WorldWideScience

Sample records for plate tectonic activity

  1. Tectonic Plate Movement.

    Science.gov (United States)

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  2. Tectonic Plate Movement.

    Science.gov (United States)

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  3. Activities for Plate Tectonics using GeoMapApp

    Science.gov (United States)

    Goodwillie, A. M.

    2016-12-01

    The concept of plate tectonics is a fundamental component of our understanding of how Earth works yet authentic, high-quality geoscience data related to plate tectonics may not be readily available to all students. To compound matters, when data is accessible, students may not possess the skills or resources necessary to explore and analyse it. As a result, much emphasis at federal and state level is now placed upon encouraging students to work with more data and more technology more often and more rigourously. Easy-to-use digital platforms offer much potential for promoting inquiry-based learning at all levels of education. GeoMapApp is one such tool. Developed at Columbia University's Lamont-Doherty Earth Observatory, GeoMapApp (http://www.geomapapp.org) is a free resource that integrates a wide range of research-grade geoscience data in one intuitive map-based interface. Simple strategies for data manipulation, visualisation and presentation allow uses to explore the data in meaningful ways. Layering and transparency capabilities further allow learners to use GeoMapApp to compare multiple data sets at once, and high-impact Save Session functionality allows a GeoMapApp project to be saved for sharing or later use. In this presentation, activities related to plate tectonics will be highlighted. One GeoMapApp activity helps students investigate plate boundaries by exploring earthquake and volcano locations. Another requires students to calculate the rate of seafloor spreading using crustal age data in various ocean basins. A third uses the GeoMapApp layering technique to explore the influence of geological forces in shaping the landscape. Each activity shown can be done by students on an individual basis, as pairs, or as groups. Educators report that student use of GeoMapApp fosters an increased sense of data "ownership" amongst students, promotes STEM skills, and provides them with access to authentic research-grade geoscience data using the same cutting

  4. Geodynamic evolution of the Earth over the Phanerozoic:Plate tectonic activity and palaeoclimatic indicators

    Institute of Scientific and Technical Information of China (English)

    Christian Vérard; Cyril Hochard; Peter O. Baumgartner; Gérard M. Stamplfi

    2015-01-01

    During the last decades, numerous local reconstructions based on ifeld geol-ogy were developed at the University of Lausanne (UNIL). Team members of the UNIL partici-pated in the elaboration of a 600 Ma to present global plate tectonic model deeply rooted in geological data, controlled by geometric and kinematic constraints and coherent with forces acting at plate boundaries. In this paper, we compare values derived from the tectonic model (ages of oceanic lfoor, production and subduction rates, tectonic activity) with a combination of chemical proxies (namely CO2, 87Sr/86Sr, glaciation evidence, and sea-level variations) known to be strongly in-lfuenced by tectonics. One of the outstanding results is the observation of an overall decreas-ing trend in the evolution of the global tectonic activity, mean oceanic ages and plate velocities over the whole Phanerozoic. We speculate that the decreasing trend relfects the global cooling of the Earth system. Additionally, the parallel between the tectonic activity and CO2 together with the extension of glaciations conifrms the generally accepted idea of a primary control of CO2 on climate and highlights the link between plate tectonics and CO2 in a time scale greater than 107 yr. Last, the wide variations observed in the reconstructed sea-lfoor production rates are in contradiction with the steady-state model hypothesized by some.

  5. Plate tectonics conserves angular momentum

    Directory of Open Access Journals (Sweden)

    C. Bowin

    2009-03-01

    features, and fracture zones (and wedge-shaped sites of seafloor spreading are adjustment zones that accommodate strains in the lithosphere. Further, the interlocked pattern of the Australian and Pacific plates the past 42 Million years (with their absolute plate motions near 90° to each other is taken as strong evidence that large thermally driven "roller" convection cells previously inferred as the driving mechanism in earlier interpretations of continental drift and plate tectonics, have not been active in the Earth's mantle the past 42 Million years, if ever. This report also presents estimates of the changes in location and magnitude of the Earth's axis of total plate tectonic angular momentum for the past 62 million years.

  6. The Plate Tectonics Project

    Science.gov (United States)

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…

  7. The Plate Tectonics Project

    Science.gov (United States)

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…

  8. Active faulting and transpression tectonics along the plate boundary in North Africa

    OpenAIRE

    Mustapha Meghraoui; Silvia Pondrelli

    2012-01-01

    International audience; We present a synthesis of the active tectonics of the northern Atlas Mountains , and suggest a kinematic model of transpression and block rotation that illustrates the mechanics of this section of the Africa–Eurasia plate boundary. Neotectonic structures and significant shallow seismicity (with Mw >5.0) indicate that coeval E-W-trending, right-lateral faulting and NE-SW, thrust-related folding result from oblique convergence at the plate boundary, which forms a transpr...

  9. Geodynamic evolution of the Earth over the Phanerozoic: Plate tectonic activity and palaeoclimatic indicators

    Directory of Open Access Journals (Sweden)

    Christian Vérard

    2015-04-01

    In this paper, we compare values derived from the tectonic model (ages of oceanic floor, production and subduction rates, tectonic activity with a combination of chemical proxies (namely CO2, 87Sr/86Sr, glaciation evidence, and sea-level variations known to be strongly influenced by tectonics. One of the outstanding results is the observation of an overall decreasing trend in the evolution of the global tectonic activity, mean oceanic ages and plate velocities over the whole Phanerozoic. We speculate that the decreasing trend reflects the global cooling of the Earth system. Additionally, the parallel between the tectonic activity and CO2 together with the extension of glaciations confirms the generally accepted idea of a primary control of CO2 on climate and highlights the link between plate tectonics and CO2 in a time scale greater than 107 yr. Last, the wide variations observed in the reconstructed sea-floor production rates are in contradiction with the steady-state model hypothesized by some.

  10. Dynamics of Tectonic Plates

    CERN Document Server

    Pechersky, E; Sadowski, G; Yambartsev, A

    2014-01-01

    We suggest a model that describes a mutual dynamic of tectonic plates. The dynamic is a sort of stick-slip one which is modeled by a Markov random process. The process defines a microlevel of the dynamic. A macrolevel is obtained by a scaling limit which leads to a system of integro-differential equations which determines a kind of mean field systems. Conditions when Gutenberg-Richter empirical law are presented on the mean field level. These conditions are rather universal and do not depend on features of resistant forces.

  11. Dynamics of Tectonic Plates

    OpenAIRE

    2014-01-01

    We suggest a model that describes a mutual dynamic of tectonic plates. The dynamic is a sort of stick-slip one which is modeled by a Markov random process. The process defines a microlevel of the dynamic. A macrolevel is obtained by a scaling limit which leads to a system of integro-differential equations which determines a kind of mean field systems. Conditions when Gutenberg-Richter empirical law are presented on the mean field level. These conditions are rather universal and do not depend ...

  12. Study provides data on active plate tectonics in southeast Asia region

    Science.gov (United States)

    Wilson, P.; Rais, J.; Reigber, Ch.; Reinhart, E.; Ambrosius, B. A. C.; Le Pichon, X.; Kasser, M.; Suharto, P.; Majid, Dato'Abdul; Yaakub, Dato'Paduka Awang Haji Othman Bin Haji; Almeda, R.; Boonphakdee, C.

    A major geodynamic study has provided significant new information about the location of active plate boundaries in and around Southeast Asia, as well as deformation processes in the Sulawesi region of Indonesia and tectonic activity in the Philippine archipelago. Results also have confirmed the existence of the so-called Sunda Block, which appears to be rotating with respect to adjacent plates.The study, known as the Geodynamics of South and South-East Asia (GEODYSSEA) project, has been a joint venture of the European Commission and the Association of South- East Asian Nations. It began in 1991 and involved a large team of European and Asian scientists and technicians studying the complex geodynamic processes and natural hazards of the region from the Southeast Asia mainland to the Philippines to northern Australia. Earthquakes, volcanic eruptions, tsunamis, and tectonically induced landslides endanger the lives of millions of people in the region, and the tectonic activity behind these natural hazards results from the convergence and collision of the Eurasian, Philippine, and Indo-Australian Plates at relative velocities of up to 10 cm per year.

  13. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  14. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  15. Intermittent plate tectonics?

    Science.gov (United States)

    Silver, Paul G; Behn, Mark D

    2008-01-04

    Although it is commonly assumed that subduction has operated continuously on Earth without interruption, subduction zones are routinely terminated by ocean closure and supercontinent assembly. Under certain circumstances, this could lead to a dramatic loss of subduction, globally. Closure of a Pacific-type basin, for example, would eliminate most subduction, unless this loss were compensated for by comparable subduction initiation elsewhere. Given the evidence for Pacific-type closure in Earth's past, the absence of a direct mechanism for termination/initiation compensation, and recent data supporting a minimum in subduction flux in the Mesoproterozoic, we hypothesize that dramatic reductions or temporary cessations of subduction have occurred in Earth's history. Such deviations in the continuity of plate tectonics have important consequences for Earth's thermal and continental evolution.

  16. Episodic plate tectonics on Venus

    Science.gov (United States)

    Turcotte, Donald

    1992-01-01

    Studies of impact craters on Venus from the Magellan images have placed important constraints on surface volcanism. Some 840 impact craters have been identified with diameters ranging from 2 to 280 km. Correlations of this impact flux with craters on the Moon, Earth, and Mars indicate a mean surface age of 0.5 +/- 0.3 Ga. Another important observation is that 52 percent of the craters are slightly fractured and only 4.5 percent are embayed by lava flows. These observations led researchers to hypothesize that a pervasive resurfacing event occurred about 500 m.y. ago and that relatively little surface volcanism has occurred since. Other researchers have pointed out that a global resurfacing event that ceased about 500 MYBP is consistent with the results given by a recent study. These authors carried out a series of numerical calculations of mantle convection in Venus yielding thermal evolution results. Their model considered crustal recycling and gave rapid planetary cooling. They, in fact, suggested that prior to 500 MYBP plate tectonics was active in Venus and since 500 MYBP the lithosphere has stabilized and only hot-spot volcanism has reached the surface. We propose an alternative hypothesis for the inferred cessation of surface volcanism on Venus. We hypothesize that plate tectonics on Venus is episodic. Periods of rapid plate tectonics result in high rates of subduction that cool the interior resulting in more sluggish mantle convection.

  17. Continental tectonics in the aftermath of plate tectonics

    Science.gov (United States)

    Molnar, Peter

    1988-01-01

    It is shown that the basic tenet of plate tectonics, rigid-body movements of large plates of lithosphere, fails to apply to continental interiors. There, buoyant continental crust can detach from the underlying mantle to form mountain ranges and broad zones of diffuse tectonic activity. The role of crustal blocks and of the detachment of crustal fragments in this process is discussed. Future areas of investigation are addressed.

  18. Continental tectonics in the aftermath of plate tectonics

    Science.gov (United States)

    Molnar, Peter

    1988-01-01

    It is shown that the basic tenet of plate tectonics, rigid-body movements of large plates of lithosphere, fails to apply to continental interiors. There, buoyant continental crust can detach from the underlying mantle to form mountain ranges and broad zones of diffuse tectonic activity. The role of crustal blocks and of the detachment of crustal fragments in this process is discussed. Future areas of investigation are addressed.

  19. Tectonics of the Easter plate

    Science.gov (United States)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  20. Tectonics of the Easter plate

    Science.gov (United States)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  1. Tectonics: Changing of the plates

    Science.gov (United States)

    Brandon, Alan

    2016-10-01

    The composition of Earth's crust depends on the style of plate tectonics and of the melting regimes in the mantle. Analyses of the oldest identified rocks suggest that these styles and the resulting crust have changed over Earth's history.

  2. Plate tectonics, damage and inheritance.

    Science.gov (United States)

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.

  3. Plate tectonics on Venus

    Science.gov (United States)

    Anderson, D. L.

    1981-01-01

    The high surface temperature of Venus implies a permanently buoyant lithosphere and a thick basaltic crust. Terrestrial-style tectonics with deep subduction and crustal recycling is not possible. Overthickened basaltic crust partially melts instead of converting to eclogite. Because mantle magmas do not have convenient access to the surface the Ar-40 abundance in the atmosphere should be low. Venus may provide an analog to Archean tectonics on the earth.

  4. Plate tectonics on Venus

    Science.gov (United States)

    Anderson, D. L.

