Energy Technology Data Exchange (ETDEWEB)
Dastjerdi, Shahriar; Aliabadi, Sharifeh; Jabbarzadeh Mehrdad [Islamic Azad University, Tehran (Iran, Islamic Republic of)
2016-03-15
The constitutive equations of nano-plates embedded in elastic matrix are derived based on Eringen non-local elasticity theory. Considering the non-local differential constitutive relations of Eringen theory in Cartesian and cylindrical coordinates system based on the first and higher order shear deformation theories and using the Von Karman strain field, the equilibrium differential equations are derived in terms of generalized displacements and rotations. In addition, the obtained governing equations for single layer nano plates are developed for multi-layer nano-plates. Rectangular, annular/circular and sectorial nano-plates are considered. In the most of the investigations in non-local elasticity theory, the classical plate theory (CLPT) is used, however in this paper, the governing equations are derived based on both FSDT and HSDT theories because of obtaining more accurate results.
A Geometrically—Nonlinear Plate Theory 12
Institute of Scientific and Technical Information of China (English)
AlbertC.J.LUO
1999-01-01
An approximate plate theory developed in this paper is based on an assumed displacement field,the strains described by a Taylor series in the normal distance from the middle surface,the exact strains of the middle surface and the equations of equilibrium governing the exact configuration of the deformed middle surface,In this theory the exact geometry of the deformed middle surface is used to derive the strains and equilibrium of the plate.Application of this theory does not depend on the constitutive law.THis theory can reduce to some existing nonlinear theories through imposition of constraints.
Analytical solution for multilayer plates using general layerwise plate theory
Directory of Open Access Journals (Sweden)
Vuksanović Đorđe M.
2005-01-01
Full Text Available This paper deals with closed-form solution for static analysis of simply supported composite plate, based on generalized laminate plate theory (GLPT. The mathematical model assumes piece-wise linear variation of in-plane displacement components and a constant transverse displacement through the thickness. It also include discrete transverse shear effect into the assumed displacement field, thus providing accurate prediction of transverse shear stresses. Namely, transverse stresses satisfy Hook's law, 3D equilibrium equations and traction free boundary conditions. With assumed displacement field, linear strain-displacement relation, and constitutive equations of the lamina, equilibrium equations are derived using principle of virtual displacements. Navier-type closed form solution of GLPT, is derived for simply supported plate, made of orthotropic laminae, loaded by harmonic and uniform distribution of transverse pressure. Results are compared with 3D elasticity solutions and excellent agreement is found.
Pure plate bending in couple stress theories
Hadjesfandiari, Ali R; Dargush, Gary F
2016-01-01
In this paper, we examine the pure bending of plates within the framework of modified couple stress theory (M-CST) and consistent couple stress theory (C-CST). In this development, it is demonstrated that M-CST does not describe pure bending of a plate properly. Particularly, M-CST predicts no couple-stresses and no size effect for the pure bending of the plate into a spherical shell. This contradicts our expectation that couple stress theory should predict some size effect for such a deformation pattern. Therefore, this result clearly demonstrates another inconsistency of indeterminate symmetric modified couple stress theory (M-CST), which is based on considering the symmetric torsion tensor as the curvature tensor. On the other hand, the fully determinate skew-symmetric consistent couple stress theory (C-CST) predicts results for pure plate bending that tend to agree with mechanics intuition and experimental evidence. Particularly, C-CST predicts couple-stresses and size effects for the pure bending of the ...
Dumas, B; Borel, C; Herbert, C; Maury, J; Jacquet, C; Balsse, R; Esquerré-Tugayé, M T
2001-07-11
The gene CLPT1 (Colletotrichum lindemuthianum Protein Transport 1) encoding a Rab/GTPase was isolated from the filamentous fungus Colletotrichum lindemuthianum, the causal agent of bean anthracnose. At the amino acid level, CLPT1 shows between 54 and 80% identity to SEC4-like proteins, a class of molecules required for intracellular vesicular transport in yeasts. In particular, typical SEC4 domains involved in nucleotide binding and membrane attachment are present in the CLPT1 sequence. Functional identity of CLPT1 with SEC4 was confirmed by complementation of the Saccharomyces cerevisiae sec4-8 mutation. This is the first report of a gene involved in the control of intracellular vesicular trafficking in a phytopathogenic fungus. RNA blot analyses of CLPT1 expression were performed during in vitro growth of the fungus on synthetic media containing glucose or pectin, as single carbon source. The accumulation of CLPT1 mRNA was strongly increased on pectin, a plant cell wall polysaccharide that induces the production of extracellular pectinases, whereas the level of CLPT1 mRNA was below the detection threshold on glucose. These results suggest that CLPT1 is mainly involved in protein secretion and that the production of extracellular enzymes potentially involved in pathogenesis in filamentous fungi is sustained by induction of the genes involved in the secretory machinery.
ANALYTICAL RELATIONS BETWEEN EIGENVALUES OF CIRCULAR PLATE BASED ON VARIOUS PLATE THEORIES
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Based on the mathematical similarity of the axisymmetric eigenvalue problems of a circular plate between the classical plate theory(CPT), the first-order shear deformation plate theory(FPT) and the Reddy's third-order shear deformation plate theory(RPT), analytical relations between the eigenvalues of circular plate based on various plate theories are investigated. In the present paper, the eigenvalue problem is transformed to solve an algebra equation. Analytical relationships that are expressed explicitly between various theories are presented. Therefore, from these relationships one can easily obtain the exact RPT and FPT solutions of critical buckling load and natural frequencyfor a circular plate with CPT solutions. The relationships are useful for engineering application, and can be used to check the validity, convergence and accuracy of numerical results for the eigenvalue problem of plates.
Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza
2014-01-01
The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates.
Siriputthaiwan, Piyawan; Jauneau, Alain; Herbert, Corentin; Garcin, Daphné; Dumas, Bernard
2005-01-15
In eukaryotic cells, Rab/GTPases are major regulators of vesicular trafficking and are involved in essential processes including exocytosis, endocytosis and cellular differentiation. To investigate the role of these proteins in fungal pathogenicity, a dominant-negative mutant allele of CLPT1, a Rab/GTPase of the bean pathogen Colletotrichum lindemuthianum, was expressed in transgenic strains. This mutated gene encodes the amino-acid substitution N123I analogous to the N133I substitution in a known trans-dominant inhibitor of the Sec4 Rab/GTPase from Saccharomyces cerevisiae. A pectinase gene promoter was used to drive the CLPT1(N123I) allele in C. lindemuthianum, allowing the expression of the foreign gene on pectin medium and during pathogenesis, but not on glucose. The same strategy was used to overexpress the wild-type CLPT1 allele. During growth on pectin medium, production of extracellular pectinases was strongly impaired only in CLPT1(N123I)-expressing strains. Cytological analysis revealed that CLPT1(N123I) strains accumulated intracellular aggregates only on pectin, resulting from the fusion of vesicles containing polysaccharides or glycoproteins. Moreover, these strains showed a severe reduction of pathogenesis and were unable to penetrate the host cells. These results indicated that the Rab/GTPase CLPT1 is essential for fungal pathogenesis by regulating the intracellular transport of secretory vesicles involved in the delivery of proteins to the extracellular medium and differentiation of infectious structures.
A high order theory for uniform and laminated plates
Lo, K. H.; Christensen, R. M.; Wu, E. M.
1976-01-01
A theory of plate deformation is derived which accounts for the effects of transverse shear deformation, transverse normal strain, and a nonlinear distribution of the in-plane displacements with respect to the thickness coordinate. The theory is compared with lower order plate theories through application to a particular problem involving a plate acted upon by a sinusoidal surface pressure. Comparison is also made with exact elasticity solution of this problem. It is found that when the ratio of the characteristic length of the load pattern to the plate thickness is of the order of unity, lower order theories are inadequate and the present high order theory is required to give meaningful results. Results are given for the bending of symmetric cross-ply and angle-ply laminates. Comparison with exact elasticity solutions indicates that the present plate theory is sufficiently accurate for predicting the behavior of thick laminates.
Valle, Jose Miguel Martinez
2015-01-01
In this paper we propose a new refined shear deformation plate theory which possesses a series of desirable features, the most salient of which are as follows: (i) The loads, which are generally considered to be applied on the middle surface of the plate, act on the upper surface of the plate; (ii) The equations are applicable to the calculation of the stresses in isotropic plates and provide the same order of accuracy as several theories with second order shear deformation effects; (iii) It constitutes a theory, in the sense defined by Love, since it gives easy expressions for application to problems in different fields in architecture and civil engineering
A NEW QUADRILATERAL THIN PLATE ELEMENT BASED ON THE MEMBRANE-PLATE SIMILARITY THEORY
Institute of Scientific and Technical Information of China (English)
黄若煜; 郑长良; 钟万勰; 姚伟岸
2002-01-01
A new effective path has been proposed to formulate thin plate element by using the similarity theory between plane elasticity and plate bending. Because of avoiding the difficulty of c1 continuity , the construction of thin plate elements becomes easier. The similarity theory and its applications were discussed more deeply, and a new four nodes, sixteen D. O. F. ( degree of fieedom) thin plate element was presented on the base of the similarity theory. Numerical results for typical problems show that this new element can pass the patch test and has a very good convergence and a high precision.
Buckling analysis of sandwich plate using layer wise theory
Energy Technology Data Exchange (ETDEWEB)
Ranjbaran, Arash; Khoshravan, Mohammad Reza [University of Tabriz, Tabriz (Iran, Islamic Republic of); Kharazi, Mahsa [Sahand University of Technology, Sahand (Iran, Islamic Republic of)
2014-07-15
Buckling analysis of sandwich plate was investigated using layer wise method. The formulation was based on the first-order shear deformation theory, and the Rayleigh-Ritz method was used for approximating and determining the displacement field. The results obtained from layer wise theory was compared with finite element results and showed good agreement. This study demonstrated that layer wise theory could describe buckling behavior of sandwich plates with high accuracy and represents a more realistic and acceptable description of behavior of the plates with much less computational cost.
Theories for Elastic Plates via Orthogonal Polynomials
DEFF Research Database (Denmark)
Krenk, Steen
1981-01-01
A complementary energy functional is used to derive an infinite system of two-dimensional differential equations and appropriate boundary conditions for stresses and displacements in homogeneous anisotropic elastic plates. Stress boundary conditions are imposed on the faces a priori...
A theory of latticed plates and shells
Pshenichnon, Gi
1993-01-01
The book presents the theory of latticed shells as continual systems and describes its applications. It analyses the problems of statics, stability and dynamics. Generally, a classical rod deformation theory is applied. However, in some instances, more precise theories which particularly consider geometrical and physical nonlinearity are employed. A new effective method for solving general boundary value problems and its application for numerical and analytical solutions of mathematical physics and reticulated shell theory problems is described. A new method of solving the shell theory's nonli
Teaching Earth Dynamics: What's Wrong with Plate Tectonics Theory?
Herndon, J M
2005-01-01
Textbooks frequently extol plate tectonics theory without questioning what might be wrong with the theory or without discussing a competitive theory. How can students be taught to challenge popular ideas when they are only presented a one-sided view? In just a few pages, I describe more than a century of geodynamic ideas. I review what is wrong with plate tectonics theory and with Earth expansion theory, and describe my new Whole-Earth Decompression Dynamics Theory, which unifies the two previous dominant theories in a self- consistent manner. Along the way, I disclose details of what real science is all about, details all too often absent in textbooks and classroom discussions. In these few pages, I only touch on highlights and just part the curtain a bit so that teachers might glimpse ways to bring to their students some of the richness and excitement of discovery that becomes evident when one begins to question prevailing, currently popular perceptions of our world.
A unified theory of plastic buckling of columns and plates
Stowell, Elbridge Z
1948-01-01
On the basis of modern plasticity considerations, a unified theory of plastic buckling applicable to both columns and plates has been developed. For uniform compression, the theory shows that long columns which bend without appreciable twisting require the tangent modulus and that long flanges which twist without appreciable bending require the secant modulus. Structures that both bend and twist when they buckle require a modulus which is a combination of the secant modulus and the tangent modulus. (author)
Hosseini Hashemi, Sh.; Es'haghi, M.; Karimi, M.
2010-04-01
Free vibration analysis of annular moderately thick plates integrated with piezoelectric layers is investigated in this study for different combinations of soft simply supported, hard simply supported and clamped boundary conditions at the inner and outer edges of the annular plate on the basis of the Levinson plate theory (LPT). The distribution of electric potential along the thickness direction in the piezoelectric layer is assumed as a sinusoidal function so that the Maxwell static electricity equation is approximately satisfied. The differential equations of motion are solved analytically for various boundary conditions of the plate. In this study the closed-form solution for characteristic equations, displacement components of the plate and electric potential are derived for the first time in the literature. To demonstrate the accuracy of the present solution, comparison studies is first carried out with the available data in the literature and then natural frequencies of the piezoelectric coupled annular plate are presented for different thickness-radius ratios, inner-outer radius ratios, thickness of piezoelectric, material of piezoelectric and boundary conditions. Present analytical model provides design reference for piezoelectric material application, such as sensors, actuators and ultrasonic motors.
Nonclassical models of the theory of plates and shells
Annin, B. D.; Volchkov, Yu. M.
2016-09-01
Publications dealing with the study of methods of reducing a three-dimensional problem of the elasticity theory to a two-dimensional problem of the theory of plates and shells are reviewed. Two approaches are considered: the use of kinematic and force hypotheses and expansion of solutions of the three-dimensional elasticity theory in terms of the complete system of functions. Papers where a three-dimensional problem is reduced to a two-dimensional problem with the use of several approximations of each sought function (stresses and displacements) by segments of Legendre polynomials are also reviewed.
Plate Shape Control Theory and Experiment for 20-high Mill
Institute of Scientific and Technical Information of China (English)
Zheng-wen YUAN; Hong XIAO
2015-01-01
Roll lfattening theory is an important part of plate shape control theories for 20-high mill. In order to improve the ac-curacy of roll lfattening calculation for 20-high mill, a new and more accurate roll lfattening model was proposed. In this model, the roll barrel was considered as a ifnite length semi-inifnite body. Based on the boundary integral equation method, the numerical solution of the ifnite length semi-inifnite body under the distributed force was obtained and an accurate roll lfattening model was established. Coupled with roll bending model and strip plastic deformation, a new and more accurate plate control model for 20-high mill was established. Moreover, the effects of the ifrst intermediate roll taper angle and taper length were analyzed. The ten-sion distribution calculated by analytical model was consistent with the experimental results.
Free Vibrations of a Trapezoidal Plate with an Internal Line Hinge
Directory of Open Access Journals (Sweden)
María Virginia Quintana
2014-01-01
Full Text Available This paper deals with a general variational formulation for the determination of natural frequencies and mode shapes of free vibrations of laminated thin plates of trapezoidal shape with an internal line hinge restrained against rotation. The analysis was carried out by using the kinematics corresponding to the classical laminated plate theory (CLPT. The eigenvalue problem is obtained by employing a combination of the Ritz method and the Lagrange multipliers method. The domain of the plate is transformed into a rectangular domain in the computational space by using nonorthogonal triangular coordinates and the transverse displacements are approximated with a set of simple polynomials automatically generated and expressed in the triangular coordinates. The developed algorithm allows obtaining approximate analytical solutions for mentioned plate with different geometries, aspect ratio, position of the line hinge, and boundary conditions including translational and rotational elastically restrained edges. It allows studying the influence of the mentioned line on the vibration frequencies and respective mode shapes. The algorithm can easily be programmed and it is numerically stable. Additionally, as a particular case, the results of triangular plates can be easily generated.
Dynamic Analysis of Modifications to Simple Plate Tectonic Theory
Paczkowski, Karen
A number of geological and geophysical observations suggest significant departures from simple, first-order plate tectonic theory. In this thesis we address the dynamic implications of some of these observations and propose generalized theories to explain their dynamics and conditions of formation. In Chapter 2, we develop a generalized theory and analytic model to predict the conditions under which large-volume removal of continental lithosphere can occur through the formation of drip instabilities. Using damage physics relevant for Earth, we find a large portion of the lithosphere may be mobilized and entrained into growing drip instabilities. For a critical amount of damage, the growth is accelerated sufficiently that large-volume drip instabilities may form within geologically feasible time frames. Our model suggests large-volume lithospheric drip instabilities may arise independently of tectonic settings through damage-assisted mobilization and entrainment of the highly viscous lithosphere. In Chapter 3, we develop a mechanical model independent of volcanism and thermal weakening to explain the initial formation and length scale of rifting and extension near convergent plate boundaries. We conduct a linear stability analysis of a simple viscous necking model, which includes the lithosphere's negative buoyancy, non-Newtonian rheology, and freely moving top surface, to determine which properties of the lithosphere govern the location of rifting. We find that the negative buoyancy of the lithosphere promotes the formation of rifting structures when simple Newtonian viscosities are present. However, localized weakening, introduced through a power law exponent, is required to generate realistic rifting length scales. Our model suggests that the initial location of rifting in the overriding plate at subduction zones is primarily due to the mechanical extension induced by rollback of the subducting slab. In Chapter 4, we propose a theory to explain the seismic
Hamiltonian system for orthotropic plate bending based on analogy theory
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on analogy between plane elasticity and plate bending as well as variational principles of mixed energy, Hamiltonian system is further led to orthotropic plate bending problems in this paper. Thus many effective methods of mathematical physics such as separation of variables and eigenfunction expansion can be employed in orthotropic plate bending problems as they are used in plane elasticity. Analytical solutions of rectangular plate are presented directly, which expands the range of analytical solutions. There is an essential distinction between this method and traditional semi-inverse method. Numerical results of orthotropic plate with two lateral sides fixed are included to demonstrate the effectiveness and accuracy of this method.
Nonlocal Elasticity Theory for Transient Analysis of Higher-Order Shear Deformable Nanoscale Plates
Directory of Open Access Journals (Sweden)
Woo-Young Jung
2014-01-01
Full Text Available The small scale effect on the transient analysis of nanoscale plates is studied. The elastic theory of the nano-scale plate is reformulated using Eringen’s nonlocal differential constitutive relations and higher-order shear deformation theory (HSDT. The equations of motion of the nonlocal theories are derived for the nano-scale plates. The Eringen’s nonlocal elasticity of Eringen has ability to capture the small scale effects and the higher-order shear deformation theory has ability to capture the quadratic variation of shear strain and consequently shear stress through the plate thickness. The solutions of transient dynamic analysis of nano-scale plate are presented using these theories to illustrate the effect of nonlocal theory on dynamic response of the nano-scale plates. On the basis of those numerical results, the relations between nonlocal and local theory are investigated and discussed, as are the nonlocal parameter, aspect ratio, side-to-thickness ratio, nano-scale plate size, and time step effects on the dynamic response. In order to validate the present solutions, the reference solutions are employed and examined. The results of nano-scale plates using the nonlocal theory can be used as a benchmark test for the transient analysis.
A new orthogonality relationship for orthotropic thin plate theory and its variational principle
Institute of Scientific and Technical Information of China (English)
LUO; Jianhui; LONG; Yuqiu
2005-01-01
The thought how dual vectors are constructed in a new orthogonality relationship for theory of elasticity is generalized into orthotropic thin plate bending problems by using the analogy theory between plane elasticity problems and plate bending problems. Dual differential equations are directly obtained by using a mixed variables method. A dual differential matrix to be derived possesses a peculiarity of which principal diagonal sub-matrixes are zero matrixes. Two independently and symmetrically orthogonality sub-relationships are discovered. By using the integral form for elastic bending theory of orthotropic thin plate the orthogonality relationship is demonstrated. By selecting felicitous dual vectors a new orthogonality relationship for theory of elasticity can be generalized into elastic bending theory of orthotropic thin plate. By using the integral form a variational principle which is relative to differential form and a whole function expression are proposed.
Akhras, G.; Cheung, M. S.; Li, W.
1994-08-01
In the present study, a finite strip method for the elastic analysis of anisotropic laminated composite plates is developed according to higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. In comparison with the finite strip method based on first-order shear deformation theory, the present method gives improved results while using approximately the same number of degrees of freedom. It also eliminates the need for shear correction factors in calculating the transverse shear stiffness.
Buckling analysis of thick isotropic plates by using exponential shear deformation theory
Directory of Open Access Journals (Sweden)
Sayyad A. S.
2012-12-01
Full Text Available In this paper, an exponential shear deformation theory is presented for the buckling analysis of thick isotropic plates subjected to uniaxial and biaxial in-plane forces. The theory accounts for a parabolic distribution of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Governing equations and associated boundary conditions of the theory are obtained using the principle of virtual work. The simply supported thick isotropic square plates are considered for the detailed numerical studies. A closed form solutions for buckling analysis of square plates are obtained. Comparison studies are performed to verify the validity of the present results. The effects of aspect ratio on the critical buckling load of isotropic plates is investigated and discussed.
A multilayered plate theory with transverse shear and normal warping functions
Loredo, A
2014-01-01
A multilayered plate theory which takes into account transverse shear and normal stretching is presented. The theory is based on a seven-unknowns kinematic field with five warping functions. Four warping functions are related to the transverse shear behaviour, the fifth is related to the normal stretching. The warping functions are issued from exact three-dimensional solutions. They are related to the variations of transverse shear and normal stresses computed at specific points for a simply supported bending problem. Reddy, Cho-Parmerter and (a modified version of) Beakou-Touratier theories have been retained for comparisons. Extended versions of these theories, able to manage the normal stretching, are also considered. All these theories can be emulated by the kinematic field of the present model thanks to the adaptation of the five warping functions. Results of all these theories are confronted and compared to analytical solutions, for the bending of simply supported plates. Various plates are considered, ...
Directory of Open Access Journals (Sweden)
A. M. Zenkour
2009-01-01
Full Text Available The quasistatic bending response is presented for a simply supported functionally graded rectangular plate subjected to a through-the-thickness temperature field under the effect of various theories of generalized thermoelasticity, namely, classical dynamical coupled theory, Lord and Shulman's theory with one relaxation time, and Green and Lindsay's theory with two relaxation times. The generalized shear deformation theory obtained by the first author is used. Material properties of the plate are assumed to be graded in the thickness direction according to a simple exponential law distribution in terms of the volume fractions of the constituents. The numerical illustrations concern quasistatic bending response of functionally graded square plates with two constituent materials are studied using the different theories of generalized thermoelasticity
A simple higher order shear deformation theory for mechanical behavior of laminated composite plates
Adim, Belkacem; Daouadji, Tahar Hassaine; Rabahi, Aberezak
2016-06-01
In the present study, the static, buckling, and free vibration of laminated composite plates is examined using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated composite plates. These models take into account the parabolic distribution of transverse shear stresses and satisfy the condition of zero shear stresses on the top and bottom surfaces of the plates. The most interesting feature of this theory is that it allows for parabolic distributions of transverse shear stresses across the plate thickness and satisfies the conditions of zero shear stresses at the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns in the present theory is four, as against five in other shear deformation theories. In the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained through the use of Hamilton's principle. The accuracy of the analysis presented is demonstrated by comparing the results with solutions derived from other higher order models and with data found in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static, the buckling, and free vibration behaviors of laminated composite plates.
Energy Technology Data Exchange (ETDEWEB)
Anjomshoa, Amin; Tahani, Masoud [Ferdowsi University, Mashhad (Iran, Islamic Republic of)
2016-06-15
In the present study a continuum model based on the nonlocal elasticity theory is developed for free vibration analysis of embedded ortho tropic thick circular and elliptical nano-plates rested on an elastic foundation. The elastic foundation is considered to behave like a Pasternak type of foundations. Governing equations for vibrating nano-plate are derived according to the Mindlin plate theory in which the effects of shear deformations of nano-plate are also included. The Galerkin method is then employed to obtain the size dependent natural frequencies of nano-plate. The solution procedure considers the entire nano-plate as a single super-continuum element. Effect of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties, thickness and foundation on circular frequencies are investigated. It is seen that the nonlocal frequencies of the nano-plate are smaller in comparison to those from the classical theory and this is more pronounced for small lengths and higher vibration modes. It is also found that as the aspect ratio increases or the nanoplate becomes more elliptical, the small scale effect on natural frequencies increases. Further, it is observed that the elastic foundation decreases the influence of nonlocal parameter on the results. Since the effect of shear deformations plays an important role in vibration analysis and design of nano-plates, by predicting smaller values for fundamental frequencies, the study of these nano-structures using thick plate theories such as Mindlin plate theory is essential.
Theory for laminated plates with a through-the-thickeness crack
Energy Technology Data Exchange (ETDEWEB)
Chen, E. P.
1980-01-01
The flexural response of a laminated plate with a through-the-thickness crack was considered in this investigation. A laminated plate theory of the Reissner type has been developed to treat this problem. For demonstration purposes, the theory was applied to a balanced symmetric laminate which contains a through-the-thickness central crack. The stress intensity factor for the crack was determined and the influences of the various material and geremetric parameters on the stress intensity factor were discussed.
Directory of Open Access Journals (Sweden)
Woo-Young Jung
2013-01-01
Full Text Available Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear deformation theory. The equations of motion of the nonlocal theories are derived using Hamilton’s principle. The nonlocal elasticity of Eringen has the ability to capture the small scale effect. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory on bending and vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are investigated. Results of the present theory show a good agreement with the reference solutions. These results can be used for evaluating the reliability of size-dependent S-FGM nanoscale plate models developed in the future.
Noor, Ahmed K.; Burton, Scott
1992-01-01
An assessment is made of the accuracy of the critical-temperature sensitivity coefficients of multilayered plates predicted by different modeling approaches, based on two-dimensional shear-deformation theories. The sensitivity coefficients considered measure the sensitivity of the critical temperatures to variations in different lamination and material parameters of the plate. The standard of comparison is taken to be the sensitivity coefficients obtained by the three-dimensional theory of thermoelasticity. Numerical studies are presented showing the effects of variation in the geometric and lamination parameters of the plate on the accuracy of both the sensitivity coefficients and the critical temperatures predicted by the different modeling approaches.
A simplified four-unknown shear and normal deformations theory for bidirectional laminated plates
Indian Academy of Sciences (India)
A M Zenkour
2015-02-01
This paper presents a simplified 4-unknown shear and normal deformations theory for the bending analysis of cross-ply laminated plates. The present theory accounts for an adequate distribution of transverse shear strains through the plate thickness and tangential stress-free on the plate surfaces. The effect of normal strain is also included. The governing, equilibrium equations and boundary conditions are derived by employing the virtual work principle. Numerical results for stresses and displacements are compared well with those obtained using 3-D elasticity solution.
Directory of Open Access Journals (Sweden)
Ali Ghorbanpour Arani
2017-01-01
Full Text Available This research aims at studying free vibration of rectangular plate made of porous materials in which Y-foam, G-foam, and Coustone are used and compared with each other. To obtain the Biot formulation of the constitutive equations for a porous material, linear poroelasticity theory is used. Young modulus and density of porous plate are different in transverse direction versus porosity. In order to increase the accuracy of results in comparison with classical plate and first-order shear deformation theories, Reddy’s theory was utilized in this research. Besides, five coupled equations of motion have been studied using Hamilton’s principle and are solved by differential quadrature method (DQM. Detailed results of this study show the significant effect of aspect ratio, thickness ratio, boundary conditions, and porosity on dimensionless frequency and deflection of porous plate. Results of this study can contribute to the design of pneumatic conveying, handling, and control systems.
Directory of Open Access Journals (Sweden)
Shi-Chao Yi
2017-01-01
Full Text Available Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations, natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs. Distinguished from the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics, such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and then the polynomials can form an exclusive plate theory. Thus, the novel plate theory has two merits: one is the orthogonality, where the majority of the coefficients of the equations derived from Hamilton’s principle are zero; the other is the flexibility, where the order of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters, length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural frequencies, and buckling response of various FGM plates are demonstrated.
A generalized plane strain theory for transversely isotropic piezoelectric plates
Institute of Scientific and Technical Information of China (English)
XU Si-peng; WANG Wei
2005-01-01
Study of generalized plane strain has so far been limited to elasticity. The present is aimed at parallel development of transversely isotropic piezoelasticity. By assuming that the along depth distribution of electric potential is linear, and that commonly used Kane-Mindlin kinematical assumption is valid, two dimensional solution systems were deduced, for which, explicit solutions of the out-of-plane constraint factor, as well as the stress resultant concentration factor around a circular hole in a transversely isotropic piezoelectric plate subjected to remote biaxial tension are obtained. Comparisons of these formulas with their counterparts for elastic case yielded suggestions that whether the piezoelectric effect exacerbates or mitigates the stress resultant concentration greatly depends on material properties, particularly, the piezoelectric coefficients;the effect of plate thickness was extensively investigated.
1947-01-01
deposits arc pro- duced as the coll potential is successively raised. The sulfato ion "hus has an extremely important effect in the chromium plating...and sulfato iDU in the bath wore then used in an attempt to obtain more satisfactory hexagonal chromium deposits. The data obtained are summarUod
A nonlinear theory for elastic plates with application to characterizing paper properties
M. W. Johnson; Thomas J. Urbanik
1984-03-01
A theory of thin plates which is physically as well as kinematically nonlinear is, developed and used to characterize elastic material behavior for arbitrary stretching and bending deformations. It is developed from a few clearly defined assumptions and uses a unique treatment of strain energy. An effective strain concept is introduced to simplify the theory to a...
Stresses in adhesively bonded joints: A closed form solution. [plate theory
Delale, F.; Erdogan, F.; Aydinoglu, M. N.
1980-01-01
The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results.
Bending and vibration of functionally graded material sandwich plates using an accurate theory
Natarajan, S
2012-01-01
In this paper, the bending and the free flexural vibration behaviour of sandwich functionally graded material (FGM) plates are investigated using QUAD-8 shear flexible element developed based on higher order structural theory. This theory accounts for the realistic variation of the displacements through the thickness. The governing equations obtained here are solved for static analysis considering two types of sandwich FGM plates, viz., homogeneous face sheets with FGM core and FGM face sheets with homogeneous hard core. The in-plane and rotary inertia terms are considered for vibration studies. The accuracy of the present formulation is tested considering the problems for which three-dimensional elasticity solutions are available. A detailed numerical study is carried out based on various higher-order models to examine the influence of the gradient index and the plate aspect ratio on the global/local response of different sandwich FGM plates.
Quasi-one-dimensional modes in strip plates: Theory and experiment
Energy Technology Data Exchange (ETDEWEB)
Arreola, A.; Báez, G. [Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Apartado Postal 21-267, 04000 México Distrito Federal (Mexico); Méndez-Sánchez, R. A. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico)
2014-01-14
Using acoustic resonance spectroscopy we measure the elastic resonances of a strip rectangular plate with all its ends free. The experimental setup consist of a vector network analyzer, a high-fidelity audio amplifier, and electromagnetic-acoustic transducers. The one-dimensional modes are identified from the measured spectra by comparing them with theoretical predictions of compressional and bending modes of the plate modeled as a beam. The agreement between theory and experiment is excellent.
On a consistent finite-strain plate theory based on 3-D energy principle
Dai, Hui-Hui
2014-01-01
This paper derives a finite-strain plate theory consistent with the principle of stationary three-dimensional (3-D) potential energy under general loadings with a third-order error. Staring from the 3-D nonlinear elasticity (with both geometrical and material nonlinearity) and by a series expansion, we deduce a vector plate equation with three unknowns, which exhibits the local force-balance structure. The success relies on using the 3-D field equations and bottom traction condition to derive exact recursion relations for the coefficients. Associated weak formulations are considered, leading to a 2-D virtual work principle. An alternative approach based on a 2-D truncated energy is also provided, which is less consistent than the first plate theory but has the advantage of the existence of a 2-D energy function. As an example, we consider the pure bending problem of a hyperelastic block. The comparison between the analytical plate solution and available exact one shows that the plate theory gives second-order...
Assessment of Theories for Free Vibration Analysis of Homogeneous and Multilayered Plates
Directory of Open Access Journals (Sweden)
Erasmo Carrera
2004-01-01
Full Text Available This paper assesses classical and advanced theories for free vibrational response of homogeneous and multilayered simply supported plates. Closed form solutions are given for thick and thin geometries. Single layer and multilayered plates made of metallic, composite and piezo-electric materials, are considered. Classical theories based on Kirchhoff and Reissner-Mindlin assumptions are compared with refined theories obtained by enhancing the order of the expansion of the displacement fields in the thickness direction z. The effect of the Zig-Zag form of the displacement distribution in z as well as of the Interlaminar Continuity of transverse shear and normal stresses at the layer interface were evaluated. A number of conclusions have been drawn. These conclusions could be used as desk-bed in order to choose the most valuable theories for a given problem.
Doe, Bruce R.
The recent article by Jean-Claude Mareschal (“Plate Tectonics: Scientific Revolution or Scientific Program?” in Eos, May 19, 1987, p. 529) adds to the interesting literature on the evolution of the theory of plate tectonics. It is curious that an aspect of the general theory that seems to be little considered and mentioned by Mareschal or others who write about the history of development of the theory, but that was vitally important in my own acceptance of the theory, was the discovery of subduction and, to a lesser extent, abduction.
DEFF Research Database (Denmark)
Kling, Joyce; Hjulmand, Lise-Lotte
2008-01-01
’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through......Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...
DEFF Research Database (Denmark)
Kling, Joyce; Hjulmand, Lise-Lotte
2008-01-01
Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...
An advanced higher-order theory for laminated composite plates with general lamination angles
Institute of Scientific and Technical Information of China (English)
Zhen Wu; Hong Zhu; Wan-Ji Chen
2011-01-01
This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations.The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces.Moreover,the number of unknown variables is independent of the number of layers.The first derivatives of transverse displacements have been taken out from the inplane displacement fields,so that the C0 shape functions are only required during its finite element implementation.Due to C0 continuity requirements,the proposed model can be conveniently extended for implementation in commercial finite element codes.To verify the proposed theory,the fournode C0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate.Numerical results show that following the proposed theory,simple C0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation,which has caused difficulty for the other global higher order theories.
A COSSERAT-TYPE PLATE THEORY AND ITS APPLICATION TO CARBON NANOTUBE MICROSTRUCTURE
Directory of Open Access Journals (Sweden)
Abdellatif Selmi
2014-01-01
Full Text Available The predictive capabilities of plate and shell theories greatly depend on their underlying kinematic assumptions. In this study, we develop a Cosserat-type elastic plate theory which accounts for rotations around the normal to the mid-surface plane (so-called drilling rotations. Internal loads, equilibrium equations, boundary conditions and constitutive equations are derived. The case of a Single Walled carbon Nanotube (SWNT modelled as a Cosserat medium is taken here as a reference example. Material parameters are identiﬁed and the proposed theory is used to solve analytically the problem of a polymer-SWNT composite tube under torsion. Predictions such as an absolute size effect are compared to those of the classical Cauchy-de Saint-Venant results.
Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics.
Paillusson, Fabien; Blossey, Ralf
2010-11-01
Polar liquids like water carry a characteristic nanometric length scale, the correlation length of orientation polarizations. Continuum theories that can capture this feature commonly run under the name of "nonlocal" electrostatics since their dielectric response is characterized by a scale-dependent dielectric function ε(q), where q is the wave vector; the Poisson(-Boltzmann) equation then turns into an integro-differential equation. Recently, "local" formulations have been put forward for these theories and applied to water, solvated ions, and proteins. We review the local formalism and show how it can be applied to a structured liquid in slit and plate geometries, and solve the Poisson-Boltzmann theory for a charged plate in a structured solvent with counterions. Our results establish a coherent picture of the local version of nonlocal electrostatics and show its ease of use when compared to the original formulation.
Rolfes, R.; Noor, A. K.; Sparr, H.
1998-01-01
A postprocessing procedure is presented for the evaluation of the transverse thermal stresses in laminated plates. The analytical formulation is based on the first-order shear deformation theory and the plate is discretized by using a single-field displacement finite element model. The procedure is based on neglecting the derivatives of the in-plane forces and the twisting moments, as well as the mixed derivatives of the bending moments, with respect to the in-plane coordinates. The calculated transverse shear stiffnesses reflect the actual stacking sequence of the composite plate. The distributions of the transverse stresses through-the-thickness are evaluated by using only the transverse shear forces and the thermal effects resulting from the finite element analysis. The procedure is implemented into a postprocessing routine which can be easily incorporated into existing commercial finite element codes. Numerical results are presented for four- and ten-layer cross-ply laminates subjected to mechanical and thermal loads.
Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory
Directory of Open Access Journals (Sweden)
B. Sidda Reddy
2013-01-01
Full Text Available The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs using higher order shear deformation theory (HSDT without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.
Novel thin plate element theory based on a continuity re-relaxed technique
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Thin plate problem has been receiving much interest due to its wide application in engineering.In this paper,a novel thin plate element theory is proposed based on a continuity re-relaxed technique to avoid the high continuity requirement for thin plate formulation which needs the high computation cost.The problem is first discretized into a set of background cells with field nodes,and only deflection field is treated as the field variable.On top of the background cells,the integration domains are further formed.The curvatures over integration domains are restructured through the divergence theorem,and the continuity requirement of the trial deflection function for thin plate problems can be re-relaxed.The Galerkin weak form is then used to create the discretized system equations.The curvatures in the integration domains are constant,and the stiffness matrix of the system can be computed directly without numerical integration.The rotational essential boundary conditions are imposed in the process of curvature field construction.Some numerical examples are computed using the RPIM approximation function.The excellent results demonstrate the efficiency of the proposed method.
Mehar, K.; Panda, S. K.
2016-02-01
In the present study, the free vibration and the bending behaviour of carbon nanotube reinforced composite plate are computed using three different shear deformation theories under thermal environment. The material properties of carbon nanotube and matrix are assumed to be temperature-dependent, and the extended rule of mixture is used to compute the effectivematerial properties of the composite plate. The convergence and validity of the present modelalso have been checked by computing the wide variety of the numerical example. The applicability of the proposed higher-order models has been highlighted by solving the wide variety of examples for different geometrical and material parameters underelevated thermal environment.The responses are also examined using the simulation model developed in commercial finite element package (ANSYS).
Study on Interaction Between Two Parallel Plates with Iteration Method in Functional Theory
Institute of Scientific and Technical Information of China (English)
Ming Zhou; Zheng-wu Wang; Zu-min Xu
2008-01-01
By introducing the functional theory into the calculation of electric double layer (EDL) interaction,the interaction energies of two parallel plates were calculated respectively at low,moderate,and high potentials. Compared with the results of two existing methods,Debye-Hiickel and Langmuir methods,which are appli- cable just to the critical potentials and perform poorly in the intermediate potential,the functional approach not only has much simpler expression of the EDL interaction energy,but also performs well in the entire range of potentials.
Finite element formulation of active constraining layer damping plate using laminate theory
Institute of Scientific and Technical Information of China (English)
邓年春; 邹振祝; 黄文虎
2004-01-01
A new finite element modeling method has been developed using laminate theory in a virlual work principle for active constraining layer damping plate. The frequency dependent modulus of viscoelastic material is described by introducing a few dissipation coordinates, known as GHM (Golla-Hughes-McTavish) method, a standard linear system with constant coefficient. The effectiveness of this method is validated by experimental model. Compared with conventional methods, this method can reduce a number of degrees of freedom and improve accuracy, provides a good model for analogous configurations.
