatment designed to destroy the lipid rafts in AEA

  20. Effects of Xuezhikang Capsule(血脂康胶囊) on Blood Lipids,Platelet Activation and Coagulation-Fibrinolysis Activity in Patients with Hyperlipidemia

    Institute of Scientific and Technical Information of China (English)

    刘志高; 余细勇

    2004-01-01

    Objective: To investigate the effects of Xuezhikang capsule (XZK, 血脂康胶囊) on blood lipids level, platelet activation and coagulation-fibrinolysis activity in patients with hyerlipidemia. Methods:Seventy-six patients of hyperlipidemia were randomly divided into two groups, the XZK group (n = 38) treated with XZK 600mg, taken two times per day and the Simvastatin (SIM) group (n = 38) treated with SIM 20mg per day, with the treatment lasting 8 weeks for both groups. Levels of fasting serum lipids, including total cholesterol (TC), triglyceride (TG), high and low density l ipoprotein cholesterol (HDL-C and LDL-C),plasma GMP-140, fibrinogen (FIB), tissue plasminogen activator (t-PA), plasminogen activator inhibitor type-1 (PAl-) and prothrombin time (PT) were all measured before and 8 weeks after treatment. Data were compared before and after treatment and also compared with those measured in 20 healthy subjects of control. Results: Before treantment the levels of TC, TG and LDL-C were obviously higher and HDL-C level was significantly lower in hyperlipidemia patients than those in healthy subjects ( P<0.05 or P<0.01). After 4-8 weeks of XZK treatment, the levels of TC, TG, LDL-C and FIB and activities of GMP-140 and PAl-1 were obviously lowered (P<0.05 or P<0.01). But in the SIM group there was no obvious change in FIB (P>0.05), instead it showed obvious increase of HDL-C and decrease of TC and LDL-C after treatment ( P<0.05 or P<0.01). Conclusion: XZK could inhibit platelet activity and improve coagulation-fibrinolysis function, besides its lipids lowering effect.

  1. A mechanism of raft formation on both plasma membrane layers

    Science.gov (United States)

    Sornbundit, Kan; Modchang, Charin; Triampo, Wannapong; Triampo, Darapond; Nuttavut, Narin

    2013-10-01

    A double-layered membrane model is proposed to explain raft formation and induction on extracellular (outer) and cytoplasmic (inner) leaflets of plasma membranes in a situation where only the outer layer has a tendency to phase-separate. In the model, lipid exchange with the surrounding medium is allowed on both layers, but lipid exchange between layers is not allowed. Simulations display domain stabilization on both layers. The effect of the lipid recycling frequencies on stationary domain sizes is also investigated. It is found that stationary domain sizes decrease when lipid recycling frequencies are stronger. Linear stability analysis is used to verify the results.

  2. Lipids and membrane lateral organization

    Directory of Open Access Journals (Sweden)

    Sandro eSonnino

    2010-11-01

    Full Text Available Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creations of these levels of order. In the late 80’s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts. Today, a PubMed search using the key word lipid rafts returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, ceramide returned 6187 hits with 799 reviews, and a tremendous number of different cellular functions have been described as lipid raft-dependent. However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells have been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasize multiple roles for membrane lipids in determining membrane order, that encompasses their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  3. Structure and dynamics of nano-sized raft-like domains on the plasma membrane

    Science.gov (United States)

    Herrera, Fernando E.; Pantano, Sergio

    2012-01-01

    Cell membranes are constitutively composed of thousands of different lipidic species, whose specific organization leads to functional heterogeneities. In particular, sphingolipids, cholesterol and some proteins associate among them to form stable nanoscale domains involved in recognition, signaling, membrane trafficking, etc. Atomic-detail information in the nanometer/second scale is still elusive to experimental techniques. In this context, molecular simulations on membrane systems have provided useful insights contributing to bridge this gap. Here we present the results of a series of simulations of biomembranes representing non-raft and raft-like nano-sized domains in order to analyze the particular structural and dynamical properties of these domains. Our results indicate that the smallest (5 nm) raft domains are able to preserve their distinctive structural and dynamical features, such as an increased thickness, higher ordering, lower lateral diffusion, and specific lipid-ion interactions. The insertion of a transmembrane protein helix into non-raft, extended raft-like, and raft-like nanodomain environments result in markedly different protein orientations, highlighting the interplay between the lipid-lipid and lipid-protein interactions.

