WorldWideScience

Sample records for plated copper electrical

  1. Extensive Characterisation of Copper-clad Plates, Bonded by the Explosive Technique, for ITER Electrical Joints

    CERN Document Server

    Langeslag, S A E; Libeyre, P; Gung, C Y

    2015-01-01

    Cable-in-conduit conductors will be extensively implemented in the large superconducting magnet coils foreseen to confine the plasma in the ITER experiment. The design of the various magnet systems imposes the use of electrical joints to connect unit lengths of superconducting coils by inter-pancake coupling. These twin-box lap type joints, produced by compacting each cable end in into a copper - stainless steel bimetallic box, are required to be highly performing in terms of electrical and mechanical prop- erties. To ascertain the suitability of the first copper-clad plates, recently produced, the performance of several plates is studied. Validation of the bonded interface is carried out by determining microstructural, tensile and shear characteristics. These measure- ments confirm the suitability of explosion bonded copper-clad plates for an overall joint application. Additionally, an extensive study is conducted on the suitability of certain copper purity grades for the various joint types.

  2. Improvement of the adhesion strength between copper plated layer and resin substrate using a chemically adsorbed monolayer

    Directory of Open Access Journals (Sweden)

    Tsuchiya K.

    2013-08-01

    Full Text Available With reducing the size and weight of electric devices, high-tensile, light and fine copper wire is demanded. So the production technique of a copper wire plated on a super fiber resin (Vectran film was researched for improving the adhesion strength between the copper and the resin. In this study, we used the Cu2+ or Pd2+ complex prepared with a chemically adsorbed monolayer (CAM to improve the adhesion strength between the copper plated layer and the Vectran film. As the result of scotch tape test, it was observed that the adhesion strength between the copper plated layer and Vectran film was improved by the Cu2+ or Pd2+ complex CAM.

  3. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S.; Sood, D.K.; Zmood, R.B. [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1993-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  4. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S; Sood, D K; Zmood, R B [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1994-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  5. Seeding of silicon by copper ion implantation for selective electroless copper plating

    International Nuclear Information System (INIS)

    Bhansali, S.; Sood, D.K.; Zmood, R.B.

    1993-01-01

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm 2 using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm 2 for 'seed' formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by 'scotch tape test'. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs

  6. Preparation of graphite dispersed copper composite on copper plate with CO2 laser

    Science.gov (United States)

    Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.

    2018-01-01

    It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.

  7. Modeling pore corrosion in normally open gold- plated copper connectors.

    Energy Technology Data Exchange (ETDEWEB)

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien; Enos, David George; Serna, Lysle M.; Sorensen, Neil Robert

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.

  8. A New Type of Inscribed Copper Plate from Indus Valley (Harappan Civilisation

    Directory of Open Access Journals (Sweden)

    Vasant Shinde

    2014-10-01

    Full Text Available A group of nine Indus Valley copper plates (c. 2600–2000 BC, discovered from private collections in Pakistan, appear to be of an important type not previously described. The plates are significantly larger and more robust than those comprising the corpus of known copper plates or tablets, and most significantly differ in being inscribed with mirrored characters. One of the plates bears 34 characters, which is the longest known single Indus script inscription. Examination of the plates with x-ray fluorescence (XRF spectrophotometry indicates metal compositions, including arsenical copper, consistent with Indus Valley technology. Microscopy of the metal surface and internal structure reveals detail such as pitting, microcrystalline structure, and corrosion, consistent with ancient cast copper artifacts. Given the relative fineness of the engraving, it is hypothesised that the copper plates were not used as seals, but have characteristics consistent with use in copper plate printing. As such, it is possible that these copper plates are by far the earliest known printing devices, being at least 4000 years old.

  9. Operation and experience of a 2 km coated conductor REEL – to – REEL copper pulse plating facility

    International Nuclear Information System (INIS)

    Floegel-Delor, U; Riedel, T; Wippich, D; Rothfeld, R; Schirrmeister, P; Koenig, R; Werfel, F N; Usoskin, A; Rutt, A

    2014-01-01

    Bruker HTS manufactures YBCO based superconducting wires of the second generation on low- cost Stainless Steel substrate (100 μm thick). With 250 – 500 A/cm@77 K, SF, 650 MPa tensile strength and 6 mm bending radius excellent electrical and mechanical properties are achieved. As complementation of the 2G fabrication technology an automated 2 km copper pulse plating facility has been installed in 2012. We report here the operation requirements and the experiences of the copper plating technique.

  10. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  11. Simulation of through via bottom—up copper plating with accelerator for the filling of TSVs

    International Nuclear Information System (INIS)

    Wu Heng; Tang Zhen'an; Wang Zhu; Cheng Wan; Yu Daquan

    2013-01-01

    Filling high aspect ratio through silicon vias (TSVs) without voids and seams by copper plating is one of the technical challenges for 3D integration. Bottom—up copper plating is an effective solution for TSV filling. In this paper, a new numerical model was developed to simulate the electrochemical deposition (ECD) process, and the influence of an accelerator in the electrolyte was investigated. The arbitrary Lagrange—Eulerian (ALE) method for solving moving boundaries in the finite element method (FEM) was used to simulate the electrochemical process. In the model, diffusion coefficient and adsorption coefficient were considered, and then the time-resolved evolution of electroplating profiles was simulated with ion concentration distribution and the electric current density. (semiconductor technology)

  12. Electroless copper plating on 3-mercaptopropyltriethoxysilane modified PET fabric challenged by ultrasonic washing

    International Nuclear Information System (INIS)

    Lu Yinxiang

    2009-01-01

    Electroless deposition of Cu on poly(ethylene terephthalate) (PET) fabric modified with 3-mercaptopropyltriethoxysilane was investigated. Morphology, composition, structure, thermal decomposing behavior of copper coating PET fabric after ultrasonic washing in water for 1 h were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectrometer, X-ray diffraction (XRD), and thermogravimetric analysis (TG), respectively. Copper plating on modified fabric has good adherence stability and high electric conductivity before and after ultrasonic washing, while copper coating fabric without modification is easily destroyed during the washing process, which leads to the textile changing from conductor to dielectric. As the copper weight on the treated fabric is 28 g/m 2 , the shielding effectiveness (SE) is more than 54 dB at frequency ranging from 0.01 MHz to 18 GHz.

  13. Plated copper substrates for the LASL Antares CO2 laser system

    International Nuclear Information System (INIS)

    Blevins, D.J.; Munroe, J.L.

    1979-01-01

    Antares is a large carbon-dioxide laser system presently under construction at the Los Alamos Scientific Laboratory (LASL). Antares will be part of the LASL High Energy Gas Laser Facility (HEGLF). Its purpose will be to investigate inertial confinement fusion with light of 10.6-μm wavelength. Most of the optics comprising Antares will be reflectors and, for many reasons, copper is the material of choice. The mirrors range in size from 2.5 cm in diameter to 45 cm in diameter. The copper must be very pure to help maximize damage threshold, making plated copper an attractive solution. The final mirror should be very stable, i.e., characterized by very low microcreep. This makes an alloy a more suitable substrate candidate than pure copper. For Antares, all of the smaller mirrors will be made of copper plated onto an aluminum-bronze substrate, and all of the larger mirrors will be made of copper plated onto aluminum alloy 2124. This paper discusses how this design was arrived at and the methods used to assure a satisfactory mirror

  14. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives

    International Nuclear Information System (INIS)

    Pasquale, M.A.; Gassa, L.M.; Arvia, A.J.

    2008-01-01

    Copper electrodeposition on copper from still plating solutions of different compositions was investigated utilising electrochemical impedance spectroscopy (EIS), cyclic voltammetry, and scanning electron microscopy (SEM). An acid copper sulphate plating base solution was employed either with or without sodium chloride in the presence of a single additive, either polyethylene glycol (PEG) or 3-mercapto-2-propanesulphonic acid (MPSA), and their mixture. Thallium underpotential deposition/anodic stripping was employed to determine the adsorption capability of additives on copper. In the absence of chloride ions, MPSA shows a moderate adsorption on copper, whereas PEG is slightly adsorbed. At low cathodic overpotentials, the simultaneous presence of MPSA and chloride ions accelerates copper electrodeposition through the formation of an MPSA-chloride ion complex in the solution, particularly for about 220 μM sodium chloride. The reverse effect occurs in PEG-sodium chloride plating solutions. In this case, from EIS data the formation of a film that interferes with copper electrodeposition can be inferred. At higher cathodic overpotentials, when copper electrodeposition is under mass transport control, the cathode coverage by a PEG-copper chloride-mediated film becomes either partially or completely detached as the concentration of chloride ions at the negatively charged copper surface diminishes. The copper cathode grain topography at the μm scale depends on the cathodic overpotential, plating solution composition and average current density. Available data about the solution constituents and their adsorption on copper make it possible to propose a likely complex mechanism to understand copper electrodeposition from these media, including the accelerating effect of MPSA and the dynamics of PEG-copper chloride complex adsorbate interfering with the surface mobility of depositing copper ad-ions/ad-atoms

  15. Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating

    International Nuclear Information System (INIS)

    Chen, Jin-Ju; Lin, Guo-Qiang; Wang, Yan; Sowade, Enrico; Baumann, Reinhard R.; Feng, Zhe-Sheng

    2017-01-01

    Highlights: • Copper patterns were fabricated by reactive inkjet printing and two-step electroless plating. • Cu particles produced via reactive inkjet printing act as catalyst for copper electroless plating. • High conductivity can be obtained without many printing passes and high temperature sintering. • This approach can largely avoid nozzle-clogging problems. • This approach presents a potential way in the flexible printed electronics with simple process. - Abstract: A simple and low-cost process for fabricating conductive copper patterns on flexible polyimide substrates was demonstrated. Copper catalyst patterns were first produced on polyimide substrates using reactive inkjet printing of Cu (II)-bearing ink and reducing ink, and then the conductive copper patterns were generated after a two-step electroless plating procedure. The copper layers were characterized by optical microscope, SEM, XRD and EDS. Homogeneously distributed copper nanoclusters were found in the catalyst patterns. A thin copper layer with uniform particle size was formed after first-step electroless plating, and a thick copper layer of about 14.3 μm with closely packed structure and fine crystallinity was produced after second-step electroless plating. This resulting copper layer had good solderability, reliable adhesion strength and a low resistivity of 5.68 μΩ cm without any sintering process.

  16. Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jin-Ju; Lin, Guo-Qiang; Wang, Yan [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Sowade, Enrico; Baumann, Reinhard R. [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz, 09126 (Germany); Feng, Zhe-Sheng, E-mail: fzs@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2017-02-28

    Highlights: • Copper patterns were fabricated by reactive inkjet printing and two-step electroless plating. • Cu particles produced via reactive inkjet printing act as catalyst for copper electroless plating. • High conductivity can be obtained without many printing passes and high temperature sintering. • This approach can largely avoid nozzle-clogging problems. • This approach presents a potential way in the flexible printed electronics with simple process. - Abstract: A simple and low-cost process for fabricating conductive copper patterns on flexible polyimide substrates was demonstrated. Copper catalyst patterns were first produced on polyimide substrates using reactive inkjet printing of Cu (II)-bearing ink and reducing ink, and then the conductive copper patterns were generated after a two-step electroless plating procedure. The copper layers were characterized by optical microscope, SEM, XRD and EDS. Homogeneously distributed copper nanoclusters were found in the catalyst patterns. A thin copper layer with uniform particle size was formed after first-step electroless plating, and a thick copper layer of about 14.3 μm with closely packed structure and fine crystallinity was produced after second-step electroless plating. This resulting copper layer had good solderability, reliable adhesion strength and a low resistivity of 5.68 μΩ cm without any sintering process.

  17. Electron beam hardening type copper plate printing ink

    International Nuclear Information System (INIS)

    Kawamura, Eiji; Inoue, Mitsuo; Kusaki, Satoichiro

    1989-01-01

    Copper plate printing is the printing method of filling ink in the parts of concave printing elements on a type area, and transferring the ink to a base, and it is the feature that the ink in the printing element parts of a print rises. Copper plate prints show profound feeling, in addition, its effect of preventing forgery is high. This method is generally called engraving printing, and is used frequently for printing various bills and artistic prints. The electron beam irradiation apparatus installed in the laboratory of the Printing Bureau, Ministry of Finance, is an experimental machine of area beam type, and is so constructed as to do batch conveyance and web conveyance. As the ink in printing element parts rises, the offset at the delivery part of a printing machine becomes a problem. Electron beam is superior in its transparency, and can dry instantaneously to the inside of opaque ink. At 200 kV of acceleration voltage, the ink of copper plate prints can be hardened by electron beam irradiation. The dilution monomers as the vehicle for ink were tested for their dilution capability and the effect of electron beam hardening. The problem in the utilization of electron beam is the deterioration of papers, and the counter-measures were tested. (K.I.)

  18. Influence of copper volume fraction on tensile strain/stress tolerances of critical current in a copper-plated DyBCO-coated conductor

    International Nuclear Information System (INIS)

    Ochiai, Shojiro; Okuda, Hiroshi; Arai, Takahiro; Sugano, Michinaka; Osamura, Kozo; Prusseit, Werner

    2013-01-01

    The influence of the volume fraction (V f ) of copper, plated at room temperature over a DyBa 2 Cu 3 O 7-δ -coated conductor, on the tensile strain tolerance and stress tolerance of critical current at 77 K was studied over a wide range of copper V f values. The copper plating exerts a tensile stress during cooling because copper has a higher coefficient of thermal expansion than the substrate conductor. Before application of tensile strain, the copper plated at room temperature yielded at 77 K when the copper V f was lower than a critical value, and was in an elastic state at 77 K when the copper V f was higher than the critical value. The strain tolerance of critical current increased with increasing copper V f due to an increase in thermally induced compressive strain in the substrate tape. The stress tolerance of critical current decreased with increasing copper V f because copper is softer than the substrate tape. These results, together with the trade-off between strain tolerance and stress tolerance (i.e., stress tolerance decreases with increasing strain tolerance), were analyzed by modeling. The results show that the restriction imposed by the trade-off, which limits the ability to simultaneously obtain a high strain tolerance and a high stress tolerance, can be relaxed by strengthening the copper. (author)

  19. Improvement of copper plating adhesion on silane modified PET film by ultrasonic-assisted electroless deposition

    International Nuclear Information System (INIS)

    Lu Yinxiang

    2010-01-01

    Copper thin film on silane modified poly(ethylene terephthalate) (PET) substrate was fabricated by ultrasonic-assisted electroless deposition. The composition and topography of copper plating PET films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Peel adhesion strength, as high as 16.7 N/cm, was achieved for the planting copper layer to the modified PET substrate with ultrasonic-assisted deposition; however, a relative low value as 11.9 N/cm was obtained for the sample without ultrasonic vibration by the same measurement. The electrical conductivity of Cu film was changed from 7.9 x 10 4 to 2.1 x 10 5 S/cm by using ultrasonic technique. Ultrasonic operation has the significant merits of fast deposition and formation of good membranes for electroless deposition of Cu on PET film.

  20. Annealing effects in plated-wire memory elements. I - Interdiffusion of copper and Permalloy.

    Science.gov (United States)

    Knudson, C. I.; Kench, J. R.

    1971-01-01

    Results of investigations using X-ray diffraction and electron-beam microprobe techniques have shown that copper and Permalloy platings interdiffuse at low temperatures when plated-wire memory elements are annealed for times as short as 50 hr. Measurable interdiffusion between Permalloy platings and gold substrates does not occur in similar conditions. Both magnetic and compositional changes during aging are found to occur by a thermally activated process with activation energies around 38 kcal/mol. It is shown, however, that copper-diffusion and magnetic-dispersion changes during aging are merely concurrent processes, neither being the other's cause.

  1. Encapsulation of electroless copper patterns into diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Pimenov, S.M.; Shafeev, G.A.; Lavrischev, S.V. [General Physics Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    The results are reported on encapsulating copper lines into diamond films grown by a DC plasma CVD. The process includes the steps of (i) laser activation of diamond for electroless metal plating, (ii) electroless copper deposition selectively onto the activated surface regions, and (iii) diamond regrowth on the Cu-patterned diamond films. The composition and electrical properties of the encapsulated copper lines were examined, revealing high purity and low electrical resistivity of the encapsulated electroless copper.

  2. Radon daughter plate-out measurements at SNOLAB for polyethylene and copper

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Matthew; Bauer, Dan; Bunker, Ray; Calkins, Rob; Cooley, Jodi; Loer, Ben; Scorza, Silvia

    2018-02-01

    Polyethylene and copper samples were exposed to the underground air at SNOLAB for approximately three months while several environmental factors were monitored. Predictions of the radon-daughter plate-out rate are compared to the resulting surface activities, obtained from high-sensitivity measurements of alpha emissivity using the XIA UltraLo-1800 spectrometer at SMU. From these measurements, we determine an average $^{210}$Pb plate-out rate of 249 and 423~atoms/day/cm$^{2}$ for polyethylene and copper, respectively, when exposed to radon activity of 135 Bq/m$^{3}$ at SNOLAB. A time-dependent model of alpha activity is discussed for these materials placed in similar environmental conditions.

  3. Electrical injuries due to theft of copper.

    Science.gov (United States)

    Curinga, Giuseppe; Pietramaggiori, Giorgio; Scherer, Sandra Saja; Masellis, Alessandro; Gherardini, Giulio; Brancato, Renato; Conte, Francesco; Bistoni, Giovanni

    2010-01-01

    This study shows that the theft of copper, mainly from electrical wires, is becoming a more frequent crime as the value of this metal rises. We have collected all the data from the Burn Centre of the Hospital of Palermo, Italy, from 1992 to 2007. Over the last two decades, we assisted to a dramatic increase of patients admitted to our hospital, reporting burn injuries while attempting to steal it in dangerous conditions. The circumstances of the injury, the clinical management of the case, and the long-term consequences are presented and discussed. We found that the electrical burn related to the theft of copper is often a life-threatening event because of the high-voltage electrical current passing through the patients. Patients, due to the type of activity, often requiring physical effort, were generally young and healthy. From a review of the literature on the subject, we have noticed that theft of copper is not reported as an important risk factor for electrical burns. Our report clearly shows that theft of copper-related electrical injury is becoming more frequent in the community and should be added as a "new" risk factor. The already high incidence reported here may actually be lower than the actual incidence because many patients tend not to come to the hospital because of the risk of being prosecuted by the police.

  4. Microstructure & Other Properties of Pulse-Plated Copper for Electroforming Applications

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Jensen, Jens Dahl; Dam, H.C.

    2002-01-01

    Microstructure, hardness, material distribution and current efficiency were studied for various pulse patterns (both direct current, on/off and pulse reverse plating) and different bath compositions of copper sulfate and sulfuric acid, with additions of chloride. The objective was to develop a re...... a reliable copper electroforming process to provide a fine-grained and hard (above HV 125) deposit with good micro- and macrothrowing power. Potential applications include solar cell panels, tools for micro injection molding and various microelectromechanical systems (MEMS)....

  5. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  6. Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Ho; Lee, Hong-shik; Lee, Young-Ho [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Jaehoon; Kim, Jae-Duck [Supercritical Fluid Research Laboratory, Energy and Environment Research Division, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Youn-Woo, E-mail: ywlee@snu.ac.kr [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2009-08-15

    A new supercritical water oxidation process for the simultaneous treatment of mixed wastewater containing wastewater from acrylonitrile manufacturing processes and copper-plating processes was investigated using a continuous tubular reactor system. Experiments were carried out at temperatures ranging from 400 to 600 deg. C and a pressure of 25 MPa. The residence time was fixed at 2 s by changing the flow rates of feeds, depending on reaction temperature. The initial total organic carbon (TOC) concentration of the wastewaters and the O{sub 2} concentration at the reactor inlet were kept constant at 0.49 and 0.74 mol/L. It was confirmed that the copper-plating wastewater accelerated the TOC conversion of acrylonitrile wastewater from 17.6% to 67.3% at a temperature of 450 deg. C. Moreover, copper and copper oxide nanoparticles were generated in the process of supercritical water oxidation (SCWO) of mixed wastewater. 99.8% of copper in mixed wastewater was recovered as solid copper and copper oxides at a temperature of 600 deg. C, with their average sizes ranging from 150 to 160 nm. Our study showed that SCWO provides a synergetic effect for simultaneous treatment of acrylonitrile and copper-plating wastewater. During the reaction, the oxidation rate of acrylonitrile wastewater was enhanced due to the in situ formation of nano-catalysts of copper and/or copper oxides, while the exothermic decomposition of acrylonitrile wastewater supplied enough heat for the recovery of solid copper and copper oxides from copper-plating wastewater. The synergetic effect of wastewater treatment by the newly proposed SCWO process leads to full TOC conversion, color removal, detoxification, and odor elimination, as well as full recovery of copper.

  7. Electric alignment of plate shaped clay aggregates in oils

    Science.gov (United States)

    Castberg, Rene; Rozynek, Zbigniew; Måløy, Knut Jørgen; Flekkøy, Eirik

    2016-01-01

    We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width) and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E), independently of the arrangement of individual clay -2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ), which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.

  8. Electric alignment of plate shaped clay aggregates in oils

    Directory of Open Access Journals (Sweden)

    Rene Christian Castberg

    2016-01-01

    Full Text Available We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E, independently of the arrangement of individual clay−2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ, which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.

  9. Plated copper front side metallization on printed seed-layers for silicon solar cells

    OpenAIRE

    Kraft, Achim

    2015-01-01

    A novel copper front side metallization architecture for silicon solar cells based on a fine printed silver seed-layer, plated with nickel, copper and silver, is investigated. The work focuses on the printing of fine seed-layers with low silver consumption, the corrosion of the printed seed-layers by the interaction with electrolyte solutions and the encapsulation material on module level and on the long term stability of the cells due to copper migration. The investigation of the correlation...

  10. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  11. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    International Nuclear Information System (INIS)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang; Lin, Min; Jiang, Liqiang; Che, Shenglei; Hu, Yangwu

    2014-01-01

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection

  12. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Lin, Min [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Jiang, Liqiang; Che, Shenglei [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Hu, Yangwu, E-mail: 346648086@qq.com [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Wenzhou Institute of Industry and Science, Wenzhou 325000 (China)

    2014-12-15

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection.

  13. Copper wire theft and high voltage electrical burns

    OpenAIRE

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresenc...

  14. Electrodeposition of copper from a copper sulfate solution using a packed-bed continuous-recirculation flow reactor at high applied electric current

    Directory of Open Access Journals (Sweden)

    Meshaal F. Alebrahim

    2015-09-01

    Full Text Available The purpose of this study is mainly to investigate the performance of a packed-bed continuous-recirculation flow reactor at high applied electric current in removing copper, Cu(II, from simulated electrolyte by electrodeposition. The effects of pHo, circulation rate of flow, initial copper concentration, intensity of the applied current and the method of application of electric current, as to have a constant value during all the time of electrolysis or to be decreased with time, on copper electrodeposition and current efficiency are revealed. The results showed that the increase in pH (provided not lead to the deposition of Cu(OH2, initial concentration of the copper and flow rate increased the electrodeposition of copper as well as improved current efficiency. However, increasing intensity of the applied electric current led to an increase in the electrodeposition of copper and decreased electrical efficiency. It was also observed that reducing the intensity of applied electric current with time during the electrolysis process while maintaining other operating variables constant led to a significant reduction in the consumption of electrical energy used in the process of copper removal by electrodeposition; a reduction of 41.6% could be achieved.

  15. Copper wire theft and high voltage electrical burns.

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale.

  16. Control of biofouling on titanium condenser tubes with the use of electroless copper plating

    International Nuclear Information System (INIS)

    Anandkumar, B.; George, R.P.; Kamachi Mudali, U.; Ramachandran, D.

    2015-01-01

    In sea water environments titanium condenser tubes face serious issues of biofouling and biomineralization. Electroless plating of nanocopper film is attempted inside the tubes for the control of biofilm formation. Using advanced techniques like AFM, SEM, and XPS, electroless copper plated flat Ti specimens were characterized. Examination of Cu coated Ti surfaces using AFM and SEM showed more reduction in the microroughness compared to anodized Ti surface. Cu 2p 3/2 peak in XPS spectral analysis showed the shift in binding energy inferring the reduction of the hydroxide to metallic copper. Tubular specimens were exposed to sea water up to three months and withdrawn at monthly intervals to evaluate antibacterial activity and long term stability of the coating. Total viable counts and epifluorescence microscopy analyses showed two orders decrease in bacterial counts on copper coated Ti specimens when compared to as polished control Ti specimens. Molecular biology techniques like DGGE and protein expression analysis system were done to get insight into the community diversity and copper tolerance of microorganisms. DGGE gel bands clearly showed the difference in the bacterial diversity inferring from the 16S rRNA gene fragments (V3 regions). Protein analysis showed distinct protein spots appearing in electroless copper coated Ti biofilm protein samples in addition to protein spots common to both the biofilms of Cu coated and as polished Ti. The results indicated copper accumulating proteins in copper resistant bacterial species of biofilm. Reduced microroughness of the surface and toxic copper ions resulted in good biofouling control even after three months exposure to sea water. (author)

  17. Laser-induced selective copper plating of polypropylene surface

    Science.gov (United States)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  18. Experimental study on underwater electrical explosion of a copper wire

    International Nuclear Information System (INIS)

    Zhou Qing; Zhang Jun; Tan Xiangyu; Ren Baozhong; Zhang Qiaogen

    2010-01-01

    Through analyzing the physical process of underwater electrical wire explosion, electrical wire explosions with copper wires were investigated underwater using pulsed voltage in the time scale of a few microseconds. A self-integrating Rogowsky coil and a voltage divider were used for current and voltage at the wire load, respectively. The shock wave pressure is measured with a piezoelectric pressure probe at the same distance. The current rise rate was adjusted by changing the applied voltage, circuit inductance, length and diameter of copper wire. The change of the current rise rate had a great effect on the process of underwater electrical wire explosion with copper wires. At last, the effect of discharge voltage, circuit inductance, length and diameter of copper wire were obtained on the explosion voltage and current as well as shock wave pressure. (authors)

  19. Residual stress investigation of copper plate and canister EB-Welds Complementary Results

    International Nuclear Information System (INIS)

    Gripenberg, H.

    2009-03-01

    The residual stresses in copper as induced by EB-welding were studied by specimens where the weld had two configurations: either a linear or a circumferential weld. This report contains the residual stress measurements of two plates, containing linear welds, and the full-scale copper lid specimen to which a hollow cylinder section had been joined by a circumferential EB-weld. The residual stress state of the EB-welded copper specimens was investigated by X-ray diffraction (XRD), hole drilling (HD) ring core (RC) and contour method (CM). Three specimens, canister XK010 and plates X251 and X252, were subjected to a thorough study aiming at quantitative determination of the residual stress state in and around the EB-welds using XRD for surface and HD and RC for spatial stress analysis. The CM maps one stress component over a whole cross section. The surface residual stresses measured by XRD represent the machined condition of the copper material. The XRD study showed that the stress changes towards compression close to the weld in the hollow cylinder, which indicates shrinkage in the hoop direction. According to the same analogy, the shrinkage in the axial direction is much smaller. The HD measurements showed that the stress state in the base material is bi-axial and, in terms of von Mises stress, 50 MPa for the plates and 20 MPa for the cylinder part of the canister. The stress state in the EB-welds of all specimens differs clearly from the stress state in the base material being more tensile, with higher magnitudes of von Mises stress in the plate than in the canister welds. The HD and RC results were obtained using linear elastic theory. The RC measurements showed that the maximum principal stress in the BM is close to zero near the surface and it becomes slightly tensile, 10 MPa, deeper under the surface. Welding pushed the general stress state towards tension with the maximum principal stress reaching 50 MPa, deeper than 5 mm below the surface in the weld. The

  20. Recycling and refining of copper for electrical application

    Directory of Open Access Journals (Sweden)

    Dablement Sébastien

    2013-11-01

    Full Text Available Copper is, after silver, the best electrical conductor. All residual impurities inside the matrix have high consequences on these properties. Thus, the Nexans factory in Lens “purifies” the copper scraps by a fire refining in order to remove all the internal pollutant. This process, unique in France, is complementary to a traditional process using an electrolytic cathode. It allows, first, to diversify the raw material and, second, to increase the ecological balance compare to the traditional way of scrap treatment for electrical application.

  1. Copper wire theft and high voltage electrical burns

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale. PMID:25356371

  2. COPPER LEACHING FROM WASTE ELECTRIC CABLES BY BIOHYDROMETALLURGY

    OpenAIRE

    Lambert, Fanny; Bastin, David; Gaydardzhiev, Stoyan; Léonard, Grégoire

    2015-01-01

    This study examines the leaching of copper from waste electric cables by chemical leaching and leaching catalysed by Acidithiobacillus ferrooxidans in terms of leaching kinetics and reagents consumption. Operational parameters such as the nature of the oxidant (Fe3+, O2), the initial ferric iron concentration (0-10 g/L) and the temperature (21-50°C) were identified to have an important influence on the degree of copper solubilisation. At optimal process conditions, copper extraction above 90%...

  3. [Electrical burns suffered by copper thieves].

    Science.gov (United States)

    Belmir, R; Fejjal, N; Achbouk, H; El Mazouz, S; Gharib, N; Abassi, A; Belmahi, A

    2011-06-30

    Thefts of copper appear to have been on the increase for some time owing to its high resale price. This has led to an increase in the number of high-voltage electrical accidents (HVEA). Such accidents are very serious because they cause deep burns along the neurovascular axis. A report is presented describing a series of nine patients presenting HVEA admitted to the Ibn Sina Hospital Plastic Surgery and Burns Division in Rabat, Morocco, with a study of the epidemiological, clinical, and therapeutic aspects. The patients all belonged to the young and active sector of the population. The burns were secondary to contact with high-voltage cables occurring during the attempted stealing of copper by stripping electric conductors in transformers (67% of the cases) and in attempts to cut overhead lines supplying electric trains on the railway network (33%). Electrothermal treatment of the lesions required repeated surgery with amputation and disarticulation of necrotic limb segments (67% of the cases), the consequences of which were marked by disabling functional sequelae. Preventing this type of HVEA remains fundamental.

  4. Production of Copper-Plated Beamline Bellows and Spools for LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Katherine M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Carpenter, Brian C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Daly, Ed [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Huque, Naeem A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Peshehonoff, Ted [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Arkan, Tug [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lunin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Premo, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-05-01

    The SLAC National Accelerator Laboratory is currently constructing a major upgrade to its accelerator, the Linac Coherent Light Source II (LCLS-II). Several Department of Energy national laboratories, including the Thomas Jefferson National Accelerator Facility (JLab) and Fermi National Accelerator Laboratory (FNAL), are participating in this project. The 1.3-GHz cryomodules for this project consist of eight cavities separated by bellows (expansion joints) and spools (tube sections), which are copper plated for RF conduction. JLab is responsible for procurement of these bellows and spools, which are delivered to JLab and FNAL for assembly into cryomodules. Achieving accelerator-grade copper plating is always a challenge and requires careful specification of requirements and application of quality control processes. Due to the demanding technical requirements of this part, JLab implemented procurement strategies to make the process more efficient as well as provide process redundancy. This paper discusses the manufacturing challenges that were encountered and resolved, as well as the strategies that were employed to minimize the impact of any technical issues.

  5. Preparation of 103Pd seeds. Part 2. 'Molecular Plating' of 103Pd onto copper rod

    International Nuclear Information System (INIS)

    Chunfu Zhang; Yongxian Wang; Haibin Tian; Duanzhi Yin

    2002-01-01

    A method for 103 Pd 'molecular plating' onto the surface of the copper rod is reported. The optimal composition of the plating bath was: palladium chloride 2 g/l, ammonium hydroxide (28%) 150 ml/l, sodium hypophosphite 12 g/l, and ammonium chloride 37 g/l. The whole procedure of 103 Pd 'molecular plating' will last 50 minutes at 40 deg C. Valuable experience for the preparation of 103 Pd seeds is provided. (author)

  6. Microstructure Evolution During Stainless Steel-Copper Vacuum Brazing with a Ag/Cu/Pd Filler Alloy: Effect of Nickel Plating

    Science.gov (United States)

    Choudhary, R. K.; Laik, A.; Mishra, P.

    2017-03-01

    Vacuum brazing of stainless steel and copper plates was done using a silver-based filler alloy. In one set of experiments, around 30-µm-thick nickel coatings were electrochemically applied on stainless steel plates before carrying out the brazing runs and its effect in making changes in the braze-zone microstructure was studied. For brazing temperature of 830 °C, scanning electron microscopy examination of the braze-zone revealed that relatively sound joints were obtained when brazing was done with nickel-coated stainless steel than with uncoated one. However, when brazing of nickel-coated stainless steel and copper plates was done at 860 °C, a wide crack appeared in the braze-zone adjacent to copper side. Energy-dispersive x-ray analysis and electron microprobe analysis confirmed that at higher temperature, the diffusion of Cu atoms from copper plate towards the braze-zone was faster than that of Ni atoms from nickel coating. Helium leak rate of the order 10-11 Pa m3/s was obtained for the crack-free joint, whereas this value was higher than 10-4 Pa m3/s for the joint having crack. The shear strength of the joint was found to decrease considerably due to the presence of crack.

  7. Electrical Characterization of Spherical Copper Oxide Memristive Array Sensors

    Science.gov (United States)

    2014-03-27

    47 4.2 A 47 µm flake reaching between two spheres . . . . . . . . . . . . . . . . . . 47 x Figure Page 4.3 The XRD pattern shows the copper spheres...image of the copper sphere surface and a zoomed view of emphasizing the flaking feature on the surface. These images depict just one sphere to...spheres. Placed next to one-another, a copper flake extending 47 µm such as that shown in Figure 4.1 can result in an electrical short, which may

  8. Testing the equation of state and electrical conductivity of copper by the electrical wire explosion in air: Experiment and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Barysevich, A. E.; Cherkas, S. L.

    2011-01-01

    We perform experiments on testing the equations of state and electrical conductivity of copper in three different regimes of copper wire electrical explosion, when the inserted energy (i) is slightly exceeded, (ii) is approximately equal, and (iii) is substantially exceeded the energy needed for the wire complete evaporation. Magnetohydrodynamic simulation is performed. The results predicted by the two different equations of state are compared with the experiment. Empirical expression for the copper electrical conductivity is presented. Parameters in this expression is fit on every of two equations of state. Map of copper conductivity is plotted.

  9. Procurement model for copper and polymer electrical products

    Directory of Open Access Journals (Sweden)

    S. Sremac

    2013-10-01

    Full Text Available Procurement model for copper and polymer electrical products. Electrical cable structure (wire, insulation, filling and mantle is in accordance with the technical specifications of individual cable components in terms of the incorporated materials. Materials used in cable manufacture are copper, aluminum, rubber and polyvinyl chloride. One of the key issues in managing the flow of goods pertains to the timing of procurement. The combination of the two concepts can take advantage of individual strengths of fuzzy logic and neural networks in hybrid systems of homogeneous structure. The model has high practical significance, as, with minor modifications, it can be applied in any enterprise responsible for managing the goods flows.

  10. 76 FR 18542 - Copper Valley Electric Association; Notice of Scoping Document 2 and Soliciting Scoping Comments...

    Science.gov (United States)

    2011-04-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-002] Copper Valley.... Applicant: Copper Valley Electric Association (Copper Valley) d. Name of Project: Allison Creek Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...

  11. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    Science.gov (United States)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  12. Copper circuit patterning on polymer using selective surface modification and electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jin [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Ko, Tae-Jun [Institute for Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Yoon, Juil [Department of Mechanical Systems Engineering, Hansung University, Seoul 136-792 (Korea, Republic of); Moon, Myoung-Woon [Institute for Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Oh, Kyu Hwan [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Han, Jun Hyun, E-mail: jhhan@cnu.ac.kr [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2017-02-28

    Highlights: • A new simple two step method for the pattering of Cu circuits on PET substrate was proposed. • The simple patterning of the high adhesive Cu circuits was achieved by plasma treatment using a patterned mask coated with a catalyst material. • The high adhesive strength of Cu circuits was due to the nanostructure formed by oxygen plasma treatment. - Abstract: We have examined a potential new and simple method for patterning a copper circuit on PET substrate by copper electroless plating, without the pretreatment steps (i.e., sensitization and activation) for electroless plating as well as the etching processes of conventional circuit patterning. A patterned mask coated with a catalyst material, Ag, for the reduction of Cu ions, is placed on a PET substrate. Subsequent oxygen plasma treatment of the PET substrate covered with the mask promotes the selective generation of anisotropic pillar- or hair-like nanostructures coated with co-deposited nanoparticles of the catalyst material on PET. After oxygen plasma treatment, a Cu circuit is well formed just by dipping the plasma-treated PET into a Cu electroless plating solution. By increasing the oxygen gas pressure in the chamber, the height of the nanostructures increases and the Ag catalyst particles are coated on not only the top but also the side surfaces of the nanostructures. Strong mechanical interlocking between the Cu circuit and PET substrate is produced by the large surface area of the nanostructures, and enhances peel strength. Results indicate this new simple two step (plasma surface modification and pretreatment-free electroless plating) method can be used to produce a flexible Cu circuit with good adhesion.

  13. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    International Nuclear Information System (INIS)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-01-01

    Highlights: • Air atmosphere plasmacould generatehydrophilic groups of photo-resistive film. • Better wettability of photo-resistive filmled tohigher plating uniformity of copper pillars. • New flow isreduced cost, simplified process and elevated productivity. - Abstract: The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O_2−CF_4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of C−O, O−C=O, C=O and −NO_2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  14. Possible effects of external electrical fields on the corrosion of copper in bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, Claes (Swerea KIMAB (Sweden))

    2011-12-15

    External potentials that develop across a repository may interact with the copper canister. A study was undertaken to investigate the potential corrosion effects of voltage differences in a repository. A set of experiments was performed to study the tendency of copper in bentonite to corrode under influence of an externally applied electrical field. A model study was made to estimate possible corrosion effects of an external electrical field on a full-scale canister in the KBS-3 concept. The interaction between the repository represented by a copper canister in bentonite, and an external electrical field is illustrated with an example

  15. 78 FR 935 - Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2013-01-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-003] Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment In accordance with the... 47897), the Office of Energy Projects has reviewed Copper Valley Electric Association, Inc.'s...

  16. 78 FR 71599 - Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2013-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-005] Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment In accordance with the... 47897), the Office of Energy Projects has reviewed Copper Valley Electric Association, Inc.'s...

  17. 78 FR 38711 - Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2013-06-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-003] Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment In accordance with the... 47897), the Office of Energy Projects has reviewed Copper Valley Electric Association, Inc.'s...

  18. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gong, Lijun [Research and Development Department, Guangzhou Fastprint Circuit Tech Co., Ltd., Guangzhou 510663 (China); He, Wei, E-mail: heweiz@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research and Development Department, Guangdong Guanghua Sci-Tech Co., Ltd., Shantou 515000 (China)

    2017-07-31

    Highlights: • Air atmosphere plasmacould generatehydrophilic groups of photo-resistive film. • Better wettability of photo-resistive filmled tohigher plating uniformity of copper pillars. • New flow isreduced cost, simplified process and elevated productivity. - Abstract: The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O{sub 2}−CF{sub 4} low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of C−O, O−C=O, C=O and −NO{sub 2} by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  19. 75 FR 22775 - Copper Valley Electric Association; Notice of Scoping Meeting and Soliciting Scoping Comments for...

    Science.gov (United States)

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-000] Copper Valley....: 13124-000. c. Applicant: Copper Valley Electric Association. d. Name of Project: Allison Lake Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...

  20. High current capacity electrical connector

    International Nuclear Information System (INIS)

    Bettis, E.S.; Watts, H.L.

    1976-01-01

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a ''sandwiched'' configuration in which a conductor plate contacts the busses along major surfaces clamped between two stainless steel backing plates. The conductor plate is provided with contact buttons in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors

  1. Obtention of copper-magnesium alloys wires used in electrical transmission lines

    International Nuclear Information System (INIS)

    Fernandes, Marcos Gonzales

    2010-01-01

    The aim of this work was to obtain copper wires in three different chemical compositions starting from electrolytic copper and magnesium. The mains steps were evaluated, starting from the melting of small eutectic cooper-magnesium specimens in an electric arc furnace, followed by further dilution of this buttons in a resistive furnace and casting it in a copper mould. The as cast billets were homogenized in a resistive furnace at 910 degree C for 2 h. The billets were mechanically cold worked by swaging and a final drawing step to attain a round shape and a reasonable surface quality. The cast ingots chemical analysis indicated that the processing route showed to be adequate, in laboratory scale, to obtain wires with cross sectional area of 4 mm2 and 10 m in length. The wires in both conditions - as cold worked and after a recovering heat treatment at 510 degree C for 1 h, were mechanically characterized by tensile testing and hardness. The wires had also the electric conductivity assessed in the recovered heat-treated state and the results were compared to the literature data. The obtained material showed to be adequate to be used as electric conductor. The yield strain and ultimate tensile strength were improved with the increasing amount of Mg in the alloy, 11 % and 24 %, respectively, while the electric conductivity decreased to 60 % IACS (International Annealed Copper Standard). (author)

  2. Outgassing rate of the copper-plated beam tube for ISABELLE

    International Nuclear Information System (INIS)

    Hseuh, H.C.; Gaudet, E.F.

    1981-01-01

    The ultrahigh vacuum system of the intersecting storage accelerator, ISABELLE, will consist of two interlaced rings of stainless steel beam tubes with a circumference 2-1/2 miles each. To obtain a good heat conduction during bakeout and to reduce the resistive wall instability during beam operation, a lmm thick copper coating will be electroplated to the outer surface of this 1.5 mm thick beam tube. To minimize the beam loss due to beam-gas collision, the pressure inside the beam tube is required to be 1 x 10 -11 Torr (N 2 equivalent) or less. To achieve this ultrahigh vacuum, the outgassing rate of the 304 LN stainless steel tubes has been reduced to approx. 1 x 10 -13 Torr. l/cm 2 . sec by vacuum firing at 950 0 C for one hour. However, during acid-bath electroplating of copper, significant amount of hydrogen will be reintroduced and trapped in stainless steel which will substantially increase the outgassing rate (to approx. 2 x 10 -12 Torr . l/cm 2 sec). The outgassing characteristics of these copper-plated beam tubes are studied and discussed within the scope of diffusion and energy of activation. Methods to reduce the outgassing rate to an acceptable level (approx. 1 x 10 -13 Torr . l/cm 2 . sec) are also given

  3. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    Science.gov (United States)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  4. The target preparation of "2"3"2Th plated on the nickel with copper as substrate and "2"3"0Pa generation

    International Nuclear Information System (INIS)

    Shen Hua; Geng Junxia; Gao Size; Zhang Guoxin; Zhang Lan; Li Wenxin; Li Qingnuan; Wu Guozhong

    2014-01-01

    The electrochemical parameters on nickel plating on the copper have been studied using aqueous electroplating technique. And thorium is plated on the nickel flake using molecular plating technique. The better experimental parameters are obtained. According to these optimized parameters, the "2"3"2Th target which is suitable for Cyclone-30 accelerator is prepared. The proton beam with energy of 21 MeV bombed the "2"3"2Th target (total beam time 20 μAh). The results showed that the better range of plating current density of nickel plated on copper is l.30∼1.68 A/dm"2. The thickness of nickel plating layer can reach more than 10 μm. The current density is 3∼5 mA/cm"2, and the thickness of plated thorium layer is up to micrometer scale. The binding force of as-prepared "2"3"2Th target is very well. There is "2"3"0Pa appeared after the target is bombed by the proton beam. (authors)

  5. Electroless Ni-B plating for electrical contact applications

    Directory of Open Access Journals (Sweden)

    Dervos, C. T.

    2005-12-01

    Full Text Available Electroless Ni-B plating has been tried on steel substrate in an effort to employ low-cost starting materials for electrical contacts or connectors. By selected conditions of heat treatment in a high vacuum environment the plating can acquire Cr-equivalent hardness without the effluents of the hard chromium plating process. The surfaces were characterized under scanning electron microscope and by XRD. The fabricated materials were tested under corrosion conditions by polarization measurements. Semispherical nickel plated steel joints were tested in a computer controlled contact make-break apparatus, under simultaneous application of a mechanical and a low-voltage electrical load for 20,000 cycles. After heat treatment the plating acquires a crystalline structure with very good adhesion to the substrate material. Corrosion decreases and increased hardness is obtained. The surface is also characterized by good electrical properties during aging accelerated tests.

    Se ha investigado la deposición de Ni-B por vía química sobre un substrato de acero, con el fin de poder emplear materiales de bajo coste para los contactos o conectores eléctricos. Mediante condiciones específicas de tratamiento térmico en un ambiente de alto vacío, la deposición puede alcanzar durezas equivalentes al cromo (Cr sin los efluentes del proceso de cromado duro. Las superficies se caracterizaron en el microscopio electrónico de barrido y mediante DRX. Los materiales fabricados se ensayaron bajo condiciones de corrosión utilizando mediciones de polarización. Se ensayaron las juntas semiesféricas de acero niquelado en un equipo de contactos controlado por ordenador bajo la aplicación simultánea de una carga mecánica y de una carga eléctrica de bajo voltaje durante 20.000 ciclos. Después del tratamiento térmico, el recubrimiento adquiere una estructura cristalina con muy buena adherencia al material del substrato. Se consigue una menor corrosión y mayor

  6. 77 FR 42722 - Copper Valley Electric Association; Notice of Updated Environmental Analysis Preparation Schedule

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-002] Copper Valley...: Original License Application. b. Project No.: 13124-002. c. Applicant: Copper Valley Electric Association (Copper Valley). d. Name of Project: Allison Creek Project. e. Location: On the south side of Port Valdez...

  7. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.

    Science.gov (United States)

    Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F

    2018-05-01

    The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Composite superconductors with copper-aluminum stabilizing matrix

    International Nuclear Information System (INIS)

    Keilin, V.E.; Anashkin, O.P.; Krivikh, A.V.; Kiriya, I.V.; Kovalev, I.A.; Dolgosheev, P.I.; Rychagov, A.V.; Sytnikov, V.E.

    1992-01-01

    A new type of composite superconductors has been developed. They consist of one or several (cabled) multifilamentary wires with low Cu-to-Sc ratio which are embedded and soldered into grooves made in matrix of rectangular cross-section. The latter consists of aluminum core metallurgically plated with a thin copper sheath. Such conductors combine the advantages of both aluminum and copper as stabilizing materials. They have low density, exhibit almost not magnetoresistance, are relatively cheap and can be produced in very long pieces. Copper plating offers the possibility of soft soldering thus ensuring good electrical and thermal contact between superconducting wires and stabilizing matrix, and helping to join pieces to each other. the properties of two Nb-Ti conductors (3.5 x 2 mm 2 and 7x4 mm 2 ) are described in more detail. The first is used in SC coils for whole-body magnetoresonance tomography, and the second will be used in a open-quotes thinclose quotes coil for charged particles detector. The influence of aluminum purity on SC magnet behavior is also briefly discussed

  9. On the mechanical and electrical properties of copper-silver and copper-silver-zirconium alloys deposits manufactured by cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Coddet, Pierre, E-mail: pierre-laurent.coddet@univ-orleans.fr [Laboratoire National des Champs Magnétiques Intenses (LNCMI – CNRS-UPS-INSA-UJF), 25 Rue des Martyrs, 38042 Grenoble (France); Verdy, Christophe; Coddet, Christian [UTBM, Site de Sévenans, 90010 Belfort Cedex (France); Debray, François [Laboratoire National des Champs Magnétiques Intenses (LNCMI – CNRS-UPS-INSA-UJF), 25 Rue des Martyrs, 38042 Grenoble (France)

    2016-04-26

    In this work, several copper alloy deposits were manufactured by cold spray with helium as accelerating and carrier gas. Electrical conductivity was measured to establish the potential of cold spray as a manufacturing process for high strength (>500 MPa) and high conductivity (>90% IACS) copper alloys. The deposits which are characterized by a low oxygen content (<200 ppm) and a low porosity level (<0.1%) present yield strength values up to about 700 MPa and electrical conductivity values up to 58.2 MS/m (100.3% IACS). Results show that, even if a compromise has to be made between the properties according to the objectives of the application, this additive manufacturing route appears suitable for the production of large copper alloys parts with high mechanical properties and high electrical and thermal conductivity. The role of alloy composition and post heat treatments on the strength and conductivity of the deposits was especially considered in this work. Cold spray deposits properties were finally compared with those obtained with other manufacturing routes.

  10. On the mechanical and electrical properties of copper-silver and copper-silver-zirconium alloys deposits manufactured by cold spray

    International Nuclear Information System (INIS)

    Coddet, Pierre; Verdy, Christophe; Coddet, Christian; Debray, François

    2016-01-01

    In this work, several copper alloy deposits were manufactured by cold spray with helium as accelerating and carrier gas. Electrical conductivity was measured to establish the potential of cold spray as a manufacturing process for high strength (>500 MPa) and high conductivity (>90% IACS) copper alloys. The deposits which are characterized by a low oxygen content (<200 ppm) and a low porosity level (<0.1%) present yield strength values up to about 700 MPa and electrical conductivity values up to 58.2 MS/m (100.3% IACS). Results show that, even if a compromise has to be made between the properties according to the objectives of the application, this additive manufacturing route appears suitable for the production of large copper alloys parts with high mechanical properties and high electrical and thermal conductivity. The role of alloy composition and post heat treatments on the strength and conductivity of the deposits was especially considered in this work. Cold spray deposits properties were finally compared with those obtained with other manufacturing routes.

  11. Residual stress measurement of EB-welded plates with contour method. Part 2: FEM analysis of contour profiles

    International Nuclear Information System (INIS)

    Romppanen, A.-J.; Immonen, E.