A scaling theory of the free-coating flow on a plate withdrawn from a pool
Orsini, Gabriele; Tricoli, Vincenzo
2017-05-01
A theory of free coating of a Newtonian liquid on a plate is developed based on scaling analysis of the flow. The analysis addresses the flow in the apical portion of the meniscus, where the film is entrained, and also of the bulk liquid conveyed from pool depths up to the surface. Film thickness as well as the characteristic curvature of the meniscus is predicted as a function of the capillary number Ca and the non-dimensional parameter P o =μ (g/ρ σ3 ) 1 /4. No term in the Navier-Stokes equations is arbitrarily neglected; thus, the theory is valid virtually for any Ca and Po. The theory entails two adjustable constants, determined by least-squares fitting with the experimental data of Kizito et al. ["Experimental free coating flows at high capillary and Reynolds number," Exp. Fluids 27, 235 (1999)]. However, once determined, these constants are to be considered as "universal" for free-coating on a plate. Rich thickness-vs-Ca behavior as a function of Po is predicted with a steep ascent of thickness at a certain Ca threshold, which depends on Po. At diverging Ca, the film thickness scaled to d0=(μU /ρ g ) 1/2 asymptotes to a finite value independent of Po, while in the small-Ca limit the classical Landau-Levich law is duly recovered. The theory provides full physical understanding of each aspect of this behavior, revealing the roles of capillary-, inertial-, and gravity forces in the various regimes. The theoretical predictions are in full qualitative and quantitative agreement with the whole set of experimental results of Kizito et al., spanning over three orders of magnitudes both of Ca and Po. A non-monotonous behavior of the characteristic meniscus curvature scaled to the reciprocal film thickness, with a growth followed by a drop as a function of Ca, is predicted, in qualitative accordance with earlier experimental observations and computational results.
Directory of Open Access Journals (Sweden)
S. S. Daimi
2014-08-01
Full Text Available Functionally graded materials (FGMs are microscopically inhomogeneous spatial composite materials, typically composed of a ceramic-metal or ceramic-polymer pair of materials. Therefore, it is important to investigate the behaviors of engineering structures such as beams and plates made from FGMs when they are subjected to thermal loads for appropriate design. Therefore, using an improved third order shear deformation theory (TSDT based on more rigorous kinetics of displacements to predict the behaviors of functionally graded plates is expected to be more suitable than using other theories. In this paper, the improved TSDT is used to investigate thermal buckling of functionally graded plates. Temperature dependent material property solutions are adopted to investigate thermal buckling results of functionally graded plates. To obtain the solutions, the Ritz method using polynomial and trigonometric functions for defining admissible displacements and rotations is applied to solve the governing equations.
Earthquake depth-energy release: thermomechanical implications for dynamic plate theory
Patton, Regan L
2012-01-01
Analysis of the global centroid-moment tensor catalog reveals significant regional variations of seismic energy release to 290 km depth. These variations reflect radial and lateral contrasts in thermomechanical competence, consistent with a shear-dominated non-adiabatic boundary layer some 700-km thick, capped by denser oceanic lithosphere as much as 100 km thick, or lighter continental tectosphere 170 to 260 km thick. Thus, isobaric shearing at fractally-distributed depths likely facilitates toroidal plate rotations while minimizing global energy dissipation. Shear localization in the shallow crust occurs as dislocations at finite angles with respect to the shortening direction, with a 30 degree angle being the most likely. Consequently, relatively low-angle reverse faults, steep normal faults, and triple junctions with orthogonal or hexagonal symmetry are likely to form in regions of crustal shortening, extension, and transverse motion, respectively. Thermomechanical theory also predicts adiabatic condition...
Indian Academy of Sciences (India)
ZIRAN CHEN; ZHANRONG HE; YOUHUI XU; WENHAO YU
2017-09-01
Charge transport rate is one of the key parameters determining the performance of organic electronic devices. In this paper, we used density functional theory (DFT) at the M06-2X/6−31+G(d) level to compute the charge transport rates of nine coronene topological structures. The results show that the energy gap of these nine coronene derivatives is in the range 2.90–3.30 eV, falling into the organic semiconductor category. The size of the conjugate ring has a large influence on the charge transport properties. Incorporation of methyl groupson the rigid core of tetrabenzocoronene and hexabenzocoronene is more conducive to the hole transport of the molecule than incorporating methoxyl groups. The derivatisation of a ‘long plate-like’ coronene with methoxylgroups facilitates both hole and electron transport. This class of molecules can thus be used in the design of ambipolar transport semiconductor materials.
Librescu, L.; Khdeir, A. A.
1988-01-01
A simple theory for bending of composite anisotropic plates that are laminated symmetrically about their mid-plane is presented. This theory incorporates transverse shear deformation and transverse normal stress as well as the higher-order effects and fulfills the static conditions on the external boundary planes. Further on, by using Levy-type solutions considered in conjunction with the state space concept, the state of stress and displacement of rectangular plates for a variety of edge conditions is determined and the results are compared to their first-order shear deformation and classical counterparts, obtained by using the same state-space technique.
Cordey, J; Perren, S M; Steinemann, S G
2000-09-01
A generally accepted idea has been that plate fixation of fractures may result in the structural adaptation of bone (bone loss) to reduced stress (stress protection) with the subsequent danger of refracture after implant removal. This was the negative aspect of stress protection. For this reason, it was proposed that plates made from more deformable materials be used (titanium, polymers or carbon fibres). A theoretical analysis using composite beam theory, with different loading conditions (axial load and bending), demonstrates that stress protection, i.e. early temporary porosis, is a myth. Mechanics of materials shows that when an over-large plate is fixed to small bones (as in small animals, e.g. rabbits), the reduction of bone strain is exaggerated; in contrast, using plates of varying flexibility (steel, titanium or carbon fibre) on large bones leads to strain reduction with an astonishingly similar amplitude.
Abe, Keina; Akamatsu, Rie
2013-01-01
Purpose/Objectives: The purpose of this study was to identify the aspects of the Theory of Planned Behavior with the greatest relevance to plate waste (PW) among elementary school children in Tokyo, Japan. Methods: A total of 111 fifth- and sixth-grade students at an elementary school in Tokyo, Japan responded to a self-report questionnaire. The…
Abe, Keina; Akamatsu, Rie
2013-01-01
Purpose/Objectives: The purpose of this study was to identify the aspects of the Theory of Planned Behavior with the greatest relevance to plate waste (PW) among elementary school children in Tokyo, Japan. Methods: A total of 111 fifth- and sixth-grade students at an elementary school in Tokyo, Japan responded to a self-report questionnaire. The…
Reddy, J. N.
1986-01-01
An improved plate theory that accounts for the transverse shear deformation is presented, and mixed and displacement finite element models of the theory are developed. The theory is based on an assumed displacement field in which the inplane displacements are expanded in terms of the thickness coordinate up to the cubic term and the transverse deflection is assumed to be independent of the thickness coordinate. The governing equations of motion for the theory are derived from the Hamilton's principle. The theory eliminates the need for shear correction factors because the transverse shear stresses are represented parabolically. A mixed finite element model that uses independent approximations of the displacements and moments, and a displacement model that uses only displacements as degrees of freedom are developed. A comparison of the numerical results for bending with the exact solutions of the new theory and the three-dimensional elasticity theory shows that the present theory (and hence the finite element models) is more accurate than other plate-theories of the same order.
Directory of Open Access Journals (Sweden)
Isaev Veniamin
2016-01-01
Full Text Available Calculation of compressed footings settlement is one of the most vital tasks of soil mechanics. The calculation method of layer-by-layer addition, which recommended by current regulations and used in structural engineering practice, is most suitable for determining the settlement of foundations with an area of less than 50 m2. The authors prove that it’s possible to apply the one-dimensional problem of soils compression seal theory to the calculation of the settlement of large foundation plates. The proposed method of determining the settlement of large foundation plates makes the calculations simpler. There are examples of comparable calculations using the existing and proposed methods.
2016-01-01
A review of studies performed using the R-functions theory to solve problems of nonlinear dynamics of plates and shallow shells is presented. The systematization of results and studies for the problems of free and parametric vibrations and for problems of static and dynamic stability is fulfilled. Expansion of the developed original method of discretization for nonlinear movement equations on new classes of nonlinear problems is shown. These problems include researches of vibratio...
Bending and stretching of plates
Mansfield, E H; Hemp, W S
1964-01-01
The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a
Mantle convection and plate tectonics: toward an integrated physical and chemical theory
Tackley
2000-06-16
Plate tectonics and convection of the solid, rocky mantle are responsible for transporting heat out of Earth. However, the physics of plate tectonics is poorly understood; other planets do not exhibit it. Recent seismic evidence for convection and mixing throughout the mantle seems at odds with the chemical composition of erupted magmas requiring the presence of several chemically distinct reservoirs within the mantle. There has been rapid progress on these two problems, with the emergence of the first self-consistent models of plate tectonics and mantle convection, along with new geochemical models that may be consistent with seismic and dynamical constraints on mantle structure.
Dynamic stress concentrations in thick plates with two holes based on refined theory
Institute of Scientific and Technical Information of China (English)
周伟平; 胡超; 刘殿魁
2014-01-01
Based on complex variables and conformal mapping, the elastic wave scat-tering and dynamic stress concentrations in the plates with two holes are studied by the refined dynamic equation of plate bending. The problem to be solved is changed to a set of infinite algebraic equations by an orthogonal function expansion method. As examples, under free boundary conditions, the numerical results of the dynamic moment concen-tration factors in the plates with two circular holes are computed. The results indicate that the parameters such as the incident wave number, the thickness of plates, and the spacing between holes have great effects on the dynamic stress distributions. The results are accurate because the refined equation is derived without any engineering hypothese.
Random matrix theory and acoustic resonances in plates with an approximate symmetry.
Andersen, A; Ellegaard, C; Jackson, A D; Schaadt, K
2001-06-01
We discuss a random matrix model of systems with an approximate symmetry and present the spectral fluctuation statistics and eigenvector characteristics for the model. An acoustic resonator like, e.g., an aluminum plate may have an approximate symmetry. We have measured the frequency spectrum and the widths for acoustic resonances in thin aluminum plates, cut in the shape of the so-called three-leaf clover. Due to the mirror symmetry through the middle plane of the plate, each resonance of the plate belongs to one of two mode classes and we show how to separate the modes into these two classes using their measured widths. We compare the spectral statistics of each mode class with results for the Gaussian orthogonal ensemble. By cutting a slit of increasing depth on one face of the plate, we gradually break the mirror symmetry and study the transition that takes place as the two classes are mixed. Presenting the spectral fluctuation statistics and the distribution of widths for the resonances, we find that this transition is well described by the random matrix model.
Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander
2013-01-01
The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.
Inelastic models of lithospheric stress - I. Theory and application to outer-rise plate deformation
Mueller, S.; Choy, G.L.; Spence, W.
1996-01-01
Outer-rise stress distributions determined in the manner that mechanical engineers evaluate inelastic stress distributions within conventional materials are contrasted with those predicted using simple elastic-plate models that are frequently encountered in studies of outer-rise seismicity. This comparison indicates that the latter are inherently inappropriate for studies of intraplate earthquakes, which are a direct manifestation of lithospheric inelasticity. We demonstrate that the common practice of truncating elastically superimposed stress profiles so that they are not permitted to exceed laboratory-based estimates of lithospheric yield strength will result in an accurate characterization of lithospheric stress only under relatively restrictive circumstances. In contrast to elastic-plate models, which predict that lithospheric stress distributions depend exclusively upon the current load, inelastic plate models predict that stress distributions are also significantly influenced by the plate-loading history, and, in many cases, this influence is the dominant factor in determining the style of potential seismicity (e.g. thrust versus normal faulting). Numerous 'intuitive' interpretations of outer-rise earthquakes have been founded upon the implicit assumption that a unique relationship exists between a specified combination of plate curvature and in-plane force, and the resulting lithospheric stress distribution. We demonstrate that the profound influence of deformation history often invalidates such interpretations. Finally, we examine the reliability of 'yield envelope' representations of lithospheric strength that are constructed on the basis of empirically determined frictional sliding relationships and silicate plastic-flow laws. Although representations of this nature underestimate the strength of some major interplate faults, such as the San Andreas, they appear to represent a reliable characterization of the strength of intraplate oceanic lithosphere.
Random matrix theory and acoustic resonances in plates with an approximate symmetry
DEFF Research Database (Denmark)
Andersen, Anders Peter; Ellegaard, C.; Jackson, A.D.;
2001-01-01
We discuss a random matrix model of systems with an approximate symmetry and present the spectral fluctuation statistics and eigenvector characteristics for the model. An acoustic resonator like, e.g., an aluminum plate may have an approximate symmetry. We have measured the frequency spectrum...... the spectral fluctuation statistics and the distribution of widths for the resonances, we find that this transition is well described by the random matrix model....
Acoustic radiation from out-of-plane modes of an annular disk using thin and thick plate theories
Lee, Hyeongill; Singh, Rajendra
2005-04-01
Out-of-plane (flexural) vibration is a major source of sound radiation from many mechanical or structural components having annular or circular disk shape. The typical thickness of practical components is often beyond the thin plate theory limit and it may have considerable effect on sound radiation. But, traditionally, thin annular disk models have been employed for such structures neglecting the thickness effect. In this article, structural eigensolutions for the out-of-plane modes and sound radiation from the modal vibration of a thick annular disk with free-free boundaries have been calculated using both thick and thin plate theories. A new analytical formulation is proposed for the sound radiation problem. In addition, the same problem has been solved by a semi-analytical procedure in which the disk surface velocity is numerically defined by a finite-element model and sound radiation is then analytically obtained using a modified circular radiator model. Also, the effects of radii and thickness ratios on the structural and acoustic radiation characteristics are investigated using the analytical procedure. Finally, the effect of boundary conditions is briefly examined.
EQUIVALENCE OF REFINED THEORY AND DECOMPOSED THEOREM OF AN ELASTIC PLATE
Institute of Scientific and Technical Information of China (English)
ZHAO Bao-sheng; WANG Min-zhong
2005-01-01
A connection between Cheng's refined theory and Gregory's decomposed theorem is analyzed. The equivalence of the refined theory and the decomposed theorem is given. Using operator matrix determinant of partial differential equation, Cheng gained one equation, and he substituted the sum of the general integrals of three differential equations for the solution of the equation. But he did not prove the rationality of substitute. There, a whole proof for the refined theory from Papkovich-Neuber solution was given. At first expressions were obtained for all the displacements and stress components in term of the midplane displacement and its derivatives. Using Lur'e method and the theorem of appendix,the refined theory was given. At last, using basic mathematic method, the equivalence between Cheng's refined theory and Gregory's decomposed theorem was proved, i.e.,Cheng' s bi-harmonic equation, shear equation and transcendental equation are equivalent to Gregory's interior state, shear state and Papkovich-Fadle state, respectively.
Stupakov, Gennady
2016-01-01
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to the situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked agains numerical simulations with the CSRZ computer code.
Energy Technology Data Exchange (ETDEWEB)
Stupakov, Gennady; Zhou, Demin
2016-04-21
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.
Stupakov, Gennady; Zhou, Demin
2016-04-01
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.
Exact microscopic theory of electromagnetic heat transfer between a dielectric sphere and plate
Otey, Clayton
2011-01-01
Near-field electromagnetic heat transfer holds great potential for the advancement of nanotechnology. Whereas far-field electromagnetic heat transfer is constrained by Planck's blackbody limit, the increased density of states in the near-field enhances heat transfer rates by orders of magnitude relative to the conventional limit. Such enhancement opens new possibilities in numerous applications, including thermal-photo-voltaics, nano-patterning, and imaging. The advancement in this area, however, has been hampered by the lack of rigorous theoretical treatment, especially for geometries that are of direct experimental relevance. Here we introduce an efficient computational strategy, and present the first rigorous calculation of electromagnetic heat transfer in a sphere-plate geometry, the only geometry where transfer rate beyond blackbody limit has been quantitatively probed at room temperature. Our approach results in a definitive picture unifying various approximations previously used to treat this problem, ...
Gold-plated moments of nucleon structure functions in baryon chiral perturbation theory
Lensky, Vadim; Pascalutsa, Vladimir
2014-01-01
We obtain leading- and next-to-leading order predictions of chiral perturbation theory for several prominent moments of nucleon structure functions. These free-parameter free results turn out to be in overall agreement with the available empirical information on all of the considered moments, in the region of low-momentum transfer ($Q^2 < 0.3$ GeV$^2$). Especially surprising is the situation for the $\\delta_{LT}$ moment, which thus far was not reproducible for proton and neutron simultaneously in chiral perturbation theory. This problem, known as the "$\\delta_{LT}$ puzzle," is not seen in the present calculation.
Wang, Wenjun; Li, Peng; Jin, Feng
2016-09-01
A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.
Extension of Golay's plate height equation from laminar to turbulent flow I - Theory.
Gritti, Fabrice
2017-04-07
The reduced plate height (RPH) equation of Golay derived in 1958 for open tubular columns (OTC) is extended from laminar to turbulent-like flow. The mass balance equation is solved under near-equilibrium conditions in the mobile phase for changing shapes of the velocity profile across the OTC diameter. The final expression of the general RPH equation is: [Formula: see text] where ν is the reduced linear velocity, k is the retention factor, Dm is the bulk diffusion coefficient in the mobile phase, Da¯ is the average axial dispersion coefficient, Dr¯ is the average radial dispersion coefficient, Ds is the diffusion coefficient of the analyte in the stationary film of thickness df, D is the OTC inner diameter, and n≥2 is a positive number controlling the shape of the flow profile (polynomial of degree n). The correctness of the derived RPH equation is verified for Poiseuille (n=2), turburlent-like (n=10), and uniformly flat (n→∞) flow profiles. The derived RPH equation is applied to predict the gain in speed-resolution of a 180μm i.d.×20m OTC (df=2μm) from laminar to turbulent flow in supercritical fluid chromatography. Using pure carbon dioxide as the mobile phase at 297K, k=1, and increasing the Reynolds number from 2000 (laminar) to 4000 (turbulent), the OTC efficiency is expected to increase from 125 to 670 (×5.4) while the hold-up time decreases from 19 to 9s (×0.5). Despite the stronger resistance to mass transfer in the stationary phase, the projected improvement of the column performance in turbulent flow is explained by the quasi-elimination of the resistance to mass transfer in the mobile phase while axial dispersion remains negligible. Copyright © 2017 Elsevier B.V. All rights reserved.
Okamoto, Ryuichi; Onuki, Akira
2012-03-21
We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line.
Van Long, Nguyen; Quoc, Tran Huu; Tu, Tran Minh
2016-12-01
In this paper, a new eight-unknown shear deformation theory is developed for bending and free vibration analysis of functionally graded plates by finite-element method. The theory based on full 12-unknown higher order shear deformation theory simultaneously satisfies zeros transverse stresses at top and bottom surfaces of FG plates. A four-node rectangular element with 16 degrees of freedom per node is used. Poisson's ratios, Young's moduli, and material densities vary continuously in thickness direction according to the volume fraction of constituents which is modeled as power-law functions. Results are verified with available results in the literature. Parametric studies are performed for different power-law indices, side-to-thickness ratios.
Energy Technology Data Exchange (ETDEWEB)
Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Kolahchi, R.; Vossough, H. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)
2012-11-15
This study presents an analytical approach for buckling analysis and smart control of a single layer graphene sheet (SLGS) using a coupled polyvinylidene fluoride (PVDF) nanoplate. The SLGS and PVDF nanoplate are considered to be coupled by an enclosing elastic medium which is simulated by the Pasternak foundation. The PVDF nanoplate is subjected to an applied voltage in the thickness direction which operates in control of critical load of the SLGS. In order to satisfy the Maxwell equation, electric potential distribution is assumed as a combination of a half-cosine and linear variation. The exact analysis is performed for the case when all four ends are simply supported and free electrical boundary condition. Adopting the nonlocal Mindlin plate theory, the governing equations are derived based on the energy method and Hamilton's principle. A detailed parametric study is conducted to elucidate the influences of the small scale coefficient, stiffness of the internal elastic medium, graphene length, mode number and external electric voltage on the buckling smart control of the SLGS. The results depict that the imposed external voltage is an effective controlling parameter for buckling of the SLGS. This study might be useful for the design and smart control of nano-devices.
Merrett, Craig G.
-partial differential equations. The spatial component of the governing equations is eliminated using a series expansion of basis functions and by applying Galerkin's method. The number of terms in the series expansion affects the convergence of the spatial component, and convergence is best determined by the von Koch rules that previously appeared for column buckling problems. After elimination of the spatial component, an ordinary integral-differential equation in time remains. The dynamic stability of elastic and viscoelastic problems is assessed using the determinant of the governing system of equations and the time component of the solution in the form exp (lambda t). The determinant is in terms of lambda where the values of lambda are the latent roots of the aero-servo-viscoelastic system. The real component of lambda dictates the stability of the system. If all the real components are negative, the system is stable. If at least one real component is zero and all others are negative, the system is neutrally stable. If one or more real components are positive, the system is unstable. In aero-servo-viscoelasticity, the neutrally stable condition is termed flutter. For an aero-servo-viscoelastic lifting surface, the unstable condition is historically termed torsional divergence. The more general aero-servo-viscoelastic theory has produced a number of important results, enumerated in the following list: 1. Subsonic panel flutter can occur before panel instability. This result overturned a long held assumption in aeroelasticity, and was produced by the novel application of the von Koch rules for convergence. Further, experimental results from the 1950s by the Air Force were retrieved to provide additional proof. 2. An expanded definition for flutter of a lifting surface. The legacy definition is that flutter is the first occurrence of simple harmonic motion of a structure, and the flight velocity at which this motion occurs is taken as the flutter speed. The expanded definition
Ebrahimi, Farzad; Barati, Mohammad Reza
2016-10-01
In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.
Hsu, Jin-Chen; Wu, Tsung-Tsong
2008-02-01
Based on Mindlin's piezoelectric plate theory and the plane wave expansion method, a formulation is proposed to study the frequency band gaps and dispersion relations of the lower-order Lamb waves in two-dimensional piezoelectric phononic plates. The method is applied to analyze the phononic plates composed of solid-solid and airsolid constituents with square and triangular lattices, respectively. Factors that influence the opening and width of the complete Lamb wave gaps are identified and discussed. For solid/solid phononic plates, it is suggested that the filling material be chosen with larger mass density, proper stiffness, and weak anisotropic factor embedded in a soft matrix in order to obtain wider complete band gaps of the lower-order Lamb waves. By comparing to the calculated results without considering the piezoelectricity, the influences of piezoelectric effect on Lamb waves are analyzed as well. On the other hand, for air/solid phononic plates, a background material itself with proper anisotropy and a high filling fraction of air may favor the opening of the complete Lamb wave gaps.
DEFF Research Database (Denmark)
Sørensen, Herman
1997-01-01
Fundamental analytical methods for the calculation of the bending strength and stability of isotrop and stiffened panels typically used in ship structures.Practical working examples with references to the rules of ship classification societies....
Vibration and Buckling of Web Plate of the Plate Girder
高橋, 和雄; 呉, 明強; 中澤, 聡志; 筑紫, 宏之
1998-01-01
The vibration and buckling of the web of the plate girder are studied in this paper. The small deflection theory of the thin plate is used. The finite strip method is employed to solve vibration and buckling of the plate girder. Natural frequenies of buckling properties are shown for various plate girder bridges.
Energy Technology Data Exchange (ETDEWEB)
Nami, Mohammad Rahim [Shiraz University, Shiraz, Iran (Iran, Islamic Republic of); Janghorban, Maziar [Islamic Azad University, Marvdash (Iran, Islamic Republic of)
2015-06-15
In this work, dynamic analysis of rectangular nanoplates subjected to moving load is presented. In order to derive the governing equations of motion, second order plate theory is used. To capture the small scale effects, the nonlocal elasticity theory is adopted. It is assumed that the nanoplate is subjected to a moving concentrated load with the constant velocity V in the x direction. To solve the governing equations, state-space method is used to find the deflections of rectangular nanoplate under moving load. The results obtained here reveal that the nonlocality has significant effect on the deflection of rectangular nanoplate subjected to moving load.
Why Understanding When and How Plate Tectonics Began Is Essential for a Robust Theory of the Earth
Stern, R. J.; Gerya, T.
2014-12-01
Understanding when and how Plate Tectonics (PT) began and what came before has profound implications for understanding the Earth because the transition to PT from the previous tectonic regime - some variant of deformable lid tectonics (DLT)- resulted in faster cooling and enhanced recycling of surface materials to depth. The transition to PT also would have impacted ocean chemistry, climate and life evolution. There is no consensus about when PT began on Earth; estimates range from >4.2 Ga to ~0.85 Ga. Three pillars of a robust Theory of the Earth illustrate the importance of answering this question: (1) the solid Earth volatile cycle; (2) the Urey ratio; and (3) the kimberlite enigma. For (1), it is now clear that subduction injects more H2O (and probably CO2) into Earth's mantle- where it is stored - than is released to the surface by igneous activity. Presumably the volatile flux from the surface into the mantle was lower during DLT episodes, although delamination and Rayleigh-Taylor drippings would have sent some. Constraining PT H2O and CO2 fluxes requires knowing when PT began and interior soaking accelerated. Regarding (2), estimating Earth's Urey ratio (Ur; heat production/heat loss) evolution requires avoiding the "thermal catastrophe" implying that if Earth has been cooling off as fast as presently (Ur ~0.2) then it must have been totally molten 1-2 Ga; a transition from DLT (high Ur) to PT (low Ur) may resolve the paradox. Finally (3), why are the vast majority of kimberlites of Phaneozoic age? Is it because erosion has removed the evidence or because sufficient H2O-CO2 rich fluids that drive such eruptions have only been delivered below cratonic lithosphere since deep subduction associated with PT began? Determining when did PT start, what was Earth's DLT-regime before this, and how did the transition occur will require the insights of the entire geoscientific community, providing a worthy set of 21st Century geoscientific research priorities.
A nonlinear plate theory for the monolayer graphene%单层石墨烯片的非线性板模型*
Institute of Scientific and Technical Information of China (English)
黄坤; 殷雅俊; 吴继业
2014-01-01
In the present paper, the kinematic equation of a monolayer graphene is proposed based on a plate theory, and the nonlinear elasticity stress-strain relations are obtained from experiments. The equation includes cubic and quintic nonlinearities. The bending produced when subjected to a concentrated force at the center of the plate and the static buckling arising from edge in-plane axial uniform loads are investigated using Ritz methods for a simply-supported rectangular plate. Results suggest that the plate theory with nonlinear constitutive equation may characterize the mechanical property of a monolayer graphene appropriately, and the quintic nonlinearities have a significant effect on the bending deformations of the graphene.%基于实验得到的非线性本构关系和板理论，本文建立了包含三次及五次非线性项的单层石墨烯片的板动力学模型。针对四边简支矩形板，使用Ritz法研究了在板中点作用集中力时的静力弯曲，以及边界均匀受力时的静力屈曲问题。结果显示，基于非线性本构关系的板模型能很好的描述单层石墨烯片的力学行为，而且模型中的五次非线性项对结构的弯曲变形有显著影响。
Tectonic regional subdivision of China in the light of plate theory%中国的板块构造区划
Institute of Scientific and Technical Information of China (English)
刘训; 游国庆
2015-01-01
Since the 1960’s,the plate tectonic theory has been widely Prevailing in China. Having been popularly adopted by Chinese geologists, this theory has been applied to different related fields. In the work of new“regional geology”, it has become the dominant idea. The theory of plate tectonics argues that a plate is formed by its core and its margins. Its core is a craton usually made of stable continental massif, whereas its margins include different active and passive continental margins. In the process of convergence of plates, the continental margins became different orogenic belts through their different convergences and collisions. There are different convergent zones between plates, among which the Convergent Crustal Consumption Zone is dominant. In the historical process of crustal development, huge changes of the plate tectonic framework took place. Based on the plate tectonic framework of Paleozoic, the authors discussed some problems concerning the regional subdivicion of China and suggested a tentative plan for regional subdivicion of China in this paper. According to the plan, China is divided into 7 first class units (plates), 30 second class units (cratons and orogenic belts) and 103 third class units.%提20世纪60年代板块构造学说传入中国，为广大地学工作者所接受并应用于相关的地质工作中。在新一代地质志的研究中，以板块学说为主导，已经成为共识。从板块构造来认识，板块的组成包括其核心及边缘。其核心为克拉通，由稳定的陆块组成；边缘包含了不同的活动大陆边缘和被动大陆边缘。边缘在后期板块汇聚的过程中，常由汇聚或碰撞等不同方式而成为不同的造山带。板块之间具有不同形式的汇聚带，其中主要是地壳对接消减带。在地球发展历史的过程中，不同时期的板块构造格局常有很大的变化。因此，本文以古生代的构造格架为主，
Lee, Dorothy B; Faget, Maxime A
1956-01-01
A modified method of Van Driest's flat-plate theory for turbulent boundary layer has been found to simplify the calculation of local skin-friction coefficients which, in turn, have made it possible to obtain through Reynolds analogy theoretical turbulent heat-transfer coefficients in the form of Stanton number. A general formula is given and charts are presented from which the modified method can be solved for Mach numbers 1.0 to 12.0, temperature ratios 0.2 to 6.0, and Reynolds numbers 0.2 times 10 to the 6th power to 200 times 10 to the 6th power.
Energy Technology Data Exchange (ETDEWEB)
Liu, W.L. [Department of Materials Science and Engineering, National Formosa University, 64, Wunhua Road, Huwei, Yunlin 632, Taiwan (China); Chien, W.T.; Jiang, M.H. [Department of Mechanical Engineering, National Pingtung University of Science and Technology, 1, Shuehfu Road, Neipu, Pingtung 912, Taiwan (China); Chen, W.J., E-mail: chenwjau@yuntech.edu.t [Graduate School of Materials Science, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan (China)
2010-04-09
An electroless Ni-P film was first deposited on a spiegel-iron plate and then annealed by an Nd:YAG pulsed wave laser. In order to obtain the optimal laser annealing parameters for maximizing the hardness and minimizing the surface roughness of electroless Ni-P films, the Taguchi method and grey system theory were used to analyze the experimental data. The electroless Ni-P film was also characterized by scanning electron microscopy for the morphology, and transmission electron microscopy for the microstructure and crystal structure. The results showed that the hardness and the surface roughness of electroless Ni-P films can be, at the same time, improved to 50.8% and 68%, respectively, by the laser annealing with the optimal parameters.
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Energy Technology Data Exchange (ETDEWEB)
Garcia B, F. B.; Arreola V, G.; Vazquez R, R.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: rvr@xanum.uam.mx
2009-10-15
In this work the thermal neutrons diffusion is studied with interfacial effects in a fuel-moderator arrangement that consist of an infinite series of plane fuel plates and of moderator willing so that each plate of multiplicative material has in each end a moderator plate. The developed pattern is an unidimensional model for the thermal group obtained of equation of volumetric diffusion average. One analysis of parametric sensibility was realized to find the correction constants for the diffusion coefficient, the absorption term and the new transfer or current term in the fuel-moderator interface. The obtained results are compared against the classic theory, being obtained a good agreement among both theories. (Author)
Arefi, Mohammad; Zenkour, Ashraf M.
2016-11-01
In this paper, based on the sinusoidal shear deformation plate theory, equations of motion for a sandwich nanoplate containing a nano core and two integrated piezo-magnetic face-sheets are derived. The piezo-magnetic face-sheets are subjected to three dimensional electric and magnetic potentials. Nonlocal piezo-magneto-elastic relations are derived in a thermal environment. Hamilton’s principle is used to derive seven equations of motion in terms of three deformation components of mid-surface, two shear components and electric and magnetic potentials. Natural frequencies of the sandwich nanoplate are derived in terms of nonlocal parameter. After finding solutions to the governing equations of motion, the effect of important parameters of the nanoplate are investigated on the mechanical, electrical and magnetic components of the nanoplate. Based on the present study, with increasing applied electric potential, dimensionless deflection is decreased and maximum electric and magnetic potentials are increased. Furthermore, with increasing applied magnetic potential, deflection is increased and maximum electric and magnetic potentials are decreased significantly. The numerical results of this problem indicate that one can control deformation or stress in the nano structure by changing the applied electric and magnetic potentials.
Continuum Mechanics of Beam and Plate Flexure
DEFF Research Database (Denmark)
Jönsson, Jeppe
This text has been written and used during the spring of 1995 for a course on flexural mechanics of beams and plates at Aalborg University. The idea has been to concentrate on basic principles of the theories, which are of importance to the modern structural engineer. Today's structural engineer...... must be acquainted with the classic beam and plate theories, when reading manuals and using modern software tools such as the finite element method. Each chapter includes supplementary theory and derivations enabling consultation of the notes also at a later stage of study. A preliminary chapter...... analysis of beam structures is presented and includes both upper and lower-bound solution techniques. The remaining chapters are devoted to plates. The classic elastic plate theories are presented. The plastic yield line theory for plates is presented including both upper and lower-bound techniques...
Rhodium platings – experimental study
Directory of Open Access Journals (Sweden)
R. Rudolf
2013-07-01
Full Text Available Modern rhodium plating solutions are based on either sulphate or phosphate. Although in theory there are four possible combinations, in practice only three different rhodium electrolytes are used. These are based on dilutions of rhodium sulphate or phosphate concentrates with added sulphuric or phosphoric acid. These processes are be discussed in this paper with a demonstration of Rh platings in the Slovenian firm Zlatarna Celje d.d.
Non-linear analytical solutions for laterally loaded sandwich plates
DEFF Research Database (Denmark)
Riber, Hans Jørgen
1997-01-01
This work focuses on the response of orthotropic sandwich composite plates with large deflections due to high lateral loads. The results have special application to the design of ship structures. A geometrical nonlinear theory is outlined, on the basis of the classical sandwich plate theory...... of sandwich plates subjected to high lateral loading. (C) 1997 Published by Elsevier Science Ltd. All rights reserved....
Full Text Available ... A A A Listen En Español Create Your Plate Create Your Plate is a simple and effective ... and that your options are endless. Create Your Plate! Click on the plate sections below to add ...
Askari, Amir R.; Tahani, Masoud
2017-02-01
This paper focuses on the size-dependent dynamic pull-in instability in rectangular micro-plates actuated by step-input DC voltage. The present model accounts for the effects of in-plane displacements and their non-classical higher-order boundary conditions, von Kármán geometric non-linearity, non-classical couple stress components and the inherent non-linearity of distributed electrostatic pressure on the micro-plate motion. The governing equations of motion, which are clearly derived using Hamilton's principle, are solved through a novel computationally very efficient Galerkin-based reduced order model (ROM) in which all higher-order non-classical boundary conditions are completely satisfied. The present findings are compared and successfully validated by available results in the literature as well as those obtained by three-dimensional finite element simulations carried out using COMSOL Multyphysics. A detailed parametric study is also conducted to illustrate the effects of in-plane displacements, plate aspect ratio, couple stress components and geometric non-linearity on the dynamic instability threshold of the system.
Lasting mantle scars lead to perennial plate tectonics.
Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell
2016-06-10
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.
Lasting mantle scars lead to perennial plate tectonics
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-06-01
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a `perennial' phenomenon.
FLEXURAL WAVE PROPAGATION IN NARROW MINDLIN'S PLATE
Institute of Scientific and Technical Information of China (English)
HU Chao; HAN Gang; FANG Xue-qian; HUANG Wen-hu
2006-01-01
Appling Mindlin's theory of thick plates and Hamilton system to propagation of elastic waves under free boundary condition, a solution of the problem was given.Dispersion equations of propagation mode of strip plates were deduced from eigenfunction expansion method. It was compared with the dispersion relation that was gained through solution of thick plate theory proposed by Mindlin. Based on the two kinds of theories,the dispersion curves show great difference in the region of short waves, and the cutoff frequencies are higher in Hamiltonian systems. However, the dispersion curves are almost the same in the region of long waves.
Next-generation plate-tectonic reconstructions using GPlates
2011-01-01
Plate tectonics is the kinematic theory that describes the large-scale motions and events of the outermost shell of the solid Earth in terms of the relative motions and interactions of large, rigid, interlocking fragments of lithosphere called tectonic plates. Plates form and disappear incrementally over time as a result of tectonic processes. There are currently about a dozen major plates on the surface of the Earth, and many minor ones. The present-day configuration of tectonic plates is il...
UNSYMMETRICAL LARGE DEFORMATION PROBLEM OF ORTHOTROPIC PLATES
Institute of Scientific and Technical Information of China (English)
王新志; 赵永刚; 叶开沅; 黄达文
2002-01-01
Based upon the theory of anisotropic plates, the unsymmetrical large deformation equations of orthotropic circular plates were derived. By using Fourier series, the partial differential equations of this problem can be transformed into sets of nonlinear differential equations. And the procedure to solve the problem using the iterative method is given.
Institute of Scientific and Technical Information of China (English)
何涛; 李东升; 孙玉东; 俞孟萨
2014-01-01
Hydrodynamic noise transmits along the pipeline and radiates to the sea. The design of function-al fluid pipeline silencer is desiderated. In this paper, the model is a rectangular duct with a rectangular cavity which is partitioned by a rectangular plate. Theory on plate-silencer with low frequency and broad-band hydrodynamic noise attenuation characteristics is established by using Green function and mode method. The vibration of plate is solved considering fluid loading of cavity and duct sound medium on both sides. The results indicate that the plate silencer has low frequency and broadband attenuating characteris-tics of hydrodynamic noise. The noise attenuating mechanism is analyzed and the effect of damping on noise attenuating characteristic is investigated. The established theory and parameter research can provide a basis of design.%水动力噪声沿通海管路系统经通海口直接向舰船外辐射噪声，降低舰船隐身性能。如何设计有效的管路消声器以降低舷外辐射噪声成为亟待解决的问题。文章以弹性板间隔的矩形截面通流管路与矩形背腔为几何模型，基于格林函数法和模态理论，求解包含背腔和主管声介质影响的弹性板耦合振动方程，建立了弹性板式水动力噪声消声器理论。计算结果显示，弹性板式水动力噪声消声器具有低频宽带消声性能。计算分析了消声机理以及阻尼对消声性能的影响。该文的工作为低频宽带水动力消声器原理样机的设计提供了理论依据。
Maximizing band gaps in plate structures
DEFF Research Database (Denmark)
Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard
2006-01-01
Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated...
Hydroelasticity of a Floating Plate
DEFF Research Database (Denmark)
Chen, X.; Jensen, Jørgen Juncher; Cui, W.
2003-01-01
The membrane forces are included in the hydroelastic analysis of a floating plate undergoing large vertical deflections in regular monochromatic multidirectional waves. The first-order vertical displacements induced by the linear wave exciting forces are calculated by the mode expansion method...... in the frequency domain. The second-order vertical displacements induced by the membrane forces are calculated by the von Karman plate theory. The results show that the membrane contribution both in terms of the axial stresses and the effect on the bending stresses can be important...