    1981-01-01

    The high surface temperature of Venus implies a permanently buoyant lithosphere and a thick basaltic crust. Terrestrial-style tectonics with deep subduction and crustal recycling is not possible. Overthickened basaltic crust partially melts instead of converting to eclogite. Because mantle magmas do not have convenient access to the surface the Ar-40 abundance in the atmosphere should be low. Venus may provide an analog to Archean tectonics on the earth.

  5. Accelerated plate tectonics.

    Science.gov (United States)

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  6. Linking mantle dynamics, plate tectonics and surface processes in the active plate boundary zones of eastern New Guinea (Invited)

    Science.gov (United States)

    Baldwin, S.; Moucha, R.; Fitzgerald, P. G.; Hoke, G. D.; Bermudez, M. A.; Webb, L. E.; Braun, J.; Rowley, D. B.; Insel, N.; Abers, G. A.; Wallace, L. M.; Vervoort, J. D.

    2013-12-01

    Eastern New Guinea lies within the rapidly obliquely converging Australian (AUS)- Pacific (PAC) plate boundary zone and is characterized by transient plate boundaries, rapidly rotating microplates and a globally significant geoid high. As the AUS plate moved northward in the Cenozoic, its leading edge has been a zone of subduction and arc accretion. The variety of tectonic settings in this region permits assessment of the complex interplay among mantle dynamics, plate tectonics, and surface processes. Importantly, the timescale of tectonic events (e.g., subduction, (U)HP exhumation, seafloor spreading) are within the valid bounds of mantle convection models. A record of changes in bathymetry and topography are preserved in high standing mountain belts, exhumed extensional gneiss domes and core complexes, uplifted coral terraces, and marine sedimentary basins. Global seismic tomography models indicate accumulation of subducted slabs beneath eastern New Guinea at the bottom of the upper mantle (i.e., 250-300 km). Preliminary global-scale backward advected mantle convection models, driven by density inferred from joint seismic-geodynamic tomography models, exhibit large-scale flow associated with these subducted slab remnants and predict the timing and magnitude (up to 1500 m) of dynamic topography change (both subsidence and uplift) since the Oligocene. In this talk we will explore the effects of large-scale background mantle flow and plate tectonics on the evolution of topography and bathymetry in eastern New Guinea, and discuss possible mechanisms to explain basin subsidence and surface uplift in the region.

  7. Active faulting and transpression tectonics along the plate boundary in North Africa

    Directory of Open Access Journals (Sweden)

    Mustapha Meghraoui

    2013-01-01

    Full Text Available We present a synthesis of the active tectonics of the northern Atlas Mountains, and suggest a kinematic model of transpression and block rotation that illustrates the mechanics of this section of the Africa–Eurasia plate boundary. Neotectonic structures and significant shallow seismicity (with Mw >5.0 indicate that coeval E-W-trending, right-lateral faulting and NE-SW, thrust-related folding result from oblique convergence at the plate boundary, which forms a transpressional system. The strain distribution obtained from fault–fold structures and P axes of focal mechanism solutions, and the geodetic (NUVEL-1 and GPS convergence show that the shortening and convergence directions are not coaxial. The transpressional strain is partitioned along the strike and the quantitative description of the displacement field yields a compression-to-transcurrence ratio varying from 33% near Gibraltar, to 50% along the Tunisian Atlas. Shortening directions oriented NNE and NNW for the Pliocene and Quaternary, respectively, and the S shape of the Quaternary anticline axes, are in agreement with the 2.24˚/Myr to 3.9˚/Myr modeled clockwise rotation of the small tectonic blocks and with the paleomagnetic data. The convergence between Africa and Eurasia is absorbed along the Atlas Mountains at the upper crustal level, by means of thrusting above decollement systems, which are controlled by subdued transcurrent faults. The Tell Atlas of northwest Algeria, which has experienced numerous large earthquakes with respect to the other regions, is interpreted as a restraining bend that localizes the strain distribution along the plate boundary.

  8. Lasting mantle scars lead to perennial plate tectonics.

    Science.gov (United States)

    Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell

    2016-06-10

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.

  9. Lasting mantle scars lead to perennial plate tectonics

    Science.gov (United States)

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-06-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a `perennial' phenomenon.

  10. Plate Tectonics: A Paradigm under Threat.

    Science.gov (United States)

    Pratt, David

    2000-01-01

    Discusses the challenges confronting plate tectonics. Presents evidence that contradicts continental drift, seafloor spreading, and subduction. Reviews problems posed by vertical tectonic movements. (Contains 242 references.) (DDR)

  11. Plate Tectonics: A Paradigm under Threat.

    Science.gov (United States)

    Pratt, David

    2000-01-01

    Discusses the challenges confronting plate tectonics. Presents evidence that contradicts continental drift, seafloor spreading, and subduction. Reviews problems posed by vertical tectonic movements. (Contains 242 references.) (DDR)

  12. Comment on "Intermittent plate tectonics?".

    Science.gov (United States)

    Korenaga, Jun

    2008-06-06

    Silver and Behn (Reports, 4 January 2008, p. 85) proposed that intermittent plate tectonics may resolve a long-standing paradox in Earth's thermal evolution. However, their analysis misses one important term, which subsequently brings their main conclusion into question. In addition, the Phanerozoic eustasy record indicates that the claimed effect of intermittency is probably weak.

  13. Energy of plate tectonics calculation and projection

    Directory of Open Access Journals (Sweden)

    N. H. Swedan

    2013-02-01

    Full Text Available Mathematics and observations suggest that the energy of the geological activities resulting from plate tectonics is equal to the latent heat of melting, calculated at mantle's pressure, of the new ocean crust created at midocean ridges following sea floor spreading. This energy varies with the temperature of ocean floor, which is correlated with surface temperature. The objective of this manuscript is to calculate the force that drives plate tectonics, estimate the energy released, verify the calculations based on experiments and observations, and project the increase of geological activities with surface temperature rise caused by climate change.

  14. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    Science.gov (United States)

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.

  15. Plate tectonics, habitability and life

    Science.gov (United States)

    Spohn, Tilman; Breuer, Doris

    2016-04-01

    The role of plate tectonics in defining habitability of terrestrial planets is being increasingly discussed (e.g., Elkins-Tanton, 2015). Plate tectonics is a significantly evolved concept with a large variety of aspects. In the present context, cycling of material between near surface and mantle reservoirs is most important. But increased heat transport through mixing of cold lithosphere with the deep interior and formation of continental crust may also matter. An alternative mechanism of material cycling between these reservoirs is hot-spot volcanism combined with crust delamination. Hot-spot volcanism will transport volatiles to the atmosphere while delamination will mix crust, possibly altered by sedimentation and chemical reactions, with the mantle. The mechanism works as long as the stagnant lithosphere plate has not grown thicker than the crust and as long as volcanic material is added onto the crust. Thermal evolution studies suggest that the mechanism could work for the first 1-2 Ga of planetary evolution. The efficiency of the mechanism is limited by the ratio of extrusive to intrusive volcanism, which is thought to be less than 0.25. Plate tectonics would certainly have an advantage by working even for more evolved planets. A simple, most-used concept of habitability requires the thermodynamic stability of liquid water on the surface of a planet. Cycling of CO2between the atmosphere, oceans and interior through subduction and surface volcanism is an important element of the carbonate-silicate cycle, a thermostat feedback cycle that will keep the atmosphere from entering into a runaway greenhouse. Calculations for a model Earth lacking plate tectonics but degassing CO2, N, and H2O to form a surface ocean and a secondary atmosphere (Tosi et al, 2016) suggest that liquid water can be maintained on the surface for 4.5Ga. The model planet would then qualify as habitable. It is conceivable that the CO2 buffering capability of its ocean together with silicate

  16. When Did Plate Tectonics Begin

    Science.gov (United States)

    Brown, M.

    2015-12-01

    Present-day plate tectonics on Earth is characterized by asymmetric (one-sided) subduction, but how do we recognize the imprint of subduction in the geologic record? How do we weigh global (commonly younger) vs local (commonly older) datasets or distinguish initiation from episodic from continuous subduction? How reliable are data gaps? Characteristics of the Paleozoic record of subduction include calc-alkaline magmatism, blueschist/UHP metamorphism and collisional orogenesis, and ophiolites as representatives of former ocean lithosphere. Are these characteristic rocks preserved in Proterozoic, Archean and Hadean crust? Does a hotter mantle, higher heat production and weaker lithosphere modify or eliminate these features? What preceded subduction and how do we recognize that regime? Are rock associations or geochemical fingerprints reliable? Does reworking and overprinting modify geochemical fingerprints? Proposals for the start of plate tectonics have been based on: persistence of isotope anomalies/fractionated chemical domains in the mantle; changes in chemistry of magmatic rocks, rates of crustal growth vs reworking, and sites of growth; the metamorphic record, particularly the first appearance of contrasting thermal gradients or eclogite (including evidence from mineral inclusions in diamonds) or UHP metamorphic rocks; stabilization of cratonic lithosphere and formation of supercratons, and the beginning of the Proterozoic supercontinent cycle; the end of the flat Earth, emergence of continents, development of significant topography, changes in the style of orogeny and the rise in atmospheric oxygen; and, the appearance of passive margins and changes in the style of sedimentation. Estimates of the timing have varied from the Hadean to Neoproterozoic. I will summarize evidence for a growing consensus that the late Mesoarchean to early Paleoproterozoic was a 700 Myr long period of transition to continuous (?) subduction and global (?) mobile-lid plate tectonics.

  17. Relationship between plume and plate tectonics

    Science.gov (United States)

    Puchkov, V. N.

    2016-07-01

    The relationship between plate- and plume-tectonics is considered in view of the growth and breakdown of supercontinents, active rifting, the formation of passive volcanic-type continental margins, and the origin of time-progressive volcanic chains on oceanic and continental plates. The mantle wind phenomenon is described, as well as its effect on plume morphology and anisotropy of the ambient mantle. The interaction of plumes and mid-ocean ridges is discussed. The principles and problems of plume activity analysis in subduction- and collision-related foldbelts are considered and illustrated with examples.

  18. Geodetic and tectonic analyses along an active plate boundary: The central Gulf of California

    Science.gov (United States)

    Ortlieb, L.; Ruegg, J. C.; Angelier, J.; Colletta, B.; Kasser, M.; Lesage, P.

    1989-06-01

    The Gulf of California is traversed by the shear plate boundary between Pacific and North American plates and, because of several islands in its central part, offers the possibility of direct geodetic measurements of plate motion. A geodetic network of 150 km aperture, and comprising 11 stations, was measured in 1982 and 1986 by laser trilateration methods. The deformations deduced from the comparison of the two epochs indicate right-lateral shear strain covering the entire gulf rather than localized movements. In the eastern part of the network, between the axial islands and the Sonoran coast, significant right-lateral shear deformation occurs with a relative displacement of about 23 ± 12 cm over 4 years. In the northwestern region (Canal de Ballenas) a right-lateral displacement of about 17 ± 4 cm is observed, whereas in the southwestern part of the network (Canal Sal-si-Puedes), the deformation remains very weak. This suggests that south of the Canal de Ballenas the plate boundary is locked. A tectonic analysis of Neogene and Quaternary faults in Baja California, Sonora, and the central islands of the gulf, permitted the reconstruction of the stress pattern evolution of this area. These data also indicate the predominance of right-lateral motion on a NW-SE trending zone within a regional framework characterized by an approximately N-S compression and an E-W extension. The geodetic results are discussed in comparison with the neotectonic analysis and the seismic data available in the area. The data suggest a broad strain accumulation zone covering the totality of the central Gulf of California. A NW-SE relative velocity of about 8 ± 3 cm/yr is found between the two sides of the gulf during the 1982-1986 interval.

  19. History and Evolution of Precambrian plate tectonics

    Science.gov (United States)

    Fischer, Ria; Gerya, Taras

    2014-05-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures buckling and also lithospheric delamination and drip-offs. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental or felsic terrain and an oceanic or mafic terrain as well as internal crustal convection. Small-scale convection with plume shaped cold downwellings also in the upper mantle is of increased importance compared to the large-scale subduction cycle observed for present temperature

  20. Plate Tectonic Cycle. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    Plate Tectonics Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) volcanoes (covering formation, distribution, and major volcanic groups); (2) earthquakes (with investigations on wave movements, seismograms and sub-suface earth currents); (3) plate tectonics (providing maps…

  1. Plate tectonics of the Mediterranean region.

    Science.gov (United States)

    McKenzie, D P

    1970-04-18

    The seismicity and fault plane solutions in the Mediterranean area show that two small rapidly moving plates exist in the Eastern Mediterranean, and such plates may be a common feature of contracting ocean basins. The results show that the concepts of plate tectonics apply to instantaneous motions across continental plate boundaries.