    2013-12-01

    The residual stresses formed as a result of Electronic Beam welding (EB-welding) in copper are investigated by Posiva. In the present study, residual stresses of EB-welded copper plates were studied with contour method. In the method eleven copper plates (X436 - X440 and X453 - X458) were cut in half with wire electric discharge machining (EDM) after which the deformation due to stress relaxation was measured with coordinate measurement system. The measured data was then used as boundary displacement data for the FEM analyses, in which the corresponding residual stresses were calculated. Before giving the corresponding displacement boundary conditions to the FE models, the deformation data was processed and smoothed appropriately. The residual stress levels of the copper plates were found to be around 40 - 55 MPa at maximum. This corresponds to other reported residual stress measurements and current state of knowledge with this material in Posiva. (orig.)

  12. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Science.gov (United States)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-07-01

    The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  13. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.

    Science.gov (United States)

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-20

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  14. The effect of silver (Ag) addition to mechanical and electrical properties of copper alloy (Cu) casting product

    Science.gov (United States)

    Felicia, Dian M.; Rochiem, R.; Laia, Standley M.

    2018-04-01

    Copper have good mechanical properties and good electrical conductivities. Therefore, copper usually used as electrical components. Silver have better electrical conductivities than copper. Female contact resistor is one of the electrical component used in circuit breaker. This study aims to analyze the effect of silver addition to hardness, strength, and electric conductivity properties of copper alloy. This study uses variation of 0; 0.035; 0.07; 0.1 wt. % Ag (silver) addition to determine the effect on mechanical properties and electrical properties of copper alloy through sand casting process. Modelling of thermal analysis and structural analysis was calculated to find the best design for the sand casting experiments. The result of Cu-Ag alloy as cast will be characterized by OES test, metallography test, Brinell hardness test, tensile test, and LCR meter test. The result of this study showed that the addition of silver increase mechanical properties of Cu-Ag. The maximum hardness value of this alloy is 83.1 HRB which is Cu-0.01 Ag and the lowest is 52.26 HRB which is pure Cu. The maximum strength value is 153.2 MPa which is Cu-0.07 Ag and the lowest is 94.6 MPa which is pure Cu. Silver addition decrease electrical properties of this alloy. The highest electric conductivity is 438.98 S/m which is pure Cu and the lowest is 52.61 S.m which is Cu-0.1 Ag.

  15. 76 FR 78628 - Copper Valley Electric Association, Inc.; Notice of Application and Applicant-Prepared EA...

    Science.gov (United States)

    2011-12-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-003] Copper Valley... Application: Major License. b. Project No.: P-13124-003. c. Date filed: August 30, 2011. d. Applicant: Copper.... 791 (a)-825(r). h. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association...

  16. Specific features in the behavior of electrical resistivity of the pine biocarbon preform/copper composite

    Science.gov (United States)

    Burkov, A. T.; Orlova, T. S.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Jezowski, A.

    2010-11-01

    The electrical resistivity ρ( T) of the novel type of composites prepared by infiltrating melted copper in vacuum in empty sap channels of white pine high-porosity biocarbon preforms has been measured in the temperature range 5-300 K. Biocarbon preforms have been prepared by pyrolysis of tree wood in an argon flow at two carbonization temperatures, 1000 and 2400°C. The electrical resistivity of the composites has been found to vary relatively weakly with temperature and to pass through a characteristic minimum near 40-50 K, which can be ascribed to iron and manganese impurities penetrating into copper from the carbon preform when liquid copper is infiltrated into it. It has been shown that the electrical resistivity ρ( T) of the composites is governed primarily by the specific microstructure of the preform, which is made up of parallel channels with an average diameter of about 50 μm interrupted by systems of thin capillaries. The small cross section of the copper-filled capillaries accounts for these regions providing the major contribution to the electrical resistivity of the composites. An increase in the wood carbonization temperature brings about a noticeable increase in the effective capillary cross section and a decrease in the electrical resistivity ρ( T) of the composite.

  17. The electrical characteristics of copper slags in a 270 kVA DC arc furnace

    International Nuclear Information System (INIS)

    Derin, Bora; Sahin, Filiz Cinar; Yucel, Onuralp

    2003-01-01

    The electrical resistance of slags is the main criteria to determine the design and the operation conditions of slag resistance furnace (SRF) depending on temperature and composition. In this study, a 270 kVA DC electric arc furnace were used to determine the electrical characteristic of molten ancient copper slags. The specific conductivity of the slag was estimated by using furnace geometric factor given in the literature as an empirical formula and by using furnace resistance measured during smelting of the copper slag with or without different additives such as coke, CaO and Al 2 O 3 . (Original)

  18. Effect of silane coupling agent on interfacial adhesion of copper/glass fabric/epoxy composites

    International Nuclear Information System (INIS)

    Langroudi, A. E.; Yousefi, A. A.; Kabiri, Kourosh

    2003-01-01

    The effect of silane coupling agent on the peel strength of copper/prep reg/copper composites was investigated. The composite consisted of one or two sheets of prepress covered by two copper plates. The prep reg was prepared by hand dry-lay-up technique using an epoxy resin and an electrical resistant glass fabric (e-glass style 2165). 4,4'-methylene dianiline. An aromatic amine, was used as curing agent. curing times for prep reg and composite at 120 d ig C and 170 d ig C were 15 min and 1 h, respectively. γ-aminopropyl trimethoxy silane was used as coupling agent. The effect of aminopropyl trimethoxy silane on the adhesion of epoxy/glass and epoxy/copper interfaces was investigated by two methods. In the first method, the surface of the glass fabric and/or the copper plates were treated by aminopropyl trimethoxy silane. In the second method, aminopropyl trimethoxy silane was directly added to epoxy resin. In addition, the effect of additional resin on the adhesion strength was also studied by the latter method

  19. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  20. High-voltage electrical burns due to copper theft - Case series.

    Science.gov (United States)

    Braga, M J; Oliveira, I; Egipto, P; Silva, A

    2016-03-31

    Electrical burns are among the most devastating trauma inflicted on the human body. These burns have a higher morbidity, length of stay and a much higher risk of amputation than any other type of burn. Electrical burns affect mostly young, working males because they are more frequently the result of a work accident. However, possibly due to the worldwide economic crisis, we are experiencing a new phenomenon: the theft of high-voltage copper wiring.

  1. Study of the electric field inside microchannel plate multipliers

    International Nuclear Information System (INIS)

    Gatti, E.; Oba, K.; Rehak, P.

    1982-01-01

    Electric field inside high gain microchannel plate multipliers was studied. The calculations were based directly on the solution of the Maxwell equations applied to the microchannel plate (MCP) rather than on the conventional lumped RC model. The results are important to explain the performance of MCP's, (1) under a pulsed bias tension and, (2) at high rate conditions. The results were tested experimentally and a new method of MCP operation free from the positive ion feedback was demonstrated

  2. The influence of transmutation, void swelling, and flux/spectra uncertainties on the electrical properties of copper and copper alloys

    International Nuclear Information System (INIS)

    Edwards, D.J.; Garner, F.A.; Greenwood, L.R.

    1993-09-01

    A comparison of the predicted and measured electrical conductivities of MARZ copper and two copper alloys irradiated in FFTF shows that the calculated transmutation rates agree within 15% with those required to produce the observed changes. It also appears that the contribution of transmutants and void swelling to conductivity changes are directly additive. Of the three models studied, Euken's model has been found to best describe the contribution of void swelling to conductivity loss

  3. Microsecond Electrical Discharge in Water in Plate-to-Plate Configuration With Nitrogen Bubble Injection

    Czech Academy of Sciences Publication Activity Database

    Stelmashuk, Vitaliy

    2016-01-01

    Roč. 44, č. 4 (2016), s. 702-707 ISSN 0093-3813 Institutional support: RVO:61389021 Keywords : Electric breakdown * plate electrodes * underwater discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.052, year: 2016 http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7450213

  4. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    Science.gov (United States)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  5. Disintegration of Copper Ores by Electric Pulses / Rozdrobienie Rudy Miedzi Impulsami Elektrycznymi

    Directory of Open Access Journals (Sweden)

    Kurytnik I.

    2015-12-01

    Full Text Available The article is concerned with methods of ragging and grinding of copper ore. The proposed electric pulse technology is one of the energetically favorable methods of ragging and grinding of natural minerals and anthropogenic raw materials. This paper presents optimal parameters in processing of the product. The results obtained by grinding of copper ore using the offered technology may be used under industrial conditions in the future.

  6. Research of oxygen free copper of Upcast {sup registered} technology for electric and electronic uses

    Energy Technology Data Exchange (ETDEWEB)

    Knych, Tadeusz; Smyrak, Beata; Walkowicz, Monika [AGH-Univ. of Science and Technology, Cracow (Poland)

    2011-01-15

    Rapid development of electronics and electrical engineering imposes a necessity to search for new materials enabling fast and lossless transmission of electrical signals. Increasingly common application of electronic systems and elements of electrical engineering contributed to the development of a new group of products representing highly advanced properties. Modern solutions concerning the materials to be used for manufacturing of the above specified products concentrate mainly on high purity copper. As a standard Oxygen Free Copper (OFC) or high purity Oxygen Free High Conductivity Copper (OFHC) are used for production of this kind of wires. OFHC copper purity class of 4N (99.99 %) contains approximately 1 to 3 ppm of oxygen and the total amount of impurities on the level not exceeding 22 ppm. This type of copper is additionally characterized by excellent deformation capabilities as well as corrosion and hydrogen embrittlement resistance. This article presents the analysis of the results of the complex research program on identification of the properties pertaining to wire rods produced oxygen free copper from Upcast line and ETP wire rod produced on Contirod {sup registered} line - in both cases the same type of cathode was used. Additionally, a subsequent analysis of the annealing susceptibility of wires obtained from Cu-OF rod (Upcast {sup registered}) and Cu-ETP wire rod (Contirod {sup registered}) was carried out. The comparative research on the recrystallization temperature proved to be the most interesting point. (orig.)

  7. Modeling particulate removal in plate-plate and wire-plate electrostatic precipitators

    Directory of Open Access Journals (Sweden)

    S Ramechecandane

    2016-09-01

    Full Text Available The present study is concerned with the modeling of electrically charged particles in a model plate-plate and a single wire-plate electrostatic precipitator (ESP. The particle concentration distributions for both a plate-plate and a wire-plate ESP are calculated using a modified drift flux model. Numerical investigations are performed using the modified drift flux model for particle number concentration, in addition to the RNG k - ε model for the mean turbulent flow field and the Poisson equation for the electric field. The proposed model and the outlined methodology for coupling the flow field, electric field, charging kinetics and particle concentration is applied to two model precipitators that are truly representative of a wide class of commercialized ESPs. The present investigation is quite different from the earlier studies as it does not make assumptions like a homogeneous electric field or an infinite turbulent diffusivity. The electric field calculated is a strong function of position and controls the migration velocity of particles. Hence, the proposed model can be implemented in a flow solver to obtain a full-fledged solution for any kind of ESP with no limitations on the particle number concentration, as encountered in a Lagrangian approach. The effect of turbulent diffusivity on particle number concentration in a plate-plate ESP is investigated in detail and the results obtained are compared with available experimental data. Similarly, the effect of particle size/diameter and applied electric potential on the accumulative collection performance in the case of a wire-plate ESP is studied and the results obtained are compared with available numerical data. The numerical results obtained using the modified drift flux model for both the plate-plate and wire-plate ESP are in close agreement with available experimental and numerical data.

  8. Stabilized copper plating method by programmed electroplated current: Accumulation of densely packed copper grains in the interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Li-Chi; Hsu, Li-Hsuan; Brahma, Sanjaya; Huang, Bo-Chia; Liu, Chun-Chu; Lo, Kuang-Yao, E-mail: kuanglo@mail.ncku.edu.tw

    2016-12-01

    Highlights: • Actual Cu interconnect experiences many times of annealing and then cause the stress. • Stack Cu grains with varying grain size successively to enhance packed density. • XRD and PBR analyze the residual stress of local and average area of plated Cu film. • High packed Cu grain with stable stress proved by texture of Cu(1 1 1) and Cu(2 0 0). - Abstract: In this work, we programmed the plating current to stack the different size of copper (Cu) grain and analyzed the relation between the sequence of different Cu grain size and the stability of the residual stress. The residual stress was measured with varying times of annealing process in order to reach the purpose of simulating the actual Cu interconnect process. We found that varied plating strategy will make different stabilization condition of residual stress through the proof of X-ray diffraction (XRD) and optical parallel beams reflection (PBR) method. The accumulation of Cu grains, formed by Cu grain with successive variation in grain size, would enhance the packing density better than only single grain size in the finite space. The high density of the grain boundary in the electroplated Cu film will be eliminated through annealing process and it will help to suppress the void formation in further interconnect process. The electroplated Cu film with the plating current of saw tooth wave can soon reach a stable tensile stress through annealing since the Cu grains with high packing density will be quickly eliminated to approach the minimum of the strain energy which reflects to variation in the texture of Cu (2 0 0). The result of this work illustrates the importance of how to stack different size of Cu grain, for achieving a densely packed Cu film which close to the Cu bulk.

  9. The effective removal method of copper and cyanide in waste water of metal plating factories

    International Nuclear Information System (INIS)

    Jae, Won Mok; Hong, Zong Doo; Kim, Myun Sup

    1988-01-01

    To investigate the effective removal method of cooper and cyanide compounds in metal plating waste water, removal ratio of cooper and cyanide compounds in solution are measured with varying pH, concentration and contact time. As results of the present experiment, cyanide compounds in the solution are removed to 0.03mg/l or less with 5% NaOCl solution. The present result is satisfied to environmental disposal standards. The removal ratio against pH values show 99% over pH8. As results of neutral precipitation method, copper including solution are removed to 99% at pH8 in short time. The removal ratios of cyanide mixed copper solution against pH values show high efficiency(over 95%) at pH8 and 11 and removal ratios are decreased at pH10.(Author)

  10. Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles.

    Science.gov (United States)

    Mondin, Giovanni; Wisser, Florian M; Leifert, Annika; Mohamed-Noriega, Nasser; Grothe, Julia; Dörfler, Susanne; Kaskel, Stefan

    2013-12-01

    A novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions. Thus, they provide an effective platform for selective electroless metal deposition without further activation and sensitization steps. The combination of a polydopamine-based functionalization with electroless plating ensures a simple, scalable, and cost-effective metal coating strategy. Silver-plated tungsten carbide microparticles, copper-plated tungsten carbide microparticles, and copper-plated alumina nanoparticles were successfully fabricated, showing also the high versatility of the method, since the polymerization of dopamine leads to the formation of an adherent polydopamine layer on the surface of particles of any material and size. The metal coated particles produced with this process are particularly well suited for the production of metal matrix composites, since the metal coating increases the wettability of the particles by the metal, promoting their integration within the matrix. Such composite materials are used in a variety of applications including electrical contacts, components for the automotive industries, magnets, and electromagnetic interference shielding. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. 78 FR 61984 - Copper Valley Electric Association, Inc.; Notice of Application To Amend License and Accepted for...

    Science.gov (United States)

    2013-10-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-005] Copper Valley...: Amendment to License. b. Project No: 13124-005. c. Date Filed: September 27, 2013. d. Applicant: Copper..., Copper Valley Electric Association, Inc., P.O. Box 45, Mile 187 Glenn Highway, Glennallen, AK 99588, (907...

  12. Influence of electric current intensity on the performance of electroformed copper liner for shaped charge application

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy

    2017-12-01

    Full Text Available Electrolytic Copper used in the shaped charge liner manufacturing can be produced from acid solution using electro-deposition technique. The intensity of the applied electric current controls the quality of the produced copper grade. The electric current intensity within the electrolytic acidic solution cell with the minimum oxygen and sulfur elements in the produced copper was optimized and found to be 30–40 A/Ft2. The elemental composition of the obtained electrolytic copper was determined using high-end stationary vacuum spectrometer, while the oxygen was determined precisely using ELTRA ONH-2000 apparatus. Besides, SEM was used to investigate the shape of the copper texture inside the deposited layers and to determine the average grain size. New relations have been obtained between the applied current intensity and both the oxygen and sulfur contents and the average grain size of the produced copper. Experimental result showed that when the applied current density increases to a certain limit, the oxygen and sulfur content in the electrolytic copper decreases. Performance of the produced copper liner was investigated by the static firing of a small caliber shaped charge containing an electro-formed copper liners, where the penetration depth of the optimized electrolytic liner was enhanced by 22.7% compared to that of baseline non-optimized liner.

  13. Electroless plating of Cu-Ni-P alloy on PET fabrics and effect of plating parameters on the properties of conductive fabrics

    International Nuclear Information System (INIS)

    Gan Xueping; Wu Yating; Liu Lei; Shen Bin; Hu Wenbin

    2008-01-01

    Electroless plating of Cu-Ni-P alloy on polyethylene terephthalate (PET) fabrics and effect of plating parameters on the properties of alloy-coated fabrics were investigated. The deposition rate increased with the increase of temperature, pH and nickel ion concentration. The addition of K 4 Fe(CN) 6 to the solution could reduce the deposition rate and make the deposits become more compact. The color of the deposits also had a corresponding improvement, changing from dark-brown to copper-bright with the addition of K 4 Fe(CN) 6 to the plating solution. The deposits have an intensified copper (1 1 1) plane orientation with the addition of K 4 Fe(CN) 6 to the plating bath. The surface electrical resistance of alloy-coated fabrics increased with increase of nickel ions concentration in the solution. The addition of K 4 Fe(CN) 6 to the solution reduced significantly the surface resistance of alloy-coated fabrics. The conductive fabrics with high shielding effectiveness could be prepared at the optimum condition with 0.0038 M nickel ions and 2 ppm K 4 Fe(CN) 6 . As the deposit weight on the fabric was 40 g/m 2 , the shielding effectiveness of alloy-coated fabrics was more than 85 dB at frequency ranging from 100 MHz to 20 GHz

  14. Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Pizzocchero, Filippo; Jessen, Bjarke Sørensen

    2014-01-01

    The electrical performance of graphene synthesized by chemical vapor deposition and transferred to insulating surfaces may be compromised by extended defects, including for instance grain boundaries, cracks, wrinkles, and tears. In this study, we experimentally investigate and compare the nano......- and microscale electrical continuity of single layer graphene grown on centimeter-sized single crystal copper with that of previously studied graphene films, grown on commercially available copper foil, after transfer to SiO2 surfaces. The electrical continuity of the graphene films is analyzed using two...... for measurement of the complex conductance response in the frequency range 1-15 terahertz, covering the entire intraband conductance spectrum, and reveals that the conductance response for the graphene grown on single crystalline copper intimately follows the Drude model for a barrier-free conductor. In contrast...

  15. Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Pizzocchero, Filippo; Jessen, Bjarke Sørensen

    2014-01-01

    noninvasive conductance characterization methods: ultrabroadband terahertz time-domain spectroscopy and micro four-point probe, which probe the electrical properties of the graphene film on different length scales, 100 nm and 10 μm, respectively. Ultrabroadband terahertz time-domain spectroscopy allows......- and microscale electrical continuity of single layer graphene grown on centimeter-sized single crystal copper with that of previously studied graphene films, grown on commercially available copper foil, after transfer to SiO2 surfaces. The electrical continuity of the graphene films is analyzed using two....... Micro four-point probe resistance values measured on graphene grown on single crystalline copper in two different voltage-current configurations show close agreement with the expected distributions for a continuous 2D conductor, in contrast with previous observations on graphene grown on commercial...

  16. High-voltage electrical burns due to copper theft – Case series

    Science.gov (United States)

    Braga, M.J.; Oliveira, I.; Egipto, P.; Silva, A.

    2016-01-01

    Summary Electrical burns are among the most devastating trauma inflicted on the human body. These burns have a higher morbidity, length of stay and a much higher risk of amputation than any other type of burn. Electrical burns affect mostly young, working males because they are more frequently the result of a work accident. However, possibly due to the worldwide economic crisis, we are experiencing a new phenomenon: the theft of high-voltage copper wiring. PMID:27857650

  17. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J David [Bolingbrook, IL; Mawdsley, Jennifer R [Woodridge, IL; Niyogi, Suhas [Woodridge, IL; Wang, Xiaoping [Naperville, IL; Cruse, Terry [Lisle, IL; Santos, Lilia [Lombard, IL

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  18. Preparation and characterization of copper-graphite composites by electrical explosion of wire in liquid.

    Science.gov (United States)

    Bien, T N; Gul, W H; Bac, L H; Kim, J C

    2014-11-01

    Copper-graphite nanocomposites containing 5 vol.% graphite were prepared by a powder metallurgy route using an electrical wire explosion (EEW) in liquid method and spark plasma sintering (SPS) process. Graphite rods with a 0.3 mm diameter and copper wire with a 0.2 mm diameter were used as raw materials for EEWin liquid. To compare, a pure copper and copper-graphite mixture was also prepared. The fabricated graphite was in the form of a nanosheet, onto which copper particles were coated. Sintering was performed at 900 degrees C at a heating rate of 30 degrees C/min for 10 min and under a pressure of 70 MPa. The density of the sintered composite samples was measured by the Archimedes method. A wear test was performed by a ball-on-disc tribometer under dry conditions at room temperature in air. The presence of graphite effectively reduced the wear of composites. The copper-graphite nanocomposites prepared by EEW had lower wear rates than pure copper material and simple mixed copper-graphite.

  19. Oscillations of oblate drop between heterogeneous plates under uniform electric field

    Science.gov (United States)

    Kashina, M. A.; Alabuzhev, A. A.

    2018-01-01

    The forced oscillations of the incompressible fluid drop under the action of the uniform electric field are considered. In equilibrium, the drop has the form of a circular cylinder bounded axially by the parallel solid planes; the contact angle is right. An incompressible fluid of different density surrounds the drop. The external electric field acts as an external force that causes motion of the contact line. In order to describe this contact line motion, the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, whose frequency is proportional to twice the frequency of the electric field. The case of heterogeneous plates is investigated. We assume that the Hocking parameter depends on the polar angle in this case. The function describing the change in the coefficient of the interaction between the plate and the fluid (the contact line) is expanded in a series of the Laplace operator eigenfunctions.

  20. Selection and application of C18200 chrome copper for the OHTE confinement test helical coil

    International Nuclear Information System (INIS)

    Puhn, F.A.; Graumann, D.W.

    1981-01-01

    The selection and qualification of copper for the OHTE confinement test helical coil (H-coil) was a crucial step in the success of this new experiment. Previous problems encountered at General Atomic Company with close tolerance machined parts made from high strength copper were identified. The design criteria included selecting a material with minimal warpage during machining, an electrical conductivity >80% IACS, and a yield strength of at least 241 Mpa (35 ksi). The investigation of candidate materials and testing samples led to selection of a material that fully met all requirements. The C18200 chrome copper forged plates were supplied by the Ampco Metal Division of Ampco-Pittsburgh Corporation

  1. High resistance to sulfur poisoning of Ni with copper skin under electric field

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaopei; Zhang, Yanxing [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Kaifeng, Henan Province (China)

    2017-02-12

    The effects of sulfur poisoning on the (1 0 0), (1 1 0) and (1 1 1) surfaces of pure Ni and Cu/Ni alloy are studied in consideration of the effect of electric field. The effects of Cu dopants on the S poisoning characteristics are analyzed by the means of the density functional theory results in combination with thermodynamics data using the ab initio atomistic thermodynamic method. When the Cu concentration increases to 50% on the surface layer of the Cu/Ni alloy, the (1 1 0) surface becomes the most vulnerable to the sulfur poisoning. Ni with a copper skin can mostly decrease the sulfur poisoning effect. Especially under the electric field of 1.0 V/Å, the sulfur adsorption and phase transition temperature can be further reduced. We therefore propose that Ni surfaces with copper skin can be very effective to improve the resistance to sulfur poisoning of the Ni anode under high electric field. - Highlights: • The electric field and Cu dopant effects on S poisoning feature of Ni are analyzed. • The present of large electric field can enhance S tolerance. • Cu dopant concentration affect the surface electronic structure of Ni. • 100% Cu doping on surface Ni layer can mostly decrease the sulfur poison.

  2. Preparation and characterization of polyaniline-copper composites by electrical explosion of wire.

    Science.gov (United States)

    Liu, Aijie; Bac, Luong Huu; Kim, Jin-Chun; Liu, Lizhu

    2012-07-01

    Polyaniline-copper composites with a polyacrylic acid (PAA) were synthesized by electrical explosion of wire. Polyaniline (PANI) and PAA were put into the explosion medium, deionized water (DIW) and ethanol, stirred for 24 hrs and sonicated for 2 hrs. These solutions were used as base liquids for explosion process to fabricate Cu nanoparticle. Optical absorption in the UV-visible region of PANI and PANI/PAA-Cu composites was measured in a range of 200-900 nm. X-ray diffraction was used to analyze the phase of the composites. XRD pattern showed the PANI was amorphous and copper was polycrystalline. Two phases of Cu and Cu2O were formed in aqueous solution while single Cu phase was obtained in ethanol solution. Field emission scanning electron microscope was used to observe the microstructure of the composites. The synthesized composites were extensively characterized by Fourier Transform Infrared (FTIR) spectroscopy and electrical measurements.

  3. Coprecipitation of cadmium with copper 8-hydroxyquinolate from homogeneous solution

    International Nuclear Information System (INIS)

    Takiyama, Kazuyoshi; Kozen, Terumi; Ueki, Yasuyo; Ishida, Hiromi

    1976-01-01

    The coprecipitation of copper and cadmium 8-hydroxyquinolates from homogeneous solution was conducted from the viewpoint of crystal and analytical chemistry. To the mixed solution containing copper and cadmium ions an 8-acetoxyquinoline solution was added by keeping the pH of the solution at 9 and the resulted solution was stirred at 25 0 C. The precipitate formed at each stage of the reaction was analyzed. The precipitates in an initial stage were composed of needle crystals which characterizes copper 8-hydroxyquinolate, and were associated with a slight amount of cadmium. The first half of the coprecipitation curve for the needle crystal formation resembles the logarithmic distribution curve of lambda equal to about 0.01. The precipitation of most of the copper ions was followed by the precipitation of cadmium 8-hydroxyquinolate crystal in the plate form. The needle crystals of copper 8-hydroxyquinolate started to dissolve and transformed to plate crystals. In the second half of the coprecipitation, both crystals, owing to the identical crystal structure, precipitated simultaneously and form a solid solution. When cadmium 8-hydroxyquinolate was precipitated by the PFHS method (precipitation from homogeneous solution) in the presence of the needle crystals of copper 8-hydroxyquinolate, the above mentioned phenomenon was observed. The precipitation of cadmium 8-hydroxyquinolate in the plate form is due to the seeding effect of the plate crystals of copper 8-hydroxyquinolate, which were scantily transformed from the needle crystals. The plate crystals of cadmium compound acts as a seed to transform the needle crystals of copper compound to plate crystals. (auth.)

  4. Research on metal-plated cellulose nitrate flakes and their infrared / millimeter wave characteristics

    Science.gov (United States)

    Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei

    2016-10-01

    Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.

  5. NDE of explosion welded copper stainless steel first wall mock-up

    International Nuclear Information System (INIS)

    Taehtinen, S.; Kauppinen, P.; Jeskanen, H.; Lahdenperae, K.; Ehrnsten, U.

    1997-04-01

    The study showed that reflection type C-mode scanning acoustic microscope (C-SAM) and internal ultrasonic inspection (IRIS) equipment can be applied for ultrasonic examination of copper stainless steel compound structures of ITER first wall mock-ups. Explosive welding can be applied to manufacture fully bonded copper stainless steel compound plates. However, explosives can be applied only for mechanical tightening of stainless steel cooling tubes within copper plate. If metallurgical bonding between stainless steel tubes and copper plate is required Hot Isostatic Pressing (HIP) method can be applied. (orig.)

  6. Influence of a cold deformation process by drawing on the electrical properties of copper wires

    Directory of Open Access Journals (Sweden)

    Rafael da Silva Bernardo

    Full Text Available Abstract This article presents a study of the drawing, deformation, hardening and heat treatment of copper wire, in order to investigate the influence of combinations of operating variables (annealing factor, oil emulsion temperature and machine speed during the drawing process on the electrical conductivity of copper wires. The results showed that when the metal is deformed, the value of electrical conductivity suffers a decrease due to the hardening phenomenon. Because of this, it is necessary to heat treat the material. So, it was observed that the annealing factor, which is associated with the thermal treatment temperature, showed a high degree of correlation with the electrical conductivity. This fact is explained by the annealing factor which is responsible for the intensity of the heat treatment. The speed at which the drawing occurs also showed a direct correlation with electric conductivity because the higher the value, the greater the heat treatment temperature and consequently, the greater the electrical conductivity of the material. On the other hand, it had not been possible to establish a conclusion about the correlation between the electrical conductivity and oil emulsion temperature during the drawing process.

  7. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  8. An investigation on mechanical property of commercial copper tube to aluminium 2025 tube plate by FWTPET process

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, S., E-mail: kannan.dgl201127@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004 (India); Senthil Kumaran, S., E-mail: sskumaran@ymail.com [Research and Development Center, Department of Mechanical Engineering, RVS Educational Trust' s Group of Institutions, RVS School of Engineering and Technology, Dindigul, Tamilnadu 624005 (India); Kumaraswamidhas, L.A., E-mail: lakdhas1978@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004 (India)

    2016-07-05

    Frictional welding of tube to tube plate by external tool (FWTPET) posses wide spread industrial in mass production process for joint similar and dissimilar materials. Frictional welding process allows welding of some materials that are exceptionally hard to fusion weld. The good quality joint between the tube and tube plate is achieved by selecting the proper process parameter. In this present research, the frictional welding is done between the Aluminium 2025 tube plate and commercial copper tube possessing a clearance fit of 0.1 mm between tube and hole. In this study, two conditions were considered while handing out this experiment. The condiction1 is tube without holes [WOH] and condition 2 is tube with holes [WH] on the tube circumference. In total, twenty seven work pieces have been considered separately for both conditions and the mechanical property such as compression strength and hardness value has been measured for the both set of work piece in two conditions to analysis the joint strength of the welding process. Taguchi L{sub 27} orthogonal array has been used in this process to identify the process parameter which influences the joint strength of the welded samples. ANOVA method is used to calculate the percentage of contribution by each process parameter which influences the better joint strength. Genetic algorithm is used to authenticate the outcome obtained from the both experimental value and optimization value. Scanning Electron Microscope (SEM) and Energy-dispersive X-ray analysis (EDX) has been performed to probe microstructures and chemical compositions for work piece without holes which has higher mechanical property. - Highlights: • FWTPET for dissimilar metals commercial copper tube and Al 2025 tube plate. • The hardness value for tube without holes are 180.988 Hv. • The compression strength for tube without holes are 376.05 MPa. • SEM confirm heat production is done to melt parent metal by diffusion process. • EDX prove no trace

  9. Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gallardo-Vega, C.; Cruz, W. de la

    2006-01-01

    Copper nitride thin films were prepared on glass and silicon substrates by ablating a copper target at different pressure of nitrogen. The films were characterized in situ by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and ex situ by X-ray diffraction (XRD). The nitrogen content in the samples, x = [N]/[Cu], changed between 0 and 0.33 for a corresponding variation in nitrogen pressure of 9 x 10 -2 to 1.3 x 10 -1 Torr. Using this methodology, it is possible to achieve sub-, over- and stoichiometric films by controlling the nitrogen pressure. The XPS results show that is possible to obtain copper nitride with x = 0.33 (Cu 3 N) and x = 0.25 (Cu 4 N) when the nitrogen pressure is 1.3 x 10 -1 and 5 x 10 -2 Torr, respectively. The lattice constants obtained from XRD results for copper nitride with x = 0.25 is of 3.850 A and with x = 0.33 have values between 3.810 and 3.830 A. The electrical properties of the films were studied as a function of the lattice constant. These results show that the electrical resistivity increases when the lattice parameter is decreasing. The electrical resistivity of copper nitride with x = 0.25 was smaller than samples with x = 0.33

  10. Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo-Vega, C. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Km. 107 Carretera Tijuana-Ensenada, A. Postal 2732, 22860, Ensenada B.C. (Mexico)]. E-mail: gallardo@ccmc.unam.mx; Cruz, W. de la [Centro de Ciencias de la Materia Condensada, UNAM, Km. 107 Carretera Tijuana-Ensenada, A. Postal 2681, 22860, Ensenada B.C. (Mexico)

    2006-09-15

    Copper nitride thin films were prepared on glass and silicon substrates by ablating a copper target at different pressure of nitrogen. The films were characterized in situ by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and ex situ by X-ray diffraction (XRD). The nitrogen content in the samples, x = [N]/[Cu], changed between 0 and 0.33 for a corresponding variation in nitrogen pressure of 9 x 10{sup -2} to 1.3 x 10{sup -1} Torr. Using this methodology, it is possible to achieve sub-, over- and stoichiometric films by controlling the nitrogen pressure. The XPS results show that is possible to obtain copper nitride with x = 0.33 (Cu{sub 3}N) and x = 0.25 (Cu{sub 4}N) when the nitrogen pressure is 1.3 x 10{sup -1} and 5 x 10{sup -2} Torr, respectively. The lattice constants obtained from XRD results for copper nitride with x = 0.25 is of 3.850 A and with x = 0.33 have values between 3.810 and 3.830 A. The electrical properties of the films were studied as a function of the lattice constant. These results show that the electrical resistivity increases when the lattice parameter is decreasing. The electrical resistivity of copper nitride with x = 0.25 was smaller than samples with x = 0.33.

  11. Effects of vacuum annealing on the optical and electrical properties of p-type copper-oxide thin-film transistors

    International Nuclear Information System (INIS)

    Sohn, Joonsung; Song, Sang-Hun; Kwon, Hyuck-In; Nam, Dong-Woo; Cho, In-Tak; Lee, Jong-Ho; Cho, Eou-Sik

    2013-01-01

    We have investigated the effects of vacuum annealing on the optical and electrical properties of the p-type copper-oxide thin-film transistors (TFTs). The vacuum annealing of the copper-oxide thin-film was performed using the RF magnetron sputter at various temperatures. From the x-ray diffraction and UV-vis spectroscopy, it is demonstrated that the high-temperature vacuum annealing reduces the copper-oxide phase from CuO to Cu 2 O, and increases the optical transmittance in the visible part of the spectrum. The fabricated copper-oxide TFT does not exhibit the switching behavior under low-temperature vacuum annealing conditions. However, as the annealing temperature increases, the drain current begins to be modulated by a gate voltage, and the TFT exhibits a high current on–off ratio over 10 4 as the vacuum annealing temperature increases over 450 °C. These results show that the vacuum annealing process can be an effective method of simultaneously improving the optical and electrical performances in p-type copper-oxide TFTs. (paper)

  12. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  13. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.P. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Duarte, G.W. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Research Group in Technology and Information, Centro Universitário Barriga Verde (UNIBAVE), Santa Catarina, SC (Brazil); Caldart, C. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Kniess, C.T. [Post-Graduate Program in Professional Master in Management, Universidade Nove de Julho, São Paulo, SP (Brazil); Montedo, O.R.K.; Rocha, M.R. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Riella, H.G. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Fiori, M.A., E-mail: fiori@unochapeco.edu.br [Post-Graduate Program in Environmental Science, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil); Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil)

    2015-11-15

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound.

  14. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    International Nuclear Information System (INIS)

    Fernandes, J.P.; Duarte, G.W.; Caldart, C.; Kniess, C.T.; Montedo, O.R.K.; Rocha, M.R.; Riella, H.G.; Fiori, M.A.

    2015-01-01

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound

  15. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  16. Experimental investigations of tungsten inert gas assisted friction stir welding of pure copper plates

    Science.gov (United States)

    Constantin, M. A.; Boșneag, A.; Nitu, E.; Iordache, M.

    2017-10-01

    Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.

  17. Regulation and conflicts regarding electricity interconnectors

    International Nuclear Information System (INIS)

    Aarts, V.P.; Wenting, F.

    2003-01-01

    In this contribution the authors provide an overview of regulatory issues and conflicts regarding electricity interconnectors between the Netherlands and its neighbours. The Electricity Act 1998 has assigned management of the Dutch part of the interconnectors to exclusively TenneT, the national transmission system operator in the Netherlands. The authors conclude that the dust of many regulatory problems and conflicts concerning existing interconnectors has settled down. The preliminary proceedings regarding the long Sep priority which are pending with the EU Court of Justice must still produce an answer as to the compatibility of this priority with community law. Regarding construction and management of new interconnectors many regulatory and commercial challenges lie ahead. As regards congestion management on existing interconnectors the authors raise the question whether concentration on increasing physical interconnector capacity is the right approach. Interconnector capacity, even if substantially expanded, will continue to be liable to falling short of demand due to price differences and volatility of prices in the various national markets. Perhaps more effort should be put into attaining conditions for non-transaction based congestion management. The combined UCTE (Union for the Co-ordination of Transmission of Electricity) grid is, technically speaking, a 'copper plate'. If it were only managed as such by the various national transmission system operators through co-ordinated control of production and load, almost all transports on this copper plate could be secured, irrespective of underlying commercial flows [nl

  18. Extraction of the Electric Field in Field Plate Assisted RESURF Devices

    NARCIS (Netherlands)

    Boksteen, B.K.; Dhar, S.; Heringa, A.; Koops, G.E.J.; Hueting, Raymond Josephus Engelbart

    2012-01-01

    It has previously been reported that the lateral electric field (Ex) in the drain extension of thin SOI HV (700V) field plate assisted RESURF devices can be extracted from their ID-VD characteristics in the subthreshold regime. In this work the prerequisites for valid field extraction and the

  19. Compatibility of copper-electroplated cells with Metal Wrap Through module materials

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, I.J.; Geerligs, L.J.; Olson, C.L.; Goris, M.J.A.A. [ECN Solar Energy, Petten (Netherlands)

    2013-10-16

    As part of the European FP7 RandD project 'Cu-PV', the compatibility of copper-electroplated metal wrapthrough (MWT) cells with conductive adhesives has been investigated. The objectives of this project include to reduce, by the use of copper plating, the amount of silver utilized in cell manufacturing, and to demonstrate the compatibility of high-power n-type back-contact module technology with copper-plated cells. The overall goal is to reduce the impact on the environment of cell and module manufacture. MWT module technology as developed by ECN uses conductive adhesive to make the interconnection between cells and a conductive backsheet foil. These adhesives have been proved to result in very reliable modules in the case of cells with fired silver metallization. To determine the compatibility of conductive adhesive with copper-plated cells, component tests were performed, followed by the manufacture of modules with copperplated cells and conductive adhesive interconnections. Climate chamber testing of these modules showed that the adhesive is compatible with the copper-plated cells. The next steps include further optimization of the plating process and additional testing at the module level.

  20. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    International Nuclear Information System (INIS)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui

    2014-01-01

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m −1 K −1 and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m −1 K −1 and 8 to 5 ppm K −1 , respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials

  1. Design optimization of electric vehicle battery cooling plates for thermal performance

    Science.gov (United States)

    Jarrett, Anthony; Kim, Il Yong

    The performance of high-energy battery cells utilized in electric vehicles (EVs) is greatly improved by adequate temperature control. An efficient thermal management system is also desirable to avoid diverting excessive power from the primary vehicle functions. In a battery cell stack, cooling can be provided by including cooling plates: thin metal fabrications which include one or more internal channels through which a coolant is pumped. Heat is conducted from the battery cells into the cooling plate, and transported away by the coolant. The operating characteristics of the cooling plate are determined in part by the geometry of the channel; its route, width, length, etc. In this study, a serpentine-channel cooling plate is modeled parametrically and its characteristics assessed using computational fluid dynamics (CFD). Objective functions of pressure drop, average temperature, and temperature uniformity are defined and numerical optimization is carried out by allowing the channel width and position to vary. The optimization results indicate that a single design can satisfy both pressure and average temperature objectives, but at the expense of temperature uniformity.

  2. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S., E-mail: s.sasaki@ecei.tohoku.ac.j [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T. [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kawai, N.; Yasui, K. [Okumura Corporation, 5-6-1 Shiba, Minato-ku, Tokyo 180-8381 (Japan)

    2010-11-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  3. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    International Nuclear Information System (INIS)

    Sasaki, S.; Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T.; Kawai, N.; Yasui, K.

    2010-01-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  4. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    Abstract. A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the.

  5. Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles

    Science.gov (United States)

    Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho

    2017-08-01

    The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.

  6. Electroforming copper targets for RTNS-II

    International Nuclear Information System (INIS)

    Kelley, W.K.; Dini, J.W.; Logan, C.M.

    1981-01-01

    Copper targets used in RTNS II, which is the world's most intense 14-MeV neutron source, contain water cooling channels for temperature control. There are two methods for fabricating these targets: (1) diffusion bonding a copper panel containing photoetched channels to another copper panel, and (2) an electroforming technique which involves filling the photoetched channels with wax, plating thick copper to seal over the channels and then removing the wax. Development of this latter process and results obtained with it are described

  7. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui, E-mail: quxh@ustb.edu.cn

    2014-02-25

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m{sup −1} K{sup −1} and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m{sup −1} K{sup −1} and 8 to 5 ppm K{sup −1}, respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials.

  8. Copper corrosion in pure oxygen-free water

    International Nuclear Information System (INIS)

    Moeller, K.

    1995-12-01

    The study was initiated following reports on corrosion of Copper in water in absence of Oxygen. Quartz glass tubes containing pure water and Copper plates were sealed in two different ways, using Palladium or Platinum foils, respectively. Tests were also performed with Copper wires. The insulated systems contained Oxygen initially. The Oxygen was dissolved in the water, and in the air column between the water surface and the Palladium/Platinum foils. The tubes were kept in a hot cabinet at 50 C for a total of two years. The exposed plates were analyzed in different ways, e g using reflectance FTIR. The amounts of oxide formed were also weighed. The following conclusions could be drawn: No difference in color was observed for the Pd and Pt seals except in one case for the Copper wire, where only a slight difference was noticed. No significant difference in oxidation between the plates with Pd or Pt seals in quartz glass tubes. No oxide growth was observed during the last year. The corrosion rate at 50 C is below 2.3 micrograms Copper/cm 2 /year. A certain imbalance was noted between the amounts of oxides formed, and expected amount estimated from the original amount of oxygen in the system. A significant amount of water has 'disappeared' from the tubes. 17 refs, 10 figs, 3 tabs

  9. Investigations on microstructure, electrical and magnetic properties of copper spinel ferrite with WO3 addition for applications in the humidity sensors

    Science.gov (United States)

    Tudorache, Florin

    2018-04-01

    In the present study we report the structural, electrical, magnetic and humidity characteristics of copper ferrite with different percent on tungsten trioxide addition. The aim of this study was to obtain more stable and sensitive active materials for humidity sensors. In order to highlight the influence of tungsten on the structural, electrical and magnetic properties, the ferrite samples were fabricated via sol-gel self-combustion method and sintered for 30 min at 1000 °C with percent between 0 and 20% tungsten trioxide additions. The X-ray diffraction investigations showed the copper ferrite phase composition. The scanning electron microscopy revealed the influence of the substitution on characteristics of the crystallites and the profilometry showed the surface topography of samples. The investigation was focused on the variation of permittivity and electrical conductivity, in relation with tungsten trioxide addition, frequency and humidity. We have also, investigated the relevant magnetic characteristics of the copper ferrite material by highlighting the influence of tungsten trioxide addition on to Curie temperature and the permeability frequency characteristics. The data suggests that the copper ferrite with tungsten trioxide addition can be used as active material for humidity sensors.

  10. Plating on some difficult-to-plate metals and alloys

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1980-02-01

    Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests

  11. Electric properties of polymeric nanocomposites filler with copper particles polymerized in situ by means of gamma radiation

    International Nuclear Information System (INIS)

    Poblete, V.H; Alvarez, M; Pilleux, M.E

    2002-01-01

    Different concentrations of copper metallic nanoparticles (80-120 diameter nm) were distributed in a methyl metacrilate (MMA) matrix. The polymerization of the mixture was carried out by means of gamma radiation using 16 kGy (2 kGy/hour) dose, applied in situ, obtaining an homogeneous and resistant mechanically samples. For comparison the same experience was carried out using 3,25-4,5 um of copper particles diameter. The morphology and the composite formation was studied by means of X-ray diffraction and scanning electronic microscopy for the different concentrations of the conductive metal into the polymeric matrix (5-30 vol. copper%). The electric resistance observed was analyzed in function of the distance between electric contacts. The strong lineal dependence show a homogeneous distribution of the metal in the composite. The specific resistivities obtained in function of the concentration of the conductive metal is in the range from the 12 to 42 Ωm for 10 vol.% concentrations. This results is in agreement with the threshold limit of the system. Also, the dependence of the resistivity with the particle size is showed (author)

  12. Action of Antimicrobial Copper on Bacteria and Fungi Isolated from Commercial Poultry Hatcheries

    Directory of Open Access Journals (Sweden)

    RFR Depner

    Full Text Available ABSTRACT Since 2008, when the US Environmental Protection Agency (EPA registered copper and its alloys as an antimicrobial agent for contact surfaces, research has demonstrated their antimicrobial activity. The aim of this study was to evaluate the efficacy of antimicrobial copper against bacteria and fungi isolated from commercial poultry hatcheries in order to develop a microbiological control alternative in these environments. Samples were collected from the surfaces of hatcher baskets from two hatcheries. Mesophilic microorganisms and fungi/yeasts were isolated and standardized in concentration of 105 cells/mL. Four copper plates and four stainless steel plates were completely immersed for one minute in bacteria and fungi/yeasts solutions and left to dry for a day at room temperature. Subsequently, samples were collected from the metal plates with the aid of sterile swab and delimiter. These samples were planted onto Plate Count Agar (for mesophilic culture and Sabouraud Dextrose Agar (for fungi and yeast culture and incubated at 36°C for 48 hours and at 25°C for 5-7 days, respectively. After incubation, the colonies recovered from the plates were counted according to IN 62 of the Brazilian Ministry of Agriculture. Almost all contamination was eliminated from the surface of copper plates in a single day, while the stainless steel plates proved to be innocuous to the screened microorganisms. Copper, as a contact surface, proved to have important antimicrobial action on bacteria, fungi and yeasts common to hatcheries.

  13. Dual shear plate power processor packaging design. [for Solar Electric Propulsion spacecraft

    Science.gov (United States)

    Franzon, A. O.; Fredrickson, C. D.; Ross, R. G.

    1975-01-01

    The use of solar electric propulsion (SEP) for spacecraft primary propulsion imposes an extreme range of operational and environmental design requirements associated with the diversity of missions for which solar electric primary propulsion is advantageous. One SEP element which is particularly sensitive to these environmental extremes is the power processor unit (PPU) which powers and controls the electric ion thruster. An improved power processor thermal-mechanical packaging approach, referred to as dual shear plate packaging, has been designed to accommodate these different requirements with minimum change to the power processor design. Details of this packaging design are presented together with test results obtained from thermal-vacuum and structural-vibration tests conducted with prototype hardware.

  14. Methods of making a high dielectric constant, resistive phase of YBa2Cu3OX and methods of using the same

    International Nuclear Information System (INIS)

    Testardi, L.R.

    1991-01-01

    This patent describes an electrical device. It comprises a dielectric material configured so as to have a pair of opposite sides, the dielectric material comprising a high dielectric constant, high electrical resistivity material phase of yttrium barium copper oxide obtained by heating the yttrium barium copper oxide to at least about 850 degrees Celsius and then quenching the yttrium barium copper oxide from the at least about 850 degrees Celsius at a sufficiently rapid rate so as to produce the high dielectric constant, high electrical resistivity material phase in the yttrium barium copper oxide; a first plate means for storing electrical charge provided on a first one of the pair of opposite sides of the dielectric material; a second plate means for storing electrical charge provided on a second one of the pair of opposite sides of the dielectric material; a first lead means adjacent to and in electrical contact with the first plate means for permitting electrical contact to the first plate means; and a second lead means adjacent to and in electrical contact with the second plate means for permitting electrical contact to the second plate means; wherein the electrical device is a capacitor having a useful, desired capacitance and is adapted to be used in diverse electrical and electronic applications for the storage of electrical charge

  15. EMI Shielding Performance For Varies Frequency by Metal Plating on Mold Compound

    Directory of Open Access Journals (Sweden)

    Min Fee Tai

    2017-07-01

    Full Text Available Conformal metalization on mold compound offers new possibility for IC package design to improve features such as rigidization of the flexible core, heat sink capability, 3D-circuit patterning and the electromagnetic interference (EMI shielding. With the unique processes, the fabrication technology had enabled to achieve the high reliable performance and had passed the electrical test. Following research after the reliability concern, this paper further study the shielding effectiveness of varying coating thickness with respect to laboratory simulated EMI condition, using radio frequency from 10MHz to 5.8 GHz. Different metal namely pure nickel, nickel-phosphorous and pure plated copper are studied for their effectiveness of EMI sheilding. Our first result showed over 35-40dB of shielding effectiveness is achievable on high frequency 868-5800MHz. Nevertheless on low frequency of 10MHz, the shielding effectiveness achievement is below than 25dB. To overcome the shielding need for lower frequency, we further expanded our test by choosing ferromagentic material Nicke/Ironl-alloy in combination with thick copper plating. With this new metal combination, EMI shielding effectiveness for lower frequency is improved to 40dB.

  16. Fabricating and strengthening the carbon nanotube/copper composite fibers with high strength and high electrical conductivity

    Science.gov (United States)

    Han, Baoshuai; Guo, Enyu; Xue, Xiang; Zhao, Zhiyong; Li, Tiejun; Xu, Yanjin; Luo, Liangshun; Hou, Hongliang

    2018-05-01

    Combining the excellent properties of carbon nanotube (CNT) and copper, CNT/Cu composite fibers were fabricated by physical vapor deposition (PVD) and rolling treatment. Dense and continuous copper film (∼2 μm) was coated on the surface of the CNT fibers by PVD, and rolling treatment was adopt to strengthen the CNT/Cu composite fibers. After the rolling treatment, the defects between the Cu grains and the CNT bundles were eliminated, and the structure of both the copper film and the core CNT fibers were optimized. The rolled CNT/Cu composite fibers possess high tensile effective strength (1.01 ± 0.13 GPa) and high electrical conductivity ((2.6 ± 0.3) × 107 S/m), and thus, this material may become a promising wire material.