  4. Diet-induced docosahexaenoic acid non-raft domains and lymphocyte function.

    Science.gov (United States)

    Raza Shaikh, Saame

    2010-01-01

    Docosahexaenoic acid (DHA) is an n-3 polyunsaturated fatty acid (PUFA) that generally suppresses the function of T lymphocytes and antigen presenting cells (APCs). An emerging mechanism by which DHA modifies lymphocyte function is through changes in the organization of sphingolipid/cholesterol lipid raft membrane domains. Two contradictory models have been proposed to explain how DHA exerts its effects through changes in raft organization. The biophysical model, developed in model membranes, shows that DHA-containing phospholipids form unique non-raft membrane domains, that are organizationally distinct from lipid rafts, which serve to alter the conformation and/or lateral organization of lymphocyte proteins. In contrast, the cellular model on DHA and rafts shows that DHA suppresses lymphocyte function, in part, by directly incorporating into lipid rafts and altering protein activity. To reconcile opposing biophysical and cellular viewpoints, a major revision to existing models is presented herein. Based largely on quantitative microscopy data, it is proposed that DHA, consumed through the diet, modifies lymphocyte function, in part, through the formation of nanometer scale DHA-rich domains. These nano-scale domains disrupt the optimal raft-dependent clustering of proteins necessary for initial signaling. The data covered in this review highlights the importance of understanding how dietary n-3 PUFAs modify lymphocyte membranes, which is essential toward developing these fatty acids as therapeutic agents for treating inflammatory diseases.

  5. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking

    Science.gov (United States)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-02-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  6. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking.

    Science.gov (United States)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-01-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  7. Argan oil prevents prothrombotic complications by lowering lipid levels and platelet aggregation, enhancing oxidative status in dyslipidemic patients from the area of Rabat (Morocco).

    Science.gov (United States)

    Haimeur, Adil; Messaouri, Hafida; Ulmann, Lionel; Mimouni, Virginie; Masrar, Azelarab; Chraibi, Abdelmjid; Tremblin, Gérard; Meskini, Nadia

    2013-07-20

    It is now established that patients with hyperlipidemia have a high risk of atherosclerosis and thrombotic complications, which are two important events responsible for the onset and progression of cardiovascular disease. In the context of managing dyslipidemia by means of dietary advice based on the consumption of argan oil, we wanted to investigate the effect of virgin argan oil on plasma lipids, and for the first time, on the platelet hyperactivation and oxidative status associated with dyslipidemia. This study concerns patients recruited in the area of Rabat in Morocco. 39 dyslipidemic (79% women) patients were recruited for our study in the area of Rabat in Morocco. They were randomly assigned to the two following groups: the argan group, in which the subjects consumed 25 mL/day of argan oil at breakfast for 3 weeks, and the control group in which argan oil was replaced by butter. After a 3-week consumption period, blood total cholesterol was significantly lower in the argan oil group, as was LDL cholesterol (23.8% and 25.6% lower, respectively). However, the HDL cholesterol level had increased by 26% at the end of the intervention period compared to baseline. Interestingly, in the argan oil group thrombin-induced platelet aggregation was lower, and oxidative status was enhanced as a result of lower platelet MDA and higher GPx activity, respectively. In conclusion, our results, even if it is not representative of the Moroccan population, show that argan oil can prevent the prothrombotic complications associated with dyslipidemia, which are a major risk factor for cardiovascular disease.