Processless offset printing plates
Directory of Open Access Journals (Sweden)
Sanja Mahović Poljaček
2015-06-01
Full Text Available With the implementation of platesetters in the offset printing plate making process, imaging of the printing plate became more stable and ensured increase of the printing plate quality. But as the chemical processing of the printing plates still highly influences the plate making process and the graphic reproduction workflow, development of printing plates that do not require chemical processing for offset printing technique has been one of the top interests in graphic technology in the last few years. The main reason for that came from the user experience, where majority of the problems with plate making process could be connected with the chemical processing of the printing plate. Furthermore, increased environmental standards lead to reducing of the chemicals used in the industrial processes. Considering these facts, different types of offset printing plates have been introduced to the market today. This paper presents some of the processless printing plates.
The comparative study for the isotropic and orthotropic circular plates
Popa, C.; Tomescu, G.
2016-08-01
The aim of study is static bending analysis of an isotropic circular plate using analytical method i.e. Classical Plate Theory, Finite Element software ANSYS and experimental methods. The diameter of circular plate, material properties, like modulus of elasticity (E), poissons ratio (µ) and intensity of loading is assumed at the initial stage of research work. In comparison with this plane plate we analyze a plate of same dimensions and charge, but having ribs, to see the advantage of the rigidify. The two plates are fixed supported subjected to uniformly distributed load.
Application of Shape Lock-on Method in Plate Rolling
Institute of Scientific and Technical Information of China (English)
HU Xian-lei; WANG Jun; WANG Zhao-dong; LIU Xiang-hua; WANG Guo-dong
2004-01-01
AGC system can improve the plate gauge precision, and damage the plate shape if the shape control loop is left quite open. This damage will cause wave during rolling wide-thin plate. A control strategy named shape lock-on method is afforded for plate shape control. This method requires APC instead of AGC at last one or two passes during rolling wide-thin plate. Approved by theory and on-line application, this method is good for the plate shape and crown control with small effect on gauge control.
Lasting mantle scars lead to perennial plate tectonics
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-01-01
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their p...
Chaotic Motion of Corrugated Circular Plates
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Large deflection theory of thin anisotropic circular plates was used to analyze the bifurcation behavior and chaotic phenomena of a corrugated thin circular plate with combined transverse periodic excitation and an in-plane static boundary load. The nonlinear dynamic equation for the corrugated plate was derived by employing Galerkin's technique. The critical conditions for occurrence of the homoclinic and subharmonic bifurcations as well as chaos were studied theoretically using the Melnikov function method. The chaotic motion was also simulated numerically using Maple, with the Poincaré map and phase curve used to evaluate when chaotic motion appears. The results indicate some chaotic motion in the corrugated plate. The method is directly applicable to chaotic analysis of an isotropic circular plate.
Full Text Available ... steps to get started: Using your dinner plate, put a line down the middle of the plate. ... vegetables . Now in one of the small sections, put grains and starchy foods. See this list of ...
Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets ... 2016 Articles from Diabetes Forecast® magazine: wcie-meal-planning, In this section Food Planning Meals Diabetes Meal ...
Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...
... chips or cookies. VEGETABLES: MAKE HALF OF YOUR PLATE FRUITS AND VEGETABLES Vegetables can be raw, fresh, ... as a snack. FRUITS: MAKE HALF OF YOUR PLATE FRUITS AND VEGETABLES Fruits can be fresh, canned, ...
... the most widely used by doctors is the Salter-Harris system, described below. Type I Fractures These ... incidence of growth plate fractures peaks in adolescence. Salter-Harris classification of growth plate fractures. AAOS does ...
Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart- ...
Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart- ...
Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods you want, but changes the portion sizes so you are getting larger ...
Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets ... Sleeve Custom jerseys for your Tour de Cure team benefits the cause. Ask the Experts: Learn to ...
Introduction to Analysis and Design of Plate Panels
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Lützen, Marie
The present notes cover plate theory dealing with bending, vibrations, elastic buckling and ultimate strength. The plate structures considered are isotropic, orthotropic and stiffened plates made of metallic materials. The main objective of the notes is to give an introduction to plates and plate....... Comments and amendments received by the students in the course have had a significant influence on the present layout. A special thanks to Torben Christiansen for careful proof-readings of the examples and valuable improvements.......¨utzen in 2002. It has now been amended and extended with ultimate strength of plates, an introduction to the theory of shells and additional examples to cover the lecture material for the course ”41215 Plate and Shell Structures” at the Department of Mechanical Engineering, the Technical University of Denmark...
Bending and buckling behavior analysis of foamed metal circular plate.
Fan, Jian Ling; Ma, Lian Sheng; Zhang, Lu; De Su, Hou
2016-07-04
This paper establishes a density gradient model along the thickness direction of a circular plate made of foamed material. Based on the first shear deformation plate theory, the result is deduced that the foamed metal circular plate with graded density along thickness direction yields axisymmetric bending problem under the action of uniformly distributed load, and the analytical solution is obtained by solving the governing equation directly. The analyses on two constraint conditions of edge radial clamping and simply supported show that the density gradient index and external load may affect the axisymmetric bending behavior of the plate. Then, based on the classical plate theory, the paper analyzes the behavior of axisymmetric buckling under radial pressure applied on the circular plate. Shooting method is used to obtain the critical load, and the effects of gradient nature of material properties and boundary conditions on the critical load of the plate are analyzed.
Anderson, D L
1975-03-21
The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.
Full Text Available ... Reset Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective for both managing diabetes and losing ... en.html Have Type 2 Diabetes? Our free program will help you live well. More from diabetes. ...
Obliquity along plate boundaries
Philippon, Mélody; Corti, Giacomo
2016-12-01
Most of the plate boundaries are activated obliquely with respect to the direction of far field stresses, as roughly only 8% of the plate boundaries total length shows a very low obliquity (ranging from 0 to 10°, sub-orthogonal to the plate displacement). The obliquity along plate boundaries is controlled by (i) lateral rheological variations within the lithosphere and (ii) consistency with the global plate circuit. Indeed, plate tectonics and magmatism drive rheological changes within the lithosphere and consequently influence strain localization. Geodynamical evolution controls large-scale mantle convection and plate formation, consumption, and re-organization, thus triggering plate kinematics variations, and the adjustment and re-orientation of far field stresses. These geological processes may thus result in plate boundaries that are not perpendicular but oblique to the direction of far field stresses. This paper reviews the global patterns of obliquity along plate boundaries. Using GPlate, we provide a statistical analysis of present-day obliquity along plate boundaries. Within this framework, by comparing natural examples and geological models, we discuss deformation patterns and kinematics recorded along oblique plate boundaries.
Ruda, Mitchell C [Tucson, AZ; Greynolds, Alan W [Tucson, AZ; Stuhlinger, Tilman W [Tucson, AZ
2009-07-14
One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.
Nonlinear morphoelastic plates II: Exodus to buckled states
McMahon, J.
2011-05-11
Morphoelasticity is the theory of growing elastic materials. The theory is based on the multiplicative decomposition of the deformation gradient and provides a formulation of the deformation and stresses induced by growth. Following a companion paper, a general theory of growing non-linear elastic Kirchhoff plate is described. First, a complete geometric description of incompatibility with simple examples is given. Second, the stability of growing Kirchhoff plates is analyzed. © SAGE Publications 2011.
Nonlinear analysis of flexible plates lying on elastic foundation
Directory of Open Access Journals (Sweden)
Trushin Sergey
2017-01-01
Full Text Available This article describes numerical procedures for analysis of flexible rectangular plates lying on elastic foundation. Computing models are based on the theory of plates with account of transverse shear deformations. The finite difference energy method of discretization is used for reducing the initial continuum problem to finite dimensional problem. Solution procedures for nonlinear problem are based on Newton-Raphson method. This theory of plates and numerical methods have been used for investigation of nonlinear behavior of flexible plates on elastic foundation with different properties.
Mathematical methods for elastic plates
Constanda, Christian
2014-01-01
Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one. The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions. The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...
Influence of weld stiffness on buckling strength of laser-welded web-core sandwich plates
Jelovica, Jasmin; Romanoff, Jani; Ehlers, Sören; Varsta, Petri
2012-01-01
This paper investigates the influence of weld rotation stiffness on the global bifurcation buckling strength of laser-welded web-core sandwich plates. The study is carried out using two methods, the first is the equivalent single-layer theory approach solved analytically for simply supported plates and numerically for clamped plates. First-order shear deformation theory is used. The second method is the three-dimensional model of a sandwich plate solved with finite element method. Both approa...
Generalized Fibonacci zone plates
Ke, Jie; Zhu, Jianqiang
2015-01-01
We propose a family of zone plates which are produced by the generalized Fibonacci sequences and their axial focusing properties are analyzed in detail. Compared with traditional Fresnel zone plates, the generalized Fibonacci zone plates present two axial foci with equal intensity. Besides, we propose an approach to adjust the axial locations of the two foci by means of different optical path difference, and further give the deterministic ratio of the two focal distances which attributes to their own generalized Fibonacci sequences. The generalized Fibonacci zone plates may allow for new applications in micro and nanophotonics.
Closed form solutions for free vibrations of rectangular Mindlin plates
Institute of Scientific and Technical Information of China (English)
Yufeng Xing; Bo Liu
2009-01-01
A new two-eigenfunctions theory, using the amplitude deflection and the generalized curvature as two fundamental eigenfunctions, is proposed for the free vibration solutions of a rectangular Mindlin plate. The three classical eigenvalue differential equations of a Mindlin plate are reformulated to arrive at two new eigenvalue differential equations for the proposed theory. The closed form eigensolutions, which are solved from the two differential equations by means of the method of separation of variables are identical with those via Kirchhoff plate theory for thin plate, and can be employed to predict frequencies for any combinations of simply supported and clamped edge conditions. The free edges can also be dealt with if the other pair of opposite edges are simply supported. Some of the solutions were not available before. The frequency parameters agree closely with the available ones through pb-2 Rayleigh-Ritz method for different aspect ratios and relative thickness of plate.
Is There Really A North American Plate?
Krill, A.
2011-12-01
elsewhere, such as S.J. Shand (1933), E.B. Bailey (1939), and Arthur Holmes (1944), presented continental drift as a working hypothesis that could elegantly solve important geological problems. Americans were preconditioned to dislike continental drift theory, ever since James Dwight Dana taught in his Manual of Geology (1863...1895) that North America was the type continent of the world, and that it had stood alone since earliest time. Such beliefs sometimes trump geologic evidence. As noted by Stephen Jay Gould (1999) Sigmund Freud had much insight into the psychology of scientific revolutions: they involve a scientific development that shows humans to have lesser status than previously perceived. In the Copernican revolution (geocentrism vs. heliocentrism) humans no longer inhabited the center of the universe. In the Darwinian revolution (creationism vs. evolutionism) humans were no longer uniquely created. In the Wegenerian revolution (fixism vs. mobilism) North America was no longer uniquely created; it was just other fragment from Pangaea. North American geologists were pleased when Press & Siever gave them their own lithospheric plate. Being a global-tectonic killjoy, I would like to take away that small consolation as well. Or at least pose the question: Is there really a North American Plate?
Stability Problems for Plates with Short-Term Damageability
Khoroshun, L. P.; Babich, D. V.
2001-02-01
The problem on stability of plates with microdamages simulated by hollow randomly dispersed micropores is considered. Two approaches are proposed to investigate the stability of plates weakened by microdamages. These approaches are based on models well known from the theory of stability of elastoplastic bodies — the concepts of tangent-modulus loading and continuous loading
Fontes, Kris
2009-01-01
In the December 1997 issue of "SchoolArts" is a lesson titled "Blue Willow Story Plates" by Susan Striker. In this article, the author shares how she used this lesson with her middle-school students many times over the years. Here, she describes a Blue Willow plate painting project that her students made.
Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...
Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...
Random vibrations of composite beams and plates
Abdelnaser, Ahmad Shehadeh
In this study, a generalized modal approach is presented to solve more general vibration problems of composite beams and plates. The coupled systems of partial differential equations, representing the equations of motion, are uncoupled into modal equations by utilizing the eigenfunctions of the system and its adjoint. A method is presented to obtain these eigenfunctions for beams with arbitrary boundary conditions and for plates with Levy-type boundary conditions. The forced vibration solutions obtained by this method are then used to calculate the random response characteristics of beams and plates subjected to spatially and temporally correlated random loads. In the analysis of beams, both symmetric cross-ply and angle-ply configurations have been considered. In the symmetric cross-ply configuration with no torsional loads, of course, the warping effects are absent. The angle-ply case, however, includes torsion-warping effects and coupled bending-torsion motions. A simple displacement field is introduced to reflect warping in the third-order shear deformation theory. In the analysis of plates two configurations of the laminates have also been considered: symmetric cross-ply and antisymmetric angle-ply. At this time, these are the only two configurations which can be solved by the closed-form modal analysis approach for the Levy-type boundary conditions. In both cases of the beams and plates, the numerical results with and without shear deformations are obtained and compared. The result for no shear deformation theory are obtained with the classical lamination theory. The results have also been obtained for the first-order shear deformation theory with a somewhat simpler displacement field which has been commonly used in the past. The numerical results are obtained for the global response quantities such as frequencies, displacements, and crossing rates as well as for the local response quantities such as normal and shear stresses across a cross section. The
Pixelated neutron image plates
Schlapp, M.; Conrad, H.; von Seggern, H.
2004-09-01
Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.
Continuum Mechanics of Beam and Plate Flexure
DEFF Research Database (Denmark)
Jönsson, Jeppe
This text has been written and used during the spring of 1995 for a course on flexural mechanics of beams and plates at Aalborg University. The idea has been to concentrate on basic principles of the theories, which are of importance to the modern structural engineer. Today's structural engineer...... must be acquainted with the classic beam and plate theories, when reading manuals and using modern software tools such as the finite element method. Each chapter includes supplementary theory and derivations enabling consultation of the notes also at a later stage of study. A preliminary chapter...... introduces the modern notation used in textbooks and in research today. It further gives an introduction to three-dimensional continuum mechanics of elastic bodies and the related principles of virtual work. The ideas to give the students a basic understanding of the stresses and strains, the equilibrium...
Plate removal following orthognathic surgery.
Little, Mhairi; Langford, Richard Julian; Bhanji, Adam; Farr, David
2015-11-01
The objectives of this study are to determine the removal rates of orthognathic plates used during orthognathic surgery at James Cook University Hospital and describe the reasons for plate removal. 202 consecutive orthognathic cases were identified between July 2004 and July 2012. Demographics and procedure details were collected for these patients. Patients from this group who returned to theatre for plate removal between July 2004 and November 2012 were identified and their notes were analysed for data including reason for plate removal, age, smoking status, sex and time to plate removal. 3.2% of plates were removed with proportionally more plates removed from the mandible than the maxilla. 10.4% of patients required removal of one or more plate. Most plates were removed within the first post-operative year. The commonest reasons for plate removal were plate exposure and infection. The plate removal rates in our study are comparable to those seen in the literature.
sprotocols
2014-01-01
1. Warm plates to room temperature before use. Cold plates causes the top agar to solidify irregularly. DO not warm plates to 37° as the top agar will take forever to solidify. - Prepare top agar as the appropriate liquid medium with 0.7% agar. Keeping 100 mL bottles is convenient. For phages, use λ top agar, which is less rich and yields bigger plaques. - Melt top agar in the microwave completely. Allow the agar to boil after liquification; incompletely melted agar looks liquid, but is...
Elasto-plastic postbuckling of damaged orthotropic plates
Institute of Scientific and Technical Information of China (English)
TIAN Yan-ping; FU Yi-ming
2008-01-01
Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail.
Transfer function modeling of damping mechanisms in viscoelastic plates
Slater, J. C.; Inman, D. J.
1991-01-01
This work formulates a method for the modeling of material damping characteristics in plates. The Sophie German equation of classical plate theory is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes, (1985). However, this procedure is not limited to this representation. The governing characteristic equation is decoupled through separation of variables, yielding a solution similar to that of undamped classical plate theory, allowing solution of the steady state as well as the transient response problem.
Full Text Available ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ... but changes the portion sizes so you are getting larger portions of non-starchy vegetables and a ...
Full Text Available ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ... 4/Box) Taking the guesswork out of portion control has never been easier. It can be a ...
Landalf, Helen
1998-01-01
Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)
... our stage of life, situations, preferences, access to food, culture, traditions, and the personal decisions we make over time. All your food and beverage choices count. MyPlate offers ideas and ...
Full Text Available ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ... you have an easy portion control solution that works. Last Reviewed: October 8, 2015 Last Edited: September ...
Designing Assemblies Of Plates
Williams, F. W.; Kennedy, D.; Butler, R.; Aston, G.; Anderson, M. S.
1992-01-01
VICONOPT calculates vibrations and instabilities of assemblies of prismatic plates. Designed for efficient, accurate analysis of buckling and vibration, and for optimum design of panels of composite materials. Written in FORTRAN 77.
Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning What Can I Eat? Making Healthy Food Choices Diabetes Superfoods Non-starchy Vegetables Grains and Starchy Vegetables ...
Full Text Available ... Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning ... serving of dairy or both as your meal plan allows. Choose healthy fats in small amounts. For ...
Full Text Available ... 1 Diabetes Get Started Safely Get And Stay Fit Types of Activity Weight Loss Assess Your Lifestyle ... manage portion control wherever you are. Now, our best-selling, sectioned to-go plate with easy-sealing ...
Full Text Available ... Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... been easier. It can be a challenge to manage portion control wherever you are. Now, our best- ...
Landalf, Helen
1998-01-01
Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)
Full Text Available ... Carbohydrates Carbohydrate Counting Make Your Carbs Count Glycemic ... to manage portion control wherever you are. Now, our best-selling, sectioned to-go plate with easy-sealing ...
Origami - Folded Plate Structures
Buri, Hans Ulrich
2010-01-01
This research investigates new methods of designing folded plate structures that can be built with cross-laminated timber panels. Folded plate structures are attractive to both architects and engineers for their structural, spatial, and plastic qualities. Thin surfaces can be stiffened by a series of folds, and thus not only cover space, but also act as load bearing elements. The variation of light and shadow along the folded faces emphasizes the plas...
Fractal multifiber microchannel plates
Cook, Lee M.; Feller, W. B.; Kenter, Almus T.; Chappell, Jon H.
1992-01-01
The construction and performance of microchannel plates (MCPs) made using fractal tiling mehtods are reviewed. MCPs with 40 mm active areas having near-perfect channel ordering were produced. These plates demonstrated electrical performance characteristics equivalent to conventionally constructed MCPs. These apparently are the first MCPs which have a sufficiently high degree of order to permit single channel addressability. Potential applications for these devices and the prospects for further development are discussed.
Free vibration analysis of rectangular plates with central cutout
Directory of Open Access Journals (Sweden)
Kanak Kalita
2016-12-01
Full Text Available A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.
Simplified description of out-of-plane waves in thin annular elastic plates
DEFF Research Database (Denmark)
Zadeh, Maziyar Nesari; Sorokin, Sergey
2013-01-01
Dispersion relations are derived for the out-of-plane wave propagation in planar elastic plates with constant curvature using the classical Kirchhoff thin plate theory. The dispersion diagrams and the mode shapes are compared with their counterparts for a straight plate strip and the role of curv...
A New Accurate Yet Simple Shear Flexible Triangular Plate Element With Linear Bending Strains
DEFF Research Database (Denmark)
Damkilde, Lars
2008-01-01
Plate bending elements have been and still are the subject of many papers. Zienkiewicz, given a very good overview of the historical development dating back to around 1965. In this paper focus will entirely be on plate elements taking the shear flexibility into account i.e. using Reissner- Mindlin...... plate theory...
Writing and Visualization for Teaching Plate Tectonics
Thomas, S. F.
2004-12-01
The Theory of Plate Tectonics is probably the most important paradigm for understanding the workings of our planet. As such it is an integral part in any Introductory Geology course. Whereas geology majors usually easily embrace the Theory of Plate Tectonics, the enthusiasm for the coherence and elegance of this theory appears to be much more subdued among the majority of non-science majors. While visual and electronic media certainly support the teaching of the theory, pretty pictures and animations are not sufficient for many non-science majors to grasp the concepts of interacting lithospheric plates. It is well known that students do better in learning scientific concepts if they create their own understanding through research and inquiry-based learning, by working in the field, manipulating real earth-science data, and through writing. Writing assignments give instructors the opportunity to assess their students' learning and to clarify misconceptions yet they also have to be willing to teach students how to craft a science paper. Most electronic media and textbook-added CD-ROMs are not useful for making the structure of a science paper transparent. I found many of the necessary ingredients for effectively teaching plate tectonics in the interactive CD-ROM, "Our Dynamic Planet", developed by Wm. Prothero together with G. Kelly (University of California at Santa Barbara). It allows students to select and manipulate real earth-science data of plate-tectonically active regions, and provides an electronic interface that lets students create graphical representations of their collected data. A downloadable Teacher's Manual provides suggestions on teaching students to write a scientific argument, rooted in sound pedagogy. Originally designed for a large oceanography class, the material was modified for use in a small introductory geology class for non-science majors. Various assignments were given to instruct students in writing a scientific argument based on their
Analytical theory for shape stiffness
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The shape stiffness of mill m is defined as the crosswise rigidity of the unit width of steel plate, that is, m=k/b. By differentiating the steel plate crown equation in the vector model of steel plate shape, a new concise equation for the shape stiffness, kc=m+q, is obtained. Furthermore, by combining the calculation equation for steel plate crown derived from Castigliano's theorem, an analytical calculation equation for the shape rigidity of rolled steel plate is derived. The correctness and practicability of the theory for the shape stiffness are demonstrated by comparing the results from the numerical calculation with the practical data of a rolling mill.
Analytical theory for shape stiffness
Institute of Scientific and Technical Information of China (English)
张进之
2000-01-01
The shape stiffness of mill m is defined as the crosswise rigidity of the unit width of steel plate, that is, m = k/b. By differentiating the steel plate crown equation in the vector model of steel plate shape, a new concise equation for the shape stiffness, kc = m + q, is obtained. Furthermore, by combining the calculation equation for steel plate crown derived from Castigliano’s theorem, an analytical calculation equation for the shape rigidity of rolled steel plate is derived. The correctness and practicability of the theory for the shape stiffness are demonstrated by comparing the results from the numerical calculation with the practical data of a rolling mill.
Numerical modelling of instantaneous plate tectonics
Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.
1974-01-01
Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.
Institute of Scientific and Technical Information of China (English)
刘蜀阳; 黄玉美
2011-01-01
基于场致发射理论提出描述电火花加工(Electrical discharging machining,EDM)过程的平板电容模型,将单脉冲放电周期依次划分为极间电场建立、极间通道击穿、正常放电加工与消电离四个阶段,并分别进行各阶段的极间电场强度、极间电子自由程、极间介质介电常数和极间电流变化规律的理论分析.讨论EDM加工能量大小的影响因素,并给出基于该模型的极间电压与放电电流变化的仿真步骤与方法集.设计通孔加工试验和实时电流与电压采集电路,并基于该模型对极间电压与电流的变化曲线进行Simulink仿真程序设计.试验结果表明,相同加工参数实测曲线与仿真试验图形实现了较好的吻合,而且试验结果统计分析表明,该模型对不同电极材料与加工参数对加工效率的影响可做出合理解释且对加工效率有着良好的预测能力,证明了该模型的合理性与有效性.%Based on the field emission theory, a plate-capacitor model is constructed to describe the electrical discharging machining (EDM) process. In this model, the discharging pulse period is divided into four stages, successively as the establishment of the interelectrode electrical field, the formation of the interelectrode discharging channel, the stable EDM and deionization, and the correlative parameters of each stages, such as the intensity of interelectrode electric field, the mean free path of interelectrode electrons, the interelectrode medium constant, and the varying rules of discharging current etc., are analyzed. The distribution ol EDM energy and its influencing factors are discussed, and the simulation methods of interelectode voltage and current based on this model are given in details. For the purpose of single factor analysis, a set of through-hole experiments and real-time measuring circuit are designed and carried. The good agreement of experimental results with simulation data and the fact that
Plate tectonics in the late Paleozoic
Directory of Open Access Journals (Sweden)
Mathew Domeier
2014-05-01
Full Text Available As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lithosphere becomes increasingly challenging with age. Prior to 150 Ma ∼60% of the lithosphere is missing and reconstructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ reconstructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geodynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410–250 Ma together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.
Plate tectonics in the late Paleozoic
Institute of Scientific and Technical Information of China (English)
Mathew Domeier; Trond H. Torsvik
2014-01-01
As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonicsdand its influence on the deep Earth and climatedit is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of‘full-plates’ (including oceanic lithosphere) becomes increasingly challenging with age. Prior to 150 Ma w60% of the lithosphere is missing and re-constructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles;in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ re-constructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying) plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geo-dynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410e250 Ma) together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.
Geometrically nonlinear behavior of piezoelectric laminated plates
Rabinovitch, Oded
2005-08-01
The geometrically nonlinear behavior of piezo-laminated plates actuated with isotropic or anisotropic piezoelectric layers is analytically investigated. The analytical model is derived using the variational principle of virtual work along with the lamination and plate theories, the von Karman large displacement and moderate rotation kinematic relations, and the anisotropic piezoelectric constitutive laws. A solution strategy that combines the approach of the method of lines, the advantages of the finite element concept, and the variational formulation is developed. This approach yields a set of nonlinear ordinary differential equations with nonlinear boundary conditions, which are solved using the multiple-shooting method. Convergence and verification of the model are examined through comparison with linear and nonlinear results of other approximation methods. The nonlinear response of two active plate structures is investigated numerically. The first plate is actuated in bending using monolithic piezoceramic layers and the second one is actuated in twist using macro-fiber composites. The results quantitatively reveal the complicated in-plane stress state associated with the piezoelectric actuation and the geometrically nonlinear coupling of the in-plane and out-of-plane responses of the plate. The influence of the nonlinear effects ranges from significant stiffening in certain combinations of electrical loads and boundary conditions to amplifications of the induced deflections in others. The paper closes with a summary and conclusions.
Directory of Open Access Journals (Sweden)
Gonugunta V
2005-01-01
Full Text Available Although anterior cervical instrumentation was initially used in cervical trauma, because of obvious benefits, indications for its use have been expanded over time to degenerative cases as well as tumor and infection of the cervical spine. Along with a threefold increase in incidence of cervical fusion surgery, implant designs have evolved over the last three decades. Observation of graft subsidence and phenomenon of stress shielding led to the development of the new generation dynamic anterior cervical plating systems. Anterior cervical plating does not conclusively improve clinical outcome of the patients, but certainly enhances the efficacy of autograft and allograft fusion and lessens the rate of pseudoarthrosis and kyphosis after multilevel discectomy and fusions. A review of biomechanics, surgical technique, indications, complications and results of various anterior cervical plating systems is presented here to enable clinicians to select the appropriate construct design.
This dynamic earth: the story of plate tectonics
Kious, W. Jacquelyne; Tilling, Robert I.
1996-01-01
In the early 1960s, the emergence of the theory of plate tectonics started a revolution in the earth sciences. Since then, scientists have verified and refined this theory, and now have a much better understanding of how our planet has been shaped by plate-tectonic processes. We now know that, directly or indirectly, plate tectonics influences nearly all geologic processes, past and present. Indeed, the notion that the entire Earth's surface is continually shifting has profoundly changed the way we view our world.People benefit from, and are at the mercy of, the forces and consequences of plate tectonics. With little or no warning, an earthquake or volcanic eruption can unleash bursts of energy far more powerful than anything we can generate. While we have no control over plate-tectonic processes, we now have the knowledge to learn from them. The more we know about plate tectonics, the better we can appreciate the grandeur and beauty of the land upon which we live, as well as the occasional violent displays of the Earth's awesome power.This booklet gives a brief introduction to the concept of plate tectonics and complements the visual and written information in This Dynamic Planet (see Further reading), a map published in 1994 by the U.S. Geological Survey (USGS) and the Smithsonian Institution. The booklet highlights some of the people and discoveries that advanced the development of the theory and traces its progress since its proposal. Although the general idea of plate tectonics is now widely accepted, many aspects still continue to confound and challenge scientists. The earth-science revolution launched by the theory of plate tectonics is not finished.
License plate detection algorithm
Broitman, Michael; Klopovsky, Yuri; Silinskis, Normunds
2013-12-01
A novel algorithm for vehicle license plates localization is proposed. The algorithm is based on pixel intensity transition gradient analysis. Near to 2500 natural-scene gray-level vehicle images of different backgrounds and ambient illumination was tested. The best set of algorithm's parameters produces detection rate up to 0.94. Taking into account abnormal camera location during our tests and therefore geometrical distortion and troubles from trees this result could be considered as passable. Correlation between source data, such as license Plate dimensions and texture, cameras location and others, and parameters of algorithm were also defined.
Wave turbulence buildup in a vibrating plate
Auliel, Maria Ines; Mordant, Nicolas
2015-01-01
We report experimental and numerical results on the buildup of the energy spectrum in wave turbulence of a vibrating thin elastic plate. Three steps are observed: first a short linear stage, then the turbulent spectrum is constructed by the propagation of a front in wave number space and finally a long time saturation due to the action of dissipation. The propagation of a front at the second step is compatible with scaling predictions from the Weak Turbulence Theory.
Space-time as strongly bent plate
Kokarev, S S
1999-01-01
Futher development is made of a consept of space-time as multidimensional elastic plate, proposed earlier in [20,21]. General equilibrium equations, including 4-dimensional tangent stress tensor - energy-momentum tensor of matter - are derived. Comparative analysis of multidimensional elasticity theory (MET) and GR is given. Variational principle, boundary conditions, energy-momentum tensor, matter and space-time signature are reviewed within the context of MET.
Casimir force between metal plate and dielectric plate
Institute of Scientific and Technical Information of China (English)
刘中柱; 邵成刚; 罗俊
1999-01-01
The Casimir effect between metal plate and dielectric plate is discussed with 1+1-dimensional potential model without using cut-off method. Calculation shows that the Casimir force between metal plate and dielectric plate is determined not only by the potential V0, the dielectric thickness and the distance α between the metal plate and dielectric plate, but also by the dimension of the vessel. When α is far less than the dimension of the vessel, the Casimir force Fc∝α（-1）; conversely Fc∝α-2. This result is significant for Casimir force experiment.
Institute of Scientific and Technical Information of China (English)
吴国阳
2013-01-01
在分析中小凹印制版行业的发展现状、工艺特征、产品特点和市场特征的基础上，运用SWOT模型分析中小凹印制版公司优势、劣势、机会、威胁，提出适合中小凹印制版公司发展的战略。%Based on the analyses about China’s gravure plate-making industry of the development of the status quo ,process characteristics, product characteristics and market characteristics,This paper use SWOT model to analyse the strengths,weaknesses,opportunities and threats,and pust forward strategy for China’s small gravure plate-making industry.
Nuclear reactor alignment plate configuration
Energy Technology Data Exchange (ETDEWEB)
Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R
2014-01-28
An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.
Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...
Full Text Available ... Create Your Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... year of delicious meals to help prevent and manage diabetes. Healthy Recipes: ... to your day with this guide. Ways to Give: Wear Your Cause on Your Sleeve - ...
Hein, Annamae J.
2011-01-01
The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…
Full Text Available ... tax-deductible gift today can fund critical diabetes research and support vital diabetes education services that improve the ... way to manage your blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...
Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...
Full Text Available ... tax-deductible gift today can fund critical diabetes research and support vital diabetes education services that improve the ... way to manage your blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...
Full Text Available ... unsweetened tea or coffee. Featured Product Precise Portions® Go Healthy Travel Pack (4/Box) Taking the guesswork ... you are. Now, our best-selling, sectioned to-go plate with easy-sealing lid is offered in ...
Full Text Available ... manage portion control wherever you are. Now, our best-selling, sectioned to-go plate with easy-sealing lid is offered in a 4-pack. Whether ... Research & Practice We Are Research Leaders We Support Your Doctor ...
Energy Technology Data Exchange (ETDEWEB)
B. H. Park; C. R. Clark; J. F. Jue
2010-02-01
This document outlines the process used to bond monolithic fuel plates by Hot Isostatic Pressing (HIP). This method was developed at Idaho National Laboratory (INL) for the Reduced Enrichment for Research and Test Reactors (RERTR) program. These foils have been used in a number of irradiation experiments in support of the United States Global Threat Reduction Initiative (GTRI) program.
Hein, Annamae J.
2011-01-01
The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…
Full Text Available ... Planning Meals > Create Your Plate Share: Print Page Text Size: A A A Listen En Español Create ... somewhere in between, you have an easy portion control solution that works. Last Reviewed: October 8, 2015 Last Edited: ... Cost of Diabetes Advocate Toolkit Call to Congress Research & ...
Institute of Scientific and Technical Information of China (English)
丁皓江; 徐荣桥; 国凤林
1999-01-01
Emphasis is placed on purely elastic circular plates. Let the piezoelectric coefficients be equal to zero. Then two sets of uncoupled mechanical and electric equations are obtained and they can be solved independently. Two three-dimensional exact solutions of laminated transversely isotropic circular plate are derived under two boundary conditions, i.e. rigid slipping support and elastic simple support. For isotropic circular plates, the problem of multiple root is treated. At last, some numerical results of piezoelectric and purely elastic circular plates are presented and the applicability of classical plate theory is discussed.
Study on the Hinge-joined Plate Method
Directory of Open Access Journals (Sweden)
Li Sha
2015-01-01
Full Text Available In order to verify and perfect the theory of hinge-joined plate method and make it serve the bridge design better, this paper was written based on an actual bridge, and the ANSYS finite element model was established. Compared the hinge-joined plate method results with the analysis results and through the investigation and data analysis, it could be found that the assumption that the hinge-joined plate theory for the board lateral force transmission is reasonable, but the assuming hinge joints that only withstand shear stress and just have the shear checking is unreasonable. At the same time, this paper also proved that the strength reduction getting from the old and new concrete interface should be taken into account when using the hinge-joined plate method to calculate the transverse distribution coefficient and the effects on overall stiffness that the joint depth and thickness of deck pavement to the beam bridge.
Elasticity solutions for functionally graded plates in cylindrical bending
Institute of Scientific and Technical Information of China (English)
YANG Bo; DING Hao-jiang; CHEN Wei-qiu
2008-01-01
The plate theory of functionally graded materials suggested by Mian and Spencer is extended to analyze the cylindrical bending problem of a functionally graded rectangular plate subject to uniform load. The expansion formula for displacements is adopted. While keeping the assumption that the material parameters can vary along the thickness direction in an arbitrary fashion, this paper considers orthotropic materials rather than isotropic materials. In addition, the traction-free condition on the top surface is replaced with the condition of uniform load applied on the top surface. The plate theory for the particular case of cylindrical bending is presented by considering an infinite extent in the y-direction. Effects of boundary conditions and material inhomogeneity on the static response of functionally graded plates are investigated through a numerical example.
Imaging with straight-edge phase plates in the TEM.
Edgcombe, C J
2017-06-22
The image of a simple phase object produced by a round lens with a Foucault or Hilbert phase plate can be determined with Abbe imaging theory and a 2D transform expressed in cylindrical coordinates. The contributions to the image amplitude from a uniform disc object and an azimuthally varying plate can then be distinguished and their phases relative to the incident wave can be compared. It appears that the usual choice of added phase for a Hilbert plate causes the image of a weak disc object to vanish as the plate edge approaches the axis, but a different choice of plate thickness can enable a weak phase object to provide a linear contribution to image intensity. Copyright © 2017 Elsevier B.V. All rights reserved.
THE EFFECT OF SUPPORT PLATE ON DRILLING-INDUCED DELAMINATION
Directory of Open Access Journals (Sweden)
Navid Zarif Karimi
2016-02-01
Full Text Available Delamination is considered as a major problem in drilling of composite materials, which degrades the mechanical properties of these materials. The thrust force exerted by the drill is considered as the major cause of delamination; and one practical approach to reduce delamination is to use a back-up plate under the specimen. In this paper, the effect of exit support plate on delamination in twist drilling of glass fiber reinforced composites is studied. Firstly, two analytical models based on linear fracture mechanics and elastic bending theory of plates are described to find critical thrust forces at the beginning of crack growth for drilling with and without back-up plate. Secondly, two series of experiments are carried out on glass fiber reinforced composites to determine quantitatively the effect of drilling parameters on the amount of delamination. Experimental findings verify a large reduction in the amount of delaminated area when a back-up plate is placed under the specimen.
Prediction of the point of impact in an anisotropic plate
Koabaz, M.; Hajzargarbashi, T.; Kundu, T.; Deschamps, M.
2011-01-01
Locating the point of impact of a foreign object in a plate is important for continuous health monitoring of structures. A new method based on an optimization scheme has been recently proposed to locate the point of impact in anisotropic plates by analyzing the times of arrival of the ultrasonic signals at the passive sensors attached to the plate. Following this optimization based technique, in this paper the impact point on an anisotropic plate is predicted from the acoustic emission data. Experiments are carried out with a carbon-epoxy plate where the impact point is modeled by an acoustic source. A Parallel Pre-stressed Actuator (PPA) is used as the acoustic source and the acoustic signals at different locations are received by adhesively bonded acoustic sensors. The source point is then predicted and compared with its actual location. Related theory is also presented in the paper.
Wave Damping over a Perforated Plate with Water Chambers
Institute of Scientific and Technical Information of China (English)
ZHU Shutang
2006-01-01
The movement of waves propagating over a horizontally submerged perforated plate with waterfilled chambers bellow the plate was investigated by using linear potential theory. The analytical solution was compared with laboratory experiments on wave blocking. The analysis of the wave energy dissipation on the perforated bottom surface shows that the effects of the perforated plate on thewave motion depend mainly on the plate porosity, the wave height, and the wave period. The wave number is a complex number when the wave energy dissipation on the perforated plate is considered. The real part of the wave number refers to the spatial periodicity while the imaginary part represents the damping modulus. The characteristics of the wave motion were explored for several possible conditions.
Is plate tectonis withstanding the test of time?
Directory of Open Access Journals (Sweden)
O. Shields
1997-06-01
Full Text Available Since the theory of plate tectonics was first proposed thirty years ago, some problems have arisen in its practical application. These call into question its fundamental assumptions of horizontal plate motion, hotspot fixity, true polar wander, Panthalassa, and the Earths constant size while leaving seafloor spreading and subduction intact. A rapidity expanding earth solves these problems and privides an alternative viewpoint worth reconsidering.
Analysis of Flat-Plate Solar Array and Solar Lantern
Directory of Open Access Journals (Sweden)
P. L. N. V. Aashrith
2014-05-01
Full Text Available A very detailed theortical analysis of a solar array has been carried out based on established values of solar radiation data to predict the performance of solar lamp . The analysis is based on established theory about flat-plate collectors. Top heat loss coefficient (Ut, Bottom heat loss coefficient (Ub, Overall heat loss coefficient (Ul, Useful energy (Qu, efficiency (hp of the flat-plate solar array and efficiency (hl of the solar lantern has been calculated.
Asymptotic analysis of laminated plates and shallow shells
Skoptsov, K. A.; Sheshenin, S. V.