  2. Is plate tectonics needed to evolve technological species on exoplanets?

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2016-07-01

    Full Text Available As we continue searching for exoplanets, we wonder if life and technological species capable of communicating with us exists on any of them. As geoscientists, we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species. This essay considers this question, focusing on tectonically active rocky (silicate planets, like Earth, Venus, and Mars. The development of technological species on Earth provides key insights for understanding evolution on exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution of diverse single-celled organisms, then colonies of cells which specialized further to form guts, appendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes. Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth. Dry land of continents is required for further evolution of technological species, where modification of appendages for grasping and manipulating, and improvement of eyes and central nervous system could be perfected. These bioassets allowed intelligent creatures to examine the night sky and wonder, the beginning of abstract thinking, including religion and science. Technology arises from the exigencies of daily living such as tool-making, agriculture, clothing, and weapons, but the pace of innovation accelerates once it is allied with science. Finally, the importance of plate

  3. Hierarchical self-organization of tectonic plates

    OpenAIRE

    2010-01-01

    The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly chan...

  4. Petrologic implications of plate tectonics.

    Science.gov (United States)

    Yoder, H S

    1971-07-30

    Petrologists can make significant contributions to the plate tectonic concept. Fixing the stability fields of the principal rock types involved will provide the limits of pressure and temperature of the various environments. Experimental determination of the partition coefficients of the trace elements will be helpful. Studies of the partial melting behavior of possible parental materials in the absence and presence of water, especially the undersaturated region, will contribute to the understanding of magma production. Experimental observations on the rheological properties of the peridotites below and just above the solidus will lead to a better evaluation of the convective mechanism. Measurement of the fundamental properties of rocks, such as the density of solids and liquids at high pressures and temperatures, would contribute to understanding the concepts of diapiric rise, magma segregation, and the low-velocity zone. Broader rock sampling of the oceanic areas of all environments will do much to define the petrologic provinces. The field petrologist specializing in the Paleozoic regions and Precambrian shields can contribute by examining those regions for old plate boundaries and devising new criteria for their recognition.

  5. Writing and Visualization for Teaching Plate Tectonics

    Science.gov (United States)

    Thomas, S. F.

    2004-12-01

    The Theory of Plate Tectonics is probably the most important paradigm for understanding the workings of our planet. As such it is an integral part in any Introductory Geology course. Whereas geology majors usually easily embrace the Theory of Plate Tectonics, the enthusiasm for the coherence and elegance of this theory appears to be much more subdued among the majority of non-science majors. While visual and electronic media certainly support the teaching of the theory, pretty pictures and animations are not sufficient for many non-science majors to grasp the concepts of interacting lithospheric plates. It is well known that students do better in learning scientific concepts if they create their own understanding through research and inquiry-based learning, by working in the field, manipulating real earth-science data, and through writing. Writing assignments give instructors the opportunity to assess their students' learning and to clarify misconceptions yet they also have to be willing to teach students how to craft a science paper. Most electronic media and textbook-added CD-ROMs are not useful for making the structure of a science paper transparent. I found many of the necessary ingredients for effectively teaching plate tectonics in the interactive CD-ROM, "Our Dynamic Planet", developed by Wm. Prothero together with G. Kelly (University of California at Santa Barbara). It allows students to select and manipulate real earth-science data of plate-tectonically active regions, and provides an electronic interface that lets students create graphical representations of their collected data. A downloadable Teacher's Manual provides suggestions on teaching students to write a scientific argument, rooted in sound pedagogy. Originally designed for a large oceanography class, the material was modified for use in a small introductory geology class for non-science majors. Various assignments were given to instruct students in writing a scientific argument based on their

  6. Caribbean tectonics and relative plate motions

    Science.gov (United States)

    Burke, K.; Dewey, J. F.; Cooper, C.; Mann, P.; Pindell, J. L.

    1984-01-01

    During the last century, three different ways of interpreting the tectonic evolution of the Gulf of Mexico and the Caribbean have been proposed, taking into account the Bailey Willis School of a permanent pre-Jurassic deep sea basin, the Edward Suess School of a subsided continental terrain, and the Alfred Wegener School of continental separation. The present investigation is concerned with an outline of an interpretation which follows that of Pindell and Dewey (1982). An attempt is made to point out ways in which the advanced hypotheses can be tested. The fit of Africa, North America, and South America is considered along with aspects of relative motion between North and South America since the early Jurasic. Attention is given to a framework for reconstructing Caribbean plate evolution, the evolution of the Caribbean, the plate boundary zones of the northern and southern Caribbean, and the active deformation of the Caribbean plate.

  7. Hierarchical self-organization of tectonic plates

    CERN Document Server

    Morra, Gabriele; Müller, R Dietmar

    2010-01-01

    The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly changes from a weak hierarchy at 120-100 million years ago (Ma) towards a strong hierarchy, which peaked at 65-50, Ma subsequently relaxing back towards a minimum hierarchical structure. We suggest that this fluctuation reflects an alternation between top and bottom driven plate tectonics, revealing a previously undiscovered tectonic cyclicity at a timescale of 100 million years.

  8. Plate Tectonics: A Framework for Understanding Our Living Planet.

    Science.gov (United States)

    Achache, Jose

    1987-01-01

    Discusses some of the events leading to the development of the theory of plate tectonics. Describes how seismic, volcanic, and tectonic features observed at the surface of the planet are now seen as a consequence of intense internal activity, and makes suggestions about their further investigation. (TW)

  9. Earth's Decelerating Tectonic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  10. Earth's Decelerating Tectonic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  11. Plate tectonic raster reconstruction in GPlates

    OpenAIRE

    2014-01-01

    We describe a novel method implemented in the GPlates plate tectonic reconstruction software to interactively reconstruct arbitrarily high-resolution raster data to past geological times using a rotation model. The approach is based on the projection of geo-referenced raster data into a cube map followed by a reverse projection onto rotated tectonic plates on the surface of the globe. This decouples the rendering of a geo-referenced raster from its reconstruction, providing ...

  12. How mantle slabs drive plate tectonics.

    Science.gov (United States)

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-04

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.

  13. Reducing risk where tectonic plates collide

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  14. Tectonic Evolution of the Jurassic Pacific Plate

    Science.gov (United States)

    Nakanishi, M.; Ishihara, T.

    2015-12-01

    We present the tectonic evolution of the Jurassic Pacific plate based on magnetic anomly lineations and abyssal hills. The Pacific plate is the largest oceanic plate on Earth. It was born as a microplate aroud the Izanagi-Farallon-Phoenix triple junction about 192 Ma, Early Jurassic [Nakanishi et al., 1992]. The size of the Pacific plate at 190 Ma was nearly half that of the present Easter or Juan Fernandez microplates in the East Pacific Rise [Martinez et at, 1991; Larson et al., 1992]. The plate boundary surrounding the Pacific plate from Early Jurassic to Early Cretaceous involved the four triple junctions among Pacific, Izanagi, Farallon, and Phoenix plates. The major tectonic events as the formation of oceanic plateaus and microplates during the period occurred in the vicinity of the triple junctions [e.g., Nakanishi and Winterer, 1998; Nakanishi et al., 1999], implying that the study of the triple junctions is indispensable for understanding the tectonic evolution of the Pacific plate. Previous studies indicate instability of the configuration of the triple junctions from Late Jurassic to Early Cretaceous (155-125 Ma). On the other hand, the age of the birth of the Pacific plate was determined assuming that all triple junctions had kept their configurations for about 30 m.y. [Nakanishi et al., 1992] because of insufficient information of the tectonic history of the Pacific plate before Late Jurassic.Increase in the bathymetric and geomagnetic data over the past two decades enables us to reveal the tectonic evolution of the Pacific-Izanagi-Farallon triple junction before Late Jurassic. Our detailed identication of magnetic anomaly lineations exposes magnetic bights before anomaly M25. We found the curved abyssal hills originated near the triple junction, which trend is parallel to magnetic anomaly lineations. These results imply that the configuration of the Pacific-Izanagi-Farallon triple junction had been RRR before Late Jurassic.

  15. Spreading continents kick-started plate tectonics.

    Science.gov (United States)

    Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas

    2014-09-18

    Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining.

  16. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    Science.gov (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are

  17. Next-generation plate-tectonic reconstructions using GPlates

    OpenAIRE

    2011-01-01

    Plate tectonics is the kinematic theory that describes the large-scale motions and events of the outermost shell of the solid Earth in terms of the relative motions and interactions of large, rigid, interlocking fragments of lithosphere called tectonic plates. Plates form and disappear incrementally over time as a result of tectonic processes. There are currently about a dozen major plates on the surface of the Earth, and many minor ones. The present-day configuration of tectonic plates is il...

  18. LOWLID FORMATION AND PLATE TECTONICS ON EXOPLANETS

    Science.gov (United States)

    Stamenkovic, V.; Noack, L.; Breuer, D.

    2009-12-01

    The last years of astronomical observation have opened the doors to a universe filled with extrasolar planets. Detection techniques still only offer the possibility to detect mainly Super-Earths above five Earth masses. But detection techniques do steadily improve and are offering the possibility to detect even smaller planets. The observations show that planets seem to exist in many possible sizes just as the planets and moons of our own solar system do. It is only a natural question to ask if planetary mass has an influence on some key habitability factors such as on plate tectonics, allowing us to test which exoplanets might be more likely habitable than others, and allowing us to understand if plate tectonics on Earth is a stable or a critical, instable process that could easily be perturbed. Here we present results derived from 1D parameterized thermal evolution and 2D/3D computer models, showing how planetary mass influences the propensity of plate tectonics for planets with masses ranging from 0.1 to 10 Earth masses. Lately [2, 3] studied the effect of planetary mass on the ability to break plates and hence initiate plate tectonics - but both derived results contradictory to the other. We think that one of the reasons why both studies [2, 3] are not acceptable in their current form is partly due to an oversimplification. Both treated viscosity only temperature-dependent but neglected the effect pressure has on enlarging the viscosity in the deep mantle. More massive planets have therefore a stronger pressure-viscosity-coupling making convection at high pressures sluggish or even impossible. For planets larger than two Earth masses we observe that a conductive lid (termed low-lid) forms above the core-mantle boundary and thus reduces the effective convective part of the mantle when including a pressure-dependent term into the viscosity laws as shown in [1]. Moreover [2, 3] use time independent steady state models neglecting the fact that plate tectonics is a

  19. Plate Tectonics and Continental Drift: Classroom Ideas.

    Science.gov (United States)

    Stout, Prentice K.

    1983-01-01

    Suggests various classroom studies related to plate tectonics and continental drift, including comments on and sources of resource materials useful in teaching the topics. A complete list of magazine articles on the topics from the Sawyer Marine Resource Collection may be obtained by contacting the author. (JN)

  20. Laboratory plate tectonics: a new experiment.

    Science.gov (United States)

    Gans, R F

    1976-03-26

    A "continent" made of a layer of hexagonally packed black polyethylene spheres floating in clear silicon oil breaks into subcontinents when illuminated by an ordinary incandescent light bulb. This experiment may be a useful model of plate tectonics driven by horizontal temperature gradients. Measurements of the spreading rate are made to establish the feasibility of this model.

  1. Plate tectonic raster reconstruction in GPlates

    Directory of Open Access Journals (Sweden)

    J. Cannon

    2014-03-01

    Full Text Available We describe a novel method implemented in the GPlates plate tectonic reconstruction software to interactively reconstruct arbitrarily high-resolution raster data to past geological times using a rotation model. The approach is based on the projection of geo-referenced raster data into a cube map followed by a reverse projection onto rotated tectonic plates on the surface of the globe. This decouples the rendering of a geo-referenced raster from its reconstruction, providing a number of benefits including a simple implementation and the ability to combine rasters with different geo-referencing or inbuilt raster projections. The cube map projection is accelerated by graphics hardware in a wide variety of computer systems manufactured over the last decade. Furthermore, by integrating a multi-resolution tile partitioning into the cube map we can provide on-demand tile streaming, level-of-detail rendering and hierarchical visibility culling enabling researchers to visually explore essentially unlimited resolution geophysical raster data attached to tectonic plates and reconstructed through geological time. This capability forms the basis for interactively building and improving plate reconstructions in an iterative fashion, particularly for tectonically complex regions.