  8. Interaction of chiral rafts in self-assembled colloidal membranes

    Science.gov (United States)

    Xie, Sheng; Hagan, Michael F.; Pelcovits, Robert A.

    2016-03-01

    Colloidal membranes are monolayer assemblies of rodlike particles that capture the long-wavelength properties of lipid bilayer membranes on the colloidal scale. Recent experiments on colloidal membranes formed by chiral rodlike viruses showed that introducing a second species of virus with different length and opposite chirality leads to the formation of rafts—micron-sized domains of one virus species floating in a background of the other viruses [Sharma et al., Nature (London) 513, 77 (2014), 10.1038/nature13694]. In this article we study the interaction of such rafts using liquid crystal elasticity theory. By numerically minimizing the director elastic free energy, we predict the tilt angle profile for both a single raft and two rafts in a background membrane, and the interaction between two rafts as a function of their separation. We find that the chiral penetration depth in the background membrane sets the scale for the range of the interaction. We compare our results with the experimental data and find good agreement for the strength and range of the interaction. Unlike the experiments, however, we do not observe a complete collapse of the data when rescaled by the tilt angle at the raft edge.

  9. The effect of n-3 polyunsaturated fatty acids on lipids, platelet function, coagulation, fibrinolysis and monocyte chemotaxis in patients with hypertension.

    Science.gov (United States)

    Schmidt, E B; Nielsen, L K; Pedersen, J O; Kornerup, H J; Dyerberg, J

    1990-07-01

    We have studied the effect of dietary supplementation with 4 g of n-3 polyunsaturated fatty acids (n-3 PUFA) daily for 6 wk on plasma lipids, haemostasis and monocyte chemotaxis in 10 patients with untreated hypertension. Total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides did not change, but the ratio of total to HDL-cholesterol was significantly reduced after the fish oil supplement. Platelet function was unaltered by intake of n-3. Plasma fibrinogen and fibronectin decreased after supplementation with n-3 PUFA, while the effects on fibrinolysis were equivocal. Monocyte chemotaxis was reduced by the supplement. These data lend support to a role for an increased intake of n-3 PUFA in the management of patients with hypertension.

  10. STIM1及其相关蛋白在脂筏介导的细胞内钙信号中的作用机制%Effects of STIMl and its associated proteins on lipid rafts-mediated intracellular calcium signaling and the underlying mechanisms

    Institute of Scientific and Technical Information of China (English)

    罗小林

    2011-01-01

    Lipid rafts, a lipid bilayer membrane, are cholesterol and sphingolipid-emriched microdomains that function is as unique signal transduction platforms. Lipid rafts not only provide a fivorable environment for intra-molecular cross-talk but also provide a help to speed up signal transmission. As an important signaling molecule calcium, it is involved in the regulation of multiple physiological cell funcfions. Intracellular calcium concentration ( [Ca2+]i ) is regulated by a various signaling molecules, such as calcium pumps, store operated Ca2+ entry (SOCE) and so on. Recent advances in this field suggest that some members of transient receptor potential canonicals (TRPCs), orail and stromal interaction molecule 1 ( STIM1 ) play an important role in the process of SOCC-mediated calcium influx. Recent studies have demonstrated that a large number of Ca2+ channels and calcium signaling proteins are localized in lipid rafts microdomains, which is attracted more and more attentions.%脂筏是膜脂双层内富含特殊脂质(胆固醇和鞘脂)和蛋白质的微区,脂筏作为独特的信号转导平台不仅可以为内部分子提供一个"交流"的环境,也有助于加快信号传递.Ca2+作为重要的信号分子,参与调控细胞许多生理功能.细胞内Ca2+浓度受各种信号分子,钙泵和钙池操纵的Ca2+内流等多种因素调节.最新研究发现:瞬时受体电位通道的一些成员、基质相互作用分子1以及Orai1在钙池操纵的钙通道介导的Ca2+内流过程中发挥着重要的作用.大量Ca2+通道和蛋白质(包括钙信号途径的关键蛋白)在脂筏微区集聚,脂筏功能越来越受到人们的关注.