2011-02-01
It was noted long ago [1] that the material strength theory develops both by improving computational methods and by widening the physical foundations. In the present paper, we develop a computational technique based on asymptotic methods, first of all, on the homogenization method [2, 3]. A modification of the homogenization method for plates periodic in the horizontal projection was proposed in [4], where the bending of a homogeneous plate with periodically repeating inhomogeneities on its surface was studied. A more detailed asymptotic analysis of elastic plates periodic in the horizontal projection can be found, e.g., in [5, 6]. In [6], three asymptotic approximations were considered, local problems on the periodicity cell were obtained for them, and the solvability of these problems was proved. In [7], it was shown that the techniques developed for plates periodic in the horizontal projection can also be used for laminated plates. In [7], this was illustrated by an example of asymptotic analysis of an isotropic plate symmetric with respect to the midplane. In what follows, these methods are generalized to the case of combined bending and extension of a longitudinal laminated plate up to the third approximation, which permits finding all components of the stress tensor. The study of the plate behavior is based on the method of homogenization of the three-dimensional problem of linear elasticity and does not use any hypotheses. It turns out that the Kirchhoff-Love hypothesis for the entire packet of layers is simply a consequence of the method in the zeroth approximation, and the bending stresses corresponding to the classical theory of laminated plates [8] are obtained in the first approximation. The successive approximations describe the behavior of the normal and the stress more precisely. In the present paper, the results obtained in [7] are refined, and the asymptotic solution is compared with the direct analysis of a laminated plate by the finite
Initial stage of flat plate impact onto liquid free surface
Iafrati, Alessandro; Korobkin, Alexander A.
2004-07-01
The liquid flow and the free surface shape during the initial stage of flat plate impact onto liquid half-space are investigated. Method of matched asymptotic expansions is used to derive equations of motion and boundary conditions in the main flow region and in small vicinities of the plate edges. Asymptotic analysis is performed within the ideal and incompressible liquid model. The liquid flow is assumed potential and two dimensional. The ratio of the plate displacement to the plate width plays the role of a small parameter. In the main region the flow is given in the leading order by the pressure-impulse theory. This theory provides the flow field around the plate after a short acoustic stage and predicts unbounded velocity of the liquid at the plate edges. In order to resolve the singular flow caused by the normal impact of a flat plate, the fine pattern of the flow in small vicinities of the plate edges is studied. It is shown that the initial flow close to the plate edges is self-similar in the leading order and is governed by nonlinear boundary-value problem with unknown shape of the free surface. The Kutta conditions are imposed at the plate edges, in order to obtain a nonsingular inner solution. This boundary-value problem is solved numerically by iterations. At each step of iterations the "inner" velocity potential is calculated by the boundary-element method. The asymptotics of the inner solution in both the far field and the jet region are obtained to make the numerical algorithm more efficient. The numerical procedure is carefully verified. Agreement of the computed free surface shape with available experimental data is fairly good. Stability of the numerical solution and its convergence are discussed.
... Choosing the Right Sport for You Shyness MyPlate Food Guide KidsHealth > For Teens > MyPlate Food Guide Print ... other sugary drinks. Avoid oversized portions. continue Five Food Groups Different food groups meet different nutrition needs. ...
What Are Growth Plate Injuries?
... plate injuries are: Falling down Competitive sports (like football) Recreational activities. Other reasons for growth plate injuries are: Child abuse Injury from extreme cold (for ...
NONLINEAR VIBRATION OF CIRCULAR SANDWICH PLATES UNDER CIRCUMJACENT LOAD
Institute of Scientific and Technical Information of China (English)
DU Guo-jun; MA Jian-qing
2006-01-01
Based on yon Karman plate theory, the issue about nonlinear vibration for circular sandwich plates under circumjacent load with the loosely clamped boundary condition was researched. Nonlinear differential eigenvalue equations and boundary conditions of the problem were formulated by variational method and then their exact static solution can be got. The solution was derived by modified iteration method, so the anslytic relations between amplitude and nonlinear oscillating frequency for circular sandwich plates were obtained. When circumjacent load makes the lowest natural frequency zero,critical load is obtained.
Recording Fractional Fourier Transform Hologram Using Holographic Zone Plate
Institute of Scientific and Technical Information of China (English)
高峰; 曾阳素; 张怡霄; 杨静; 高福华; 郭永康
2002-01-01
FRTH(fractional Fourier transform hologram) is a new kind of hologram that differs from common Fresnel holograms and Fourier transform holograms. Due to the flexibility of zone plate. A method that uses the -1 order diffraction wave of zone plate as the object wave and the 0 order diffraction wave as the reference wave to record FRTH is presented. It provides a new simple way to record FRTH. In this paper, the theory of achieving FRT and recording FRTH using holographic zone plate is presented and experimental results are given.
The postbuckling analysis of laminated circular plate with elliptic delamination
Chen, Deliang; Chen, Changping; Fu, Yiming
2011-01-01
Based on the Von Karman plate theory, considering the effect of transverse shear deformation, and using the method of the dissociated three regions, the postbuckling governing equations for the axisymmetric laminated circular plates with elliptical delamination are derived. By using the orthogonal point collocation method, the governing equations, boundary conditions and continuity conditions are transformed into a group of nonlinear algebraically equation and the equations are solved with the alternative method. In the numerical examples, the effects of various elliptical in shape, delamination depth and different material properties on buckling and postbuckling of the laminated circular plates are discussed and the numerical results are compared with available data.
Controlling Laminate Plate Elastic Behavior
Mareš, T.
2004-01-01
This paper aims to express the relation of a measure of laminate plate stiffness with respect to the fiber orientation of its plies. The inverse of the scalar product of the lateral displacement of the central plane and lateral loading of the plate is the measure of laminate plate stiffness. In the case of a simply supported rectangular laminate plate this measure of stiffness is maximized, and the optimum orientation of its plies is searched.
Microchannel plate streak camera
Wang, Ching L.
1989-01-01
An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.
Electronic Equipment Cold Plates
1976-04-01
equations for such a flow regiae. For laainar flow and Moderate teaperature differwwe« between the well «nd coolant, a aodifled Sieder -Tate...con- figuration. The heat-transfer coefficients, therefore, were determined by using both the Sieder -Tate and McAdams equations and the coaputed...values used In the analytical predictions. As with th* previous cold Plates, the Sieder -Tate equation gave too low of values for the heat- transfer
Oline, L.; Medaglia, J.
1972-01-01
The dynamic finite element method was used to investigate elastic stress waves in a plate. Strain displacement and stress strain relations are discussed along with the stiffness and mass matrix. The results of studying point load, and distributed load over small, intermediate, and large radii are reported. The derivation of finite element matrices, and the derivation of lumped and consistent matrices for one dimensional problems with Laplace transfer solutions are included. The computer program JMMSPALL is also included.
DEFF Research Database (Denmark)
Simonsen, Bo Cerup
1997-01-01
The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisaton of the damage, which...
DEFF Research Database (Denmark)
Simonsen, Bo Cerup
1998-01-01
The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisation of the damage, which...
Wave Interaction with Dual Circular Porous Plates
Institute of Scientific and Technical Information of China (English)
Arpita Mondal; R.Gayen
2015-01-01
In this paper we have investigated the reflection and the transmission of a system of two symmetric circular-arc-shaped thin porous plates submerged in deep water within the context of linear theory. The hypersingular integral equation technique has been used to analyze the problem mathematically. The integral equations are formulated by applying Green’s integral theorem to the fundamental potential function and the scattered potential function into a suitable fluid region, and then using the boundary condition on the porous plate surface. These are solved approximately using an expansion-cum-collocation method where the behaviour of the potential functions at the tips of the plates have been used. This method ultimately produces a very good numerical approximation for the reflection and the transmission coefficients and hydrodynamic force components. The numerical results are depicted graphically against the wave number for a variety of layouts of the arc. Some results are compared with known results for similar configurations of dual rigid plate systems available in the literature with good agreement.
Wave interaction with dual circular porous plates
Mondal, Arpita; Gayen, R.
2015-12-01
In this paper we investigated the reflection and the transmission of a system of two symmetric circular-arc-shaped thin porous plates submerged in deep water within the context of linear theory. The hypersingular integral equation technique has been used to analyze the problem mathematically. The integral equations are formulated by applying Green's integral theorem to the fundamental potential function and the scattered potential function into a suitable fluid region, and then using the boundary condition on the porous plate surface. These are solved approximately using an expansion-cum-collocation method using the behaviour of the potential functions at the tips of the plates. This method ultimately produces a very good numerical approximation for the reflection and the transmission coefficients and hydrodynamic force components. The numerical results are depicted graphically against the wave number for a variety of layouts of the arc. Some results are compared with known results for similar configurations of dual rigid plate systems available in the literature with good agreement.
Towards an optimum design for electrostatic phase plates
Energy Technology Data Exchange (ETDEWEB)
Walter, Andreas [Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt (Germany); Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Pakanavicius, Edvinas [University College London, Division of Biosciences, Gower Street, London WC1E 6BT (United Kingdom); Sachser, Roland; Huth, Michael [University of Frankfurt, Physikalisches Institut, Max-von-Laue-Str. 1, D-60438 Frankfurt (Germany); Rhinow, Daniel [Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt (Germany); Kühlbrandt, Werner, E-mail: werner.kuehlbrandt@biophys.mpg.de [Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt (Germany)
2015-06-15
Charging of physical phase plates is a problem that has prevented their routine use in transmission electron microscopy of weak-phase objects. In theory, electrostatic phase plates are superior to thin-film phase plates since they do not attenuate the scattered electron beam and allow freely adjustable phase shifts. Electrostatic phase plates consist of multiple layers of conductive and insulating materials, and are thus more prone to charging than thin-film phase plates, which typically consist of only one single layer of amorphous material. We have addressed the origins of charging of Boersch phase plates and show how it can be reduced. In particular, we have performed simulations and experiments to analyze the influence of the insulating Si{sub 3}N{sub 4} layers and surface charges on electrostatic charging. To optimize the performance of electrostatic phase plates, it would be desirable to fabricate electrostatic phase plates, which (i) impart a homogeneous phase shift to the unscattered electrons, (ii) have a low cut-on frequency, (iii) expose as little material to the intense unscattered beam as possible, and (iv) can be additionally polished by a focused ion-beam instrument to eliminate carbon contamination accumulated during exposure to the unscattered electron beam (Walter et al., 2012, Ultramicroscopy, 116, 62–72). We propose a new type of electrostatic phase plate that meets the above requirements and would be superior to a Boersch phase plate. It consists of three free-standing coaxial rods converging in the center of an aperture (3-fold coaxial phase plate). Simulations and preliminary experiments with modified Boersch phase plates indicate that the fabrication of a 3-fold coaxial phase plate is feasible. - Highlights: • We simulated charging artefacts of Boersch phase plates by finite element methods. • We developed methods to reduce charging, such as in-situ gas injection or charge dissipation. • We propose an optimized electrostatic phase
Size-Dependent Dynamic Behavior of a Microcantilever Plate
Directory of Open Access Journals (Sweden)
Xiaoming Wang
2012-01-01
Full Text Available Material length scale considerably affects the mechanical properties of microcantilever components. Recently, cantilever-plate-like structures have been commonly used, whereas the lack of studies on their size effects constrains the design, testing, and application of these structures. We have studied the size-dependent dynamic behavior of a cantilever plate based on a modified couple stress theory and the differential quadrature method in this note. The numerical solutions of microcantilever plate equation involving the size effect have been presented. We have also analyzed the bending and vibration of the microcantilever plates considering the size effect and discussed the dependence of the size effect on their geometric dimensions. The results have shown that (1 the mechanical characteristics of the cantilever plate show obvious size effects; as a result, the bending deflection of a microcantilever plate reduces whereas the natural frequency increases effectively and (2 for the plates with the same material, the size effect becomes more obvious when the plates are thinner.
Looking for Plate Tectonics in all the wrong fluids
Davaille, Anne
2017-04-01
Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.
Plate tectonics conserves angular momentum
Directory of Open Access Journals (Sweden)
C. Bowin
2009-03-01
Full Text Available A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm^{2}s^{−1}. Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates. Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth. The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive
Vehicle License Plate Recognition Syst
Directory of Open Access Journals (Sweden)
Meenakshi,R. B. Dubey
2012-12-01
Full Text Available The vehicle license plate recognition system has greater efficiency for vehicle monitoring in automatic zone access control. This Plate recognition system will avoid special tags, since all vehicles possess a unique registration number plate. A number of techniques have been used for car plate characters recognition. This system uses neural network character recognition and pattern matching of characters as two character recognition techniques. In this approach multilayer feed-forward back-propagation algorithm is used. The performance of the proposed algorithm has been tested on several car plates and provides very satisfactory results.
Rigid-Plastic Post-Buckling Analysis of Columns and Quadratic Plates
DEFF Research Database (Denmark)
Jönsson, Jeppe
2008-01-01
The objective of this paper is to show the application of a novel approach to the rigid plastic hinge and yield line theory in post-buckling analysis of slender plates and columns. The upper bound theorem of plasticity theory and the associated flow law of plasticity are used to find...... of the post-buckling behaviour. The rigid plastic theory of plates, referred to as yield line theory, involves large rigid parts of the plate mutually rotating about yielding hinge lines, however in order to accommodate in plane plastic deformations area “collapse” yield lines have been introduced. The hinge...... yield lines accommodate differential rotations of rigid parts and the area “collapse” yield lines accommodate local area changes of the rigid parts thereby preserving compatibility of the rigid parts of a plate. The approach will be illustrated for rigid plastic column analysis and for a quadratic plate...
Sharp, David E; Sobal, Jeffery; Wansink, Brian
2014-12-01
Does the size of a plate influence the serving of all items equally, or does it influence the serving of some foods - such as meat versus vegetables - differently? To examine this question, we used the new method of plate mapping, where people drew a meal on a paper plate to examine sensitivity to small versus large three-compartment divided plates in portion size and meal composition in a sample of 109 university students. The total drawn meal area was 37% bigger on large plates than small plates, which showed that the portion of plate coverage did not differ by plate size. Men and women drew bigger vegetable portions and men drew bigger meat portions on large plates when compared to small plates. These results suggest that men and women are differentially sensitive to plate size for overall meal size and for meal composition. Implications for decreasing portion size and improving meal balance are that plate size may influence portion size and change the proportions of foods served.
Directory of Open Access Journals (Sweden)
Vardanyan S. A.
2007-09-01
Full Text Available In the framework of the asymmetrical momental micropolar theory in the present work the boundary value problem of thermal stresses in a three-dimensional thin plate with independent fields of displacements and rotations is studied on the basis of asymptotic method. Depending on the values of physical dimensionless constants of the material three applied two-dimensional theories of thermoelasticity of micropolar thin plate are constructed (theories with independent rotations, with constrained rotations and with small shift rigidity.
Ko, W. L.
1980-01-01
The paper concerns the elastic buckling behavior of a newly developed superplastically formed/diffusion-bonded (SPF/DB) orthogonally corrugated core sandwich plate. Uniaxial buckling loads were calculated for this type of sandwich plate with simply supported edges by using orthotropic sandwich plate theory. The buckling behavior of this sandwich plate was then compared with that of an SPF/DB unidirectionally corrugated core sandwich plate under conditions of equal structural density. It was found that the buckling load for the former was considerably higher than that of the latter.
Nonlinear dynamic buckling of stiffened plates under in-plane impact load
Institute of Scientific and Technical Information of China (English)
张涛; 刘土光; 赵耀; 罗家智
2004-01-01
This paper presents a simple solution of the dynamic buckling of stiffened plates under in-plane impact loading. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stresses of stiffeners and in-plane displacement are neglected. Appling the Hamilton's principle, the motion equations of stiffened plates are obtained. The deflection of the plate is taken as Fourier series, and using Galerkin method the discrete equations can be deduced, which can be solved easily by Runge-Kutta method. The dynamic buckling loads of the stiffened plates are obtained form Budiansky-Roth criterion.
DYNAMIC BUCKLING OF STIFFENED PLATES UNDER FLUID-SOLID IMPACT LOAD
Institute of Scientific and Technical Information of China (English)
张涛; 刘土光; 熊有伦; 张维衡
2004-01-01
A simple solution of the dynamic buckling of stiffened plates under fluid-solid impact loading is presented. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stresses of stiffeners and in-plane displacement are neglected. Applying the Hamilton' s principle, the motion equations of stiffened plates are obtained. The deflection of the plate is taken as Fourier series, and using Galerkin method,the discrete equations can be deduced, which can be solved easily by Runge-Kutta method.The dynamic buckling loads of the stiffened plates are obtained from Budiansky-Roth ( B-R )curves.
Temperature field of steel plate cooling process after plate rolling
Directory of Open Access Journals (Sweden)
Huijun Feng, Lingen Chen, Fengrui Sun
2015-01-01
Full Text Available Based on numerical calculation with Matlab, the study on cooling process after plate rolling is carried out, and the temperature field distribution of the plate varying with the time is obtained. The effects of the plate thickness, final rolling temperature, cooling water temperature, average flow rate of the cooling water, carbon content of the plate and cooling method on the plate surface and central temperatures as well as final cooling temperature are discussed. For the same cooling time, the plate surface and central temperatures as well as their temperature difference increase; with the decrease in rolling temperature and the increase in average flow rate of the cooling water, the plate surface and central temperatures decrease. Compared with the single water cooling process, the temperature difference between the plate centre and surface based on intermittent cooling is lower. In this case, the temperature uniformity of the plate is better, and the corresponding thermal stress is lower. The fitting equation of the final cooling temperature with respect to plate thickness, final rolling temperature, cooling water temperature and average flow rate of the cooling water is obtained.
Dowel Type Connections with Slotted-in Steel Plates
DEFF Research Database (Denmark)
Pedersen, Martin Bo Uhre; Clorius, Christian Odin; Damkilde, Lars;
1999-01-01
In the Eurocode the strength of dowel type connectors is determined according to the theory of plasticity. When the loading is in the grain direction the strength is well predicted by the plasticity theory. However, when the loading is in the transverse direction splitting may supervene plastic f...... failure, as is shown in test series on smaller specimens with slotted-in steel plates. The scope of the present investigation is to trace the effect of eccentric transverse loading of full scale connections with slotted-in steel plates primarily loaded in the grain direction....
On liquid films on an inclined plate
BENILOV, E. S.
2010-08-18
This paper examines two related problems from liquid-film theory. Firstly, a steady-state flow of a liquid film down a pre-wetted plate is considered, in which there is a precursor film in front of the main film. Assuming the former to be thin, a full asymptotic description of the problem is developed and simple analytical estimates for the extent and depth of the precursor film\\'s influence on the main film are provided. Secondly, the so-called drag-out problem is considered, where an inclined plate is withdrawn from a pool of liquid. Using a combination of numerical and asymptotic means, the parameter range where the classical Landau-Levich-Wilson solution is not unique is determined. © 2010 Cambridge University Press.
Real Plates and Dubious Microplates
Kogan, M. G.; Steblov, G. M.
2008-12-01
From the onset of plate tectonics, the existence of most of the plates was never put in doubt, although the boundaries of some plates, like Africa, were later revised. There are however, two microplates in northeast Asia, the Amurian and Okhotsk, whose existence and the sense of rotation was revised several times. The rms value of plate-residual GPS velocities is 0.5-0.9 mm/a for sets of stations representing the motion of the following plates: Antarctic, Australian, Eurasian, North American, Nubian, Pacific, and South American. This value can be regarded as an upper bound on deviation of real plates from infinite stiffness. The rms value of plate-residual GPS velocities is 1.2-1.8 mm/a for the Indian, Nazca, and Somalian plates. Higher rms values for India and Nazca are attributed to the noisier data. The higher rms value for Somalia appears to arise from the distributed deformation to the east of the East African Rift; whether this statement is true can only be decided from observations of denser network in the future. From the analysis of plate-residual GPS velocities, the Canadian Arctic and northeastern Siberia belong to the North American plate. The detailed GPS survey on Sakhalin Island shows that the Sea of Okhotsk region also belongs to the North American plate while the region to the west of it belongs to the Eurasian plate. These results provide a constraint on the geometry of the North American plate and put in doubt the existence of smaller plates in northeast Asia.
Subduction controls the distribution and fragmentation of Earth’s tectonic plates.
Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R Dietmar; Tackley, Paul J
2016-07-07
The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size–frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.
Subduction controls the distribution and fragmentation of Earth’s tectonic plates
Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R. Dietmar; Tackley, Paul J.
2016-07-01
The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size-frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.
Centers for Disease Control (CDC) Podcasts
2008-08-04
The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods. Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP). Date Released: 8/5/2008.
Pechersky, E; Sadowski, G; Yambartsev, A
2014-01-01
We suggest a model that describes a mutual dynamic of tectonic plates. The dynamic is a sort of stick-slip one which is modeled by a Markov random process. The process defines a microlevel of the dynamic. A macrolevel is obtained by a scaling limit which leads to a system of integro-differential equations which determines a kind of mean field systems. Conditions when Gutenberg-Richter empirical law are presented on the mean field level. These conditions are rather universal and do not depend on features of resistant forces.
2014-01-01
We suggest a model that describes a mutual dynamic of tectonic plates. The dynamic is a sort of stick-slip one which is modeled by a Markov random process. The process defines a microlevel of the dynamic. A macrolevel is obtained by a scaling limit which leads to a system of integro-differential equations which determines a kind of mean field systems. Conditions when Gutenberg-Richter empirical law are presented on the mean field level. These conditions are rather universal and do not depend ...
Application of Normal Mode Expansion to AE Waves in Finite Plates
Gorman, M. R.; Prosser, W. H.
1997-01-01
Breckenridge et al. (1975), Hsu (1985) and Pao (1978) adapted approaches from seismology to calculate the response at the surface of an infinite half-space and an infinite plate. These approaches have found use in calibrating acoustic emission (AE) transducers. However, it is difficult to extend this theoretical approach to AE testing of practical structures. Weaver and Pao (1982) considered a normal mode solution to the Lamb equations. Hutchinson (1983) pointed out the potential relevance of Mindlin's plate theory (1951) to AE. Pao (1982) reviewed Medick s (1961) classical plate theory for a point source, but rejected it as useful for AE and no one seems to have investigated its relevance to AE any further. Herein, a normal mode solution to the classical plate bending equation was investigated for its applicability to AE. The same source-time function chosen by Weaver and Pao is considered. However, arbitrary source and receiver positions are chosen relative to the boundaries of the plate. This is another advantage of the plate theory treatment in addition to its simplicity. The source does not have to be at the center of the plate as in the axisymmetric treatment. The plate is allowed to remain finite and reflections are predicted. The importance of this theory to AE is that it can handle finite plates, realistic boundary conditions, and can be extended to composite materials.
Zainab, Karam
2013-01-01
There are many types of gas detectors which are used in CERN in LHC project, There is a main parts for the gas detectors which must be in all gas detectors types like Multiwire proportional chambers, such as the micromesh gaseous structure chamber (the MicroMegas), Gas-electron multiplier (GEM) detector, Resistive Plate Champers... Compact Muon Solenoid (CMS) experiment detecting muons which are powerful tool for recognizing signatures of interesting physics processes. The CMS detector uses: drift tube (DT), cathode strip chamber (CSC) and resistive plate chamber (RPC). Building RPC’s was my project in summer student program (hardware). RPC’s have advantages which are triggering detector and Excellent time resolution which reinforce the measurement of the correct beam crossing time. RPC’s Organized in stations : RPC barrel (RB) there are 4 stations, namely RB1, RB2, RB3, and RB4 While in the RPC endcap (RE) the 3 stations are RE1, RE2, and RE3. In the endcaps a new starion will be added and this...
Opportunities in Martensite Theory
Olson, G.
1995-01-01
A workshop has explored interactions of materials science, applied mechanics, physics and mathematics in understanding fundamentals of martensitic transformations. System theory offers a framework for addressing realistic complexity. Theory of invariant-plane kinematics has been extended to multivariant plate groups and hierarchical structures. Electronic total energy calculations explore the origins of martensitic phase stability, and Landau-Ginzberg models for transformations with and witho...
Localised Plate Motion on Venus
Ghail, R. C.
1996-03-01
The volcanic and tectonic features observed in Dali Vinculum, Parga Vinculum and Imdr Regio are concentrated at long, narrow, curvilinear zones, with relatively minor volcanism and tectonism between these zones. These zones, whilst more diffuse than terrestrial plate boundaries, nevertheless define the margins of tectonic plates. In contrast to Earth, however, it appears that venusian plates are neither created nor destroyed by lateral motion. Rather, plates are thinned and intruded at vincula plate boundaries, vertically accreted by small-scale intra-plate (planitia) volcanism and perhaps destroyed by delamination of thickened crust in tesserae and montane regions such as Thetis Regio and Ishtar Terra. The diversity in age both between and within these three areas together with the evidence for infrequent, small scale resurfacing in the planitiae are difficult to reconcile with a non-uniformitarian geological process.
Engeln, J. F.; Stein, S.
1984-01-01
A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.
Engeln, J. F.; Stein, S.
1984-01-01
A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.
Prosser, William H.
1991-01-01
Acoustic emission was interpreted as modes of vibration in plates. Classical plate theory was used to predict dispersion curves for the two fundamental modes and to calculate the shapes of flexural waveforms produced by vertical step function loading. There was good agreement between theoretical and experimental results for aluminum. Composite materials required the use of a higher order plate theory (Reissner-Mindlin) to get good agreement with the measured velocities. Four composite plates with different laminate stacking sequences were studied. The dispersion curves were determined from phase spectra of the time dependent waveforms. Plate modes were shown to be useful for determining the direction of source motion. Aluminum plates were loaded by breaking a pencil lead against their surface. By machining slots at angles to the plane of a plate, the direction in which the force acted was varied. Changing the source motion direction produced regular variations in the waveforms. To demonstrate applicability beyond simple plates, waveforms produced by lead breaks on a thin walled composite tube were also shown to be interpretable as plate modes. The tube design was based on the type of struts proposed for Space Station Freedom's trussed structures.
Aluminum Manganese Molten Salt Plating
2006-06-01
Dry fixture thoroughly with the air gun. Be especially careful to dry water out of crevices. Note: water is a contaminant to the plating process...easily destroyed if blown with the air. Be especially careful to dry water out of crevices. Note: water is a contaminant to the plating process and...especially careful to dry water out of crevices. 13. Carefully remove part from fixture. If residual plating solution is present at attachments points
ANALYSIS OF GLOBAL DYNAMICS IN A PAIAMETIICALLY EXCITED THIN PLATE
Institute of Scientific and Technical Information of China (English)
张伟
2001-01-01
The global bifurcations and chaos of a simply supported rectangular thin plate with parametric excitation are analyzed. The formulas of the thin plate are derived by yon Karman type equation and Galerkin's approach. The method of multiple scales is used to obtain the averaged equations. Based on the averaged equations, the theory of the normal form is used to give the explicit expressions of the normal form associated with a double zero and a pair of pure imaginary eigenvalues by Maple program. On the basis of the normal form, a global bifurcation analysis of the parametrically excited recta ngular thin plate is given by the global perturbation method developed by Kovacic and Wiggins. The chaotic motion of thin plate is also found by numerical simulation.
Free vibration and transverse stresses of viscoelastic laminated plates
Institute of Scientific and Technical Information of China (English)
Ming-yong HU; An-wen WANG
2009-01-01
Based on Reddy's layerwise theory, the governing equations for dynamic response of viscoelastic laminated plate are derived by using the quadratic interpolation function for displacement in the direction of plate thickness. Vibration frequencies and loss factors are calculated for flee vibration of simply supported viscoelastic sandwich plate, showing good agreement with the results in the literature. Harmonious transverse stresses can be obtained. The results show that the transverse shear stresses are the main factor to the delamination of viscoelastic laminated plate in lower-frequency free vibra-tion, and the transverse normal stress is the main one in higher-frequency free vibration. Relationship between the modulus of viscoelastic materials and transverse stress is an-alyzed. Ratio between the transverse stress's maximum value and the in-plane stress's maximum-value is obtained. The results show that the proposed method, and the adopted equations and programs are reliable.
Flexural Behavior of Posttensioned Flat Plates Depending on Tendon Layout
Directory of Open Access Journals (Sweden)
Min Sook Kim
2016-01-01
Full Text Available This paper discusses the experimental results on the flexural behavior and deflections of posttensioned concrete flat plates depending on tendon layout. One reinforced concrete flat plate and two posttensioned concrete flat plates were manufactured and tested. One-way posttensioning layout and two-way posttensioning layout were considered in this paper. The load-deflection behavior and modes of crack are presented from the test results. Posttension systems effectively controlled crack and deflection. One-way and two-way posttensioning layouts both showed similar maximum load. However, serviceability improved with two-way posttensioning layout compared to one-way posttensioning layout. Also, the yield-line theory was applied to predict the ultimate load for the posttensioned flat plates. The comparison between the test results and estimation by yield-line analysis generally showed good agreement.
FRACTURE CALCULATION OF BENDING PLATES BY BOUNDARY COLLOCATION METHOD
Institute of Scientific and Technical Information of China (English)
王元汉; 伍佑伦; 余飞
2003-01-01
Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variables. The functions can satisfy a series of basic equations and governing conditions, such as the equilibrium equations in the domain, the boundary conditions on the crack surfaces and stress singularity at the crack tips. Thus, it ts only necessary to consider the boundary conditions on the external boundaries of the plate, which can be approximately satisfied by the collocation method and least square technique. Different boundary conditions and loading cases of the cracked plates are analyzed and calculated. Compared to other methods, the numerical examples show that the present method has many advantages such as good accuracy and less computer time This is an effective semi-analytical and semi-numerical method.
Dynamic Behaviors of Axially Moving Viscoelastic Plate with Varying Thicknessn
Institute of Scientific and Technical Information of China (English)
ZHOU Yinfeng; WANG Zhongmin
2009-01-01
Structural components of varying thickness draw increasing attention these days due to economy and light-weight considerations. In view of the absence of research in vibration analysis of viscoelastic plate with varying thickness, this study devotes to investigate the dynamic behaviors of axially moving viscoelastic plate with varying thickness. Based on the thin plate theory and the two-dimensional viscoelastic differential constitutive relation, the differential equation of motion of the axially moving viscoelastic rectangular plate is derived, the plate constituted by Kelvin-Voigt model has linearly varying thickness in the y-direction. The dimensionless complex frequencies of axially moving viscoelastic plate with four edges simply supported are calculated by the differential quadrature method, curves of real parts and imaginary parts of the first three-order dimensionless complex frequencies versus dimensionless moving speed are obtained, the effects of the aspect ratio, thickness ratio, the dimensionless moving speed and delay time on the dynamic behaviors of the axially moving viscoelastic rectangular plate with varying thickness are analyzed. When other parameters keep constant, with the decrease of thickness ratio, the real parts of the first three-order natural frequencies decrease, and the critical divergence speeds of various modes decrease too, moreover, whether the delay time is large or small, the frequencies are all complex numbers.
Graves, J. R.
1974-01-01
Peen plating of aluminum, copper, and nickel powders was investigated. Only aluminum was plated successfully within the range of peen plating conditions studied. Optimum plating conditions for aluminum were found to be: (1) bead/powder mixture containing 25 to 35% powder by weight, (2) peening intensity of 0.007A as measured by Almen strip, and (3) glass impact bead diameter of at least 297 microns (0.0117 inches) for depositing-100 mesh aluminum powder. No extensive cleaning or substrate preparation is required beyond removing loose dirt or heavy oil.
Silver, Paul G; Behn, Mark D
2008-01-04
Although it is commonly assumed that subduction has operated continuously on Earth without interruption, subduction zones are routinely terminated by ocean closure and supercontinent assembly. Under certain circumstances, this could lead to a dramatic loss of subduction, globally. Closure of a Pacific-type basin, for example, would eliminate most subduction, unless this loss were compensated for by comparable subduction initiation elsewhere. Given the evidence for Pacific-type closure in Earth's past, the absence of a direct mechanism for termination/initiation compensation, and recent data supporting a minimum in subduction flux in the Mesoproterozoic, we hypothesize that dramatic reductions or temporary cessations of subduction have occurred in Earth's history. Such deviations in the continuity of plate tectonics have important consequences for Earth's thermal and continental evolution.
2000-01-01
From 3 April 2000, all questions relating to visa requests for Switzerland, France, or Russia for a member of the personnel must be addressed to Ms. Agnita Querrou (telephone 72838, office 5-2-019, e-mail Agnita.Querrou@cern.ch).The Users' Office continues to deal with requests for letters of invitation and questions concerning visas for users in EP Division.Questions relating to removals, requests for green plates, to privileges of members of the personnel and to the importation of vehicles are still dealt with by Ms Zuzana Miller (telephone 79257, office 33-1-017, e-mail Zuzana.Muller@cern.ch) and Ms Joëlle Belleman (telephone 73962, office 33-1-019, e-mail Joelle.Belleman@cern.ch).
Plate osteosynthesis of simple forearm fractures : LCP versus DC plates
Stevens, Charles Tjerk; Ten Duis, Henk Jan
2008-01-01
The aim of this study was to compare the time to radiological bony union of simple A-type fractures of the forearm, treated with either a locking compression plate (LCP) or a dynamic compression plate (DCP). For each fracture, the relation between the use of compression and radiological healing time
Plate osteosynthesis of simple forearm fractures : LCP versus DC plates
Stevens, Charles Tjerk; Ten Duis, Henk Jan
The aim of this study was to compare the time to radiological bony union of simple A-type fractures of the forearm, treated with either a locking compression plate (LCP) or a dynamic compression plate (DCP). For each fracture, the relation between the use of compression and radiological healing time
Buckling Analysis of Functionally Graded Plates with Simply Supported Edges
Directory of Open Access Journals (Sweden)
Megueni ABDELKADER
2009-12-01
Full Text Available Thermal buckling analyses of S-FGM are investigated by using first order shear deformation theory. Material properties are varied continuously in the thickness direction according to a sigmoid distribution. The thermal buckling behaviours under uniform, linear and sinusoidal temperature rise across the thickness are analyzed. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the classic plate theory (CPT.
Scattering by a perfect electromagnetic conductor (PEMC) plate embedded in lossy medium
Ahmed, Saeed; Khalid Khan, Muhammad; Rehman, Atta Ur
2016-07-01
In this article, we develop an analytic theory for a perfect electromagnetic conductor (PEMC) plate embedded in lossy medium. The duality transformation introduced by Lindell and Sihvola is applied to study the electromagnetic wave scattering by a PEMC plate. Perfect electric conductor and perfect magnetic conductor are the limiting cases of PEMC media. Here, we study monoscattering by PEMC plate embedded in four different soil models. Numerical results are discussed and compared with the available literature.
Thin circular plate uniformaly loaded over a concentric elliptic path and supported on columns
Directory of Open Access Journals (Sweden)
W. A. Bassali
1986-01-01
Full Text Available Within the limitations of the classical thin plate theory expressions are obtained for the small deflections of a thin isotropic circular plate uniformly loaded over a concentric ellipse and supported by four columns at the vertices of a rectangle whose sides are parallel to the axes of the ellipse. Formulae are given for the moments and shears at the centre of the plate and on the edge. Limiting cases are investigated.
Plate tectonics, damage and inheritance.
Bercovici, David; Ricard, Yanick
2014-04-24
The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.
Directory of Open Access Journals (Sweden)
Michael A. Corner
2013-05-01
Full Text Available In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this “slow-wave” activity pattern becomes sporadically suppressed in favor of sensory oriented “waking” behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as “sleep” at several species-specific points in the diurnal/nocturnal cycle. Although this “default” behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent “paradoxical” activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced “aroused” firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.
Corner, Michael A
2013-05-22
In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this "slow-wave" activity pattern becomes sporadically suppressed in favor of sensory oriented "waking" behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as "sleep" at several species-specific points in the diurnal/nocturnal cycle. Although this "default" behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent "paradoxical" activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced "aroused" firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.
Plate Tectonics: A Framework for Understanding Our Living Planet.
Achache, Jose
1987-01-01
Discusses some of the events leading to the development of the theory of plate tectonics. Describes how seismic, volcanic, and tectonic features observed at the surface of the planet are now seen as a consequence of intense internal activity, and makes suggestions about their further investigation. (TW)
Enhanced radiative heat transfer between nanostructured gold plates
Guérout, R; Rosa, F S S; Hugonin, J -P; Dalvit, D A R; Greffet, J -J; Lambrecht, A; Reynaud, S
2012-01-01
We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.
Casimir Effect for Dielectric Plates
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
We generalize Kupisewska method to the three-dimensional system and another derivation of the Casimir effect between two dielectric plates is presented based on the explicit quantization of the electromagnetic field in the presence of dielectrics, where the physical meaning of "evanescent mode" is discussed. The Lifshitz's formula is rederived perfect metallic plates will the evanescent modes become unimportant.
Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.
2015-09-22
A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.
Gold plating on spectacle frames.
Kenny, I; Mitchell, J W; Walsh, G
1997-05-01
An investigation was carried out into the thickness and standard of application of the plating and lacquer coatings applied to three metal spectacle frames. All conform to BS 6625 (1991) for plating thickness, but there was considerable variation in regularity and porosity.
Plate shell structures of glass
DEFF Research Database (Denmark)
Bagger, Anne
. This modelling technique is used to model a plate shell structure with a span of 11.5 meters in the FE software \\textsc{Abaqus}. The structure is analyzed with six different connection details with varying stiffness characteristics, to investigate the influence of these characteristics on the structural effects...... University, a script has been developed for an automated generation of a given plate shell geometry and a corresponding finite element (FE) model. A suitable FE modelling technique is proposed, suggesting a relatively simple method of modelling the connection detail's stiffness characteristics....... Based on these investigations, and FE analysis of other plate shell models, the structural behaviour is described. Possible methods of estimating the stresses in a given plate shell structure are proposed. The non-linear behaviour of a plate shell structure is investigated for varying parameters...
The moving plate capacitor paradox
Davis, B. R.; Abbott, D.; Parrondo, J. M. R.
2000-03-01
For the first time we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. A demon restores the plates of the capacitor to their original position, only when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the question is how? We explore the concept of a moving plate capacitor, driven by noise, a step further by examining the case where the restoring force on the capacitor plates is provided by a simple spring, rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.
SAMI Automated Plug Plate Configuration
Lorente, Nuria P F; Goodwin, Michael
2012-01-01
The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13 x 61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.
Thin plate neotectonic models of the Australian plate
Burbidge, D. R.
2004-10-01
Thin plate finite element models of the neotectonic deformation of the Australian plate have been calculated in order to estimate the stress and strain rate within the plate, specifically concentrating on the Australian continent. The model includes plate-bounding faults, an anelastic brittle-ductile layered rheology and the option of laterally varying elevation and heat flow. The results of the models are compared to (1) the velocity of geodetic benchmarks on the Australian plate, (2) the spreading rate of the mid-oceanic ridges along the Australian plate's margins, (3) the direction of the maximum horizontal principal stress, (4) the stress regime within the plate, and (5) the crustal thickness estimated from the depth to the base of Mohorovicic discontinuity's transition zone. A variety of models are tested with a wide range of input parameters. The model with the smallest misfit with observations predicts that the strain rate for most of the Australian continent is approximately 10-17 s-1. This model has a slightly lower strain rate in the central Australia and is higher off the northern coast of Australia than for the rest of the continent. Strain rates of this magnitude would be difficult to observe from geodetic or geologic data for most parts of Australia but would be enough to generate much of the seismicity that has been observed over the last century.