  17. Effects of supporting electrolytes on copper electroplating for filling through-hole

    International Nuclear Information System (INIS)

    Chen, Chien-Hung; Lu, Chun-Wei; Huang, Su-Mei; Dow, Wei-Ping

    2011-01-01

    Highlights: → The through-holes of a printed circuit boardare directly filled by copper electroplating using single organic additive. → The inhibiting strength of the additive on copper deposition is related to a supporting electrolyte. → H 2 SO 4 strongly enhances the inhibiting strength of the additive and results in a conformal deposition, whereas Na 2 SO 4 and K 2 SO 4 do not affect the inhibiting strength and lead to good filling capability. - Abstract: The filling of micron through-holes (THs) in a printed circuit board (PCB) by copper electroplating was investigated in this study. The role of supporting electrolytes, such as H 2 SO 4 , Na 2 SO 4 and K 2 SO 4 , was explored using practical TH filling plating and linear-sweep voltammetry (LSV) analysis of plating solutions. The copper could selectively fill THs using one organic additive, namely, tetranitroblue tetrazolium chloride (TNBT), as an inhibitor. The inhibiting strength of TNBT depended on the supporting electrolytes. Although H 2 SO 4 could enhance the inhibiting strength of TNBT, it also decreased the filling capability of the copper plating solution; Na 2 SO 4 and K 2 SO 4 did not enhance the inhibiting strength of TNBT but they increased the filling capability of the copper plating solution. Additionally, the protons could chemically interact with TNBT to form precipitate, whereas sodium and potassium ions did not easily interact with TNBT. The filling capability of the copper plating solution using Na 2 SO 4 and K 2 SO 4 as supporting electrolytes could be greatly improved by adding a small amount of bis(3-sulfopropyl)-disulfide (SPS) and poly(ethylene glycol) (PEG) with a molecular weight of 600.

  18. Detection of electric field around field-reversed configuration plasma

    International Nuclear Information System (INIS)

    Ikeyama, Taeko; Hiroi, Masanori; Nogi, Yasuyuki; Ohkuma, Yasunori

    2010-01-01

    Electric-field probes consisting of copper plates are developed to measure electric fields in a vacuum region around a plasma. The probes detect oscillating electric fields with a maximum strength of approximately 100 V/m through a discharge. Reproducible signals from the probes are obtained with an unstable phase dominated by a rotational instability. It is found that the azimuthal structure of the electric field can be explained by the sum of an n=2 mode charge distribution and a convex-surface electron distribution on the deformed separatrix at the unstable phase. The former distribution agrees with that anticipated from the diamagnetic drift motions of plasma when the rotational instability occurs. The latter distribution suggests that an electron-rich plasma covers the separatrix.

  19. Electrodialytic remediation of copper mine tailings: Comparing different operational conditions

    DEFF Research Database (Denmark)

    Rojo, Adrian; Hansen, Henrik K.; Ottosen, Lisbeth M.

    2006-01-01

    This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analyzed, such as remediation time, voltage drop, addition of desorbing agents, and the use of pulsed electrical fields. The results show that electric...... of copper citrate complexes. Using pulsed electric fields the remediation process with sulphuric acid addition was also improved by a decrease in the polarization cell. Main results: considering remediation with watery tailing as the base line, for three weeks experiments no copper removal was observed......, adding sulphuric acid total copper removal reached 39%. Adding citric acid, total copper removal was improved in terms of remediation time: after 5h experiment copper removal was 16% instead of 9% obtained after 72h with sulphuric acid addition. Using pulsed electric fields total copper removal was also...

  20. Electrical characterization of copper related defect reactions in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, T. [Centre National de la Recherche Scientifique, 67 - Strasbourg (France). Lab. PHASE; Istratov, A.A.; Flink, C.; Weber, E.R. [Department of Material Science and Mineral Engineering, University of California at Berkeley, 577 Evans Hall, Berkeley, CA 94720 (United States)

    1999-02-12

    Defect reactions involving interstitial copper impurities (Cu{sub i}) in silicon are reviewed. The influence of the Coulomb interaction between positively charged copper and negatively charged defects, such as acceptor states of transition metals and lattice defects, on the complex formation rate is discussed in detail. The diffusivity of interstitial copper and the dissociation kinetics of copper-acceptor pairs are studied using the recently introduced transient ion drift (TID) method. TID results reveal that most interstitial copper impurities remain dissolved immediately after the quench and form pairs with shallow acceptors. It is shown that in moderately and heavily doped silicon the diffusivity of copper is trap limited, while in low B-doped silicon the interstitial copper-acceptor pairing is weak enough to allow the assessment of the copper intrinsic diffusion coefficient. The intrinsic diffusion barrier is estimated to be 0.18{+-}0.01 eV. It is concluded that the Coulomb potential used in previous publications underestimated considerably the acceptor-copper interaction. In light of these results, a general discussion on Cu related defect reactions is given. (orig.) 44 refs.

  1. Influence of composition, heat treatment and neutron irradiation on the electrical conductivity of copper alloys

    Science.gov (United States)

    Eldrup, M.; Singh, B. N.

    1998-10-01

    The electrical conductivity of three different types of copper alloys, viz. CuNiBe, CuCrZr and Cu-Al 2O 3 as well as of pure copper are reported. The alloys have undergone different pre-irradiation heat treatments and have been fission-neutron irradiated up to 0.3 dpa. In some cases post-irradiation annealing has been carried out. The results are discussed with reference to equivalent Transmission Electron Microscopy results on the microstructure of the materials. The CuNiBe has the lowest conductivity (⩽55% of that of pure Cu), and Cu-Al 2O 3 the highest (75-90% of pure Cu).

  2. Radial density distribution of a warm dense plasma formed by underwater electrical explosion of a copper wire

    Science.gov (United States)

    Nitishinskiy, M.; Yanuka, D.; Virozub, A.; Krasik, Ya. E.

    2017-12-01

    Time- and space-resolved evolution of the density (down to 0.07 of solid state density) of a copper wire during its microsecond timescale electrical explosion in water was obtained by X-ray backlighting. In the present research, a flash X-ray source of 20 ns pulse-width and >60 keV photon energy was used. The conductivity of copper was evaluated for a temperature of 10 kK and found to be in good agreement with the data obtained in earlier experiments [DeSilva and Katsouros, Phys. Rev. E 57, 5945 (1998) and Sheftman and Krasik, Phys. Plasmas 18, 092704 (2011)] where only electrical and optical diagnostics were applied. Magneto-hydrodynamic simulation shows a good agreement between the simulated and experimental waveforms of the current and voltage and measured the radial expansion of the exploding wire. Also, the radial density distribution obtained by an inverse Abel transform analysis agrees with the results of these simulations. Thus, the validity of the equations of state for copper and the conductivity model used in the simulations was confirmed for the parameters of the exploding wire realized in the present research.

  3. Electrical conduction in composites containing copper core–copper ...

    Indian Academy of Sciences (India)

    Unknown

    of Mott's small polaron hopping conduction model. ... sample exhibited a metallic conduction confirming the formation of a percolative chain of ..... value of εp. Also the oxide layer formation on the initially unoxidized copper particles will increase the resistivity level of the nanocomposite. This is borne out by results shown in ...

  4. Optimizing friction stir weld parameters of aluminum and copper using conventional milling machine

    Science.gov (United States)

    Manisegaran, Lohappriya V.; Ahmad, Nurainaa Ayuni; Nazri, Nurnadhirah; Noor, Amirul Syafiq Mohd; Ramachandran, Vignesh; Ismail, Muhammad Tarmizizulfika; Ahmad, Ku Zarina Ku; Daruis, Dian Darina Indah

    2018-05-01

    The joining of two of any particular materials through friction stir welding (FSW) are done by a rotating tool and the work piece material that generates heat which causes the region near the FSW tool to soften. This in return will mechanically intermix the work pieces. The first objective of this study is to join aluminum plates and copper plates by means of friction stir welding process using self-fabricated tools and conventional milling machine. This study also aims to investigate the optimum process parameters to produce the optimum mechanical properties of the welding joints for Aluminum plates and Copper plates. A suitable tool bit and a fixture is to be fabricated for the welding process. A conventional milling machine will be used to weld the aluminum and copper. The most important parameters to enable the process are speed and pressure of the tool (or tool design and alignment of the tool onto the work piece). The study showed that the best surface finish was produced from speed of 1150 rpm and tool bit tilted to 3°. For a 200mm × 100mm Aluminum 6061 with plate thickness of 2 mm at a speed of 1 mm/s, the time taken to complete the welding is only 200 seconds or equivalent to 3 minutes and 20 seconds. The Copper plates was successfully welded using FSW with tool rotation speed of 500 rpm, 700 rpm, 900 rpm, 1150 rpm and 1440 rpm and with welding traverse rate of 30 mm/min, 60 mm/min and 90 mm/min. As the conclusion, FSW using milling machine can be done on both Aluminum and Copper plates, however the weld parameters are different for the two types of plates.

  5. International Thermonuclear Experimental Reactor (ITER) divertor plate performance and lifetime considerations

    International Nuclear Information System (INIS)

    Mattas, R.F.

    1990-03-01

    The ITER divertor plate performance during the technology phase of operation has been analyzed. High-Z materials, such as tungsten and tantalum, have been considered as plasma side materials, and refractory metal alloys, Ta-10W, TZM, Nb-1Zr, and V-15Cr-5Ti, plus copper alloys have been considered as the structural materials. The fatigue lifetime have been predicted for structural plates and for duplex plates with the plasma side material bonded to the structure. The results indicate that refractory alloys have a comparable or improved performance to copper alloys. Peak allowable heat fluxes for these analyses are in the range of 15--20 MW/m 2 for 2 mm thick structural plates and 7--11 MW/m 2 for 4 mm thick duplex plates. 4 refs., 55 figs., 6 tabs

  6. Electroless Cu Plating on Anodized Al Substrate for High Power LED.

    Science.gov (United States)

    Rha, Sa-Kyun; Lee, Youn-Seoung

    2015-03-01

    Area-selective copper deposition on screen printed Ag pattern/anodized Al/Al substrate was attempted using a neutral electroless plating processes for printed circuit boards (PCBs), according to a range of variation of pH 6.5-pH 8 at 70 °C. The utilized basic electroless solution consisted of copper(II) sulfate pentahydrate, sodium phosphinate monohydrate, sodium citrate tribasic dihydrate, ammonium chloride, and nickel(II) sulfate hexahydrate. The pH of the copper plating solutions was adjusted from pH 6.5 to pH 8 using NH4OH. Using electroless plating in pH 6.5 and pH 7 baths, surface damage to the anodized Al layer hardly occurred; the structure of the plated Cu-rich films was a typical fcc-Cu, but a small Ni component was co-deposited. In electroless plating at pH 8, the surface of the anodized Al layer was damaged and the Cu film was composed of a lot of Ni and P which were co-deposited with Cu. Finally, in a pH 7 bath, we can make a selectively electroless plated Cu film on a PCB without any lithography and without surface damage to the anodized Al layer.

  7. Natural convection heat transfer experiments of horizontal plates with fin arrays

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Je Young; Chung, Bum Jin [Jeju National University 102 Jejudaehakno, Jeju (Korea, Republic of)

    2012-10-15

    Core melt in a severe accident condition, forms a molten pool in the reactor vessel lower head. The molten pool is divided by a metallic pool (top) and an oxide pool (bottom) by the density difference. The crust between the metallic layer and the oxide pool may be formed by solidification of the molten metallic materials. So the surface of the crust is formed irregularly. Experiments were performed to investigate the irregular crust as a preparatory study before an in-depth severe accident study. The natural convection heat transfer were investigated experimentally varying the height and spacing of fins, top plate of different kinds and the plate separation distance with/without the side walls. In order to simulate irregular crust surface condition, the finned plates was used. Using the analogy concept, heat transfer experiments were replaced by mass transfer experiments. A cupric acid.copper sulfate (H{sup 2S}O{sup 4-}CuSO{sup 4)} electroplating system was adopted as the mass transfer system and the electric currents were measured rather than the heat transfer rates.

  8. Influence of composition, heat treatment and neutron irradiation on the electrical conductivity of copper alloys

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1998-01-01

    The electrical conductivity of three different types of copper alloys, viz. CuNiBe, CuCrZr and Cu-Al(2)O(3) as well as of pure copper are reported. The alloys have undergone different pre-irradiation heat treatments and have been fission-neutron irradiated up to 0.3 dpa. In some cases post......-irradiation annealing has been carried out. The results are discussed with reference to equivalent Transmission Electron Microscopy results on the microstructure of the materials. The CuNiBe has the lowest conductivity (less than or equal to 55% of that of pure Cu), and Cu-Al(2)O(3) the highest (75-90% of pure Cu). (C...

  9. Perforated plates for cryogenic regenerators and method of fabrication

    International Nuclear Information System (INIS)

    Hendricks, J.B.

    1994-01-01

    Perforated plates having very small holes with a uniform diameter throughout the plate thickness are prepared by a open-quotes wire drawingclose quotes process in which a billet of sacrificial metal is disposed in an extrusion can of the plate metal, and the can is extruded and restacked repeatedly, converting the billet to a wire of the desired hole diameter. At final size, the rod is then sliced into wafers, and the wires are removed by selective etching. This process is useful for plate metals of interest for high performance regenerator applications, in particular, copper, niobium, molybdenum, erbium, and other rare earth metals. Er 3 Ni, which has uniquely favorable thermophysical properties for such applications, may be incorporated in regions of the plates by providing extrusion cans containing erbium and nickel metals in a stacked array with extrusion cans of the plate metal, which may be copper. The array is heated to convert the erbium and nickel metals to Er 3 Ni. Perforated plates having two sizes of perforations, one of which is small enough for storage of helium, are also disclosed. 10 figures

  10. Reliability of copper based alloys for electric resistance spot welding

    International Nuclear Information System (INIS)

    Jovanovicj, M.; Mihajlovicj, A.; Sherbedzhija, B.

    1977-01-01

    Durability of copper based alloys (B-5 and B-6) for electric resistance spot-welding was examined. The total amount of Be, Ni and Zr was up to 2 and 1 wt.% respectively. Good durability and satisfactory quality of welded spots were obtained in previous laboratory experiments carried out on the fixed spot-welding machine of an industrial type (only B-5 alloy was examined). Electrodes made of both B-5 and B-6 alloy were tested on spot-welding grips and fixed spot-welding machines in Tvornica automobila Sarajevo (TAS). The obtained results suggest that the durability of electrodes made of B-5 and B-6 alloys is more than twice better than of that used in TAS

  11. [XPS analysis of beads formed by fuse breaking of electric copper wire].

    Science.gov (United States)

    Wu, Ying; Meng, Qing-Shan; Wang, Xin-Ming; Gao, Wei; Di, Man

    2010-05-01

    The in-depth composition of beads formed by fuse breaking of the electric copper wire in different circumstances was studied by XPS with Ar+ ion sputtering. In addition, the measured Auger spectra and the calculated Auger parameters were compared for differentiation of the substances of Cu and Cu2O. Corresponding to the sputtering depth, the molten product on a bead induced directly by fuse breaking of the copper wire without cover may be distinguished as three portions: surface layer with a drastic decrease in carbon content; intermediate layer with a gentle change in oxygen content and gradually diminished carbon peak, and consisting of Cu2O; transition layer without Cu2O and with a rapid decrease in oxygen content. While the molten product on a bead formed by fuse breaking of the copper wire after its insulating cover had been burned out may be distinguished as two portions: surface layer with carbon content decreasing quickly; subsurface layer without Cu2O and with carbon and oxygen content decreasing gradually. Thus, it can be seen that there was an obvious interface between the layered surface product and the substrate for the first type of bead, while as to the second type of bead there was no interface. As a result, the presence of Cu2O and the quantitative results can be used to identify the molten product on a bead induced directly by fuse breaking of the copper wire without cover and the molten product on a bead formed by fuse breaking of the cupper wire after its insulating cover had been burned out, as a complementary technique for the judgments of fire cause.

  12. Palmtop EPMA by electric battery

    International Nuclear Information System (INIS)

    Imashuku, Susumu; Imanishi, Akira; Kawai, Jun

    2012-01-01

    The measurement pressure of a palmtop electron probe X-ray microanalyzer (EPMA) we previously reported was reduced using stainless steel vacuum flanges for the chamber instead of a borosilicate glass tube. The improved palmtop EPMA could reach the measurement pressure of 1 Pa in 5 minutes. The time was more than twice shorter than that to reach the measurement pressure of 5 Pa with the palmtop EPMA we previously reported. Titanium, copper K lines and silver Lα line were observed during 90 seconds measurement in addition to chromium, iron, and nickel K lines when titanium, copper, and silver plates were placed on the carbon sample stage. Chromium, iron, and nickel K lines came from stainless steel, and copper K lines came from copper rod and copper plate placed on the sample stage. The improved palmtop EPMA can analyze metals except for chromium, iron, nickel, and small amount of copper in 90 seconds.

  13. Solution-processed copper-nickel nanowire anodes for organic solar cells

    Science.gov (United States)

    Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.

    2014-05-01

    This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h

  14. Fuel cell end plate structure

    Science.gov (United States)

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  15. Characterization of laser doped silicon and overcoming adhesion challenges of solar cells with nickel-copper plated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Christian

    2015-07-01

    The combination of localized laser patterning and metal plating allows to replace conventional silver screen printing with nickel-copper plating to form inexpensive front contacts for crystalline silicon solar cells. In this work, a focus is put on effects that could cause inhomogeneous metal deposition and low metal contact adhesion. A descriptive model of the silicon nitride ablation mechanism is derived from SEM imaging and a precise recombination analysis using QSSPC measurements. Surface sensitive XPS measurements are conducted to prove the existence of a parasitic surface layer, identified as SiO{sub x}N{sub y}. The dense SiO{sub x}N{sub y} layer is an effective diffusion barrier, hindering the formation of a nickel silicide interlayer. After removal of the SiO{sub x}N{sub y} layer, cells show severe degradation caused by metal-induced shunting. These shunts are imaged using reverse biased electroluminescence imaging. A shunting mechanism is proposed and experimentally verified. New laser process sequences are devised and proven to produce cells with adhering Ni-Cu contacts. Conclusively the developed processes are assessed based on their industrial feasibility as well as on their efficiency potential.

  16. On a non-linear problem posed by the temperature determination in an electrically heated plate

    International Nuclear Information System (INIS)

    Gerber, R.

    1958-01-01

    Let us consider a flat plate, electrically heated, with one face thermally insulated and the other face isothermal. It is shown that a two-dimensional perturbation of the insulated face has no influence on the temperature of this face. (author) [fr

  17. Structural, optical and electrical properties of copper antimony sulfide thin films grown by a citrate-assisted single chemical bath deposition

    Science.gov (United States)

    Loranca-Ramos, F. E.; Diliegros-Godines, C. J.; Silva González, R.; Pal, Mou

    2018-01-01

    Copper antimony sulfide (CAS) has been proposed as low toxicity and earth abundant absorber materials for thin film photovoltaics due to their suitable optical band gap, high absorption coefficient and p-type electrical conductivity. The present work reports the formation of copper antimony sulfide by chemical bath deposition using sodium citrate as a complexing agent. We show that by tuning the annealing condition, one can obtain either chalcostibite or tetrahedrite phase. However, the main challenge was co-deposition of copper and antimony as ternary sulfides from a single chemical bath due to the distinct chemical behavior of these metals. The as-deposited films were subjected to several trials of thermal treatment using different temperatures and time to find the optimized annealing condition. The films were characterized by different techniques including Raman spectroscopy, X-ray diffraction (XRD), profilometer, scanning electron microscopy (SEM), UV-vis spectrophotometer, and Hall Effect measurements. The results show that the formation of chalcostibite and tetrahedrite phases is highly sensitive to annealing conditions. The electrical properties obtained for the chalcostibite films varied as the annealing temperature increases from 280 to 350 °C: hole concentration (n) = 1017-1018 cm-3, resistivity (ρ) = 1.74-2.14 Ωcm and carrier mobility (μ) = 4.7-9.26 cm2/Vseg. While for the tetrahedrite films, the electrical properties were n = 5 × 1019 cm-3, μ = 18.24 cm2/Vseg, and ρ = 5.8 × 10-3 Ωcm. A possible mechanism for the formation of ternary copper antimony sulfide has also been proposed.

  18. The contact heat conductance at diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    International Nuclear Information System (INIS)

    Assoufid, L.; Khounsary, A.M.

    1996-01-01

    Results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray diamond monochromators under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 μm of nickel, while in the other, the copper contact surface was left as machined. Measured average interface heat conductances are 44.7 ±8 W/cm 2 -K for nonplated copper and 23.0 ±3 W/cm 2 -K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm 2 contact area, will be about 10 degree C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes

  19. Structural and electrical properties of copper-nickel-aluminum alloys obtained by conventional powder metallurgy method

    International Nuclear Information System (INIS)

    Monteiro, Waldemar A.; Carrio, Juan A.G.; Silveira, C.R. da; Pertile, H.K.S.

    2009-01-01

    This work looked for to search out systematically, in scale of laboratory, copper-nickel-aluminum alloys (Cu-Ni-Al) with conventional powder metallurgy processing, in view of the maintenance of the electric and mechanical properties with the intention of getting electric connectors of high performance or high mechanical damping. After cold uniaxial pressing (1000 kPa), sintering (780 deg C) and convenient homogenization treatments (500 deg C for different times) under vacuum (powder metallurgy), the obtained Cu-Ni-Al alloys were characterized by optical microscopy, electrical conductivity, Vickers hardness. X rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, hardness, macrostructures and microstructures of the samples. (author)

  20. 77 FR 12579 - Copper Valley Electric Association, Inc.; Notice of Extension of Time for Filing of Comments...

    Science.gov (United States)

    2012-03-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-003] Copper Valley Electric Association, Inc.; Notice of Extension of Time for Filing of Comments, Final Terms and Conditions, Recommendations, and Prescriptions As stated in a letter dated January 27, 2012, in this proceeding by the...

  1. AC electrical breakdown phenomena of epoxy/layered silicate nanocomposite in needle-plate electrodes.

    Science.gov (United States)

    Park, Jae-Jun; Lee, Jae-Young

    2013-05-01

    Epoxy/layered silicate nanocomposite for the insulation of heavy electric equipments were prepared by dispersing 1 wt% of a layered silicate into an epoxy matrix with a homogenizing mixer and then AC electrical treeing and breakdown tests were carried out. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that nano-sized monolayers were exfoliated from a multilayered silicate in the epoxy matrix. When the nano-sized silicate layers were incorporated into the epoxy matrix, the breakdown rate in needle-plate electrode geometry was 10.6 times lowered than that of the neat epoxy resin under the applied electrical field of 520.9 kV/mm at 30 degrees C, and electrical tree propagated with much more branches in the epoxy/layered silicate nanocomposite. These results showed that well-dispersed nano-sized silicate layers retarded the electrical tree growth rate. The effects of applied voltage and ambient temperature on the tree initiation, growth, and breakdown rate were also studied, and it was found that the breakdown rate was largely increased, as the applied voltage and ambient temperature increased.

  2. Electrodialytic Remediation of Copper Mine Tailings

    DEFF Research Database (Denmark)

    Hansen, H.K.; Rojo, A.; Ottosen, L.M.

    2012-01-01

    This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields.......This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields....

  3. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  4. Electrical actuators in a Chilean copper mine; Elektrische Stellantriebe in chilenischem Kupferbergwerk

    Energy Technology Data Exchange (ETDEWEB)

    Herbstritt, Michael [AUMA Riester GmbH und Co. KG, Muellheim (Germany)

    2008-03-15

    Mining of copper at the Los Pelambres mine in Chile yields a mixture of water, sand, sludge and mineral reminiscent of fresh concrete. This high-viscosity material is treated in a series of filters and sedimentation installations. The gate-type and other valves necessary for distribution are operated by the electrical actuator systems examined in this article. A special feature of this arrangement is the fact that the actuator itself is separated from the appurtenant local control system. Separate installation means that the actuator drive systems, which are mounted on mobile stands of 2 m height, can be easily parameterized. (orig.)

  5. Highly conductive composites for fuel cell flow field plates and bipolar plates

    Science.gov (United States)

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  6. Morphological features of the copper surface layer under sliding with high density electric current

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V. V., E-mail: fvv@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Aleutdinova, M. I., E-mail: aleut@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk Technological Institute, Branch of State Autonomous Educational Institution of Higher Professional Education “National Research Nuclear University “MEPhI”, Seversk, 636036 (Russian Federation); Rubtsov, V. Ye., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Aleutdinova, V. A., E-mail: valery-aleut@yandex.ru [National Research St. Petersburg State Polytechnical University, St. Petersburg, 195251 (Russian Federation)

    2015-10-27

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.

  7. Influence of plating parameters on mechanical and microstructural properties of electroplated micro-spheres

    International Nuclear Information System (INIS)

    Brun, Etienne

    2012-01-01

    The aim of this PhD Thesis is to study the gold-copper cyanide electrochemical system and finally to realize gold-copper microspheres with a diameter of 800 μm and a thickness between 20 and 40 μm. The composition, the microstructure and the roughness of these shells must be perfectly controlled. To synthesise such a material, electrodeposition from a gold-copper alkaline cyanide bath has been chosen. Initially, the influence of the principal electrochemical parameters (temperature of the plating bath, stirring, etc.) was studied. This study showed that it is possible to realize 5 μm thick gold-copper alloys with various compositions. Actually, it was shown that the copper content of deposits varies with the applied potential. When increasing the copper content of coatings, the nucleation and growth mechanisms change. As a result, the grain size and the microhardness of the coatings are modified. An increase in the copper content reduces the grain size which increases the microhardness until a critical grain size of 6 nm. This increase of copper content also affects the microstructure: columnar, nodular even dendritic structures were observed. Then, 20 μm thick gold-copper coatings were realized using the same electrochemical parameters. As expected, these coatings were very difficult to plate because of the instability of the electro crystallization process resulting in the development of columnar and nodular structures. Moreover, for thicknesses above 10 μm, all deposits are free from copper. The microstructure change of deposits can be explained by inhibition phenomena generated by free cyanide. Actually, the reduction of gold-copper generates free cyanide at the cathode surface which inhibits the electro crystallization and promotes instantaneous nucleation. This production of free cyanide also modifies the electrolyte chemistry promoting the formation of Cu(CN)_4"3"- instead of Cu(CN)_3"2"-. Cu(CN)_4"3"- complexes have lower diffusion coefficients and

  8. Development of new bi-polar plates based on electrically conductive filled polymers for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Jousse, F.; Salas, J.F.; Giroud, F. [C.E.A., Le Ripault, Monts (France); Icard, B.; Laurent, J.Y.; Serre Combe, P.

    2000-07-01

    In polymer electrolyte membrane fuel cell technology, the bi-polar plates are dedicated to: the current collection, the separation and distribution of gas (hydrogen and oxygen) at the cathode and the anode. To achieve these functions, bi-polar plate materials must satisfy the following properties: high conductivity (higher than 10 S/cm), high chemical resistance to acid and water, very low permeability to hydrogen (permeability < Pe{sup H2}{sub Nafion} (20 C) = 7.10{sup -17} m{sup 2}/Pa/s). Traditionally bi-polar plates have been designed with stainless steel or graphite. However, the cost of these plates are incompatible to transport applications, principally because of the gas channel machining step. Recently, we have noticed the work of T.M. Besmann [1] on the manufacturing of bi-polar plates based on carbon fibres and phenolic resin, processed by pyrolisis and densification on surface by a chemical vapour infiltration process. However, this kind of process seems too expensive and complex for the needs of the road electric transportation industry. Organic composites based on conductive chemical resistant fillers and processed by molding could be an alternative solution. Bi-polar plates requirements can be achieved by controlling and optimising experimental parameters such as the nature and morphology of fillers, the resin characteristics, and the process conditions. To avoid corrosion of the composite material, and then, the contamination of the cell, we have selected non metallic fillers, based on graphite or carbon black. (orig.)

  9. Fabrication, thermal and electrical properties of polyphenylene sulphide/copper composites

    International Nuclear Information System (INIS)

    Goyal, R.K.; Kambale, K.R.; Nene, S.S.; Selukar, B.S.; Arbuj, S.; Mulik, U.P.

    2011-01-01

    Highlights: → Polyphenylene sulphide/copper composites show a low percolation threshold, i.e., about 6 vol% Cu. → Both pre- and post- glass transition coefficient of thermal expansion (CTE) of composites decreased significantly. → The microhardness was increased by more than 50% compared to pure PPS matrix. → The electrical conductivity was increased by about eight orders of magnitude for 18 vol% Cu composite. → Dielectric constant and dissipation factor of composites measured at MHz was increased to about 6-fold and 70-fold compared to PPS matrix. - Abstract: The thermal and electrical properties of high performance poly(phenylene sulphide) (PPS) composites reinforced up to 31 vol% Cu particles were investigated to be used as materials for electronic applications. The thermal stability and char yield of the composites increased significantly. Both pre- and post- glass transition coefficient of thermal expansion (CTE) of composites decreased significantly. The microhardness was increased by more than 50% compared to pure PPS matrix. Microhardness and CTE of composites correlated well with the rule of mixtures. A percolation threshold about 6 vol% Cu was obtained. The electrical conductivity was increased by about eight orders of magnitude for 18 vol% composite. Dielectric constant and dissipation factor of composites at 1 MHz was increased by about 6-fold and 70-fold compared to matrix, respectively. They decreased gradually with increasing frequency up to 1 MHz and thereafter, there was insignificant change. The scanning electron microscope showed almost uniform distribution of Cu particles in the matrix. Owing to better dimensional stability and good electrical properties, these composites are very promising for electronic applications.

  10. Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals

    Directory of Open Access Journals (Sweden)

    Gonzalez Cezar Henrique

    2004-01-01

    Full Text Available Recently, electrical resistivity (ER measurements have been done during some thermomechanical tests in copper based shape memory alloys (SMA's. In this work, single crystals of Cu-based SMA's have been studied at different temperatures to analyse the relationship between stress (s and ER changes as a function of the strain (e. A good consistency between ER change values is observed in different experiments: thermal martensitic transformation, stress induced martensitic transformation and stress induced reorientation of martensite variants. During stress induced martensitic transformation (superelastic behaviour and stress induced reorientation of martensite variants, a linear relationship is obtained between ER and strain as well as the absence of hys teresis. In conclusion, the present results show a direct evidence of martensite electrical resistivity anisotropy.

  11. Nickel Electroless Plating: Adhesion Analysis for Mono-Type Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Shin, Eun Gu; Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2015-10-01

    The adhesion of the front electrodes to silicon substrate is the most important parameters to be optimized. Nickel silicide which is formed by sintering process using a silicon substrate improves the mechanical and electrical properties as well as act as diffusion barrier for copper. In this experiment p-type mono-crystalline czochralski (CZ) silicon wafers having resistivity of 1.5 Ω·cm were used to study one step and two step nickel electroless plating process. POCl3 diffusion process was performed to form the emitter with the sheet resistance of 70 ohm/sq. The Six, layer was set down as an antireflection coating (ARC) layer at emitter surface by plasma enhanced chemical vapor deposition (PECVD) process. Laser ablation process was used to open SiNx passivation layer locally for the formation of the front electrodes. Nickel was deposited by electroless plating process by one step and two step nickel electroless deposition process. The two step nickel plating was performed by applying a second nickel deposition step subsequent to the first sintering process. Furthermore, the adhesion analysis for both one step and two steps process was conducted using peel force tester (universal testing machine, H5KT) after depositing Cu contact by light induced plating (LIP).

  12. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  13. Thermal performance of plate-type loop thermosyphon at sub-atmospheric pressures

    International Nuclear Information System (INIS)

    Tsoi, Vadim; Chang, Shyy Woei; Chiang Kuei Feng; Huang, Chuan Chin

    2011-01-01

    This experimental study examines the thermal performance of a newly devised plate-type two-phase loop thermosyphon with cooling applications to electronic boards of telecommunication systems. The evaporation section is configured as the inter-connected multi channels to emulate the bridging boiling mechanism in pulsating thermosyphon. Two thermosyphon plates using water as the coolant with filling ratios (FR) of 0.22 and 0.32 are tested at sub-atmospheric pressures. The vapor-liquid flow images as well as the thermal resistances and effective spreading thermal conductivities are individually measured for each thermosyphon test plate at various heating powers. The high-speed digital images of the vapor-liquid flow structures reveal the characteristic boiling phenomena and the vapor-liquid circulation in the vertical thermosyphon plate, which assist to explore the thermal physics for this type of loop thermosyphon. The bubble agglomeration and pumping action in the inter-connected boiling channels take place at metastable non-equilibrium conditions, leading to the intermittent slug flows with a pulsation character. Such hybrid loop-pulsating thermosyphon permits the vapor-liquid circulation in the horizontal plate. Thermal resistances and spreading thermal conductivities detected from the present thermosyphon plates; the vapor chamber flat plate heat pipe and the copper plate at free and forced convective cooling conditions with both vertical and horizontal orientations are cross-examined. In most telecommunication systems and units, the electrical boards are vertical so that the thermal performance data on the vertical thermosyphon are most relevant to this particular application. - Highlights: → We examine thermal performances of plate-type loop thermosyphon. → Thermal resistances and spreading conductivities are examined. → Bubble agglomeration in inter-connected boiling channels generates intermittent slug flows with pulsations. → Boiling instability

  14. Modelling of radial electric fields and currents during divertor plate biasing on TdeV

    International Nuclear Information System (INIS)

    Lachambre, J.L.; Quirion, B.; Boucher, C.

    1994-01-01

    A simple model based on non-ambipolar radial transport and planar sheath physics is used to describe the generation of radial electric fields and currents in the scrape-off layer of the Tokamak de Varennes (TdeV) during divertor plate biasing. In general, the calculated predictions compare favourably with TdeV results over a variety of plasma conditions and divertor magnetic configurations. Validated by the experiment, the model is used to study the scaling laws of perpendicular ion mobility and to test existing related theories. Finally, the model is proposed as a useful tool for the design and upgrade of biased divertors through optimization of the plate and throat geometry. (author). 35 refs, 16 figs, 1 tab

  15. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study

    Science.gov (United States)

    Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.

    2017-09-01

    Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.

  16. Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain

    International Nuclear Information System (INIS)

    Glushko, O.; Marx, V.M.; Kirchlechner, C.; Zizak, I.; Cordill, M.J.

    2014-01-01

    Substantial recovery (decrease) of electrical resistance during and after unloading is demonstrated for copper films on polyethylene terephthalate substrates subjected to a tensile strain with different peak values. Particularly, the films strained to 5% exhibit full resistance recovery after unloading despite clearly visible plastic deformation of the film. The recovery of electrical resistance in connection with the mechanical behavior of film/substrate couple is discussed with the help of in situ scanning electron microscopy and X-ray diffraction analysis. - Highlights: • Tensile tests on 200 nm Cu films on PET substrate are performed. • Electrical resistance is recorded in-situ during loading and unloading. • Significant recovery (decrease) of resistance is observed during and after unloading. • Films strained to 5% demonstrate full resistance recovery. • Viscoelastic relaxation of PET is responsible for recovery of Cu film resistance

  17. Electric and electrochemical properties of surface films formed on copper in the presence of bicarbonate anions

    International Nuclear Information System (INIS)

    Sirkiae, P.; Saario, T.; Maekelae, K.; Laitinen, T.; Bojinov, M.

    1999-01-01

    Copper is used as an outer shield of cast iron canisters planned for storage of spent nuclear fuel. The copper shield is responsible for the corrosion protection of the canister. The aim of the present work was to study the influence of bicarbonate (HCO 3 - ) anions on the stability of the copper oxide film. The work consists of a brief literature survey and an experimental part, in which voltammetry, electrochemical impedance spectroscopy and dc resistance measurements via the Contact Electric Resistance (CER) technique were used. The studies reported in the literature indicated that HCO 3 - ions increase the solubility of copper in the stability region of Cu(II). Thus they render the oxide film formed on copper susceptible to local damage and to localised corrosion at high potentials. Unfortunately, despite the great importance of bicarbonates in copper corrosion, most of the environments used in the electrochemical and corrosion studies are not comparable with repository conditions. In the existing studies either the bicarbonate concentrations or pH of the solutions were too high. In addition, no such studies were available, in which not only the effect of carbonate ions, but also possible synergetic effects of them with other aggressive ions would have been clarified. The voltammetric results of the experimental part of this work point to a bilayer structure of the anodic film on copper in neutral solutions containing HCO 3 - ions. The transport of ionic defects through a thin continuous p-type semiconductor layer was concluded to be the rate limiting step of the anodic oxidation of copper in the stability region of monovalent copper and in the mixed oxide (Cu(I)/Cu(II) oxide) region. Films formed in the divalent copper region did not show well-pronounced semiconductor behaviour. Substantial evidence was found in the voltammetric, CER and impedance results for the increased defectiveness of the anodic film in the Cu(II) region. The oxidation rate of copper in

  18. Electric and electrochemical properties of surface films formed on copper in the presence of bicarbonate anions

    Energy Technology Data Exchange (ETDEWEB)

    Sirkiae, P.; Saario, T.; Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-11-01

    Copper is used as an outer shield of cast iron canisters planned for storage of spent nuclear fuel. The copper shield is responsible for the corrosion protection of the canister. The aim of the present work was to study the influence of bicarbonate (HCO{sub 3}{sup -}) anions on the stability of the copper oxide film. The work consists of a brief literature survey and an experimental part, in which voltammetry, electrochemical impedance spectroscopy and dc resistance measurements via the Contact Electric Resistance (CER) technique were used. The studies reported in the literature indicated that HCO{sub 3}{sup -} ions increase the solubility of copper in the stability region of Cu(II). Thus they render the oxide film formed on copper susceptible to local damage and to localised corrosion at high potentials. Unfortunately, despite the great importance of bicarbonates in copper corrosion, most of the environments used in the electrochemical and corrosion studies are not comparable with repository conditions. In the existing studies either the bicarbonate concentrations or pH of the solutions were too high. In addition, no such studies were available, in which not only the effect of carbonate ions, but also possible synergetic effects of them with other aggressive ions would have been clarified. The voltammetric results of the experimental part of this work point to a bilayer structure of the anodic film on copper in neutral solutions containing HCO{sub 3}{sup -}ions. The transport of ionic defects through a thin continuous p-type semiconductor layer was concluded to be the rate limiting step of the anodic oxidation of copper in the stability region of monovalent copper and in the mixed oxide (Cu(I)/Cu(II) oxide) region. Films formed in the divalent copper region did not show well-pronounced semiconductor behaviour. Substantial evidence was found in the voltammetric, CER and impedance results for the increased defectiveness of the anodic film in the Cu(II) region. The

  19. Direct electroplating of plastic for advanced electrical applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2017-01-01

    Electrodeposition or electroplating is predominantly applied to metallic components. Electroplating of plastics is possible in some cases where an initial electroless plating layer of nickel or copper is made to provide a conductive surface on the plastic part. This paper proposes a method...... for direct electroplating of plastic eliminating the need for slow and expensive processes like electroless metal deposition, PVD coating, painting with conductive inks etc. The results obtained from the test demonstrate the potential of direct electroplating of plastic to enhance the electrical conductivity...... and the use of electroplated plastics for advanced applications like Moulded Interconnect Devices (MIDs)....

  20. Corrosion of packaged cadmium plated electrical control units from paint vapors

    International Nuclear Information System (INIS)

    Brough, L.A.

    1987-01-01

    One of the most widely used methods of controlling the degradation of steel is the application of paint. It is relatively easy to accomplish and very economical. Painted steel is used successfully for many applications, including industrial equipment with electrical enclosures. Unless the proper paint and application procedures are selected, corrosion problems may develop directly from the paint, as the following incident will illustrate. A few years ago, a large electrical control enclosure [30 x 72 x 18 in. (76 x 183 x 46 cm)] was supplied to a customer with the control wiring and hardware mounted inside, which included a number of cadmium plated components. The enclosure had been painted inside with a fast drying, vinyl alkyd white enamel shortly before assembly. Since it was known that the completed unit would probably be stored at the customer's plant site for some time before installation, elaborate procedures were followed to retard or prevent degradation of any part of the system

  1. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  2. Copper vanadate nanowires-based MIS capacitors: Synthesis, characterization, and their electrical charge storage applications

    KAUST Repository

    Shahid, Muhammad

    2013-07-14

    Copper vanadate (CVO) nanowires were grown on Si/SiO2 substrates by thermal annealing technique. A thin film of a CVO precursor at 550 C under an ambient atmosphere could also be prepared. The electrical properties of the nanowires embedded in the dielectrical layer were examined by capacitance-voltage (C-V) measurements. The C-V curves for Au/CVO nanowires embedded in an hafnium oxide layer/SiO2/p-Si capacitor at 298 K showed a clockwise hysteresis loop when the gate bias was swept cyclically. The hysteresis characteristics were studied further at different frequencies, which clearly indicated that the traps in the nanowires have a large charging-discharging time and thus the as-synthesized nanowires can be utilized for electrical charge storage devices. © 2013 Springer Science+Business Media Dordrecht.

  3. Copper vanadate nanowires-based MIS capacitors: synthesis, characterization, and their electrical charge storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Shahid, Muhammad, E-mail: shahid@skku.edu [King Abdullah University of Science and Technology, Material Science and Engineering (Saudi Arabia); Nafady, Ayman [King Saud University, Department of Chemistry, College of Science (Saudi Arabia); Shakir, Imran; Rana, Usman Ali; Sarfraz, Mansoor [King Saud University, Sustainable Energy Technologies (SET) Center, College of Engineering (Saudi Arabia); Warsi, Muhammad Farooq [The Islamia University of Bahawalpur, Department of Chemistry (Pakistan); Hussain, Rafaqat [Universiti Teknologi Malaysia, Ibnu Sina Institute for Fundamental Science Studies (Malaysia); Ashiq, Muhammad Naeem [Bahauddin Zakaryia University, Institute of Chemical Sciences (Pakistan)

    2013-08-15

    Copper vanadate (CVO) nanowires were grown on Si/SiO{sub 2} substrates by thermal annealing technique. A thin film of a CVO precursor at 550 Degree-Sign C under an ambient atmosphere could also be prepared. The electrical properties of the nanowires embedded in the dielectrical layer were examined by capacitance-voltage (C-V) measurements. The C-V curves for Au/CVO nanowires embedded in an hafnium oxide layer/SiO{sub 2}/p-Si capacitor at 298 K showed a clockwise hysteresis loop when the gate bias was swept cyclically. The hysteresis characteristics were studied further at different frequencies, which clearly indicated that the traps in the nanowires have a large charging-discharging time and thus the as-synthesized nanowires can be utilized for electrical charge storage devices.

  4. Copper vanadate nanowires-based MIS capacitors: Synthesis, characterization, and their electrical charge storage applications

    KAUST Repository

    Shahid, Muhammad; Nafady, Ayman; Shakir, Imran; Rana, Usman Ali; Sarfraz, Mansoor M.; Warsi, Muhammad Farooq; Hussain, Rafaqat; Ashiq, Muhammad Naeem

    2013-01-01

    Copper vanadate (CVO) nanowires were grown on Si/SiO2 substrates by thermal annealing technique. A thin film of a CVO precursor at 550 C under an ambient atmosphere could also be prepared. The electrical properties of the nanowires embedded in the dielectrical layer were examined by capacitance-voltage (C-V) measurements. The C-V curves for Au/CVO nanowires embedded in an hafnium oxide layer/SiO2/p-Si capacitor at 298 K showed a clockwise hysteresis loop when the gate bias was swept cyclically. The hysteresis characteristics were studied further at different frequencies, which clearly indicated that the traps in the nanowires have a large charging-discharging time and thus the as-synthesized nanowires can be utilized for electrical charge storage devices. © 2013 Springer Science+Business Media Dordrecht.

  5. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  6. Selenium plating of aluminium and nickel surfaces

    International Nuclear Information System (INIS)

    Qureshi, N.; Shams, N.; Kamal, A.; Ashraf, A.

    1993-01-01

    Selenium exhibits photovoltaic and photoconductive properties. This makes selenium useful in the production of photocells, exposure meters for photographic use, in solar cells, etc. In commerce, selenium coated surfaces are extensively used as photo receptive drums in the xerography machines for reproducing documents. Laboratory experiments were designed to obtain selenium plating on different materials. Of the various electrodes tested for cathodic deposition, anodized aluminum and nickel plated copper were found to give good results. (author)

  7. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    International Nuclear Information System (INIS)

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-01-01

    Graphical abstract: - Highlights: • Mechanisms of laser direct writing and electroless plating were studied. • Active seeds in laser-irradiated zone and laser-affected zone were found to be different. • A special chemical cleaning method with aqua regia was taken. • Higher-resolution copper patterns on alumina ceramic were obtained conveniently. - Abstract: How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl_2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  8. Comparative Study of Electroless Copper Film on Different Self-Assembled Monolayers Modified ABS Substrate

    Directory of Open Access Journals (Sweden)

    Jiushuai Xu

    2014-04-01

    Full Text Available Copper films were grown on (3-Mercaptopropyltrimethoxysilane (MPTMS, (3-Aminopropyltriethoxysilane (APTES and 6-(3-(triethoxysilylpropylamino-1,3,5- triazine-2,4-dithiol monosodium (TES self-assembled monolayers (SAMs modified acrylonitrile-butadiene-styrene (ABS substrate via electroless copper plating. The copper films were examined using scanning electron microscopy (SEM and X-ray diffraction (XRD. Their individual deposition rate and contact angle were also investigated to compare the properties of SAMs and electroless copper films. The results indicated that the formation of copper nuclei on the TES-SAMs modified ABS substrate was faster than those on the MPTMS-SAMs and APTES-SAMs modified ABS substrate. SEM images revealed that the copper film on TES-SAM modified ABS substrate was smooth and uniform, and the density of copper nuclei was much higher. Compared with that of TES-SAMs modified resin, the coverage of copper nuclei on MPTMS and APTES modified ABS substrate was very limited and the copper particle size was too big. The adhesion property test demonstrated that all the SAMs enhanced the interfacial interaction between copper plating and ABS substrate. XRD analysis showed that the copper film deposited on SAM-modified ABS substrate had a structure with Cu(111 preferred orientation, and the copper film deposited on TES-SAMs modified ABS substrate is better than that deposited on MPTMS-SAMs or APTES-SAMs modified ABS resins in electromigrtion resistance.

  9. Copper-beryllium alloys for technical applications

    International Nuclear Information System (INIS)

    Heller, W.

    1976-01-01

    Data of physical properties are compiled for the most commonly used copper-beryllium alloys (CuBe 2, CuBe 1.7, CuCoBe, and CuCoAgBe), with emphasis on their temperature dependence and their variation with particular annealing and hardening treatments. The purpose is to provide a reference source and to indicate the versatility of these materials with respect to other copper alloys and to pure copper. The special features of CuBe alloys include high mechanical strength with reasonably high electrical conductivity, as well as good wear and corrosion resistance. For example, CuBe 2 has a yield strength of up to 1200 N/mm 2 , about three times that of pure copper, whilst the electrical conductivity of CuCoBe can be as high as 28 MS/m, nearly half that of pure copper. Typical applications are springs and electrical contacts. The importance of a proper heat treatment is discussed in some detail, notably the metallurgy and effects of low-temperature annealing (precipitation-hardening). A chapter on manufacturing processes covers machining, brazing, welding, and cleaning. This is followed by some remarks on safety precautions against beryllium poisoning. CuBe alloys are commercially available in the form of wires, strips, rods, and bars. Typical dimensions, specifications, a brief cost estimate, and addresses of suppliers are listed. (Author)

  10. Experiences with the ASDEX neutralizer plates and construction of water-cooled plates for long-pulse heating

    International Nuclear Information System (INIS)

    Rapp, H.; Niedermeyer, H.; Kornherr, M.

    1987-01-01

    After dismantling of the titanium neutralizer plates inspection yielded satisfactory status of flat areas whereas edges and curved shapes were heavily melted. At the inner plates of the lower divertor strongly focused melting and cutting was found which is caused by fast electrons. These electrons are continuously produced. The production mechanism is not yet clear but runaway processes can be excluded. With long-pulse additional heating of 6 MW/10s as planned for ASDEX in 1987, the total energy delivered to the plasma will increase by a factor of 30. Therefore new water-cooled neutralizer plates have been constructed which consist of a copper-steel compound. The construction principle and the topology of the cooling circuits is presented

  11. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo [Division of Surface and Corrosion Science, KTH, Stockholm (Sweden); Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz [Slovenian National Building and Civil Engineering Institute, Ljubljana (Slovenia)

    2012-12-15

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 {mu}m were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  12. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    International Nuclear Information System (INIS)

    Rosborg, Bo; Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz

    2012-12-01

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 μm were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  13. Increase of the electrical resistance of thin copper film due to 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Agrawal, S.K.; Kumar, U.; Nigam, A.K.; Singh, S.P.

    1981-01-01

    The variation in the electrical resistance of thin copper film (500 A 0 thick), grown on the glass slide has been measured with increasing 14 MeV neutron irradiation time. The electrical resistance vs irradiation time curve shows an interesting behaviour after an irradiation of 40 minutes. However, there is a net increase in the electrical resistance with increasing neutron dose. The maximum increase in the observed electrical resistance after an irradiation of 115 mins, is 4.45%. The microstructural studies of irradiated film were made using TEM and TED techniques. The TEM patterns up to an irradiation time of 1.00 hr do not show any appreciable change in the microstructure. The TED patterns also do not show any appreciable change in the diffraction pattern up to an irradiation time of 1.0 hr. But after an irradiation time of 1.5 hrs, two extra rings appear in the TED pattern which disappear with increasing neutron irradiation time

  14. Electroplating and stripping copper on molybdenum and niobium

    Science.gov (United States)

    Power, J. L.