  11. Study of Raft Domains in Model Membrane of DPPC/PE/Cholesterol

    Science.gov (United States)

    Lor, Chai; Hirst, Linda

    2010-10-01

    Raft domains in bilayer membrane are thought to play an important role in many cell functions such as cell signaling or trans-membrane protein activation. Here we use a model membrane consisting of DPPC/PE/cholesterol to examine the structure of membrane rafts and phase interactions. In particular we are interested in lipids containing the highly polyunsaturated fatty acid DHA. We use both atomic force microscopy (AFM) and fluorescence microscopy to obtain information on the structural properties of raft regions and track cholesterol. As expected, we find phase separation of raft regions between saturated and unsaturated lipids. Moreover, we find that the roughness of the domains change with varying cholesterol concentration possibly due to overpacking. This model study provides further understanding of the role of cholesterol in bilayer membrane leading towards a better knowledge of cell membranes.

  12. Maresin-like Lipid Mediators are produced by Leukocytes and Platelets and Rescue Reparative Function of Diabetes-impaired Macrophages

    OpenAIRE

    Hong, Song; Lu, Yan; Tian, Haibin; Alapure, Bhagwat; Wang, Quansheng; Bruce A. Bunnell; Laborde, James Monroe

    2014-01-01

    Non-healing diabetic wounds are associated with impaired macrophage (Mf) function. Leukocytes and platelets (PLT) play crucial roles in wound healing by poorly understood mechanisms. Here, we report identification and characterization of novel maresin-like(L) mediators 14,22-dihydroxy-docosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acids, 14S,22-diHDHA (maresin-L1) and 14R,22-diHDHA (maresin-L2) that are produced by leukocytes and PLT and involved in wound healing. We show that 12-lipox...

  13. The long-term effects of pitavastatin on blood lipids and platelet activation markers in stroke patients: impact of the homocysteine level.

    Directory of Open Access Journals (Sweden)

    Hideki Sugimoto

    Full Text Available To examine the impact of the plasma homocysteine level on the anti-atherosclerotic effects of pitavastatin treatment, we retrospectively examined 59 patients who had a history of stroke and had been prescribed pitavastatin for the treatment of dyslipidemia at the Neurology department of Toho University Ohashi Medical Center Hospital. The patients were classified into two groups according to their homocysteine levels. Carotid artery plaque progression was determined before and after pitavastatin treatment. Plasma levels of high-sensitivity C-reactive protein, platelet molecular markers, and von Willebrand factor were measured. Pitavastatin treatment had beneficial effects on the lipid profiles of these patients and slowed atherosclerosis progression. These effects were observed in both the high and low homocysteine groups. Proactive lipid intervention using pitavastatin may inhibit the progression of atherosclerosis and contribute to secondary prevention of stroke in high-risk patients. We conclude that this statin could inhibit progression at any stage of disease and should therefore be proactively administered to these patient groups, regardless of disease severity.

  14. Vacuum Packed Mini-Raft.

    Science.gov (United States)

    1974-12-16

    the cloth, seam tapes, and attachments to shrink or pucker at any point on the life raft. —4— The life raft shall be free from any congealed mass of...be cut in strict accordance with the patterns, developed by the Engineering Department, which show seam allowance , size , shape and location of the...to the flow of the carbon dioxide gas or bir restriction by any component . The carbon dioxide shall enter the main tubes only. All the seams

  15. Lipid effects on neutrophil calcium signaling induced by opsonized particles: platelet activating factor is only part of the story.

    NARCIS (Netherlands)

    Wanten, G.J.A.; Kusters, A.; Emst-de Vries, S.E. van; Tool, A.; Roos, D.; Naber, A.H.J.; Willems, P.