  2. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian plate and surrounding regions in the Middle East

    Science.gov (United States)

    Toksoz, M. Nafi; Reilinger, Robert

    1992-01-01

    A detailed study was made of the consequences of the Arabian plate convergence against Eurasia and its effects on the tectonics of Anatolia and surrounding regions of the eastern Mediterranean. A primary source of information is time rates of change of baseline lengths and relative heights determined by repeated SLR measurements. These SLR observations are augmented by a network of GPS stations in Anatolia, Aegea, and Greece, established and twice surveyed since 1988. The existing SLR and GPS networks provide the spatial resolution necessary to reveal the details of ongoing tectonic processes in this area of continental collision. The effort has involved examining the state of stress in the lithosphere and relative plate motions as revealed by these space based geodetic measurements, seismicity, and earthquake mechanisms as well as the aseismic deformations of the plates from conventional geodetic data and geological evidence. These observations are used to constrain theoretical calculations of the relative effects of: (1) the push of the Arabian plate; (2) high topography of Eastern Anatolia; (3) the geometry and properties of African-Eurasian plate boundary; (4) subduction under the Hellenic Arc and southwestern Turkey; and (5) internal deformation and rotation of the Anatolian plate.

  3. Plate tectonics in the late Paleozoic

    Directory of Open Access Journals (Sweden)

    Mathew Domeier

    2014-05-01

    Full Text Available As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lithosphere becomes increasingly challenging with age. Prior to 150 Ma ∼60% of the lithosphere is missing and reconstructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ reconstructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geodynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410–250 Ma together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.

  4. Plate tectonics in the late Paleozoic

    Institute of Scientific and Technical Information of China (English)

    Mathew Domeier; Trond H. Torsvik

    2014-01-01

    As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonicsdand its influence on the deep Earth and climatedit is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of‘full-plates’ (including oceanic lithosphere) becomes increasingly challenging with age. Prior to 150 Ma w60% of the lithosphere is missing and re-constructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles;in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ re-constructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying) plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geo-dynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410e250 Ma) together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.

  5. Plate tectonics drive tropical reef biodiversity dynamics.

    Science.gov (United States)

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J; de Santana, Charles N; Heine, Christian; Mouillot, David; Bellwood, David R; Pellissier, Loïc

    2016-05-06

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.

  6. Plate tectonics drive tropical reef biodiversity dynamics

    Science.gov (United States)

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc

    2016-01-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics. PMID:27151103

  7. Plate tectonics drive tropical reef biodiversity dynamics

    Science.gov (United States)

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc

    2016-05-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.

  8. Seismology: tectonic strain in plate interiors?

    Science.gov (United States)

    Calais, E; Mattioli, G; DeMets, C; Nocquet, J-M; Stein, S; Newman, A; Rydelek, P

    2005-12-15

    It is not fully understood how or why the inner areas of tectonic plates deform, leading to large, although infrequent, earthquakes. Smalley et al. offer a potential breakthrough by suggesting that surface deformation in the central United States accumulates at rates comparable to those across plate boundaries. However, we find no statistically significant deformation in three independent analyses of the data set used by Smalley et al., and conclude therefore that only the upper bounds of magnitude and repeat time for large earthquakes can be inferred at present.

  9. Quantitative tests for plate tectonics on Venus

    Science.gov (United States)

    Kaula, W. M.; Phillips, R. J.

    1981-01-01

    Quantitative comparisons are made between the characteristics of plate tectonics on the earth and those which are possible on Venus. Considerations of the factors influencing rise height and relating the decrease in rise height to plate velocity indicate that the rate of topographic dropoff from spreading centers should be about half that on earth due to greater rock-fluid density contrast and lower temperature differential between the surface and interior. Statistical analyses of Pioneer Venus radar altimetry data and global earth elevation data is used to identify 21,000 km of ridge on Venus and 33,000 km on earth, and reveal Venus ridges to have a less well-defined mode in crest heights and a greater concavity than earth ridges. Comparison of the Venus results with the spreading rates and associated heat flow on earth reveals plate creation rates on Venus to be 0.7 sq km/year or less and indicates that not more than 15% of Venus's energy is delivered to the surface by plate tectonics, in contrast to values of 2.9 sq km a year and 70% for earth.

  10. Inevitability of Plate Tectonics on Super-Earths

    CERN Document Server

    Valencia, Diana; Sasselov, Dimitar D

    2007-01-01

    The recent discovery of super-Earths (masses less or equal to 10 earth-masses) has initiated a discussion about conditions for habitable worlds. Among these is the mode of convection, which influences a planet's thermal evolution and surface conditions. On Earth, plate tectonics has been proposed as a necessary condition for life. Here we show, that super-Earths will also have plate tectonics. We demonstrate that as planetary mass increases, the shear stress available to overcome resistance to plate motion increases while the plate thickness decreases, thereby enhancing plate weakness. These effects contribute favorably to the subduction of the lithosphere, an essential component of plate tectonics. Moreover, uncertainties in achieving plate tectonics in the one earth-mass regime disappear as mass increases: super-Earths, even if dry, will exhibit plate tectonic behaviour.

  11. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf

    2012-01-01

    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...... (lithosphere) recycling. The processes of crust–mantle interaction have created very dissimilar crustal styles in Europe, as seen by its seismic structure, crustal thickness, and average seismic velocities in the basement. Our special focus is on processes responsible for the formation of the thin crust...

  12. Why is understanding when Plate Tectonics began important for understanding Earth?

    Science.gov (United States)

    Korenaga, J.

    2015-12-01

    Almost all kinds of geological activities on Earth depend critically on the operation of plate tectonics, but did plate tectonics initiate right after the solidification of a putative magma ocean, or did it start much later, e.g., sometime during the Archean? This problem of the initiation of plate tectonics in the Earth history presents us a unique combination of observational and theoretical challenges. Finding geological evidence for the onset of plate tectonics is difficult because plate tectonics is a dynamic process that continuously destroys a remnant of the past. We therefore need to rely on more secondary traces, the interpretation of which often involves theoretical considerations. At the same time, it is still hard to predict, on a firm theoretical ground, when plate tectonics should have prevailed, because there is no consensus on why plate tectonics currently takes place on Earth. Knowing when plate tectonics began is one thing, and understanding why it did so is another. The initiation of plate tectonics is one of the last frontiers in earth science, which encourages a concerted effort from both geologists and geophysicists to identify key geological evidence and distinguish between competing theories of early Earth evolution. Such an endeavor is essential to arrive at a self-contained theory for the evolution of terrestrial planets.

  13. Metamorphism, Plate Tectonics, and the Supercontinent Cycle

    Science.gov (United States)

    Brown, Michael

    duality of thermal regimes is the hallmark of modern plate tectonics and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both G-UHTM and E-HPGM belts since the Neoarchean manifests the onset of a 'Proterozoic plate tectonics regime', although the style of tectonics likely involved differences. The 'Proterozoic plate tectonics regime' evolved during a Neoproterozoic transition to the 'modern plate tectonics regime' characterized by colder subduction and subduction of continental crust deep into the mantle and its (partial) return from depths of up to 300 km, as chronicled by the appearance of HPM-UHPM in the rock record. The age distribution of metamorphic belts that record extreme conditions of metamorphism is not uniform, and metamorphism occurs in periods that correspond to amalgamation of continental lithosphere into supercratons (e.g. Superia/Sclavia) or supercontinents (e.g. Nuna (Columbia), Rodinia, Gondwana, and Pangea).

  14. The Biggest Plates on Earth. Submarine Ring of Fire--Grades 5-6. Plate Tectonics.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach how tectonic plates move, what some consequences of this motion are, and how magnetic anomalies document the motion at spreading centers do. The activity provides learning objectives, a list of needed materials, key vocabulary words, background information, day-to-day procedures, internet connections, career…

  15. Basic characteristics of active tectonics of China

    Institute of Scientific and Technical Information of China (English)

    DENG; Qidong(邓起东); ZHANG; Peizhen(张培震); RAN; Yongkang(冉勇康); YANG; Xiaoping(杨晓平); MIN; Wei(闵伟); CHU; Quanzhi(楚全芝)

    2003-01-01

    During the last 20 years, studies on active tectonics in China have entered a new quantitative research stage and made a great progress. Summing up the quantitative results, a Map of Active Tectonics of China on the scale of 1︰4 million has been compiled. In the map all types of active tectonics and their kinematic parameters are reflected in possible detail, such as active faults, active folds, active basins, active blocks, volcanoes, and earthquakes. This paper summarizes the basic characteristics of active tectonics of China. The Himalaya Mountains and Taiwan Island are major plate boundaries where the slip rates are larger than 15 mm/a. Tectonic activity in the continental intraplate region is characterized by block motion. The crust and lithosphere in the region were dissected into blocks with different orders. Of them the Qinghai-Xizang (Tibet), Xin- jiang, and North China block regions exhibit the most recent tectonic activity. The kinematic characteristics of more than 200 active tectonic zones indicate that the intraplate tectonic activity represents a block motion at a limited low rate. Horizontal slip rate along the tectonic boundary belts between the blocks is generally less than 10 mm/a, and 10-15 mm/a in maximum, and hence it does not support the continental escape theory of high rate of slip.

  16. Upper plate deformation and seismic barrier in front of Nazca subduction zone: The Chololo Fault System and active tectonics along the Coastal Cordillera, southern Peru

    Science.gov (United States)

    Audin, Laurence; Lacan, Pierre; Tavera, Hernando; Bondoux, Francis

    2008-11-01

    The South America plate boundary is one of the most active subduction zone. The recent Mw = 8.4 Arequipa 2001 earthquake ruptured the subduction plane toward the south over 400 km and stopped abruptly on the Ilo Peninsula. In this exact region, the subduction seismic crisis induced the reactivation of continental fault systems in the coastal area. We studied the main reactivated fault system that trends perpendicular to the trench by detailed mapping of fault related-geomorphic features. Also, at a longer time scale, a recurrent Quaternary transtensive tectonic activity of the CFS is expressed by offset river gullies and alluvial fans. The presence of such extensional fault systems trending orthogonal to the trench along the Coastal Cordillera in southern Peru is interpreted to reflect a strong coupling between the two plates. In this particular case, stress transfer to the upper plate, at least along the coastal fringe, appears to have induced crustal seismic events that were initiated mainly during and after the 2001 earthquake. The seafloor roughness of the subducting plate is usually thought to be a cause of segmentation along subduction zones. However, after comparing and discussing the role of inherited structures within the upper plate to the subduction zone segmentation in southern Peru, we suggest that the continental structure itself may exert some feedback control on the segmentation of the subduction zone and thus participate to define the rupture pattern of major subduction earthquakes along the southern Peru continental margin.

  17. Plate tectonics and hotspots: the third dimension.

    Science.gov (United States)

    Anderson, D L; Tanimoto, T; Zhang, Y S

    1992-06-19

    High-resolution seismic tomographic models of the upper mantle provide powerful new constraints on theories of plate tectonics and hotspots. Midocean ridges have extremely low seismic velocities to a depth of 100 kilometers. These low velocities imply partial melting. At greater depths, low-velocity and high-velocity anomalies record, respectively, previous positions of migrating ridges and trenches. Extensional, rifting, and hotspot regions have deep (> 200 kilometers) low-velocity anomalies. The upper mantle is characterized by vast domains of high temperature rather than small regions surrounding hotspots; the asthenosphere is not homogeneous or isothermal. Extensive magmatism requires a combination of hot upper mantle and suitable lithospheric conditions. High-velocity regions of the upper 200 kilometers of the mantle correlate with Archean cratons.

  18. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf

    2012-01-01

    The continental crust on Earth cannot be extracted directly from the mantle, and the primary crust extracted directly from an early magma ocean is not preserved on Earth. We review geophysical and geochemical aspects of global crust–mantle material exchange processes and examine the processes which...... magmatism. While both subduction and delamination recycle crustal material into the mantle, mafic magmatism transports mantle material upward and participates in growth of newoceanic and continental crusts and significant structural and chemicalmodification of the latter. We discuss the role of basalt....../gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  19. Learning Plate Tectonics Using a Pre-Analogy Step

    Science.gov (United States)

    Glesener, G. B.; Sandoval, W. A.