Underwater electrical discharge in plate to plate configuration
Stelmashuk, Vitaliy
2016-09-01
Two main configurations of high voltage electrodes submersed in water have been used for an electrical discharge generation: pin to pin and pin to plate. An electrical breakdown between plate electrodes is generally difficult to reproduce, because there is a uniform and weak electric field. One major advantage of using plate electrodes is their greater ``wear hardness'' to high-energy discharges. The plate electrodes can withstand extremely high energy deposition at which the pin electrode is quickly destroyed. The electrical discharge between plate electrodes can be initiated by creating an inhomogeneity in the electrical field. Two methods of discharge initiation between plate electrodes are proposed for this aim: 1) focusing of a shock wave in the interelectrode region; 2) a bubble injection into the electrode gap. The shock wave creates favourable conditions for the electrical breakdown between the two plate electrodes: it causes that numerous microbubbles of dissolved air start to grow and serve as locations for streamer initiation. In the second method the gas bubble is injected from the one of the electrodes, which has a gas inlet hole on the lateral face for this purpose. A ``volcano'' like morphology of positive streamers are observed in the experiments with weak electric field. The authors are grateful to MEYS grant INGO LG 15013.
Highly curved microchannel plates
Siegmund, O. H. W.; Cully, S.; Warren, J.; Gaines, G. A.; Priedhorsky, W.; Bloch, J.
1990-01-01
Several spherically curved microchannel plate (MCP) stack configurations were studied as part of an ongoing astrophysical detector development program, and as part of the development of the ALEXIS satellite payload. MCP pairs with surface radii of curvature as small as 7 cm, and diameters up to 46 mm have been evaluated. The experiments show that the gain (greater than 1.5 x 10 exp 7) and background characteristics (about 0.5 events/sq cm per sec) of highly curved MCP stacks are in general equivalent to the performance achieved with flat MCP stacks of similar configuration. However, gain variations across the curved MCP's due to variations in the channel length to diameter ratio are observed. The overall pulse height distribution of a highly curved surface MCP stack (greater than 50 percent FWHM) is thus broader than its flat counterpart (less than 30 percent). Preconditioning of curved MCP stacks gives comparable results to flat MCP stacks, but it also decreases the overall gain variations. Flat fields of curved MCP stacks have the same general characteristics as flat MCP stacks.
Indonesian Landforms and Plate Tectonics
Directory of Open Access Journals (Sweden)
Herman Th. Verstappen
2014-06-01
Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting
Indonesian Landforms and Plate Tectonics
Directory of Open Access Journals (Sweden)
Herman Th. Verstappen
2014-06-01
Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting
Stochastic analysis of laminated composite plate considering stochastic homogenization problem
Institute of Scientific and Technical Information of China (English)
S. SAKATA; K. OKUDA; K. IKEDA
2015-01-01
This paper discusses a multiscale stochastic analysis of a laminated composite plate consisting of unidirectional fiber reinforced composite laminae. In particular, influence of a microscopic random variation of the elastic properties of component materials on mechanical properties of the laminated plate is investigated. Laminated composites are widely used in civil engineering, and therefore multiscale stochastic analysis of laminated composites should be performed for reliability evaluation of a composite civil structure. This study deals with the stochastic response of a laminated composite plate against the microscopic random variation in addition to a random variation of fiber orientation in each lamina, and stochastic properties of the mechanical responses of the laminated plate is investigated. Halpin-Tsai formula and the homogenization theory-based finite element analysis are employed for estimation of effective elastic properties of lamina, and the classical laminate theory is employed for analysis of a laminated plate. The Monte-Carlo simulation and the first-order second moment method with sensitivity analysis are employed for the stochastic analysis. From the numerical results, importance of the multiscale stochastic analysis for reliability evaluation of a laminated composite structure and applicability of the sensitivity-based approach are discussed.
Institute of Scientific and Technical Information of China (English)
Erasmo CARRERA; Gaetano GIUNTA
2008-01-01
The failure analysis of simply supported, isotropic, square plates is addressed. Attention focuses on minimum failure load amplitudes and failure locations, von Mises' equivalent stress along the plate thickness is also addressed. Several distributed and localized loading conditions are considered. Loads act on the top of the plate. Bi-sinusoidal and uniform loads are taken into account for distributed loadings, while stepwise constant centric and off-centric loadings are addressed in the case of localized loadings. Analysis is performed considering plates whose length-to-thickness ratio a/h can be as high as 100 (thin plates) and as low as 2 (very thick plates). Results are obtained via several 2D plate models. Classical theories (CTs) and higher order models are applied. Those theories are based on polynomial approximation of the displacement field. Among the higher order theories (HOTs), HOTsd models account for the transverse shear deformations, while HOTs models account for both transverse shear and transverse normal deformations. LHOTs represent a local application of the higher order theories. A layerwise approach is thus assumed: by means of mathematical interfaces, the plate is considered to be made of several fictitious layers. The exact 3D solution is presented in order to determine the accuracy of the results obtained via the 2D models. In this way a hierarchy among the 2D theories is established. CTs provide highly accurate results for a/h greater than 10 in the case of distributed loadings and greater than 20 for localized Ioadings. Results obtained via HOTs are highly accurate in the case of very thick plates for bi-sinusoidal and centric loadings. In the case of uniform and off-centric loadings a high gradient is present in the neighborhood of the plate top. In those cases, LHOTs yield results that match the exact solution.
Pan, Ernian; Waksmanski, Natalie
2016-09-01
In this paper, we present an exact closed-form solution for the three-dimensional deformation of a layered magnetoelectroelastic simply-supported plate with the nonlocal effect. The solution is achieved by making use of the pseudo-Stroh formalism and propagator matrix method. Our solution shows, for the first time, that for a homogeneous plate with traction boundary condition applied on its top or bottom surface, the induced stresses are independent of the nonlocal length whilst the displacements increase with increasing nonlocal length. Under displacement boundary condition over a homogeneous or layered plate, all the induced displacements and stresses are functions of the nonlocal length. Our solution further shows that regardless of the Kirchoff or Mindlin plate model, the error of the transverse displacements between the thin plate theory and the three-dimensional solution increases with increasing nonlocal length revealing an important feature for careful application of the thin plate theories towards the problem with nonlocal effect. Various other numerical examples are presented for the extended displacements and stresses in homogeneous elastic plate, piezoelectric plate, magnetostrictive plate, and in sandwich plates made of piezoelectric and magnetostrictive materials. These results should be very useful as benchmarks for future development of approximation plate theories and numerical modeling and simulation with nonlocal effect.
Institute of Scientific and Technical Information of China (English)
XU YePeng; ZHOU Ding
2009-01-01
This paper studies the bending of simple-supported rectangular plate on point supports, line supports and elastic foundation. On the basis of three-dimensional elasticity theory, the exact expressions of the displacement functions, which satisfy the governing differential equations and the simply supported boundary conditions at four edges of the plate, are analytically derived. The reaction forces of the in-termediate supports are regarded as the unknown external forces acting on the lower surface of the plate. The unknown coefficients are then determined by the boundary conditions on the upper and lower surfaces of the plate. Comparing the numerical results obtained from the proposed method to those obtained from Kirchhoff plate theory, Mindlin plate theory and those obtained from the commer-cial finite element software ANSYS, the high accuracy of the present method has been demonstrated.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
This paper studies the bending of simple-supported rectangular plate on point supports, line supports and elastic foundation. On the basis of three-dimensional elasticity theory, the exact expressions of the displacement functions, which satisfy the governing differential equations and the simply supported boundary conditions at four edges of the plate, are analytically derived. The reaction forces of the in- termediate supports are regarded as the unknown external forces acting on the lower surface of the plate. The unknown coefficients are then determined by the boundary conditions on the upper and lower surfaces of the plate. Comparing the numerical results obtained from the proposed method to those obtained from Kirchhoff plate theory, Mindlin plate theory and those obtained from the commer- cial finite element software ANSYS, the high accuracy of the present method has been demonstrated.
Vibration Analysis of Plates by MLS-Element Method
Zhou, L.; Xiang, Y.
2010-05-01
This paper presents a novel numerical method, the moving least square element (MLS-element) method for the free vibration analysis of plates based on the Mindlin shear deformable plate theory. In the MLS-element method, a plate can be first divided into multiple elements which are connected through selected nodal points on the interfaces of the elements. An element can be of any shape and the size of the element varies dependent on the problem at hand. The shape functions of the element for the transverse displacement and the rotations are derived based on the MLS interpolation technique. The convergence and accuracy of the method can be controlled by either increasing the number of elements or by increasing the number of MLS interpolation points within elements. Two selected examples for vibration of a simply supported square Mindlin plate and a clamped L-shaped Mindlin plate are studied to illustrate the versatility and accuracy of the proposed method. It shows that the proposed method is highly accurate and flexible for the vibration analysis of plate problems. The method can be further developed to bridge the existing meshless method and the powerful finite element method in dealing with various engineering computational problems, such as large deformation and crack propagation in solid mechanics.
Thermal buckling analysis of truss-core sandwich plates
Institute of Scientific and Technical Information of China (English)
陈继伟; 刘咏泉; 刘伟; 苏先樾
2013-01-01
Truss-core sandwich plates have received much attention in virtue of the high values of strength-to-weight and stiffness-to-weight as well as the great ability of impulse-resistance recently. It is necessary to study the stability of sandwich panels under the influence of the thermal load. However, the sandwich plates are such complex three-dimensional (3D) systems that direct analytical solutions do not exist, and the finite element method (FEM) cannot represent the relationship between structural parameters and mechanical properties well. In this paper, an equivalent homogeneous continuous plate is idealized by obtaining the effective bending and transverse shear stiffness based on the characteristics of periodically distributed unit cells. The first order shear deformation theory for plates is used to derive the stability equation. The buckling temperature of a simply supported sandwich plate is given and verified by the FEM. The effect of related parameters on mechanical properties is investigated. The geometric parameters of the unit cell are optimized to attain the maximum buckling temperature. It is shown that the optimized sandwich plate can improve the resistance to thermal buckling significantly.
The concept of locking plates.
Cronier, P; Pietu, G; Dujardin, C; Bigorre, N; Ducellier, F; Gerard, R
2010-05-01
After a short historical review of locking bone plates since their inception more than a century ago to the success of the concept less than 15 years ago with today's plates, the authors present the main locking mechanisms in use. In the two broad categories - plates with fixed angulation and those with variable angulation - the screw head is locked in the plate with a locknut by screwing in a threaded chamber on the plate or by screwing through an adapted ring. The authors then provide a concrete explanation, based on simple mechanical models, of the fundamental differences between conventional bone plates and locking plates and why a locking screw system presents greater resistance at disassembly, detailing the role played by the position and number of screws. The advantages of epiphyseal fixation are then discussed, including in cases of mediocre-quality bone. For teaching purposes, the authors also present assembly with an apple fixed with five locking screws withstanding a 47-kg axial load with no resulting disassembly. The principles of plate placement are detailed for both the epiphysis and diaphysis, including the number and position of screws and respect of the soft tissues, with the greatest success assured by the minimally invasive and even percutaneous techniques. The authors then present the advantages of locking plates in fixation of periprosthetic fractures where conventional osteosynthesis often encounters limited success. Based on simplified theoretical cases, the economic impact in France of this type of implant is discussed, showing that on average it accounts for less than 10% of the overall cost of this pathology to society. Finally, the possible problems of material ablation are discussed as well as the means to remediate these problems.
2015-04-08
color filtering and spectral imaging ,” Nat. Comm. 1, 59 (2010). 3. H.-F. Shi and L. J. Guo, “Design of Plasmonic Near Field Plate at Opitical...AFRL-OSR-VA-TR-2015-0085 OPTICAL NEAR-FILED PLATES Roberto Merlin UNIVERSITY OF MICHIGAN Final Report 04/08/2015 DISTRIBUTION A: Distribution...03-2015 Final 09/01/2009-12/31/2014 Optical Near-Field Plates FA9550-09-1-0636 erlin, Roberto, D. The University of Michigan Ann Arbor, MI 48109
Plate shell structures of glass
DEFF Research Database (Denmark)
Bagger, Anne
to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....
Koc, E.
1994-04-01
Lubrication and sealing mechanisms of fixed clearance end plates in high-pressure pumps have been analysed theoretically and experimentally. Bearing misalignment was found to be the main lubrication mechanism, and it was effective in determining the gear position between two end plates. The minimum film thickness between the gear end and end plate has been found to depend on the magnitude of the relative tilt of the surfaces and the position of the maximum clearance. The theory developed can predict the film thickness between the end plate and gear end face, and this corresponds very closely to the clearances measured experimentally under a variety of operating conditions.
Stability of a cantilevered skew inhomogeneous plate in supersonic gas flow
Isaulova, T. N.; Lavit, I. M.
2011-07-01
This paper considers the vibrations of a skew inhomogeneous plate in gas flow. The plate is clamped in a certain section of one of its sides. Interaction of the flow with the plate is described using piston theory. The problem solution is based on the Hamilton's variational principle and finite element method. The calculation results are compared with known data of theoretical studies and experiments. For the inhomogeneous plate, similarity parameters were established for the problem, which, in practically important cases, appears to be self-similar for one of the similarity parameters. This allows one to reduce the solution of this problem to the solution of an algebraic eigenvalue problem.
Zhu, F. H.; Fu, Y. M.
2008-12-01
By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the general six-degrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite difference method, and the results are validated by comparison with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.
Effects of low-spatial-frequency response of phase plates on TEM imaging
Edgcombe, C. J.
2015-10-01
Images of simple objects produced by a perfect lens and a phase plate have been calculated by use of Abbe theory for Foucault, Hilbert and Zernike phase plates. The results show that with a Zernike plate, white outlines and ringing like those observed previously can be caused by the beam hole, which limits the low-spatial-frequency response of the system even when the lens behaves perfectly. When the change of phase added by the phase plate is distributed over a range of radius rather than a simple step, the unwanted effects are substantially reduced.
Dynamic Stability of Viscoelastic Plates with Finite Deformation and Shear Effects
Institute of Scientific and Technical Information of China (English)
李晶晶; 程昌钧; 等
2002-01-01
Based on Reddy's theory of plates with higher-order shear deformations and the Boltzmann superposition principles,the governing equations were established for dynamic stability of viscoelastic plates with finite deformations taking account of shear effects,The Galerkin method was applied to simplify the set of equations.The numerical methods in nonlinear dynamics were used to solve the simplified system.It could e seen that there are plenty of dynamic properties for this kind of viscoelastic plates under transverse harmonic loads.The influences of the transverse shear deformations and material parameter on the dynamic behavior of nonlinear viscoelatic plates were investigated.
Forced Response of Polar Orthotropic Tapered Circular Plates Resting on Elastic Foundation
Directory of Open Access Journals (Sweden)
A. H. Ansari
2016-01-01
Full Text Available Forced axisymmetric response of polar orthotropic circular plates of linearly varying thickness resting on Winkler type of elastic foundation has been studied on the basis of classical plate theory. An approximate solution of problem has been obtained by Rayleigh Ritz method, which employs functions based upon the static deflection of polar orthotropic circular plates. The effect of transverse loadings has been studied for orthotropic circular plate resting on elastic foundation. The transverse deflections and bending moments are presented for various values of taper parameter, rigidity ratio, foundation parameter, and flexibility parameter under different types of loadings. A comparison of results with those available in literature shows an excellent agreement.
Diffusion of uncharged solutes through human nail plate.
Baswan, Sudhir M; Li, S Kevin; Kasting, Gerald B
2016-01-01
Passive diffusion data for uncharged solutes in hydrated human nail plate are collected and compared to the predictions of two theories for diffusion of uncharged solutes in dense keratin matrices. Quantitative agreement between the experimental data and the theories examined is poor. Concerns with both the experiments and the theories are identified and discussed. It is evident from the analysis that magnitude of the experimental nail permeability data may be questioned, as may the extrapolation procedures used to estimate the properties of dense fiber arrays from more dilute systems. Despite these caveats, it can be inferred that the microstructure of the nail plate is more complex than that assumed in the described models. The influence of residual lipids is implicated. More rigorous experiments and theoretical analysis of mass transport in the nail plate system are warranted. Successful completion of these tasks could lead not only to better predictions of transungual drug delivery, but also to better models of skin permeability, if hydrated nail plate can indeed serve as a model for the corneocyte phase of (partially hydrated) stratum corneum.
Hierarchical self-organization of tectonic plates
2010-01-01
The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly chan...
RCS Analysis of Plate Geometries, parts 1 and 2
Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.
1993-01-01
High-frequency techniques for Radar Cross Section (RCS) prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors are addressed. In part 1, a Uniform Theory of Diffraction (UTD) model for the principal-plane radar cross section (RCS) of a perfectly conducting, rectangular plate coated on one side with an electrically thin, lossy dielectric is presented. In part 2, the scattering in the interior regions of both square and triangular trihedral corner reflectors are examined.
SPLITTING MODULUS FINITE ELEMENT METHOD FOR ORTHOGONAL ANISOTROPIC PLATE BENGING
Institute of Scientific and Technical Information of China (English)
党发宁; 荣廷玉; 孙训方
2001-01-01
Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors,so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some illconditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.
Sudden stretching of a four layered composite plate
Sih, G. C.; Chen, E. P.
1980-01-01
An approximate theory of laminated plates is developed by assuming that the extensioral and thickness mode of vibration are coupled. The mixed boundary value crack problem of a four layered composite plate is solved. Dynamic stress intensity factors for a crack subjected to suddenly applied stress are found to vary as a function of time and depend on the material properties of the laminate. Stress intensification in the region near the crack front can be reduced by having the shear modulus of the inner layers to be larger than that of the outer layers.
Buckling and Multiple Equilibrium States of Viscoelastic Rectangular Plates
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
On the basis of Karman's theory of thin plates with large deflection, the Boltzmann law on linear viscoelastic materials and the mathematical model of dynamic analysis on viscoelastic thin plates, a set of nonlinear integro-partial-differential equations is first presented by means of a structural function introduced in this paper. Then,by using the Galerkin technique in spatial field and a backward difference scheme in temporal field, the set of nonlinear integro-partial-differential equations reduces to a system of nonlinear algebraic equations. After solving the algebraic equations, the buckling behavior and multiple equilibrium states can be obtained.
A mixed finite element for the analysis of laminated plates
Putcha, N. S.; Reddy, J. N.
1983-01-01
A new mixed shear-flexible finite element based on the Hellinger-Reissner's variational principle is developed. The element is constructed using a mixed formulation of the shear deformation theory of laminated composite plates, and consists of three displacements, two shear rotations, and three moments as the independent degrees of freedom. The numerical convergence and accuracy characteristics of the element are investigated for bending of laminated anisotropic composite plates. The element is relatively simple to construct and has better accuracy and convergence features when compared to other conventional finite elements.
On the breakup of tectonic plates by polar wandering
Liu, H.-S.
1974-01-01
The equations for the stresses in a homogeneous shell of uniform thickness caused by a shift of the axis of rotation are derived. The magnitude of these stresses reaches a maximum value of the order of 10 to the 9th power dyn/sq cm, which is sufficient for explaining a tectonic breakup. In order to deduce the fracture pattern according to which the breakup of tectonic plates can be expected the theory of plastic deformation of shells is applied. The analysis of this pattern gives an explanation of the existing boundary systems of the major tectonic plates as described by Morgan (1968), LePichon (1968) and Isacks et al. (1968).
Energy Technology Data Exchange (ETDEWEB)
Chen, Jia Nen; Liu, Jun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin (China); Zhang, Wei; Yao, Ming Hui [College of Mechanical Engineering, Beijing University of Technology, Beijing (China); Sun, Min [School of Science, Tianjin Chengjian University, Tianjin (China)
2016-09-15
Nonlinear vibrations of carbon fiber reinforced composite sandwich plate with pyramidal truss core are investigated. The governing equation of motion for the sandwich plate is derived by using a Zig-Zag theory under consideration of geometrically nonlinear. The natural frequencies of sandwich plates with different dimensions are calculated and compared with those obtained from the classic laminated plate theory and Reddy's third-order shear deformation plate theory. The frequency responses and waveforms of the sandwich plate when 1:3 internal resonance occurs are obtained, and the characteristics of the internal resonance are discussed. The influences of layer number of face sheet, strut radius, core height and inclination angle on the nonlinear responses of the sandwich plate are analyzed. The results demonstrate that the strut radius and inclination angle mainly affect the resonance frequency band of the sandwich plate, and the layer number and core height not only influence the resonance frequency band but also significantly affect the response amplitude.
The multigap resistive plate chamber
Energy Technology Data Exchange (ETDEWEB)
Zeballos, E. Cerron [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Crotty, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Hatzifotiadou, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Valverde, J. Lamas [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Univ. Louis Pasteur, Strasbourg (France); Neupane, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Williams, M. C. S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Zichichi, A. [Univ. of Bologna, Bologna (Italy)
2015-02-03
The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.
An efficient rectangular plate element
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A new 12-parameter rectangular plate element is presented by useof the double set parameter method. The error in the energy norm is of order O(h2), one order higher than the commonly used Adini nonconforming element.
Tectonics: Changing of the plates
Brandon, Alan
2016-10-01
The composition of Earth's crust depends on the style of plate tectonics and of the melting regimes in the mantle. Analyses of the oldest identified rocks suggest that these styles and the resulting crust have changed over Earth's history.
Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners
DEFF Research Database (Denmark)
Ellegaard, Peter
2006-01-01
The focus of this paper is to describe the idea and the theory behind a finite-element model developed for analysis of timber trusses with punched metal plate fasteners (nail plates). The finite-element model includes the semirigid and nonlinear behavior of the joints (nonlinear nail and plate...... elements) and contact between timber beams, if any (bilinear contact elements). The timber beams have linear-elastic properties. The section forces needed for design of the joints are given directly by the finite-element model, since special elements are used to model the nail groups and the nail plate...... area over the joint lines. The finite-element model is based on the Foschi model, but with further improvements. After the theory of the model is described, results from experimental tests with two types of nail plate joints are compared with predictions given by the model. The model estimates...
Two dimensional dynamic analysis of sandwich plates with gradient foam cores
Energy Technology Data Exchange (ETDEWEB)
Mu, Lin; Xiao, Deng Bao; Zhao, Guiping [State Key Laboratory for Mechanical structure Strength and Vibration, School of AerospaceXi' an Jiaotong University, Xi' an (China); Cho, Chong Du [Dept. of Mechanical Engineering, Inha University, Inchon (Korea, Republic of)
2016-09-15
Present investigation is concerned about dynamic response of composite sandwich plates with the functionally gradient foam cores under time-dependent impulse. The analysis is based on a model of the gradient sandwich plate, in which the face sheets and the core adopt the Kirchhoff theory and a [2, 1]-order theory, respectively. The material properties of the gradient foam core vary continuously along the thickness direction. The gradient plate model is validated with the finite element code ABAQUS®. And the results show that the proposed model can predict well the free vibration of composite sandwich plates with gradient foam cores. The influences of gradient foam cores on the natural frequency, deflection and energy absorbing of the sandwich plates are also investigated.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping,and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.
Why is understanding when Plate Tectonics began important for understanding Earth?
Korenaga, J.
2015-12-01
Almost all kinds of geological activities on Earth depend critically on the operation of plate tectonics, but did plate tectonics initiate right after the solidification of a putative magma ocean, or did it start much later, e.g., sometime during the Archean? This problem of the initiation of plate tectonics in the Earth history presents us a unique combination of observational and theoretical challenges. Finding geological evidence for the onset of plate tectonics is difficult because plate tectonics is a dynamic process that continuously destroys a remnant of the past. We therefore need to rely on more secondary traces, the interpretation of which often involves theoretical considerations. At the same time, it is still hard to predict, on a firm theoretical ground, when plate tectonics should have prevailed, because there is no consensus on why plate tectonics currently takes place on Earth. Knowing when plate tectonics began is one thing, and understanding why it did so is another. The initiation of plate tectonics is one of the last frontiers in earth science, which encourages a concerted effort from both geologists and geophysicists to identify key geological evidence and distinguish between competing theories of early Earth evolution. Such an endeavor is essential to arrive at a self-contained theory for the evolution of terrestrial planets.
Horizontal versus vertical plate motions
Directory of Open Access Journals (Sweden)
M. Cuffaro
2006-07-01
Full Text Available We review both present and past motions at major plate boundaries, which have the horizontal component in average 10 to 100 times faster (10–100 mm/yr than the vertical component (0.01–1 mm/yr in all geodynamic settings. The steady faster horizontal velocity of the lithosphere with respect to the upward or downward velocities at plate boundaries supports dominating tangential forces acting on plates. This suggests a passive role of plate boundaries with respect to far field forces determining the velocity of plates. The forces acting on the lithosphere can be subdivided in coupled and uncoupled, as a function of the shear at the lithosphere base. Higher the asthenosphere viscosity, more significant should be the coupled forces, i.e., the mantle drag and the trench suction. Lower the asthenosphere viscosity, more the effects of uncoupled forces might result determinant, i.e., the ridge push, the slab pull and the tidal drag. Although a combination of all forces acting on the lithosphere is likely, the decoupling between lithosphere and mantle suggests that a torque acts on the lithosphere independently of the mantle drag. Slab pull and ridge push are candidates for generating this torque, but, unlike these boundary forces, the advantage of the tidal drag is to be a volume force, acting simultaneously on the whole plates, and being the decoupling at the lithosphere base controlled by lateral variations in viscosity of the low-velocity layer.
Horizontally oriented plates in clouds
Bréon, François-Marie
2011-01-01
Horizontally oriented plates in clouds generate a sharp specular reflectance signal in the glint direction, often referred to as "subsun". This signal (amplitude and width) may be used to analyze the relative area fraction of oriented plates in the cloud top layer and their characteristic tilt angle to the horizontal. We make use of spaceborne measurements from the POLDER instrument to provide a statistical analysis of these parameters. More than half of the clouds show a detectable maximum reflectance in the glint direction, although this maximum may be rather faint. The typical effective fraction (area weighted) of oriented plates in clouds lies between 10-3 and 10-2. For those oriented plates, the characteristic tilt angle is less than 1 degree in most cases. These low fractions imply that the impact of oriented plates on the cloud albedo is insignificant. The largest proportion of clouds with horizontally oriented plates is found in the range 500-700 hPa, in agreement with typical in situ observation of p...
How mantle slabs drive plate tectonics.
Conrad, Clinton P; Lithgow-Bertelloni, Carolina
2002-10-04
The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.
EXACT SOLUTION FOR TEMPERATURE-DEPENDENT BUCKLING ANALYSIS OF FG-CNT-REINFORCED MINDLIN PLATES
Directory of Open Access Journals (Sweden)
Seyed Mohammad Mousavi
2016-03-01
Full Text Available This research deals with the buckling analysis of nanocomposite polymeric temperature-dependent plates reinforced by single-walled carbon nanotubes (SWCNTs. For the carbon-nanotube reinforced composite (CNTRC plate, uniform distribution (UD and three types of functionally graded (FG distribution patterns of SWCNT reinforcements are assumed. The material properties of FG-CNTRC plate are graded in the thickness direction and estimated based on the rule of mixture. The CNTRC is located in a elastic medium which is simulated with temperature-dependent Pasternak medium. Based on orthotropic Mindlin plate theory, the governing equations are derived using Hamilton’s principle and solved by Navier method. The influences of the volume fractions of carbon nanotubes, elastic medium, temperature and distribution type of CNTs are considered on the buckling of the plate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the stiffness of plates.
Natural Frequencies of Rectangular Plate With- and Without-Rotary Inertia
Kalita, Kanak; Haldar, Salil
2016-07-01
A nine-node isoparametric plate element, in conjunction with first-order shear deformation theory, was used for free vibration analysis of rectangular plates. Both thick and thin plate problems were solved for various aspect ratios and boundary conditions. In this work, the primary focus is on the effect of rotary inertia on the natural frequencies of rectangular plates. It is found that rotary inertia significantly affects thick plates, while it can be ignored for thin plates. The numerical convergence is very rapid and based on a comparison with data from the literature; it is proposed that the present formulation can yield highly accurate results. Finally, some numerical solutions are provided here, which may serve as benchmarks for future research on similar problems.
Energy flow analysis of out-of-plane vibration in coplanar coupled finite Mindlin plates
Directory of Open Access Journals (Sweden)
Park Young-Ho
2015-01-01
Full Text Available In this paper, an Energy Flow Analysis (EFA for coplanar coupled Mindlin plates was performed to estimate their dynamic responses at high frequencies. Mindlin plate theory can consider the effects of shear distortion and rotatory inertia, which are very important at high frequencies. For EFA for coplanar coupled Mindlin plates, the wave transmission and reflection relationship for progressing out-of-plane waves (out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave in coplanar coupled Mindlin plates was newly derived. To verify the validity of the EFA results, numerical analyses were performed for various cases where coplanar coupled Mindlin plates are excited by a harmonic point force, and the energy flow solutions for coplanar coupled Mindlin plates were compared with the classical solutions in the various conditions.
Analysis of thin plates by the weak form quadrature element method
Institute of Scientific and Technical Information of China (English)
ZHONG HongZhi; YUE ZhiGuang
2012-01-01
The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates.The integrals involved in the variational description of a thin plate are evaluated by an efficient numerical scheme and the partial derivatives at the integration sampling points are then approximated using differential quadrature analogs.Neither the grid pattern nor the number of nodes is fixed,being adjustable according to convergence need.The C1 continuity conditions characterizing the thin plate theory are discussed and the robustness of the weak form quadrature element for thin plates against shape distortion is examined.Examples are presented and comparisons with analytical solutions and the results of the finite element method are made to demonstrate the convergence and computational efficiency of the weak form quadrature element method.It is shown that the present formulation is applicable to thin plates with varying thickness as well as uniform plates.
Institute of Scientific and Technical Information of China (English)
金叶青; 庞福振; 姚熊亮; 王献忠
2012-01-01
基于板梁组合理论,建立了正交加筋板声透射计算模型,并分析了正交加筋板的声振特性.将加强筋视为平板的动反力及动反力矩,引入到平板振动方程,得到了正交加筋板声振方程;利用空间谐波展开法及虚功原理,得到了正交加筋板透射损失和平均振动速度级表达式.在此基础上,首先研究了单向加筋板的隔声性能,理论结果与已有计算结果取得了很好的一致,验证了模型的有效性；并进一步研究了正交加筋的声振特性.研究表明,正交加筋板对垂直入射声波的隔声效果最好；增大加强筋惯性矩可提高其低频段透射损失;增大加强筋间距可提高正交加筋板的低频段振动响应,却降低了其低频透射损失,总体而言,增大加强筋间距可改善结构的整体隔声性能.%Based on the panel-beam combined theory, a panel-beam theoretical model is established for sound transmission through orthogonally stiffened panel and vibro-acoustic characteristics of the panel are analyzed. The vibro-acoustic equation of the structures was derived by firstly treating the stiffeners as reaction forces and moments on the panel and then inducing them into the vibration equation of the panel. The formulations of Transmission Loss (TL) and mean vibration velocity level for the structures were yielded according to the spatial harmonic expansion method and the virtual work principle. And then the developed model was applied to analyze sound insulation of the stiffened panel in one direction. The validity of the developed model was qualified by comparing those predictions with existing results. The model then employed to investigate the vi-bro-acoustic characteristics of the orthogonally stiffened panel. Results show that the orthogonally stiffened panel is more suitable for the insulation of sound waves with small incidence angle. An enlargement in the moment of inertia of stiffeners increases sound transmission loss in
Geometry of the Cocos Plate Under North American Plate
Perez-Campos, X.
2015-12-01
The Cocos plate subducts under the North American plate with a complex geometry, and previous seismicity studies revealed some of this complexity. However, details of the geometry and the depth that the plate penetrates werelargely unknown. Since 2004, temporary experiments and the expansion of the permanent network of the Servicio Sismológico Nacional (SSN, Mexican National Seismological Service) have improved resolution of the plate geometry and have helped to map its descent into the upper mantle. Going from northwest to southeast, the Cocos plate appears to be fragmenting into north and south segments. The north segment subducts with an angle of ~30º and the south with an angle of ~10-15º. The transition is smooth near the trench and progresses to a tear at depth; this coincides with the projection of the Orozco Fracture Zone to depth. Also, this transition marks the limit of the presence to the south of an ultra slow velocity layer (USL) on top of the slab.South of this transition, the Cocos plate subducts horizontally , underplating the North American plate for a distance of ~140 to ~300 km from the trench. Along this horizontal region, silent slow events (SSE) and tectonic tremor (TT) have been observed. At a distance of 300 km from the trench (beneath central Mexico), the plate dives into the mantle with an angle of 76º to a depth of 500 km. This geometry changes abruptly to the south, marking the eastern limit of the USL. This change seems to be also characterized by a tear on the slab. Finally to the south, the Cocos plate subducts with a constant angle of 26º. This presentation summarizes the work of many contributors including A. Arciniega-Ceballos, M. Brudzinski, E. Cabral-Cano, T. Chen, R. Clayton,F. Cordoba-Montiel,P. Davis,S. Dougherty,F. Green, M. Gurnis, D. V. Helmberger, A. Husker,A. Iglesias, Y. Kim, V. Manea, D. Melgar, M. Rodríguez-Domínguez,S. K. Singh, T.-R. A. Song, C. M. Valdés-González, D. Valencia-Cabrera
A Review on Heat Transfer Improvent of Plate Heat Exchanger
Directory of Open Access Journals (Sweden)
Abhishek Nandan
2015-03-01
Full Text Available Plate heat exchanger has found a wide range of application in various industries like food industries, chemical industries, power plants etc. It reduces the wastage of energy and improves the overall efficiency of the system. Hence, it must be designed to obtain the maximum heat transfer possible. This paper is presented in order to study the various theories and results given over the improvement of heat transfer performance in a plate heat exchanger. However, there is still a lack in data and generalized equations for the calculation of different parameters in the heat exchanger. It requires more attention to find out various possible correlations and generalized solutions for the performance improvement of plate heat exchanger.
Plate tectonics of the Mediterranean region.
McKenzie, D P
1970-04-18
The seismicity and fault plane solutions in the Mediterranean area show that two small rapidly moving plates exist in the Eastern Mediterranean, and such plates may be a common feature of contracting ocean basins. The results show that the concepts of plate tectonics apply to instantaneous motions across continental plate boundaries.
30 CFR 18.13 - Certification plate.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Certification plate. 18.13 Section 18.13... Certification plate. Each certified component shall be identified by a certification plate attached to the... characteristics of the component. The plate shall be of serviceable material, acceptable, to MSHA, and shall...
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device... plate with screws to prevent movement of the segments. (b) Classification. Class II. ...
30 CFR 18.11 - Approval plate.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approval plate. 18.11 Section 18.11 Mineral... plate. (a)(1) The notice of approval will be accompanied by a photograph of an approval plate, bearing... number shall be added to the original approval number on the approval plate. (Example: Original approval...
Institute of Scientific and Technical Information of China (English)
丁皓江; 徐荣桥; 国凤林
1999-01-01
Based on three-dimensional elastic equations for piezoelectric materials, the state equations for piezoelectric circular plate under axisymmetric deformation are derived. Applying Hankel transform to them and letting the free boundary terms resulting from Hankel transform be zero, a set of ordinary differential equations with constant coefficients and associated boundary conditions are obtained. Furthermore, two exact solutions corresponding to generalized rigid slipping and generalized elastic simple support are deduced. Then, the governing equations obtained reduce to equations for axisymmetric problem of transversely isotropic circular plate. Under the two types of boundary conditions of elastic simple support and rigid slipping, exact solutions are derived. Finally, numerical results are presented and applicability of the classical plate theory is discussed.
Trapping of surface gravity waves by a vertical flexible porous plate near a wall
Kaligatla, R. B.; Koley, S.; Sahoo, T.
2015-10-01
The present study deals with the trapping of oblique surface gravity waves by a vertical submerged flexible porous plate located near a rigid wall in water of finite as well as infinite depths. The physical problem is based on the assumption of small amplitude water wave theory and structural response. The flexible plate is assumed to be thin and is modeled based on the Euler-Bernoulli beam equation. Using the Green's function technique to the plate equation and associated boundary conditions, an integral equation is derived which relates the normal velocity on the plate to the difference in velocity potentials across the plate involving the porous-effect parameter and structural rigidity. Further, applying Green's second identity to the free-surface Green's function and the scattered velocity potentials on the two sides of the plate, a system of three more integral equations is derived involving the velocity potentials and their normal derivatives across the plate boundary along with the velocity potential on the rigid wall. The system of integral equations is converted into a set of algebraic equations using appropriate Gauss quadrature formula which in turn solved to obtain various quantities of physical interest. Utilizing Green's identity, explicit expressions for the reflection coefficients are derived in terms of the velocity potentials and their normal derivatives across the plate. Energy balance relations are derived and used to check the accuracy of the computational results. As special cases of the submerged plate, wave trapping by the bottom-standing as well as surface-piercing plates is analyzed. Effects of various wave and structural parameters in trapping of surface waves are studied from the computational results by analyzing the reflection coefficients, wave forces exerted on the plate and the rigid wall, flow velocity, plate deflections and surface elevations. It is observed that surface-piercing plate is more effective for trapping of water waves
Beyond plate tectonics - Looking at plate deformation with space geodesy
Jordan, Thomas H.; Minster, J. Bernard
1988-01-01
The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.
Plating on some difficult-to-plate metals and alloys
Energy Technology Data Exchange (ETDEWEB)
Dini, J.W.; Johnson, H.R.
1980-02-01
Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests.
Beyond plate tectonics - Looking at plate deformation with space geodesy
Jordan, Thomas H.; Minster, J. Bernard
1988-01-01
The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.
Plate tectonics and hotspots: the third dimension.
Anderson, D L; Tanimoto, T; Zhang, Y S
1992-06-19
High-resolution seismic tomographic models of the upper mantle provide powerful new constraints on theories of plate tectonics and hotspots. Midocean ridges have extremely low seismic velocities to a depth of 100 kilometers. These low velocities imply partial melting. At greater depths, low-velocity and high-velocity anomalies record, respectively, previous positions of migrating ridges and trenches. Extensional, rifting, and hotspot regions have deep (> 200 kilometers) low-velocity anomalies. The upper mantle is characterized by vast domains of high temperature rather than small regions surrounding hotspots; the asthenosphere is not homogeneous or isothermal. Extensive magmatism requires a combination of hot upper mantle and suitable lithospheric conditions. High-velocity regions of the upper 200 kilometers of the mantle correlate with Archean cratons.
Chladni's law for vibrating plates
Rossing, Thomas D.
1982-03-01
The normal vibrational modes of free circular plates can be classified according to the number of nodal diameters m and the number of nodal circles n. Chladni observed that the addition of one nodal circle raised the frequency f about the same amount as adding two nodal diameters, and Rayleigh pointed out that f is proportional to (m+2n)2 for large f. Waller, however, concluded that the number of nodal diameters necessary to raise the frequency as much as a nodal circle varies from two to five. We have examined data on the vibrations of flat and non-flat circular plates and fitted their vibration frequencies to the relationship f = c(m+bn)k. By proper choice of c it is possible to satisfy Chladni's law (b = 2, k = 2) over quite a wide range of frequency in flat plates. Non-flat plates such as cymbals and bells, require different choices of b and k. A brief history of Chladni patterns, and suggestions for observing and demonstrating the vibrational modes of plates are included (AIP).