    2004-01-01

    BACKGROUND & METHODS: Total parenteral nutrition is frequently used in clinical practice to improve the nutritional status of patients. However, the risk for infectious complications remains a drawback in which immune-modulating effects of the lipid component may play a role. To characterize these l

  16. Proteomic Analysis of ABCA1-Null Macrophages Reveals a Role for Stomatin-Like Protein-2 in Raft Composition and Toll-Like Receptor Signaling.

    Science.gov (United States)

    Chowdhury, Saiful M; Zhu, Xuewei; Aloor, Jim J; Azzam, Kathleen M; Gabor, Kristin A; Ge, William; Addo, Kezia A; Tomer, Kenneth B; Parks, John S; Fessler, Michael B

    2015-07-01

    Lipid raft membrane microdomains organize signaling by many prototypical receptors, including the Toll-like receptors (TLRs) of the innate immune system. Raft-localization of proteins is widely thought to be regulated by raft cholesterol levels, but this is largely on the basis of studies that have manipulated cell cholesterol using crude and poorly specific chemical tools, such as β-cyclodextrins. To date, there has been no proteome-scale investigation of whether endogenous regulators of intracellular cholesterol trafficking, such as the ATP binding cassette (ABC)A1 lipid efflux transporter, regulate targeting of proteins to rafts. Abca1(-/-) macrophages have cholesterol-laden rafts that have been reported to contain increased levels of select proteins, including TLR4, the lipopolysaccharide receptor. Here, using quantitative proteomic profiling, we identified 383 proteins in raft isolates from Abca1(+/+) and Abca1(-/-) macrophages. ABCA1 deletion induced wide-ranging changes to the raft proteome. Remarkably, many of these changes were similar to those seen in Abca1(+/+) macrophages after lipopolysaccharide exposure. Stomatin-like protein (SLP)-2, a member of the stomatin-prohibitin-flotillin-HflK/C family of membrane scaffolding proteins, was robustly and specifically increased in Abca1(-/-) rafts. Pursuing SLP-2 function, we found that rafts of SLP-2-silenced macrophages had markedly abnormal composition. SLP-2 silencing did not compromise ABCA1-dependent cholesterol efflux but reduced macrophage responsiveness to multiple TLR ligands. This was associated with reduced raft levels of the TLR co-receptor, CD14, and defective lipopolysaccharide-induced recruitment of the common TLR adaptor, MyD88, to rafts. Taken together, we show that the lipid transporter ABCA1 regulates the protein repertoire of rafts and identify SLP-2 as an ABCA1-dependent regulator of raft composition and of the innate immune response.

  17. Maresin-like lipid mediators are produced by leukocytes and platelets and rescue reparative function of diabetes-impaired macrophages.

    Science.gov (United States)

    Hong, Song; Lu, Yan; Tian, Haibin; Alapure, Bhagwat V; Wang, Quansheng; Bunnell, Bruce A; Laborde, James Monroe

    2014-10-23

    Nonhealing diabetic wounds are associated with impaired macrophage (Mf) function. Leukocytes and platelets (PLT) play crucial roles in wound healing by poorly understood mechanisms. Here we report the identification and characterization of the maresin-like(L) mediators 14,22-dihydroxy-docosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acids, 14S,22-diHDHA (maresin-L1), and 14R,22-diHDHA (maresin-L2) that are produced by leukocytes and PLT and involved in wound healing. We show that 12-lipoxygenase-initiated 14S-hydroxylation or cytochrome P450 catalyzed 14R-hydroxylation and P450-initiated ω(22)-hydroxylation are required for maresin-L biosynthesis. Maresin-L treatment restores reparative functions of diabetic Mfs, suggesting that maresin-Ls act as autocrine/paracrine factors responsible for, at least in part, the reparative functions of leukocytes and PLT in wounds. Additionally, maresin-L ameliorates Mf inflammatory activation and has the potential to suppress the chronic inflammation in diabetic wounds caused by activation of Mfs. These findings provide initial insights into maresin-L biosynthesis and mechanism of action and potentially offer a therapeutic option for better treatment of diabetic wounds.