    2011-12-01

    Previous research has shown that children tend to demonstrate lower performance on analogical reasoning tasks at a causal relations level compared to most adults (Gentner & Toupin, 1986). This tendency is an obstacle that geoscience educators must overcome because of the high frequency of analogies used in geoscience pedagogy. In particular, analog models are used to convey complex systems of non-everyday/non-observable events found in nature, such as plate tectonics. Key factors in successful analogical reasoning that have been suggested by researchers include knowledge of the causal relations in the base analog (Brown & Kane, 1988; Gentner, 1988; Gentner & Toupin, 1986), and development of learning strategies and metaconceptual competence(Brown & Kane, 1988). External factors, such as guiding cues and hints have been useful cognitive supports that help students reason through analogical problems (Gick & Holyoak, 1980). Cognitive supports have been seen by researchers to decrease processing demands on retrieval and working memory (Richland, Zur, & Holyoak, 2007). We observed third and fourth graders learning about plate tectonics beginning with a pre-analogy step-a cognitive support activity a student can do before working with an analogy to understand the target. This activity was designed to aid students in developing their understanding of object attributes and relations within an analog model so that more focus can be placed on mapping the corresponding higher-order relations between the base and target. Students learned targeted concepts of plate tectonics, as measured by pre to post gains on items adapted from the Geosciences Concept Inventory. Analyses of classroom interaction showed that students used the object attributes and higher-order relations highlighted in the pre-analogy activity as resources to reason about plate boundaries and plate movement during earthquakes.

  20. Plate tectonics and planetary habitability: current status and future challenges.

    Science.gov (United States)

    Korenaga, Jun

    2012-07-01

    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  1. Plate tectonics and crustal deformation around the Japanese Islands

    Science.gov (United States)

    Hashimoto, Manabu; Jackson, David D.

    1993-01-01

    We analyze over a century of geodetic data to study crustal deformation and plate motion around the Japanese Islands, using the block-fault model for crustal deformation developed by Matsu'ura et al. (1986). We model the area including the Japanese Islands with 19 crustal blocks and 104 faults based on the distribution of active faults and seismicity. Geodetic data are used to obtain block motions and average slip rates of faults. This geodetic model predicts that the Pacific plate moves N deg 69 +/- 2 deg W at about 80 +/- 3 mm/yr relative to the Eurasian plate which is much lower than that predicted in geologic models. Substantial aseismic slip occurs on the subduction boundaries. The block containing the Izu Peninsula may be separated from the rigid part of the Philippine Sea plate. The faults on the coast of Japan Sea and the western part of the Median Tectonic Line have slip rates exceeding 4 mm/yr, while the Fossa Magna does not play an important role in the tectonics of the central Japan. The geodetic model requires the division of northeastern Japan, contrary to the hypothesis that northeastern Japan is a part of the North American plate. Owing to rapid convergence, the seismic risk in the Nankai trough may be larger than that of the Tokai gap.

  2. Plate tectonics and crustal deformation around the Japanese Islands

    Science.gov (United States)

    Hashimoto, Manabu; Jackson, David D.

    1993-01-01

    We analyze over a century of geodetic data to study crustal deformation and plate motion around the Japanese Islands, using the block-fault model for crustal deformation developed by Matsu'ura et al. (1986). We model the area including the Japanese Islands with 19 crustal blocks and 104 faults based on the distribution of active faults and seismicity. Geodetic data are used to obtain block motions and average slip rates of faults. This geodetic model predicts that the Pacific plate moves N deg 69 +/- 2 deg W at about 80 +/- 3 mm/yr relative to the Eurasian plate which is much lower than that predicted in geologic models. Substantial aseismic slip occurs on the subduction boundaries. The block containing the Izu Peninsula may be separated from the rigid part of the Philippine Sea plate. The faults on the coast of Japan Sea and the western part of the Median Tectonic Line have slip rates exceeding 4 mm/yr, while the Fossa Magna does not play an important role in the tectonics of the central Japan. The geodetic model requires the division of northeastern Japan, contrary to the hypothesis that northeastern Japan is a part of the North American plate. Owing to rapid convergence, the seismic risk in the Nankai trough may be larger than that of the Tokai gap.

  3. Lasting mantle scars lead to perennial plate tectonics

    OpenAIRE

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their p...

  4. This dynamic earth: the story of plate tectonics

    Science.gov (United States)

    Kious, W. Jacquelyne; Tilling, Robert I.

    1996-01-01

    In the early 1960s, the emergence of the theory of plate tectonics started a revolution in the earth sciences. Since then, scientists have verified and refined this theory, and now have a much better understanding of how our planet has been shaped by plate-tectonic processes. We now know that, directly or indirectly, plate tectonics influences nearly all geologic processes, past and present. Indeed, the notion that the entire Earth's surface is continually shifting has profoundly changed the way we view our world.People benefit from, and are at the mercy of, the forces and consequences of plate tectonics. With little or no warning, an earthquake or volcanic eruption can unleash bursts of energy far more powerful than anything we can generate. While we have no control over plate-tectonic processes, we now have the knowledge to learn from them. The more we know about plate tectonics, the better we can appreciate the grandeur and beauty of the land upon which we live, as well as the occasional violent displays of the Earth's awesome power.This booklet gives a brief introduction to the concept of plate tectonics and complements the visual and written information in This Dynamic Planet (see Further reading), a map published in 1994 by the U.S. Geological Survey (USGS) and the Smithsonian Institution. The booklet highlights some of the people and discoveries that advanced the development of the theory and traces its progress since its proposal. Although the general idea of plate tectonics is now widely accepted, many aspects still continue to confound and challenge scientists. The earth-science revolution launched by the theory of plate tectonics is not finished.

  5. Looking for Plate Tectonics in all the wrong fluids

    Science.gov (United States)

    Davaille, Anne

    2017-04-01

    Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.

  6. Studies in geophysics: Active tectonics

    Science.gov (United States)

    1986-01-01

    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.

  7. Advances on Active Tectonics Research

    Institute of Scientific and Technical Information of China (English)

    Chen Yong; Chen Qifu; Li Juan

    2001-01-01

    The tectonic movement at human scale has not been fully understood yet, especially for active tectonics, although it is the basis to study natural hazards and environmental variations. Many national and international scientific plans related closely to active tectonics research have been made in the past ten years. This paper briefly summarized the background of the undertaking of active tectonics research, its advances and existing problems, and the key points in its future studies are also pointed out. The emerging of new technologies like the Earth Observing Sys tem, Digital Seismology and so on provides unusual opportunities for tectonic research. It is emphasized, however, that careful analyses and building up of new theoretical frame are sill the key problems for studies of active tectonics, especially for active tectonics in China' s conti nent.

  8. On the breakup of tectonic plates by polar wandering

    Science.gov (United States)

    Liu, H.-S.

    1974-01-01

    The equations for the stresses in a homogeneous shell of uniform thickness caused by a shift of the axis of rotation are derived. The magnitude of these stresses reaches a maximum value of the order of 10 to the 9th power dyn/sq cm, which is sufficient for explaining a tectonic breakup. In order to deduce the fracture pattern according to which the breakup of tectonic plates can be expected the theory of plastic deformation of shells is applied. The analysis of this pattern gives an explanation of the existing boundary systems of the major tectonic plates as described by Morgan (1968), LePichon (1968) and Isacks et al. (1968).

  9. The present-day number of tectonic plates

    Science.gov (United States)

    Harrison, Christopher G. A.

    2016-03-01

    The number of tectonic plates on Earth described in the literature has expanded greatly since the start of the plate tectonic era, when only about a dozen plates were considered in global models of present-day plate motions. With new techniques of more accurate earthquake epicenter locations, modern ways of measuring ocean bathymetry using swath mapping, and the use of space based geodetic techniques, there has been a huge growth in the number of plates thought to exist. The study by Bird (2003) proposed 52 plates, many of which were delineated on the basis of earthquake locations. Because of the pattern of areas of these plates, he suggested that there should be more small plates than he could identify. In this paper, I gather together publications that have proposed a total of 107 new plates, giving 159 plates in all. The largest plate (Pacific) is about 20 % of the Earth's area or 104 Mm2, and the smallest of which (Plate number 5 from Hammond et al. 2011) is only 273 km2 in area. Sorting the plates by size allows us to investigate how size varies as a function of order. There are several changes of slope in the plots of plate number organized by size against plate size order which are discussed. The sizes of the largest seven plates is constrained by the area of the Earth. A middle set of 73 plates down to an area of 97,563 km2 (the Danakil plate at number 80, is the plate of median size) follows a fairly regular pattern of plate size as a function of plate number. For smaller plates, there is a break in the slope of the plate size/plate number plot and the next 32 plates follow a pattern of plate size proposed by the models of Koehn et al. (2008) down to an area of 11,638 km2 (West Mojave plate # 112). Smaller plates do not follow any regular pattern of area as a function of plate number, probably because we have not sampled enough of these very small plates to reveal any clear pattern.

  10. Optimal Planet Properties For Plate Tectonics Through Time And Space

    Science.gov (United States)

    Stamenkovic, Vlada; Seager, Sara

    2014-11-01

    Both the time and the location of planet formation shape a rocky planet’s mass, interior composition and structure, and hence also its tectonic mode. The tectonic mode of a planet can vary between two end-member solutions, plate tectonics and stagnant lid convection, and does significantly impact outgassing and biogeochemical cycles on any rocky planet. Therefore, estimating how the tectonic mode of a planet is affected by a planet’s age, mass, structure, and composition is a major step towards understanding habitability of exoplanets and geophysical false positives to biosignature gases. We connect geophysics to astronomy in order to understand how we could identify and where we could find planet candidates with optimal conditions for plate tectonics. To achieve this goal, we use thermal evolution models, account for the current wide range of uncertainties, and simulate various alien planets. Based on our best model estimates, we predict that the ideal targets for plate tectonics are oxygen-dominated (C/O<1) (solar system like) rocky planets of ~1 Earth mass with surface oceans, large metallic cores super-Mercury, rocky body densities of ~7000kgm-3), and with small mantle concentrations of iron 0%), water 0%), and radiogenic isotopes 10 times less than Earth). Super-Earths, undifferentiated planets, and especially hypothetical carbon planets, speculated to consist of SiC and C, are not optimal for the occurrence of plate tectonics. These results put Earth close to an ideal compositional and structural configuration for plate tectonics. Moreover, the results indicate that plate tectonics might have never existed on planets formed soon after the Big Bang—but instead is favored on planets formed from an evolved interstellar medium enriched in iron but depleted in silicon, oxygen, and especially in Th, K, and U relative to iron. This possibly sets a belated Galactic start for complex Earth-like surface life if plate tectonics significantly impacts the build up

  11. When and how did plate tectonics begin? Theoretical and empirical considerations

    Institute of Scientific and Technical Information of China (English)

    R. J. STERN

    2007-01-01

    Plate tectonics is the horizontal motion of Earth's thermal boundary layer (lithosphere) over the convecting mantle (asthenosphere) and is mostly driven by lithosphere sinking in subduction zones. Plate tectonics is an outstanding example of a self organizing, far from equilibrium complex system (SOFFECS), driven by the negative buoyancy of the thermal boundary layer and controlled by dissipation in the bending lithosphere and viscous mantle. Plate tectonics is an unusual way for a silicate planet to lose heat, as it exists on only one of the large five silicate bodies in the inner solar system. It is not known when this mode of tectonic activity and heat loss began on Earth. All silicate planets probably experienced a short-lived magma ocean stage. After this solidified, stagnant lid behavior is the common mode of planetary heat loss, with interior heat being lost by delamination and "hot spot" volcanism and shallow intrusions. Decompression melting in the hotter early Earth generated a different lithosphere than today, with thicker oceanic crust and thinner mantle lithosphere; such lithosphere would take much longer than at present to become negatively buoyant, suggesting that plate tectonics on the early Earth occurred sporadically if at all. Plate tectonics became sustainable (the modern style) when Earth cooled sufficiently that decompression melting beneath spreading ridges made thin oceanic crust, allowing oceanic lithosphere to become negatively buoyant after a few tens of millions of years. Ultimately the question of when plate tectonics began must be answered by information retrieved from the geologic record. Criteria for the operation of plate tectonics includes ophiolites, blueschist and ultra-high pressure metamorphic belts, eclogites, passive margins, transform faults, paleomagnetic demonstration of different motions of different cratons, and the presence of diagnostic geochemical and isotopic indicators in igneous rocks. This record must be

  12. Petroleum and natural gas geology and plate tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, B.

    1984-01-01

    Several processes of oil and gas geology are studied in connection with plate-tectonical processes. Thus it becomes clear, that there is a distinct difference between the Paleozoic development of the European plate and the Mesozoic development. One can state, that the Paleozoic development is essentially influenced by the positions of the mobile belts and the cratonized parts of the plates. The development during Meso-Caenozoic is mainly characterized by crustal processes in the result of the disintegration of Pangaea.