    1978-01-01

    Molybdenum and niobium are often electroplated and subsequently stripped of copper. Since general standard plating techniques produce poor quality coatings, general procedures have been optimized and specified to give good results.

  15. Refining processes in the copper casting technology

    OpenAIRE

    Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.

    2015-01-01

    The paper presents the analysis of technology of copper and alloyed copper destined for power engineering casts. The casts quality was assessed based on microstructure, chemical content analysis and strength properties tests. Characteristic deoxidising (Logas, Cup) and modifying (ODM2, Kupmod2) formulas were used for the copper where high electrical conductivity was required. Chosen examples of alloyed copper with varied Cr and Zr content were studied, and the optimal heat treatment parameter...

  16. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  17. Colloidal and electrochemical aspects of copper-CMP

    Science.gov (United States)

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.

  18. Characterization of the electrical output of flat-plate photovoltaic arrays

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electric output of flat-plate photovoltaic arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as direct-current to alternating-current power conditioners must be able to accommodate widely varying input levels, while maintaining operation at or near the array maximum power point.The results of an extensive computer simulation study that was used to define the parameters necessary for the systematic design of array/power-conditioner interfaces are presented as normalized ratios of power-conditioner parameters to array parameters, to make the results universally applicable to a wide variety of system sizes, sites, and operating modes. The advantages of maximum power tracking and a technique for computing average annual power-conditioner efficiency are discussed.

  19. Pretinning Nickel-Plated Wire Shields

    Science.gov (United States)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  20. Cooling of electrically insulated high voltage electrodes down to 30 mK Kühlung von elektrisch isolierten Hochspannungselektroden bis 30 mK

    CERN Document Server

    Eisel, Thomas; Bremer, J

    2011-01-01

    The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) at the European Organization for Nuclear Research (CERN) is an experiment investigating the influence of earth’s gravitational force upon antimatter. To perform precise measurements the antimatter needs to be cooled to a temperature of 100 mK. This will be done in a Penning trap, formed by several electrodes, which are charged with several kV and have to be individually electrically insulated. The trap is thermally linked to a mixing chamber of a 3He-4He dilution refrigerator. Two link designs are examined, the Rod design and the Sandwich design. The Rod design electrically connects a single electrode with a heat exchanger, immersed in the helium of the mixing chamber, by a copper pin. An alumina ring and the helium electrically insulate the Rod design. The Sandwich uses an electrically insulating sapphire plate sandwiched between the electrode and the mixing chamber. Indium layers on the sapphire plate are applied to improve the ther...

  1. Etching of Copper Coated Mylar Tubes With CF-4 Gas

    International Nuclear Information System (INIS)

    Ecklund, Karl M.; Hartman, Keith W.; Hebert, Michael J.; Wojcicki, Stanley G.

    1996-01-01

    Using 5 mm diameter copper coated mylar straw tubes at a potential of 2.30 KV relative to a concentric 20 (mu)m diameter gold-plated tungsten anode, it has been observed that with very low flow rates of CF4-based gases the conductive copper cathode material may be removed entirely from the mylar surface

  2. Direct write of copper-graphene composite using micro-cold spray

    Directory of Open Access Journals (Sweden)

    Sameh Dardona

    2016-08-01

    Full Text Available Direct write of a new class of composite materials containing copper and graphene in the powder phase is described. The composite was synthesized using batch electroless plating of copper for various times onto Nano Graphene Platelets (NGP to control the amount of copper deposited within the loosely aggregated graphene powder. Copper deposition was confirmed by both Focused Ion Beam (FIB and Auger electron spectroscopic analysis. A micro-cold spray technique was used to deposit traces that are ∼230 μm wide and ∼5 μm thick of the formulated copper/graphene powder onto a glass substrate. The deposited traces were found to have good adhesion to the substrate with ∼65x the copper bulk resistivity.

  3. Development of technique for AR coating and nickel and copper metallization of solar cells. FPS Project: Product development

    Science.gov (United States)

    Taylor, W.

    1982-01-01

    Printed nickel overplated with copper and applied on top of a predeposited silicon nitride antireflective coating system for metallizing solar cells was analyzed. The ESL D and E paste formulations, and the new formulations F, G, H, and D-1 were evaluated. The nickel thick films were tested after firing for stability in the cleaning and plating solutions used in the Vanguard-Pacific brush plating process. It was found that the films are very sensitive to the leaning and alkaline copper solutions. Less sensitivity was displayed to the neutral copper solution. Microscopic and SEM observations show segregation of frit at the silicon nitride thick film interface with loose frit residues after lifting off plated grid lines.

  4. Properties of thermal air plasma with admixing of copper and carbon

    International Nuclear Information System (INIS)

    Fesenko, S; Veklich, A; Boretskij, V; Cressault, Y; Gleizes, A; Teulet, Ph

    2014-01-01

    This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors

  5. An experimental attenuation plate to improve the dose distribution in intraoperative electron beam radiotherapy for breast cancer.

    Science.gov (United States)

    Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K

    2009-06-07

    Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.

  6. Effect of Acid- and Ultraviolet/Ozonolysis-Treated MWCNTs on the Electrical and Mechanical Properties of Epoxy Nanocomposites as Bipolar Plate Applications

    Directory of Open Access Journals (Sweden)

    Nishata Royan Rajendran Royan

    2013-01-01

    Full Text Available Carbon nanotubes (CNTs have a huge potential as conductive fillers in conductive polymer composites (CPCs, particularly for bipolar plate applications. These composites are prepared using singlefiller and multifiller reinforced multiwalled carbon nanotubes (MWCNTs that have undergone a chemical functionalization process. The electrical conductivity and mechanical properties of these composites are determined and compared between the different functionalization processes. The results show that UV/O3-treated functionalization is capable of introducing carboxylic functional groups on CNTs. Acid-treated CNT composites give low electrical conductivity, compared with UV/O3-treated and As-produced CNTs. The in- and through-plane electrical conductivities and flexural strength of multifiller EP/G/MWCNTs (As-produced and UV/O3-treated achieved the US Department of Energy targets. Acid-treated CNT composites affect the electrical conductivity and mechanical properties of the nanocomposites. These data indicate that the nanocomposites developed in this work may be alternative attributers of bipolar plate requirements.

  7. Copper Hugoniot measurements to 2.8 TPa on Z.

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, Michael D.; Haill, Thomas A

    2018-04-01

    We conducted three Hugoniot and release experiments on copper on the Z machine at Hugoniot stress levels of 0.34 and 2.6 TPa, using two-layer copper/aluminum impactors travelling at 8 and 27 km/s and Z-quartz windows. Velocity histories were recorded for 4 samples of different thicknesses and 5 locations on the flyer plate (3 and 4 for the first two experiments). On-sample measurements provided Hugoniot points (via transit time) and partial release states (via Z-quartz wavespeed). Fabrication of the impactor required thick plating and several diamond-machining steps. The lower-pressure test was planned as a 2.5 TPa test, but a failure on the Z machine degraded its performance; however, these results corroborated earlier Cu data in the same stress region. The second test suffered from significant flyer plate bowing, but the third did not. The Hugoniot data are compared with the APtshuler/Nellis nuclear-driven data, other data from Z and elsewhere, and representative Sesame models.

  8. Electrodialytic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, A.; Ottpsen, Lisbeth M.

    2005-01-01

    electrodialytic remediation experiments on copper mine tailings. The results show that electric current could remove copper from watery tailing if the potential gradient was higher than 2V/cm during 21 days. With addition of sulphuric acid, the process was enhanced because the pH decreased to around 4...

  9. Copper removal from industrial wastewaters by means of electrostatic shielding

    Directory of Open Access Journals (Sweden)

    D. Papadopoulou

    2009-01-01

    Full Text Available Electrostatic shielding zones made of electrode graphite powder were used as a new type of ionic and electronic currentsinks. Because of the local elimination of the applied electric field, voltage and current within the zones, ions are led insidethem and accumulate there. We implemented the current sinks in electrodialysis of a simulated copper plating rinse watercontaining 100 mg L-1 Cu2+ ions and electrodeionization of a 0.001 M CuSO4 solution with simultaneous electrochemicalregeneration of the used ion exchange resin beds and obtained pure water with a Cu2+ ion concentration of less than 0.12 mgL-1 at a flow rate of 1.29x10-4 L s-1 diluate stream and a current density of 2 mA cm-2.

  10. Securing the public interest in electricity generation markets. The myths of the invisible hand and the copper plate

    NARCIS (Netherlands)

    De Vries, L.J.

    2004-01-01

    Two aspects of investment in generation capacity in liberalized electricity markets are investigated: the question of whether investment will be sufficient to meet society's goals for the reliability of electricity supply (generation adequacy) and the question of how to coordinate investment in

  11. Electric field and dielectrophoretic force on a dielectric particle chain in a parallel-plate electrode system

    International Nuclear Information System (INIS)

    Techaumnat, B; Eua-arporn, B; Takuma, T

    2004-01-01

    This paper presents results of calculations of the electric field and dielectrophoretic force on a dielectric particle chain suspended in a host liquid lying between parallel-plate electrodes. The method of calculation is based on the method of multipole images using the multipole re-expansion technique. We have investigated the effect of the particle permittivity, the tilt angle (between the chain and the applied field) and the chain arrangement on the electric field and force. The results show that the electric field intensification rises in accordance with the increase in the ratio of the particle-to-liquid permittivity, Γ ε . The electric field at the contact point between the particles decreases with increasing tilt angle, while the maximal field at the contact point between the particles and the plate electrodes is almost unchanged. The maximal field can be approximated by a simple formula, which is a quadratic function of Γ ε . The dielectrophoretic force depends significantly on the distance from other particles or an electrode. However, for the tilt angles in this paper, the horizontal force on the upper particle of the chain always has the direction opposite to the shear direction. The maximal horizontal force of a chain varies proportional to (Γ ε - 1) 1.7 if the particles in the chain are still in contact with each other. The approximated force, based on the force on an isolated chain, has been compared with our calculation results. The comparison shows that no approximation model agrees well with our results throughout the range of permittivity ratios

  12. Sample cell for studying liquid interfaces with an in situ electric field using X-ray reflectivity and application to clay particles at oil-oil interfaces.

    Science.gov (United States)

    Larsen, Simon R; Hansteen, Marie; Pacakova, Barbara; Theodor, Keld; Arnold, Thomas; Rennie, Adrian R; Helgesen, Geir; Knudsen, Kenneth D; Bordallo, Heloisa N; Fossum, Jon Otto; Cavalcanti, Leide P

    2018-05-01

    Commissioning results of a liquid sample cell for X-ray reflectivity studies with an in situ applied electrical field are presented. The cell consists of a Plexiglas container with lateral Kapton windows for air-liquid and liquid-liquid interface studies, and was constructed with grooves to accept plate electrodes on the walls parallel to the direction of the beam. Both copper and ITO plate electrodes have been used, the latter being useful for simultaneous optical studies. Commissioning tests were made at the I07 beamline of the Diamond Light Source. open access.

  13. Preliminary irradiation test results from the Yankee Atomic Electric Company reactor vessel test irradiation program

    International Nuclear Information System (INIS)

    Biemiller, E.C.; Fyfitch, Stephen; Campbell, C.A.

    1994-01-01

    The Yankee Atomic Electric Company test irradiation program was implemented to characterize the irradiation response of representative Yankee Rowe reactor vessel beltline plate materials and to remove uncertainties in the analysis of existing irradiation data on the Yankee Rowe reactor vessel steel. Plate materials each containing 0.24 w/o copper, but different nickel contents at 0.63 w/o and 0.19 w/o, were heat treated to simulate the Yankee vessel heat treatment (austenitized at 982 o C (1800 o F)) and to simulate Regulatory Guide 1.99 database materials (austenitized at 871 o C (1600 o F)). These heat treatments produced different microstructures so the effect of microstructure on irradiation damage sensitivity could be tested. Because the nickel content of the test plates varied and the copper level was constant, the effect of nickel on irradiation embrittlement was also tested. Correlation monitor material, HSST-02, was included in the program to benchmark the Ford Nuclear Reactor (University of Michigan Test Reactor) which had never been used before for this type of irradiation program. Materials taken from plate surface locations (versus 1/4 T) were included to test whether or not the improved toughness properties of the plate surface layer, resulting from the rapid quench, are maintained after irradiation. If the improved properties are maintained, pressurized thermal shock calculations could utilize this margin. Finally, for one experiment, irradiations were conducted at two irradiation temperatures (260 o C and 288 o C) to determine the effect of irradiation temperature on embrittlement. (Author)

  14. Optimization of electrical conduction and passivity properties of stainless steels used for PEM fuel cell bipolar plates

    International Nuclear Information System (INIS)

    Andre, J.

    2007-10-01

    Among the new technologies for energy for sustainable development, PEMFC (proton exchange membrane fuel cells) offer seducing aspects. However, in order to make this technology fit large scale application requirements, it has to comply with stringent cost, performance, and durability criteria. In such a frame, the goal of this work was to optimize electrical conduction properties and passivity of stainless steels for the conception of PEMFC bipolar plates, used instead of graphite, the reference material. This work presents the possible ways of performance loss when using stainless steels and some methods to solve this problem. Passive film properties were studied, as well as their modifications by low cost industrial surface treatments, without deposition. Ex situ characterizations of corrosion resistance and electrical conduction were performed. Electrochemical impedance spectroscopy, water analysis, surface analysis by microscopy and photoelectron spectroscopy allowed to study the impact of ageing on two alloys in different states, and several conditions representative of an exposure to PEMFC media. Correlations between semi-conductivity properties, composition, and structure of passive layers were considered, but not leading to clear identification of all parameters responsible for electrical conduction and passivity. The plate industrial state is not convenient for direct use in fuel cell to comply with durability and performance requirements. A surface modification studied improves widely electrical conduction at initial state. The performance is degraded with ageing, but maintaining a level higher than the initial industrial state. This treatment increases also corrosion resistance, particularly on the anode side. (author)

  15. Development and characterisation of electrically conductive polymeric-based blends for proton exchange membrane fuel cell bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Bouatia, S.; Mighri, F. [Center for Applied Research on Polymers and Composites, CREPEC, Department of Chemical Engineering, Laval University, Quebec (Canada); Bousmina, M. [Center for Applied Research on Polymers and Composites, CREPEC, Department of Chemical Engineering, Laval University, Quebec (Canada); Canada Research Chair on Polymer Physics and Nanomaterials, Department of Chemical Engineering, Laval University, Quebec (Canada); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2008-04-15

    The main objective of this work was to develop films with controlled dimensions for proton exchange membrane fuel cell (PEMFC) bipolar plates (BPPs) using the twin-screw extrusion process. These films consisted of a low-viscosity polyethylene terephthalate (PET) in which a mixture of high specific surface area carbon black (CB) and synthetic flake graphite (GR) were dispersed. A third conductive additive, consisting of silver-coated glass particles (SCG) or multi-walled carbon nanotubes (MWCNT), was also added at a low concentration (5 wt.-%) in order to study its synergistic effect on the PET-based blend electrical conductivity. As the developed blends had to meet properties suitable for PEMFC bipolar plate applications, they were characterised for their electrical through-plane resistivity, mechanical properties and oxygen permeability. Through-plane electrical resistivity of about 0.3 {omega}.cm and oxygen permeation rate of 3.5 x 10{sup -8} cc cm{sup -2} s{sup -1} were obtained for only 30 wt.-% of a 60:40 mixture of CB/GR conductive additives. Although the substitution of 5 wt.-% of CB/GR by the same amount of MWCNT had no significant effect on BPPs' electrical resistivity, it helped to improve their mechanical properties and especially their oxygen permeation, which was decreased from 3.5 x 10{sup -8} cc cm{sup -2} s{sup -1} to around 0.6 x 10{sup -8} cc cm{sup -2}s{sup -1}. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  16. Parabolic solar cooker: Cooking with heat pipe vs direct spiral copper tubes

    Science.gov (United States)

    Craig, Omotoyosi O.; Dobson, Robert T.

    2016-05-01

    Cooking with solar energy has been seen by many researchers as a solution to the challenges of poverty and hunger in the world. This is no exception in Africa, as solar coking is viewed as an avenue to eliminate the problem of food insecurity, insufficient energy supply for household and industrial cooking. There are several types of solar cookers that have been manufactured and highlighted in literature. The parabolic types of solar cookers are known to reach higher temperatures and therefore cook faster. These cookers are currently being developed for indoor cooking. This technology has however suffered low cooking efficiency and thus leads to underutilization of the high heat energy captured from the sun in the cooking. This has made parabolic solar cookers unable to compete with other conventional types of cookers. Several methods to maximize heat from the sun for indirect cooking has been developed, and the need to improve on them of utmost urgency. This paper investigates how to optimize the heat collected from the concentrating types of cookers by proposing and comparing two types of cooking sections: the spiral hot plate copper tube and the heat pipe plate. The system uses the concentrating solar parabolic dish technology to focus the sun on a conical cavity of copper tubes and the heat is stored inside an insulated tank which acts both as storage and cooking plate. The use of heat pipes to transfer heat between the oil storage and the cooking pot was compared to the use of a direct natural syphon principle which is achieved using copper tubes in spiral form like electric stove. An accurate theoretical analysis for the heat pipe cooker was achieved by solving the boiling and vaporization in the evaporator side and then balancing it with the condensation and liquid-vapour interaction in the condenser part while correct heat transfer, pressure and height balancing was calculated in the second experiment. The results show and compare the cooking time, boiling

  17. Comparison of BR3 Surveillance and Vessel Plates to the Surrogate Plates Representative of the Yankee Rowe PWR Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G

    1998-07-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature ( 260 degrees Celsius) and their plates were austenitized a higher-than-usual temperature (970 degrees Celsius) - a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behaviour characterized by a 41 J Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rate plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares free complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63 % (A533-B) and YA9, 0.19 (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and

  18. Comparison of BR3 Surveillance and Vessel Plates to the Surrogate Plates Representative of the Yankee Rowe PWR Vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G.

    1998-07-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature ( 260 degrees Celsius) and their plates were austenitized a higher-than-usual temperature (970 degrees Celsius) - a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behaviour characterized by a 41 J Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rate plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares free complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63 % (A533-B) and YA9, 0.19 (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and

  19. Comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe PWR vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G.

    1999-01-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature (∼260 C) and their plates were austenitized at higher-than-usual temperature (∼970 C) -- a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behavior characterized by a 41J. Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program; this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel

  20. Reduction of core loss in non-oriented (NO) electrical steel by electroless-plated magnetic coating

    International Nuclear Information System (INIS)

    Chivavibul, Pornthep; Enoki, Manabu; Konda, Shigeru; Inada, Yasushi; Tomizawa, Tamotsu; Toda, Akira

    2011-01-01

    An important issue in development of electrical steels for core-laminated products is to reduce core loss to improve energy conversion efficiency. This is usually obtained by tailoring the composition, microstructure, and texture of electrical steels themselves. A new technique to reduce core loss in electrical steel has been investigated. This technique involves electroless plating of magnetic thin coating onto the surface of electrical steel. The material system was electroless Ni-Co-P coatings with different thicknesses (1, 5, and 10 μm) deposited onto the surface of commercially available Fe-3% Si electrical steel. Characterization of deposited Ni-Co-P coating was carried out using X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray (EDX) spectrometer. The deposited Ni-Co-P coatings were amorphous and composed of 56-59% Ni, 32-35% Co, and 8-10% P by mass. The effect of coatings on core loss of the electrical steel was determined using single sheet test. A core loss reduction of 4% maximum was achieved with the Ni-Co-P coating of 1 μm thickness at 400 Hz and 0.3 T. - Research Highlights: → New approach to reduce core loss of electrical steel by magnetic coating. → Ni-Co-P coating influences core loss of NO electrical steel. → Core loss increases in RD direction but reduces in TD direction.

  1. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    Science.gov (United States)

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-03-01

    How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  2. Analysis of a rectangular ceramic plate in electrically forced thickness-twist vibration as a piezoelectric transformer.

    Science.gov (United States)

    Yang, Jiashi; Liu, Jinjin; Li, Jiangyu

    2007-04-01

    A rectangular ceramic plate with appropriate electrical load and operating mode is analyzed for piezoelectric transformer application. An exact solution from the three-dimensional equations of linear piezoelectricity is obtained. The solution simulates the real operating situation of a transformer as a vibrating piezoelectric body connected to a circuit. Transforming ratio, input admittance, and efficiency of the transformer are obtained.

  3. Enhancement of plate heat exchanger performance using electric fields

    International Nuclear Information System (INIS)

    Down, E.M.

    2000-12-01

    The falling film plate evaporator is often used in the food processing industry to remove large amounts of water from liquids, pulps and slurries. Although a compact efficient device with high heat transfer rates, there is a requirement for even greater performance, particularly when fuelled by the low grade energy from many renewable sources. Electrohydrodynamics (EHD) has been shown to give large heat transfer enhancements under many conditions, but most of this previous research has been with working fluids having much lower electrical conductivities than the water-based fluids that are the main concern of this study. The liquid flow in falling film plate evaporators is in the form of a very thin (less than a millimetre) film falling down a heated plate under the effect of gravity. The film surface exhibits waviness over much of the operating range of industrial heat exchangers, and the degree of waviness has previously been shown to have a large effect on the rate of heat transfer. A theoretical model was developed which suggested that significant increases in waviness, and therefore heat transfer, could be stimulated using high voltage electrodes, and these were subsequently observed on the surface of a pool of water during bench-top experiments. An experimental falling film rig was designed to study this EHD effect but the 2.5 kV maximum voltage attainable was thought to be too low to stimulate wave enlargement and no heat transfer enhancement was seen. Significant heat transfer enhancement was observed in the falling film rig when utilising corona discharge electrodes. This was thought to be due to a thinning of the film in the vicinity of the electrode via the corona wind and increased fluid mixing downstream of the electrode. Both point and wire electrodes improved heat transfer rates but wire electrodes were thought to have more potential for integration into existing industrial heat exchanger designs, so were studied more closely. Heat transfer rates

  4. Radiation enhanced copper clustering processes in Fe-Cu alloys during electron and ion irradiations as measured by electrical resistivity

    International Nuclear Information System (INIS)

    Ishino, S.; Chimi, Y.; Bagiyono; Tobita, T.; Ishikawa, N.; Suzuki, M.; Iwase, A.

    2003-01-01

    To study the mechanism of radiation-enhanced clustering of copper atoms in Fe-Cu alloys, in situ electrical resistivity measurements are performed during irradiation with 100 MeV carbon ions and with 2 MeV electrons at 300 K. Two kinds of highly pure Fe-Cu alloys with Cu content of 0.02 and 0.6 wt% are used. The results are summarized as follows: - Although there is a steep initial resistivity increase below about 10 μdpa, the resistivity steadily decreases after this initial transient in Fe-0.6wt%Cu alloy, while in Fe-0.02wt%Cu alloy, the resistivity either decreases slowly or stays almost constant. The rate of change in resistivity depends on copper concentration. - The rate of change in resistivity per dpa is larger for electron irradiation than for ion irradiation. - Change in dose rate from 10 -8 to 10 -9 dpa/s slightly enhances the rate of resistivity change per dpa. The decrease in resistivity with dose is considered to be due to clustering or precipitation of copper atoms. The initial abrupt increase in resistivity is too large to be accounted for by initial introduction of point defects before copper clustering. Tentatively the phenomenon is explained as due to the formation of embryos of copper precipitates with a large strain field around them. Quantitative evaluation of the results using resistivity contribution of a unit concentration of Frenkel pairs and that of copper atoms gives an important conclusion that more than one copper atom are removed from solid solution by one Frenkel pair. The clustering efficiency is surprisingly high in the present case compared with the ordinary radiation-induced or radiation-enhanced precipitation processes

  5. Influence of branched quaternary ammonium surfactant molecules as levelers for copper electroplating from acidic sulfate bath

    International Nuclear Information System (INIS)

    Wang, An-yin; Chen, Biao; Fang, Lei; Yu, Jian-jun; Wang, Li-min

    2013-01-01

    A family of branched quaternary ammonium surfactants (compounds 1a–1c) with different carbon chains were synthesized for levelers applied in copper electroplating. Their inhibitory actions on copper electroplating were characterized by cyclic voltammetry (CV). Compound 1b, as representative structure type, was tested by means of different electrochemical methods including CV, polarization curve and electrochemical impedance spectroscopy (EIS) with different concentrations. The interaction between compound 1b and copper surface was investigated using atomic force microscope (AFM) and X-ray photoelectron spectra (XPS). The results indicated that our newly synthesized compounds, particular 1b, were effective levelers used for copper electroplating. Compound 1b could adsorb on copper surface to form an adsorption layer. The adsorption behavior of compound 1b on copper surface indicated that compound 1b could inhibit the copper electrodeposition, which provided favorable conditions used as a leveler. Moreover, the addition of compound 1b could increase the cathodic polarization, which was attributed to the adsorption of compound 1b during copper electroplating process. In addition, various surface morphologies and crystalline orientation of the plated copper films caused by different concentrations of compound 1b were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. Effects of compound 1b on refining the grain size and changing the preferential orientation of the plated copper films were exhibited

  6. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    Science.gov (United States)

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  7. Development of technique for AR coating and nickel and copper metallization of solar cells: FPS project, product development

    Science.gov (United States)

    Rominger, C. G.

    1981-01-01

    Silicon nitride and nickel pastes are investigated in conjunction with a brush copper plating process for the purpose of identifying one or more fabrication sequences which yield at least 10 percent efficient N(+)/P(+) flat plate solar cells. The adhesion of all nickel pastes is reduced significantly when subjected to acidic and alkaline brush copper plating solutions as a result of a combination of thermally induced stress and chemical attack of the frit, which occurs at the interface with the silicon solar cell. The AgF is penetrating the 800 a of Si3N4 and ohmic contact is occurring at all fire-in tempertures. During the brush plating process, fingers and buss bars tend to spread.

  8. Tendency of the 18-8 type corrosion-resistant steel to cracking in automatic building-up of copper and copper base alloys in argon

    International Nuclear Information System (INIS)

    Abramovich, V.R.; Andronik, V.A.

    1978-01-01

    Studied was the tendency of the 18-8 type corrosion-resistant steel to cracking during automatic building-up of copper and bronze in argon. The investigation was carried out on the 0kh18n10t steel in argon. It had been established, that the degree of copper penetration into the steel inceases with the increase in the time of the 0Kh18n10t steel contact with liquid copper. Liquid copper and copper base alloys have a detrimental effect on mechanical properties of the steel under external tensile load during intercontant. It is shown that in building-up of copper base alloys on the steel-0Kh18n10t, tendency of the steel to cracking decreases with increase in stiffness of a surfaced weld metal plate and with decrease in building-up energy per unit length. The causes of macrocracking in steel at building-up non-ferrous metals are explained. The technological procedures to avoid cracking are suggested

  9. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is ...

  10. Stressed state of a cement electrical insulation of a pulsed magnet

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Sugak, E.B.; Fedorenko, L.I.

    1985-01-01

    The stresses arising in cement electrical insulation of a pulsed magnet intended for separation and scanning of beam of secondary particles with 5-10 MeV energy are investigated during its switching. The magnet represents a single-turn construction. During its switching repulsion forces arise in copper buses which affect the core consisting of a set of iron plates. In its turn two cores trying to separate transmit impact load onto cement electrical insulation, the mechanical strength of which determines the construction durability on the whole. For selection of calculation technique the method of photoelasticity is used on models of transparent polymeric materials. Epoxy resin served as material for insulation model, duraluminium for the rest of magnet parts. It is concluded that the calculation technique for the magnet under investigation is a hingeless circular arc

  11. Electrokinetic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrián; Ottosen, Lisbeth M.

    2007-01-01

    Important process parameters to optimize in electrokinetic soil remediation are those influencing remediation time and power consumption since these directly affect the cost of a remediation action. This work shows how the electrokinetic remediation (EKR) process could be improved by implementing...... bipolar electrodes in the porous material. The bipolar electrodes in EKR meant two improvements: (1) a shorter migration pathway for the contaminant, and (2) an increased electrical conductivity in the remediation system. All together the remediation proceeded faster with lower electrical resistance than...... in similar experiments but without the bipolar electrodes. The new electrokinetic remediation design was tested on copper mine tailings with different applied electric fields, remediation times and pre-treatment. The results showed that the copper removal was increased from 8% (applying 20V for 8 days...

  12. Electrodeposition of Copper/Carbonous Nanomaterial Composite Coatings for Heat-Dissipation Materials

    Directory of Open Access Journals (Sweden)

    Yasuki Goto

    2017-12-01

    Full Text Available Carbonous nanomaterials are promising additives for composite coatings for heat-dissipation materials because of their excellent thermal conductivity. Here, copper/carbonous nanomaterial composite coatings were prepared using nanodiamond (ND as the carbonous nanomaterial. The copper/ND composite coatings were electrically deposited onto copper substrates from a continuously stirred copper sulfate coating bath containing NDs. NDs were dispersed by ultrasonic treatment, and the initial bath pH was adjusted by adding sodium hydroxide solution or sulfuric acid solution before electrodeposition. The effects of various coating conditions—the initial ND concentration, initial bath pH, stirring speed, electrical current density, and the amount of electricity—on the ND content of the coatings were investigated. Furthermore, the surface of the NDs was modified by hydrothermal treatment to improve ND incorporation. A higher initial ND concentration and a higher stirring speed increased the ND content of the coatings, whereas a higher initial bath pH and a greater amount of electricity decreased it. The electrical current density showed a minimum ND content at approximately 5 A/dm2. Hydrothermal treatment, which introduced carboxyl groups onto the ND surface, improved the ND content of the coatings. A copper/ND composite coating with a maximum of 3.85 wt % ND was obtained.

  13. Utilization of Copper Alloys for Marine Applications

    Science.gov (United States)

    Drach, Andrew

    Utilization of copper alloy components in systems deployed in marine environment presents potential improvements by reducing maintenance costs, prolonging service life, and increasing reliability. However, integration of these materials faces technological challenges, which are discussed and addressed in this work, including characterization of material performance in seawater environment, hydrodynamics of copper alloy components, and design procedures for systems with copper alloys. To characterize the hydrodynamic behavior of copper alloy nets, mesh geometry of the major types of copper nets currently used in the marine aquaculture are analyzed and formulae for the solidity and strand length are proposed. Experimental studies of drag forces on copper alloy net panels are described. Based on these studies, empirical values for normal drag coefficients are proposed for various types of copper netting. These findings are compared to the previously published data on polymer nets. It is shown that copper nets exhibit significantly lower resistance to normal currents, which corresponds to lower values of normal drag coefficient. The seawater performance (corrosion and biofouling) of copper alloys is studied through the field trials of tensioned and untensioned specimens in a one-year deployment in the North Atlantic Ocean. The corrosion behavior is characterized by weight loss, optical microscopy, and SEM/EDX analyses. The biofouling performance is quantified in terms of the biomass accumulation. To estimate the effects of stray electrical currents on the seawater corrosion measurements, a low cost three-axis stray electric current monitoring device is designed and tested both in the lab and in the 30-day field deployment. The system consists of a remotely operated PC with a set of pseudo-electrodes and a digital compass. The collected data is processed to determine magnitudes of AC and DC components of electric field and dominant AC frequencies. Mechanical behavior of

  14. Preliminary irradiation test results from the Yankee Atomic Electric Company reactor vessel test irradiation program

    International Nuclear Information System (INIS)

    Biemiller, E.C.; Fyfitch, S.; Campbell, C.A.

    1993-01-01

    The Yankee Atomic Electric Company test irradiation program was implemented to characterize the irradiation response of representative Yankee Rowe reactor vessel beltline plate materials and to remove uncertainties in the analysis of existing irradiation data on the Yankee Rowe reactor vessel steel. Plate materials each containing 0.24 w/o copper, but different nickel contents at 0.63 w/o and 0.19 w/o, were heat treated to simulate the Yankee vessel heat treatment (austenitized at 1800 deg F) and to simulate Regulatory Guide 1.99 database materials (austenitized at 1600 deg. F). These heat treatments produced different microstructures so the effect of microstructure on irradiation damage sensitivity could be tested. Because the nickel content of the test plates varied and the copper level was constant, the effect of nickel on irradiation embrittlement was also tested. Correlation monitor material, HSST-02, was included in the program to benchmark the Ford Nuclear Reactor (U. of Michigan Test Reactor) which had never been used for this type of irradiation program. Materials taken from plate surface locations (vs. 1/4T) were included to test whether or not the improved toughness properties of the plate surface layer, resulting from the rapid quench, is maintained after irradiation. If the improved properties are maintained, pressurized thermal shock calculations could utilize this margin. Finally, for one experiment, irradiations were conducted at two irradiation temperatures (500 deg. F and 550 deg. F) to determine the effect of irradiation temperature on embrittlement. The preliminary results of the irradiation program show an increase in T 30 shift of 69 deg. F for a decrease in irradiation temperature of 50 deg. F. The results suggest that for nickel bearing steels, the superior toughness of plate surface material is maintained after irradiation and for the copper content tested, nickel had no apparent effect on irradiation response. No apparent microstructure

  15. Analytical modeling of a sandwiched plate piezoelectric transformer-based acoustic-electric transmission channel.

    Science.gov (United States)

    Lawry, Tristan J; Wilt, Kyle R; Scarton, Henry A; Saulnier, Gary J

    2012-11-01

    The linear propagation of electromagnetic and dilatational waves through a sandwiched plate piezoelectric transformer (SPPT)-based acoustic-electric transmission channel is modeled using the transfer matrix method with mixed-domain two-port ABCD parameters. This SPPT structure is of great interest because it has been explored in recent years as a mechanism for wireless transmission of electrical signals through solid metallic barriers using ultrasound. The model we present is developed to allow for accurate channel performance prediction while greatly reducing the computational complexity associated with 2- and 3-dimensional finite element analysis. As a result, the model primarily considers 1-dimensional wave propagation; however, approximate solutions for higher-dimensional phenomena (e.g., diffraction in the SPPT's metallic core layer) are also incorporated. The model is then assessed by comparing it to the measured wideband frequency response of a physical SPPT-based channel from our previous work. Very strong agreement between the modeled and measured data is observed, confirming the accuracy and utility of the presented model.

  16. Current trends in copper theft prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mastrofrancesco, A. [Electrical Safety Authority, ON (Canada)

    2009-07-01

    Copper is used in electrical wiring, water and gas piping, currency, and in household items. An increase in the price and demand for copper has made copper theft a profitable venture for some thieves. Copper consumed in North America is typically supplied by recycling. Scrap dealers may pay near-market prices for pure copper wires. However, copper theft poses a serious threat to the safety of utility workers and the public. Power outages caused by copper theft are now affecting grid reliability. This paper examined technologies and techniques used to prevent copper theft as part of a security strategy for utilities. Attempts to steal copper can leave utility substations unsecured and accessible to children. The theft of neutral grounds will cause the local distribution company (LDC) to malfunction and may cause power surges in homes as well as appliance fires. Utilities are now looking at using a hybrid steel and copper alternative to prevent copper theft. Asset identification techniques are also being used to identify the original owners of the copper and more easily prosecute thieves. Automated monitoring techniques are also being used to increase substation security. Utilities are also partnering with law enforcement agencies and pressuring governments to require scrap dealers to record who they buy from. It was concluded that strategies to prevent copper theft should be considered as part of an overall security strategy for utilities. tabs., figs.

  17. Electrical characteristics of TIG arcs in argon from non-equilibrium modelling and experiment

    Science.gov (United States)

    Baeva, Margarita; Uhrlandt, Dirk; Siewert, Erwan

    2016-09-01

    Electric arcs are widely used in industrial processes so that a thorough understanding of the arc characteristics is highly important to industrial research and development. TIG welding arcs operated with pointed electrodes made of tungsten, doped with cerium oxide, have been studied in order to analyze in detail the electric field and the arc voltage. Newly developed non-equilibrium model of the arc is based on a complete diffusion treatment of particle fluxes, a generalized form of Ohm's law, and boundary conditions accounting for the space-charge sheaths within the magneto-hydrodynamic approach. Experiments have been carried out for electric currents in the range 5-200 A. The electric arc has been initiated between a WC20 cathode and a water-cooled copper plate placed 0.8 mm from each other. The arc length has been continuously increased by 0.1 mm up to 15 mm and the arc voltage has been simultaneously recorded. Modelling and experimental results will be presented and discussed.

  18. The effect of neutron spectrum on the mechanical and physical properties of pure copper and copper alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.A.; Pokrovsky, A.S.; Sandakov, V.A.; Zinkle, S.J.; Rowcliffe, A.F.; Edwards, D.J.; Garner, F.A.; Singh, B.N.; Barabash, V.R.

    1996-01-01

    The electrical resistivity and tensile properties of copper and oxide dispersion strengthened (DS) copper alloys have been measured before and after fission neutron irradiation to damage levels of 0.5 to 5 displacements per atom (dps) at ∼100 to 400 degrees C. Some of the specimens were irradiated inside a 1.5 mm Cd shroud in order to reduce the thermal neutron flux. The electrical resistivity data could be separated into two components, a solid transmutation component Δρ tr which was proportional to thermal neutron fluence and a radiation defect component Δρ rd which was independent of the displacement dose. The saturation value for Δρ rd was ∼1.2 nanohm-meters for pure copper and ∼1.6 nanohm-meters for the DS copper alloys irradiated at 100 degrees C in positions with a fast-to-thermal neutron flux ratio of 5. Considerable radiation hardening was observed in all specimens at irradiation temperatures below 200 degrees C. The yield strength was relatively insensitive to neutron spectrum in specimens strengthened by dispersoids or cold- working. 17 refs., 7 figs., 1 tab

  19. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    Science.gov (United States)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel

  20. Investigation of the decolorization efficiency of two pin-to-plate corona discharge plasma system for industrial wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    El-Tayeb, A., E-mail: ahmed.khalil@ejust.edu.eg; El-Shazly, A. H.; Elkady, M. F. [Egypt−Japan University of Science and Technology, Chemicals and Petrochemicals Engineering Department (Egypt); Abdel-Rahman, A. B. [Egypt−Japan University of Science and Technology, Electronics and Communications Engineering Department (Egypt)

    2016-09-15

    In this article, a dual pin-to-plate high-voltage corona discharge system is introduced to study experimentally the gap distance, the contact time, the effect of pin and plate materials, the thickness of ground plate and the conductivity on the amount of Acid Blue 25 dye color removal efficiency from polluted water. A study for the optimum air gap distance between dual pin and surface of Acid Blue 25 dye solution is carried out using 3D-EM simulator to find maximum electric field intensity at the tip of both pins. The outcomes display that the best gap for corona discharge is approximately 5 mm for 15-kV source. This separation is constant during the study of other factors. In addition, an investigation of the essential reactive species responsible for oxidation of the dye organic compounds (O{sub 3} in air discharge, O{sub 3} in water, and H{sub 2}O{sub 2}) during the experimental time is conducted. Three various materials such as: stainless steel, copper and aluminum are used for pins and plate. The maximum color removal efficiencies of Acid Blue 25 dyes are 99.03, 82.04, and 90.78% after treatment time 15 min for stainless steel, copper, and aluminum, respectively. Measurement results for the impact of thickness of an aluminum ground plate on color removal competence show color removal efficiencies of 86.3, 90.78, and 98.06% after treatment time 15 min for thicknesses of 2, 0.5, and 0.1 mm, respectively. The increasing of the solution conductivity leads to the reduction of decolorization efficiency. A kinetic model is used to define the performance of corona discharge system. The models of pseudo-zero-order, pseudo-first-order, and pseudo-second-order reaction kinetics are utilized to investigate the decolorization of Acid Blue 25 dye. The rate of degradation of Acid Blue 25 dye follows the pseudo-first-order kinetics in the dye concentration.

  1. Investigation of the decolorization efficiency of two pin-to-plate corona discharge plasma system for industrial wastewater treatment

    International Nuclear Information System (INIS)

    El-Tayeb, A.; El-Shazly, A. H.; Elkady, M. F.; Abdel-Rahman, A. B.

    2016-01-01

    In this article, a dual pin-to-plate high-voltage corona discharge system is introduced to study experimentally the gap distance, the contact time, the effect of pin and plate materials, the thickness of ground plate and the conductivity on the amount of Acid Blue 25 dye color removal efficiency from polluted water. A study for the optimum air gap distance between dual pin and surface of Acid Blue 25 dye solution is carried out using 3D-EM simulator to find maximum electric field intensity at the tip of both pins. The outcomes display that the best gap for corona discharge is approximately 5 mm for 15-kV source. This separation is constant during the study of other factors. In addition, an investigation of the essential reactive species responsible for oxidation of the dye organic compounds (O 3 in air discharge, O 3 in water, and H 2 O 2 ) during the experimental time is conducted. Three various materials such as: stainless steel, copper and aluminum are used for pins and plate. The maximum color removal efficiencies of Acid Blue 25 dyes are 99.03, 82.04, and 90.78% after treatment time 15 min for stainless steel, copper, and aluminum, respectively. Measurement results for the impact of thickness of an aluminum ground plate on color removal competence show color removal efficiencies of 86.3, 90.78, and 98.06% after treatment time 15 min for thicknesses of 2, 0.5, and 0.1 mm, respectively. The increasing of the solution conductivity leads to the reduction of decolorization efficiency. A kinetic model is used to define the performance of corona discharge system. The models of pseudo-zero-order, pseudo-first-order, and pseudo-second-order reaction kinetics are utilized to investigate the decolorization of Acid Blue 25 dye. The rate of degradation of Acid Blue 25 dye follows the pseudo-first-order kinetics in the dye concentration.

  2. Prediction of grain deformation in drawn copper wire

    OpenAIRE

    Chang Chao-Cheng; Wang Zi-Wei; Huang Chien-Kuo; Wu Hsu-Fu

    2015-01-01

    Most copper wire is produced using a drawing process. The crystallographic texture of copper wire, which is strongly associated with grain deformation, can have a profound effect on the formability and mechanical and electrical properties. Thus, the ability to predict grain deformation in drawn copper wire could help to elucidate the evolution of microstructure, which could be highly valuable in product design. This study developed a novel method for predicting grain deformation in drawn copp...

  3. Microstructure and Mechanical Properties of High Copper HSLA-100 Steel in 2-inch Plate Form

    Science.gov (United States)

    1992-06-01

    CCT diagram . Increasing copper in HSLA-100 steel also increases the toughness as well as the strength, though the dynamics of this process are not clear. Steel, High Copper HSLA-100 Steel, mechanical property, microstructure.

  4. Beryllium-copper reactivity in an ITER joining environment

    International Nuclear Information System (INIS)

    Odegard, B.C.; Cadden, C.H.; Yang, N.Y.C.

    1998-01-01

    Beryllium-copper reactivity was studied using test parameters being considered for use in the ITER reactor. In this application, beryllium-copper tiles are produced using a low-temperature copper-copper diffusion bonding technique. Beryllium is joined to copper by first plating the beryllium with copper followed by diffusion bonding the electrodeposited (ED) copper to a wrought copper alloy (CuNiBe) at 450 C, 1-3 h using a hot isostatic press (HIP). In this bonded assembly, beryllium is the armor material and the CuNiBe alloy is the heat sink material. Interface temperatures in service are not expected to exceed 350 C. For this study, an ED copper-beryllium interface was subjected to diffusion bonding temperatures and times to study the reaction products. Beryllium-copper assemblies were subjected to 350, 450 and 550 C for times up to 200 h. Both BeCu and Be 2 Cu intermetallic phases were detected using scanning electron microscopy and quantitative microprobe analysis. Growth rates were determined experimentally for each phase and activation energies for formation were calculated. The activation energies were 66 mol and 62 kJ mol -1 for the BeCu and Be 2 Cu, respectively. Tensile bars were produced from assemblies consisting of coated beryllium (both sides) sandwiched between two blocks of Hycon-3. Tensile tests were conducted to evaluate the influence of these intermetallics on the bond strength. Failure occurred at the beryllium-copper interface at fracture strengths greater than 300 MPa for the room-temperature tests. (orig.)

  5. Effect of process parameters on microstructure and electrical conductivity during FSW of Al-6101 and Pure Copper

    Science.gov (United States)

    Sharma, Nidhi; Khan, Zahid A.; Siddiquee, Arshad Noor; Shihab, Suha K.; Atif Wahid, Mohd

    2018-04-01

    Copper (Cu) is predominantly used material as a conducting element in electrical and electronic components due to its high conductivity. Aluminum (Al) being lighter in weight and more conductive on weight basis than that of Cu is able to replace or partially replace Cu to make lighter and cost effective electrical components. Conventional methods of joining Al to Cu, such as, fusion welding process have many shortcomings. Friction Stir Welding (FSW) is a solid state welding process which overcomes the shortcoming of the fusion welding. FSW parameters affect the mechanical and electrical properties of the joint. This study aims to evaluate the effect of different process parameters such as shoulder diameter, pin offset, welding and rotational speed on the microstructure and electrical conductivity of the dissimilar Al-Cu joint. FSW is performed using cylindrical pin profile, and four process parameters. Each parameter at different levels is varied according to Taguchi’s L18 standard orthogonal array. It is found that the electrical conductivity of the FSWed joints are equal to that of aluminum at all the welded sections. FSW is found to be an effective technique to join Al to Cu without compromising with the electrical properties. However, the electrical conductivity gets influenced by the process parameters in the stir zone. The optimal combination of the FSW parameters for maximum electrical conductivity is determined. The analysis of variance (ANOVA) technique applied on stir zone suggests that the rotational speed and tool pin offset are the significant parameters to influence the electrical conductivity.

  6. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  7. Residual stress measurement of electron beam welded copper plates using prism hole drilling method

    International Nuclear Information System (INIS)

    Laakkonen, M.

    2013-12-01

    Eleven electron beam (EB) welded copper plates were measured in this investigation with Prism hole drilling equipment made by Stresstech Oy. All samples contained a linear weld in their center. Two different sets of plates were measured in this investigation. The first set included five samples (X436, X437, X438, X439 and X440) which were welded using four different welding speeds. Samples X439 and X440 were welded with the same speed but X440 is the only sample of the set that received a cosmetic pass. The second set received heat treatments at four different temperatures. Samples X456 and X458 were annealed at the same temperature but sample X456 received a cosmetic pass while X458 did not. Samples X455 and X457 were both annealed at a different temperature, with (X455) or without (X457) the cosmetic pass. Two areas were machined from the samples. About five millimeters was machined from the surfaces on the both of areas. Machined surfaces located on the top surfaces. The measurement points on the top surface are located on the weld and 20 mm and 120 mm from the weld on machined areas. Lower surface measurements are located -20 mm, 20 mm and 120 mm from the weld. All measurements were about 122 mm from the edges perpendicular to the weld. The top surfaces of all samples were machined in two areas across the weld. About 5 mm were removed. Stress measurements on the top surfaces were performed in these two areas, on the weld and 20 mm and 120 mm away from the weld. Stresses were also measured on the back sides, at -20 mm, 20 mm and 120 mm distance from the weld. All measurement locations were about 122mm from the sample edges. Most of the measurements give tensile strengths from 0 MPa to 30 MPa. Stresses parallel to the weld were slightly higher than weld stresses in transverse direction. The machined surfaces have residual stress values above 30 MPa near the surface. (orig.)

  8. Residual stress measurement of electron beam welded copper plates using prism hole drilling method

    Energy Technology Data Exchange (ETDEWEB)

    Laakkonen, M. [Stresstech Oy, Jyvaeskylae (Finland)

    2013-12-15

    Eleven electron beam (EB) welded copper plates were measured in this investigation with Prism hole drilling equipment made by Stresstech Oy. All samples contained a linear weld in their center. Two different sets of plates were measured in this investigation. The first set included five samples (X436, X437, X438, X439 and X440) which were welded using four different welding speeds. Samples X439 and X440 were welded with the same speed but X440 is the only sample of the set that received a cosmetic pass. The second set received heat treatments at four different temperatures. Samples X456 and X458 were annealed at the same temperature but sample X456 received a cosmetic pass while X458 did not. Samples X455 and X457 were both annealed at a different temperature, with (X455) or without (X457) the cosmetic pass. Two areas were machined from the samples. About five millimeters was machined from the surfaces on the both of areas. Machined surfaces located on the top surfaces. The measurement points on the top surface are located on the weld and 20 mm and 120 mm from the weld on machined areas. Lower surface measurements are located -20 mm, 20 mm and 120 mm from the weld. All measurements were about 122 mm from the edges perpendicular to the weld. The top surfaces of all samples were machined in two areas across the weld. About 5 mm were removed. Stress measurements on the top surfaces were performed in these two areas, on the weld and 20 mm and 120 mm away from the weld. Stresses were also measured on the back sides, at -20 mm, 20 mm and 120 mm distance from the weld. All measurement locations were about 122mm from the sample edges. Most of the measurements give tensile strengths from 0 MPa to 30 MPa. Stresses parallel to the weld were slightly higher than weld stresses in transverse direction. The machined surfaces have residual stress values above 30 MPa near the surface. (orig.)

  9. Controlling molecular condensation/diffusion of copper phthalocyanine by local electric field induced with scanning tunneling microscope tip

    Science.gov (United States)

    Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu

    2018-02-01

    We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.

  10. Embrittlement and annealing of reactor pressure vessel steels: comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, T.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rossinski, S.T.; Carter, R.G.