  18. Effects of green tea or Sasa quelpaertensis bamboo leaves on plasma and liver lipids, erythrocyte Na efflux, and platelet aggregation in ovariectomized rats.

    Science.gov (United States)

    Ryou, Sung Hee; Kang, Min Sook; Kim, Kyu Il; Kang, Young Hee; Kang, Jung Sook

    2012-04-01

    This study was conducted to investigate the effects of Sasa quelpaertensis bamboo and green tea on plasma and liver lipids, platelet aggregation, and erythrocyte membrane Na channels in ovariectomized (OVX) rats. Thirty female rats were OVX, and ten female rats were sham-operated at the age of 6 weeks. The rats were divided into four groups at the age of 10 weeks and fed the experiment diets: sham-control, OVX-control, OVX-bamboo leaves (10%), or OVX-green tea leaves (10%) for four weeks. Final body weight increased significantly in the OVX groups compared with that in the sham-control, whereas body weight in the OVX-green tea group decreased significantly compared with that in the OVX-control (P bamboo group (P bamboo and OVX-green tea groups compared with that in the OVX-control (P bamboo leaves groups recovered bone density to some extent. The results show that ovariectomy caused an increase in body weight and liver triglycerides, and that green tea was effective for lowering body weight and triglycerides in OVX rats. Ovariectomy induced an increase in Na efflux via Na-K ATPase and a decrease in Na efflux via Na-K cotransport. Furthermore, consumption of green tea and bamboo leaves affected Na efflux channels, controlling electrolyte and body water balance.

  19. New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts.

    Science.gov (United States)

    Caroni, P

    2001-08-15

    The phosphoinositide lipid PI(4,5)P(2) is now established as a key cofactor in signaling to the actin cytoskeleton and in vesicle trafficking. PI(4,5)P(2) accumulates at membrane rafts and promotes local co-recruitment and activation of specific signaling components at the cell membrane. PI(4,5)P(2) rafts may thus be platforms for local regulation of morphogenetic activity at the cell membrane. Raft PI(4,5)P(2) is regulated by lipid kinases (PI5-kinases) and lipid phosphatases (e.g. synaptojanin). In addition, GAP43-like proteins have recently emerged as a group of PI(4,5)P(2) raft-modulating proteins. These locally abundant proteins accumulate at inner leaflet plasmalemmal rafts where they bind to and co-distribute with PI(4,5)P(2), and promote actin cytoskeleton accumulation and dynamics. In keeping with their proposed role as positive modulators of PI(4,5)P(2) raft function, GAP43-like proteins confer competence for regulated morphogenetic activity on cells that express them. Their function has been investigated extensively in the nervous system, where their expression promotes neurite outgrowth, anatomical plasticity and nerve regeneration. Extrinsic signals and intrinsic factors may thus converge to modulate PI(4,5)P(2) rafts, upstream of regulated activity at the cell surface.

  20. High Molecular Weight Complex Analysis of Epstein-Barr Virus Latent Membrane Protein 1 (LMP-1): Structural Insights into LMP-1’s Homo-Oligomerization and Lipid Raft Association

    Science.gov (United States)

    Wrobel, Christopher M.; Geiger, Timothy R.; Nix, Rebecca N.; Robitaille, Aaron M.; Balser, Sandra; Cervantes, Alfredo; Gonzalez, Miguel; Martin, Jennifer M.