  13. Magma genesis, plate tectonics, and chemical differentiation of the Earth

    OpenAIRE

    Wyllie, Peter J.

    1988-01-01

    Magma genesis, migration, and eruption have played prominent roles in the chemical differentiation of the Earth. Plate tectonics has provided the framework of tectonic environments for different suites of igneous rocks and the dynamic mechanisms for moving masses of rock into melting regions. Petrology is rooted in geophysics. Petrological and geophysical processes are calibrated by the phase equilibria of the materials. The geochemistry of basalts and mantle xenoliths demonstrates that the m...

  14. A planetary perspective on Earth evolution: Lid Tectonics before Plate Tectonics

    Science.gov (United States)

    Piper, John D. A.

    2013-03-01

    Plate Tectonics requires a specific range of thermal, fluid and compositional conditions before it will operate to mobilise planetary lithospheres. The response to interior heat dispersion ranges from mobile lids in constant motion able to generate zones of subduction and spreading (Plate Tectonics), through styles of Lid Tectonics expressed by stagnant lids punctured by volcanism, to lids alternating between static and mobile. The palaeomagnetic record through Earth history provides a test for tectonic style because a mobile Earth of multiple continents is recorded by diverse apparent polar wander paths, whilst Lid Tectonics is recorded by conformity to a single position. The former is difficult to isolate without extreme selection whereas the latter is a demanding requirement and easily recognised. In the event, the Precambrian palaeomagnetic database closely conforms to this latter property over very long periods of time (~ 2.7-2.2 Ga, 1.5-1.3 Ga and 0.75-0.6 Ga); intervening intervals are characterised by focussed loops compatible with episodes of true polar wander stimulated by disturbances to the planetary figure. Because of this singular property, the Precambrian palaeomagnetic record is highly effective in showing that a dominant Lid Tectonics operated throughout most of Earth history. A continental lid comprising at least 60% of the present continental area and volume had achieved quasi-integrity by 2.7 Ga. Reconfiguration of mantle and continental lid at ~ 2.2 Ga correlates with isotopic signatures and the Great Oxygenation Event and is the closest analogy in Earth history to the resurfacing of Venus. Change from Lid Tectonics to Plate Tectonics is transitional and the geological record identifies incipient development of Plate Tectonics on an orogenic scale especially after 1.1 Ga, but only following break-up of the continental lid (Palaeopangaea) in Ediacaran times beginning at ~ 0.6 Ga has it become comprehensive in the style evident during the

  15. A window for plate tectonics in terrestrial planet evolution?

    Science.gov (United States)

    O'Neill, Craig; Lenardic, Adrian; Weller, Matthew; Moresi, Louis; Quenette, Steve; Zhang, Siqi

    2016-06-01

    The tectonic regime of a planet depends critically on the contributions of basal and internal heating to the planetary mantle, and how these evolve through time. We use viscoplastic mantle convection simulations, with evolving core-mantle boundary temperatures, and radiogenic heat decay, to explore how these factors affect tectonic regime over the lifetime of a planet. The simulations demonstrate (i) hot, mantle conditions, coming out of a magma ocean phase of evolution, can produce a "hot" stagnant-lid regime, whilst a cooler post magma ocean mantle may begin in a plate tectonic regime; (ii) planets may evolve from an initial hot stagnant-lid condition, through an episodic regime lasting 1-3 Gyr, into a plate-tectonic regime, and finally into a cold, senescent stagnant lid regime after ∼10 Gyr of evolution, as heat production and basal temperatures wane; and (iii) the thermal state of the post magma ocean mantle, which effectively sets the initial conditions for the sub-solidus mantle convection phase of planetary evolution, is one of the most sensitive parameters affecting planetary evolution - systems with exactly the same physical parameters may exhibit completely different tectonics depending on the initial state employed. Estimates of the early Earth's temperatures suggest Earth may have begun in a hot stagnant lid mode, evolving into an episodic regime throughout most of the Archaean, before finally passing into a plate tectonic regime. The implication of these results is that, for many cases, plate tectonics may be a phase in planetary evolution between hot and cold stagnant states, rather than an end-member.

  16. Plate Margin Deformation and Active Tectonics Along the Northern Edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska and Yukon, Canada

    Science.gov (United States)

    Bruhn, Ronald L.; Sauber, Jeanne; Cotton, Michele M.; Pavlis, Terry L.; Burgess, Evan; Ruppert, Natalia; Forster, Richard R.

    2012-01-01

    The northwest directed motion of the Pacific plate is accompanied by migration and collision of the Yakutat terrane into the cusp of southern Alaska. The nature and magnitude of accretion and translation on upper crustal faults and folds is poorly constrained, however, due to pervasive glaciation. In this study we used high-resolution topography, geodetic imaging, seismic, and geologic data to advance understanding of the transition from strike-slip motion on the Fairweather fault to plate margin deformation on the Bagley fault, which cuts through the upper plate of the collisional suture above the subduction megathrust. The Fairweather fault terminates by oblique-extensional splay faulting within a structural syntaxis, allowing rapid tectonic upwelling of rocks driven by thrust faulting and crustal contraction. Plate motion is partly transferred from the Fairweather to the Bagley fault, which extends 125 km farther west as a dextral shear zone that is partly reactivated by reverse faulting. The Bagley fault dips steeply through the upper plate to intersect the subduction megathrust at depth, forming a narrow fault-bounded crustal sliver in the obliquely convergent plate margin. Since . 20 Ma the Bagley fault has accommodated more than 50 km of dextral shearing and several kilometers of reverse motion along its southern flank during terrane accretion. The fault is considered capable of generating earthquakes because it is linked to faults that generated large historic earthquakes, suitably oriented for reactivation in the contemporary stress field, and locally marked by seismicity. The fault may generate earthquakes of Mw <= 7.5.

  17. Plate tectonic history of the Arctic

    Science.gov (United States)

    Burke, K.

    1984-01-01

    Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.

  18. Plate tectonic history of the Arctic

    Science.gov (United States)

    Burke, K.

    1984-01-01

    Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.

  19. Numerical modelling of instantaneous plate tectonics

    Science.gov (United States)

    Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.

    1974-01-01

    Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.

  20. Plate Tectonism on Early Mars: Diverse Geological and Geophysical Evidence

    Science.gov (United States)

    Dohm, J. M.; Maruyama, S.; Baker, V. R.; Anderson, R. C.; Ferris, Justin C.; Hare, Trent M.

    2002-01-01

    Mars has been modified by endogenic and exogenic processes similar in many ways to Earth. However, evidence of Mars embryonic development is preserved because of low erosion rates and stagnant lid convective conditions since the Late Noachian. Early plate tectonism can explain such evidence. Additional information is contained in the original extended abstract.

  1. Junior Secondary School Students' Conceptions about Plate Tectonics

    Science.gov (United States)

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2017-01-01

    There are ongoing calls for research that identifies students' conceptions about geographical phenomena. In response, this study investigates junior secondary school students' (N = 95) conceptions about plate tectonics. Student response data was generated from semi-structured interviews-about-instances and a two-tiered multiple-choice test…

  2. Plate tectonics: Delayed response to mantle pull

    Science.gov (United States)

    Nedimović, Mladen R.

    2016-08-01

    At mid-ocean ridges, the directions in which plates spread and the underlying mantle flows were thought to broadly align. A synthesis of results from ridges that spread at a variety of rates reveals that instead there may be a systematic skew.

  3. Extending Alaska's plate boundary: tectonic tremor generated by Yakutat subduction

    Science.gov (United States)

    Wech, Aaron G.

    2016-01-01

    The tectonics of the eastern end of the Alaska-Aleutian subduction zone are complicated by the inclusion of the Yakutat microplate, which is colliding into and subducting beneath continental North America at near-Pacific-plate rates. The interaction among these plates at depth is not well understood, and further east, even less is known about the plate boundary or the source of Wrangell volcanism. The drop-off in Wadati-Benioff zone (WBZ) seismicity could signal the end of the plate boundary, the start of aseismic subduction, or a tear in the downgoing plate. Further compounding the issue is the possible presence of the Wrangell slab, which is faintly outlined by an anemic, eastward-dipping WBZ beneath the Wrangell volcanoes. In this study, I performed a search for tectonic tremor to map slow, plate-boundary slip in south-central Alaska. I identified ∼11,000 tremor epicenters, which continue 85 km east of the inferred Pacific plate edge marked by WBZ seismicity. The tremor zone coincides with the edges of the downgoing Yakutat terrane, and tremors transition from periodic to continuous behavior as they near the aseismic Wrangell slab. I interpret tremor to mark slow, semicontinuous slip occurring at the interface between the Yakutat and North America plates. The slow slip region lengthens the megathrust interface beyond the WBZ and may provide evidence for a connection between the Yakutat slab and the aseismic Wrangell slab.

  4. Inversion for the driving forces of plate tectonics

    Science.gov (United States)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  5. Inversion for the driving forces of plate tectonics

    Science.gov (United States)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  6. Scaling of plate-tectonic convection with pseudoplastic rheology

    CERN Document Server

    Korenaga, Jun

    2010-01-01

    The scaling of plate-tectonic convection is investigated by simulating thermal convection with pseudoplastic rheology and strongly temperature-dependent viscosity. The effect of mantle melting is also explored with additional depth-dependent viscosity. Heat-flow scaling can be constructed with only two parameters, the internal Rayleigh number and the lithospheric viscosity contrast, the latter of which is determined entirely by rheological properties. The critical viscosity contrast for the transition between plate-tectonic and stagnant-lid convection is found to be proportional to the square root of the internal Rayleigh number. The relation between mantle temperature and surface heat flux on Earth is discussed on the basis of these scaling laws, and the inverse relationship between them, as previously suggested from the consideration of global energy balance, is confirmed by this fully dynamic approach. In the presence of surface water to reduce the effective friction coefficient, the operation of plate tec...

  7. Beyond plate tectonics - Looking at plate deformation with space geodesy

    Science.gov (United States)

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.

  8. Beyond plate tectonics - Looking at plate deformation with space geodesy

    Science.gov (United States)

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.

  9. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    Science.gov (United States)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  10. Creep of phyllosilicates at the onset of plate tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Amiguet, Elodie; Reynard, Bruno; Caracas, Razvan; Van de Moortele, Bertrand; Hilairet, Nadege; Wang, Yanbin (ENSL); (UC)

    2012-10-24

    Plate tectonics is the unifying paradigm of geodynamics yet the mechanisms and causes of its initiation remain controversial. Some models suggest that plate tectonics initiates when the strength of lithosphere is lower than 20-200 MPa, below the frictional strength of lithospheric rocks (>700 MPa). At present-day, major plate boundaries such as the subduction interface, transform faults, and extensional faults at mid-oceanic ridge core complexes indicate a transition from brittle behaviour to stable sliding at depths between 10 and 40 km, in association with water-rock interactions forming phyllosilicates. We explored the rheological behaviour of lizardite, an archetypal phyllosilicate of the serpentine group formed in oceanic and subduction contexts, and its potential influence on weakening of the lithospheric faults and shear zones. High-pressure deformation experiments were carried out on polycrystalline lizardite - the low temperature serpentine variety - using a D-DIA apparatus at a variety of pressure and temperature conditions from 1 to 8 GPa and 150 to 400 C and for strain rates between 10{sup -4} and 10{sup -6} s{sup -1}. Recovered samples show plastic deformation features and no evidence of brittle failure. Lizardite has a large rheological anisotropy, comparable to that observed in the micas. Mechanical results and first-principles calculations confirmed easy gliding on lizardite basal plane and show that the flow stress of phyllosilicate is in the range of the critical value of 20-200 MPa down to depths of about 200 km. Thus, foliated serpentine or chlorite-bearing rocks are sufficiently weak to account for plate tectonics initiation, aseismic sliding on the subduction interface below the seismogenic zone, and weakening of the oceanic lithosphere along hydrothermally altered fault zones. Serpentinisation easing the deformation of the early crust and shallow mantle reinforces the idea of a close link between the occurrence of plate tectonics and water at

  11. The magma ocean as an impediment to lunar plate tectonics

    Science.gov (United States)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  12. Could plate tectonics on Venus be concealed by volcanic deposits

    Science.gov (United States)

    Kaula, W. M.; Muradian, L. M.