Capacity of the circular plate condenser: analytical solutions for large gaps between the plates
Rao, T. V.
2005-11-01
A solution of Love's integral equation (Love E R 1949 Q. J. Mech. Appl. Math. 2 428), which forms the basis for the analysis of the electrostatic field due to two equal circular co-axial parallel conducting plates, is considered for the case when the ratio, τ, of distance of separation to radius of the plates is greater than 2. The kernel of the integral equation is expanded into an infinite series in odd powers of 1/τ and an approximate kernel accurate to {\\cal O}(\\tau^{-(2N+1)}) is deduced therefrom by terminating the series after an arbitrary but finite number of terms, N. The approximate kernel is rearranged into a degenerate form and the integral equation with this kernel is reduced to a system of N linear equations. An explicit analytical solution is obtained for N = 4 and the resulting analytical expression for the capacity of the circular plate condenser is shown to be accurate to {\\cal O}(\\tau^{-9}) . Analytical expressions of lower orders of accuracy with respect to 1/τ are deduced from the four-term (i.e., N = 4) solution and predictions (of capacity) from the expressions of different orders of accuracy (with respect to 1/τ) are compared with very accurate numerical solutions obtained by solving the linear system for large enough N. It is shown that the {\\cal O}(\\tau^{-9}) approximation predicts the capacity extremely well for any τ >= 2 and an {\\cal O}(\\tau^{-3}) approximation gives, for all practical purposes, results of adequate accuracy for τ >= 4. It is further shown that an approximate solution, applicable for the case of large distances of separation between the plates, due to Sneddon (Sneddon I N 1966 Mixed Boundary Value Problems in Potential Theory (Amsterdam: North-Holland) pp 230-46) is accurate to {\\cal O}(\\tau^{-6}) for τ >= 2.
Casimir energies of self-similar plate configurations
Shajesh, K. V.; Brevik, Iver; Cavero-Peláez, Inés; Parashar, Prachi
2016-09-01
We construct various self-similar configurations using parallel δ -function plates and show that it is possible to evaluate the Casimir interaction energy of these configurations using the idea of self-similarity alone. We restrict our analysis to interactions mediated by a scalar field, but the extension to the electromagnetic field is immediate. Our work unveils an easy and powerful method that can be easily employed to calculate the Casimir energies of a class of self-similar configurations. As a highlight, in an example, we determine the Casimir interaction energy of a stack of parallel plates constructed by positioning δ -function plates at the points constituting the Cantor set, a prototype of a fractal. This, to our knowledge, is the first time that the Casimir energy of a fractal configuration has been reported. Remarkably, the Casimir energy of some of the configurations we consider turn out to be positive, and a few even have zero Casimir energy. For the case of positive Casimir energy that is monotonically decreasing as the stacking parameter increases, the interpretation is that the pressure of vacuum tends to inflate the infinite stack of plates. We further support our results, derived using the idea of self-similarity alone, by rederiving them using the Green's function formalism. These expositions gives us insight into the connections between the regularization methods used in quantum field theories and regularized sums of divergent series in number theory.
Stress measurement in thick plates using nonlinear ultrasonics
Energy Technology Data Exchange (ETDEWEB)
Abbasi, Zeynab, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu; Ozevin, Didem, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu [University of Illinois at Chicago, Civil and Materials Engineering, 842 W Taylor Street ERF 2095, Chicago, IL 60607 (United States)
2015-03-31
In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interaction of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.
Stress measurement in thick plates using nonlinear ultrasonics
Abbasi, Zeynab; Ozevin, Didem
2015-03-01
In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interaction of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.
NATURAL TRANSVERSE VIBRATIONS OF A PRESTRESSED ORTHOTROPIC PLATE-STRIPE
Directory of Open Access Journals (Sweden)
Egorychev Oleg Aleksandrovich
2012-10-01
Full Text Available The article represents a new outlook at the boundary-value problem of natural vibrations of a homogeneous pre-stressed orthotropic plate-stripe. In the paper, the motion equation represents a new approximate hyperbolic equation (rather than a parabolic equation used in the majority of papers covering the same problem describing the vibration of a homogeneous orthotropic plate-stripe. The proposed research is based on newly derived boundary conditions describing the pin-edge, rigid, and elastic (vertical types of fixing, as well as the boundary conditions applicable to the unfixed edge of the plate. The paper contemplates the application of the Laplace transformation and a non-standard representation of a homogeneous differential equation with fixed factors. The article proposes a detailed representation of the problem of natural vibrations of a homogeneous orthotropic plate-stripe if rigidly fixed at opposite sides; besides, the article also provides frequency equations (no conclusions describing the plate characterized by the following boundary conditions: rigid fixing at one side and pin-edge fixing at the opposite side; pin-edge fixing at one side and free (unfixed other side; rigid fixing at one side and elastic fixing at the other side. The results described in the article may be helpful if applied in the construction sector whenever flat structural elements are considered. Moreover, specialists in solid mechanics and theory of elasticity may benefit from the ideas proposed in the article.
Chaos control for the plates subjected to subsonic flow
Norouzi, Hamed; Younesian, Davood
2016-07-01
The suppression of chaotic motion in viscoelastic plates driven by external subsonic air flow is studied. Nonlinear oscillation of the plate is modeled by the von-Kármán plate theory. The fluid-solid interaction is taken into account. Galerkin's approach is employed to transform the partial differential equations of the system into the time domain. The corresponding homoclinic orbits of the unperturbed Hamiltonian system are obtained. In order to study the chaotic behavior of the plate, Melnikov's integral is analytically applied and the threshold of the excitation amplitude and frequency for the occurrence of chaos is presented. It is found that adding a parametric perturbation to the system in terms of an excitation with the same frequency of the external force can lead to eliminate chaos. Variations of the Lyapunov exponent and bifurcation diagrams are provided to analyze the chaotic and periodic responses. Two perturbation-based control strategies are proposed. In the first scenario, the amplitude of control forces reads a constant value that should be precisely determined. In the second strategy, this amplitude can be proportional to the deflection of the plate. The performance of each controller is investigated and it is found that the second scenario would be more efficient.
Jackson, R W; Osborne, K; Barnes, G; Jolliff, C; Zamani, D; Roll, B; Stillings, A; Herzog, D; Cannon, S; Loveland, S
2000-01-01
A new SimPlate heterotrophic plate count (HPC) method (IDEXX Laboratories, Westbrook, Maine) was compared with the pour plate method at 35 degrees C for 48 h. Six laboratories tested a total of 632 water samples. The SimPlate HPC method was found to be equivalent to the pour plate method by regression analysis (r = 0. 95; y = 0.99X + 0.06).
Jackson, R. Wayne; Osborne, Karen; Barnes, Gary; Jolliff, Carol; Zamani, Dianna; Roll, Bruce; Stillings, Amy; Herzog, David; Cannon, Shelly; Loveland, Scott
2000-01-01
A new SimPlate heterotrophic plate count (HPC) method (IDEXX Laboratories, Westbrook, Maine) was compared with the pour plate method at 35°C for 48 h. Six laboratories tested a total of 632 water samples. The SimPlate HPC method was found to be equivalent to the pour plate method by regression analysis (r = 0.95; y = 0.99X + 0.06).
Multiple-Dynode-Layer Microchannel Plate
Woodgate, Bruce E.
1990-01-01
Improved microchannel-plate electron image amplifier made of stack of discrete microchannel-plate layers. New plates easier to manufacture because no need to etch long, narrow holes, to draw and bundle thin glass tubes, or to shear plates to give microchannels curvatures necessary for reduction of undesired emission of ions. Discrete dynode layers stacked with slight offset from layer to layer to form microchannel plate with curved channels. Provides for relatively fast recharging of microchannel dynodes, with consequent enhancement of performance.
Ultimately Thin Metasurface Wave Plates
Keene, David; Durach, Maxim
2015-01-01
Optical properties of a metasurface which can be considered a monolayer of two classical uniaxial metamaterials, parallel-plate and nanorod arrays, are investigated. It is shown that such metasurface acts as an ultimately thin sub-50 nm wave plate. This is achieved via an interplay of epsilon-near-zero and epsilon-near-pole behavior along different axes in the plane of the metasurface allowing for extremely rapid phase difference accumulation in very thin metasurface layers. These effects are shown to not be disrupted by non-locality and can be applied to the design of ultrathin wave plates, Pancharatnam-Berry phase optical elements and plasmon-carrying optical torque wrench devices.
Trapped modes in 3D topographically varying plates
Postnova, J.; Craster, R. V.
2008-12-01
Trapped modes in 3D elastic plates are considered as a model of waves that are guided along, and localized to the vicinity of, welds. These waves propagate unattenuated along the weld and exponentially decay with distance transverse to it. In the direction of propagation (y), there is no change in geometry and we assume that waves have the form exp(i{beta}y). An asymptotic long-wave theory provides numerical values of the trapped mode frequencies and gives conditions at which trapping can occur; these depend on the components of the wave number in different directions and variations of the plate thickness. The results of this long-wave theory are compared with a numerical solution of the full governing equations.
A Comparative Study of Solutions Concerning Thick Elastic Plates on Bi-modulus Foundation
Directory of Open Access Journals (Sweden)
Ioana Vlad
2004-01-01
Full Text Available The classical bending theory of elastic plates is based upon the assumption that the internal moments are proportional to the curvatures of the median deformed surface. This theory does not include the effects of shear and normal pressure in the plate. The model of a bi-modulus foundation is a realistic generalization of the Winkler’s classical one and is widely used to represent the subgrade of railroad systems, airport lanes [1], [2]. The derived equation of elastic thick plates on bi-modulus foundation considers shear and normal stress as linear variable across the plate thickness. This paper presents numerical solutions for thick plate resting on bi-modulus subgrade. These solutions take into account the shear distortion, and they are compared to the solution obtained by Finite Element Analysis and with the Winkler’s model. Particular solutions for the rectangular plate of clamped boundary, for the hinged rectangular plate and for a semi-elliptical plate, are discussed. The numerical solutions consist of double power series and they were obtained based on the minimum of the total strain energy [1]. Parametric studies have been performed in order to emphasize the effects of the chosen foundation and that of the geometry.
Orme, Charisse M; Hale, Christopher S; Meehan, Shane A; Long, Wendy
2014-12-16
Osteoma cutis is the aberrant development of bone within the skin. The bone formation may be de novo (primary) or result from an injury to the skin (secondary). Here we present a healthy 53-year-old man with no known abnormalities in calcium or phosphate metabolism with plate-like osteoma cutis of the scalp. Plate- or plaque-like osteoma cutis was initially described as a congenital condition but has now been reported several times in the literature as an idiopathic process that occurs in adults. Treatment options are limited and are only required if the lesion is bothersome to the patient.
Orifice plates and venturi tubes
Reader-Harris, Michael
2015-01-01
This book gives the background to differential-pressure flow measurement and goes through the requirements explaining the reason for them. For those who want to use an orifice plate or a Venturi tube the standard ISO 5167 and its associated Technical Reports give the instructions required. However, they rarely tell the users why they should follow certain instructions. This book helps users of the ISO standards for orifice plates and Venturi tubes to understand the reasons why the standards are as they are, to apply them effectively, and to understand the consequences of deviations from the standards.
Barama, Louisa
Subduction of the Nazca plate beneath the South American plate drives frequent and sometimes large magnitude earthquakes. During the past 40 years, significant numbers of outer rise earthquakes have occurred in the offshore regions of Colombia and Chile. In this study, we investigate the distribution of stress due to lithospheric bending and the extent of faults within the subducting plate. To calculate more accurate epicenters and to constrain which earthquakes occurred within the outer rise, we use hypocentroidal decomposition to relocate earthquakes with Global Centroid Moment Tensor (GCMT) solutions occurring after 1976 offshore Colombia and Chile. We determine centroid depths of outer rise earthquakes by inverting teleseismic P-, SH-, and SV- waveforms for earthquakes occurring from 1993 to 2014 with Mw ≥ 5.5. In order to further constrain the results of the waveform inversion, we estimate depths by comparing earthquake duration, amplitude, and arrival times for select stations with waveforms with good signal to noise ratios. Our results indicate that tensional earthquakes occur at depths down to 13 km and 24 km depth beneath the surface in the Colombia and Chile regions, respectively. Since faulting within the outer rise can make the plate susceptible to hydration and mantle serpentinization, we therefore infer the extent of possible hydration of the Nazca plate to extend no deeper than the extent of tensional outer rise earthquakes.
Thermo elastic waves with thermal relaxation in isotropic micropolar plate
Indian Academy of Sciences (India)
Soumen Shaw; Basudeb Mukhopadhyay
2011-04-01
In the present investigation, we have discussed about the features of waves in different modes of wave propagation in an inﬁnitely long thermoelastic, isotropic micropolar plate, when the generalized theory of Lord–Shulman (L–S) is considered. A more general dispersion equation is obtained. The different analytic expressions in symmetric and anti-symmetric vibration for short as well as long waves are obtained in different regions of phase velocities. It is found that results agree with that of the existing results predicted by Sharma and Eringen in the context of various theories of classical as well as micropolar thermoelasticity.
Light splitting with imperfect wave plates.
Jackson, Jarom S; Archibald, James L; Durfee, Dallin S
2017-02-01
We discuss the use of wave plates with arbitrary retardances, in conjunction with a linear polarizer, to split linearly polarized light into two linearly polarized beams with an arbitrary splitting fraction. We show that for non-ideal wave plates, a much broader range of splitting ratios is typically possible when a pair of wave plates, rather than a single wave plate, is used. We discuss the maximum range of splitting fractions possible with one or two wave plates as a function of the wave plate retardances, and how to align the wave plates to achieve the maximum splitting range possible when simply rotating one of the wave plates while keeping the other one fixed. We also briefly discuss an alignment-free polarization rotator constructed from a pair of half-wave plates.
Effects of a sliding plate on morphology of the epiphyseal plate in goat distal femur.
Lin, Da-sheng; Lian, Ke-jian; Hong, Jia-yuan; Ding, Zhen-qi; Zhai, Wen-liang
2012-01-01
The aim of this study was to observe the effects of a sliding plate on the morphology of the epiphyseal plate in goat distal femur. Eighteen premature female goats were divided randomly into sliding plate, regular plate and control groups. Radiographic analysis and histological staining were performed to evaluate the development of epiphyseal plate at 4 and 8 weeks after surgery. In the sliding plate group, the plate extended accordingly as the epiphyseal plate grows, and the epiphyseal morphology was kept essential normal. However, the phenomenon of the epiphyseal growth retardation and premature closure were very common in the regular plate group. In addition, the sliding plate group exhibited more normal histologic features and Safranin O staining compared to the regular plate group. Our results suggest that the sliding plate can provide reliable internal fixation of epiphyseal fracture without inhibiting epiphyseal growth.
Effects of a Sliding Plate on Morphology of the Epiphyseal Plate in Goat Distal Femur
Directory of Open Access Journals (Sweden)
Da-sheng LIN, Ke-jian LIAN, Jia-yuan HONG, Zhen-qi DING, Wen-liang ZHAI
2012-01-01
Full Text Available The aim of this study was to observe the effects of a sliding plate on the morphology of the epiphyseal plate in goat distal femur. Eighteen premature female goats were divided randomly into sliding plate, regular plate and control groups. Radiographic analysis and histological staining were performed to evaluate the development of epiphyseal plate at 4 and 8 weeks after surgery. In the sliding plate group, the plate extended accordingly as the epiphyseal plate grows, and the epiphyseal morphology was kept essential normal. However, the phenomenon of the epiphyseal growth retardation and premature closure were very common in the regular plate group. In addition, the sliding plate group exhibited more normal histologic features and Safranin O staining compared to the regular plate group. Our results suggest that the sliding plate can provide reliable internal fixation of epiphyseal fracture without inhibiting epiphyseal growth.
Dynamic stiffness matrix of a rectangular plate for the general case
Banerjee, J. R.; Papkov, S. O.; Liu, X.; Kennedy, D.
2015-04-01
The dynamic stiffness matrix of a rectangular plate for the most general case is developed by solving the bi-harmonic equation and finally casting the solution in terms of the force-displacement relationship of the freely vibrating plate. Essentially the frequency dependent dynamic stiffness matrix of the plate when all its sides are free is derived, making it possible to achieve exact solution for free vibration of plates or plate assemblies with any boundary conditions. Previous research on the dynamic stiffness formulation of a plate was restricted to the special case when the two opposite sides of the plate are simply supported. This restriction is quite severe and made the general purpose application of the dynamic stiffness method impossible. The theory developed in this paper overcomes this long-lasting restriction. The research carried out here is basically fundamental in that the bi-harmonic equation which governs the free vibratory motion of a plate in harmonic oscillation is solved in an exact sense, leading to the development of the dynamic stiffness method. It is significant that the ingeniously sought solution presented in this paper is completely general, covering all possible cases of elastic deformations of the plate. The Wittrick-Williams algorithm is applied to the ensuing dynamic stiffness matrix to provide solutions for some representative problems. A carefully selected sample of mode shapes is also presented.
Plate tectonics on the Earth triggered by plume-induced subduction initiation.
Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A
2015-11-12
Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.
Chakraborty, Rumpa; Mondal, Arpita; Gayen, R.
2016-10-01
In this paper, we present an alternative method to investigate scattering of water waves by a submerged thin vertical elastic plate in the context of linear theory. The plate is submerged either in deep water or in the water of uniform finite depth. Using the condition on the plate, together with the end conditions, the derivative of the velocity potential in the direction of normal to the plate is expressed in terms of a Green's function. This expression is compared with that obtained by employing Green's integral theorem to the scattered velocity potential and the Green's function for the fluid region. This produces a hypersingular integral equation of the first kind in the difference in potential across the plate. The reflection coefficients are computed using the solution of the hypersingular integral equation. We find good agreement when the results for these quantities are compared with those for a vertical elastic plate and submerged and partially immersed rigid plates. New results for the hydrodynamic force on the plate, the shear stress and the shear strain of the vertical elastic plate are also evaluated and represented graphically.
Shell-like structures advanced theories and applications
Eremeyev, Victor
2017-01-01
The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems: • comprehensive review of the most popular theories of plates and shells, • relations between three-dimensional theories and two-dimensional ones, • presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories), • modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc., • applications in modeling of non-classical objects like, for example, nanostructures, • presentation of actual numerical tools based on the finite element approach.
Comment on "Intermittent plate tectonics?".
Korenaga, Jun
2008-06-06
Silver and Behn (Reports, 4 January 2008, p. 85) proposed that intermittent plate tectonics may resolve a long-standing paradox in Earth's thermal evolution. However, their analysis misses one important term, which subsequently brings their main conclusion into question. In addition, the Phanerozoic eustasy record indicates that the claimed effect of intermittency is probably weak.
License plate recognition using DTCNNs
ter Brugge, M.H; Stevens, J.H; Nijhuis, J.A G; Spaanenburg, L; Tavsanonoglu, V
1998-01-01
Automatic license plate recognition requires a series of complex image processing steps. For practical use, the amount of data to he processed must be minimized early on. This paper shows that the computationally most intensive steps can be realized by DTCNNs. Moreover; high-level operations like fi
Corrosion resistant metallic bipolar plate
Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.
2007-05-01
A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.
The seismotectonics of plate boundaries
Berger, J.; Brune, J. N.; Goodkind, J.; Wyatt, F.; Agnew, D. C.; Beaumont, C.
1981-01-01
Research on the seismotectonics of plate boundaries is summarized. Instrumental development and an observational program designed to study various aspects of the seismotectonics of southern California and the northern Gulf of California are described. A unique superconducting gravimeter was further developed and supported under this program for deployment and operation at several sites. Work on Earth tides is also discussed.
Structural Analysis of Plate Based Tensegrity Structures
DEFF Research Database (Denmark)
Hald, Frederik; Kirkegaard, Poul Henning; Damkilde, Lars
2013-01-01
Plate tensegrity structures combine tension cables with a cross laminated timber plate and can then form e.g. a roof structure. The topology of plate tensegrity structures is investigated through a parametric investigation. Plate tensegrity structures are investigated, and a method...... for determination of the structures pre-stresses is used. A parametric investigation is performed to determine a more optimized form of the plate based tensegrity structure. Conclusions of the use of plate based tensegrity in civil engineering and further research areas are discussed....
Structural Analysis of Plate Based Tensegrity Structures
DEFF Research Database (Denmark)
Hald, Frederik; Kirkegaard, Poul Henning; Damkilde, Lars
2013-01-01
Plate tensegrity structures combine tension cables with a cross laminated timber plate and can then form e.g. a roof structure. The topology of plate tensegrity structures is investigated through a parametric investigation. Plate tensegrity structures are investigated, and a method...... for determination of the structures pre-stresses is used. A parametric investigation is performed to determine a more optimized form of the plate based tensegrity structure. Conclusions of the use of plate based tensegrity in civil engineering and further research areas are discussed....
Avionics Box Cold Plate Damage Prevention
Stambolian, Damon B.; Larchar, Steven W.; Henderson, Gena; Tran, Donald; Barth, Tim
2012-01-01
Problem Introduction: 1. Prevent Cold Plate Damage in Space Shuttle. 1a. The number of cold plate problems had increased from an average of 16.5 per/year between 1990 through 2000, to an average of 39.6 per year between 2001through 2005. 1b. Each complete set of 80 cold plates cost approximately $29 million, an average of $362,500 per cold plate. 1c It takes four months to produce a single cold plate. 2. Prevent Cold Plate Damage in Future Space Vehicles.
Directory of Open Access Journals (Sweden)
Cho Dae Seung
2015-04-01
Full Text Available Thin and thick plates, plates with holes, stiffened panels and stiffened panels with holes are primary structural members in almost all fields of engineering: civil, mechanical, aerospace, naval, ocean etc. In this paper, a simple and efficient procedure for the free vibration analysis of such elements is presented. It is based on the assumed mode method and can handle different plate thickness, various shapes and sizes of holes, different framing sizes and types as well as different combinations of boundary conditions. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange’s equations. Mindlin theory is applied for a plate and Timoshenko beam theory for stiffeners. The applicability of the method in the design procedure is illustrated with several numerical examples obtained by the in-house developed code VAPS. Very good agreement with standard commercial finite element software is achieved.
Institute of Scientific and Technical Information of China (English)
XIAO Yong-gang; FU Yi-ming; ZHA Xu-dong
2005-01-01
Based on Reissner plate theory and Hamilton variational principle, the nonlinear equations of motion were derived for the moderate thickness rectangular plates with transverse surface penetrating crack on the two-parameter foundation. Under the condition of free boundary, a set of trial functions satisfying all boundary conditions and crack's continuous conditions were proposed. By employing the Galerkin method and the harmonic balance method, the nonlinear vibration equations were solved and the nonlinear vibration behaviors of the plate were analyzed. In numerical computation, the effects of the different location and depth of crack, the different structural parameters of plates and the different physical parameters of foundation on the nonlinear amplitude frequency response curves of the plate were discussed.
Shape, position and orientational design of holes for plates with optimized eigenfrequencies
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard; Pedersen, Pauli
2003-01-01
A hole with a given size is placed in the interior of a plate with an arbitrary external boundary. To avoid stress concentrations the shape of the hole must be smooth (continuous curvature). The objectives of the optimization are the eigenfrequencies of the plate with the hole. The optimization i...... on finite element analysis and sensitivity analysis. Mindlin plate theory is the basis for the FE-analysis and the semi-analytical sensitivity analysis includes only the elements on the boundary of the hole.......A hole with a given size is placed in the interior of a plate with an arbitrary external boundary. To avoid stress concentrations the shape of the hole must be smooth (continuous curvature). The objectives of the optimization are the eigenfrequencies of the plate with the hole. The optimization...
Stability mechanisms for plate-like nanoparticles immersed in a macroion dispersion
Energy Technology Data Exchange (ETDEWEB)
Jimenez-Angeles, Felipe; Odriozola, Gerardo; Lozada-Cassou, Marcelo [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, 07730 Mexico, DF (Mexico)
2009-10-21
An integral equation theory and Monte Carlo simulations are applied to study a model macroion solution confined between two parallel plates immersed in a 1:1 electrolyte and the macroions' counterions. We analyze the cases in which plates are: (a) uncharged; (b) when they are like-charged to the macroions; (c) when they are oppositely charged to the macroions. For all cases a long range oscillatory behavior of the induced charge density between the plates is found (implying an overcompensation/undercompensation of the plates' charge density) and a correlation between the confined and outside fluids. The behavior of the force is discussed in terms of the macroion and ion structure inside and outside the plates. A good agreement is found between theoretical and simulation results.
A new wavelet-based thin plate element using B-spline wavelet on the interval
Jiawei, Xiang; Xuefeng, Chen; Zhengjia, He; Yinghong, Zhang
2008-01-01
By interacting and synchronizing wavelet theory in mathematics and variational principle in finite element method, a class of wavelet-based plate element is constructed. In the construction of wavelet-based plate element, the element displacement field represented by the coefficients of wavelet expansions in wavelet space is transformed into the physical degree of freedoms in finite element space via the corresponding two-dimensional C1 type transformation matrix. Then, based on the associated generalized function of potential energy of thin plate bending and vibration problems, the scaling functions of B-spline wavelet on the interval (BSWI) at different scale are employed directly to form the multi-scale finite element approximation basis so as to construct BSWI plate element via variational principle. BSWI plate element combines the accuracy of B-spline functions approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples are studied to demonstrate the performances of the present element.
EMPIRICAL STUDY OF CAR LICENSE PLATES RECOGNITION
Directory of Open Access Journals (Sweden)
Nasa Zata Dina
2015-01-01
Full Text Available The number of vehicles on the road has increased drastically in recent years. The license plate is an identity card for a vehicle. It can map to the owner and further information about vehicle. License plate information is useful to help traffic management systems. For example, traffic management systems can check for vehicles moving at speeds not permitted by law and can also be installed in parking areas to se-cure the entrance or exit way for vehicles. License plate recognition algorithms have been proposed by many researchers. License plate recognition requires license plate detection, segmentation, and charac-ters recognition. The algorithm detects the position of a license plate and extracts the characters. Various license plate recognition algorithms have been implemented, and each algorithm has its strengths and weaknesses. In this research, I implement three algorithms for detecting license plates, three algorithms for segmenting license plates, and two algorithms for recognizing license plate characters. I evaluate each of these algorithms on the same two datasets, one from Greece and one from Thailand. For detecting li-cense plates, the best result is obtained by a Haar cascade algorithm. After the best result of license plate detection is obtained, for the segmentation part a Laplacian based method has the highest accuracy. Last, the license plate recognition experiment shows that a neural network has better accuracy than other algo-rithm. I summarize and analyze the overall performance of each method for comparison.
DEFF Research Database (Denmark)
Wæver, Ole
2009-01-01
Kenneth N. Waltz's 1979 book, Theory of International Politics, is the most influential in the history of the discipline. It worked its effects to a large extent through raising the bar for what counted as theoretical work, in effect reshaping not only realism but rivals like liberalism and refle......Kenneth N. Waltz's 1979 book, Theory of International Politics, is the most influential in the history of the discipline. It worked its effects to a large extent through raising the bar for what counted as theoretical work, in effect reshaping not only realism but rivals like liberalism...... and reflectivism. Yet, ironically, there has been little attention to Waltz's very explicit and original arguments about the nature of theory. This article explores and explicates Waltz's theory of theory. Central attention is paid to his definition of theory as ‘a picture, mentally formed' and to the radical anti......-empiricism and anti-positivism of his position. Followers and critics alike have treated Waltzian neorealism as if it was at bottom a formal proposition about cause-effect relations. The extreme case of Waltz being so victorious in the discipline, and yet being consistently mis-interpreted on the question of theory...
Ambarita, Himsar; Kishinami, Koki; Daimaruya, Mashashi; Tokura, Ikuo; Kawai, Hideki; Suzuki, Jun; Kobiyama, Mashayosi; Ginting, Armansyah
The present paper is a study on the optimum plate to plate spacing for maximum heat transfer rate from a flat plate type heat exchanger. The heat exchanger consists of a number of parallel flat plates. The working fluids are flowed at the same operational conditions, either fixed pressure head or fixed fan power input. Parallel and counter flow directions of the working fluids were considered. While the volume of the heat exchanger is kept constant, plate number was varied. Hence, the spacing between plates as well as heat transfer rate will vary and there exists a maximum heat transfer rate. The objective of this paper is to seek the optimum plate to plate spacing for maximum heat transfer rate. In order to solve the problem, analytical and numerical solutions have been carried out. In the analytical solution, the correlations of the optimum plate to plate spacing as a function of the non-dimensional parameters were developed. Furthermore, the numerical simulation is carried out to evaluate the correlations. The results show that the optimum plate to plate spacing for a counter flow heat exchanger is smaller than parallel flow ones. On the other hand, the maximum heat transfer rate for a counter flow heat exchanger is bigger than parallel flow ones.
Thermal Stress Analysis of Laminated Composite Plates using Shear Flexible Element
Directory of Open Access Journals (Sweden)
M. Ganapathi
1996-01-01
Full Text Available Using degree Centigrade shear flexible QUAD-9 plate element, stresses and deflections in composite laminated plates due to thermal loads analysed. A formulation based on first order shear deformation theory has been employed for the analysis. The effects of various parameters, such as ply-angle, number of layers, thickness and aspect ratios on stresses and deflections are brought out. The present formulation is being extended for studying composite shell structures.
Experimental study on the effect of misfit and mismatch of ship plating welds
Bebermeyer, Robert E.
2002-01-01
CIVINS Approved for public release; distribution is unlimited Misfits and mismatches in the welding of ship hull plating may affect survivability after explosions, accidents, or other extreme external forces. Experiments, Slip Line Theory (SLT), and Finite Element Analysis (FEA) help to explain the necking, deformation, and mechanisms of fracture of misfit welded plating. The effect of misfits or offsets on both overmatched and evenmatched welds under tension are studied. The tension cr...
Indian Academy of Sciences (India)
K Mallick; K K Sharma
2001-03-01
A new space-domain operator based on the shape function concept of finite element analysis has been developed to derive the residual maps of the Gorda Plate of western United States. The technique does not require explicit assumptions on isostatic models. Besides delineating the Gorda Plate boundary, the residual maps exhibit a close match both in their anomaly patterns and magnitudes with previously computed residual maps based on the theory of isostasy.
Measurement procedure for optomechanical hole plate
DEFF Research Database (Denmark)
Larsen, Erik
2003-01-01
Measurement procedure for optomechanical hole plate in connection with CIRP interlaboratory comparison on measuring machines.......Measurement procedure for optomechanical hole plate in connection with CIRP interlaboratory comparison on measuring machines....
Food Guide Pyramid Becomes a Plate
... agency in charge of nutrition, created the colorful plate to help people remember to: Eat a variety ... of some foods and more of others. The plate features four sections — vegetables, fruits, grains, and protein — ...
Earth's Decelerating Tectonic Plates
Energy Technology Data Exchange (ETDEWEB)
Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P
2008-08-22
Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.
Earth's Decelerating Tectonic Plates
Energy Technology Data Exchange (ETDEWEB)
Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P
2008-08-22
Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.
Three-dimensional analysis of a thick FGM rectangular plate in thermal environment
Institute of Scientific and Technical Information of China (English)
陈伟球; 边祖光; 丁皓江
2003-01-01
The thermal behavior of a thick transversely isotropic FGM rectangular plate was investigated within the scope of three-dimensional elasticity. Noticing many FGMs may have temperature-dependent properties, the material constants were further considered as functions of temperature. A solution method based on state-space formulations with a laminate approximate model was proposed. For a thin plate, the method was clarified by comparison with the thin plate theory. The influences of material inhomogeneity and temperature-dependent characteristics were finally discussed through numerical examples.
Research on relationships between Lamb wave velocity and static stress in metal plate
Institute of Scientific and Technical Information of China (English)
WANG Jun; WANG Yinguan
2006-01-01
On the fact that an isotropic metal solid produces anisotropic property in the state of static stress, based on the theory of the nonlinear acoustoelasticity, the equivalent secondorder elastic constants are calculated for metal plate with static stress. For the case of thin metal plate with stress, the two kinds of dispersion equation for Lamb waves propagating parallel and vertical to the direction of static stress are derived. Using the equations, the relationships between Lamb wave velocity and static stress in a metal plate are discussed.
Source location in plates based on the multiple sensors array method and wavelet analysis
Energy Technology Data Exchange (ETDEWEB)
Yang, Hong Jun; Shin, Tae Jin; Lee, Sang Kwon [Inha University, Incheon (Korea, Republic of)
2014-01-15
A new method for impact source localization in a plate is proposed based on the multiple signal classification (MUSIC) and wavelet analysis. For source localization, the direction of arrival of the wave caused by an impact on a plate and the distance between impact position and sensor should be estimated. The direction of arrival can be estimated accurately using MUSIC method. The distance can be obtained by using the time delay of arrival and the group velocity of the Lamb wave in a plate. Time delay is experimentally estimated using the continuous wavelet transform for the wave. The elasto dynamic theory is used for the group velocity estimation.
Directory of Open Access Journals (Sweden)
Amin Hadi
2013-01-01
Full Text Available The bending of rectangular plate made of functionally graded material (FGM is investigated by using three-dimensional elasticity theory. The governing equations obtained here are solved with static analysis considering the types of plates, which properties varying exponentially along direction. The value of Poisson’s ratio has been taken as a constant. The influence of different functionally graded variation on the stress and displacement fields was studied through a numerical example. The exact solution shows that the graded material properties have significant effects on the mechanical behavior of the plate.
Stress State Of Plate With Incisions Under The Action Of Oscillating Concentrated Forces
Directory of Open Access Journals (Sweden)
Shvabyuk Vasyl’
2015-09-01
Full Text Available This paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action of oscillating forces. Calculation of dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the theory of complex variable functions. The numerical implementation of the developed algorithmis based on the method of mechanical quadratures and collocation technique. The algorithm is effective in the analysis of the stress state caused by steady-state vibrations of plates.
Subduction controls the distribution and fragmentation of Earth’s tectonic plates
2016-01-01
International audience; The theory of plate tectonics describes how the surface of the Earth is split into an organized jigsaw of seven large plates 1 of similar sizes and a population of smaller plates, whose areas follow a fractal distribution 2,3. The reconstruction of global tectonics during the past 200 My 4 suggests that this layout is probably a long-term feature of our planet, but the forces governing it are unknown. Previous studies 3,5,6 , primarily based on statistical properties o...
Gao, X.-L.; Zhang, G. Y.
2016-07-01
A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler-Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived.
Embedded adhesive connection for laminated glass plates
DEFF Research Database (Denmark)
Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.
2012-01-01
The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....
Electrochemical Assay of Gold-Plating Solutions
Chiodo, R.
1982-01-01
Gold content of plating solution is assayed by simple method that required only ordinary electrochemical laboratory equipment and materials. Technique involves electrodeposition of gold from solution onto electrode, the weight gain of which is measured. Suitable fast assay methods are economically and practically necessary in electronics and decorative-plating industries. If gold content in plating bath is too low, poor plating may result, with consequent economic loss to user.
Practical automatic Arabic license plate recognition system
Mohammad, Khader; Agaian, Sos; Saleh, Hani
2011-02-01
Since 1970's, the need of an automatic license plate recognition system, sometimes referred as Automatic License Plate Recognition system, has been increasing. A license plate recognition system is an automatic system that is able to recognize a license plate number, extracted from image sensors. In specific, Automatic License Plate Recognition systems are being used in conjunction with various transportation systems in application areas such as law enforcement (e.g. speed limit enforcement) and commercial usages such as parking enforcement and automatic toll payment private and public entrances, border control, theft and vandalism control. Vehicle license plate recognition has been intensively studied in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is different for each country. [License plate detection using cluster run length smoothing algorithm ].Generally, an automatic license plate localization and recognition system is made up of three modules; license plate localization, character segmentation and optical character recognition modules. This paper presents an Arabic license plate recognition system that is insensitive to character size, font, shape and orientation with extremely high accuracy rate. The proposed system is based on a combination of enhancement, license plate localization, morphological processing, and feature vector extraction using the Haar transform. The performance of the system is fast due to classification of alphabet and numerals based on the license plate organization. Experimental results for license plates of two different Arab countries show an average of 99 % successful license plate localization and recognition in a total of more than 20 different images captured from a complex outdoor environment. The results run times takes less time compared to conventional and many states of art methods.
Modeling the hydrodynamics of Phloem sieve plates
DEFF Research Database (Denmark)
Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele;
2012-01-01
Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play...... are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway....
Transfinite thin plate spline interpolation
Bejancu, Aurelian
2009-01-01
Duchon's method of thin plate splines defines a polyharmonic interpolant to scattered data values as the minimizer of a certain integral functional. For transfinite interpolation, i.e. interpolation of continuous data prescribed on curves or hypersurfaces, Kounchev has developed the method of polysplines, which are piecewise polyharmonic functions of fixed smoothness across the given hypersurfaces and satisfy some boundary conditions. Recently, Bejancu has introduced boundary conditions of Beppo Levi type to construct a semi-cardinal model for polyspline interpolation to data on an infinite set of parallel hyperplanes. The present paper proves that, for periodic data on a finite set of parallel hyperplanes, the polyspline interpolant satisfying Beppo Levi boundary conditions is in fact a thin plate spline, i.e. it minimizes a Duchon type functional.
Silicon-micromachined microchannel plates
Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R
2000-01-01
Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...
Vehicle License Plate Character Segmentation
Institute of Scientific and Technical Information of China (English)
Mei-Sen Pan; Jun-Biao Yan; Zheng-Hong Xiao
2008-01-01
Vehicle license plate (VLP) character segmentation is an important part of the vehicle license plate recognition system (VLPRS). This paper proposes a least square method (LSM) to treat horizontal tilt and vertical tilt in VLP images. Auxiliary lines are added into the image (or the tilt-corrected image) to make the separated parts of each Chinese character to be an interconnected region. The noise regions will be eliminated after two fusing images are merged according to the minimum principle of gray values.Then, the characters are segmented by projection method (PM) and the final character images are obtained. The experimental results show that this method features fast processing and good performance in segmentation.
Directory of Open Access Journals (Sweden)
Stefano Valvano
2017-04-01
Full Text Available In this paper a new plate finite element (FE for the analysis of composite and sandwich plates is proposed. By making use of the node-variable plate theory assumptions, the new finite element allows for a simultaneous analysis of different subregions of the problem domain with different kinematics and accuracy, in a global/local sense. In particular higher-order theories with an Equivalent-Single-Layer (ESL approach are simultaneously used with advanced Layer-Wise (LW models. As a consequence, the computational costs can be reduced drastically by assuming refined theories only in those zones/nodes of the structural domain where the resulting strain and stress states present a complex distribution. On the contrary, computationally cheaper, low-order kinematic assumptions can be used in the remaining parts of the plate where a localized detailed analysis is not necessary. The primary advantage of the present variable-kinematics element and related global/local approach is that no ad-hoc techniques and mathematical artifices are required to mix the fields coming from two different and kinematically incompatible adjacent elements, because the plate structural theory varies within the finite element itself. In other words, the structural theory of the plate element is a property of the FE node in this present approach, and the continuity between two adjacent elements is ensured by adopting the same kinematics at the interface nodes. According to the Unified Formulation by Carrera, the through-the-thickness unknowns are described by Taylor polynomial expansions with ESL approach and by Legendre polynomials with LW approach. Furthermore, the Mixed Interpolated Tensorial Components (MITC method is employed to contrast the shear locking phenomenon. Several numerical investigations are carried out to validate and demonstrate the accuracy and efficiency of the present plate element, including comparison with various closed-form and FE solutions from the
Electroless metal plating of plastics
Krause, Lawrence J.