    2013-01-01

    LMP-1 is a constitutively active Tumor Necrosis Factor Receptor analog encoded by Epstein-Barr virus. LMP-1 activation correlates with oligomerization and raft localization, but direct evidence of LMP-1 oligomers is limited. We report that LMP-1 forms multiple high molecular weight native LMP-1 complexes when analyzed by BN-PAGE, the largest of which are enriched in detergent resistant membranes. The largest of these high molecular weight complexes are not formed by purified LMP-1 or by loss of function LMP-1 mutants. Consistent with these results we find a dimeric form of LMP-1 that can be stabilized by disulfide crosslinking. We identify cysteine 238 in the C-terminus of LMP-1 as the crosslinked cysteine. Disulfide crosslinking occurs post-lysis but the dimer can be crosslinked in intact cells with membrane permeable crosslinkers. LMP-1/C238A retains wild type LMP-1 NF-κB activity. LMP-1’s TRAF binding, raft association and oligomerization are associated with the dimeric form of LMP-1. Our results suggest the possibility that the observed dimeric species results from inter-oligomeric crosslinking of LMP-1 molecules in adjacent core LMP-1 oligomers. PMID:24075898

  1. Functions of cholera toxin B-subunit as a raft cross-linker.

    Science.gov (United States)

    Day, Charles A; Kenworthy, Anne K

    2015-01-01

    Lipid rafts are putative complexes of lipids and proteins in cellular membranes that are proposed to function in trafficking and signalling events. CTxB (cholera toxin B-subunit) has emerged as one of the most studied examples of a raft-associated protein. Consisting of the membrane-binding domain of cholera toxin, CTxB binds up to five copies of its lipid receptor on the plasma membrane of the host cell. This multivalency of binding gives the toxin the ability to reorganize underlying membrane structure by cross-linking otherwise small and transient lipid rafts. CTxB thus serves as a useful model for understanding the properties and functions of protein-stabilized domains. In the present chapter, we summarize current evidence that CTxB associates with and cross-links lipid rafts, discuss how CTxB binding modulates the architecture and dynamics of membrane domains, and describe the functional consequences of this cross-linking behaviour on toxin uptake into cells via endocytosis.

  2. Platelet mimicry

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moein; Hunter, Alan Christy; Peer, Dan

    2016-01-01

    Here we critically examine whether coating of nanoparticles with platelet membranes can truly disguise them against recognition by elements of the innate immune system. We further assess whether the "cloaking technology" can sufficiently equip nanoparticles with platelet-mimicking functionalities...

  3. Platelet Count

    Science.gov (United States)

    ... their spleen removed surgically Use of birth control pills (oral contraceptives) Some conditions may cause a temporary (transitory) increased ... increased platelet counts include estrogen and birth control pills (oral contraceptives). Mildly decreased platelet counts may be seen in ...

  4. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi.

    Science.gov (United States)

    Malinsky, Jan; Opekarová, Miroslava; Grossmann, Guido; Tanner, Widmar

    2013-01-01

    The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.

  5. 系统性红斑狼疮患者外周血B细胞脂筏及细胞骨架蛋白的表达初探%Study on the expression of lipid rafts and F-actin in peripheral blood B lymphocytes from patients with systemic lupus erythematosus

    Institute of Scientific and Technical Information of China (English)

    何德宁; 董光富; 张晓; 张光锋; 谢悦胜; 李玲; 雷云霞

    2012-01-01

    Objective To investigate the expression of lipid rafts (LRs) and actin cytoskeleton (F-actin) in the peripheral blood B lymphocytes of patients with systemic lupus erythematosus (SLE).Methods Peripheral blood mononuclear cells (PBMCs) were separated by Ficoll-Hypaque.B lymphocytes were isolated by positive selection from PBMCs.Membrane staining for LRs was achieved with FITC-conjugated cholera toxin B (CTB).The level and distribution of LRs were studied by flow cytometry and confocal microscopy.Staining for F-actin was carried out with Rhodamine phalloidin.The expression of F-actin was analyzed by confocal microscopy.In an in vitro examination,the effect of Leflunomide on lipid rafts in B lymphocytes from SLE was analyzed.Disease carried out was measured using the SLE disease activity index (SLEDAI).Analysis of the enumerical data was performed using ANOVA or paired-samples t test.Correlation was examined by Pearson's rank correlation test.Results The number of CTB-binding lipid rafts in B cell from active SLE patients or from SLE patients in disease remission.who were treated with immun