    1996-07-01

    The sister pressure vessels at the BR3 and Rowe Yankee PWR plants were operated at a lower-than-usual temperature (260 degrees Celsius) and their plates were austenitized at higher-than-usual temperature (970 degrees Celsius). A heat tratemement leading to a coarser microstructure than typical for the fine grain plates that are considered in development of USNRC Regulatory guide 1.99. This material displayed outlier behaviour charackterized by a 41J CVN-shift significantly larger than predicted by Regulatory Guide 1.99. Because lower radiation temperature and nickell alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements enbodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: 1) the accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively, 2) the BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, ANCL was trepanned in early 1995, 3) the accelerated irradiations in the Belgian BR2 test reactor of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is shown that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel anneal was neither necessary nor sufficient. Finally, the sensitivity of embrittlement, annealing and post-annealing reembrittlement to irradiation

  11. Embrittlement and annealing of reactor pressure vessel steels: comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe vessel

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.; Chaouadi, T.; Puzzolante, J.L.; Van de Velde, J. [Centre de l``Etude de l``Energie Nucleaire, Mol (Belgium); Biemiller, E.C. [Yankee Atomic Electric Company, Bolton (United States); Rossinski, S.T.; Carter, R.G. [Electric Power Research Institute, Charlotte (United States)

    1996-07-01

    The sister pressure vessels at the BR3 and Rowe Yankee PWR plants were operated at a lower-than-usual temperature (260 degrees Celsius) and their plates were austenitized at higher-than-usual temperature (970 degrees Celsius). A heat tratemement leading to a coarser microstructure than typical for the fine grain plates that are considered in development of USNRC Regulatory guide 1.99. This material displayed outlier behaviour charackterized by a 41J CVN-shift significantly larger than predicted by Regulatory Guide 1.99. Because lower radiation temperature and nickell alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements enbodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: 1) the accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively, 2) the BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, ANCL was trepanned in early 1995, 3) the accelerated irradiations in the Belgian BR2 test reactor of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is shown that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel anneal was neither necessary nor sufficient. Finally, the sensitivity of embrittlement, annealing and post-annealing reembrittlement to irradiation

  12. Copper oxide thin films anchored on glass substrate by sol gel spin coating technique

    Science.gov (United States)

    Krishnaprabha, M.; Venu, M. Parvathy; Pattabi, Manjunatha

    2018-05-01

    Owing to the excellent optical, thermal, electrical and photocatalytic properties, copper oxide nanoparticles/films have found applications in optoelectronic devices like solar/photovoltaic cells, lithium ion batteries, gas sensors, catalysts, magnetic storage media etc. Copper oxide is a p-type semiconductor material having a band gap energy varying from 1.2 eV-2.1 eV. Syzygium Samarangense fruit extract was used as reducing agent to synthesize copper oxide nanostructures at room temperature from 10 mM copper sulphate pentahydrate solution. The synthesized nanostructures are deposited onto glass substrate by spin coating followed by annealing the film at 200 °C. Both the copper oxide colloid and films are characterized using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques. Presence of 2 peaks at 500 nm and a broad peak centered around 800 nm in the UV-Vis absorbance spectra of copper oxide colloid/films is indicative of the formation of anisotropic copper oxide nanostructures is confirmed by the FESEM images which showed the presence of triangular shaped and rod shaped particles. The rod shaped particles inside island like structures were found in unannealed films whereas the annealed films contained different shaped particles with reduced sizes. The elemental analysis using EDS spectra of copper oxide nanoparticles/films showed the presence of both copper and oxygen. Electrical properties of copper oxide nanoparticles are affected due to quantum size effect. The electrical studies carried out on both unannealed and annealed copper oxide films revealed an increase in resistivity with annealing of the films.

  13. Formation of copper precipitates in silicon

    Science.gov (United States)

    Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.

    1999-12-01

    The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.

  14. Characterization of Nanocarbon Copper Composites Manufactured in Metallurgical Synthesis Process

    Science.gov (United States)

    Knych, Tadeusz; Kwaśniewski, Paweł; Kiesiewicz, Grzegorz; Mamala, Andrzej; Kawecki, Artur; Smyrak, Beata

    2014-08-01

    Currently, there is a worldwide search for new forms of materials with properties that are significantly improved in comparison to materials currently in use. One promising research direction lies in the synthesis of metals containing modern carbon materials ( e.g., graphene, nanotubes). In this article, the research results of metallurgical synthesis of a mixture of copper and two different kinds of carbon (activated carbon and multiwall carbon nanotubes) are shown. Samples of copper-carbon nanocomposite were synthesized by simultaneously exposing molten copper to an electrical current while vigorously stirring and adding carbon while under an inert gas atmosphere. The article contains research results of density, hardness, electrical conductivity, structure (TEM), and carbon decomposition (SIMS method) for the obtained materials.

  15. Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate

    International Nuclear Information System (INIS)

    Mao Wei; Fan Ju-Sheng; Du Ming; Zhang Jin-Feng; Zheng Xue-Feng; Wang Chong; Ma Xiao-Hua; Zhang Jin-Cheng; Hao Yue

    2016-01-01

    A novel AlGaN/GaN high electron mobility transistor (HEMT) with a source-connected T-shaped field-plate (ST-FP HEMT) is proposed for the first time in this paper. The source-connected T-shaped field-plate (ST-FP) is composed of a source-connected field-plate (S-FP) and a trench metal. The physical intrinsic mechanisms of the ST-FP to improve the breakdown voltage and the FP efficiency and to modulate the distributions of channel electric field and potential are studied in detail by means of two-dimensional numerical simulations with Silvaco-ATLAS. A comparison to the HEMT and the HEMT with an S-FP (S-FP HEMT) shows that the ST-FP HEMT could achieve a broader and more uniform channel electric field distribution with the help of a trench metal, which could increase the breakdown voltage and the FP efficiency remarkably. In addition, the relationship between the structure of the ST-FP, the channel electric field, the breakdown voltage as well as the FP efficiency in ST-FP HEMT is analyzed. These results could open up a new effective method to fabricate high voltage power devices for the power electronic applications. (paper)

  16. Technical assistance to AECL: electron beam welding of thick-walled copper containers for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1984-01-01

    This report describes the results of Phase Two of the copper electron beam welding project for the final closure of copper containers for nuclear fuel waste disposal. It has been demonstrated that single pass, electron beam square butt welds (depth of weld penetration > 25 mm) can be made without preheat in both electrolytic tough-pitch copper and oxygen-free copper plates. The present results show that oxygen-free copper exhibits better weldability than the electrolytic tough-pitch copper in terms of weld penetration and vulnerability to weld defects such as gas porosity, erratic metal overflow and blow holes. The results of ultrasonic inspection studies of the welds are also discussed

  17. Thermal Stability of Copper-Aluminum Alloy Thin Films for Barrierless Copper Metallization on Silicon Substrate

    Science.gov (United States)

    Wang, C. P.; Dai, T.; Lu, Y.; Shi, Z.; Ruan, J. J.; Guo, Y. H.; Liu, X. J.

    2017-08-01

    Copper thin films with thickness of about 500 nm doped with different aluminum concentrations have been prepared by magnetron sputtering on Si substrate and their crystal structure, microstructure, and electrical resistivity after annealing at various temperatures (200°C to 600°C) for 1 h or at 400°C for different durations (1 h to 11 h) investigated by grazing-incidence x-ray diffraction (GIXRD) analysis, scanning electron microscopy (SEM), and four-point probe (FPP) measurements. Cu-1.8Al alloy thin film exhibited good thermal stability and low electrical resistivity (˜5.0 μΩ cm) after annealing at 500°C for 1 h or 400°C for 7 h. No copper silicide was observed at the Cu-Al/Si interface by GIXRD analysis or SEM for this sample. This result indicates that doping Cu thin film with small amounts of Al can achieve high thermal stability and low electrical resistivity, suggesting that Cu-1.8Al alloy thin film could be used for barrierless Cu metallization on Si substrate.

  18. Thermal conductivity of tungsten–copper composites

    International Nuclear Information System (INIS)

    Lee, Sang Hyun; Kwon, Su Yong; Ham, Hye Jeong

    2012-01-01

    Highlights: ► We present the temperature dependence of the thermophysical properties for tungsten–copper composite from room temperature to 400 °C. The powders of tungsten–copper were produced by the spray conversion method and the W–Cu alloys were fabricated by the metal injection molding. Thermal conductivity and thermal expansion of tungsten–copper composite was controllable by volume fraction copper. - Abstract: As the speed and degree of integration of semiconductor devices increases, more heat is generated, and the performance and lifetime of semiconductor devices depend on the dissipation of the generated heat. Tungsten–copper alloys have high electrical and thermal conductivities, low contact resistances, and low coefficients of thermal expansion, thus allowing them to be used as a shielding material for microwave packages, and heat sinks for high power integrated circuits (ICs). In this study, the thermal conductivity and thermal expansion of several types of tungsten–copper (W–Cu) composites are investigated, using compositions of 5–30 wt.% copper balanced with tungsten. The tungsten–copper powders were produced using the spray conversion method, and the W–Cu alloys were fabricated via the metal injection molding. The tungsten–copper composite particles were nanosized, and the thermal conductivity of the W–Cu alloys gradually decreases with temperature increases. The thermal conductivity of the W–30 wt.% Cu composite was 238 W/(m K) at room temperature.

  19. Quality assurance of brazed copper plates through advanced ultrasonic NDE

    OpenAIRE

    Segreto, T.; Caggiano, A.; Teti, R.

    2016-01-01

    Ultrasonic non-destructive methods have demonstrated great potential for the detection of flaws in a material under examination. In particular, discontinuities produced by welding, brazing, and soldering are regularly inspected through ultrasonic techniques. In this paper, an advanced ultrasonic non-destructive evaluation technique is applied for the quality control of brazed copper cells in order to realize an accelerometer prototype for cancer proton therapy. The cells are composed of two h...

  20. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    International Nuclear Information System (INIS)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun; Jia, Shenli

    2016-01-01

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shunting breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.

  1. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shanxi 710049 (China)

    2016-03-15

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shunting breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.

  2. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Directory of Open Access Journals (Sweden)

    Zhigang Kong

    2017-06-01

    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  3. Role of copper oxides in contact killing of bacteria.

    Science.gov (United States)

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  4. Metallized xerographic plates and their preparation

    International Nuclear Information System (INIS)

    1976-01-01

    Xerographic plates, particularly xeroradiographic plates, suitable for soft or hard x-ray exposure require margins or edges suitable for handling and mounting. In order to fabricate such plates, it is convenient to apply a peripheral mask over the substrate during application of at least the photoconductive layer. Use of masks, however, tend to promote peripheral plate irregularities usually because of scratches or other uneveness at or under the margin of the applied mask. Such imperfections spawn corresponding electrical field irregularities which can now be minimized or avoided altogether by grounding the margins with metal overcoats

  5. Reviewing metallic PEMFC bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Turner, J.A. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-08-15

    A bipolar plate is one of the most important components in a polymer exchange membrane fuel cell (PEMFC) stack and has multiple functions. Metallic bipolar plate candidates have advantages over composite rivals in excellent electrical and thermal conductivity, good mechanical strength, high chemical stability, very wide alloy choices, low cost and, most importantly, existing pathways for high-volume, high-speed mass production. The challenges with metallic bipolar plates are the higher contact resistance and possible corrosion products, which may contaminate the membrane electrode assembly. This review evaluates the candidate metallic and coating materials for bipolar plates and gives the perspective of the research trends. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Demands made on high-purity copper for special purposes

    International Nuclear Information System (INIS)

    Roettges, D.

    1977-01-01

    The properties (electrical resistivity, residual impurities) of high-purity copper produced on a technical scale are reported as well as its practical applications. The paper discusses a high-oxygen copper (SV) with low residual resistivity at low temperatures and an oxygen-free (hydrogen-stable) copper (BE electronic) with low gas content. The SV quality has been specially developed for use as stabilizer in superconductors while the BE quality is used in high and ultrahigh vacuum. (GSC) [de

  7. Effect of Rotation Rate on Microstructure and Properties of Friction Stir Welded Joints of Al/Cu Clad Plates

    Directory of Open Access Journals (Sweden)

    QIAO Ke

    2017-10-01

    Full Text Available Al/Cu clad plates were joined by friction stir welding (FSW, and the effect of rotation rate on microstructure and mechanical properties of joints was investigated. The results show that the laminar structure of aluminum and copper is generated in the weld. With increase the of rotation rate, the grain sizes of aluminum and copper are increased respectively. The average microhardness of the Al/Cu plates exceeds that of the as-received metal of 33.0 HV, and ultimate tensile strength is 127.21 MPa in the nugget zone when rotation rate is 1180 r/min. The microhardness of copper in the nugget zone is 99.7 HV, reached 82.05% of the microhardness of received metal, and void defect is main reason responsible for the decrease of mechanical properties of joints.

  8. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application

    International Nuclear Information System (INIS)

    Putra, Nandy; Ariantara, Bambang; Pamungkas, Rangga Aji

    2016-01-01

    Highlights: • Flat plate loop heat pipe (FPLHP) is studied in the thermal management system for electric vehicle. • Distilled water, alcohol, and acetone on thermal performances of FPLHP were tested. • The FPLHP can start up at fairly low heat load. • Temperature overshoot phenomena were observed during the start-up period. - Abstract: The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this growth is accompanied by the risk of thermal runaway, which can cause serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight and compact size, and they do not require external power supply. This study examined experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol, and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gave the best performance that produces a thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm"2.

  9. Long-Term Effects of Soldering By-Products on Nickel-Coated Copper Wire

    Science.gov (United States)

    Rolin, T. D.; Hodge, R. E.

    2008-01-01

    An analysis of thirty-year-old, down graded flight cables was conducted to determine the makeup of a green material on the surface of the shielded wire near soldered areas and to ascertain if the green material had corroded the nickel-coated copper wire. Two likely candidates were possible due to the handling and environments to which these cables were exposed. The flux used to solder the cables is known to contain abietic acid, a carboxylic acid found in many pine rosins used for the soldering process. The resulting material copper abietate is green in color and is formed during the application of heat during soldering operations. Copper (II) chloride, which is also green in color is known to contaminate flight parts and is corrosive. Data is presented that shows the material is copper abietate, not copper (II) chloride, and more importantly that the abietate does not aggressively attack nickel-plated copper wire.

  10. The corrosion of copper in pure oxygen-free water; Korrosion av koppar i ren syrefritt vatten

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Kenneth [SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)

    2012-02-15

    The overall objective of this study was to investigate whether further growth of copper oxides occurred during the 19 years the test tube with copper wires was stored at SP. Further more detailed analyzes have been added during the investigation. These assays have not only been focused on the copper wires but also the palladium closure plate, the test tube and the water in the test tube have come to be analyzed by a variety of techniques.

  11. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Maqbool, Adnan; Hussain, M. Asif; Khalid, F. Ahmad; Bakhsh, Nabi; Hussain, Ali; Kim, Myong Ho

    2013-01-01

    In this investigation, carbon nanotube (CNT) reinforced aluminum composites were prepared by the molecular-level mixing process using copper coated CNTs. The mixing of CNTs was accomplished by ultrasonic mixing and ball milling. Electroless Cu-coated CNTs were used to enhance the interfacial bonding between CNTs and aluminum. Scanning electron microscope analysis revealed the homogenous dispersion of Cu-coated CNTs in the composite samples compared with the uncoated CNTs. The samples were pressureless sintered under vacuum followed by hot rolling to promote the uniform microstructure and dispersion of CNTs. In 1.0 wt.% uncoated and Cu-coated CNT/Al composites, compared to pure Al, the microhardness increased by 44% and 103%, respectively. As compared to the pure Al, for 1.0 wt.% uncoated CNT/Al composite, increase in yield strength and ultimate tensile strength was estimated about 58% and 62%, respectively. However, in case of 1.0 wt.% Cu-coated CNT/Al composite, yield strength and ultimate tensile strength were increased significantly about 121% and 107%, respectively. - Graphical Abstract: Copper coated CNTs were synthesized by the electroless plating process. Optimizing the plating bath to (1:1) by wt CNTs with Cu, thickness of Cu-coated CNTs has been reduced to 100 nm. Cu-coated CNTs developed the stronger interfacial bonding with the Al matrix which resulted in the efficient transfer of load. Highlights: • Copper coated CNTs were synthesized by the electroless plating process. • Thickness of Cu-coated CNTs has been reduced to 100 nm by optimized plating bath. • In 1.0 wt.% Cu-coated CNT/Al composite, microhardness increased by 103%. • Cu-coated CNTs transfer load efficiently with stronger interfacial bonding. • In 1.0 wt.% Cu-coated CNT/Al composite, Y.S and UTS increased by 126% and 105%

  12. Copper removal and microbial community analysis in single-chamber microbial fuel cell.

    Science.gov (United States)

    Wu, Yining; Zhao, Xin; Jin, Min; Li, Yan; Li, Shuai; Kong, Fanying; Nan, Jun; Wang, Aijie

    2018-04-01

    In this study, copper removal and electricity generation were investigated in a single-chamber microbial fuel cell (MFC). Result showed that copper was efficiently removed in the membrane-less MFC with removal efficiency of 98.3% at the tolerable Cu 2+ concentration of 12.5 mg L -1 , the corresponding open circuit voltage and maximum power density were 0.78 V and 10.2 W m -3 , respectively. The mechanism analysis demonstrated that microbial electrochemical reduction contributed to the copper removal with the products of Cu and Cu 2 O deposited at biocathode. Moreover, the microbial community analysis indicated that microbial communities changed with different copper concentrations. The dominant phyla were Proteobacteria and Bacteroidetes which could play key roles in electricity generation, while Actinobacteria and Acidobacteria were also observed which were responsible for Cu-resistant and copper removal. It will be of important guiding significance for the recovery of copper from low concentration wastewater through single-chamber MFC with simultaneous energy recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Wavefront reversal in a copper vapor active medium

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, F.V.; Savranskii, V.V.; Shafeev, G.A.

    1981-09-01

    Wavefront reversal in the resonator of a copper vapor laser was observed. The frequencies of the signal and reversed waves were the same. The dependence of the reversed signal power on the input signal power had a threshold. Photographs were obtained of the reconstructed image of an object when a distorting phase plate was inserted in the resonator.

  14. Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors.

    Science.gov (United States)

    Kang, Kyeong-Nam; Kim, Ik-Hee; Ramadoss, Ananthakumar; Kim, Sun-I; Yoon, Jong-Chul; Jang, Ji-Hyun

    2018-01-03

    An ultrathin nickel hydroxide layer electrodeposited on a carbon-coated three-dimensional porous copper structure (3D-C/Cu) is suggested as an additive and binder-free conductive electrode with short electron path distances, large electrochemical active sites, and improved structural stability, for high performance supercapacitors. The 3D-porous copper structure (3D-Cu) provides high electrical conductivity and facilitates electron transport between the Ni(OH) 2 active materials and the current collector of the Ni-plate. A carbon coating was applied to the 3D-Cu to prevent the oxidation of Cu, without degrading the electron transport behavior of the 3D-Cu. The 3D-Ni(OH) 2 /C/Cu exhibited a high specific capacitance of 1860 F g -1 at 1 A g -1 , and good cycling performance, with an 86.5% capacitance retention after 10 000 cycles. When tested in a two-electrode system, an asymmetric supercapacitor exhibited an energy density of 147.9 W h kg -1 and a power density of 37.0 kW kg -1 . These results open a new area of ultrahigh-performance supercapacitors, supported by 3D-Cu electrodes.

  15. Electroless plating Cu-Co-P polyalloy on UV/ozonolysis irradiated polyethylene terephthalate film and its corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Lei; Bi, Siyi; Zhao, Hang; Xu, Yumeng; Mu, Yuhang; Lu, Yinxiang, E-mail: yxlu@fudan.edu.cn

    2017-05-01

    Highlights: • Electroless plating Cu-Co-P polyalloy was firstly fabricated onto polyethylene terephthalate (PET) substrate. • An etchant-free and amine-free UV/ozonolysis irradiation method UV/ozonolysis was effective for the transition from hydrophilic to hydrophobic of PET sheet. • A time-saving and cost-effective orthogonal experiment (L{sub 9}(3){sup 4}) was utilized to optimize the plating conditions. • The optimized copper polyalloy possessed high corrosion resistance in three aggressive mediums including NaCl, NaOH and HCl, respectively. • The Cu-Co-P coated PET composite showed excellent electromagnetic interference shielding effectiveness (EMI SE > 99.999% at frequency ranging from 30 MHz to 1000 MHz). - Abstract: High corrosion resistant Cu-Co-P coatings were firstly prepared on polyethylene terephthalate (PET) substrate by electroless plating in combination with UV/ozonolysis irradiation under optimized cobalt sulfate heptahydrate concentration, pH value, plating temperature and time. The copper polyalloy/PET composite can be obtained in three steps, namely: (i) the generation of oxygen-containing functionalities (carboxylic groups) onto PET surface through UV irradiation combined with ozone, (ii) Cu seeding catalysts were obtained after being immersed into cupric citrate and NaBH{sub 4} solutions subsequently, and (iii) Cu-Co-P polyalloy metallization using electroless plating bath. Attenuated total reflection fourier transformation infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), water contact angle measurement and energy dispersive X-ray analysis (EDAX) were utilized to track the surface changes during the whole process. The electroless plating conditions were optimized by an orthogonal experiment (L{sub 9}(3){sup 4}) for Cu-Co-P coating as follows: CoSO{sub 4}·7H{sub 2}O addition of 0.08 M, pH value, plating temperature and time were set on 10.0, 35 °C and 25 min, respectively. Under the optimal conditions, copper

  16. Modification of the internal electric field by biasing of the divertor plates in the Tokamak de Varennes (TdeV)

    International Nuclear Information System (INIS)

    Lafrance, D.; Huang, R.; Stansfield, B.L.; Haddad, E.; Lachambre, J.

    1997-01-01

    The radial electric field inside the separatrix has been deduced from spectroscopic measurements of impurities on TdeV (Tokamak de Varennes), using the reduced radial momentum balance and two neoclassical models [R. D. Hazeltine, Phys. Fluids 17, 961 (1974) and Y. B. Kim, P. H. Diamond, and R. J. Groebner, Phys. Fluids B 3, 2050 (1991)]. The results from all three models are in fair agreement. Furthermore, the electric field has been deduced using the same models both with and without biasing the divertor plates relative to the machine wall, showing an inward propagation of the effect of the biasing created in the scrape-off layer (SOL). Undeniably, the electric field has been modified well inside the separatrix (0.6 approx-lt r/a approx-lt 0.9), revealing the possibility of modifying the internal electric field by external means. copyright 1997 American Institute of Physics

  17. A radiation hard dipole magnet coils using aluminum clad copper conductors

    International Nuclear Information System (INIS)

    Leonhardt, W.J.

    1989-01-01

    A C-type septum dipole magnet is located 600 mm downstream of the primary target in an external beam line of the AGS. Conventional use of fiber glass/epoxy electrical insulation for the magnet coils results in their failure after a relatively short running period, therefore a radiation hard insulation system is required. This is accomplished by replacing the existing copper conductor with a copper conductor having a thin aluminum skin which is anodized to provide the electrical insulation. Since the copper supports a current density of 59 A/mm 2 , no reduction in cross sectional area can be tolerated. Design considerations, manufacturing techniques, and operating experience of a prototype dipole is presented. 3 refs., 4 figs

  18. Water and Electricity Do Mix: Studying Plates, Petroleum, and Permafrost using Marine Electromagnetism

    Science.gov (United States)

    Constable, S.

    2015-12-01

    Marine magnetotelluric (MT) and controlled-source electromagnetic (CSEM) sounding methods were developed in the early 1980's as deep-water academic tools to study the oceanic lithosphere and mantle. Electrical conductivity is a strong function of porosity, temperature, melting, and volatile content, and so marine MT and CSEM data can be used to address a variety of geological questions related to plate tectonics. These include the distribution of melt at mid-ocean ridges, the fate of fluids in subduction zones, and the nature of the lithosphere-asthenosphere boundary. With the advent of deepwater oil and gas drilling in the late 1990's, marine EM methods were embraced by the exploration community, and are now routinely used to assist in exploration and make drilling decisions for wells costing $100M or more. For countries without conventional hydrocarbon resources, gas hydrate offers the potential for energy production, and marine CSEM methods may be the only effective way to explore for and characterize this resource. The use of EM methods to map geothermal, groundwater, and mineral resources also has application in the marine environment. Water and electricity has proved to be a very successful mix!

  19. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells

    Science.gov (United States)

    Kim, Changkyu; Lee, Gyoungja; Rhee, Changkyu; Lee, Minku

    2015-04-01

    The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation. Isothermal oxidation and reduction treatment at 200 °C for only about 10 min yields an oxide-free copper network structure with an electrical resistivity of 25.1 μΩ cm (14.0 μΩ cm at 250 °C). Finally, conductive copper line patterns are achieved down to a 50 μm width with an excellent printing resolution (standard deviation ~4.0%) onto a polyimide substrate using screen printing of the optimized inks.The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation

  20. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    International Nuclear Information System (INIS)

    Chung, Wan-Ho; Hwang, Hyun-Jun; Kim, Hak-Sung

    2015-01-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved

  1. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Wan-Ho; Hwang, Hyun-Jun [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved.

  2. Production methods and costs of oxygen free copper canisters for nuclear waste disposal

    International Nuclear Information System (INIS)

    Aalto, H.; Rajainmaeki, H.; Laakso, L.

    1996-10-01

    The fabrication technology and costs of various manufacturing alternatives to make large copper canisters for disposal of spent nuclear fuel from reactors of Teollisuuden Voima Oy (TVO) and Imatran Voima Oy (IVO) are discussed. The canister design is based on the Posiva's concept where solid insert structure is surrounded by the copper mantle. During recent years Outokumpu Copper Products and Posiva have continued their work on development of the copper canisters. Outokumpu Copper Products has also increased capability to manufacture these canisters. In the study the most potential manufacturing methods and their costs are discussed. The cost estimates are based on the assumption that Outokumpu will supply complete copper mantles. At the moment there are at least two commercially available production methods for copper cylinder manufacturing. These routes are based on either hot extrusion of the copper tube or hot rolling, bending and EB-welding of the tube. Trial fabrications has been carried out with both methods for the full size canisters. These trials of the canisters has shown that both the forming from rolled plate and the extrusion are possible methods for fabricating copper canisters on a full scale. (orig.) (26 refs.)

  3. Bus bar electrical feedthrough for electrorefiner system

    Science.gov (United States)

    Williamson, Mark; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2013-12-03

    A bus bar electrical feedthrough for an electrorefiner system may include a retaining plate, electrical isolator, and/or contact block. The retaining plate may include a central opening. The electrical isolator may include a top portion, a base portion, and a slot extending through the top and base portions. The top portion of the electrical isolator may be configured to extend through the central opening of the retaining plate. The contact block may include an upper section, a lower section, and a ridge separating the upper and lower sections. The upper section of the contact block may be configured to extend through the slot of the electrical isolator and the central opening of the retaining plate. Accordingly, relatively high electrical currents may be transferred into a glovebox or hot-cell facility at a relatively low cost and higher amperage capacity without sacrificing atmosphere integrity.

  4. Storing drinking-water in copper pots kills contaminating diarrhoeagenic bacteria.

    Science.gov (United States)

    Sudha, V B Preethi; Ganesan, Sheeba; Pazhani, G P; Ramamurthy, T; Nair, G B; Venkatasubramanian, Padma

    2012-03-01

    Microbially-unsafe water is still a major concern in most developing countries. Although many water-purification methods exist, these are expensive and beyond the reach of many people, especially in rural areas. Ayurveda recommends the use of copper for storing drinking-water. Therefore, the objective of this study was to evaluate the effect of copper pot on microbially-contaminated drinking-water. The antibacterial effect of copper pot against important diarrhoeagenic bacteria, including Vibrio cholerae O1, Shigella flexneri 2a, enterotoxigenic Escherichia coli, enteropathogenic E. coli, Salmonella enterica Typhi, and Salmonella Paratyphi is reported. When drinking-water (pH 7.83 +/- 0.4; source: ground) was contaminated with 500 CFU/mL of the above bacteria and stored in copper pots for 16 hours at room temperature, no bacteria could be recovered on the culture medium. Recovery failed even after resuscitation in enrichment broth, followed by plating on selective media, indicating loss of culturability. This is the first report on the effect of copper on S. flexneri 2a, enteropathogenic E. coli, and Salmonella Paratyphi. After 16 hours, there was a slight increase in the pH of water from 7.83 to 7.93 in the copper pots while the other physicochemical parameters remained unchanged. Copper content (177 +/- 16 ppb) in water stored in copper pots was well within the permissible limits of the World Health Organization. Copper holds promise as a point-of-use solution for microbial purification of drinking-water, especially in developing countries.

  5. Optical and Electrical Properties of Copper Oxide Thin Films Synthesized by Spray Pyrolysis Technique

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-08-01

    Full Text Available Copper oxide (CuO thin films have been synthesized on to glass substrates at different temperatures in the range 250-450 °C by spray pyrolysis technique from aqueous solution using cupric acetate Cu(CH3COO2·H2O as a precursor. The structure of the deposited CuO thin films characterized by X-ray diffraction, the surface morphology was observed by a scanning electron microscope, the presence of elements was detected by energy dispersive X-ray analysis, the optical transmission spectra was recorded by ultraviolet-visible spectroscopy and electrical resistivity was studied by Van-der Pauw method. All the CuO thin films, irrespective of growth temperature, showed a monoclinic structure with the main CuO (111 orientation, and the crystallite size was about 8.4784 Å for the thin film synthesized at 350 °C. The optical transmission of the as-deposited film is found to decrease with the increase of substrate temperature, the optical band gap of the thin films varies from 1.90 to 1.60 eV and the room temperature electrical resistivity varies from 30 to18 Ohm·cm for the films grown at different substrate temperatures.

  6. Effects of Volar Tilt, Wrist Extension, and Plate Position on Contact Between Flexor Pollicis Longus Tendon and Volar Plate.

    Science.gov (United States)

    Wurtzel, Caroline N Wolfe; Burns, Geoffrey T; Zhu, Andy F; Ozer, Kagan

    2017-12-01

    Volar plates positioned at, or distal to, the watershed line have been shown to have a higher incidence of attritional rupture of the flexor pollicis longus (FPL). In this study, we aimed to evaluate the effect of wrist extension and volar tilt on the contact between the plate and the FPL tendon in a cadaver model. We hypothesized that, following volar plate application, loss of native volar tilt increases the contact between the FPL and the plate at lower degrees of wrist extension. A volar locking plate was applied on 6 fresh-frozen cadavers. To determine the contact between the plate and the FPL tendon, both structures were wrapped with copper wire and circuit conductivity was monitored throughout wrist motion. A lateral wrist radiograph was obtained at each circuit closure, indicating tendon-plate contact. Baseline measurements were obtained with plate positioned at Soong grades 0, 1, and 2. An extra-articular osteotomy was made and contact was recorded at various volar tilt angles (+5°, 0°, -5°, -10°, -15°, and -20°) in 3 different plate positions. A blinded observer measured the degree of wrist extension on all lateral radiographs. Data were analyzed using linear mixed-effects regression model. Plates placed distal to the watershed line had the most contact throughout wrist range of motion. Significantly, less wrist extension was required for contact in wrists with neutral or dorsal tilt and in distally placed volar plates. Volar tilt, wrist extension, and plate position were 3 independent risk factors determining contact between plate and tendon. Loss of volar tilt, increased wrist extension, and higher Soong grade plate position result in greater contact between wire-wrapped FPL tendon and plate. The FPL/plate contact chart generated in this study may be used to assess the risk of rupture in the clinical setting. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. Dependency of the band gap of electrodeposited Copper oxide thin films on the concentration of copper sulfate (CuSO4.5H2O) and pH in bath solution for photovoltaic applications

    KAUST Repository

    Islam, Md. Anisul

    2016-03-10

    In this study, Copper oxide thin films were deposited on copper plate by electrodeposition process in an electrolytic bath containing CuSO4.5H2O, 3M lactic acid and NaOH. Copper oxide films were electrodeposited at different pH and different concentration of CuSO4.5H2O and the optical band gap was determined from their absorption spectrum which was obtained from UV-Vis absorption spectroscopy. It was found that copper oxide films which were deposited at low concentration of CuSO4.5H2O have higher band gap than those deposited at higher bath concentration. The band gap of copper oxide films also significantly changes with pH of the bath solution. It was also observed that with the increase of the pH of bath solution band gap of copper oxide film decreased. © 2015 IEEE.

  8. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  9. A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Hards, V.L.

    2000-08-01

    This report presents the results of a small-scale pilot study of the mineralogy and alteration characteristics of unusual sheet-like native copper occurring together with uraniferous and vanadiferous concretions in mudstones and siltstones of the Permian Littleham Mudstone Formation, at Littleham Cove, south Devon, England. The host mudstones and siltstones are smectitic and have been compacted through deep Mesozoic burial. The occurrence of native copper within these rocks represents a natural analogue for the long-term behaviour of copper canisters, sealed in a compacted clay (bentonite) backfill, that will be used for the deep geological disposal of high-level radioactive waste by the SKB. The study was undertaken by the British Geological Survey (BGS) on behalf of SKB between November 1999 and June 2000. The study was based primarily on archived reference material collected by the BGS during regional geological and mineralogical surveys of the area in the 1970's and 1980's. However, a brief visit was made to Littleham Cove in January 2000 to try to examine the native copper in situ and to collect additional material. Unfortunately, recent landslips and mudflows obscured much of the outcrop, and only one new sample of native copper could be collected. The native copper occurs as thin plates, up to 160 mm in diameter, which occur parallel to bedding in the Permian Littleham Mudstone Formation at Littleham Cove (near Budleigh Salterton) in south Devon. Each plate is made up of composite stacks of individual thin copper sheets each 1-2 mm thick. The copper is very pure (>99.4% Cu) but is accompanied by minor amounts of native silver (also pure - >99%) which occurs as small inclusions within the native copper. Detailed mineralogical and petrological studies of the native copper sheets, using optical petrography, backscattered scanning electron microscopy, X-ray diffraction analysis and electron probe microanalytical techniques, reveal a complex history of

  10. A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Styles, M.T.; Hards, V.L. [Natural Environment Research Council (United Kingdom). British Geological Survey

    2000-08-01

    This report presents the results of a small-scale pilot study of the mineralogy and alteration characteristics of unusual sheet-like native copper occurring together with uraniferous and vanadiferous concretions in mudstones and siltstones of the Permian Littleham Mudstone Formation, at Littleham Cove, south Devon, England. The host mudstones and siltstones are smectitic and have been compacted through deep Mesozoic burial. The occurrence of native copper within these rocks represents a natural analogue for the long-term behaviour of copper canisters, sealed in a compacted clay (bentonite) backfill, that will be used for the deep geological disposal of high-level radioactive waste by the SKB. The study was undertaken by the British Geological Survey (BGS) on behalf of SKB between November 1999 and June 2000. The study was based primarily on archived reference material collected by the BGS during regional geological and mineralogical surveys of the area in the 1970's and 1980's. However, a brief visit was made to Littleham Cove in January 2000 to try to examine the native copper in situ and to collect additional material. Unfortunately, recent landslips and mudflows obscured much of the outcrop, and only one new sample of native copper could be collected. The native copper occurs as thin plates, up to 160 mm in diameter, which occur parallel to bedding in the Permian Littleham Mudstone Formation at Littleham Cove (near Budleigh Salterton) in south Devon. Each plate is made up of composite stacks of individual thin copper sheets each 1-2 mm thick. The copper is very pure (>99.4% Cu) but is accompanied by minor amounts of native silver (also pure - >99%) which occurs as small inclusions within the native copper. Detailed mineralogical and petrological studies of the native copper sheets, using optical petrography, backscattered scanning electron microscopy, X-ray diffraction analysis and electron probe microanalytical techniques, reveal a complex history of

  11. X-ray diffraction phase analysis of crystalline copper corrosion products after treatment in different chloride solutions

    International Nuclear Information System (INIS)

    Chmielova, M.; Seidlerova, J.; Weiss, Z.

    2003-01-01

    The corrosion products Cu 2 (OH) 3 Cl, Cu 2 O, and CuCl 2 were identified on the surface of copper plates after their four days treating in three different sodium chloride, sodium/magnesium, and sodium/calcium chloride solutions using X-ray diffraction powder analysis. However, the quantitative proportions of individual corrosion products differ and depend on the type of chloride solution used. Treating of copper plates only in the sodium chloride solution produced the mixture of corrosion products where Cu 2 O is prevailing over the Cu 2 (OH) 3 Cl and CuCl 2 was not identified. The sample developed after treating of the cooper surface in the sodium/magnesium chloride solution contains Cu 2 (OH) 3 Cl and CuCl 2 prevailing over the Cu 2 O, while the sample developed after treatment of copper in sodium/calcium chloride solution contains Cu 2 (OH) 3 Cl prevailing over CuCl 2 and Cu 2 O was not identified

  12. Design basis for the copper/steel canister

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    1996-02-01

    The development of the copper/iron canister which has been proposed by SKB for the containment of high level nuclear waste has been studied from the point of view of choice of materials, manufacturing technology and quality assurance. This report describes the observations on progress which have been made between March 1995 and Feb 1996 and the result of further literature studies. A first trial canister has been produced using a fabricated steel liner and an extruded copper tubular, a second one using a fabricated tubular is at an advanced stage. A change from a fabricated steel inner canister to a proposed cast canister has been justified by a criticality argument but the technology for producing a cast canister is at present untried. The microstructure achieved in the extruded copper tubular for the first canister is unacceptable. Similar problems exist with plate used for the fabricated tubular, but some more favourable structures have been achieved already by this route. Seam welding of the first tubular failed through a suspected material problem. The second fabricated tubular welded without difficulty. Welding of lids and bottoms to the copper canister is problematical.There is as yet no satisfactory non destructive test procedures for the parent metal or the welds in the copper canister material, partly due to the coarse grain size which arise in the proposed material processed by the proposed routes. Further studies are also required on crevice corrosion, galvanic attack and stress corrosion cracking in the copper 50 ppm phosphorus alloy. 28 refs

  13. Mounting Thin Samples For Electrical Measurements

    Science.gov (United States)

    Matus, L. G.; Summers, R. L.

    1988-01-01

    New method for mounting thin sample for electrical measurements involves use of vacuum chuck to hold a ceramic mounting plate, which holds sample. Contacts on mounting plate establish electrical connection to sample. Used to make electrical measurements over temperature range from 77 to 1,000 K and does not introduce distortions into magnetic field during Hall measurements.

  14. Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate

    Science.gov (United States)

    Mao, Wei; Fan, Ju-Sheng; Du, Ming; Zhang, Jin-Feng; Zheng, Xue-Feng; Wang, Chong; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2016-12-01

    A novel AlGaN/GaN high electron mobility transistor (HEMT) with a source-connected T-shaped field-plate (ST-FP HEMT) is proposed for the first time in this paper. The source-connected T-shaped field-plate (ST-FP) is composed of a source-connected field-plate (S-FP) and a trench metal. The physical intrinsic mechanisms of the ST-FP to improve the breakdown voltage and the FP efficiency and to modulate the distributions of channel electric field and potential are studied in detail by means of two-dimensional numerical simulations with Silvaco-ATLAS. A comparison to the HEMT and the HEMT with an S-FP (S-FP HEMT) shows that the ST-FP HEMT could achieve a broader and more uniform channel electric field distribution with the help of a trench metal, which could increase the breakdown voltage and the FP efficiency remarkably. In addition, the relationship between the structure of the ST-FP, the channel electric field, the breakdown voltage as well as the FP efficiency in ST-FP HEMT is analyzed. These results could open up a new effective method to fabricate high voltage power devices for the power electronic applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574112, 61334002, 61306017, 61474091, and 61574110) and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 605119425012).

  15. Damage caused by a nanosecond UV laser on a heated copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Henč-Bartolić, V., E-mail: visnja.henc@fer.hr [University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb (Croatia); Bončina, T. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia); Jakovljević, S., E-mail: suzana.jakovljevic@fsb.hr [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb (Croatia); Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Zupanič, F. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia)

    2016-08-15

    Highlights: • A Cu-plate was exposed to nanosecond UV laser with max. energy 1.1 J/cm{sup 2}. • Surface topography was studied on the cold and heated copper plate. • At room temperature, a crater formed, the melt was ejected from it. • Capillary waves formed in the vicinity of the crater at 360 °C. - Abstract: This work studied the effect of thin copper plate temperature on its surface morphology after irradiation using a pulsed nanosecond UV laser. The surface characteristics were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, focused ion beam and stylus profilometry. When a target was at room temperature, a crater and the radial flow of molten Cu from the crater was observed. When the thin target was warm (about 360 °C ± 20 °C), a crater was smaller, and quasi-semicircular waves with the periodicity of around 3 μm appeared in its vicinity. The origin of the waves is Marangoni effect, causing thermocapillary waves, which in same occasions had a structure of final states of chaos in Rayleigh–Bénard convection.

  16. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates

    Science.gov (United States)

    Shah, Zahir; Islam, Saeed; Gul, Taza; Bonyah, Ebenezer; Altaf Khan, Muhammad

    2018-06-01

    The current research aims to examine the combined effect of magnetic and electric field on micropolar nanofluid between two parallel plates in a rotating system. The nanofluid flow between two parallel plates is taken under the influence of Hall current. The flow of micropolar nanofluid has been assumed in steady state. The rudimentary governing equations have been changed to a set of differential nonlinear and coupled equations using suitable similarity variables. An optimal approach has been used to acquire the solution of the modelled problems. The convergence of the method has been shown numerically. The impact of the Skin friction on velocity profile, Nusslet number on temperature profile and Sherwood number on concentration profile have been studied. The influences of the Hall currents, rotation, Brownian motion and thermophoresis analysis of micropolar nanofluid have been mainly focused in this work. Moreover, for comprehension the physical presentation of the embedded parameters that is, coupling parameter N1 , viscosity parameter Re , spin gradient viscosity parameter N2 , rotating parameter Kr , Micropolar fluid constant N3 , magnetic parameter M , Prandtl number Pr , Thermophoretic parameter Nt , Brownian motion parameter Nb , and Schmidt number Sc have been plotted and deliberated graphically.

  17. Synthesis of Copper Pigments, Malachite and Verdigris: Making Tempera Paint

    Science.gov (United States)

    Solomon, Sally D.; Rutkowsky, Susan A.; Mahon, Megan L.; Halpern, Erica M.

    2011-01-01

    Malachite and verdigris, two copper-based pigments, are synthesized in this experiment intended for use in a general chemistry laboratory. The preparation of egg tempera paint from malachite is also described. All procedures can be done with a magnetic stir plate, standard glassware present in any first-year laboratory, and household chemicals.…

  18. Metallographic observations of AISI 304 - copper dissimular joints

    International Nuclear Information System (INIS)

    Medeiros, R.C. de; Carvalho Perdigao, S. de

    1982-01-01

    The current work informs on the SMAW dissimilar joints embrittled by molten Copper. Bead on plate of that metal were deposited on four different base metals to evaluate the phenomena. Conventional and non conventional welding methods were employed to obtain dissimilar joints of AISI 304-Cu. The latter were observed metallographically. These results are to be complemented by mechanical testing actually being performed. (Author) [pt

  19. Estimates of microbial quality and concentration of copper in distributed drinking water are highly dependent on sampling strategy.

    Science.gov (United States)

    Lehtola, Markku J; Miettinen, Ilkka T; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2007-12-01

    The numbers of bacteria generally increase in distributed water. Often household pipelines or water fittings (e.g., taps) represent the most critical location for microbial growth in water distribution systems. According to the European Union drinking water directive, there should not be abnormal changes in the colony counts in water. We used a pilot distribution system to study the effects of water stagnation on drinking water microbial quality, concentration of copper and formation of biofilms with two commonly used pipeline materials in households; copper and plastic (polyethylene). Water stagnation for more than 4h significantly increased both the copper concentration and the number of bacteria in water. Heterotrophic plate counts were six times higher in PE pipes and ten times higher in copper pipes after 16 h of stagnation than after only 40 min stagnation. The increase in the heterotrophic plate counts was linear with time in both copper and plastic pipelines. In the distribution system, bacteria originated mainly from biofilms, because in laboratory tests with water, there was only minor growth of bacteria after 16 h stagnation. Our study indicates that water stagnation in the distribution system clearly affects microbial numbers and the concentration of copper in water, and should be considered when planning the sampling strategy for drinking water quality control in distribution systems.

  20. Copper-silver ionization at a US hospital: interaction of treated ...

    Science.gov (United States)

    Tap water sampling and surface analysis of copper pipe/bathroom porcelain were performed to explore the fate of copper and silver during the first nine months of copper-silver ionization (CSI) applied to cold and hot water at a hospital in Cincinnati, Ohio. Ions dosed by CSI into the water at its point of entry to the hospital were inadvertently removed from hot water by a cation-exchange softener in one building (average removal of 72% copper and 51% silver). Copper at the tap was replenished from corrosion of the building’s copper pipes but was typically unable to reach 200 µg/L in first-draw and flushed hot and cold water samples. Unlike copper, silver solubility was not restricted by the incoming water’s high pH of 8.5. Cold water lines had >20 µg/L silver at most of the taps that were sampled, which further increased after flushing. However, silver plating onto copper pipe surfaces (particularly in the hot water line) prevented reaching 20 µg/L silver in hot water of many taps. Aesthetically displeasing purple/grey stains in bathroom porcelain were attributed to chlorargyrite [AgCl(s)], an insoluble precipitate that formed when CSI-dosed Ag+ ions combined with Cl- ions that were present in the incoming water. Overall, CSI aims to control Legionella bacteria in drinking water, but plumbing material interactions, aesthetics and other implications also deserve consideration to holistically evaluate in-building drinking water disinfection. To inform the

  1. Electro-remediation of copper mine tailings. Comparing copper removal efficiencies for two tailings of different age

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Lamas, Victor; Gutierrez, Claudia

    2013-01-01

    This work compares and evaluates the copper removal efficiency when applying electric fields to two mine tailings originating from the same mine but of different age. Eight experiments were carried out - four on tailings deposited more than 20 years ago (old tailings) and four on tailings deposit...

  2. Investigating the Optimum Efficiency of Acoustoelectric Conversion Plate Devices

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen

    2014-04-01

    Full Text Available This study aims to develop the acoustoelectric conversion plate in terms of electromagnetic induction law to convert sound energy to electricity, where the developed apparatus is made of three parts, the thin film coil, the spring, and the high-intensity magnetic framework. In process, the thin film coil receives the injecting sound vibration in connection with the spring to cause the reciprocating motion between the coil and the high-intensity magnet, which yields the electromotive force (EMF. In this study, a pearl plate of length 95 mm, width 95 mm, and thickness 1.5 mm adhered with a PET film of thickness 0.08mm is built as the substrate plate due to it has good properties of light and elasticity. In connection with the substrate plate and the electric coil is the thin film coil. Experiments used the speaker with output frequencies of 30~156 Hz and sound power of 0.5 W (sound intensity 0.32 W/m2, sound pressure level 115 dB as the sound source. The sound energy is captured by the acoustoelectric conversion plate for working efficiency and optimization parameters analysis. The studied parameters content of diameter, turns, and width of electric coil as well as distance between high intensity magnet and coil. The results show that diameter 0.11 mm, turns 220, and width 3 mm of the electric coil, in connection with steel spring of diameter 0.2 mm while input sound is 30 Hz, receives the average output voltage of 0.57 V, the average output current of 5.46 mA, the average output power of 3.13 mW, and the sound electric conversion efficiency of 0.63%. This innovation device could be used in highway, near waterfalls, and some high noise factories to capture energy for immediately charging cell-phone to save human life.

  3. Wave-front reversal in a copper-vapor active medium

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, F.V.; Savranskii, V.V.; Shafeev, G.A.

    1981-09-01

    The implementation of wave-front reversal in a copper-vapor laser resonator is reported. The frequencies of the signal wave and the reversed wave are the same, and the dependence of reversed-signal power on input-signal power has a threshold character. Photographs of the reconstructed object image upon insertion of a distorting phase plate into the resonator are presented.

  4. Absolute linear thermal-expansion measurements on copper and aluminum from 5 to 320 K

    International Nuclear Information System (INIS)

    Kroeger, F.R.; Swenson, C.A.

    1977-01-01

    A linear absolute dilatometer based on a three-terminal parallel-plate capacitor design has been used to obtain thermal expansion data for high-purity copper and aluminum from 5 to 320 K. These data have an absolute accuracy of +- 0.1% above 20 K for copper and above 30 K for aluminum, and agree well with published data at the higher temperatures. The disagreement which exists with other data below 5 K for copper and below 15 K for aluminum is believed to be sample dependent, but the mechanism is not known. The aluminum results in this region depend on the state of annealing of the sample

  5. Evaluation of Synthesizing Al2O3 Nano Particles in Copper Matrix by Mechanical Alloying of Cu-1% Al and Copper Oxide

    Directory of Open Access Journals (Sweden)

    S. Safi

    2017-06-01

    Full Text Available Strengthening of copper matrix by dispersion of metallic oxides particles as an efficient way to increase strength without losing thermal and electrical conductivities has been recognized for many years. Such a composite can withstand high temperatures and keep its properties. Such copper alloys have many applications especially in high temperature including resistance welding electrodes, electrical motors and switches. In the present work, at first, the Cu-1%Al solid solution was prepared by the mechanical alloying process via 48 hours of milling. Subsequently, 0.66 gr of copper oxide was added to Cu-1%Al solid solution and mechanically milled for different milling times of 0,16, 32, 48 hours. The milled powder mixtures were investigated by X-Ray Diffraction and scanning electron microscopy techniques. The lattice parameter of Cu increased at first, but then decreased at longer milling times. The internal strain increased and the average Cu crystal size decreased during milling process.The particle size decreased during the whole process. With increasing annealing temprature from 450°C to 750°C, the microhardness values of samples decreased at the beginning but then increased. From these results, it can be concluded that nanosize aluminaparticles are formed in the copper matrix.