1984-01-01
Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Plate, top. 236.779 Section 236.779 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.779 Plate, top. A metal plate secured to a locking bracket to prevent the cross locking from being forced out of the...
30 CFR 22.10 - Approval plate.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approval plate. 22.10 Section 22.10 Mineral... MINING PRODUCTS PORTABLE METHANE DETECTORS § 22.10 Approval plate. (a) Attachment to be made by manufacturers. (1) Manufacturers shall attach, stamp, or mold an approval plate on each permissible methane...
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Data plate. 3280.5 Section 3280.5... MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS General § 3280.5 Data plate. Each manufactured home shall bear a data plate affixed in a permanent manner near the main electrical panel or other readily...
30 CFR 20.13 - Approval plate.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approval plate. 20.13 Section 20.13 Mineral... MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.13 Approval plate. The manufacturer shall attach, stamp, or mold an approval plate on the battery container or housing of each...
Moving Divertor Plates in a Tokamak
Energy Technology Data Exchange (ETDEWEB)
S.J. Zweben, H. Zhang
2009-02-12
Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.
Secure matching of Dutch car license plates
Sunil, A.B.; Erkiny, Z.; Veugenyz, T.
2016-01-01
License plate matching plays an important role in applications like law enforcement, traffic management and road pricing, where the plate is first recognized and then compared to a database of authorized vehicle registration plates. Unfortunately, there are several privacy related issues that should
Designing a licence plate for memorability
Schraagen, J.M.C.; Dongen, C.J.G. van
2005-01-01
Good memorability of licence plates is important in those cases where licence plates are viewed for a brief period of time and the information is essential for police investigations. The purpose of the current study was to design a new Dutch licence plate that could be remembered well. A memory expe
Directory of Open Access Journals (Sweden)
Pham Hong Cong
2016-12-01
Full Text Available This paper researches the thermal stability of eccentrically stiffened plates made of functionally graded materials (FGM with metal–ceramic–metal layers subjected to thermal load. The equilibrium and compatibility equations for the plates are derived by using the first-order shear deformation theory of plates, taking into account both the geometrical nonlinearity in the von Karman sense and initial geometrical imperfections with Pasternak type elastic foundations. By applying Galerkin method and using stress function, effects of material and geometrical properties, elastic foundations, temperature-dependent material properties, and stiffeners on the thermal stability of the eccentrically stiffened S-FGM plates in thermal environment are analyzed and discussed.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Current patch test for Mindlin plate element only satisfies the zero shear deformation condition.The patch test of non-zero constant shear for Mindlin plate problem cannot be performed.For shell element, the patch test does not even exist.Based on the theory of enhanced patch test proposed by Chen W J (2006),the authors proposed the enhanced patch test function for Mindlin plate and thin cylindrical shell elements.This enhanced patch test function can be used to assess the convergence of the Mindlin plate and cylindrical thin shell elements.
Episodic plate tectonics on Venus
Turcotte, Donald
1992-01-01
Studies of impact craters on Venus from the Magellan images have placed important constraints on surface volcanism. Some 840 impact craters have been identified with diameters ranging from 2 to 280 km. Correlations of this impact flux with craters on the Moon, Earth, and Mars indicate a mean surface age of 0.5 +/- 0.3 Ga. Another important observation is that 52 percent of the craters are slightly fractured and only 4.5 percent are embayed by lava flows. These observations led researchers to hypothesize that a pervasive resurfacing event occurred about 500 m.y. ago and that relatively little surface volcanism has occurred since. Other researchers have pointed out that a global resurfacing event that ceased about 500 MYBP is consistent with the results given by a recent study. These authors carried out a series of numerical calculations of mantle convection in Venus yielding thermal evolution results. Their model considered crustal recycling and gave rapid planetary cooling. They, in fact, suggested that prior to 500 MYBP plate tectonics was active in Venus and since 500 MYBP the lithosphere has stabilized and only hot-spot volcanism has reached the surface. We propose an alternative hypothesis for the inferred cessation of surface volcanism on Venus. We hypothesize that plate tectonics on Venus is episodic. Periods of rapid plate tectonics result in high rates of subduction that cool the interior resulting in more sluggish mantle convection.
Modified tubularized incised plate urethroplasty
Directory of Open Access Journals (Sweden)
Shivaji Mane
2013-01-01
Full Text Available Aim: To share our experience of doing tubularized incised plate urethroplasty with modifications. Materials and Methods: This is a single surgeon personal series from 2004 to 2009. One hundred patients of distal hypospadias were subjected for Snodgrass urethroplasty with preputioplasty. The age range was 1 to 5 year with mean age of 2.7 years. Selection criteria were good urethral plate, without chordee and torsion needing complete degloving. Main technical modification from original Snodgrass procedure was spongioplasty, preputioplasty, and dorsal slit when inability to retract prepuce during surgery. Results: Average follow-up period is 23 months. Seven (7% patients developed fistula and one patient had complete preputial dehiscence. Phimosis developed in three (3% patients and required circumcision. Dorsal slit was required in seven patients. One patient developed meatal stenosis in postoperative period. All other patients are passing single urinary stream and have cosmesis that is acceptable. Conclusions: Modified tubularized incised plate urethroplasty with preputioplasty effectively gives cosmetically normal looking penis with low complications.
Plating of proximal humeral fractures.
Martetschläger, Frank; Siebenlist, Sebastian; Weier, Michael; Sandmann, Gunther; Ahrens, Philipp; Braun, Karl; Elser, Florian; Stöckle, Ulrich; Freude, Thomas
2012-11-01
The optimal treatment for proximal humeral fractures is controversial. Few data exist concerning the influence of the surgical approach on the outcome. The purpose of this study was to evaluate the clinical and radiological outcomes of proximal humeral fractures treated with locking plate fixation through a deltopectoral vs an anterolateral deltoid-splitting approach. Of 86 patients who met the inclusion criteria, 70 were available for follow-up examination. Thirty-three patients were treated through a deltopectoral approach and 37 through an anterolateral deltoid-splitting approach. In all cases, open reduction and internal fixation with a PHILOS locking plate (Synthes, Umkirch, Germany) was performed. Clinical follow-up included evaluation of pain, shoulder mobility, and strength. Constant score and Disabilities of the Arm, Shoulder and Hand (DASH) score were assessed. A clinical neurological examination of the axillary nerve was also performed. Consolidation, reduction, and appearance of head necrosis were evaluated radiographically. After a mean follow-up of 33 months, Constant scores, DASH scores, and American Shoulder and Elbow Surgeons scores showed no significant differences between the groups. Clinical neurologic examination of the axillary nerve revealed no obvious damage to the nerve in either group. Deltopectoral and anterolateral detoid-splitting approaches for plate fixation of proximal humeral fractures are safe and provide similar clinical outcomes. The results of this study suggest that the approach can be chosen according to surgeon preference.
Asymptotic modelling of a thermopiezoelastic anisotropic smart plate
Long, Yufei
Motivated by the requirement of modelling for space flexible reflectors as well as other applications of plate structures in engineering, a general anisotropic laminated thin plate model and a monoclinic Reissner-Mindlin plate model with thermal deformation, two-way coupled piezoelectric effect and pyroelectric effect is constructed using the variational asymptotic method, without any ad hoc assumptions. Total potential energy contains strain energy, electric potential energy and energy caused by temperature change. Three-dimensional strain field is built based on the concept of warping function and decomposition of the rotation tensor. The feature of small thickness and large in-plane dimension of plate structure helped to asymptotically simplify the three-dimensional analysis to a two-dimensional analysis on the reference surface and a one-dimensional analysis through the thickness. For the zeroth-order approximation, the asymptotically correct expression of energy is derived into the form of energetic equation in classical laminated plate theory, which will be enough to predict the behavior of plate structures as thin as a space flexible reflector. A through-the-thickness strain field can be expressed in terms of material constants and two-dimensional membrane and bending strains, while the transverse normal and shear stresses are not predictable yet. In the first-order approximation, the warping functions are further disturbed into a high order and an asymptotically correct energy expression with derivatives of the two-dimensional strains is acquired. For the convenience of practical use, the expression is transformed into a Reissner-Mindlin form with optimization implemented to minimize the error. Transverse stresses and strains are recovered using the in-plane strain variables. Several numerical examples of different laminations and shapes are studied with the help of analytical solutions or shell elements in finite element codes. The constitutive relation is
Plate tectonics, habitability and life
Spohn, Tilman; Breuer, Doris
2016-04-01
The role of plate tectonics in defining habitability of terrestrial planets is being increasingly discussed (e.g., Elkins-Tanton, 2015). Plate tectonics is a significantly evolved concept with a large variety of aspects. In the present context, cycling of material between near surface and mantle reservoirs is most important. But increased heat transport through mixing of cold lithosphere with the deep interior and formation of continental crust may also matter. An alternative mechanism of material cycling between these reservoirs is hot-spot volcanism combined with crust delamination. Hot-spot volcanism will transport volatiles to the atmosphere while delamination will mix crust, possibly altered by sedimentation and chemical reactions, with the mantle. The mechanism works as long as the stagnant lithosphere plate has not grown thicker than the crust and as long as volcanic material is added onto the crust. Thermal evolution studies suggest that the mechanism could work for the first 1-2 Ga of planetary evolution. The efficiency of the mechanism is limited by the ratio of extrusive to intrusive volcanism, which is thought to be less than 0.25. Plate tectonics would certainly have an advantage by working even for more evolved planets. A simple, most-used concept of habitability requires the thermodynamic stability of liquid water on the surface of a planet. Cycling of CO2between the atmosphere, oceans and interior through subduction and surface volcanism is an important element of the carbonate-silicate cycle, a thermostat feedback cycle that will keep the atmosphere from entering into a runaway greenhouse. Calculations for a model Earth lacking plate tectonics but degassing CO2, N, and H2O to form a surface ocean and a secondary atmosphere (Tosi et al, 2016) suggest that liquid water can be maintained on the surface for 4.5Ga. The model planet would then qualify as habitable. It is conceivable that the CO2 buffering capability of its ocean together with silicate
Peridinialean dinoflagellate plate patterns, labels and homologies
Edwards, L.E.
1990-01-01
Tabulation patterns for peridinialean dinoflagellate thecae and cysts have been traditionally expressed using a plate labelling system described by C.A. Kofoid in the early 1900's. This system can obscure dinoflagellate plate homologies and has not always been strictly applied. The plate-labelling system presented here introduces new series labels but incorporates key features and ideas from the more recently proposed systems of G.L. Eaton and F.J.R. Taylor, as modified by W.R. Evitt. Plate-series recognition begins with the cingulum (C-series) and proceeds from the cingulum toward the apex for the three series of the epitheca/epicyst and proceeds from the cingulum toward the antapex for the two series of the hypotheca/hypocyst. The epithecal/epicystal model consists of eight plates that touch the anterior margin of the cingulum (E-series: plates E1-E7, ES), seven plates toward the apex that touch the E-series plates (M-series: R, M1-M6), and up to seven plates near the apex that do not touch E-series plates (D-series: Dp-Dv). The hypothecal/hypocystal model consists of eight plates that touch the posterior margin of the cingulum (H-series: H1-H6,HR,HS) and three plates toward the antapex (T1-T3). Epithecal/epicystal tabulation patterns come in both 8- and 7- models, corresponding to eight and seven plates, respectively, in the E-series. Hypothecal/hypocystal tabulation patterns also come in both 8- and 7-models, corresponding to eight and seven plates, respectively, in the H-series. By convention, the 7-model epitheca/epicyst has no plates E1 and M1; the 7-model hypotheca/hypocyst has no plate H6. Within an 8-model or 7-model, the system emphasizes plates that are presumed to be homologous by giving them identical labels. I introduce the adjectives "monothigmate", "dithigmate," and "trithigmate" to designate plates touching one, two, and three plates, respectively, of the adjacent series. The term "thigmation" applies to the analysis of plate contacts between
Directory of Open Access Journals (Sweden)
Ante Skoblar
2016-03-01
Full Text Available It is suitable to reduce thickness of circular saw when trying to enhance usability of wood raw material, but reducing thickness also causes reduction of permissible rotational speed which reduces sawing speed. If one increase circular saw rotational speed over permissible one the quality of machined surfaces will reduce because of enhanced vibrations. Permissible rotational speed can be calculated from critical rotational speed which can be defined from natural frequencies of the saw. In this article critical rotational speeds of standard clamped saws (with flat disk surface and without slots are calculated by using finite element method and classical theory of thin plates on annular plates. Mode shapes and natural frequencies of annular plates are determined by using Bessel functions and by using polynomial functions. Obtained results suggest that standard clamped circular saws without slots and with relatively small teeth can be determined from classical theory of thin plates for annular plates with accuracy depending on clamping ratio.
Directory of Open Access Journals (Sweden)
Tieliang Yang
2016-01-01
Full Text Available This paper presents an analytical study for sound radiation of functionally graded materials (FGM plate based on the three-dimensional theory of elasticity. The FGM plate is a mixture of metal and ceramic, and its material properties are assumed to have smooth and continuous variation in the thickness direction according to a power-law distribution in terms of volume fractions of the constituents. Based on the three-dimensional theory of elasticity and state space method, the governing equations with variable coefficients of the FGM plate are derived. The sound radiation of the vibration plate is calculated with Rayleigh integral. Comparisons of the present results with those of solutions in the available literature are made and good agreements are achieved. Finally, some parametric studies are carried out to investigate the sound radiation properties of FGM plates.
Hierarchical self-organization of tectonic plates
Morra, Gabriele; Müller, R Dietmar
2010-01-01
The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly changes from a weak hierarchy at 120-100 million years ago (Ma) towards a strong hierarchy, which peaked at 65-50, Ma subsequently relaxing back towards a minimum hierarchical structure. We suggest that this fluctuation reflects an alternation between top and bottom driven plate tectonics, revealing a previously undiscovered tectonic cyclicity at a timescale of 100 million years.
Energy Technology Data Exchange (ETDEWEB)
Rastgoo, A. [University of Tehran, Tehran (Iran, Islamic Republic of); Ebrahimi, F. [lmam Khomeini International University, Qazvin (Iran, Islamic Republic of); Kargarnovin, M. H. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2008-06-15
In this paper, a free vibration analysis of moderately thick circular functionally graded (FG) plate integrated with two thin piezoelectric (PZT4) layers is presented based on Mindlin plate theory. The material properties of the FG core plate are assumed to be graded in the thickness direction, while the distribution of electric potential field along the thickness of piezoelectric layers is simulated by sinusoidal function. The differential equations of motion are solved analytically for two boundary conditions of the plate: clamped edge and simply supported edge. The analytical solution is validated by comparing the obtained resonant frequencies with those of an isotropic host plate. The emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. Good agreement between the results of this paper and those of the finite element analyses validated the presented approach
Aanes, Magne; Lunde, Per; Vestrheim, Magne
2016-01-01
The interaction of ultrasonic waves with fluid-embedded viscoelastic plates, pipes, and shells, have been subject to extensive theoretical and experimental studies over several decades. In normal-incidence through-transmission measurements of a water-embedded solid plate using ultrasonic piezoelectric transducer sound fields, significant deviations from plane wave theory have recently been observed. To quantitatively describe such measured phenomena, finite element modeling (FEM), also combined with an angular spectrum method (ASM), have been used for three-dimensional (3D) simulation of the voltage-to-sound-pressure signal propagation through the electro-acoustic measurement system consisting of the piezoelectric transducer, the water-embedded steel plate, and the fluid regions at both sides of the plate. The observed phenomena of frequency downshift of the plate resonance, increased sound pressure level through the plate, and beam narrowing / widening, are ascribed to the finite angular spectrum of the beam...
On Free Vibrations of Orthotropic Plates in the Presence of Viscous Resistance
Directory of Open Access Journals (Sweden)
Aghalovyan L.A.
2011-03-01
Full Text Available The three-dimensional problem of elasticity theory of the free vibrations of orthotropic plates in the presence of viscous resistance, on the facial plane of which mixed-boundary conditions of elasticity theory are given is considered. By the asymptotic method it is shown that 3 groups of free vibrations, 2 groups of shearing and 1 group of longitudinal free vibrations are appeared. The stress-deformed states, principal values of frequencies and the forms of natural vibrations of plates relevant to 3 groups of free vibrations are determined.
Directory of Open Access Journals (Sweden)
Azatyan G.L.
2012-06-01
Full Text Available Asymptotic integration of the equations of three-dimensional problems of the theory electroelasticity derived recurrence formulas for determining the components of the stress tensor, displacement vector and electric potential of the plate of infinite longitudinal size with a circular aperture of inhomogeneous in terms of piezoelectric ceramics. The plate is polarized by thickness. Examined cases in which its front surfaces are given electric potentials together with the terms of the first, second or mixed boundary value problems of elasticity theory.
The Problem of Bending of Rectangular Plate Taking into Account the Transversal Shear
Directory of Open Access Journals (Sweden)
Baghdasaryan Z.R.
2008-06-01
Full Text Available In this work the problems on the bending of rectangular plate on the basis of classical theory by Kirchhoff and Ambartsumyan’s theory is observed. It is shown, that when the plate is leaned free on two opposite sides, and on two others is hinge joint, the exactness of Kirchhoff's hypothesis is the neglecting of a related thickness in comparison with unit. Formulas for a deflection and also for shear stress resultant and generalized shear stress resultant are received. In different private cases expressions of maximal deflection and shear stress resultant are received.
Static and dynamic buckling of thin-walled plate structures
Kubiak, Tomasz
2013-01-01
This monograph deals with buckling and postbuckling behavior of thin plates and thin-walled structures with flat wall subjected to static and dynamic load. The investigations are carried out in elastic range. The basic assumption here is the thin plate theory. This method is used to determination the buckling load and postbuckling analysis of thin-walled structures subjected to static and dynamic load. The book introduces two methods for static and dynamic buckling investigation which allow for a wider understanding of the phenomenon. Two different methods also can allow uncoupling of the phenomena occurring at the same time and attempt to estimate their impact on the final result. A general mathematical model, adopted in proposed analytical-numerical method, enables the consideration of all types of stability loss i.e.local, global and interactive forms of buckling. The applied numerical-numerical method includes adjacent of walls, shear-lag phenomenon and a deplanation of cross-sections.
Nekrasov, Nikita
2004-01-01
We present the evidence for the existence of the topological string analogue of M-theory, which we call Z-theory. The corners of Z-theory moduli space correspond to the Donaldson-Thomas theory, Kodaira-Spencer theory, Gromov-Witten theory, and Donaldson-Witten theory. We discuss the relations of Z-theory with Hitchin's gravities in six and seven dimensions, and make our own proposal, involving spinor generalization of Chern-Simons theory of three-forms. Based on the talk at Strings'04 in Paris.
When Did Plate Tectonics Begin
Brown, M.
2015-12-01
Present-day plate tectonics on Earth is characterized by asymmetric (one-sided) subduction, but how do we recognize the imprint of subduction in the geologic record? How do we weigh global (commonly younger) vs local (commonly older) datasets or distinguish initiation from episodic from continuous subduction? How reliable are data gaps? Characteristics of the Paleozoic record of subduction include calc-alkaline magmatism, blueschist/UHP metamorphism and collisional orogenesis, and ophiolites as representatives of former ocean lithosphere. Are these characteristic rocks preserved in Proterozoic, Archean and Hadean crust? Does a hotter mantle, higher heat production and weaker lithosphere modify or eliminate these features? What preceded subduction and how do we recognize that regime? Are rock associations or geochemical fingerprints reliable? Does reworking and overprinting modify geochemical fingerprints? Proposals for the start of plate tectonics have been based on: persistence of isotope anomalies/fractionated chemical domains in the mantle; changes in chemistry of magmatic rocks, rates of crustal growth vs reworking, and sites of growth; the metamorphic record, particularly the first appearance of contrasting thermal gradients or eclogite (including evidence from mineral inclusions in diamonds) or UHP metamorphic rocks; stabilization of cratonic lithosphere and formation of supercratons, and the beginning of the Proterozoic supercontinent cycle; the end of the flat Earth, emergence of continents, development of significant topography, changes in the style of orogeny and the rise in atmospheric oxygen; and, the appearance of passive margins and changes in the style of sedimentation. Estimates of the timing have varied from the Hadean to Neoproterozoic. I will summarize evidence for a growing consensus that the late Mesoarchean to early Paleoproterozoic was a 700 Myr long period of transition to continuous (?) subduction and global (?) mobile-lid plate tectonics.
Septal splint with wax plates.
Directory of Open Access Journals (Sweden)
Nayak D
1995-07-01
Full Text Available To pack or not to pack, has always been a debate, especially after septal and functional endoscopic sinus surgery. The authors have studied the symptoms of packing versus not packing in their series of 100 patients having undergone nasal surgery. They advocate the use of dental wax for the fashioning of septal splints, since they are easy to introduce, cheap and malleable. The patients postoperative comfort is greatly enhanced with the use of dental wax plate splints instead of nasal packing.
Nanocapillary Adhesion between Parallel Plates.
Cheng, Shengfeng; Robbins, Mark O
2016-08-01
Molecular dynamics simulations are used to study capillary adhesion from a nanometer scale liquid bridge between two parallel flat solid surfaces. The capillary force, Fcap, and the meniscus shape of the bridge are computed as the separation between the solid surfaces, h, is varied. Macroscopic theory predicts the meniscus shape and the contribution of liquid/vapor interfacial tension to Fcap quite accurately for separations as small as two or three molecular diameters (1-2 nm). However, the total capillary force differs in sign and magnitude from macroscopic theory for h ≲ 5 nm (8-10 diameters) because of molecular layering that is not included in macroscopic theory. For these small separations, the pressure tensor in the fluid becomes anisotropic. The components in the plane of the surface vary smoothly and are consistent with theory based on the macroscopic surface tension. Capillary adhesion is affected by only the perpendicular component, which has strong oscillations as the molecular layering changes.
Guided wave topological imaging of isotropic plates.
Rodriguez, S; Deschamps, M; Castaings, M; Ducasse, E
2014-09-01
Topological imaging is a recent method. So far, it has been applied to bulk waves, and high resolution has been demonstrated for imaging scatterers even with a single ultrasonic insonification of the inspected medium. This method consists of (i) emitting waves and measuring the response of the medium; (ii) solving two propagation problems: the direct problem, where the experimental source is simulated, and the adjoint problem, where the source is the time-reversed difference between the measured wave field and that obtained from the direct problem; (iii) computing the image by simply multiplying both wave fields together in the frequency domain, and integrating over the frequency. The speed of the method depends only on the cost of the field computations that are performed in the defect-free medium. The present work deals with the application of topological imaging to plate guided waves. Combining modal theory and Fourier analysis, the computations are performed in a very short time. In the investigated cases, two-dimensional in-plane imaging is based on propagation of the single S0 Lamb mode. Despite very high dispersion of that mode, scatterers are accurately located and the spatial resolution is equal to about one wavelength.
Differential interference contrast microscopy using Savart plates
Trịnh, Hưng-Xuân; Lin, Shyh-Tsong; Chen, Liang-Chia; Yeh, Sheng-Lih; Chen, Chin-Sheng
2017-04-01
A new differential interference contrast microscopy (DICM), which uses Savart prisms as a shearing plate and a phase-shifting device, is proposed. The system consists of a phase-shifting module (PSM) and a DICM module (DICMM). The PSM has two Savart prisms: the first prism separates the incident beam into two parallel beams, and the second prism recombines these two beams. The optical path difference (OPD) of the two beams, which is represented by a biased OPD, can be adjusted by rotating the angle of the normal surface of the second prism. In the DICMM, the other Savart prism is used to replace the Nomarski prism (NP) in conventional DICM. It combines with an afocal microscopic system (AMS) to produce a Savart-DICM system, which is able to perform a phase-shifting technique by changing the biased OPD to produce a phase shift of π/2 for each step. This paper describes the configuration and measurement theory of the microscope. The experimental results confirm the validity and capability of the proposed microscope.
Seismic link at plate boundary
Indian Academy of Sciences (India)
Faical Ramdani; Omar Kettani; Benaissa Tadili
2015-06-01
Seismic triggering at plate boundaries has a very complex nature that includes seismic events at varying distances. The spatial orientation of triggering cannot be reduced to sequences from the main shocks. Seismic waves propagate at all times in all directions, particularly in highly active zones. No direct evidence can be obtained regarding which earthquakes trigger the shocks. The first approach is to determine the potential linked zones where triggering may occur. The second step is to determine the causality between the events and their triggered shocks. The spatial orientation of the links between events is established from pre-ordered networks and the adapted dependence of the spatio-temporal occurrence of earthquakes. Based on a coefficient of synchronous seismic activity to grid couples, we derive a network link by each threshold. The links of high thresholds are tested using the coherence of time series to determine the causality and related orientation. The resulting link orientations at the plate boundary conditions indicate that causal triggering seems to be localized along a major fault, as a stress transfer between two major faults, and parallel to the geothermal area extension.
Silicon-micromachined microchannel plates
Energy Technology Data Exchange (ETDEWEB)
Beetz, Charles P. E-mail: NanoSystem@aol.com; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R. E-mail: winn@fair1.fairfield.edu
2000-03-11
Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of {approx}0.5 to {approx}25 {mu}m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented.
Silicon-micromachined microchannel plates
Beetz, Charles P.; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R.
2000-03-01
Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of ˜0.5 to ˜25 μm, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200°C, also compatible with high-temperture brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented.
Petrologic implications of plate tectonics.
Yoder, H S
1971-07-30
Petrologists can make significant contributions to the plate tectonic concept. Fixing the stability fields of the principal rock types involved will provide the limits of pressure and temperature of the various environments. Experimental determination of the partition coefficients of the trace elements will be helpful. Studies of the partial melting behavior of possible parental materials in the absence and presence of water, especially the undersaturated region, will contribute to the understanding of magma production. Experimental observations on the rheological properties of the peridotites below and just above the solidus will lead to a better evaluation of the convective mechanism. Measurement of the fundamental properties of rocks, such as the density of solids and liquids at high pressures and temperatures, would contribute to understanding the concepts of diapiric rise, magma segregation, and the low-velocity zone. Broader rock sampling of the oceanic areas of all environments will do much to define the petrologic provinces. The field petrologist specializing in the Paleozoic regions and Precambrian shields can contribute by examining those regions for old plate boundaries and devising new criteria for their recognition.
Smaller plates, less food waste
DEFF Research Database (Denmark)
Hansen, Pelle Guldborg; Schmidt, Karsten; Skov, Laurits Rhoden
With roughly one-third of food produced for human consumption lost or wasted globally (about 1.3 billion tons per year), the impact on the environment cannot be anymore neglected. Actions at all points in the production chain are now urgent, including reductions in food waste at home, by retailer...... the hypothesis that dishware size plays an important role in the amount of food wasted among Danish adults in a self-service eating setting. This finding has PHN implications: slight changes in the foodscape can contribute to sustainable food consumption goals....... was to investigate whether the size of the dishware would non-reflectively influence the amount of foods taken from an “ad-libitum” buffet and the resulting amount of waste. Sample consisted of Danish business leaders that took part in a congress in Copenhagen, Denmark. Two buffet tables were set up on two separate....... All food waste was collected in designated trash bags (different colour in each floor) and weighted in bulk by students. Smaller plates appear to have decreased food waste by 26% compared to the standard sized plates at a single serving in a self-service eating setting. This pilot study supports...
Wood zone plate fishnet metalens
Directory of Open Access Journals (Sweden)
Orazbayev Bakhtiyar
2015-01-01
Full Text Available Fresnel-zone plate lenses provide focusing performance while having low profile. Unfortunately, they usually display higher reflection losses than conventional dielectric lenses. Here, we demonstrate a low-profile Wood zone plate metalens based on the fishnet metamaterial working in a near-zero regime with an equivalent refractive index less than unity (nf = 0.51. The metalens is made of alternating dielectric and fishnet metamaterial concentric rings. The use of fishnet metamaterial allows reducing the reflections from the lens, while maintaining low profile, low cost and ease of manufacturing. The lens is designed to work at the W-band of the millimeter-waves range with a focal length FL = 22.8 mm (7.5 λ0 aiming at antenna or radar system applications. The focusing performance of the lens along with its radiation characteristics in a lens antenna configuration have been studied numerically and confirmed experimentally, showing a gain improvement of ~2.5 dB with respect to a fishnet Soret metalens.
Zhen, Wu; Wanji, Chen
2007-05-01
Buckling response of angle-ply laminated composite and sandwich plates are analyzed using the global-local higher order theory with combination of geometric stiffness matrix in this paper. This global-local theory completely fulfills the free surface conditions and the displacement and stress continuity conditions at interfaces. Moreover, the number of unknowns in this theory is independent of the number of layers in the laminate. Based on this global-local theory, a three-noded triangular element satisfying C1 continuity conditions has also been proposed. The bending part of this element is constructed from the concept of DKT element. In order to improve the accuracy of the analysis, a method of modified geometric stiffness matrix has been introduced. Numerical results show that the present theory not only computes accurately the buckling response of general laminated composite plates but also predicts the critical buckling loads of soft-core sandwiches. However, the global higher-order theories as well as first order theories might encounter some difficulties and overestimate the critical buckling loads for soft-core sandwich plates.
Edge wrinkling in elastically supported pre-stressed incompressible isotropic plates
Destrade, Michel; Fu, Yibin; Nobili, Andrea
2016-09-01
The equations governing the appearance of flexural static perturbations at the edge of a semi-infinite thin elastic isotropic plate, subjected to a state of homogeneous bi-axial pre-stress, are derived and solved. The plate is incompressible and supported by a Winkler elastic foundation with, possibly, wavenumber dependence. Small perturbations superposed onto the homogeneous state of pre-stress, within the three-dimensional elasticity theory, are considered. A series expansion of the plate kinematics in the plate thickness provides a consistent expression for the second variation of the potential energy, whose minimization gives the plate governing equations. Consistency considerations supplement a constraint on the scaling of the pre-stress so that the classical Kirchhoff-Love linear theory of pre-stretched elastic plates is retrieved. Moreover, a scaling constraint for the foundation stiffness is also introduced. Edge wrinkling is investigated and compared with body wrinkling. We find that the former always precedes the latter in a state of uni-axial pre-stretch, regardless of the foundation stiffness. By contrast, a general bi-axial pre-stretch state may favour body wrinkling for moderate foundation stiffness. Wavenumber dependence significantly alters the predicted behaviour. The results may be especially relevant to modelling soft biological materials, such as skin or tissues, or stretchable organic thin-films, embedded in a compliant elastic matrix.
Directory of Open Access Journals (Sweden)
M. Sanbi
2015-01-01
Full Text Available Theoretical and numerical results of the modeling of a smart plate are presented for optimal active vibration control. The smart plate consists of a rectangular aluminum piezocomposite plate modeled in cantilever configuration with surface bonded thermopiezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. A generic thermopiezoelastic theory for piezocomposite plate is derived, using linear thermopiezoelastic theory and Kirchhoff assumptions. Finite element equations for the thermopiezoelastic medium are obtained by using the linear constitutive equations in Hamilton’s principle together with the finite element approximations. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG-Kalman filter is applied. By using this model, the study first gives the influences of the actuator/sensor pair placement and size on the response of the smart plate. Second, the effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. It is shown that the effectiveness of the control is not affected by the applied thermal gradient and can be applied with or without this gradient at any time of plate vibrations.
Effect of plate roughness on the field near RPC plates
Jash, Abhik; Mukhopadhyay, Supratik; Chattopadhyay, Subhasis
2016-01-01
The inner surfaces of the electrodes encompassing the gas volume of a Resistive Plate Chamber (RPC) have been found to exhibit asperities with three kind of features grossly. The desired uniform electric field within the gas volume of RPC is expected to be affected due to the presence of these asperities, which will eventually affect the final response from the detector. In this work, an attempt has been made to model the highly complex roughness of the electrode surfaces and compute its effect on the electrostatic field within RPC gas chamber. The calculations have been performed numerically using Finite Element Method (FEM) and Boundary Element Method (BEM) and the two methods have been compared in this context.
Excitation and Characterization of Chladni Plate Patterns
Bourke, Shannon; Behringer, Ernest
2011-04-01
When a thin metal plate with a small amount of sand on it is made to vibrate, aesthetically pleasing sand patterns can form along the nodal lines of the plate. These symmetric patterns are called Chladni Patterns. Students taking PHY 101 Physical Science in the Arts at Eastern Michigan University create these patterns by pulling a violin bow across the edge of a plate, or by using a mechanical oscillator to drive the center of a plate. These two methods only allow a small subset of all possible points on the plate to be excited. We designed and built an electronic device that allows its user to excite the plate at any point. We present patterns created with this electronic device and other methods, and describe ways to model the observed patterns.
Rapidly Moving Divertor Plates In A Tokamak
Energy Technology Data Exchange (ETDEWEB)
S. Zweben
2011-05-16
It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.
Coupling between plate vibration and acoustic radiation
Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin
1993-01-01
A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.
Walton, William C., Jr.
1960-01-01
This paper reports the findings of an investigation of a finite - difference method directly applicable to calculating static or simple harmonic flexures of solid plates and potentially useful in other problems of structural analysis. The method, which was proposed in doctoral thesis by John C. Houbolt, is based on linear theory and incorporates the principle of minimum potential energy. Full realization of its advantages requires use of high-speed computing equipment. After a review of Houbolt's method, results of some applications are presented and discussed. The applications consisted of calculations of the natural modes and frequencies of several uniform-thickness cantilever plates and, as a special case of interest, calculations of the modes and frequencies of the uniform free-free beam. Computed frequencies and nodal patterns for the first five or six modes of each plate are compared with existing experiments, and those for one plate are compared with another approximate theory. Beam computations are compared with exact theory. On the basis of the comparisons it is concluded that the method is accurate and general in predicting plate flexures, and additional applications are suggested. An appendix is devoted t o computing procedures which evolved in the progress of the applications and which facilitate use of the method in conjunction with high-speed computing equipment.
3-D vibration analysis of annular sector plates using the Chebyshev-Ritz method
Zhou, D.; Lo, S. H.; Cheung, Y. K.
2009-02-01
The three-dimensional free vibration of annular sector plates with various boundary conditions is studied by means of the Chebyshev-Ritz method. The analysis is based on the three-dimensional small strain linear elasticity theory. The product of Chebyshev polynomials satisfying the necessary boundary conditions is selected as admissible functions in such a way that the governing eigenvalue equation can be conveniently derived through an optimization process by the Ritz method. The boundary functions guarantee the satisfaction of the geometric boundary conditions of the plates and the Chebyshev polynomials provide the robustness for numerical calculation. The present study provides a full vibration spectrum for the thick annular sector plates, which cannot be given by the two-dimensional (2-D) theories such as the Mindlin theory. Comprehensive numerical results with high accuracy are systematically produced, which can be used as benchmark to evaluate other numerical methods. The effect of radius ratio, thickness ratio and sector angle on natural frequencies of the plates with a sector angle from 120° to 360° is discussed in detail. The three-dimensional vibration solutions for plates with a re-entrant sector angle (larger than 180°) and shallow helicoidal shells (sector angle larger than 360°) with a small helix angle are presented for the first time.
GS Department
2009-01-01
The Green Plates Service, which is responsible for issuing the 431K/CD vehicle number plates , wishes to apologise for the delay in processing applications over the past weeks. The delay is outside the Service’s control, as it is due to the recent introduction of new rules governing the vehicle registration process in France. Normal service will be resumed as soon as possible. Thank you for your understanding. GS-SEM-LS – Green Plates Service
Anisotropic magnetocapacitance in ferromagnetic-plate capacitors
Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.
2015-04-01
The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.
Sigmoid plate dehiscence: Congenital or acquired condition?
Energy Technology Data Exchange (ETDEWEB)
Liu, Zhaohui, E-mail: lzhtrhos@163.com [Capital Medical University, Beijing Tongren Hospital, No 1 Dong Jiao Min Street, Dongcheng District, Beijing 100730 (China); Li, Jing, E-mail: lijingxbh@yahoo.com.cn [Capital Medical University, Beijing Tongren Hospital, No 1 Dong Jiao Min Street, Dongcheng District, Beijing 100730 (China); Zhao, Pengfei, E-mail: zhaopengf05@163.com [Capital Medical University, Beijing Friendship Hospital, No 95 Yongan Road, Xicheng District, Beijing 100050 (China); Lv, Han, E-mail: chrislvhan@126.com [Capital Medical University, Beijing Friendship Hospital, No 95 Yongan Road, Xicheng District, Beijing 100050 (China); Dong, Cheng, E-mail: derc007@sina.com [Capital Medical University, Beijing Friendship Hospital, No 95 Yongan Road, Xicheng District, Beijing 100050 (China); Liu, Wenjuan, E-mail: wenjuanliu@163.com [Jining No. 1 People' s Hospital, No. 6 Health Street, Jining 272100 (China); Wang, Zhenchang, E-mail: cjr.wzhch@vip.163.com [Capital Medical University, Beijing Friendship Hospital, No 95 Yongan Road, Xicheng District, Beijing 100050 (China)
2015-05-15
Highlights: • CT with multiplanar reformations can accurately display the sigmoid platet dehiscence. • The prevalence of sigmoid plate dehiscence was no significant difference among different age groups. • The size of sigmoid plate bony defects were not statistically different among different age groups. • The sigmoid plate dehiscence is more commonly a congenital than an acquired condition. - Abstract: Background and purpose: The imaging features of sigmoid plate dehiscence-induced pulsatile tinnitus have been presented. The origin of the sigmoid plate dehiscence, however, remains unclear. Our aim was to assess the prevalence and extent of sigmoid plate dehiscence on computed tomography (CT) images in multiple age groups to determine whether this condition is more likely to be congenital or acquired. Materials and methods: We retrospectively reviewed contrast-enhanced CT images of sigmoid plates of temporal bones in 504 patients. Each temporal bone was characterized as normal or dehiscent. Patients were then subcategorized into four age groups, and the prevalence and extent of dehiscent sigmoid plates in each group were calculated and compared. Results: Overall, 80 patients had sigmoid plate dehiscence, nine of whom had it bilaterally. In successively older age groups, the prevalences of sigmoid plate dehiscence were 18.9%, 20.1%, 14.5%, and 12.7%, respectively. Respective average anteroposterior bony defect diameters were 3.7 ± 1.7, 3.0 ± 1.3, 3.1 ± 1.5, and 3.0 ± 1.1 mm. Respective average vertical bony defect diameters were 3.6 ± 2.3, 2.6 ± 1.2, 3.2 ± 1.5, and 3.0 ± 1.7 mm. The prevalence and extent of sigmoid plate dehiscence were not statistically different among the four age groups. Conclusions: The similar radiologic prevalence and extent of dehiscent sigmoid plates among the age groups suggest that the dehiscence is more commonly a congenital than an acquired condition.