    1982-01-01

    The present investigation is supplementary to a study reported by Kaula and Phillips (1981). From an analysis of Pioneer Venus altimetry, Kaula and Phillips had inferred that any heat loss from the planet by plate tectonics must be small compared to that from the earth. However, it has been suggested by others that plate tectonic may exist on Venus, but that the expected 'square root of s' dependence of the topographic drop off is not observed because it is concealed by lava flows. The present investigation has the objective to conduct an examination whether this suggestion of concealment by lava flow is correct. On the basis of the performed analysis, it is concluded that the results obtained by Kaula and Phillips appear to be well justified.

  13. Teaching Earth Dynamics: What's Wrong with Plate Tectonics Theory?

    CERN Document Server

    Herndon, J M

    2005-01-01

    Textbooks frequently extol plate tectonics theory without questioning what might be wrong with the theory or without discussing a competitive theory. How can students be taught to challenge popular ideas when they are only presented a one-sided view? In just a few pages, I describe more than a century of geodynamic ideas. I review what is wrong with plate tectonics theory and with Earth expansion theory, and describe my new Whole-Earth Decompression Dynamics Theory, which unifies the two previous dominant theories in a self- consistent manner. Along the way, I disclose details of what real science is all about, details all too often absent in textbooks and classroom discussions. In these few pages, I only touch on highlights and just part the curtain a bit so that teachers might glimpse ways to bring to their students some of the richness and excitement of discovery that becomes evident when one begins to question prevailing, currently popular perceptions of our world.

  14. Could plate tectonics on Venus be concealed by volcanic deposits

    Science.gov (United States)

    Kaula, W. M.; Muradian, L. M.

    1982-01-01

    The present investigation is supplementary to a study reported by Kaula and Phillips (1981). From an analysis of Pioneer Venus altimetry, Kaula and Phillips had inferred that any heat loss from the planet by plate tectonics must be small compared to that from the earth. However, it has been suggested by others that plate tectonic may exist on Venus, but that the expected 'square root of s' dependence of the topographic drop off is not observed because it is concealed by lava flows. The present investigation has the objective to conduct an examination whether this suggestion of concealment by lava flow is correct. On the basis of the performed analysis, it is concluded that the results obtained by Kaula and Phillips appear to be well justified.

  15. The magma ocean as an impediment to lunar plate tectonics

    Science.gov (United States)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  16. Plate Tectonics: The Way the Earth Works. Teacher's Guide. LHS GEMS.

    Science.gov (United States)

    Cuff, Kevin

    This teacher guide presents a unit on plate tectonics and introduces hands-on activities for students in grades 6-8. In each unit, students act as real scientists and gather evidence by using science process skills such as observing, graphing, analyzing data, designing and making models, visualizing, communicating, theorizing, and drawing…

  17. Plate Tectonics: The Way the Earth Works. Teacher's Guide. LHS GEMS.

    Science.gov (United States)

    Cuff, Kevin

    This teacher guide presents a unit on plate tectonics and introduces hands-on activities for students in grades 6-8. In each unit, students act as real scientists and gather evidence by using science process skills such as observing, graphing, analyzing data, designing and making models, visualizing, communicating, theorizing, and drawing…

  18. Plate tectonics. Seismological detection of slab metamorphism.

    Science.gov (United States)

    Julian, Bruce

    2002-05-31

    The occurrence of more or less continuous ground vibrations ("volcanic tremor") is an important indicator of volcanic activity. But results from the "Hi-net" seismic network in Japan reported by Obara show that continuous ground vibrations can occur far away from any volcanic activity. In his Perspective, Julian discusses the idea that this tremor is excited by flow of metamorphic fluids. He also identifies other possible locations where such a tremor may be detected and explains what may be learnt from measuring it.

  19. Active tectonics of the western tethyan himalaya above the underthrusting indian plate: The upper sutlej river basin as a pull-apart structure

    Science.gov (United States)

    Ni, James; Barazangi, Muawia

    1985-03-01

    Fault-bounded blocks and structural elements were mapped in the eastern Ladakh-Spiti and upper Sutlej River Basin located within the Tethyan Himalaya and to the southwest of the Karakorum fault zone mainly using LANDSAT Multispectral Scanner (MSS) band 5, band 7 (near-infrared) images with detailed analysis of smaller areas by interactive digital processing of false color images, and Returned Beam Vidicon (RBV) imagery in conjunction with available topographical, geological and seismological data. For the first time the Leo Pargil Horst and other nearby fault-bounded blocks located at the northwestern end of the upper Setlej River Basin were clearly revealed on the LANDSAT color composites. Shallow crustal seismicity is systematically related to the NNE-trending and N-trending normal faults of the Leo Pargil and nearby regions. Some of the aftershocks of the Kinnaur earthquake of January 19,1975 ( Ms = 6.8), appear to be associated with movement along the NNE-trending westbound fault of the Leo Pargil Horst and the nearby Kaurik-Chango fault. The main shock, however, is teleseismically located at about 30 km to the northwest of the Kaurik-Chango fault. Fault plane solutions of the main shock and two aftershocks indicate a large component of normal faulting. In map view, the upper Sutlej River Basin has an approximately rhomboidal shape and is located to the southwest of the Karakorum fault system. We suggest that this basin is a pull-apart between the NW-SE oriented, right-lateral, strike-slip Karakorum fault system and the high-angle faults near the southern boundary of the Tethyan Himalaya. The Leo Pargil Horst is the northwestern bounding fault block of this pull-apart. The active tectonic features in this part of the Tethyan Himalaya appear to reflect right-shear within the crust, and this is probably a consequence of oblique underthrusting of the Indian continental plate beneath the western Himalaya and southwestern Tibet during the Neogene and Quaternary

  20. Barrel organ of plate tectonics - a new tool for outreach and education

    Science.gov (United States)

    Broz, Petr; Machek, Matěj; Šorm, Zdar

    2016-04-01

    Plate tectonics is the major geological concept to explain dynamics and structure of Earth's outer shell, the lithosphere. In the plate tectonic theory processes in the Earth lithosphere and its dynamics is driven by the relative motion and interaction of lithospheric plates. Geologically most active regions on Earth often correlate with the lithospheric plate boundaries. Thus for explaining the earth surface evolution, mountain building, volcanism and earthquake origin it is important to understand processes at the plate boundaries. However these processes associated with plate tectonics usually require significant period of time to take effects, therefore, their entire cycles cannot be directly observed in the nature by humans. This makes a challenge for scientists studying these processes, but also for teachers and popularizers trying to explain them to students and to the general public. Therefore, to overcome this problem, we developed a mechanical model of plate tectonics enabling demonstration of most important processes associated with plate tectonics in real time. The mechanical model is a wooden box, more specifically a special type of barrel organ, with hand painted backdrops in the front side. These backdrops are divided into several components representing geodynamic processes associated with plate tectonics, specifically convective currents occurring in the mantle, sea-floor spreading, a subduction of the oceanic crust under the continental crust, partial melting and volcanism associated with subduction, a formation of magmatic stripes, an ascent of mantle plume throughout the mantle, a volcanic activity associated with hot spots, and a formation and degradation of volcanic islands on moving lithospheric plate. All components are set in motion by a handle controlled by a human operator, and the scene is illuminated with colored lights controlled automatically by an electric device embedded in the box. Operation of the model may be seen on www

  1. Mantle convection and plate tectonics on Earth-like exoplanets

    Science.gov (United States)

    Sotin, C.; Schubert, G.

    2009-12-01

    The likelihood of plate tectonics on exoplanets larger than Earth can be assessed using either scaling laws or numerical models describing mantle thermal convection. We investigate the parameters which control the ratio of convective driving forces to lithosphere resisting forces. Two papers, Valencia et al. (AstroPhys. J., 670, L45-L48, 2007) and O’Neill and Lenardic (Geophys. Res. Lett., 34, L19204, 2007), came to opposite conclusions based on scaling laws and numerical calculations, respectively. The different assumptions and parameters used in each study are compared. The definition of thermal boundary layer and lithosphere and the use of their characteristics in the scaling laws are clarified. We show that Valencia et al. (2007) overestimate the ratio of driving forces to resistive forces because they infer too large values for both the thickness of the thermal boundary layer and the length of the plate and too small a value for the yield strength. We show that this ratio is so weakly dependent on the size of an Earth-like planet that other parameters such as presence of water, heating per unit mass, upper mantle thickness, etc., may actually determine the occurrence or not of plate tectonics. The numerical calculations of O’Neill and Lenardic (2007) show the importance of 2D simulations for determining the values of the velocity below the lithosphere, the convective stresses, and the plate dimensions. It demonstrates the need for 3D spherical numerical simulations. Their conclusion that super-Earths would not have plate tectonics depends on a number of assumptions including the constancy of heat-flux as a function of planetary size. We present a 3D spherical scaling including the increase of heat flux with the size of a planet showing that larger Earth-like planets would be marginally in the mobile lid convection regime reinforcing our caution that other factors may tip the balance. The present study points out the importance of the distance between

  2. The San Andreas fault experiment. [gross tectonic plates relative velocity

    Science.gov (United States)

    Smith, D. E.; Vonbun, F. O.

    1973-01-01

    A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.

  3. Geoid Data and Implications for Plate Tectonic Dynamics

    Science.gov (United States)

    Richardson, R. M.; Coblentz, D. D.

    2013-12-01

    It has long been recognized that the motion of the mechanically rigid lithospheric plates of the earth are the surface expression of large-scale convection in the mantle. It is also accepted that the stresses driving plate motion are an amalgam of the basal tractions associated with this convection and long-wavelength density variations within the plates themselves. Parsing the relative contribution from these two sources to the geodynamics of the lithosphere continues to be an important topic of plate dynamics research. Because geoid anomalies are directly related to the local dipole moment of the density-depth distribution, they provide an ideal method for evaluating density variations within the lithosphere and the associated tectonic stresses. The main challenge with this approach is isolating the lithospheric geoid contribution from the full geoid (which is dominated by sources from deeper in the earth, namely the lower mantle). We address this issue by using a high-pass spherical harmonic filtering of the EGM2008-WGS84 geoid (which is complete to spherical harmonic degree and order 2159), with a cosine taper between orders 9 to 13 and 78 to 82 to produce a 'lithospheric' geoid. In the present study we focus on tectonic implications of the lithospheric geoid in three different areas: 1) passive continental margins where we have evaluated over 150 margin-transects spaced roughly every three degrees. The global average geoid anomaly associated with the transition from old oceanic lithosphere to the continent was found to 6-9 meters and appears to be insensitive to a range of geoid filtering degrees and orders; 2) The geoid highs associated with the mid-ocean ridges and the cooling oceanic lithospheric, where we have examined a number of geoid profiles across ridges and find that previous estimates of a geoid anomaly of 10-15 meters associated with ridges to be valid; and 3) continental regions which are characterized by both elevated geoid anomalies (e.g., the

  4. The efficiency of plate tectonics and nonequilibrium dynamical evolution of planetary mantles

    Science.gov (United States)

    Moore, W. B.; Lenardic, A.

    2015-11-01

    Consideration of the structure of dynamical equilibria in terrestrial planets using simplified descriptions of the relevant heat transport processes (rigid-lid convection, plate tectonics, and heat pipe volcanism) reveals that if the efficiency of plate tectonic heat transport decreases at higher mantle temperature, then it cannot govern quasi-equilibrium dynamical evolution, and the system is always evolving away from the plate tectonic regime. A planet on which plate tectonics is less efficient at higher temperature stays in heat pipe mode longer, spends less time undergoing plate tectonics, and has a low and ever-decreasing Urey number during this phase. These conclusions are based solely on the structure of the equilibria in a system with less efficient plate tectonics in the past and are independent of the mechanisms leading to this behavior. Commonly used quasi-equilibrium approaches to planetary thermal evolution are likely not valid for planets in which heat transport becomes less efficient at higher temperature.

  5. Observing tectonic plate motions and deformations from satellite laser ranging

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  6. Observing tectonic plate motions and deformations from satellite laser ranging

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  7. Plate tectonics from VLBI and SLR global data

    Science.gov (United States)

    Harrison, Christopher G. A.; Robaudo, Stefano

    1992-01-01

    This study is based on data derived from fifteen years of observations of the SLR (side-looking radar) network and six years of the VLBI (very long baseline interferometry) network. In order to use all available information VLBI and SLR global data sets were combined in a least squares fashion to calculate station horizontal velocities. All significant data pertaining to a single site contribute to the station horizontal motion. The only constraint on the solution is that no vertical motion is allowed. This restriction does not greatly affect the precision of the overall solution given the fact that the expected vertical motion for most stations, even those experiencing post glacial uplift, is well under 1 cm/yr. Since the average baseline is under 4,000 km, only a small fraction of the station vertical velocity is translated into baseline rates so that the error introduced in the solution by restricting up-down station movement is minimal. As a reference, station velocities were then compared to the ones predicted by the NUVEL-1 geological model of DeMets et al. (1990). The focus of the study is on analyzing these discrepancies for global plate tectonics as well as regional tectonic settings. The method used also allows us not only to derive horizontal motion for individual stations but also to calculate Euler vectors for those plates that have enough stations located on the stable interior like North America, Pacific, Eurasia, and Australia.