  6. Copper based anodes for bio-ethanol fueled low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.R.; Karan, K. [Queen' s Univ., Kingston, ON (Canada)

    2003-07-01

    Laboratory studies have been conducted to develop a low-temperature solid oxide fuel cell (SOFC) fueled by bio-ethanol. SOFCs are considered to be a potential source for clean and efficient electricity. The use of bio-ethanol to power the SOFC contributes even further to reducing CO{sub 2} emissions. The main barrier towards the development of the proposed SOFC is the identification of a suitable anode catalyst that prevents coking during electro-oxidation of ethanol while yielding good electrical performance. Copper was selected as the catalyst for this study. Composite anodes consisting of copper catalysts and gadolinium-doped ceria (GDC) electrolytes were prepared using screen printing of GDC and copper oxide on dense GDC electrolytes and by wet impregnation of copper nitrate in porous GDC electrolytes followed by calcination and sintering. The electrical conductivity of the prepared anodes was characterized to determine the percolation threshold. Temperature-programmed reduction and the Brunner Emmett Teller (BET) methods were used to quantify the catalyst dispersion and surface area. Electrochemical performance of the single-cell SOFC with a hydrogen-air system was used to assess the catalytic activities. Electrochemical Impedance Spectroscopy was used to probe the electrode kinetics.

  7. on THICKNESS OF COPPER (|) OXIDE

    African Journals Online (AJOL)

    2006-12-20

    Dec 20, 2006 ... known materials to be used as semiconductor devices. The oxide is. Observed to be an attractive starting material for the production of solar cells for low cost terrestrial conversion of solar energy to electricity. Copper (I) oxide is one Of the earliest known photovoltaic materials and the first in which the ...

  8. Nickel–copper hybrid electrodes self-adhered onto a silicon wafer by supersonic cold-spray

    International Nuclear Information System (INIS)

    Lee, Jong-Gun; Kim, Do-Yeon; Kang, Byungjun; Kim, Donghwan; Song, Hee-eun; Kim, Jooyoung; Jung, Woonsuk; Lee, Dukhaeng; Al-Deyab, Salem S.; James, Scott C.; Yoon, Sam S.

    2015-01-01

    High-performance electrodes are fabricated through supersonic spraying of nickel and copper particles. These electrodes yield low specific resistivities, comparable to electrodes produced by screen-printed silver paste and light-induced plating. The appeal of this fabrication method is the low cost of copper and large area scalability of supersonic spray-coating techniques. The copper and nickel electrode was fabricated in the open air without any pre- or post-treatment. The spray-coated copper–nickel electrode was characterized by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, and energy dispersive spectroscopy. Although both SEM and TEM images confirmed voids trapped between flattened particles in the fabricated electrode, this electrode’s resistivity was order 10 −6 Ω cm, which is comparable to the bulk value for pure copper

  9. Method For Creating Corrosion Resistant Surface On An Aluminum Copper Alloy

    Science.gov (United States)

    Mansfeld, Florian B.; Wang, You; Lin, Simon H.

    1997-06-03

    A method for treating the surface of aluminum alloys hang a relatively high copper content is provided which includes the steps of removing substantially all of the copper from the surface, contacting the surface with a first solution containing cerium, electrically charging the surface while contacting the surface in an aqueous molybdate solution, and contacting the surface with a second solution containing cerium. The copper is substantially removed from the surface in the first step either by (i) contacting the surface with an acidic chromate solution or by (ii) contacting the surface with an acidic nitrate solution while subjecting the surface to an electric potential. The corrosion-resistant surface resulting from the invention is excellent, consistent and uniform throughout the surface. Surfaces treated by the invention may often be certified for use in salt-water services.

  10. Laser additive manufacturing bulk graphene-copper nanocomposites.

    Science.gov (United States)

    Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J

    2017-11-03

    The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.

  11. A mechanical-electrical finite element method model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Xinmin; Liu, Dong' an; Peng, Linfa [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2008-07-15

    Contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) plays a significant role on the power loss in a proton exchange membrane (PEM) fuel cell. There are two types of contact behavior at the interface of the BPP and GDL, which are the mechanical one and the electrical one. Furthermore, the electrical contact behavior is dependent on the mechanical one. Thus, prediction of the contact resistance is a coupled mechanical-electrical problem. The current FEM models for contact resistance estimation can only simulate the mechanical contact behavior and moreover they are based on the assumption that the contact surface is equipotential, which is not the case in a real BPP/GDL assembly due to the round corner and margin of the BPP. In this study, a mechanical-electrical FEM model was developed to predict the contact resistance between the BPP and GDL based on the experimental interfacial contact resistivity. At first, the interfacial contact resistivity was obtained by experimentally measuring the contact resistance between the GDL and a flat graphite plate of the same material and processing conditions as the BPP. Then, with the interfacial contact resistivity, the mechanical and electrical contact behaviors were defined and the potential distribution of the BPP/GDL assembly was analyzed using the mechanical-electrical FEM model. At last, the contact resistance was calculated according to the potential drop and the current of the contact surface. The numerical results were validated by comparing with those of the model reported previously. The influence of the round corner of the BPP on the contact resistance was also studied and it is found that there exists an optimal round corner that can minimize the contact resistance. This model is beneficial in understanding the mechanical and electrical contact behaviors between the BPP and GDL, and can be used to predict the contact resistance in a new BPP/GDL assembly. (author)

  12. Divertor plate for thermonuclear reactor

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Sato, Keisuke; Nishio, Satoshi.

    1993-01-01

    In a divertor plate for a thermonuclear reactor, adjacent cooling pipes are electrically insulated from each other and pipes made of a gradient functional material prepared by compositing ceramics having an insulation property and metals are metallurgically joined to at least one portion of each of the cooling pipes. Electric current caused upon occurrence of plasma disruption is interrupted by the insulation portion, so that a large circuit is not formed and electromagnetic force is decreased to such a extent that the divertor plate is not ruptured. Since a header of the cooling pipes can be installed at any optional position, the installation space can be reduced. Further, since inlet and exit collection headers can be disposed on both ends of the cooling pipes, it is possible to shorten the length of the cooling pipe of the divertor plate corresponded to high heat fluxes and reduce the pressure loss on the side of coolants to about 1/2. Further, turn back portions of small radius of curvature of the cooling pipes are eliminated to reduce the cost and extend the lifetime and, in addition, protection tiles can be attached easily. (N.H.)

  13. Preparation of ultrafine grained copper nanoparticles via immersion deposit method

    Science.gov (United States)

    Abbasi-Kesbi, Fatemeh; Rashidi, Ali Mohammad; Astinchap, Bandar

    2018-03-01

    Today, the exploration about synthesis of nanoparticles is much of interest to materials scientists. In this work, copper nanoparticles have been successfully synthesized by immersion deposit method in the absence of any stabilizing and reducing agents. Copper (II) sulfate pentahydrate as precursor salt and distilled water and Ethylene glycol as solvents were used. The copper nanoparticles were deposited on plates of low carbon steel. The effects of copper sulfate concentrations and solvent type were investigated. X-ray diffraction, scanning electron microscopy and UV-Visible spectroscopy were taken to investigate the crystallite size, crystal structure, and morphology and size distribution and the growth process of the nanoparticles of obtained Cu particles. The results indicated that the immersion deposit method is a particularly suitable method for synthesis of semispherical copper nanoparticles with the crystallites size in the range of 22 to 37 nm. By increasing the molar concentration of copper sulfate in distilled water solvent from 0.04 to 0.2 M, the average particles size is increased from 57 to 81 nm. The better size distribution of Cu nanoparticles was achieved using a lower concentration of copper sulfate. By increasing the molar concentration of copper sulfate in water solvent from 0.04 to 0.2, the location of the SPR peak has shifted from 600 to 630 nm. The finer Cu nanoparticles were formed using ethylene glycol instead water as a solvent. Also, the agglomeration and overlapping of nanoparticles in ethylene glycol were less than that of water solvent.

  14. Vortex Dynamics of Asymmetric Heave Plates

    Science.gov (United States)

    Rusch, Curtis; Maurer, Benjamin; Polagye, Brian

    2017-11-01

    Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.

  15. Fixation of the stressed state of glass plates by coating them with thin films using a plasma focus installation

    Science.gov (United States)

    Kolokoltsev, V. N.; Degtiarev, V. F.; Borovitskaya, I. V.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Eriskin, A. A.

    2018-01-01

    Elastic deformation in transparent mediums is usually studied by the photoelasticity method. For opaque mediums the method of film coating and strain gauge method are used. After the external load was removed, the interference pattern corresponding to elastic deformation of the material disappears. It is found that the elastic deformation state of the thin glass plate under the action of concentrated load can be fixed during the deposition of a thin metal film. Deposition of thin copper films was carried out by passing of plasma through the copper tube installed inside the Plasma Focus installation. After removing of the load, interference pattern on the glass plates was observed in the form of Newton’s rings and isogers in non-monochromatic light on the CCD scanners which uses uorescent lamps with cold cathode. It is supposed that the copper film fixes the relief of the surface of the glass plate at the time of deformation and saves it when the load is removed. In the case of a concentrated load, this relief has the shape of a thin lens of large radius. For this reason, the interference of coherent light rays in a thin air gap between the glass of the scanners atbed and the lens surface has the shape of Newton's rings. In this case, when scanning the back side of the plate, isogyres are observed. The presented method can be used in the analysis of the mechanical stress in a various optical elements.

  16. Process for protecting bonded components from plating shorts

    Science.gov (United States)

    Tarte, Lisa A.; Bonde, Wayne L.; Carey, Paul G.; Contolini, Robert J.; McCarthy, Anthony M.

    2000-01-01

    A method which protects the region between a component and the substrate onto which the components is bonded using an electrically insulating fillet of photoresist. The fillet protects the regions from subsequent plating with metal and therefore shorting the plated conductors which run down the sides of the component and onto the substrate.

  17. Attaching Copper Wires to Magnetic-Reed-Switch Leads

    Science.gov (United States)

    Kamila, Rudolf

    1987-01-01

    Bonding method reliably joins copper wires to short iron-alloy leads from glass-encased dry magnetic-reed switch without disturbing integrity of glass-to-metal seal. Joint resistant to high temperatures and has low electrical resistance.

  18. Particle deposition on face-up flat plates in parallel airflow under the combined influences of thermophoresis and electrophoresis

    International Nuclear Information System (INIS)

    Lee, Handol; Yook, Sejin; Han, Seogyoung

    2012-01-01

    The deposition velocity is used to assess the degree of particulate contamination of wafers or photomasks. A numerical model was developed to predict the deposition velocity under the combined influences of thermophoresis and electrophoresis. The deposition velocity onto a face-up flat plate in parallel airflow was simulated by varying the temperature difference between the plate's surface and ambient air or by changing the strength of the electric field established above the plate. Both attraction and repulsion by thermophoresis or electrophoresis were considered. When the plate's surface was colder than ambient air, the surface of the face-up plate could be at risk of contamination by charged particles even with a repulsive applied electric force. When the temperature of the plate's surface was higher than the ambient temperature, the degree of particulate contamination on the surface of the face-up plate could be remarkably reduced in the presence of an electric field. The effect of repulsive thermophoresis, however, is expected to be reduced for very fine particles of high electric mobility or for micrometer-sized particles with large gravitational settling speed when the charged particles are influenced by an attractive electric force.

  19. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  20. A Study on Characterization of Light-Induced Electroless Plated Ni Seed Layer and Silicide Formation for Solar Cell Application

    Science.gov (United States)

    Takaloo, Ashkan Vakilipour; Joo, Seung Ki; Es, Firat; Turan, Rasit; Lee, Doo Won

    2018-03-01

    Light-induced electroless plating (LIEP) is an easy and inexpensive method that has been widely used for seed layer deposition of Nickel/Copper (Ni/Cu)-based metallization in the solar cell. In this study, material characterization aspects of the Ni seed layer and Ni silicide formation at different bath conditions and annealing temperatures on the n-side of a silicon diode structure have been examined to achieve the optimum cell contacts. The effects of morphology and chemical composition of Ni film on its electrical conductivity were evaluated and described by a quantum mechanical model. It has been found that correlation exists between the theoretical and experimental conductivity of Ni film. Residual stress and phase transformation of Ni silicide as a function of annealing temperature were evaluated using Raman and XRD techniques. Finally, transmission line measurement (TLM) technique was employed to determine the contact resistance of Ni/Si stack after thermal treatment and to understand its correlation with the chemical-structural properties. Results indicated that low electrical resistive mono-silicide (NiSi) phase as low as 5 mΩ.cm2 was obtained.

  1. A novel application of the CuI thin film for preparing thin copper nanowires

    International Nuclear Information System (INIS)

    Shi Shuo; Sun Jialin; Zhang Jianhong; Cao Yang

    2005-01-01

    We present a novel application of the CuI thin film for preparing thin copper nanowires under a direct current electric field (DCEF). The CuI thin film was used as a medium for transmitting cuprous ions during the growing process of copper nanowires. As electrodes are the source of cuprous ions, high-purity copper films were deposited on both ends of the CuI thin film. At 353 K, under whole solid condition, without any templates, and having applied a DCEF of 1.5x10 4 V/m, cuprous ions were generated at the anode and migrated towards the cathode through the CuI film. At the edge of the cathode, cuprous ions obtained electrons and congregated to form a disordered thin copper nanowires bundle. The SEM images showed that these copper nanowires were from 10 to 20 nm in diameter and several hundred nanometers in length. The effect of the electric field intensity and the growth temperature on the diameter of the nanowires was also studied

  2. VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS

    Directory of Open Access Journals (Sweden)

    DILEEP KUMAR K

    2017-12-01

    Full Text Available Piezoelectric materials are extensively employed in the field of structures for condition monitoring, smart control and testing applications. The piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. The coupling effects between the mechanical and electric properties of piezoelectric materials have drawn significant attention for their potential applications. In the present work, an analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and a concept is developed for an approximate dynamic model to the vibration response of the simply supported orthotropic rectangular plates excited by a piezoelectric patch of variable rectangular geometry and location. A time harmonic electric voltages with the same magnitude and opposite sign are applied to the two symmetric piezoelectric actuators, which results in the bending moment on the plate. The main objective of the work is to obtain an analytical solution for the vibration amplitude of composite plate predicted from plate theory. The results demonstrate that the vibration modes can be selectively excited and the geometry of the PZTactuator shape remarkably affects the distribution of the response among modes. Thus according to the desired degree shape control it is possible to tailor the shape, size and properly designed control algorithm of the actuator to either excite or suppress particular modes.

  3. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya

    2016-01-01

    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  4. Bipolar plates for PEM fuel cells

    Science.gov (United States)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  5. Improvement and evaluation of thermal, electrical, sealing and mechanical contacts, and their interface materials

    Science.gov (United States)

    Luo, Xiangcheng

    Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic

  6. Composition profiles of several contaminated and cleaned surfaces of gold thick films on copper plates by Auger electron and secondary ion mass spectroscopies

    International Nuclear Information System (INIS)

    Komiya, S.; Mizuno, M.; Narusawa, T.; Maeda, H.; Yoshikawa, M.

    1974-01-01

    Preparation and evaluation of a clean Au film are investigated. Development of a preparation method for obtaining clean surface on a copper shell in the JFT-2a (DIVA) TOKAMAK toroidal vacuum chamber is the aim of the present work. Au films prepared by ion plating and vacuum evaporation have been analysed by a cylindrical mirror Auger electron analyser in combination with a quadrupole mass spectrometer during 2 keV Xe ion bombardment from a sputter ion gun over the whole range of thickness of several microns. Contaminants are found to segregate on the top surface and at the interface. To expose a clean Au surface by the ion bombardment, surface layers within 1000 A had to be removed from the surfaces contaminated by touching with either a naked hand or a nylon glove or covered by a small amount of Ti. Mutual diffusions across the interfaces are also analyzed as a function of the substrate temperature. A Nb sandwich layer inhibites effectively the mutual diffusion. (auth.)

  7. Thermophysical properties of copper compounds in copper-chlorine thermochemical water splitting cycles

    International Nuclear Information System (INIS)

    Zamfirescu, C.; Dincer, I.; Naterer, G.F.

    2009-01-01

    This paper examines the relevant thermophysical properties of compounds of chlorine and copper that are found in thermochemical water splitting cycles. There are four variants of such Cu-Cl cycles that use heat and electricity to split the water molecule and produce H 2 and O 2 . Since the energy input is mainly in the form of thermal energy, the Cu-Cl water splitting cycle is much more efficient than water electrolysis, if the electricity generation efficiency for electrolysis is taken into account. A number of copper compounds (Cu 2 OCl 2 , CuO, CuCl 2 , CuCl) and other chemicals (Cu, HCl) are recycled within the plant, while the overall effect is splitting of the water molecule. The system includes a number of chemical reactors, heat exchangers, spray dryer and electrochemical cell. This paper identifies the available experimental data for properties of copper compounds relevant to the Cu-Cl cycle analysis and design. It also develops new regression formulas to correlate the properties, which include: specific heat, enthalpy, entropy, Gibbs free energy, density, formation enthalpy and free energy. No past literature data is available for the viscosity and thermal conductivity of molten CuCl, so estimates are provided. The properties are evaluated at 1 bar and a range of temperatures from ambient to 675-1000K, which are consistent with the operating conditions of the cycle. Updated calculations of chemical exergies are provided as follows: 21.08, 6.268, 82.474, and 75.0 kJ/mol for Cu 2 OCl 2 , CuO, CuCl 2 and CuCl, respectively. For molten CuCl, the estimated viscosity varies from 2.6 to 1.7mPa.s. (author)

  8. Physical, optical and electrical properties of copper selenide (CuSe) thin films deposited by solution growth technique at room temperature

    International Nuclear Information System (INIS)

    Gosavi, S.R.; Deshpande, N.G.; Gudage, Y.G.; Sharma, Ramphal

    2008-01-01

    Copper selenide (CuSe) thin films are grown onto amorphous glass substrate from an aqueous alkaline medium using solution growth technique (SGT) at room temperature. The preparative parameters were optimized to obtain good quality of thin films. The as-deposited films were characterized for physical, optical and electrical properties. X-ray diffraction (XRD) pattern reveals that the films are polycrystalline in nature. Energy dispersive analysis by X-ray (EDAX) shows formation of stoichiometric CuSe compound. Uniform deposition of CuSe thin films on glass substrate was observed from scanning electron microscopy (SEM) and atomic force microscopy (AFM) micrographs. Average grain size was determined to 144.53 ± 10 nm using atomic force microscopy. The band gap was found to be 2.03 eV with direct band-to-band transition. Semi-conducting behaviour was observed from resistivity measurements. Ohmic behaviour was seen from I-V curve with good electrical conductivity

  9. Improved performance of brazed plate heat exchangers made of stainless steel type EN 1.4401 (UNS S31600) when using a iron-based braze filler

    Energy Technology Data Exchange (ETDEWEB)

    Sjoedin, P. [Alfa Laval Materials, Lund (Sweden)

    2004-07-01

    The mechanical properties of brazed plate heat exchangers, made of stainless steel plates type EN 1.4401, brazed with a new iron-based braze filler ''AlfaNova'', have been evaluated. The results were compared with heat exchangers brazed with a copper (pure copper) and a nickel-based (MBF 51) braze filler. Their resistance against pressure- and temperature fatigue, which are important for the lifetime of a heat exchanger, and the burst pressure, which is important for pressure vessel approvals, were tested and evaluated. It was found that the pressure fatigue resistance was extraordinary good for the heat exchangers brazed the iron-based filler and its temperature fatigue resistance was better than those brazed with nickel-based braze filler and slightly lower than those brazed with copper. The highest burst pressures were achieved for the copper brazed units followed by the iron-brazed units and rearmost the nickel-brazed units. (orig.)

  10. Determination of copper in liquid and solid insulation for large electrical equipment by ICP-OES. Application to copper contamination assessment in power transformers.

    Science.gov (United States)

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Sarzanini, Corrado; Maina, Riccardo; Tumiatti, Vander

    2012-09-15

    Copper is one of the main constituents of the components in power transformers and its presence both in liquid (mineral oil) and in solid (Kraft paper) insulators can lead to enhanced dielectric losses and to the subsequent deterioration of their insulating properties. Recently the latter have been correlated to plant failures which in turn may have severe impact on the environment. This paper describes the direct analysis of copper in insulating mineral oil by ICP-OES and how it was first optimized compared to the official American Society for Testing and Materials (ASTM) D7151 method. Detection and quantification limits of 8.8 μg kg(-1) and 29.3 μg kg(-1) were obtained. Secondly, copper determination was improved by coupling a microwave assisted dissolution procedure of the mineral oil which avoided the problems, in the real samples, due to the presence of solid species of copper which cannot be nebulized following traditional methods described in literature. Sixteen mineral insulating oils sampled from transformers in service were analyzed before and after dissolution. In order to evaluate copper speciation, size fractionation was performed by filtration on PTFE filters (0.45, 1 and 5 μm). This test was performed on all the oil samples. Finally, because of the key role of the solid insulator in failed transformers, the Authors applied the developed method to study the copper deposition tendency onto the insulating Kraft paper tapes exerted by two unused oils (a corrosive and a non-corrosive one) under defined ageing conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Multi-polar resistance switching and memory effect in copper phthalocyanine junctions

    International Nuclear Information System (INIS)

    Qiao Shi-Zhu; Kang Shi-Shou; Li Qiang; Zhong Hai; Kang Yun; Yu Shu-Yun; Han Guang-Bing; Yan Shi-Shen; Mei Liang-Mo; Qin Yu-Feng

    2014-01-01

    Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching has not been observed simultaneously in one organic material before. With both electrodes being cobalt, the unipolar resistance switching is universal. The high resistance state is switched to the low resistance state when the bias reaches the set voltage. Generally, the set voltage increases with the thickness of copper phthalocyanine and decreases with increasing dwell time of bias. Moreover, the low resistance state could be switched to the high resistance state by absorbing the phonon energy. The stability of the low resistance state could be tuned by different electrodes. In Au/copper phthalocyanine/Co system, the low resistance state is far more stable, and the bipolar resistance switching is found. Temperature dependence of electrical transport measurements demonstrates that there are no obvious differences in the electrical transport mechanism before and after the resistance switching. They fit quite well with Mott variable range hopping theory. The effect of Al 2 O 3 on the resistance switching is excluded by control experiments. The holes trapping and detrapping in copper phthalocyanine layer are responsible for the resistance switching, and the interfacial effect between electrodes and copper phthalocyanine layer affects the memory effect. (interdisciplinary physics and related areas of science and technology)

  12. STRENGTHENING OF TRENCH COVER PLATES FOR SWITCHGEAR BUILDING

    International Nuclear Information System (INIS)

    M.S. RUBEN

    2000-01-01

    The objective of this calculation is to strengthen the existing trench cover plates of the Electrical Switchgear Building (BLDG 5010) of the Exploratory Studies Facility. A remodeling effort will change the portion of the facility that has the trenches for electrical cables to a craft/shop area. The users of the building will be using a forklift in this area (Clark CGP 30 forklift with a capacity of 3 tons). The trench covers require strengthening to support the wheel loads from the forklift. The output of this calculation will be sketches revising the floor plate details of DWG YMP-025-1-7007-ST103,2. (Details 4 and 5)

  13. Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Mader, Lothar [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2015-10-30

    Highlights: • Surface modifications of epoxy resins with polydopamine and grafted polyamines can significantly increase the adhesion toward electroless deposited copper. • A clear characterization of the copper/epoxy interphase is provided by SEM analyses of cross sections. • Tailored conditions such as etching time (roughness) and electroless deposition temperature are needed to increase the adhesion of the modified surfaces. - Abstract: In this paper the influence of the epoxy roughness, surface modifications and ELD (electroless copper deposition) temperatures on the adhesive strength of the copper is studied. Good adhesion at low roughness values is targeted due to their applicability in high density electronic circuits. Roughened epoxy surfaces are modified with adsorbed polyamines, polydopamine and polyamines grafted to polydopamine. Next the, adhesive strength of ELD copper is determined with peel strength measurements and the interphases are examined with SEM (scanning electron microscopy). Polydopamine and polyamines grafted to polydopamine can lead to increased adhesive strength at lower roughness values compared to the non-modified samples at specific plating temperatures.

  14. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    Science.gov (United States)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  15. Highly conductive thermoplastic composite blends suitable for injection molding of bipolar plates

    International Nuclear Information System (INIS)

    Mighri, F.; Huneault, M.A.; Champagne, M.F.

    2003-01-01

    This study aimed at developing highly conductive, lightweight, and low-cost bipolar plates for use in proton exchange membranes (PEM) fuel cells. Injection and compression molding of highly filled polypropylene, PP, and polyphenylene sulfide, PPS, based blends were used as a mean for mass production of bipolar plates. Loadings up to 60-wt% in the form of graphite, conductive carbon black and carbon fibers were investigated. The developed formulations have a combination of properties and processability suitable for bipolar plate manufacturing, such as good chemical resistance, sufficient fluidity, and good electrical and thermal conductivity. Electrical resistivities around 0.15 and 0.09 Ohm-cm were respectively achieved for the PP and PPS-based blends, respectively. Two bipolar plate designs were successfully fabricated by molding the gas flow channels over aluminum plates to form a metallic/polymer composite plate, or simply by direct injection molding of the conductive polymer composite. For the first design, overall plate resistivities of 0.2 and 0.1 Ohm-cm were respectively attained using PP and PPS based blends as conductive skin. A lower volume resistivity of around 0.06 Ohm-cm was attained for the second injected plate design with PPS based blend. (author)

  16. Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process

    Science.gov (United States)

    Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun

    2017-12-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.

  17. Modeling of laser welding of steel and titanium plates with a composite insert

    Science.gov (United States)

    Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.

    2017-10-01

    A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.

  18. Influences of Corrosive Sulfur on Copper Wires and Oil-Paper Insulation in Transformers

    Directory of Open Access Journals (Sweden)

    Jian Li

    2011-10-01

    Full Text Available Oil-impregnated paper is widely used in power transmission equipment as a reliable insulation. However, copper sulphide deposition on oil-paper insulation can lead to insulation failures in power transformers. This paper presents the influences of copper sulfur corrosion and copper sulphide deposition on copper wires and oil-paper insulation in power transformers. Thermal aging tests of paper-wrapped copper wires and bare copper wires in insulating oil were carried out at 130 °C and 150 °C in laboratory. The corrosive characteristics of paper-wrapped copper wires and bare copper wires were analyzed. Dielectric properties of insulation paper and insulating oil were also analyzed at different stages of the thermal aging tests using a broadband dielectric spectrometer. Experiments and analysis results show that copper sulfide deposition on surfaces of copper wires and insulation paper changes the surface structures of copper wires and insulation paper. Copper sulfur corrosion changes the dielectric properties of oil-paper insulation, and the copper sulfide deposition greatly reduces the electrical breakdown strength of oil-paper insulation. Metal passivator is capable of preventing copper wires from sulfur corrosion. The experimental results are helpful for investigations for fault diagnosis of internal insulation in power transformers.

  19. Evolution of the microstructure in electrochemically deposited copper films at room temperature

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2007-01-01

    The room temperature evolution of the microstructure in copper electrodeposits (self-annealing) was investigated by means of X-ray diffraction analysis and simultaneous measurement of the electrical resistivity as a function of time with an unprecedented time resolution. Independent of the copper...... the crystallographic texture changes by a multiple twinning mechanism. The kinetics of self-annealing is strongly affected by the thickness of the deposit. Storage of the copper films at sub-zero temperatures effectively hinders self-annealing and does not affect the kinetics of self-annealing upon reheating to room...... temperature....

  20. Experimental Evaluation of a Flat Plate Solar Collector Under Hail City Climate

    Directory of Open Access Journals (Sweden)

    N. Ben Khedher

    2018-04-01

    Full Text Available Flat plate solar water heaters are widely used for water heating in low-temperature residential applications. In this paper the thermal performance of a solar flat plate water heater under Hail weather conditions (latitude 27°52΄N longitude ‎41°69΄E was experimentally investigated. Fluid was circulated through the imbedded copper tubes in the flat plate collector and inlet and outlet temperatures of the fluid were noted at five minute intervals. The experimental-time was between 9:00AM-15:00PM. A study was carried out experimentally to present the efficiency curves of a flat plate solar collector at different flow rates. ASHRAE standard 93-2003 was followed for calculation of instantaneous efficiency of solar collector. Result shows that the flow rate of the circulating fluid highly influence the thermal efficiency of the solar collector. Optimum flow rate of 2.5L/min leads to maximum collector efficiency.

  1. Isotope investigation of anodic slime movements in copper electrorefining baths

    International Nuclear Information System (INIS)

    Urbanski, T.; Kohman, L.; Strzelecki, M.; Chojecki, M.; Kaczynska, R.; Wieclaw, B.

    1975-01-01

    A method was developed and introduced for monitoring the movement of silver-containing anodic slimes in copper electrorefining baths. Radioactive 111 Ag was used as tracer and copper plates labelled with the tracer were inserted into the anodes. During electrorefining the slime produced was continuously marked by the tracer. The activity of 111 Ag was measured at various points inside the bath by sampling and continuously registered with the aid of integrators. It was found that more than 99 percent of the slime slipped to the bottom of the bath close to the anode surface and did not migrate even at highest electrolyte flow rates. Small quantities of suspended slime contained an insignificant concentration of silver and should not be a source of cathode contamination. (author)

  2. THE USE OF DISPERSION STRENGTHENED COPPER IN ACCELERATOR DESIGNS

    International Nuclear Information System (INIS)

    VALDIVIEZ, R.; SCHRAGE, D.

    2000-01-01

    Dispersion strengthened copper, known by the trade name GLIDCOP(reg sign), has found various applications in accelerator designs. Glidcop has material properties similar to OFE copper, such as thermal and electrical conductivity. Unlike OFE, however, Glidcop has yield and ultimate strengths equivalent to those of mild-carbon steel, making it a good structural material. This paper covers some accelerator components fabricated with Glidcop, material properties measured from room to brazing temperatures, and a furnace-brazing process that has produced good, consistent results with Glidcop

  3. Characterization of prealloyed copper powders treated in high energy ball mill

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2006-01-01

    The inert gas atomised prealloyed copper powders containing 3.5 wt.% Al were milled up to 20 h in the planetary ball mill in order to oxidize aluminium in situ with oxygen from the air. In the next procedure compacts from milled powder were synthesized by hot-pressing in argon atmosphere. Compacts from as-received Cu-3.5 wt.% Al powder and electrolytic copper powder were also prepared under the same conditions. Microstructural and morphological changes of high energy milled powder as well as changes of thermal stability and electrical conductivity of compacts were studied as a function of milling time and high temperature exposure at 800 deg. C. Optical, scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for microstructural characterization, whereas thermal stability and electrical conductivity were evaluated by microhardness measurements and conductometer Sigmatest, respectively. The prealloyed 5 h-milled and compacted powder showed a significant increase in microhardness reaching the value of 2600 MPa, about 4 times greater than that of compacts synthesized from as-received electrolytic copper powder (670 MPa). The electrical conductivity of compacts from 5 h-milled powder was 52% IACS. The results were discussed in terms of the effect of small grain size and finely distributed alumina dispersoids on hardening and thermal stability of compacts

  4. Improved field emission performance of carbon nanotube by introducing copper metallic particles

    Directory of Open Access Journals (Sweden)

    Chen Yiren

    2011-01-01

    Full Text Available Abstract To improve the field emission performance of carbon nanotubes (CNTs, a simple and low-cost method was adopted in this article. We introduced copper particles for decorating the CNTs so as to form copper particle-CNT composites. The composites were fabricated by electrophoretic deposition technique which produced copper metallic particles localized on the outer wall of CNTs and deposited them onto indium tin oxide (ITO electrode. The results showed that the conductivity increased from 10-5 to 4 × 10-5 S while the turn-on field was reduced from 3.4 to 2.2 V/μm. Moreover, the field emission current tended to be undiminished after continuous emission for 24 h. The reasons were summarized that introducing copper metallic particles to decorate CNTs could increase the surface roughness of the CNTs which was beneficial to field emission, restrain field emission current from saturating when the applied electric field was above the critical field. In addition, it could also improve the electrical contact by increasing the contact area between CNT and ITO electrode that was beneficial to the electron transport and avoided instable electron emission caused by thermal injury of CNTs.

  5. Mechanical properties of F82H plates with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp; Tanigawa, Hiroyasu

    2016-11-01

    Highlights: • Mass effect, homogeneity, and anisotropy in mechanical properties were studied. • Thickness dependence of tensile property was not observed. • Thickness dependence of Charpy impact property was observed. • Appropriate mechanical properties were obtained using an electric furnace. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel and it is indispensable to develop the manufacturing technology for producing large-scale components of DEMO blanket with appropriate mechanical properties. This is because mechanical properties are generally degraded with increasing production volume. In this work, we focused mechanical properties of F82H–BA12 heat which was melted in a 20 tons electric arc furnace. Plates with difference thicknesses from 18 to 100 mm{sup t} were made from its ingot through forging and hot-rolling followed by heat treatments. Tensile and Charpy impact tests were then performed on plates focusing on their homogeneity and anisotropy. From the result, their homogeneity and anisotropy were not significant. No obvious differences were observed in tensile properties between the plates with different thicknesses. However, Charpy impact property changed with increasing plate thickness, i.e. the ductile brittle transition temperature of a 100 mm{sup t} thick plate was higher than that of the other thinner plates.

  6. Non-invasive terahertz field imaging inside parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei

    2011-01-01

    We present a non-invasive broadband air photonic method of imaging of the electric field of THz pulses propagating inside a tapered parallel plate waveguide. The method is based on field-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We apply...

  7. Fabrication of resistive plate chamber using bakelite

    International Nuclear Information System (INIS)

    Neog, Himangshu; Bhuyan, M.R.; Biswas, S.; Mohanty, B.; Mohanty, Rudranarayan; Rudra, Sharmili; Sahu, P.K.; Sahu, S.

    2014-01-01

    Now a days Resistive Plate Chamber (RPC) is one of the most important detectors in the High Energy Physics (HEP) experiments. RPC is a gas filled detector utilizing a constant and uniform electric field produced between two parallel electrode plates made of a material with high bulk resistivity e.g. glass or bakelite. RPC has good time resolution (1-2 ns) and spatial resolution (∼ cm). The high resistance of RPC plate limits the spark size produced after the ionization of gas due to the passing charged particle. This contribution discusses building of a RPC using bakelite (local sources) and the measurement of the surface resistivity of the detector

  8. Experimental tests of irradiation-anneal-reirradiation effects on mechanical properties of RPV plate and weld materials

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1996-01-01

    The Charpy-V (C V ) notch ductility and tension test properties of three reactor pressure vessel (RPV) steel materials were determined for the 288 degree C (550 degree F) irradiated (I), 288 degree C (550 degree F) irradiated + 454 degree C (850 degree F)-168 h postirradiation annealed (IA), and 288 degree C (550 degree F) reirradiated (IAR) conditions. Total fluences of the I condition and the IAR condition were, respectively, 3.33 x 10 19 n/cm 2 and 4.18 x 10 19 n/cm 2 , E > 1 MeV. The irradiation portion of the IAR condition represents an incremental fluence increase of 1. 05 x 10 19 n/cm 2 , E > 1 MeV, over the I-condition fluence. The materials (specimens) were supplied by the Yankee Atomic Electric Company and represented high and low nickel content plates and a high nickel, high copper content weld deposit prototypical of the Yankee-Rowe reactor vessel. The promise of the IAR method for extending the fluence tolerance of radiation-sensitive steels and welds is clearly shown by the results. The annealing treatment produced full C V upper shelf recovery and full or nearly full recovery in the C V 41 J (30 ft-lb) transition temperature. The C V transition temperature increases produced by the reirradiation exposure were 22% to 43% of the increase produced by the first cycle irradiation exposure. A somewhat greater radiation embrittlement sensitivity and a somewhat greater reirradiation embrittlement sensitivity was exhibited by the low nickel content plate than the high nickel content plate. Its high phosphorus content is believed to be responsible. The IAR-condition properties of the surface vs. interior regions of the low nickel content plate are also compared

  9. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  10. COMPARATIVE ANALYSIS OF ELECTRICAL AND THERMAL CONTROL OF THE LINING STATE OF INDUCTION APPARATUS OF COPPER WIRE MANUFACTURE

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2018-02-01

    Full Text Available Aim. This article is intended to develop a technique for monitoring the lining state of induction channel furnaces for melting oxygen-free copper by monitoring changes in the distribution of thermal fields in their lining and carrying out a comparative analysis of the developed technique with the existing one that controls the electrical resistance of the melting channel of the furnaces. Technique. For carrying out the research, the theories of electromagnetic field, thermodynamics, mathematical physics, mathematical modeling based on the finite element method were used. Results. A technique for diagnosing the lining state of the induction channel furnaces for melting oxygen-free copper has been developed, which makes it possible to determine the dislocation and the size of the liquid metal leaks by analyzing the temperature distribution over the body surface both the inductor and the furnace. Scientific novelty. The connection between the temperature field distribution on the surface of the furnace body and the dislocation and dimensions of the liquid metal leaks in its lining is determined for the first time. Practical significance. Using the proposed technique will allow to conduct more accurate diagnostics of the lining conditions of the induction channel furnaces, as well as to determine the location and size of the liquid metal leaks, creating the basis for predicting the working life of the furnace.

  11. Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads

    Directory of Open Access Journals (Sweden)

    A. E. Alshorbagy

    2013-01-01

    Full Text Available The first-order shear deformation plate model, accounting for the exact neutral plane position, is exploited to investigate the uncoupled thermomechanical behavior of functionally graded (FG plates. Functionally graded materials are mainly constructed to operate in high temperature environments. Also, FG plates are used in many applications (such as mechanical, electrical, and magnetic, where an amount of heat may be generated into the FG plate whenever other forms of energy (electrical, magnetic, etc. are converted into thermal energy. Several simulations are performed to study the behavior of FG plates, subjected to thermomechanical loadings, and focus the attention on the effect of the heat source intensity. Most of the previous studies have considered the midplane neutral one, while the actual position of neutral plane for functionally graded plates is shifted and should be firstly determined. A comparative study is performed to illustrate the effect of considering the neutral plane position. The volume fraction of the two constituent materials of the FG plate is varied smoothly and continuously, as a continuous power function of the material position, along the thickness of the plate.

  12. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  13. R and D activities for the design of the MITICA Plasma Driver Plate manufacturing process via explosion bonding technique

    International Nuclear Information System (INIS)

    Pavei, M.; Dal Bello, S.; Groeneveld, H.; Rizzolo, A.

    2013-01-01

    Highlights: ► The work is focused on the manufacturing process of the Plasma Driver Plate of MITICA. ► A clad plate of molybdenum and copper has been manufactured. ► Simulations have been carried out to improve the design geometry of the component. ► The driver-hole rim have been machined and hot formed. ► No delamination were found in the molybdenum. -- Abstract: The back plate of the MITICA plasma source, named Plasma Driver Plate (PDP), will be protected from the impact of the highly energetic back-streaming positive ions (BSI+), generated inside the accelerator, by a 1.0 mm thick molybdenum layer that will be joined by Explosion Bonding (EB) technique to the copper heat sink. This technology has been investigated and used for manufacturing prototypes, demonstrating very high strength of the obtained molybdenum–copper interface. The production of the shaped edge profile of the driver-hole, after the EB, is an open point. In order to demonstrate the possibility to produce the PDP by explosion bonding, the manufacturing of a full scale prototype of the area just around one of the PDP driver-holes was identified as the road to address most of the manufacturing issues. Elasto-plastic finite element analyses have been carried out to improve the hole rim geometry and the process parameters of all the manufacturing steps. A full scale prototype of the PDP driver-hole has been manufactured and tested. This contribution gives an overview of the R and D activities carried out to address the main open issues, to define the PDP component detailed geometry and its manufacturing processes, via EB technique

  14. Note: Enhanced energy harvesting from low-frequency magnetic fields utilizing magneto-mechano-electric composite tuning-fork.

    Science.gov (United States)

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-06-01

    A magnetic-field energy harvester using a low-frequency magneto-mechano-electric (MME) composite tuning-fork is proposed. This MME composite tuning-fork consists of a copper tuning fork with piezoelectric Pb(Zr(1-x)Ti(x))O3 (PZT) plates bonded near its fixed end and with NdFeB magnets attached at its free ends. Due to the resonance coupling between fork prongs, the MME composite tuning-fork owns strong vibration and high Q value. Experimental results show that the proposed magnetic-field energy harvester using the MME composite tuning-fork exhibits approximately 4 times larger maximum output voltage and 7.2 times higher maximum power than the conventional magnetic-field energy harvester using the MME composite cantilever.

  15. X-ray diffraction investigation of self-annealing in nanocrystalline copper electrodeposits

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2006-01-01

    X-ray diffraction analysis and electrical resistivity measurements were conducted simultaneously for in-situ examination of self-annealing in copper electrodeposits. Considerable growth of the as-deposited nano-sized crystallites occurs with time and the crystallographic texture changes by multip...... twinning during self-annealing. The kinetics of self-annealing depends on the layer thickness as well as on the orientation and/or the size of the as-deposited crystallites. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.......X-ray diffraction analysis and electrical resistivity measurements were conducted simultaneously for in-situ examination of self-annealing in copper electrodeposits. Considerable growth of the as-deposited nano-sized crystallites occurs with time and the crystallographic texture changes by multiple...

  16. Copper naphthenate: a proven solution for new wood preservative problems

    Energy Technology Data Exchange (ETDEWEB)

    McNair, W.S. [Merichem Chemicals and Refinery Services LLC, Houston, TX (United States); Loecner, P. [Pacific Gas and Electric, Davis, CA (United States)

    2002-08-01

    Today's engineers have the responsibility of considering cost, availability and climbability, as well as the environmental alternatives available to the traditional wood preservatives used in the production of utility poles: creosote, pentachlorophenol (PCP) and chromated copper arsenate (CCA). The leading alternative now emerging for utilities in this field is copper naphthenate. The authors present a case study that clearly demonstrates copper naphthenate as one of the most environmentally sensitive and effective wood preservative. When first introduced, copper naphthenate seemed to frequently result in early failure of the poles treated with this preservative. It was discovered that it was a phenomenon that had been largely exaggerated, and the failure rate was less than one per cent. A recent review has concluded that premature failures have basically disappeared. Several reasons can explain premature failures, such as pretreatment decay, improper sterilization/conditioning/drying, inadequate copper penetration and retention, and others. The long term effectiveness and performance of copper naphthenate has been documented in a number of field trials. The ultimate disposal of the product must be considered by the specifying engineer, and it is possible to dispose of copper naphthenate poles in a sanitary landfill. Due in part to recent manufacturing economies, the cost of copper naphthenate is similar to other oil-borne treatments. The case study of Pacific Gas and Electric was discussed. 7 refs., 2 figs.

  17. Hall effects on MHD flow past an accelerated plate

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Ravi, S.; Hiremath, S.B.

    1980-01-01

    An exact solution of the MHD flow of an incompressible, electrically conducting, viscous fluid past a uniformly accelerated plate is presented. The velocity profiles are shown graphically and the numerical values of axial and transverse components of skin friction are tabulated. At high values of the Hall parameter, ωtau, the velocity is found to be oscillatory near the plate. (author)

  18. Carbon fibre reinforced copper matrix composites: processing routes and properties

    Energy Technology Data Exchange (ETDEWEB)

    Le Petitcorps, Y. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Poueylaud, J.M. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Albingre, L. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Berdeu, B. [L`Electrolyse, 33 - Latresne (France); Lobstein, P. [L`Electrolyse, 33 - Latresne (France); Silvain, J.F. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB

    1997-06-01

    Copper matrix composites are of interest for applications in the electronic field which requires materials with high thermal conductivity properties. The use of carbon fibres can (1) decrease the density and the coefficient of thermal expansion of the material and (2) increase the stiffness and strength to rupture of the resulting composite. In order to produce cheap materials, chemical plating and uniaxial hot pressing processing routes were chosen. 1D-C{sub (P55Thornel)} / Cu prepregs were hot pressed in an argon atmosphere at 750 C during 30 min. The volume fraction of the fibres within the composite was in the range of 10-35%. Physical (density and thermal expansion coefficient) and thermal conductivity properties of the composite were in good agreement with the predictions. However this material exhibits very poor mechanical properties (Young`s modulus and tensile strength). Scanning electron microscopy (SEM) observations of the surfaces of ruptures have shown that (1) a very weak bonding between the graphite fibres and the copper matrix was formed and (2) the rupture of the composite was initiated in the matrix at the copper grain boundaries. In order to overcome these two difficulties, the carbon fibres were pre-coated with a thin layer (100 nm) of cobalt. The aim of the cobalt was to react with the carbon to form carbide compounds and as a consequence to increase the bonding between the metal and the fibre. The tensile properties ({sigma}{sub c}{sup R} and E{sub c}) of this composite were then increased by 50% in comparison with the former material; however the strain to rupture was still too weak ({epsilon}{sub c}{sup R} = 0.5%). In order to explain the role of each constituents, X-ray profiles and TEM analyses were done at the fibre/matrix interface and at the grain boundaries. Some modifications of the chemical plating steps were done to improve the purity of the copper. (orig.)

  19. Formation of plasma around wire fragments created by electrically exploded copper wire

    International Nuclear Information System (INIS)

    Taylor, Michael J.

    2002-01-01

    The physical processes occurring during the electrical explosion of metallic conductors has attracted interest for many years. Applications include circuit breakers, segmented lightning divertor strips for aircraft radomes, disruption of metallic shaped charge jets, plasma armatures for electromagnetic railguns and plasma generators for electrothermal-chemical guns. Recent work has cited the phenomenology of the fragmentation processes, particularly the development of a plasma around the lower resistance condensed fragments. An understanding of both the fragmentation process and the development of the accompanying formation of plasma is essential for the optimization of devices that utilize either of these phenomena. With the use of x-radiography and fast photography, this paper explores the wire explosion process, in particular the relationship between the fragmentation, plasma development and resistance rise that occurs during this period. A hypothesis is put forward to account for the development of plasma around the condensed wire fragments. Experimental parameters used in this study are defined. Wires studied were typically copper, with a diameter of 1 mm and length in excess of 150 mm. Circuit inductance used were from 26 to 800 μH. This relatively high circuit inductance gave circuit rise times less than 180 MA s -1 , slow with respect to many other exploding wire studies. Discharge duration ranged from 0.8 to 10 ms. (author)

  20. Effects of copper supplement on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture.

    Science.gov (United States)

    Rodríguez, L Mato; Alatossava, T

    2008-10-01

    To determine the effects of supplemented copper (Cu2+) on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture. Thirteen strains belonging to Lactobacillus delbrueckii, Lactobacillus helveticus, Lactobacillus rhamnosus, Streptococcus thermophilus or Propionibacterium freudenreichii species were exposed to various copper concentrations in the proper growth medium at relevant growth temperatures, and the effects of supplemented copper on bacterial growth and cell viability were determined by optical density and pH measurements, also by platings. Among the species considered, L. delbrueckii was the most copper resistant and S. thermophilus the most sensitive to copper. Anaerobic conditions increased this sensitivity significantly. There was also a considerable amount of variation in copper resistance at strain level. Copper resistance is both a species- and strain-dependent property and may reflect variability in copper-binding capacities by cell wall components among species and strains. In addition, the chemical state of copper may be involved. This study revealed that copper resistance is a highly variable property among starter and adjunct strains, and this variability should be considered when strains are selected for Emmental cheese manufacture.

  1. Decolorization Treatment of Copper Phthalocyanine Textile Dye Wastewater by Electrochemical Methods

    Directory of Open Access Journals (Sweden)

    K. Dermentzis

    2013-01-01

    Full Text Available Electrochemical decolorization and degradation treatment of aqueous copper phthalocyanine reactive dye solutions was comparatively studied by electrocoagulation, electrooxidation and electro-Fenton processes. In the electrocoagulation process with aluminum electrodes the colored aqueous solutions of initial pH 6.4 containing 50 mg L-1 copper phthalocyanine and 6 g L-1 NaCl were treated at applied current densities of 2.5 and 5 mA cm-2. Fast and 100% decolorization was achieved in 4 and 2 minutes of electroprocessing respectively. The indirect electrooxidation process was conducted in acidic electrolyte solutions containing 50 mg L-1 copper phthalocyanine and 6 g L-1 NaCl with Ti/Pt and graphite plate electrodes at the applied current density of 10 mA cm-2. Even after 90 minutes of electrolysis time the dye remained by 23 and 18.8 % respectively undegradable. By the direct and indirect electrooxidation with the same amount of Na2SO4 electrolyte and added H2O2 respectively and using the same electrodes, the copper phthalocyanine dye was not or was only barely degraded respectively. In the electro-Fenton process with Fe electrodes and added amounts of H2O2 at pH 3 and an applied current density of 5 mA/cm2 complete degradation of copper phthalocyanine occurred in 15 minutes.

  2. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    OpenAIRE

    Terence K. S. Wong; Siarhei Zhuk; Saeid Masudy-Panah; Goutam K. Dalapati

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion e...

  3. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  4. Effect of Physical Property and Surface Morphology of Copper Foil at Electrodeposition Parameter

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Gyu; Park, Il Song; Lee, Man Hyung; Seol, Kyeong Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-06-15

    The effect of additives, current density and plated temperature on the surface morphology and physical property, during copper electrodeposition on polyimide (PI) film was investigated. Two kinds of additives, Cl and leveler (additive B), were used in this study. Electrochemical experiments were performed in conjunction with SEM, XRD and four-point probe to characterize the morphology and mechanical characteristics of copper electrodeposited in the presence of the additives. The surface roughness, crystal growth orientation and resistivity was controlled by the concentration of additive B. High resistivity and lower peel strength were observed on the surface of the copper layer electroplated in the electrolyte without additive B. However, a uniform surface, lower resistivity and high flexibility were obtained with a combination of 20 ppm Cl and 100 ppm additive B. Large particles were observed on the surface of the copper layer electroplated using a current density of 25 mA/cm{sup 2}, but a uniform surface and lower resistivity were obtained using a current density of 10 mA/cm{sup 2}. One of the required important properties of FCCL is flexibility of the copper foil. High flexibility of FCCL was obtained at a low current density, rather than a high current density. Moreover, a reasonable current density is 20 mA/cm{sup 2}, considering the productivity and mechanical properties of copper foil.