Strain resolving method of composite plane plates
Directory of Open Access Journals (Sweden)
Ion FUIOREA
2011-06-01
Full Text Available The paper deals with the extension of isotropic plates problem to the case of composite plates. In order to perform it, the Kirchhoff-Love hypotheses were “softened” by some additional ones. Considering the constitutive laws for composite materials the stress functions were eliminated by using Cauchy equations. As a result a partial derivative equation in displacements was obtained. Finally the boundary condition formulation was extended for the case of complex composite plates.
Fuzzy Sliding Mode Control of Plate Vibrations
Manu Sharma; Singh, S. P.
2010-01-01
In this paper, fuzzy logic is meshed with sliding mode control, in order to control vibrations of a cantilevered plate. Test plate is instrumented with a piezoelectric sensor patch and a piezoelectric actuator patch. Finite element method is used to obtain mathematical model of the test plate. A design approach of a sliding mode controller for linear systems with mismatched time-varying uncertainties is used in this paper. It is found that chattering around the sliding surface in the sliding ...
High performance flat plate solar collector
Lansing, F. L.; Reynolds, R.
1976-01-01
The potential use of porous construction is presented to achieve efficient heat removal from a power producing solid and is applied to solar air heaters. Analytical solutions are given for the temperature distribution within a gas-cooled porous flat plate having its surface exposed to the sun's energy. The extracted thermal energy is calculated for two different types of plate transparency. Results show the great improvement in performance obtained with porous flat plate collectors as compared with analogous nonporous types.
Evaluation of korzincalloy prepared by Hohman Plating
Energy Technology Data Exchange (ETDEWEB)
Korinko, P. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hollingshad, A. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-07-17
A commercial vendor, Hohman Plating performed contract engineering work to determine the feasibility of producing pin hole free KorZincAlloy bronze material used for zinc gettering. Samples were tested for Sn plating thickness, heat treatability, and chemistry prior to being subjected to a standardized zinc exposure. The samples absorbed zinc and were examined using visual and scanning electron microscopy. Hohman Plating successfully produced KZA that met the target composition, was pin hole free, and was an effective zinc getter.
Stability of flow over plates with porous suction strips
Reed, H. L.; Nayfeh, A. H.
1981-01-01
This paper addresses the stability of two-dimensional, incompressible boundary-layer flow over plates with suction through porous strips. The mean flow is calculated using linearized triple-deck, closed-form solutions. The stability results of the triple-deck theory are shown to be in good agreement with those of the interacting boundary layers. Then different configurations of number, spacing, and mass flow rate through such porous strips are analyzed and compared with nonsimilar uniform-suction stability results from the point of view of applicability to laminar flow control.
A Novel Rectangular Element for Piezoelectric Laminated Plates
Institute of Scientific and Technical Information of China (English)
ZHOU Yong; WANG Xing-wei; SUN Ya-fei
2004-01-01
Based on the classical laminated plate theory, a novel finite element formulation is presented for modeling the static response of laminated composites containing distributed piezoelectric ceramic subjected to electric loadings. A four-node rectangular composite element with an additional voltage freedom per piezoelectric layer is implemented for the analysis. The element can predict more accurately the bending response of the structure because of its new displacement radixes. Numerical examples ere performed and the calculated data compare very well with existing results in the literatures.
Strength of gusset plates in welded steel structures
DEFF Research Database (Denmark)
Jensen, Aage
2004-01-01
The design of gusset plates is normally carried out on the bases of the technical beam theory or other assumptions proved safe by experience. This design procedure has proved its usefulness by the length of life and use of existing structures, and is to some extend justified in simple loading cases....... A different approach is taken in the paper where upper and lower bounds are derived for the yield load assuming a perfect plastic material and Tresca's yield condition. Ther theoretical results are supported by a few numbers of tests. The paper deals mainly with the case of a single member welded into a cut...
Harmonic response of multilayered one-dimensional quasicrystal plates subjected to patch loading
Waksmanski, Natalie; Pan, Ernian; Yang, Lian-Zhi; Gao, Yang
2016-08-01
Dynamic analyses of a multilayered one-dimensional quasicrystal plate subjected to a patch harmonic loading with simply supported lateral boundary conditions are presented. The pseudo-Stroh formulation and propagator matrix method are used to obtain the exact three-dimensional response of the plate. In order to avoid resonance, the frequency of the patch loading is chosen away from the natural frequencies by introducing a small imaginary part. The patch loading is expressed in the form of a double Fourier series expansion. Comprehensive numerical results are shown for a sandwich plate with two different stacking sequences. The results reveal the influence of layering, loading area, phonon-phason coupling coefficient and input frequency. This work is the first step towards understanding quasicrystals under intricate loading conditions such as indentation and impact, and the exact closed-form solution can serve as a reference in convergence studies of other numerical methods and for verification of existing or future plate theories.
Institute of Scientific and Technical Information of China (English)
李晶晶; 程昌钧
2004-01-01
Based on the Reddy' s theory of plates with the effect of higher-order shear deformations, the governing equations for bending of orthotropic plates with finite deformations were established. The differential quadrature ( DQ ) method of nonlinear analysis to the problem was presented. New DQ approach, presented by Wang and Bert (DQWB), is extended to handle the multiple boundary conditions of plates. The techniques were also further extended to simplify nonlinear computations. The numerical convergence and comparison of solutions were studied. The results show that the DQ method presented is very reliable and valid. Moreover, the influences of geometric and material parameters as well as the transverse shear deformations on nonlinear bending were investigated.Numerical results show the influence of the shear deformation on the static bending of orthotropic moderately thick plate is significant.
Nonlinear vibration and buckling of circular sandwich plate under complex load
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The nonlinear vibration fundamental equation of circular sandwich plate under uniformed load and circumjacent load and the loosely clamped boundary condition were established by von Karman plate theory, and then accordingly exact solution of static load and its numerical results were given. Based on time mode hypothesis and the variational method, the control equation of the space mode was derived, and then the amplitude frequency-load character relation of circular sandwich plate was obtained by the modified iteration method. Consequently the rule of the effect of the two kinds of load on the vibration character of the circular sandwich plate was investigated. When circumjacent load makes the lowest natural frequency zero, critical load is obtained.
Ciancio, P. M.; Rossit, C. A.; Laura, P. A. A.
2007-05-01
This study is concerned with the vibration analysis of a cantilevered rectangular anisotropic plate when a concentrated mass is rigidly attached to its center point. Based on the classical theory of anisotropic plates, the Ritz method is employed to perform the analysis. The deflection of the plate is approximated by a set of beam functions in each principal coordinate direction. The influence of the mass magnitude on the natural frequencies and modal shapes of vibration is studied for a boron-epoxy plate and also in the case of a generic anisotropic material. The classical Ritz method with beam functions as the spatial approximation proved to be a suitable procedure to solve a problem of this analytical complexity.
Linear free flexural vibration of cracked functionally graded plates in thermal environment
Natarajan, S; Ganapathi, M; Kerfriden, P; Bordas, S; 10.1016/j.compstruc.2011.04.002
2011-01-01
In this paper, the linear free flexural vibrations of functionally graded material plates with a through center crack is studied using an 8-noded shear flexible element. The material properties are assumed to be temperature dependent and graded in the thickness direction. The effective material properties are estimated using the Mori-Tanaka homogenization scheme. The formulation is developed based on first-order shear deformation theory. The shear correction factors are evaluated employing the energy equivalence principle. The variation of the plates natural frequency is studied considering various parameters such as the crack length, plate aspect ratio, skew angle, temperature, thickness and boundary conditions. The results obtained here reveal that the natural frequency of the plate decreases with increase in temperature gradient, crack length and gradient index.
Energy Technology Data Exchange (ETDEWEB)
Singh, Sandeep; Shukla, K. K. [Motilal Nehru National Institute of Technology, Allahabad (India); Shingh, Jeeoot [Department of Mechanical Engineering, Birla Institute of Technology Mesra, Ranchi (India)
2013-02-15
Meshless collocations utilizing Gaussian and Multi quadric radial basis functions for the stability analysis of orthotropic and cross ply laminated composite plates subjected to thermal and mechanical loading are presented. The governing differential equations of plate are based on higher order shear deformation theory considering two different transverse shear stress functions. The plate governing differential equations are discretized using radial basis functions to cast a set of simultaneous equations. The convergence of both radial basis functions is studied for different values of shape parameters. Several numerical examples are undertaken to demonstrate the accuracy of present method and the effects of orthotropy ratio of the material, span to thickness ratio of the plate, and fiber orientation on critical load/temperature are also presented.
Institute of Scientific and Technical Information of China (English)
F. H. Zhu; Y. M. Fu
2008-01-01
By considering the effect of interfacial damage and using the variation principle, three-dimensional nonli-near dynamic governing equations of the laminated plates with interfacial damage are derived based on the general six-degrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite dif-ference method, and the results are validated by compari-son with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.
Modeling of damage evaluation in thin composite plate loaded by pressure loading
Directory of Open Access Journals (Sweden)
Dudinský M.
2012-12-01
Full Text Available This article presents the results of numerical analysis of elastic damage of thin laminated long fiber-reinforced composite plate consisting of unidirectional layers which is loaded by uniformly distributed pressure. The analysis has been performed by means of the finite element method (FEM. The numerical implementation uses layered plate finite elements based on the Kirchhoff plate theory. System of nonlinear equations has been solved by means of the Newton- Raphson procedure. Evolution of damage has been solved using the return-mapping algorithm based on the continuum damage mechanics (CDM. The analysis was performed using own program created in MATLAB. Problem of laminated fiber-reinforced composite plate fixed on edges for two different materials and three different laminate stacking sequences (LSS was simulated. Evolution of stresses vs. strains and also evolution of damage variables in critical points of the structure are shown.
S/Ka Dichroic Plate with Rounded Corners for NASA's 34-m Beam-Waveguide Antenna
Veruttipong, W.; Khayatian, B.; Imbriale, W.
2016-02-01
An S-/Ka-band frequency selective surface (FSS) or a dichroic plate is designed, manufactured, and tested for use in NASA's Deep Space Network (DSN) 34-m beam-waveguide (BWG) antennas. Due to its large size, the proposed dichroic incorporates a new design feature: waveguides with rounded corners to cut cost and allow ease of manufacturing the plate. The dichroic is designed using an analysis that combines the finite-element method (FEM) for arbitrarily shaped guides with the method of moments and Floquet mode theory for periodic structures. The software was verified by comparison with previously measured and computed dichroic plates. The large plate was manufactured with end-mill machining. The RF performance was measured and is in excellent agreement with the analytical results. The dichroic has been successfully installed and is operational at DSS-24, DSS-34, and DSS-54.
Numerical Solution of Membrane Forces for A Free-Free Floating Plate with Large Deflection
Institute of Scientific and Technical Information of China (English)
陈徐均; 崔维成; 宋皓; 汤雪峰
2003-01-01
Considering that the thickness of a pontoon-type very large floating structure (VLFS) is very small in comparison with the length and width, VLFS can be modeled as a thin plate. In theory, the displacements and the membrane forces of a plate with large deflection are all the functions of the second-order differentials of the Ariy stress function. With these characteristics considered, the Ariy stress function of a floating free-free plate is calculated by setting the virtual values of three of the corner points. The finite difference method is chosen to solve the problem. When the Ariy stress function of the plate is obtained, the membrane forces can easily be calculated. Comparisons between the forces induced by the membrane forces and by the fluid are considered. It is shown that the membrane forces can not be neglected in many cases.
Li, Xiaoda; Zhang, Xiangkui; Hu, Ping; Liu, Weijie; Shen, Guozhe; Zhan, Xianghui
2015-01-01
The locking compression plate fixation treatment for the unstable sacral fractures is simple and effective, with less trauma and complications. Some locking compression plate parts have been made of high-strength Plate manufactured by hot stamping process since the demand for lightweight biomedical materials. Finite Element (FE) method of One-Step inverse forming based on deformation theory is the tool to evaluate the formability of locking compression plate panel quickly in initial design for reducing costs and development cycle of Plate. But current one-step inverse forming methods are all suitable for cold stamping, not hot-stamping. This paper proposed one-step inverse forming method and workflow for hot-stamping of locking compression Plate. And the B pillar of a sacral bone was simulated and its computing result was compared with experimental value. The result shows that the proposed method in this paper can quickly evaluate high temperature formability of high-strength Plate. And the method is proposed to be used in initial design.
Initiation of Plate Tectonics from Post-Magma Ocean Thermo-Chemical Convection
Foley, Bradford J; Elkins-Tanton, Linda T
2014-01-01
Leading theories for the presence of plate tectonics on Earth typically appeal to the role of present day conditions in promoting rheological weakening of the lithosphere. However, it is unknown whether the conditions of the early Earth were favorable for plate tectonics, or any form of subduction, and thus how subduction begins is unclear. Using physical models based on grain-damage, a grainsize-feedback mechanism capable of producing plate-like mantle convection, we demonstrate that subduction was possible on the Hadean Earth (hereafter referred to as proto-subduction or proto-plate tectonics), that proto-subduction differed from modern day plate tectonics, and that it could initiate rapidly. Scaling laws for convection with grain-damage show that, though either higher mantle temperatures or higher surface temperatures lead to slower plates, proto-subduction, with plate speeds of $\\approx 1.75$ cm/yr, can still be maintained in the Hadean, even with a CO$_2$ rich primordial atmosphere. Furthermore, when the...
Xu, T. F.; Xing, Y. F.
2016-12-01
This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material (FGM) thin plates subjected to initially in-plane loads and with an elastic foundation. Based on classical thin plate theory, the governing differential equations are derived using Hamilton's principle. A neutral surface is used to eliminate stretching-bending coupling in FGM plates on the basis of the assumption of constant Poisson's ratio. The resulting governing equation of FGM thin plates has the same form as homogeneous thin plates. The separation-of-variables method is adopted to obtain solutions for the free vibration problems of rectangular FGM thin plates with separable boundary conditions, including, for example, clamped plates. The obtained normal modes and frequencies are in elegant closed forms, and present formulations and solutions are validated by comparing present results with those in the literature and finite element method results obtained by the authors. A parameter study reveals the effects of the power law index n and aspect ratio a/ b on frequencies.
Nonlinear Resonance of the Rotating Circular Plate under Static Loads in Magnetic Field
Institute of Scientific and Technical Information of China (English)
HU Yuda; WANG Tong
2015-01-01
The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.
Stress and mixed boundary conditions for two-dimensional dodecagonal quasi-crystal plates
Indian Academy of Sciences (India)
Yan Gao; Si-Peng Xu; Bao-Sheng Zhao
2007-05-01
For plate bending and stretching problems in two-dimensional (2D) dodecagonal quasi-crystal (QC) media, the reciprocal theorem and the general solution for QCs are applied in a novel way to obtain the appropriate stress and mixed boundary conditions accurate to all order. The method developed by Gregory and Wan is used to generate necessary conditions which the prescribed data on the edge of the plate must satisfy in order that it should generate a decaying state within the plate; these decaying state conditions are obtained explicitly for axisymmetric bending and stretching of a circular plate when stress or mixed conditions are imposed on the plate edge. They are then used for the correct formulation of boundary conditions for the interior solution. For the stress data, our boundary conditions coincide with those obtained in conventional forms of plate theories. More importantly, appropriate boundary conditions with a set of mixed edge-data are obtained for the ﬁrst time. Furthermore, the corresponding necessary conditions for transversely isotropic elastic plate are obtained directly, and their isotropic elastic counterparts are also obtained.
Xu, T. F.; Xing, Y. F.
2016-09-01
This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material (FGM) thin plates subjected to initially in-plane loads and with an elastic foundation. Based on classical thin plate theory, the governing differential equations are derived using Hamilton's principle. A neutral surface is used to eliminate stretching-bending coupling in FGM plates on the basis of the assumption of constant Poisson's ratio. The resulting governing equation of FGM thin plates has the same form as homogeneous thin plates. The separation-of-variables method is adopted to obtain solutions for the free vibration problems of rectangular FGM thin plates with separable boundary conditions, including, for example, clamped plates. The obtained normal modes and frequencies are in elegant closed forms, and present formulations and solutions are validated by comparing present results with those in the literature and finite element method results obtained by the authors. A parameter study reveals the effects of the power law index n and aspect ratio a/b on frequencies.
Using Character Recognition for Plate Localization
Directory of Open Access Journals (Sweden)
Lama Hamandi
2012-10-01
Full Text Available In this paper, the “character recognition” approach to recognizing a vehicle license plate is used for localizing Saudi license plates. The proposed algorithm filters out all possible objects from the license plate image and focuses on the resulting objects. The coordinates of the center point of the bounding box for these objects is calculated and then possible alignments between these objects are checked. After finding the aligned objects, the recognition algorithms are applied to differentiate the numbers from the letters in the plate.
Plate Tectonics: A Paradigm under Threat.
Pratt, David
2000-01-01
Discusses the challenges confronting plate tectonics. Presents evidence that contradicts continental drift, seafloor spreading, and subduction. Reviews problems posed by vertical tectonic movements. (Contains 242 references.) (DDR)
Strength of Ship Plates under Combined Loading
DEFF Research Database (Denmark)
Cui, W.; Wang, Y.; Pedersen, Preben Terndrup
2002-01-01
Strength of ship plates plays a significant role in the ultimate strength analysis of ship structures. In recent years several authors have proposed simplified analytical methods to calculate the ultimate strength of unstiffened plates. The majority of these investigations deal with plates....... The obtained results indicate that the simplified analytical method is able to determine the ultimate strength of unstiffened plates with imperfections in the form of welding-induced residual stresses and geometric deflections subjected to combined loads. Comparisons with experimental results show...
Line Heat-Source Guarded Hot Plate
Federal Laboratory Consortium — Description: The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. This facility provides for absolute measurement of thermal...
Line Heat-Source Guarded Hot Plate
Federal Laboratory Consortium — Description:The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. This facility provides for absolute measurement of thermal...
Strength of ship plates under combined loading
DEFF Research Database (Denmark)
Cui, Weiching; Wang, Yongjun; Pedersen, Preben Terndrup
2000-01-01
Strength of ship plates plays a significant role for the ultimate strength analysis of ship structures. In recent years several authors have proposed simplified methods to calculate the ultimate strength of unstiffened plates. The majority of these investigations deal with plates subjected...... that the simplified method is able to determine the ultimate strength of unstiffened plates with imperfections in the form of welding induced residual stresses and geometric deflections subjected to combined loads. Comparisons with experimental results show that the procedure has sufficient accuracy for practical...
OPTIMAL DESIGN OF QUADRATIC SANDWICH PLATE
Directory of Open Access Journals (Sweden)
TIMAR Dr. Imre
2016-05-01
Full Text Available In this paper, we show the optimal design of the three-layered sandwich plates. The objective function contains the material and fabrication costs. The design constraints are the maximal stresses, the deflection of plates and damping of vibrations. The unknown is the thickness of the filling foam. By the mathematical method, we define the minima of the cost function and the optimal thickness of the filling layer of foam. The active constraint is the deflection, so we calculate of the costs of the sandwich plate with the homogeneous plate.
Plate Tectonics: A Paradigm under Threat.
Pratt, David
2000-01-01
Discusses the challenges confronting plate tectonics. Presents evidence that contradicts continental drift, seafloor spreading, and subduction. Reviews problems posed by vertical tectonic movements. (Contains 242 references.) (DDR)
Composition of the continental plates
Gilluly, J.
1954-01-01
The structures of continental plates and of oceanic basins suggested by several seismologists are utilized to estimate the relative volumes of sial and sima in the earth's crust. It seems that sial of the composition of the average igneous rock constitutes fully 26% and perhaps as much as 43% of the total crust. This ratio is far higher than seems likely if the sial had been entirely derived through fractional crystallization of a basaltic magma. The relative paucity of intermediate rocks as compared with granite and gabbro in the crust points in the same direction. The tentative conclusion is reached that the sial owes a large part of its volume to some process other than fractional crystallization of basalt-possibly to the emanation of low-melting constituents such as water, silica, potassa, soda, and alumina directly from the mantle to the crust. ?? 1954 Springer-Verlag.
An efficient rectangular plate element
Institute of Scientific and Technical Information of China (English)
SHI; Zhongci
2001-01-01
［1］Shi Zhong-ci, On the accuracy of the quasi-conforming and generalize conforming finite elements, Chin. Ann. Math., 1990, 11B: 148.［2］Shi Zhong-ci, Chen Shao-chun, Huang Hong-ci, Plate elements with high accuracy, Collec. Geom. Anal. Math. Phys. (ed. Li Ta-Tsien), Singapore: World Scientific, 1997, 155—164.［3］Chen Shao-chun, Shi Zhong-ci, Double set parameter method for the construction of the element stiffness matrix, Mathematica Numerica Sinica (in Chinese), 1991, 13: 286.［4］Ciarlet, P., The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 1978.
Development of Catalytic Cooking Plates
Energy Technology Data Exchange (ETDEWEB)
Hjelm, Anna-Karin; Silversand, Fredrik [CATATOR AB, Lund (Sweden); Tena, Emmanuel; Berger, Marc [Gaz de France (France)
2004-04-01
Gas catalytic combustion for gas stoves or cooking plates (closed catalytic burner system with ceramic plates) is a very promising technique in terms of ease of cleaning, power modulation and emissions. Previous investigations show that wire mesh catalysts, prepared and supplied by Catator AB (CAT), seem to be very well suited for such applications. Beside significantly reducing the NOx-emissions, these catalysts offer important advantages such as good design flexibility, low pressure drop and high heat transfer capacity, where the latter leads to a quick thermal response. Prior to this project, Gaz de France (GdF) made a series of measurements with CAT's wire mesh catalysts in their gas cooking plates and compared the measured performance with similar results obtained with theirs cordierite monolith catalysts. Compared to the monolith catalyst, the wire mesh catalyst was found to enable very promising results with respect to both emission levels (<10 mg NO{sub x} /kWh, <5 mg CO/kWh) and life-time (>8000 h vs. 700 h at 200 kW/m{sup 2}). It was however established that the radiation and hence, the thermal efficiency of the cooking plate, was significantly less than is usually measured in combination with the monolith (15 % vs. 32 %). It was believed that the latter could be improved by developing new burner designs based on CAT's wire mesh concept. As a consequence, a collaboration project between GdF, CAT and the Swedish Gas Technology AB was created. This study reports on the design, the construction and the evaluation of new catalytic burners, based on CAT's wire mesh catalysts, used for the combustion of natural gas in gas cooking stoves. The evaluation of the burners was performed with respect to key factors such as thermal efficiency, emission quality and pressure drop, etc, by the use of theoretical simulations and experimental tests. Impacts of parameters such as the the wire mesh number, the wire mesh structure (planar or folded), the
Theory of the liquid film motor.
Feiz, M S; Namin, R M; Amjadi, A
2015-09-01
The liquid film motor is a freely suspended liquid film placed between two capacitively coupled plates that rotates when an electric current is passed through it. Here we propose a theory for its rotation mechanism based on thin film electroconvection. The capacitively coupled plates induce free charges on the surfaces of the film, and the electric field on the film exerts a force that induces rotation. Results of the proposed theory and simulation are in good agreement with the experiments in different properties of the liquid film motor.
Nonlinear active control of damaged piezoelectric smart laminated plates and damage detection
Institute of Scientific and Technical Information of China (English)
Fu Yi-ming; RUAN Jian-li
2008-01-01
Considering mass and stiffness of piezoelectric layers and damage effects of composite layers,nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived.The derivation is based on the Hamilton's principle,the higherorder shear deformation plate theory, von Karman type geometrically nonlinear straindisplacement relations,and the strain energy equivalence theory.A negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to realize the active control and damage detection with a closed control loop. Simply supported rectangular laminated plates with immovable edges are used in numerical computation.Influence of the piezoelectric layers'location on the vibration control is investigated.In addition,effects of the degree and location of damage on the sensor output voltage are discussed.A method for damage detection is introduced.
Directory of Open Access Journals (Sweden)
A. Ghorbanpour Arani
2016-03-01
Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.
A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates
Putcha, N. S.; Reddy, J. N.
1986-01-01
The present study is concerned with the development of a mixed shear flexible finite element with relaxed continuity for the geometrically linear and nonlinear analysis of laminated anisotropic plates. The formulation of the element is based on a refined higher-order theory. This theory satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate. Shear correction coefficients are not needed. The developed element consists of 11 degrees-of-freedom per node, taking into account three displacements, two rotations, and six moment resultants. An evaluation of the element is conducted with respect to the accuracy obtained in the bending of laminated anistropic rectangular plates with different lamination schemes, loadings, and boundary conditions.
A numerical modeling for the wave forcing of floating thin plate
Energy Technology Data Exchange (ETDEWEB)
Basirat Tabrizi, H. [Amirkabir Univ. of Technology, Mechanical Engineering Dept., Tehran (Iran, Islamic Republic of)]. E-mail: hbasirat@aut.ac.ir, H.Basirat@dal.ca; Kouchaki Motlaq, M. [Islamic Azad Univ., Dept. of Graduate Studies, Arak (Iran, Islamic Republic of)
2004-07-01
A finite difference scheme based on central difference, which is applicable to the thin plate floating on intermediate depth water subjected to wave force, is developed. The floating structure analyzed as a plate with unit width and expressed by an elastic bending theory. The fluid flow expressed as an incompressible, inviscid and steady that the potential theory can apply. Here, the water wave elevation assumed the same as the bending displacement structure at the interface. The distribution of the displacement amplitude of structure and the wave amplitude varies in a wavy pattern in the middle part and increases greatly near the edge of plate. The present method verified by comparing quantitatively with the reported experimental and theoretical results of others. (author)
Marino Beiras, Marcos
2001-01-01
We give an overview of the relations between matrix models and string theory, focusing on topological string theory and the Dijkgraaf--Vafa correspondence. We discuss applications of this correspondence and its generalizations to supersymmetric gauge theory, enumerative geometry and mirror symmetry. We also present a brief overview of matrix quantum mechanical models in superstring theory.
DEFF Research Database (Denmark)
Game Theory is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in game theory. We hear their views on game theory, its aim, scope, use, the future direction of game theory and how their work fits in these respects....
Institute of Scientific and Technical Information of China (English)
屠洪盛; 屠世浩; 陈芳; 王沉; 冯宇峰
2014-01-01
Based on the geological occurrence conditions of roof and floor steep coal working face and the characteristics of middle and lower caving gangue filling of goaf, the force model of steep coal working face is established by using theory of elastic thin plate, flexure deformation characteristics un-der overlying strata and inferior goaf filling gangue are studied, and the theoretical calculation formula of goaf filling width and deflection equation of roof deformation is obtained. In light of the field para-meter at Xintie mine of Long Mine group in Qitaihe branch, the study have shown that in the steep in-clined working face, there is a larger deformation in the roof in the upper part and less deformation in the lower part;maximum deflection is 24 m away from working face end, with maximum deformation 320 mm;In the working surface of coal wall in the front and rear upper coal wall, roof and upper part of caving rock contact office will first appear to stretch or cause shear failure, finally will form an “U”type breaking. Research results conform to actual roof deformation.%根据急倾斜煤层工作面顶底板地质赋存条件以及冒落矸石对工作面中下部采空区的充填特征，利用弹性薄板小挠度理论，建立了急倾斜工作面顶板的受力力学模型，研究了顶板在上覆岩层和下方充填矸石作用下顶板挠曲变形特征，得到急倾斜工作面下部采空区充填带宽度的理论计算公式和顶板变形挠度方程，结合龙煤集团七台河新铁煤矿工作面实际开采参数，分析出急倾斜工作面中上部顶板受力变形较大，下部顶板变形较小，最大挠度点距工作面上端头24 m处，最大变形量为320 mm，工作面中上部前方煤壁和后方煤壁处、上部顶板和中下部冒落矸石接触处将首先出现拉伸或剪切破坏，最后将形成“U”字型破断。研究结果与实际顶板受力变形相符。
Modal analysis of two identical circular plates coupled with fluid
Energy Technology Data Exchange (ETDEWEB)
Jeong, Kyeong Hoon; Lee, Gyu Mahn; Park, Keun Bae; Chang, Moon Hee
2001-01-01
An analytical method for evaluating the free vibration of two identical circular plates coupled with fluid was developed by assuming the clamped boundary condition of the plates and an ideal fluid. The method was based upon the finite Fourier-Bessel series expansion and the Rayleigh-Riz method. The proposed method is verified by finite element analyses using commercial software, ANSYS (release 5.6) with good accuracy. Two transverse vibration modes, namely in-phase and out-of-phase, are observed alternately in the fluid-coupled system when the number of nodal circles increases for the fixed nodal diameter. It is found that the normalized natural frequency of the fluid-coupled system monotonically increases with an increase in the number of nodal diameters and circles by virtue of a decrease in relative hydrodynamic mass. The effect of distance between the circular plates and the effect of fluid bounding on the fluid-coupled natural frequencies are also investigated. The theory developed in this report can be applicable to the dynamic analysis of a bottom screen assembly in SMART integral reactor.
Distribution of Inherent Strains and Residual Stresses in Medium Thickness Plate Weldment
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A fundamental theory for the analysis of residual weldingstresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal residual stresses in medium thickness plate weldment is calculated and analyzed.A new method of calculating inherent strains and longitudinal residual stresses is proposed.
Numerical Solutions of the von Karman Equations for a Thin Plate
da Silva, Pedro Patricio; Krauth, Werner
1996-01-01
In this paper, we present an algorithm for the solution of the von Karman equations of elasticity theory and related problems. Our method of successive reconditioning is able to avoid convergence problems at any ratio of the nonlinear streching and the pure bending energies. We illustrate the power of the method by numerical calculations of pinched or compressed plates subject to fixed boundaries.
Repair of R/C flat plates failing in punching by vertical studs
Directory of Open Access Journals (Sweden)
Hamed S. Askar
2015-09-01
Test results showed that using the proposed system on repairing damaged flat plates due to punching shear is very efficient. Theoretical results obtained based on the formulas adopted by different codes and from the critical shear crack theory (CSCT, showed a satisfactory agreement with test results.
The Iberian Plate: myth or reality?
Energy Technology Data Exchange (ETDEWEB)
Canerot, J.
2016-10-01
The plate tectonics theory generally leads us to consider that Iberia was an independent plate separated from Europe by the North Pyrenean Fault (NPF). The NPF has been commonly interpreted as a transform fault associated with a huge counterclockwise transverse and rotational movement that allowed the opening of the Bay of Biscay and the relative eastward motion of Iberia during the Mesozoic. According to some interpretations, this movement may have generated an interplate gap several hundreds of km wide, which led to the creation of an oceanic crust during the Late Jurassic and Early Cretaceous. However, field studies recently carried out in the Pyrenees do not support these interpretations. The North Pyrenean Fault (NPF) of Tertiary age is observed in the central and eastern Pyrenees, where pioneering researchers defined it as separating the North Pyrenean Zone from the Axial Zone.However, this fault cannot be identified in the western part of the range to the west of the Ossau valley. Consequently, the geodynamic evolution of Iberia has always been dependent on Europe, especially during the failed oceanic rifting in the Mid-Cretaceous. Indeed, during this period, a central zone of crustal thinning occupied by turbiditic basins separated the European from the Iberian continental crust, with a very localized mantle exhumation found only in the Mauleon basin. Therefore, far from being an interplate range, the Pyrenees can neither be considered as an intraplate unit. We can define this orogenic belt as resulting from the Tertiary tectonic inversion of a Mid-Cretaceous rift system. According to this new interpretation, Iberia would not have been an isolated plate but represented an unstable, outlying part of Europe. Rather than displaying the features of a rigid lithospheric unit with well-defined boundaries, Iberia grouped together different crustal blocks undergoing specific movements at particular times. During the Mesozoic, normal, reverse or strike
Vortex Dynamics around Pitching Plates
2014-04-29
Exhibit (AIAA2012-2695), 2012). 5G . Leishman, Principles of helicopter aerodynamics, 2nd ed. (Cambridge Univ. Press, 2006). 6T. Theodorsen, “General theory... algorithms for the study of unsteady turbulent swirling flows,” Meas. Sci. Tech. 12, 1422–1429 (2001). 29A. R. Jones and H. Babinsky, “Reynolds number effects
Cai, Chunpei; He, Xin
2016-05-01
This paper presents two sets of analytical exact solutions for collisionless gas flows from a planar exit, impinging at an inclined flat plate. These analytical results are obtained by using gaskinetic theories. The first set of solutions are for a diffuse reflective plate surface, and the other set of solutions are for a specular reflective plate surface. A virtual nozzle exit is adopted to aid analyzing the specular reflective plate scenario. New formulas for plate surface properties, including velocity slips, pressure, shear stress, and heat flux distributions, are provided. For both problems, the flowfield exact solutions are investigated as well. Numerical simulations with the direct simulation Monte Carlo method are performed to validate these new analytical results, and good agreement is obtained for flows with high Knudsen numbers. The results consider effects from many factors, such as the plate inclination angle, geometry ratios, and exit gas and plate properties (such as exit gas bulk density, gas speed ratio, and exit gas and plate temperatures). Compared with past work, these new solutions are more comprehensive and practical. The results also illustrate that if the plate is quite close to the nozzle exit, it is improper to adopt the traditional treatments of a point source and a simple cosine function.
Flow over plates with suction through porous strips
Nayfeh, A. H.; Reed, H. L.; Ragab, S. A.
1980-01-01
This paper addresses the steady, incompressible, two-dimensional flow past a flat plate with suction through porous strips. Closed-form solutions for each flow quantity are developed in the context of linearized triple-deck theory using Fourier transforms. To demonstrate the validity of these closed-form solutions, we compare the wall shear stress and pressure coefficients and the streamwise velocity profiles from the linearized theory with those obtained by the numerical integration of both interacting and nonsimilar boundary-layer equations. The agreement between the linearized triple-deck and interacting boundary-layer equations is good; however, the nonsimilar boundary layers, which fail to account for upstream influence, are shown to be in poor agreement with both interacting boundary layers and the linearized triple deck. The linearized closed-form solutions will therefore be very useful in future stability calculations.
Energy Technology Data Exchange (ETDEWEB)
Jha, D.K., E-mail: dkjha@barc.gov.in [Civil Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kant, Tarun [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Srinivas, K. [Civil Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, R.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)
2013-12-15
Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature.
Branch dependent shear coefficients and their influence on the free vibration of Mindlin plates
Lakawicz, Joseph M.; Bottega, William J.
2017-02-01
The effect of the shear correction coefficient on the branches of the frequency spectrum for the free vibrations of Mindlin plates is studied. Each of the three branches of the frequency spectrum for the Mindlin plate is associated with its corresponding branch of the frequency spectrum of the infinite elastodynamic plate through direct comparison. The use of branch dependent shear correction coefficients is proposed, and is utilized to bring each of the three branches of the Mindlin plate into best agreement with their corresponding elastodynamic branches. Conclusions with respect to the accuracy and range of applicability of the Mindlin frequency spectrum are drawn, with emphasis on the second flexural (Mindlin w2) frequency branch. For the plate that is simply-supported on all of its edges, each of the three frequency branches contributes to the motion of the plate independently of the other two branches. Hence, only one of the branches is active for a given vibration mode, which allows one to solve for unique natural frequencies for each of the branches and to quantify their accuracy as well as to study the motion of each branch separately. This is not, however, the case for plates with other support conditions. In these cases, the vibrational motion corresponding to each of the branches of the frequency spectrum contributes to a given vibration mode. This, in turn, alters the implementation of Mindlin theory for these plates. Results for natural frequency predictions are compared to those of other studies in the literature as well as to those of the classical case when a single shear correction coefficient is employed. It is shown that natural frequency predictions are improved for the plate with all of its edges simply-supported, while the accuracy of the mode shape is improved for other boundary conditions.
2010-10-01
... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.46 Badge plates. A metal badge plate showing the allowed steam pressure shall be attached to the boiler backhead in the cab. If boiler backhead is lagged, the lagging and jacket shall be cut away...
Steel plate reinforcement of orthotropic bridge decks
Teixeira de Freitas, S.
2012-01-01
The PhD research is focused on the reinforcement of fatigue cracked orthotropic steel bridge decks (OBD) by adding a second steel plate to the existing deck. The main idea is to stiffen the existing deck plate, which will reduce the stresses at the fatigue sensitive details and extend the fatigue li
Novel Algorithms for Astronomical Plate Analyses
Indian Academy of Sciences (India)
Rene Hudec; Lukas Hudec
2011-03-01
Powerful computers and dedicated software allow effective data mining and scientific analyses in astronomical plate archives. We give and discuss examples of newly developed algorithms for astronomical plate analyses, e.g., searches for optical transients, as well as for major spectral and brightness changes.
Crane Scheduling for a Plate Storage
DEFF Research Database (Denmark)
Hansen, Jesper; Clausen, Jens
2002-01-01
Odense Steel Shipyard produces the worlds largest container ships. The first process of producing the steel ships is handling arrival and storage of steel plates until they are needed in production. This paper considers the problem of scheduling two cranes that carry out the movements of plates...
Modelling of CMUTs with Anisotropic Plates
DEFF Research Database (Denmark)
la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt
2012-01-01
Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...
Plate Tectonic Cycle. K-6 Science Curriculum.
Blueford, J. R.; And Others
Plate Tectonics Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) volcanoes (covering formation, distribution, and major volcanic groups); (2) earthquakes (with investigations on wave movements, seismograms and sub-suface earth currents); (3) plate tectonics (providing maps…
Roll-forming tubes to header plates
Kramer, K.
1976-01-01
Technique has been developed for attaching and sealing tubes to header plates using a unique roll-forming tool. Technique is useful for attaching small tubes which are difficult to roll into conventional grooves in header plate tube holes, and for attaching when welding, brazing, or soldering is not desirable.
Micromachined silicon plates for sensing molecular interactions
Carlen, E.T.; Weinberg, M.S.; Dube, C.E.; Zapata, A.M.; Borenstein, J.T.
2006-01-01
A micromachined surface stress sensor based on a thin suspended crystalline silicon circular plate measures differential surface stress changes associated with vapor phase chemisorption of an alkanethiol self-assembled monolayer. The isolated face of the suspended silicon plate serves as the sensing
Quality Assurance of Process Free Thermal Plates
Directory of Open Access Journals (Sweden)
Thomas Hoffmann-Walbeck
2015-09-01
Full Text Available In this paper a method for manual processing of process free printing plates is defined which ensures reproducible results. This decoating procedure can help print service providers with certain quality checks (like linearization that are otherwise more expensive or even not feasible altogether for such plates. This method holds for quality assurance only and is not suitable for the actual production.
Plate shell structures - statics and stability
DEFF Research Database (Denmark)
Almegaard, Henrik
2008-01-01
This paper describes the basic structural system, statics and spatial stability of plate shells. The structural system can be considered as a single layer of planar elements, where each element only transfers in-plane (membrane) forces to its neighbouring elements. External out-of-plane loads...... are carried into the structure as in-plane forces by plate action in each element. These in-plane forces are then carried through the plate structure to the supports as in-plane forces by membrane action. The consequence is that the spatial stability of the structure can be simply analysed by considering...... the plate system as only subject to in-plane loads. The stability of such systems is based on the fact that each plane element is held fixed in space by three fixed support lines and that these support lines can be provided by three plane neighbour elements. This means that the spatial stability of a plate...