  5. Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells

    KAUST Repository

    Myung, Jaewook; Yang, Wulin; Saikaly, Pascal; Logan, Bruce E

    2018-01-01

    Long-term operation of wastewater-fed, microbial fuel cells (MFCs) with cathodes made of activated carbon and stainless steel (SS) current collectors can result in decreased performance due to cathode fouling. Copper has good antimicrobial properties, and it is more electrically conductive than SS. To demonstrate that a copper current collector could produce a more fouling resistant cathode, MFCs with air cathodes using either SS or copper current collectors were operated using domestic wastewater for 27 weeks. The reduction in biofouling over time was shown by less biofilm formation on the copper cathode surface compared to SS cathodes, due to the antimicrobial properties of copper. Maximum power densities from 17–27 weeks were 440 ± 38 mW/m2 using copper and 370 ± 21 mW/m2 using SS cathodes. The main difference in the microbial community was a nitrifying community on the SS cathodes, which was not present on the copper cathodes.

  6. Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells

    KAUST Repository

    Myung, Jaewook

    2018-02-05

    Long-term operation of wastewater-fed, microbial fuel cells (MFCs) with cathodes made of activated carbon and stainless steel (SS) current collectors can result in decreased performance due to cathode fouling. Copper has good antimicrobial properties, and it is more electrically conductive than SS. To demonstrate that a copper current collector could produce a more fouling resistant cathode, MFCs with air cathodes using either SS or copper current collectors were operated using domestic wastewater for 27 weeks. The reduction in biofouling over time was shown by less biofilm formation on the copper cathode surface compared to SS cathodes, due to the antimicrobial properties of copper. Maximum power densities from 17–27 weeks were 440 ± 38 mW/m2 using copper and 370 ± 21 mW/m2 using SS cathodes. The main difference in the microbial community was a nitrifying community on the SS cathodes, which was not present on the copper cathodes.

  7. Three-dimensional imaging of a complex concaved cuboctahedron copper sulfide crystal by x-ray nanotomography

    International Nuclear Information System (INIS)

    Chen Jie; Tian Jinping; Li Wenjie; Tian Yangchao; Wu Chunyan; Yu Shuhong

    2008-01-01

    By combining Fresnel zone-plate based transmission x-ray microscopy with computed tomography, the nanoscale features in materials with complex shapes can be imaged using synchrotron radiation. The tomographic data sets of a complex copper sulfide crystal were acquired in the angle range ±70 deg. at photon energy of 8.0 keV and then were reconstructed by a standard filtered-back-projection algorithm. This experiment shows the quantifiable three-dimensional information of the copper sulfide crystal, which offers a complete understanding of the concaved cuboctahedron structure with 14 faces comprising of six squares and eight triangles

  8. Efficient solar energy conversion in a low cost flat-plate solar cooker fabricated for use in rural areas of the south asian countries

    International Nuclear Information System (INIS)

    Jamil, Y.; Raza, M.; Muhammad, N.

    2008-01-01

    Solar flat plate cooker has been designed and fabricated for use in the rural areas of the South Asian countries. Indigenous low cost materials have been utilized for the fabrication of the cooker. The manufacturing cost of the cooker is less than US$ 150. The aim of this work is to utilize direct solar energy for cooking purpose. A flat plate absorber made of copper is used to absorb the heat energy from the sun. The maximum recorded plate temperature of the cooker was 110 degree C at an ambient temperature of 37 degree C. At this temperature sufficient steam is produced which is channeled to the cooking region though copper pipes. The cooker is found to be effective for cooking traditional food items like pulses, vegetables, meat, eggs, etc. It may be used as an alternative of fossil fuels in the rural areas of the South Asian countries, particularly by the rural women. (author)

  9. Low-temperature thermal conductivity of highly porous copper

    International Nuclear Information System (INIS)

    Tomás, G; Bonfait, G; Martins, D; Cooper, A

    2015-01-01

    The development and characterization of new materials is of extreme importance in the design of cryogenic apparatus. Recently Versarien ® PLC developed a technique capable of producing copper foam with controlled porosity and pore size. Such porous materials could be interesting for cryogenic heat exchangers as well as of special interest in some devices used in microgravit.y environments where a cryogenic liquid is confined by capillarity.In the present work, a system was developed to measure the thermal conductivity by the differential steady-state mode of four copper foam samples with porosity between 58% and 73%, within the temperatures range 20 - 260 K, using a 2 W @ 20 K cryocooler. Our measurements were validated using a copper control sample and by the estimation of the Lorenz number obtained from electrical resistivity measurements at room temperature. With these measurements, the Resistivity Residual Ratio and the tortuosity were obtained. (paper)

  10. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  11. Formation of dish-like holes and a channel structure in electrodeposition of copper under hydrogen co-deposition

    International Nuclear Information System (INIS)

    Nikolic, N.D.; Pavlovic, Lj.J.; Pavlovic, M.G.; Popov, K.I.

    2007-01-01

    Copper electrodeposition from acid sulfate solutions at an overpotential of 1000 mV, which is about 250 mV outside the plateau of the limiting diffusion current density, was examined by the determination of the average current efficiency of hydrogen evolution and by the scanning electron microscopic (SEM) analysis of the morphology of the formed copper deposits. Craters or holes formed due to the attachment hydrogen bubbles were the dominant morphological forms of copper deposits obtained at this overpotential. In dependence of the concentration of Cu (II) ions in the plating solution, the two types of holes or craters were formed. One type of holes is obtained by electrodeposition from a solution with a concentration of Cu (II) ions of 0.075 M CuSO 4 in 0.50 M H 2 SO 4 , and a honeycomb-like structure was formed from these holes. The other types of holes are formed from a solution with a higher concentration of Cu (II) ions (0.60 M CuSO 4 in 0.50 M H 2 SO 4 ) and the formed holes were dish-like. A mixture of both types of holes was obtained by electrodeposition from 0.30 M CuSO 4 in 0.50 M H 2 SO 4 . The obtained morphologies of copper deposits are discussed in terms of the effect of hydrogen evolution on the hydrodynamic conditions in the plating solution

  12. Electrical apparatus lockout device

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, R.

    1999-10-12

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.

  13. Electrical apparatus lockout device

    International Nuclear Information System (INIS)

    Gonzales, R.

    1999-01-01

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards

  14. The power flow angle of acoustic waves in thin piezoelectric plates.

    Science.gov (United States)

    Kuznetsova, Iren E; Zaitsev, Boris D; Teplykh, Andrei A; Joshi, Shrinivas G; Kuznetsova, Anastasia S

    2008-09-01

    The curves of slowness and power flow angle (PFA) of quasi-antisymmetric (A(0)) and quasi-symmetric (S(0)) Lamb waves as well as quasi-shear-horizontal (SH(0)) acoustic waves in thin plates of lithium niobate and potassium niobate of X-,Y-, and Z-cuts for various propagation directions and the influence of electrical shorting of one plate surface on these curves and PFA have been theoretically investigated. It has been found that the group velocity of such waves does not coincide with the phase velocity for the most directions of propagation. It has been also shown that S(0) and SH(0) wave are characterized by record high values of PFA and its change due to electrical shorting of the plate surface in comparison with surface and bulk acoustic waves in the same material. The most interesting results have been verified by experiment. As a whole, the results obtained may be useful for development of various devices for signal processing, for example, electrically controlled acoustic switchers.

  15. Kinetics of excited levels in copper-vapor laser

    International Nuclear Information System (INIS)

    Smilanski, I.

    1981-10-01

    A full and representative description of the excited copper level kinetics in a copper-vapor laser is presented. The research was carried out in three stages. The first stage was the development of a representative and reliable measurement cell. A laser tube constructed of refractory materials and an excitation circuit which provides short pulses at a high repetition rate to heat the tube and excite the copper atoms were developed. This stage was also dedicated to characterizing the laser and studying its scaling laws. In the second stage a rapid neasuring system which avoids the problem of spectral line shape was developed. The system is based on the 'hook' method, which utilizes the anomalous dispersion in the vicinity of an atomic line. The light source, a wide band nitrogen-laser-pumped dye laser, ensures a short sampling time, and the recording system, with a television camera face as the recording medium, allows precise data reduction. In the third stage the excited copper level kinetics in a copper vapor laser is measured. The principal conclusions, that only a small part of the energy in the discharge is utilized to populate the upper laser levels and that the lower laser level population is very large at the end of the excitation pulse and cannot be attributed to relaxation of the upper levels, necessitate a new kinetic description of the copper-vapor laser. The laser is not self-terminating; it is activated and terminated by the electrical discharge

  16. Microdistribution of phases and substructure of the composite electrolytic self-lubricating copper-molybdenite coating

    International Nuclear Information System (INIS)

    Pribysh, I.Z.; Bakakin, G.N.; Borzyak, A.G.; Sajfullin, R.S.

    1978-01-01

    The influence of MoS 2 particles on the substructure of a copper matrix was studied, and their location in the composition was established. It is shown that the presence of molybdenite causes a variation in the conditions of electrical crystallization of copper. The optimum composition has been found, which is used as a self-lubricating coating for friction machine parts

  17. Irradiation effects in tungsten-copper laminate composite

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L.M., E-mail: garrisonlm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Byun, T.S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Reiser, J.; Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-12-01

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10{sup 25} n/m{sup 2}, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039 dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile. - Highlights: • Fusion reactors need a tough, ductile tungsten plasma-facing material. • The unirradiated tungsten-copper laminate is more ductile than tungsten alone. • After neutron irradiation, the composite has significantly less ductility. • The tungsten behavior appears to dominate the overall composite behavior.

  18. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  19. Some properties of copper and selected heavy metal sulfides. A limited literature review

    International Nuclear Information System (INIS)

    Hermansson, H.P.

    1995-06-01

    In the SKB proposal for a Swedish nuclear waste repository, copper canisters are used for encapsulating the spent fuel. The chemical and physical behavior of Copper in the repository environment will therefore be of critical importance for the repository integrity. The present work concerns a literature review of Copper and selected heavy metal sulfides as they are expected to play an important role in the repository environment. The interest is focused on their properties as described by crystal structure, electrical properties, atom mobility, solubility in water, mechanisms of sulfidation and selected thermodynamical data. 56 refs, 14 figs, 5 tabs

  20. Electrokinetic copper and iron migration in anaerobic granular sludge

    NARCIS (Netherlands)

    Virkutyte, J.; Sillanpää, M.J.; Lens, P.N.L.

    2006-01-01

    The application of low-level direct electric current (0.15 mA cm¿2) as an electrokinetic technique to treat copper-contaminated mesophilic anaerobic granular sludge was investigated. The sludge was obtained from a full scale UASB reactor treating paper-mill wastewater and was artificially

  1. Ultrafine-Grained Precipitation Hardened Copper Alloys by Swaging or Accumulative Roll Bonding

    Directory of Open Access Journals (Sweden)

    Igor Altenberger

    2015-05-01

    Full Text Available There is an increasing demand in the industry for conductive high strength copper alloys. Traditionally, alloy systems capable of precipitation hardening have been the first choice for electromechanical connector materials. Recently, ultrafine-grained materials have gained enormous attention in the materials science community as well as in first industrial applications (see, for instance, proceedings of NANO SPD conferences. In this study the potential of precipitation hardened ultra-fine grained copper alloys is outlined and discussed. For this purpose, swaging or accumulative roll-bonding is applied to typical precipitation hardened high-strength copper alloys such as Corson alloys. A detailed description of the microstructure is given by means of EBSD, Electron Channeling Imaging (ECCI methods and consequences for mechanical properties (tensile strength as well as fatigue and electrical conductivity are discussed. Finally the role of precipitates for thermal stability is investigated and promising concepts (e.g. tailoring of stacking fault energy for grain size reduction and alloy systems for the future are proposed and discussed. The relation between electrical conductivity and strength is reported.

  2. Microcomponents manufacturing for precise devices by copper vapor laser

    Science.gov (United States)

    Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.

    2001-06-01

    This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.

  3. Quasi-isentropic compression using compressed water flow generated by underwater electrical explosion of a wire array

    Science.gov (United States)

    Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.

    2018-05-01

    A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.

  4. Copper ion fluxes through the floating water bridge under strong electric potential.

    Science.gov (United States)

    Giuliani, Livio; D'Emilia, Enrico; Lisi, Antonella; Grimaldi, Settimio; Brizhik, Larissa; Del Giudice, Emilio

    2015-01-01

    We have performed a series of experiments applying high voltage between two electrodes, immersed in two beakers containing bidistilled water in a way similar to experiments conducted by Fuchs and collaborators, which showed that a water bridge can be formed between the two containers. We also observed the formation of water bridge. Moreover, choosing different pairs of electrodes depending on the material they are made up of, we observed that copper ions flow can pass along the bridge if the negative electrode is made up of copper. We show that the direction of the flux not only depends on the applied electrostatic field but on the relative electronegativity of the electrodes too. These results open new perspectives in understanding the properties of water. We suggest a possible explanation of the obtained results.

  5. Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-03-01

    Full Text Available An investigation of the hydromagnetic boundary layer flow past a moving vertical plate in nanofluids in the presence of a uniform transverse magnetic field and thermal radiation has been carried out. Three different types of water-based nanofluids containing copper, aluminum oxide and titanium dioxide are taken into consideration. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of nanofluid temperature, velocity, the rate of heat transfer and the shear stress at the plate are presented graphically for several values of the pertinent parameters. The present study finds applications in engineering devices.

  6. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  7. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  8. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z.; Chen, Y. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Nguyen, T. [Mechanical Systems Engineering, Conestoga College, Kitchener (Canada); Galloway, J. [Welding Engineering Technology, Conestoga College, Kitchener (Canada); Gerlich, A.P. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  9. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  10. An improved model for predicting electrical contact resistance between bipolar plate and gas diffusion layer in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiliang; Wang, Shuxin [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Zhou, Yuanyuan; Lin, Guosong; Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2008-07-15

    Electrical contact resistance between bipolar plates (BPPs) and gas diffusion layers (GDLs) in PEM fuel cells has attracted much attention since it is one significant part of the total contact resistance which plays an important role in fuel cell performance. This paper extends a previous model by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783] on the prediction of electrical contact resistance within PEM fuel cells. The original microscale numerical model was based on the Hertz solution for individual elastic contacts, assuming that contact bodies, GDL carbon fibers and BPP asperities are isotropic elastic half-spaces. The new model features a more practical contact by taking into account the bending behavior of carbon fibers as well as their anisotropic properties. The microscale single contact process is solved numerically using the finite element method (FEM). The relationship between the contact pressure and the electrical resistance at the GDL/BPP interface is derived by multiple regression models. Comparisons of the original model by Zhou et al. and the new model with experimental data show that the original model slightly overestimates the electrical contact resistance, whereas a better agreement with experimental data is observed using the new model. (author)

  11. ELECTRICAL EQUIVALENT CIRCUIT OF BIOLOGICAL OBJECTS OF VEGETABLE

    Directory of Open Access Journals (Sweden)

    I. M. Golev

    2014-01-01

    Full Text Available Summary.The results of measurements of complex biological tissues electrical resistance of vegetable origin are presented. The measurements were performed at T=296 K in the frequency range from 5 to 500 kHz. As the electrodes were covered with tin (purity of 99.9% copper plates.. Experimentally investigated the following objects: samples parenchymal tissue of Apple in the form of cylinders with a diameter of 20 mm and a length of 20 mm; Apple juice, obtained by mechanical destruction of cells; pressed Apple pulp (juice content of not more than 20%obtained by the centrifugal separation, which destroyed the system of cells. For plant tissue with a holistic system of cells in the field 103 - 105 Hz is observed pronounced minimum angle of phase shift. In the absence of cells and its value is greatly reduced .The equivalent electrical circuit fabrics are considered. The calculation of all its elements is made. The equivalent capacitance of the electrical double layer at the interface of metal measuring electrode and extracellular fluid is element of C1 . The electrical resistance of this layer alternating current is characterized by the element R1 . Chain parallel connected resistance and capacitance describes the system of plant cells. The capacitance C2 is due to the electrical capacity of the cell membranes, and the resistance R2 is the electrical resistance of the membranes and intracellular space.The coincidence of experimental and calculated data in a frequency range of more than 103 Hz satisfactory. In the region of lower frequencies is observed differences. This may be due to the specific behavior of the electrical double layer. However, in the frequency region where the electrical properties of the cell structure of the investigated tissue match good, which proves the validity of the considered equivalent circuit. It is shown that the value of the complex electrical impedance of vegetable tissue in the frequency range from 103 Hz to 105

  12. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    2010-06-01

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  13. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  14. Solid state impact welding of BMG and copper by vaporizing foil actuator welding

    Energy Technology Data Exchange (ETDEWEB)

    Vivek, Anupam, E-mail: vivek.4@osu.edu [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Presley, Michael [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Flores, Katharine M. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University, One Brookings Drive, St. Louis, MO 63130 (United States); Hutchinson, Nicholas H.; Daehn, Glenn S. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States)

    2015-05-14

    The objective of this study was to create impact welds between a Zr-based Bulk Metallic Glass (BMG) and copper at a laboratory scale and subsequently investigate the relationship between interfacial structure and mechanical properties. Vaporizing Foil Actuator (VFA) has recently been demonstrated as a versatile tool for metalworking applications: impact welding of dissimilar materials being one of them. Its implementation for welding is termed as VFA Welding or VFAW. With 8 kJ input energy into an aluminum foil actuator, a 0.5 mm thick Cu110 alloy sheet was launched toward a BMG target resulting in an impact at a velocity of nearly 600 m/s. For this experiment, the welded interface was straight with a few BMG fragments embedded in the copper sheet in some regions. Hardness tests across the interface showed increase in strength on the copper side. Instrumented peel test resulted in failure in the parent copper sheet. A slower impact velocity during a separate experiment resulted in a weld, which had wavy regions along the interface and in peel failure again happened in the parent copper sheet. Some through-thickness cracks were observed in the BMG plate and there was some spall damage in the copper flyers. TEM electron diffraction on a sample, cut out from the wavy weld interface region using a focused ion beam, showed that devitrification of the BMG was completely avoided in this welding process.

  15. Comparation of fundamental analytical methods for quantitative determination of copper(IIion

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2008-01-01

    Full Text Available Copper is a ductile metal with excellent electrical conductivity, and finds extensive use as an electrical conductor, heat conductor, as a building material, and as a component of various alloys. In this work accuracy of methods for quantitative determination (gravimetric and titrimetric methods of analysis of copper(II ion was studied. Gravimetric methods do not require a calibration or standardization step (as all other analytical procedures except coulometry do because the results are calculated directly from the experimental data and molar masses. Thus, when only one or two samples are to be analyzed, a gravimetric procedure may be the method of choice because it involves less time and effort than a procedure that requires preparation of standards and calibration. In this work in gravimetric analysis the concentration of copper(II ion is established through the measurement of a mass of CuSCN and CuO. Titrimetric methods is a process in which a standard reagent is added to a solution of an analyze until the reaction between the analyze and reagent is judged to be complete. In this work in titrimetric analysis the concentration of copper(II ion is established through the measurement of a volume of different standard reagents: Km, Na2S2O3 and AgNO3. Results were discussed individually and mutually with the aspect of exactility, reproductivity and rapidity. Relative error was calculated for all methods.

  16. Characterization and control of the microbial community affiliated with copper or aluminum heat exchangers of HVAC systems.

    Science.gov (United States)

    Schmidt, Michael G; Attaway, Hubert H; Terzieva, Silva; Marshall, Anna; Steed, Lisa L; Salzberg, Deborah; Hamoodi, Hameed A; Khan, Jamil A; Feigley, Charles E; Michels, Harold T

    2012-08-01

    Microbial growth in heating ventilation and air-conditioning (HVAC) systems with the subsequent contamination of indoor air is of increasing concern. Microbes and the subsequent biofilms grow easily within heat exchangers. A comparative study where heat exchangers fabricated from antimicrobial copper were evaluated for their ability to limit microbial growth was conducted using a full-scale HVAC system under conditions of normal flow rates using single-pass outside air. Resident bacterial and fungal populations were quantitatively assessed by removing triplicate sets of coupons from each exchanger commencing the fourth week after their installation for the next 30 weeks. The intrinsic biofilm associated with each coupon was extracted and characterized using selective and differential media. The predominant organisms isolated from aluminum exchangers were species of Methylobacterium of which at least three colony morphologies and 11 distinct PFGE patterns we found; of the few bacteria isolated from the copper exchangers, the majority were species of Bacillus. The concentrations and type of bacteria recovered from the control, aluminum, exchangers were found to be dependent on the type of plating media used and were 11,411-47,257 CFU cm(-2) per coupon surface. The concentration of fungi was found to average 378 CFU cm(-2). Significantly lower concentrations of bacteria, 3 CFU cm(-2), and fungi, 1 CFU cm(-2), were recovered from copper exchangers regardless of the plating media used. Commonly used aluminum heat exchangers developed stable, mixed, bacterial/fungal biofilms in excess of 47,000 organisms per cm(2) within 4 weeks of operation, whereas the antimicrobial properties of metallic copper were able to limit the microbial load affiliated with the copper heat exchangers to levels 99.97 % lower during the same time period.

  17. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  18. Processing of aluminum matrix composites by electroless plating and melt infiltration

    International Nuclear Information System (INIS)

    Leon, C.A.; Bourassa, A.-M.; Drew, R.A.L.

    2000-01-01

    Reduction of the SiC/ Al interaction and enhancement of wetting between reinforcements and molten aluminum was obtained by modifying the ceramic surface with deposition of nickel and copper coatings. The preparation of nickel- and copper-coated ceramic particles as precursors for MMC fabrication was studied. Al 2 O 3 and SiC powders were successfully coated with Ni and Cu using electroless metal plating. Uniform and continuous metal films were deposited on both, alumina and silicon carbide powders XRD showed that the Ni-P deposit was predominantly amorphous, while the copper deposit was essentially polycrystalline. Infiltration results showed that the use of the coated powders enhances the wettability between the matrix and ceramic phase when processing particulate MMCs by a vacuum infiltration technique, giving a porosity-free composite with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterpart samples XRD microstructural analysis of the composites indicates the formation of intermetallic phases such as CuAl 2 , in the case of copper coating, and NiAl and NiAl 3 when nickel-coated powders are infiltrated. Metallization of the ceramics minimizes the interfacial reaction of the SiC/Al composites and promotes wetting of Al 2 O 3 reinforcements with liquid aluminum. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  19. Copper nanorod array assisted silicon waveguide polarization beam splitter.

    Science.gov (United States)

    Kim, Sangsik; Qi, Minghao

    2014-04-21

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.

  20. Study of low energy thermal constraints for a copper-plated niobium structure carried out by thermal projection

    International Nuclear Information System (INIS)

    Gassot, H.; Durante, M.; Thiebault, A.; Vernay, E.

    1999-06-01

    In the framework of T.T.F. (Tesla Test Facility), the international collaboration on research and development of superconducting cavities, a study of a new method of manufacturing cavities was launched, which consists in deposing a metal (copper) or an alloy by thermal projection on niobium cavities in order to stiffen them. Analytical and numerical calculations showed that when cooled this bi-material cavities behave very differently in comparison with classical pure niobium cavities and strong thermal constraints do occur in niobium as well as in copper. These strong constraints may have important consequences upon the functioning of superconducting cavities. In addition these constraints may induce in time cracks in materials and interfaces. In this paper an experiment for measuring constraints at the temperature of cavity operation, i.e., at the liquid helium temperature, is proposed in order to compare the measured constraints with the calculated constraints. The sample studied has a cylindrical shape, rather representative for the geometrical shape of cavities, but easier to handle than a prototype cavity. The experimental approach consists in carrying out two deformation measurements. The first one, is done on single material sample (niobium and copper) to establish the laws of compensation of the constraint gauges as a function of temperature. The other measurement establishes the global deformations of a bi-metallic tube (Nb-Cu) when the interior surface (niobium) and the external surface (porous copper) of the tube are cooled. From these deformation data the thermal constraints of the bi-metallic tube at low temperature have been derived. The implementation of the entire setup of the methods of measuring the constraints at low temperature constitutes a new development in the field of superconducting cavities. The experiments have also indicated certain further developments which should be achieved if the plastic deformations induced by the freezing regime

  1. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    Science.gov (United States)

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  2. An investigation of fusion zone microstructures in electron beam welding of copper-stainless steel

    International Nuclear Information System (INIS)

    Magnabosco, I.; Ferro, P.; Bonollo, F.; Arnberg, L.

    2006-01-01

    The article presents a study of three different welded joints produced by electron beam welding dissimilar materials. The junctions were obtained between copper plates and three different austenitic stainless steel plates. Different welding parameters were used according to the different thicknesses of the samples. Morphological, microstructural and mechanical (micro-hardness test) analyses of the weld bead were carried out. The results showed complex heterogeneous fusion zone microstructures characterized both by rapid cooling and poor mixing of the materials which contain main elements which are mutually insoluble. Some defects such as porosity and microfissures were also found. They are mainly due to the process and geometry parameters

  3. Effects of filler wire on residual stress in electron beam welded QCr0.8 copper alloy to 304 stainless steel joints

    International Nuclear Information System (INIS)

    Zhang, Bing-Gang; Zhao, Jian; Li, Xiao-Peng; Chen, Guo-Qing

    2015-01-01

    The electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with or without copper filler wire was studied in detail. The temperature fields and magnitude and distribution of stress fields in the joints during the welding process were numerically simulated using finite element method. The temperature cycles and residual stresses were also experimentally measured by thermometric and hole-drilling methods, respectively. The accuracy of the modeling procedure was verified by the good agreement between the calculated results and experimental data. The temperature distribution in the joint was found to be asymmetric along the center of weld. In particular, the temperature in the copper alloy plate is much higher than that in the 304 SS plate owing to the great difference in thermal conductivity between the two materials. The peak three-dimensional residual stresses all appeared at the interface between the copper and steel in the two different joints. Furthermore, the weld was subjected to tensile stress. The longitudinal residual stress, generally the most harmful to the integrity of the structure among the stress components in EBW with filler wire (EBFW), was 53 MPa lower than that of autogenous EBW (AEBW), and the through-thickness residual stress was 12 MPa lower. The transverse residual stress of EBFW was 44 MPa higher than that of AEBW. However, analysis of the von Mises stress showed that the EBFW process effectively reduced the extent of the high residual stress region in the weld location and the magnitude of the residual stresses in the copper side compared with those of the AEBW joint. - Highlights: • Copper and steel was welded by electron beam welding with copper filler wire. • The copper wire fed into gap can reduce the peak value of residual stress. • The peak value of longitudinal stress can be reduced 53 MPa by the filler wire. • The range of nov Mises stress in the weld could be reduced by the wire

  4. Separation of Cadmium in Printing Industrial Liquid Waste by Electromagnetic Plating System

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    To prevent incidence of environmental contamination and its effect to society health and other mortal, poisonous and dangerous substance waste have to be managed peculiarly by minimizing or eliminating the nature of its danger. Various processing have been developed to degrade the waste rate for example sorption, flotation, flocculation, etc., but the yield of the degradation of metal rate can not fulfill permanent standard quality of liquid waste. Because of the reason explained before, its important to make a new breakthrough as one of final phase processing alternative named reductant electromagnetic plating. Waste to be degraded in this research is cadmium. In fact cadmium represent the foregain metal for human and is not require at all in human body for metabolism process. Though plenty of cadmium exploited, but during for centuries it caused the food poisoned because this metal insoluble in organic acid. Separation of cadmium rate with electromagnetic plating influenced by time process, concentration, current strength, and type of electrode plate. Result of research indicate that the optimum time processing if using plate of copper electrode is during 30 minute and using plate of aluminium electrode is during 20 minute. Optimum of strong current that used in process of electromagnetic plating is only 0.8 Ampere and concentration effective is 5 mg / L. The most effective type of electrode plate for reducing cadmium from waste by using electromagnetic plating is aluminium. Appliance of electromagnetic plating system is very compatible used for the reduction of cadmium and others metal for feed concentration (1 - 5) mg/L .at the price efficiency of reduction is (95 - 98) %, standard quality of liquid waste is (0.05 - 1) mg/L. (author)

  5. [Comparison of novel infrared heating plates and conventional warm water plates for piglets' creep areas in farrowing pens].

    Science.gov (United States)

    Strauch-Sürken, L; Wendt, M

    2015-01-01

    On a conventionally managed piglet-producing farm, novel infrared (IR) heating plates for piglets in the farrowing pens were tested for their suitability and compared with common warm-water (WW) heating plates. In total, 134 litters (summer n = 82, winter n = 52) were investigated, which were housed on IR or WW heating plates, respectively, with or without an extra cover plate (groups 1-4). To determine the influence of the different heat sources, the wound healing after castration and tail docking, the umbilical regression and the weight gain of the piglets were investigated. Additionally, the lying behavior of the piglets and the position of the sows' udder at the time of farrowing were examined with regard to the heating plates. Furthermore, the energy consumption and costs were compared. The piglets housed on IR heating plates displayed better wound healing after castration and tail docking than the piglets housed on WW plates. The best results were obtained in piglets kept on IR heating plates with an extra cover plate. In addition, significant benefits were demonstrated for the usage of IR heating plates regarding umbilical regression. The piglets kept on IR heating plates had a slightly better weight gain in summer, whereas there were no differences between groups during winter. The lying behavior in the creep areas was similar in all groups. In general, with increasing age the percentage of time piglets spent in the lying position on the plates decreased. The percentage of time lying on the plates was higher in winter than in summer. At farrowing, 74.6% of all investigated sows directed their udder towards the heating plates. With the IR heating plates, this behavior occurred significantly more often. The energy consumption (kWh) per litter was significantly lower for the IR heating plates (electric power) both in winter and summer in comparison with the WW plates (gas). The energy costs were comparable in summer, but were higher for the IR heating plates

  6. Corrosion of metal bipolar plates for PEM fuel cells: A review

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Renato A. [Engenharia de Materiais, Universidade Federal do ABC (UFABC), 09210-170 Santo Andre, SP (Brazil); Oliveira, Mara Cristina L.; Ett, Gerhard; Ett, Volkmar [Electrocell Ind. Com. Equip. Elet. LTDA, Centro de Inovacao, Empreendedorismo e Tecnologia (CIETEC), 05508-000 Sao Paulo, SP (Brazil)

    2010-04-15

    PEM fuel cells are of prime interest in transportation applications due to their relatively high efficiency and low pollutant emissions. Bipolar plates are the key components of these devices as they account for significant fractions of their weight and cost. Metallic materials have advantages over graphite-based ones because of their higher mechanical strength and better electrical conductivity. However, corrosion resistance is a major concern that remains to be solved as metals may develop oxide layers that increase electrical resistivity, thus lowering the fuel cell efficiency. This paper aims to present the main results found in recent literature about the corrosion performance of metallic bipolar plates. (author)

  7. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  8. An experimental evaluation of joint electrical resistance on power lead thermal performance

    International Nuclear Information System (INIS)

    Datskov, V.I.; Demko, J.A.; Augustynowicz, S.D.; Hutton, R.D.

    1994-01-01

    The amount of electrical resistance in braze joints is not known for certain. In addition the annealing processes that occurs during a braze or solder operation can change the residual resistivity ratio (RRR) of the copper. The change in the electrical resistivity of samples of copper because of exposure to conditions that a high current lead would see during a brazing operation were experimentally investigated. A sample was taken from a manufacturing and brazing trial of the high current power leads for the Superconducting Super Collider (SSC), and from oxygen free high conductivity copper (OFHC) 101 rod similar to that used in the trial. The samples were heated under conditions that a current lead would undergo during the brazing process. Measurements were made of the electrical resistance of the copper specimens and across a braze joint in the manufacturing trial sample for temperatures ranging from liquid helium to room temperature. A prototype of the SSC high current lead is shown. This lead was fabricated from 5 sections that were brazed together. Some results for the measured residual resistivity ratio (RRR) along this lead are given

  9. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressiani, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y, Ba, Cu, O) - and (Y, A1, Ba, Cu, O) - based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper-constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  10. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressian, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y,Ba,Cu,O)- and (Y,Al,Ba,Cu,O)-based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  11. Micro friction stir welding of copper electrical contacts

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2014-10-01

    Full Text Available The paper presents an analysis of micro friction stir welding (μFSW of electrolytic tough pitch copper (CuETP in a lap and butt joint. Experimental plan was done in order to investigate the influence of tool design and welding parameters on the formation of defect free joints. The experiments were done using universal milling machine where the tool rotation speed varied between 600 and 1 900 rpm, welding speed between 14 and 93 mm/min and tilt angle between 3° and 5°. From the welds samples for analysis of microstructure and samples for tensile tests were prepared. The grain size in the nugget zone was greatly reduced compared to the base metal and the joint tensile strength exceeded the strength of the base metal.

  12. Alternative bipolar plates design and manufacturing for PEM fuel cell

    International Nuclear Information System (INIS)

    Lee Chang Chuan; Norhamidi Muhamad; Jaafar Sahari

    2006-01-01

    Bipolar plates is one of the important components in fuel cell stack, it comprise up to 80% of the stack volume. Traditionally, these plates have been fabricated from graphite, owing to its chemical nobility, and high electrical and thermal conductivity; but these plates are brittle and relatively thick. Therefore increasing the stack volume and size. Alternatives to graphite are carbon-carbon composite, carbon-polymer composite and metal (aluminum, stainless steel, titanium and nickel based alloy). The use of coated and uncoated metal bipolar plates has received attention recently due to the simplicity of plate manufacturing. The thin nature of the metal substrate allows for smaller stack design with reduced weight. Lightweight coated metals as alternative to graphite plate is being developed. Beside the traditional method of machining and slurry molding, metal foam for bipolar plates fabrication seems to be a good alternative. The plates will be produced with titanium powder by Powder Metallurgy method using space holders technique to produce the meal foam flow-field. This work intends to facilitate the materials and manufacturing process requirements to produce cost effective foamed bipolar plates for fuel cell

  13. Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Lee Kyoung-Jin

    2016-06-01

    Full Text Available Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1 powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2 resulted in the increased electrical conductivity and decreased polarization resistance. It appears that this phenomenon was associated with the high mean valence of nickel and copper and the resulting excess oxygen (δ. It was found that power densities of the cell with the Nd2Ni1-xCuxO4+δ (x=0.1 and 0.2 cathode were higher than that of the cell with the Nd2NiO4+δ cathode.

  14. Effects of neutron irradiation to 63 dpa on the properties of various commercial copper alloys

    International Nuclear Information System (INIS)

    Brager, H.R.

    1985-04-01

    High purity copper and six commercial copper alloys were neutron irradiated to 47 and 63 dpa at about 450 0 C in the FFTF. Immersion density measurements showed a wide range of swelling behavior after irradiation to 63 dpa. At one extreme was CuBe in the aged and tempered (AT) condition which had densified slightly. At the other extreme was 20% CW Cu-0.1% Ag which swelled over 45%. Electrical resistivity measurements followed trends similar to previously published results for the same alloys irradiated to 16 dpa: a continued change in conductivity with fluence which appears to relate to void formation, transmutation products and coarsening of second phase precipitates. These results were compared with electrical conductivity of unirradiated alloys examined after aging for 10,000 hours. The most irradiation resistant high-conductivity copper alloys examined after 63 dpa are A125 and MZC. Cu-2.0Be, only a moderate-conductivity alloy, exhibits very consistent irradiation resistant properties

  15. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  16. Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Tae [Department of Fusion Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of); Lee, Young-In [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811 (Korea, Republic of); Kim, Seil [Department of Fusion Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of); Lee, Kun-Jae [Department of Energy Engineering, Dankook University, Cheonan 31116 (Korea, Republic of); Choa, Yong-Ho, E-mail: choa15@hanyang.ac.kr [Department of Fusion Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of)

    2017-02-28

    Highlights: • Hydrogen thermally- and plasma- treatments are applied to reduce and sinter the inkjet-printed copper patterns at low temperature. • Plasma sintered Cu patterns have fully densified microstructure with the resistivity of 3.23 μW cm. • Cu conductive track with dense microstructure remains its electrical resistivity after 1 month. • Thermal sintered Cu patterns show a relatively poor microstructure and high resistivity. - Abstract: Low temperature sintering techniques are crucial in developing flexible printed electronics. In this work, we demonstrate a novel hydrogen plasma sintering method that achieves a full reduction and densification of inkjet-printed patterns using a copper complex ion ink. After inkjet printing on polyethylene terephthalate (PET) substrates, both hydrogen plasma and conventional hydrogen thermal treatment were employed to compare the resulting microstructures, electrical properties and anti-oxidation behavior. The plasma treated pattern shows a fully densified microstructure with a resistivity of 3.23 μΩ cm, while the thermally treated pattern shows a relatively poor microstructure and high resistivity. In addition, the hydrogen plasma-treated copper pattern retains its electrical resistivity for one month without any significant decrease. This novel hydrogen plasma sintering technique could be used to produce conductive patterns with excellent electrical properties, allowing for highly reliable flexible printed electronics.

  17. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  18. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.

    Science.gov (United States)

    Levy, Jacqueline L; Angel, Brad M; Stauber, Jennifer L; Poon, Wing L; Simpson, Stuart L; Cheng, Shuk Han; Jolley, Dianne F

    2008-08-29

    Although it has been well established that different species of marine algae have different sensitivities to metals, our understanding of the physiological and biochemical basis for these differences is limited. This study investigated copper adsorption and internalisation in three algal species with differing sensitivities to copper. The diatom Phaeodactylum tricornutum was particularly sensitive to copper, with a 72-h IC50 (concentration of copper to inhibit growth rate by 50%) of 8.0 microg Cu L(-1), compared to the green algae Tetraselmis sp. (72-h IC50 47 microg Cu L(-1)) and Dunaliella tertiolecta (72-h IC50 530 microg Cu L(-1)). At these IC50 concentrations, Tetraselmis sp. had much higher intracellular copper (1.97+/-0.01 x 10(-13)g Cu cell(-1)) than P. tricornutum (0.23+/-0.19 x 10(-13)g Cu cell(-1)) and D. tertiolecta (0.59+/-0.05 x 10(-13)g Cu cell(-1)), suggesting that Tetraselmis sp. effectively detoxifies copper within the cell. By contrast, at the same external copper concentration (50 microg L(-1)), D. tertiolecta appears to better exclude copper than Tetraselmis sp. by having a slower copper internalisation rate and lower internal copper concentrations at equivalent extracellular concentrations. The results suggest that the use of internal copper concentrations and net uptake rates alone cannot explain differences in species-sensitivity for different algal species. Model prediction of copper toxicity to marine biota and understanding fundamental differences in species-sensitivity will require, not just an understanding of water quality parameters and copper-cell binding, but also further knowledge of cellular detoxification mechanisms.

  19. Determination of the threshold-energy surface for copper using in-situ electrical-resistivity measurements in the high-voltage electron microscope

    International Nuclear Information System (INIS)

    King, W.E.; Merkle, K.L.; Meshii, M.

    1981-01-01

    A detailed study of the anisotropy of the threshold energy for Frenkel-pair production in copper was carried out experimentally, using in-situ electrical-resistivity measurements in the high-voltage electron microscope. These electrical-resistivity measurements, which are sensitive to small changes in point-defect concentration, were used to determine the damage or defect production rate. Damage-rate measurements in copper single crystals were carried out for approx.40 incident electron-beam directions and six electron energies from 0.4 to 1.1 MeV. The total cross section for Frenkel-pair production is proportional to the measured damage rate and can be theoretically calculated if the form of the threshold-energy surface is known. Trial threshold-energy surfaces were systematically altered until a ''best fit'' of the calculated to the measured total cross sections for Frenkel-pair production was obtained. The average threshold energy of this surface is 28.5 eV. The minimum threshold energy is 18 +- 2 eV and is located near . A ring of very high threshold energy (>50 eV) surrounds the direction. A damage function for single-defect production was derived from this surface and was applied to defect-production calculations at higher recoil energies. This function rises rather sharply from a value of zero at 17 eV to 0.8 at 42 eV. It has the value of 0.5 at 24.5 eV. Above 30 eV the slope of the curve begins to decrease, reflecting the presence of the high-energy regions of the threshold-energy surface. Both topographical and quantitative comparisons of the present surface with those in the literature were presented. Based on a chi 2 goodness-of-fit test, the present surface was found to predict the experimentally observed total cross sections for Frenkel-pair production significantly better than the other available surfaces. Also, the goodness of fit varied substantially less with energy and direction for the present surface

  20. Electron-photon shower distribution function tables for lead, copper and air absorbers

    CERN Document Server

    Messel, H

    2013-01-01

    Electron-Photon Shower Distribution Function: Tables for Lead, Copper and Air Absorbers presents numerical results of the electron-photon shower distribution function for lead, copper, and air absorbers. Electron or photon interactions, including Compton scattering, elastic Coulomb scattering, and the photo-electric effect, are taken into account in the calculations. This book consists of four chapters and begins with a review of both theoretical and experimental work aimed at deducing the characteristics of the cascade produced from the propagation of high energy electrons and photons through

  1. Improvisation of mechanical and electrical properties of Cu by reinforcing MWCNT using modified electro-co-deposition process

    Science.gov (United States)

    Belgamwar, Sachin U.; Sharma, N. N.

    2018-04-01

    Multi-walled Carbon nanotubes–copper (MWCNT/Cu) composite powders with variable MWCNT content were synthesized by modified electro-co-deposition method. The electro-co-deposited MWCNT/Cu powders were consolidated by conventional compaction and sintering process. The consolidated products were then hot rolled and cold drawn to fine wires. The MWCNT/Cu composite wire samples were characterized for electrical and mechanical properties. We have been able to achieve an increase of around 8% in electrical conductivity of the form wires repeatedly. It has been observed that there was gradual improvement in the properties with reinforcement of MWCNT in the copper matrix. The betterment of electrical property has been achieved with simultaneous improvement in mechanical properties of the wire. The yield strength of MWCNT/Cu composite wire was found to be four times and the tensile strength two times greater than that of pure copper. The improved properties are attributed to the proper distribution of MWCNTs in the copper matrix and excellent interfacial bonding between MWCNT and composite copper fabricated by the modified method.

  2. High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.

    Science.gov (United States)

    Lauterborn, W; Judt, A; Schmitz, E

    1993-01-01

    A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.

  3. Cold-electrode voltage fall for impulse arcs in argon between copper electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, O; Cooray, V, E-mail: oscar.diaz@angstrom.uu.se [Lightning Research Group, Division for Electricity, Uppsala University Angstroemlaboratoriet Box 5234, 751 20, Uppsala (Sweden)

    2011-06-23

    The full electric arc discharge in gases for short gaps in homogeneous electric field and pressure{center_dot}distance (pd) below 150 Torr{center_dot}cm, can be described as a transition between different discharge mechanisms such as: Townsend, glow, and arc. Once the arc is achieved the measured voltage drops to some volts and the current density increases several orders of magnitude. Depending upon the type of gas used, the electrode surface characteristics and type of electrical excitation, the cathode and anode voltage fall might change. The present work is directed to study the electrode fall (sum of anode and cathode falls) during a current impulse arc discharge between copper electrodes in ceramic tubes filled with argon between 0.01 and 6.5 Torr{center_dot}cm. The copper electrodes were cleaned, degassed and hydrogen reduced. The arc voltages were measured with fast/slow rise times and short/long duration current impulses produced by a RLC circuit. An increasing variation of the electrode fall was found at the pressure{center_dot}distance range analyzed.

  4. Effect of chemical composition of copper alloys on their hot-brittleness and weldability

    International Nuclear Information System (INIS)

    Zakharov, M.V.

    1985-01-01

    Effect of different alloying elements on the hot crack formation in argon-arc welding of M1 copper has been studied. It is shown that the effective crystallization interval has a determining influence on hot-brittleness of low-alloyed high-thermal- and electric conducting welded copper alloys. The narrow is this interval the lower is linear schrinkage and the alloys inclined to the formation of crystallization cracks in welding to a lesser degree. Alloying elements with low solubility in copper in solid state broadening the crystallization interval affect negatively the alloy hot-brittleness. Such additives as zirconium are useful at 0.02-0.O5% content and at > 0.1% content are intolerable. As to cadmium, tin, magnesium, cerium and antimony additives they don't practically strengthen copper and its alloys at 700-800 deg C and they should not be introduced

  5. The characteristics of void distribution in spalled high purity copper cylinder under sweeping detonation

    Science.gov (United States)

    Yang, Yang; Jiang, Zhi; Chen, Jixinog; Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo

    2018-03-01

    The effects of different peak compression stresses (2-5 GPa) on the spallation behaviour of high purity copper cylinder during sweeping detonation were examined by Electron Backscatter Diffraction Microscopy, Doppler Pins System and Optical Microscopy techniques. The velocity history of inner surface and the characteristics of void distributions in spalled copper cylinder were investigated. The results indicated that the spall strength of copper in these experiments was less than that revealed in previous reports concerning plate impact loading. The geometry of cylindrical copper and the obliquity of incident shock during sweeping detonation may be the main reasons. Different loading stresses seemed to be responsible for the characteristics of the resultant damage fields, and the maximum damage degree increased with increasing shock stress. Spall planes in different cross-sections of sample loaded with the same shock stress of 3.29 GPa were found, and the distance from the initiation end has little effect on the maximum damage degree (the maximum damage range from 12 to 14%), which means that the spallation behaviour was stable along the direction parallel to the detonation propagation direction under the same shock stress.

  6. Comparison of Some Mechanical and Physical Methods for Measurement of Residual Stresses in Brush-Plated Nickel Hardened Gold and Silver Coatings

    Directory of Open Access Journals (Sweden)

    Harri LILLE

    2016-05-01

    Full Text Available Hard gold and silver are applied in coating owing to their high hardness, good wear and corrosion resistance for engineering application (e.g. on generators slip rings, sliding contacts and small machine parts and are typically plated on copper (mostly, brass and bronze. The studied nickel-hardened gold and silver coatings were brush plated on open thin-walled copper ring substrates. Residual stresses in the coatings were calculated from the curvature changes of the substrates. Biaxial intrinsic residual stresses were also determined by nanoindentation testing and by the X-ray technique. The values of the residual stresses represented tensile stresses and when determined by the techniques used they were comparable within a maximum limit of measurement uncertainty. These stresses relax; the dependence of relaxation time was approximated by a linear-fractional function.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7439

  7. LASER INDUCED SELECTIVE ACTIVATION UTILIZING AUTO-CATALYTIC ELECTROLESS PLATING ON POLYMER SURFACE

    DEFF Research Database (Denmark)

    Zhang, Yang; Nielsen, Jakob Skov; Tang, Peter Torben

    2009-01-01

    . Characterization of the deposited copper layer was used to select and improve laser parameters. Several types of polymers with different melting points were used as substrate. Using the above mentioned laser treatment, standard grades of thermoplastic materials such as ABS, SAN, PE, PC and others have been......This paper presents a new method for selective micro metallization of polymers induced by laser. An Nd: YAG laser was employed to draw patterns on polymer surfaces using a special set-up. After subsequent activation and auto-catalytic electroless plating, copper only deposited on the laser tracks....... Induced by the laser, porous and rough structures are formed on the surface, which favours the palladium attachment during the activation step prior to the metallization. Laser focus detection, scanning electron microscopy (SEM) and other instruments were used to analyze the topography of the laser track...

  8. Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods.

    Science.gov (United States)

    Vilaró, Ignasi; Yagüe, Jose L; Borrós, Salvador

    2017-01-11

    Due to continuous miniaturization and increasing number of electrical components in electronics, copper interconnections have become critical for the design of 3D integrated circuits. However, corrosion attack on the copper metal can affect the electronic performance of the material. Superhydrophobic coatings are a commonly used strategy to prevent this undesired effect. In this work, a solventless two-steps process was developed to fabricate superhydrophobic copper surfaces using chemical vapor deposition (CVD) methods. The superhydrophobic state was achieved through the design of a hierarchical structure, combining micro-/nanoscale domains. In the first step, O 2 - and Ar-plasma etchings were performed on the copper substrate to generate microroughness. Afterward, a conformal copolymer, 1H,1H,2H,2H-perfluorodecyl acrylate-ethylene glycol diacrylate [p(PFDA-co-EGDA)], was deposited on top of the metal via initiated CVD (iCVD) to lower the surface energy of the surface. The copolymer topography exhibited a very characteristic and unique nanoworm-like structure. The combination of the nanofeatures of the polymer with the microroughness of the copper led to achievement of the superhydrophobic state. AFM, SEM, and XPS were used to characterize the evolution in topography and chemical composition during the CVD processes. The modified copper showed water contact angles as high as 163° and hysteresis as low as 1°. The coating withstood exposure to aggressive media for extended periods of time. Tafel analysis was used to compare the corrosion rates between bare and modified copper. Results indicated that iCVD-coated copper corrodes 3 orders of magnitude slower than untreated copper. The surface modification process yielded repeatable and robust superhydrophobic coatings with remarkable anticorrosion properties.

  9. Effect of self purification on the structural optical and electrical properties of copper doped oxidized Zn films

    International Nuclear Information System (INIS)

    Koshy, Obey; Abdul Khadar, M.

    2015-01-01

    The effect of self purification mechanism is studied on oxidized Cu–Zn thin films. Oxidized Cu–Zn thin films were prepared by thermal evaporation on glass substrates. XRD studies indicate that the oxidized Cu–Zn thin films are of hexagonal wurtzite structure. AFM images shows that with increase in copper wt. percent the nanoparticle morphology of oxidized Zn film turned to one dimensional nanorod morphology. XPS spectra of the oxidized Cu–Zn thin films shows the oxidized state of zinc and copper. The PL spectra of oxidized Zn film showed a strong and narrow near band edge emission at 380 nm whereas in the case of oxidized Cu–Zn thin films the emission showed peak near 410 nm corresponding to peak related to copper. With increase in copper content, the intensity of the defect emission decreased due to the self purification mechanism in nanomaterials. In addition the resistivity of doped films increased due to the self purification mechanism in nanomaterials. - Highlights: • Copper doping in ZnO resulted in the increase in blue emission due to defect levels formed. • The intensity of the luminescence peak of the doped film sample decreased and resistivity increased due to the self purification mechanism in nanomaterials.

  10. The role of the native oxide shell on the microwave sintering of copper metal powder compacts

    International Nuclear Information System (INIS)

    Mahmoud, Morsi M.; Link, Guido; Thumm, Manfred

    2015-01-01

    Highlights: • Thin oxide native layer had a critical role on microwave sintering of copper. • Explain why microwaves interact with copper powder differently than its bulk. • Abnormal expansion in copper is due to the plastic deformation and crack formation. • In-situ setup gives important insight about the microwave sintering of metals. • Microwave sintering is a promising candidate technology in powder metallurgy. - Abstract: Successful microwave sintering of several metal powders had been reported by many researchers with remarkable improvements in the materials properties and/or in the overall process. However, the concept behind microwave heating of metal powders has not been fully understood till now, as it is well known that bulk metals reflect microwaves. The progress of microwave sintering of copper metal powder compacts was investigated via combining both in-situ electrical resistivity and dilatometry measurements that give important information about microstructural changes with respect to the inter-particle electrical contacts during sintering. The sintering behavior of copper metal powders was depending on the type of the gas used, particle size, the initial green density, the soaking sintering time and the thin oxide layer on the particles surfaces. The thin copper oxide native layer (ceramics) that thermodynamically formed on the particles surfaces under normal handling and ambient environmental conditions had a very critical and important role in the microwave absorption and interaction, the sintering behavior and the microstructural changes. This finding could help to have a fundamental understanding of why MW’s interact with copper metal powder in a different way than its bulk at room temperature, i.e. why a given metal powder could be heated using microwaves while its bulk reflects it

  11. Transient thermal analysis during friction stir welding between AA2014-T6 and pure copper

    Science.gov (United States)

    Gadhavi, A. R.; Ghetiya, N. D.; Patel, K. M.

    2018-04-01

    AA2xxx-Cu alloys showed larger applications in the defence sectors and in aerospace industries due to high strength to weight ratio and toughness. FSW in a butt joint configuration was carried out between AA2014-T6 and pure Copper placing AA2014 on AS and Cu on RS. Temperature profiles were observed by inserting K-type thermocouples in the mid-thickness at various locations of the plate. A sharp decrease in temperature profiles was observed on Copper side due to its higher thermal conductivity. A thermal numerical model was prepared in ANSYS to compare the simulated temperature profiles with the experimental temperature profiles and both the temperature profiles were found to be in good agreement.

  12. Vapour galvanizing (Sherardizing) of copper with zinc

    Energy Technology Data Exchange (ETDEWEB)

    Wortelen, Dietbert; Bracht, Hartmut [Westfaelische Wilhelms-Universitaet Muenster (Germany); Natrup, Frank; Graf, Wolfram [Bodycote Waermebehandlung GmbH, Sprockhoevel (Germany)

    2010-07-01

    Using a vapour galvanizing technique called Sherardizing we investigated the growth kinetics and coefficients of zinc copper phases. For this purpose polished (OFHC)-copper plates and zinc powder have been sealed in quartz ampoules under inert gas atmospheres and annealed at a temperature range between 300 and 410 C. In order to study the coating thickness and the phase composition, cross sections were prepared, which have been analyzed by means of optical microscopy and scanning electron microscopy. We were able to demonstrate that the coating thickness is a function of the parabolic time law and that the formed coatings are composed of two layers referring to the ordered {beta}-CuZn and {gamma}-Cu{sub 5}Zn{sub 8}-phases. To enhance the coating quality, small amounts of ZnCl{sub 2} were added to the zinc powder. It was observed that the coating thickness decreased with increasing ZnCl{sub 2}. Experiments with variable Ar-pressure demonstrated a reduced coating growth with increasing pressures. Further measurements with ZnCl{sub 2} were performed to check whether an electrochemical mechanism is involved in the coating process.

  13. Applying electric field to charged and polar particles between metallic plates: extension of the Ewald method.

    Science.gov (United States)

    Takae, Kyohei; Onuki, Akira

    2013-09-28

    We develop an efficient Ewald method of molecular dynamics simulation for calculating the electrostatic interactions among charged and polar particles between parallel metallic plates, where we may apply an electric field with an arbitrary size. We use the fact that the potential from the surface charges is equivalent to the sum of those from image charges and dipoles located outside the cell. We present simulation results on boundary effects of charged and polar fluids, formation of ionic crystals, and formation of dipole chains, where the applied field and the image interaction are crucial. For polar fluids, we find a large deviation of the classical Lorentz-field relation between the local field and the applied field due to pair correlations along the applied field. As general aspects, we clarify the difference between the potential-fixed and the charge-fixed boundary conditions and examine the relationship between the discrete particle description and the continuum electrostatics.

  14. Electrical resistivity and dielectric properties of helical microorganism cells coated with silver by electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jun, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Lan, Mingming; Zhang, Deyuan; Zhang, Wenqiang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer We use the microorganism cells as forming templates to fabricate the bio-based conductive particles. Black-Right-Pointing-Pointer The microorganism cells selected as forming templates are Spirulina platens, which are of natural helical shape and high aspect ratio. Black-Right-Pointing-Pointer The sliver-coated Spirulina cells are a kind of lightweight conductive particles. Black-Right-Pointing-Pointer The composites containing sliver-coated Spirulina cells exhibit a lower percolation value. - Abstract: In this paper, microorganism cells (Spirulina platens) were used as forming templates for the fabrication of the helical functional particles by electroless silver plating process. The morphologies and ingredients of the coated Spirulina cells were analyzed with scanning electron microscopy and energy dispersive spectrometer. The crystal structures were characterized by employing the X-ray diffraction. The electrical resistivity and dielectric properties of samples containing different volume faction of sliver-coated Spirulina cells were measured and investigated by four-probe meter and vector network analyzer. The results showed that the Spirulina cells were successfully coated with a uniform silver coating and their initial helical shapes were perfectly kept. The electrical resistivity and dielectric properties of the samples had a strong dependence on the volume content of sliver-coated Spirulina cells and the samples could achieve a low percolation value owing to high aspect ratio and preferable helical shape of Spirulina cells. Furthermore, the conductive mechanism was analyzed with the classic percolation theory, and the values of {phi}{sub c} and t were obtained.

  15. Novel Algorithms for Astronomical Plate Analyses Rene Hudec1,2 ...

    Indian Academy of Sciences (India)

    2Czech Technical University in Prague, Faculty of Electrical Engineering, Technicka 2,. Prague 6 ... Abstract. Powerful computers and dedicated software allow effective data mining and scientific analyses in astronomical plate archives. We.

  16. Tensile Strength and Hardness Correlations with Microscopy in Friction welded Aluminium to Copper

    Science.gov (United States)

    Satish, Rengarajan; Seshagiri Rao, Vaddi; Ananthapadmanaban, Dattaguru; Ravi, Balappa

    2016-01-01

    Aluminium and copper are good conductors of heat and electricity, copper being the better conductor, is a costly metal indeed. On the other hand, aluminium is cheap, easily available and also has a lower density than copper. Hence, worldwide efforts are being made to partially replace copper wire. Solid state welding should be used to join aluminium to copper. This is because the use of fusion welding results in brittle phases formed in the weld interface. One of the solid state welding techniques used for joining aluminium to copper is friction welding. In this paper, an attempt has been made to join aluminium to copper by friction welding by varying the friction welding parameters, namely friction pressure, upset pressure, burn-off length and speed of rotation of the workpiece. Nine different friction welding parameter combinations were used during welding in accordance with ASTM standards and results have been reported. Tensile strength and hardness tests were carried out for each parameter combination. Optimum friction welding parameter combination was identified with respect to tensile strength. Scanning Electron Microscopy and Electron dispersive spectroanalysis were obtained to identify modes of fracture and presence of intermetallic phases for each friction welding combination with the aim to narrow down friction welding parameters that give good properties on the whole.

  17. High efficiency graphene coated copper based thermocells connected in series

    Science.gov (United States)

    Sindhuja, Mani; Indubala, Emayavaramban; Sudha, Venkatachalam; Harinipriya, Seshadri

    2018-04-01

    Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2W/m2 for normalized cross sectional electrode area is obtained at 60ºC of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.

  18. Unsteady MHD free convective flow past a vertical porous plate ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology .... dimensional MHD boundary layer on the body with time varying temperature. ... flow of an electrically conducting fluid past an infinite vertical porous flat plate coinciding with.

  19. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  20. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    International Nuclear Information System (INIS)

    Koparanova, N.; Simov, S.

    1985-01-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more. (author)

  1. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  2. Reliability improvement in GaN HEMT power device using a field plate approach

    Science.gov (United States)

    Wu, Wen-Hao; Lin, Yueh-Chin; Chin, Ping-Chieh; Hsu, Chia-Chieh; Lee, Jin-Hwa; Liu, Shih-Chien; Maa, Jer-shen; Iwai, Hiroshi; Chang, Edward Yi; Hsu, Heng-Tung

    2017-07-01

    This study investigates the effect of implementing a field plate on a GaN high-electron-mobility transistor (HEMT) to improve power device reliability. The results indicate that the field plate structure reduces the peak electrical field and interface traps in the device, resulting in higher breakdown voltage, lower leakage current, smaller current collapse, and better threshold voltage control. Furthermore, after high voltage stress, steady dynamic on-resistance and gate capacitance degradation improvement were observed for the device with the field plate. This demonstrates that GaN device reliability can be improved by using the field plate approach.

  3. A study of non-ideal focus properties of 30deg parallel plate energy analyzers

    International Nuclear Information System (INIS)

    Fujisawa, A.; Iguchi, H.; Hamada, Y.

    1993-12-01

    A succinct model is proposed to describe non-ideal characteristics owing to electric field penetration into the drift region in actual parallel plate energy analyzers. A good agreement has been obtained between the theoretically expected and experimentally observed focus properties of the 30deg parallel plate analyzer. (author)

  4. Rate effects in resistive plate chambers

    International Nuclear Information System (INIS)

    Lippmann, C.; Riegler, W.; Kalweit, A.

    2006-01-01

    The resistive plates in RPCs cause a drop of the electric field in the gas gap at high particle rates or large gas gain, which affects efficiency and time resolution. This effect is typically estimated by assuming the particle flux to be a DC current that causes a voltage drop when it passes through the resistive plate. In an improved model by Abbrescia (Nucl. Instr. Meth. A 533 (2004) 7), the fluctuation of the field in the gas gap is modelled by assuming that the avalanche partially discharges a small capacitor which gets recharged with a time constant characteristic for the given RPC. In our approach, the effect is calculated by using the exact analytic solution for the time dependent electric field of a point charge sitting on the surface of a resistive plate in an RPC. This is, by definition, the best possible approximation to reality. The solution is obtained using the quasi-static approximation of Maxwell's equations. The formulas are presented as integral representations with 'cured' integrands, which allow easy numerical evaluation for Monte Carlo simulations. The solutions show that the charges in RPCs are 'destroyed' with a continuous distribution of time constants which are related in a very intuitive way to some limiting cases. Using these formulas we present a Monte Carlo simulation of rate effects, proving the applicability of this approach. Finally, we compare the Monte Carlo results to analytical calculations, similar to the ones proposed by Gonzalez-Diaz et al. (see proceedings of this conference)

  5. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  6. A carbon-metal brazing for divertor plates in fusion devices

    International Nuclear Information System (INIS)

    Matsuda, T.; Matsumoto, T.; Miki, S.; Sogabe, T.; Okada, M.; Kubota, Y.; Sagara, A.; Noda, N.; Motojima, O.; Hino, T.; Yamashina, T.

    1993-01-01

    A divertor unit, which consists of carbon armors brazed to a copper cooling channel, is under development for fusion devices. Isotropic graphite (IG-430U) and CFC (CX-2002U) are used for the armor, and a copper for the cooling tube. A technique named as dissolution and deposit of base metal was employed for brazing. The reliability of the brazed components was evaluated both by 4-point bending test and thermal shock test. According to the results of a 4-point bending test under the temperature ranged from RT to 800 C in a vacuum, it was found that the strength of the brazed surface at RT was maintained up to the higher temperature, 600 C. High heat load test has been also performed on the brazed sample in order to find whether the samples meet the requirement of the divertor plates of LHD (Large Helical Device). Active Cooling Teststand (ACT:NIFS) with electron beam power of 100kW was used. In LHD, it is presumed that the maximum heat flux is 10MW/m 2 . In addition, the surface temperature of divertor has to be kept below 1,200 C to avoid RES, by active cooling. The heat load test showed that the brazing components of CX-2002U (flat plate type CFC-Cu brazed) was stable at 1,300 C under a heat flux of 10MW/m 2 , when the flow velocity of cooling water was 6m/s. No damage nor deterioration was found at the brazed zone after the heat load test

  7. Fabrication of Three Dimensional Cu Metallic Photonic Crystal by Electroless Plating

    International Nuclear Information System (INIS)

    Wu, S-C; Hou, F-J; Jian, P-C Jang-; Tsai, M-S; Chen, M-C; Li, L-S; Huang, J-Y; Lin, S-Y

    2007-01-01

    A 3D copper (Cu) metallic photonic crystal (MPC) with 180nm line width was fabricated by electroless plating. The mold of 3D MPC for Cu replacement is poly-Si. It has been verified as an enhancing thermal photovoltaic effect while the mold was transferred into tungsten MPC by chemical vapor deposition method. The 5 layers structure of Cu MPC was clear observed with scanning electron microscopy. The photonic band-gap ranged from 1.5 to 13 μm was measured by Fourier transform infrared spectroscopy (FTIR) instrument

  8. Study of physicochemical stability of the copper/polyphenylquinoxaline interfaces

    Science.gov (United States)

    Even, R.; Palleau, J.; Oberlin, J. C.; Pantel, R.; Laviale, D.; Templier, F.; Torres, J.; Giustiniani, R.; Cros, A.

    Thin film technologies are now applied in building up multilayered chip to chip interconnections to achieve agressive requirement such as high electrical performance or extreme compactness. Copper as conductor and a new polymeric material, a poly phenyl quinoxaline, as dielectric have been chose to fulfill demanding electrical and physical conditions. Thermal stability at the interface Cu/polymer and polymer/Cu during polymer curing process is very important to preserve good adhesion between the conductor and dielectric materials. We have studied in this work the interfacial behavior as a function of annealing temperature and of annealing atmosphere.

  9. Explosive magnetic flux compression plate generators as fast high-energy power sources

    International Nuclear Information System (INIS)

    Caird, R.S.; Erickson, D.J.; Garn, W.B.; Fowler, C.M.

    1976-01-01

    A type of explosive driven generator, called a plate generator, is described. It is capable of delivering electrical energies in the MJ range at TW power levels. Plane wave detonated explosive systems accelerate two large-area metal plates to high opposing velocities. An initial magnetic field is compressed and the flux transferred to an external load. The characteristics of the plate generator are described and compared with those of other types of generators. Methods of load matching are discussed. The results of several high-power experiments are also given

  10. Copper corrosion and its relationship to solar collectors:a compendium.

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F.; Mahoney, Alan Roderick

    2007-07-01

    Copper has many fine qualities that make it a useful material. It is highly conductive of both heat and electricity, is ductile and workable, and reasonably resistant to corrosion. Because of these advantages, the solar water heating industry has been using it since the mid-1970s as the material of choice for collectors, the fundamental component of a solar water heating system. In most cases copper has performed flawlessly, but in some situations it has been known to fail. Pitting corrosion is the usual failure mode, but erosion can also occur. In 2000 Sandia National Laboratories and the Copper Development Association were asked to analyze the appearance of pin-hole leaks in solar collector units installed in a housing development in Arizona, and in 2002 Sandia analyzed a pitting corrosion event that destroyed a collector system at Camp Pendleton. This report includes copies of the reports and accounts of these corrosion failures, and provides a bibliography with references to many papers and articles that might be of benefit to the solar community. It consolidates in a single source information that has been accumulated at Sandia relative to copper corrosion, especially as it relates to solar water heaters.

  11. Determination of HCl and VOC Emission from Thermal Degradation of PVC in the Absence and Presence of Copper, Copper(II Oxide and Copper(II Chloride

    Directory of Open Access Journals (Sweden)

    Ahamad J. Jafari

    2009-01-01

    Full Text Available Polyvinyl chloride (PVC has played a key role in the development of the plastic industry over the past 40 years. Thermal degradation of PVC leads to formation of many toxic pollutants such as HCl, aromatic and volatile organic carbon vapors. Thermal degradation of PVC and PVC in the present of copper, cupric oxide and copper(II chloride were investigated in this study using a laboratory scale electrical furnace. HCl and Cl- ion were analyzed by a Dionex ion chromatograph and VOCs compounds were analyzed using GC or GC-MS. The results showed that HCl plus Cl- ion and benzene formed about 99% and 80% respectively in the first step of thermal degradation under air atmosphere. The presence of cupric oxide increases the percentage of short chain hydrocarbons more than 184% and decreases the amount of the major aromatic hydrocarbon and HCl plus Cl- ion to 90% and 65% respectively. The total aromatic hydrocarbon emitted less than when atmosphere was air and difference was statistically significant (Pvalue<0.000

  12. Study of a DC gas discharge with a copper cathode in a water flow

    Science.gov (United States)

    Tazmeev, G. Kh.; Timerkaev, B. A.; Tazmeev, Kh. K.

    2017-07-01

    A dc gas discharge between copper electrodes in the current range of 5-20 A was studied experimentally. The discharge gap length was varied within 45-70 mm. The cathode was a 10-mm-diameter rod placed in the water flowing out from a dielectric tube. Three discharge configurations differing in the position of the cathode upper end with respect to the water surface were considered: (i) above water; (ii) flush with the water surface, and (iii) under water. The electric and optical characteristics of the discharge in the second configuration were studied in more detail. It is established that the discharge properties are similar to those of an electric arc. Considerable cathode erosion was observed in the third configuration. It is revealed that fine-dispersed copper grains form in the course of erosion.

  13. Mechanic-electrical transformations in the Kelvin method

    Energy Technology Data Exchange (ETDEWEB)

    Zharkikh, Yu. S., E-mail: yurzhar@gmail.com [Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 4G, Ave. Academician Glushkov, 03127, Kyiv (Ukraine); Lysochenko, S.V., E-mail: lys@univ.kiev.ua [Institute of High Technologies, Taras Shevchenko National University of Kyiv, 4G, Ave. Academician Glushkov, 03127, Kyiv (Ukraine)

    2017-04-01

    Highlights: • Used in Kelvin method dynamic capacitor is a mechanic-electrical transformer. • The oscillations of its plate are source of extraneous forces which cause the appearance of an electric current. • The signal is caused not by the contact potential difference, but by oscillation in the screening conditions of charge in the dynamic capacitor gap. • Combining the Kelvin method with electron emission methods to determine the work function may lead to incorrectness. - Abstract: To explain the initiation mechanism of alternating current in an electric circuit containing the dynamic capacitor a model of mechanic- electrical transformation is suggested to use. In such a model, electric charges disposed between the capacitor plates serve as a cause of measured signal in contrast to the contact potential difference, which is considered as the main base in the Kelvin’s model. If one of the plates moves periodically, then the conditions of the charges screening are changed and thereby the capacitor recharging current is arise. The measuring is based on compensation of the recharging current by current, which generated by a source of electromotive force (EMF). The compensation voltage depends on both the distribution of ions or dipoles over the studied surface and the charges creating the surface potential barrier. This voltage is independent on the bulk electro-physical characteristics of a solid.

  14. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  15. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color...

  16. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and...

  17. Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering

    Science.gov (United States)

    Kwon, Young-Tae; Lee, Young-In; Kim, Seil; Lee, Kun-Jae; Choa, Yong-Ho

    2017-02-01

    Low temperature sintering techniques are crucial in developing flexible printed electronics. In this work, we demonstrate a novel hydrogen plasma sintering method that achieves a full reduction and densification of inkjet-printed patterns using a copper complex ion ink. After inkjet printing on polyethylene terephthalate (PET) substrates, both hydrogen plasma and conventional hydrogen thermal treatment were employed to compare the resulting microstructures, electrical properties and anti-oxidation behavior. The plasma treated pattern shows a fully densified microstructure with a resistivity of 3.23 μΩ cm, while the thermally treated pattern shows a relatively poor microstructure and high resistivity. In addition, the hydrogen plasma-treated copper pattern retains its electrical resistivity for one month without any significant decrease. This novel hydrogen plasma sintering technique could be used to produce conductive patterns with excellent electrical properties, allowing for highly reliable flexible printed electronics.

  18. Magnetostrictive clad steel plates for high-performance vibration energy harvesting

    Science.gov (United States)

    Yang, Zhenjun; Nakajima, Kenya; Onodera, Ryuichi; Tayama, Tsuyoki; Chiba, Daiki; Narita, Fumio

    2018-02-01

    Energy harvesting technology is becoming increasingly important with the appearance of the Internet of things. In this study, a magnetostrictive clad steel plate for harvesting vibration energy was proposed. It comprises a cold-rolled FeCo alloy and cold-rolled steel joined together by thermal diffusion bonding. The performances of the magnetostrictive FeCo clad steel plate and conventional FeCo plate cantilevers were compared under bending vibration; the results indicated that the clad steel plate construct exhibits high voltage and power output compared to a single-plate construct. Finite element analysis of the cantilevers under bending provided insights into the magnetic features of a clad steel plate, which is crucial for its high performance. For comparison, the experimental results of a commercial piezoelectric bimorph cantilever were also reported. In addition, the cold-rolled FeCo and Ni alloys were joined by thermal diffusion bonding, which exhibited outstanding energy harvesting performance. The larger the plate volume, the more the energy generated. The results of this study indicated not only a promising application for the magnetostrictive FeCo clad steel plate as an efficient energy harvester, related to small vibrations, but also the notable feasibility for the formation of integrated units to support high-power trains, automobiles, and electric vehicles.

  19. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    Science.gov (United States)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-04-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  20. Electroless metal plating of plastics

    Science.gov (United States)

    Krause, L.J.

    1982-09-20

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  1. The solution of the reliability problem in the repair process of the plates of the silica bricks press boxes

    Directory of Open Access Journals (Sweden)

    Nochvai V.М.

    2017-05-01

    Full Text Available The research analyzes recommendations existing in different sources of information for the choice of methods of strengthening and reconditioning of worn machine parts. These methods include: the method of electric arc deposition, chemical-thermal treatment, gas-powder deposition, gas-powder and plasma spraying, electric arc metallization. As a result of studies of wear of the working surfaces of the plates of silicate brick press boxes, we define that the plates wear out unevenly and the thickness of the worn layer varies between 0.3 ... 2 mm. Technological method is chosen as the method of the plate reliability enhancement and maintaining. One of the main technological stages of reliability formation is machine parts strengthening using the methods of strengthening technologies, namely electric arc metallization. Wire models Нп-65Г, ФМИ-2, Нп-40Х13 are used to develop wear-resistant coatings with desired properties. Technological process of the plates repair consists of the following basic operations: plate preparation, wire preparation, plate coating, plate grinding, final checking. Single and complex reliability indicators are determined by testing a set of the plates and registering all the indicators (operating time, failures, faults. The value of the economic reliability index of the plate Kе equals to 0,10. Higher plate reliability is achieved at the expense of extra cost for plate strengthening using wire Нп-40Х13, and the price of Bн plate reliability is 104,83 UAH. Complex indicators of reliability of the reconditioned plate of the silica bricks press boxes are used for more complete reliability assessment. Availability coefficient Kг. equals to 0,995 and characterizes two different properties simultaneously: reliability and maintainability. Coefficient of technical use Kт.в. equals to 0,974 and most fully characterizes the reliability of the plates because it considers time in the process of maintenance, repair and

  2. Effect of copper content on the properties of electroless Ni–Cu–P coatings prepared on magnesium alloys

    International Nuclear Information System (INIS)

    Liu, Junjun; Wang, Xudong; Tian, Zhiyong; Yuan, Ming; Ma, Xijuan

    2015-01-01

    Highlights: • Electroless Ni–Cu–P coatings were obtained on ZK61M magnesium alloys. • The crystallinity and compactness increases with the increasing of copper content. • The introduction of copper element in the coatings contributes to the formation of passivation film. • The coatings with higher corrosion resistance were obtained from the solution with a higher CuSO 4 concentration. - Abstract: The Ni–Cu–P coatings were obtained by electroless plating method on ZK61M magnesium alloys. The effect of copper content on the properties of electroless Ni–Cu–P coatings on magnesium alloys was further studied. The coatings surface and cross-section morphologies were observed with scanning electron microscope. The crystal structure and corrosion resistance of Ni–Cu–P coatings were evaluated by X-ray diffractometer and electrochemical tests. The experimental results showed that the Ni–Cu–P coatings were uniform and compact, and the corrosion resistance of these coatings was superior to Ni–P coatings owing to the introduction of copper. The crystallinity and compactness of the Ni–Cu–P coatings gradually enhanced with the increasing of copper content in the coatings. The introduction of copper element in the Ni–Cu–P coatings contributes to the formation of passivation film. The Ni–Cu–P coatings with higher corrosion resistance were obtained from the solution with a higher CuSO 4 concentration.

  3. Fabrication of silicon-embedded low resistance high-aspect ratio planar copper microcoils

    Science.gov (United States)

    Syed Mohammed, Zishan Ali; Puiu, Poenar Daniel; Aditya, Sheel

    2018-01-01

    Low resistance is an important requirement for microcoils which act as a signal receiver to ensure low thermal noise during signal detection. High-aspect ratio (HAR) planar microcoils entrenched in blind silicon trenches have features that make them more attractive than their traditional counterparts employing electroplating through a patterned thick polymer or achieved through silicon vias. However, challenges met in fabrication of such coils have not been discussed in detail until now. This paper reports the realization of such HAR microcoils embedded in Si blind trenches, fabricated with a single lithography step by first etching blind trenches in the silicon substrate with an aspect ratio of almost 3∶1 and then filling them up using copper electroplating. The electroplating was followed by chemical wet etching as a faster way of removing excess copper than traditional chemical mechanical polishing. Electrical resistance was further reduced by annealing the microcoils. The process steps and challenges faced in the realization of such structures are reported here followed by their electrical characterization. The obtained electrical resistances are then compared with those of other similar microcoils embedded in blind vias.

  4. High Efficiency Graphene Coated Copper Based Thermocells Connected in Series

    Directory of Open Access Journals (Sweden)

    Mani Sindhuja

    2018-04-01

    Full Text Available Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2 W/m2 for normalized cross sectional electrode area is obtained at 60°C of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.

  5. Development of Nano-Particles Within Polymeric Materials Prepared by Gamma Radiation and their Possible Practical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, E. S.A.; Ali, A. E.; AbdEl-Rehim, H.; Mohammady, M.; Abdel Aal, A. S. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2009-07-01

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting nanoparticles based on a core consisting of iron oxides that can be targeted through external magnets. Polyvinyl alcohol/Polyacrylic acid nanoparticles were prepared using gamma rays. The prepared PVA/AAc nano copolymers were treated with Fe{sup 2+}/ Fe{sup 3+} solution followed by ammonia solution to obtain PVA/AAc-Fe{sub 3}O{sub 4} nanoparticle ferrogel. Characterization of the PVA/AAc-Fe{sub 3}O{sub 4} nanoparticle ferrogel was carried out using XRD, TGA, DSc , TEM and AFM. The use of magnetic field sensitive nano-ferrogels as a drug carrier was investigated. It was found that the release of drug in absence of the effect of magnetic field is mostly slow than that under the influence of magnetic field. On the other hand, development of nanoparticles within radiation grafted polymeric surfaces using electroless plating technique was investigated. Surface modification of polypropylene films (PP) was carried out via radiation induced graft copolymerization of 4-vinyl pyridine (4VP) and acrylamide (AAm) to enhance the adhesion ability of the PP surface for electroless deposition of copper. The produced grafted films were characterized by studying their FTIR and thermal stability. The prepared grafted films were copper-plated by electroless deposition using the Pd as a catalyst to initiate the redox reaction. The influences of catalytic activation method parameters on the plating rate have been studied. The electrical characteristics of the copper plated films in comparison with grafted films were studied. The results showed the high adhesion of the deposited copper film to the grafted PP film as well as high electrical conductivity. (author)

  6. Lighting system for the lower core plate of a nuclear reactor

    International Nuclear Information System (INIS)

    Feuillet, P.; Bonin, J.P.

    1986-01-01

    The invention proposes a grazing lighting system for the lower core plate, creating an excellent contrast and offering a good estimation of the relief; it can stay at the same place during the whole or at least the greater part of the core refueling operation. This lighting system is proposed for a reactor of which the lower core plate has fuel assembly centering elements. It has a sealed vessel with a transparent side wall containing several lights independently controlled and each one illuminating a sector of its wall. The vessel has a bottom aimed at resting on the lower plate and provided with centering and holding means acting with several of the said centering means through the plate, and/or apertures for coolant through the plate, and an upper container provided with gripping and handling elements and sealed conduits for electrical cables feeding the lights [fr

  7. Electrical conductivity of chromate conversion coating on electrodeposited zinc

    International Nuclear Information System (INIS)

    Tencer, Michal

    2006-01-01

    For certain applications of galvanized steel protected with conversion coatings it is important that the surface is electrically conductive. This is especially important with mating surfaces for electromagnetic compatibility. This paper addresses electrical conductivity of chromate conversion coatings. A cross-matrix study using different zinc plating techniques by different labs showed that the main deciding factor is the type of zinc-plating bath used rather than the subsequent chromating process. Thus, chromated zinc plate electrodeposited from cyanide baths is non-conductive while that from alkaline (non-cyanide) and acid baths is conductive, even though the plate from all the bath types is conductive before conversion coating. The results correlate well with the microscopic structure of the surfaces as observed with scanning electron microscopy (SEM) and could be further corroborated and rationalized using EDX and Auger spectroscopies

  8. Molten pool characterization of laser lap welded copper and aluminum

    Science.gov (United States)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  9. Molten pool characterization of laser lap welded copper and aluminum

    International Nuclear Information System (INIS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu Jr

    2013-01-01

    A 3D finite volume simulation model for laser welding of a Cu–Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu–Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint. (paper)

  10. Electrical properties of polyimides containing a near-surface deposit of silver

    Science.gov (United States)

    Rancourt, J. D.; Porta, G. M.; Taylor, L. T.

    1987-01-01

    Films containing a surface or near-surface deposit of palladium, gold or copper metal as well as tin, cobalt, copper, or lithium oxides have been prepared by dissolving appropriate metal salts into poly(amide-acid)/N,N-dimethylacetamide solutions and curing the solvent cast films to temperatures up to 300 C. This preparation technique has been extended to evaluate the thermal, spectroscopic, and electrical characteristics of condensation polyimide films modified with silver nitrate. A near-surface deposit of metallic silver results but the reflective surface has high electrical resistivity (sheet resistivity) due to a polymer coating or overlayer above the metal. Details pertaining to the silver nitrate modified condensation polyimides are presented. Also, the applicability of the structural model and electrical model previously proposed for the cobalt oxide system are assessed.

  11. MRR and TWR evaluation on electrical discharge machining of Ti-6Al-4V using tungsten : copper composite electrode

    Science.gov (United States)

    Prasanna, J.; Rajamanickam, S.; Amith Kumar, O.; Karthick Raj, G.; Sathya Narayanan, P. V. V.

    2017-05-01

    In this paper Ti-6Al-4V used as workpiece material and it is keenly seen in variety of field including medical, chemical, marine, automotive, aerospace, aviation, electronic industries, nuclear reactor, consumer products etc., The conventional machining of Ti-6Al-4V is very difficult due to its distinctive properties. The Electrical Discharge Machining (EDM) is right choice of machining this material. The tungsten copper composite material is employed as tool material. The gap voltage, peak current, pulse on time and duty factor is considered as the machining parameter to analyze the machining characteristics Material Removal Rate (MRR) and Tool Wear Rate (TWR). The Taguchi method is provided to work for finding the significant parameter of EDM. It is found that for MRR significant parameters rated in the following order Gap Voltage, Pulse On-Time, Peak Current and Duty Factor. On the other hand for TWR significant parameters are listed in line of Gap Voltage, Duty Factor, Peak Current and Pulse On-Time.

  12. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  13. High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate

    International Nuclear Information System (INIS)

    Tam, Sze Kee; Ng, Ka Ming

    2015-01-01

    This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10 −5  Ω cm.Graphical Abstract

  14. High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Sze Kee; Ng, Ka Ming, E-mail: kekmng@ust.hk [The Hong Kong University of Science and Technology, Department of Chemical and Biomolecular Engineering (Hong Kong)

    2015-12-15

    This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10{sup −5} Ω cm.Graphical Abstract.

  15. Electric field studies of a 2 MeV electrostatic energy analyzer

    International Nuclear Information System (INIS)

    McLaren, P.E.; Connor, K.A.; Lewis, J.F.; Hickok, R.L.; Crowley, T.P.; Schatz, J.G.; Vilardi, G.H.

    1990-01-01

    An energy analyzer based on the Proca and Green parallel-plate design is being developed for use with the 2 MeV heavy ion beam probe on TEXT. In a departure from the conventional configuration, guard ring electrodes will not be used. Instead, a shaped top plate will provide for comparable, or improved, uniformity of the analyzer electric field region. To quantify this effect, and to characterize the electrostatic field, numerical solution methods have been utilized. Simulations have included effects of top plate shape, wire screens, vacuum chamber design, and dielectric support structures. The modeling has permitted us to design an analyzer electrode structure that is an integral part of a uniquely shaped vacuum vessel. The design electric field is 20 kV/cm with less than 1% error in uniformity within the parallel plate region. To examine the electric field structure experimentally, a quarter-scale prototype analyzer has been constructed and tested. The electric field characteristics are examined by varying the path of a heavy ion beam through the analyzer and examining the resulting analyzer performance. A simulated vacuum wall can be positioned to examine the effects of different vessel configurations and to determine the sensitivity of the analyzer to this boundary condition. The experimental results show excellent agreement with the numerically predicted fields and confirm the validity of the shaped top plate electrode concept

  16. Attenuation of shock waves in copper and stainless steel

    International Nuclear Information System (INIS)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs

  17. Attenuation of shock waves in copper and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  18. Properties of copper matrix reinforced with nano- and micro-sized Al2O3 particles

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2008-01-01

    The mixture of electrolytic copper powder with 5 wt.% of commercial Al 2 O 3 powder (average particle size: 15 and 0.75 μm, respectively) and the inert gas atomized prealloyed copper powder (average particle size: 30 μm) containing 2.5 wt.% aluminum were separately milled in air up to 20 h in the planetary ball mill. During milling aluminum in the prealloyed copper powders was oxidized in situ by internal oxidation with oxygen from the air forming very fine nano-sized Al 2 O 3 particles. The internal oxidation of 2.5 wt.% aluminum generated 4.7 wt.% of Al 2 O 3 in the copper matrix. Powders and compacts were characterized by light and scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and X-ray diffraction analysis. Microhardness and electrical conductivity were also included in measurements. The microhardness of Cu-2.5 wt.% Al compacts was 3.6 times higher than that of compacts processed from electrolytic copper powder. This increase in microhardness is a consequence of a fine dispersion of Al 2 O 3 particles and refined grain structure. The average values of electrical conductivity of compacts processed from Cu-5 wt.% Al 2 O 3 and Cu-2.5 wt.% Al powders previously milled for 20 h and were 88% and 70% IACS, respectively, which is a rather significant increase if compared with values of 60% and 23% IACS of compacts processed from as-received and non-milled powders. The microhardness of 20-h milled compacts decreases with the heat treatment at 800 deg. C. Due to the effect of nano-sized Al 2 O 3 particles Cu-2.5 wt.% Al compacts show lower decrease in microhardness. The results are discussed in terms of the effect of Al 2 O 3 particle size and fine grain structure on the reinforcing of the copper matrix

  19. Decomposition of poly(amide-imide) film enameled on solid copper wire using atmospheric pressure non-equilibrium plasma.

    Science.gov (United States)

    Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko

    2009-01-01

    The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.

  20. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants

    International Nuclear Information System (INIS)

    Oleszek, Sylwia; Grabda, Mariusz; Shibata, Etsuro; Nakamura, Takashi

    2013-01-01

    Highlights: • Copper, silver and gold during thermal treatment with brominated flame retardants. • Distribution of copper, silver and gold during thermal processing. • Thermodynamic considerations of the bromination reactions. - Abstract: The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is

  1. Magnetohydrodynamic unsteady flow of a Maxwell fluid past a flat plate

    International Nuclear Information System (INIS)

    Khandpur, S.L.; Ravi Kant

    1979-01-01

    A study of the equations describing the flow pattern set up in a linear electrically conducting viscoelastic fluid past an infinite flat plate in the presence of a transverse magnetic field has been made, when the plate is moving parallel to itself with an arbitrary time dependent velocity. The pressure is assumed to be uniform with initial velocity distribution in an exponential form. Operational methods are used to obtain the exact solutions for the velocity profiles. The effects of relaxation parameter of the fluid and magnetic field have been studied. Several particular cases are easily deduced of which two cases: (i) when the plate is moving in its own plane harmonically with time, and (ii) when the velocity of the plate is decaying exponentially with time, are discussed. (auth.)

  2. Manufacturing experiment on a cooling plate for a blanket breeder unit

    International Nuclear Information System (INIS)

    Weth, A. von der; Aktaa, J.

    2008-01-01

    Plates with curved cooling channels will be used as structural elements in a breeding blanket of a future fusion power plant. Such power plants are a promising attempt for future electrical energy production. The central manufacturing process of such cooling plates is a diffusion welding process. Such a process has been 'available' on a laboratory scale for years. But this diffusion welding process has not yet been applied on an industrial scale. This contribution documents our first attempt to transfer this to industry, a so-called uniaxial diffusion welding setup. The industrial transfer was attempted in two steps: (1) On a small cooling plate mock-up and (2) On a true-scale cooling plate. The problems with the technical transfer of the diffusion welding process from the laboratory scale to the true scale were outlined

  3. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    Directory of Open Access Journals (Sweden)

    Chih-Wei Huang

    2018-04-01

    Full Text Available In the present work, we proposed a novel friction stir processing (FSP to produce a locally reinforced aluminum matrix composite (AMC by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM and Transmission Electron Microscopy (TEM investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS, electron probe micro-analyzer (EPMA, and X-ray diffraction (XRD were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites.

  4. Combined Mini-Cylex & Disk Acceleration Tests in Type K Copper.

    Energy Technology Data Exchange (ETDEWEB)

    Maines, Warren Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kittell, David E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hobbs, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We combined the miniature cylinder expansion test (Mini-Cylex), with the Disk Acceleration Test (DAX) using Type K copper, Picatinny Liquid Explosive, and photonic Doppler velocimetry. We estimated the CJ state using plate reverberation methods at the test cap. We extracted velocities at 2, 7, and 10 volume expansions to fit Jones-Wilkins-Lee Equation of State at the tube wall. And we estimated Gurney velocity both at the test cap and tube wall. Our experiments and simulations are within expected uncertainty. The test and the analysis effectively reduce costs while keeping similar fidelity compared with more expensive tests.

  5. Vortex Dynamics around Pitching Plates

    Science.gov (United States)

    2014-04-29

    electrical signals are A/D converted in an ATI NetBox interface and recorded using a Java application, and are filtered in three steps. The first is a low...the plate while staying attached to the corners of the leading edge. During this process, a second vortex loop, created by the quick angular ...is a spike in CL centered around t = 0 due to non-circulatory6 effects from the angular acceleration of the wing. The amplitude of the peak is

  6. Microstructure and properties of copper composite containing in situ NbC reinforcement: Effects of milling speed

    International Nuclear Information System (INIS)

    Zuhailawati, Hussain; Salihin, Hassin Mohd; Mahani, Yusoff

    2010-01-01

    This paper presents a study on the effects of milling speed on the properties of in situ copper-based composite produced by mechanical alloying followed by cold pressing and sintering. A powdered mixture of copper, niobium and graphite with the composition of Cu-30%NbC was milled at various speeds (100, 200, 300 and 400 rpm). The NbC phase started to precipitate in the as-milled powder after 30 h milling at 400 rpm and the formation was completed after sintering at 950 o C. Enhancements of NbC phase formation with a reduction in Cu crystallite size were observed with the increase of milling speed. Density, hardness and electrical conductivity of the sintered composite were evaluated. An increase in milling speed resulted in an increase in sintered density and hardness but a reduction of electrical conductivity. The changes in the properties were correlated to the formation of NbC phase and refinement of copper and niobium carbide crystallite size since higher milling speed is associated with higher kinetic energy per hit.

  7. Nanoscale coatings for erosion and corrosion protection of copper microchannel coolers for high powered laser diodes

    Science.gov (United States)

    Flannery, Matthew; Fan, Angie; Desai, Tapan G.

    2014-03-01

    High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.

  8. Experimental analysis of shock wave effects in copper

    International Nuclear Information System (INIS)

    Llorca, Fabrice; Buy, Francois; Farre, Jose

    2002-01-01

    This paper proposes the analysis of shock wave effects for a high purity copper. The method developed is based on the analysis of the mechanical behavior of as received and shocked materials. Shock effect is generated through plates impact tests performed in the range 9 GPa to 12 GPa on a single stage light gas gun. Therefore, as-received and impacted materials are characterized on quasi static and Split Hopkinson apparatus. The difference between measured stresses between as received and shocked materials allows to understand shock effects in the low pressure range of study. A specific modeling approach is engaged in order to give indications about the evolution of the microstructure of the materials

  9. Electroless deposition and electrical characterization of N- Cu 2 O ...

    African Journals Online (AJOL)

    This work describes the preparation of n-Cu2O layer by the electroless methods of boiling and immersion of copper plates in 0.001M CuSO4Electron Microscopy (SEM) have been used to characterize the oxide films deposited. XRD studies show, for the first time, that cuprous oxide (Cu2O) and cupric oxide (CuO) were ...

  10. Controlling the set of carbon-fiber embedded cement with electric current

    Science.gov (United States)

    Mattus, Alfred J.

    2004-06-15

    A method for promoting cement or concrete set on demand for concrete that has been chemically retarded by adding carbon fiber to the concrete, which enables it to become electrically conductive, sodium tartrate retardant, and copper sulfate which forms a copper tartrate complex in alkaline concrete mixes. Using electricity, the concrete mix anodically converts the retarding tartrate to an insoluble polyester polymer. The carbon fibers act as a continuous anode surface with a counter electrode wire embedded in the mix. Upon energizing, the retarding effect of tartrate is defeated by formation of the polyester polymer through condensation esterification thereby allowing the normal set to proceed unimpeded.

  11. Parallelized FDTD simulation for flat-plate bounded wave EMP simulator with lumped terminator

    International Nuclear Information System (INIS)

    Zhu Xiangqin; Chen Weiqing; Chen Zaigao; Cai Libing; Wang Jianguo

    2013-01-01

    A parallelized finite-difference time-domain(FDTD) method for simulating the bounded wave electromagnetic pulse (EMP) simulator with lumped terminator and parallel plate is presented. The effects of several model-parameters on the simulator to the fields in the working volume are simulated and analyzed. The results show that if the width of the lower PEC plate is(or is bigger than)1.5 times that of the upper plate of working volume, the projection length of front transitional section does not have a significant effect on the rise-times of electric fields at the points near the front transitional section, and the rise-times of electric fields at the points near the working volume center decrease as the projection length increases, but the decrement of rise-time decreases. The rise-times of E z at all points also decrease as the lower PEC plate's width increases, but the decrements of rise-time decreases. If the projection length of the front transitional section is fixed, the good results can not be obtained by increasing or decreasing the height of the simulator only, however, which has an optimal value. (authors)

  12. Speciation and leachability of copper in mine tailings from porphyry copper mining

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Yianatos, Juan B; Ottosen, Lisbeth M.

    2005-01-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150mgkg^-^1 dry...... matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212@mm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order...... to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles...

  13. Effect of Reaction Temperature on Carbon Yield and Morphology of CNTs on Copper Loaded Nickel Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hu Ming

    2016-01-01

    Full Text Available This investigation was attempted to introduce carbon nanotubes (CNTs onto surface of copper powders in order to improve heat transfer performance of copper matrix for engineering application of electrical packaging materials. The Ni/MgO catalyst was formed on the copper powders surface by means of codeposition method. CVD technique was executed to fabricate uniform CNTs on copper powders and effect of reaction temperature on the morphology of CNTs was surveyed. The results showed that CNTs products on the copper powder surface were distributed uniformly even if reaction temperature was different. The diameter dimension of CNTs was within the scope of 30~60 nm. Growth behaviors of CNTs by CVD method were considered to be “tip-growth” mechanism. Raman spectra of CNTs proved that intensity ratio of D-band to G-band (ID/IG increased as deposition reaction temperature increased, which implied that order degree of graphitic structure in synthesized CNTs improved.

  14. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    OpenAIRE

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.

  15. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus nigerstrains

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Madrigal-Arias

    2015-09-01

    Full Text Available In an effort to develop alternate techniques to recover metals from waste electrical and electronic equipment (WEEE, this research evaluated the bioleaching efficiency of gold (Au, copper (Cu and nickel (Ni by two strains of Aspergillus niger in the presence of gold-plated finger integrated circuits found in computer motherboards (GFICMs and cellular phone printed circuit boards (PCBs. These three metals were analyzed for their commercial value and their diverse applications in the industry. Au-bioleaching ranged from 42 to 1% for Aspergillus niger strain MXPE6; with the combination of Aspergillus niger MXPE6 + Aspergillus niger MX7, the Au-bioleaching was 87 and 28% for PCBs and GFICMs, respectively. In contrast, the bioleaching of Cu by Aspergillus niger MXPE6 was 24 and 5%; using the combination of both strains, the values were 0.2 and 29% for PCBs and GFICMs, respectively. Fungal Ni-leaching was only found for PCBs, but with no significant differences among treatments. Improvement of the metal recovery efficiency by means of fungal metabolism is also discussed.

  16. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus nigerstrains.

    Science.gov (United States)

    Madrigal-Arias, Jorge Enrique; Argumedo-Delira, Rosalba; Alarcón, Alejandro; Mendoza-López, Ma Remedios; García-Barradas, Oscar; Cruz-Sánchez, Jesús Samuel; Ferrera-Cerrato, Ronald; Jiménez-Fernández, Maribel

    2015-01-01

    In an effort to develop alternate techniques to recover metals from waste electrical and electronic equipment (WEEE), this research evaluated the bioleaching efficiency of gold (Au), copper (Cu) and nickel (Ni) by two strains of Aspergillus niger in the presence of gold-plated finger integrated circuits found in computer motherboards (GFICMs) and cellular phone printed circuit boards (PCBs). These three metals were analyzed for their commercial value and their diverse applications in the industry. Au-bioleaching ranged from 42 to 1% for Aspergillus niger strain MXPE6; with the combination of Aspergillus niger MXPE6 + Aspergillus niger MX7, the Au-bioleaching was 87 and 28% for PCBs and GFICMs, respectively. In contrast, the bioleaching of Cu by Aspergillus niger MXPE6 was 24 and 5%; using the combination of both strains, the values were 0.2 and 29% for PCBs and GFICMs, respectively. Fungal Ni-leaching was only found for PCBs, but with no significant differences among treatments. Improvement of the metal recovery efficiency by means of fungal metabolism is also discussed.

  17. Finite element analysis of actively controlled smart plate with patched actuators and sensors

    Directory of Open Access Journals (Sweden)

    M. Yaqoob Yasin

    Full Text Available The active vibration control of smart plate equipped with patched piezoelectric sensors and actuators is presented in this study. An equivalent single layer third order shear deformation theory is employed to model the kinematics of the plate and to obtain the shear strains. The governing equations of motion are derived using extended Hamilton's principle. Linear variation of electric potential across the piezoelectric layers in thickness direction is considered. The electrical variable is discretized by Lagrange interpolation function considering two-noded line element. Undamped natural frequencies and the corresponding mode shapes are obtained by solving the eigen value problem with and without electromechanical coupling. The finite element model in nodal variables are transformed into modal model and then recast into state space. The dynamic model is reduced for further analysis using Hankel norm for designing the controller. The optimal control technique is used to control the vibration of the plate.

  18. Ultrasonic diagnosis of spot welding in thin plates

    International Nuclear Information System (INIS)

    Kim, No You; Hong, Min Sung

    2005-01-01

    Spot welding widely used in automotive and aerospace industries has made it possible to produce more precise and smaller electric part by robotization and systemization of welding process. The quality of welding depends upon the size of nugget between the overlapped steel plates. Recently, the thickness of the steel plates becomes much thinner and hence, it introduces the smaller size of nugget. Therefore, it is necessary to develop the criterion to evaluate the quality of weld in order to obtain the optimal welding conditions for the better performance. In this paper, a thin steel plates, 0.1 mm through 0.3 mm thickness, have been spot-welded at different welding conditions and the nugget sizes are examined by defocused scanning microscopy. The relationships between nugget sizes and weldability have been investigated experimentally. The result of ultrasonic technique shows the good agreement with that of the tensile test.

  19. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  20. Electrical detection of liquid lithium leaks from pipe joints

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J. A., E-mail: jschwart@pppl.gov; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2014-11-15

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.