  8. Using the Mesozoic History of the Canadian Cordillera as a Case Study in Teaching Plate Tectonics.

    Science.gov (United States)

    Chamberlain, Valerie Elaine

    1989-01-01

    Reviews a model used in the teaching of plate tectonics which includes processes and concepts related to: terranes and the amalgamation of terranes, relative plate motion and oblique subduction, the effects of continent-continent collision, changes in plate motion, plate configuration, and the type of plate boundary. Diagrams are included.…

  9. Using the Mesozoic History of the Canadian Cordillera as a Case Study in Teaching Plate Tectonics.

    Science.gov (United States)

    Chamberlain, Valerie Elaine

    1989-01-01

    Reviews a model used in the teaching of plate tectonics which includes processes and concepts related to: terranes and the amalgamation of terranes, relative plate motion and oblique subduction, the effects of continent-continent collision, changes in plate motion, plate configuration, and the type of plate boundary. Diagrams are included.…

  10. Topography of Venus and earth - A test for the presence of plate tectonics

    Science.gov (United States)

    Head, J. W.; Yuter, S. E.; Solomon, S. C.

    1981-01-01

    Comparisons of earth and Venus topography by use of Pioneer/Venus radar altimetry are examined. Approximately 93% of the Venus surface has been mapped with a horizontal resolution of 200 km and a vertical resolution of 200 m. Tectonic troughs have been indicated in plains regions which cover 65% of Venus, and hypsometric comparisons between the two planets' elevation distributions revealed that while the earth has a bimodal height distribution, Venus displays a unimodal configuration, with 60% of the planet surface within 500 m of the modal planet radius. The effects of mapping the earth at the same resolution as the Venus observations were explored. Continents and oceans were apparent, and although folded mountains appeared as high spots, no indications of tectonic activity were discernible. A NASA Venus Orbiting Imaging radar is outlined, which is designed to detect volcanoes, folded mountain ranges, craters, and faults, and thereby allow definition of possible plate-tectonic activity on Venus.

  11. Topography of Venus and earth - A test for the presence of plate tectonics

    Science.gov (United States)

    Head, J. W.; Yuter, S. E.; Solomon, S. C.

    1981-01-01

    Comparisons of earth and Venus topography by use of Pioneer/Venus radar altimetry are examined. Approximately 93% of the Venus surface has been mapped with a horizontal resolution of 200 km and a vertical resolution of 200 m. Tectonic troughs have been indicated in plains regions which cover 65% of Venus, and hypsometric comparisons between the two planets' elevation distributions revealed that while the earth has a bimodal height distribution, Venus displays a unimodal configuration, with 60% of the planet surface within 500 m of the modal planet radius. The effects of mapping the earth at the same resolution as the Venus observations were explored. Continents and oceans were apparent, and although folded mountains appeared as high spots, no indications of tectonic activity were discernible. A NASA Venus Orbiting Imaging radar is outlined, which is designed to detect volcanoes, folded mountain ranges, craters, and faults, and thereby allow definition of possible plate-tectonic activity on Venus.

  12. Global strike-slip faults: Bounds from plate tectonics

    Science.gov (United States)

    Gordon, R. G.; Argus, D. F.

    2006-12-01

    According to the tenets of plate tectonics, a transform fault is a strike-slip fault along which neither convergence nor divergence occurs. Analysis of global plate motion data indicates that the only true transform faults are the strike-slip faults that offset segments of mid-ocean ridges. Thus, many of Earth's major strike-slip fault systems are not true transform faults as they accommodate large components of oblique convergence or oblique divergence. This is particularly true for several important ocean-continent systems such as the San Andreas, the strike-slip systems bounding the northern and southern Caribbean plate, the Alpine fault system of New Zealand, the Anatolian fault system, and the Azores-Gibraltar-Alboran sea system. These strike-slip systems are commonly sites of large scale mountain building and basin formation. Here we examine the far-field constraints on the motions of the plates bounding several of these strike-slip systems using both conventional plate motion circuits and results from global positioning system and other space geodetic data. We pay particular attention to the San Andreas fault system in central and northern California, where the San Andreas system is part of the boundary between the Sierran microplate and the Pacific plate. Most of the fault system accommodates obliquely convergent motion, giving rise to the California Coast Range, but in the northern San Francisco Bay Area it is obliquely divergent, producing San Pablo Bay and a gap in the Coast Range that permits the Sierran watershed to drain to the Pacific through the Golden Gate.

  13. Upper plate deformation and seismic barrier in front of Nazca subduction zone : the Chololo Fault System and active tectonics along the Coastal Cordillera, southern Peru

    OpenAIRE

    Audin, Laurence; Lacan, P.; Tavera, H.; Bondoux, Francis

    2008-01-01

    The South America plate boundary is one of the most active subduction zone. The recent Mw=8.4 Arequipa 2001 earthquake ruptured the subduction plane toward the south over 400 km and stopped abruptly on the Ilo Peninsula. In this exact region, the subduction seismic crisis induced the reactivation of continental fault systems in the coastal area. We studied the main reactivated fault system that trends perpendicular to the trench by detailed mapping of fault related-geomorphic features. Also, ...

  14. Mantle Convection, Plate Tectonics, and the Asthenosphere: A Bootstrap Model of the Earth's Internal Dynamics

    Science.gov (United States)

    Lenardic, A.; Hoink, T.

    2008-12-01

    Several studies have highlighted the role of a low viscosity asthenosphere in promoting plate-like behavior in mantle convection models. It has also been argued that the asthenosphere is fed by mantle plumes (Phipps- Morgan et al. 1993; Deffeyes 1972) and that the existence of the specific plume types required for this depends on plate subduction (Lenardic and Kaula 1995; Jellinek et al. 2002). Independent of plumes, plate subduction can generate a non-adiabatic temperature gradient which, together with temperature dependent mantle viscosity, leads to a low viscosity near surface region. The above suggests a conceptual model in which the asthenosphere can not be defined solely in terms of material properties but must also be defined in terms of an active process, plate tectonics, which both maintains it and is maintained by it. The bootstrap aspect of the model is its circular causality between plates and the asthenosphere, neither being more fundamental than the other and the existence of each depending on the other. Several of the feedbacks key to the conceptual model will be quantified. The implications for modeling mantle convection in a plate-tectonic mode will also be discussed: 1) A key is to get numerical simulations into the bootstrap mode of operation and this is dependent on assumed initial conditions; 2) The model implies potentially strong hysteresis effects (e.g., transition between convection states, associated with variable yield stress, will occur at different values depending on whether the yield stress is systematically lowered or raised between successive models).

  15. Emerging Possibilities and Insuperable Limitations of Exogeophysics: The Example of Plate Tectonics

    Science.gov (United States)

    Stamenković, Vlada; Seager, Sara

    2016-07-01

    To understand the evolution and the habitability of any rocky exoplanet demands detailed knowledge about its geophysical state and history—such as predicting the tectonic mode of a planet. Yet no astronomical observation can directly confirm or rule out the occurrence of plate tectonics on a given exoplanet. Moreover, the field of plate tectonics is still young—questioning whether we should study plate tectonics on exoplanets at this point in time. In this work, we determine the limitations and the emerging possibilities of exogeophysics, the science of connecting geophysics to exoplanets, on the example of plate tectonics. Assuming current uncertainties in model and planet parameters, we develop a qualitatively probabilistic and conservative framework to estimate on what kind of planets and where in the Galaxy plate tectonics might occur. This we achieve by modeling how plate yielding, the most critical condition needed for plate mobility and subduction, is affected by directly observable (planet mass, size) or indirectly, to some degree, assessable planet properties (structure and composition). Our framework not only highlights the importance of a planet’s chemistry for the existence of plate tectonics and the path toward practical exogeophysics but also demonstrates how exoplanet science can actually help to better understand geophysics and the fundamentals of plate tectonics on Earth itself.

  16. Developing the plate tectonics from oceanic subduction to continental collision

    Institute of Scientific and Technical Information of China (English)

    ZHENG YongFei; YE Kai; ZHANG LiFei

    2009-01-01

    The studies of continental deep subduction and ultrahigh-pressure metamorphism have not only promoted the development of solid earth science in China,but also provided an excellent opportunity to advance the plate tectonics theory.In view of the nature of subducted crust,two types of subduction and collision have been respectively recognized in nature.On one hand,the crustal subduction occurs due to underflow of either oceanic crust (Pacific type) or continental crust (Alpine type).On the other hand,the continental collision proceeds by arc-continent collision (Himalaya-Tibet type) or continent-continent collision (Dabie-Sulu type).The key issues in the future study of continental dynamics are the chemical changes and differential exhumation in continental deep subduction zones,and the temporal-spatial transition from oceanic subduction to continental subduction.

  17. Plate Tectonics and Taiwan Orogeny based on TAIGER Experiments

    Science.gov (United States)

    Wu, F. T.; Kuochen, H.; McIntosh, K. D.

    2014-12-01

    Plate tectonics framework is usually complex in a collision zone, where continental lithosphere is involved. In the young Taiwan orogeny, with geologic understanding and large new geodetic and subsurface datasets now available an environment has been created for testing tectonic hypotheses regarding collision and orogeny. Against the background of the commonly accepted view of Taiwan as a southward propagating, self-similar 2-D orogen, a fully 3-D structure is envisaged. Along the whole length of the island the convergence of the Eurasian plate (EUP) the Philippine Sea plate (PSP) takes shape with different plate configurations. In northern Taiwan the convergence occurs with simultaneous collision of the oceanic PSP with continental EUP and the northward subduction of the PSP; in the south, EUP, in the guise of the South China Sea rifted Eurasian continent, subducts toward the east; in central Taiwan collision of oceanic PSP with continental EUP dominates. When relocated seismicity and focal mechanisms are superposed on subsurface P and Vp/Vs velocity images the configurations and the kinematics of the PSP and EUP collision and subduction become clear. While in northern Taiwan the subduction/collision explains well the high peaks and their dwindling (accompanied by crustal thinning) toward the north. In the south, mountains rise above the east-dipping EUP subduction zone as the Eurasian continental shelf veers toward the southwest, divergent from the trend of the Luzon Arc - calling into question the frequently cited arc-continent collision model of Taiwan orogeny. High velocity anomaly and Benioff seismicity coexist in the south. Going north toward Central Taiwan the high velocity anomaly persists for another 150 km or so, but it becomes seismically quiescent. Above the quiescent section the PSP and EUP collide to build the main part of the Central Range and its parallel neighbor the eastern Coastal Range. Key implications regarding orogeny include: 1) Significant

  18. Active Tectonics: Part 2: Epeirogenic and intraplate movements

    Science.gov (United States)

    Brown, L. D.; Reilinger, R. E.

    The major deformations of the Earth's surface are largely consistent with the tenets of plate tectonics, which predict that such activity should be focused at the various boundaries along which massive lithospheric plates collide, pull apart, or slide past one another. Yet crustal deformations also occur well into the interior of these plates. Some may represent the distributed effects of distant plate boundaries, as, for example, the earthquakes of the intermontane western United States. Some, such as the geodetically observed uplift over a deep magma chamber in the Rio Grande rift of New Mexico, may correspond to incipient foundation of a new plate boundary. Others, like the subtle, broad uplifts and subsidences in the nominally stable cratonic interiors, are much more puzzling. Such motions often appear estranged, if not divorced, from accepted plate-tectonic processes. Postglacial rebound, a well-known phenomenon in portions of North America and Europe, also appears to be an inadequate explanation for many observations. Understanding contemporary motions of plate interiors is often hindered by the paucity and uncertain accuracy of relevant geophysical and geodetic observations. Yet intraplate tectonics constitutes more than a scientific enigma. Even seemingly slow vertical motions may threaten river courses or seafront properties on socially relevant time scales, and the subtle strain accumulating elsewhere may portend future earthquakes or volcanoes in the least predictable places.

  19. Structures in the Deep Mantle: Implications for the Onset of Plate Tectonics and the Viscosity Structure

    Science.gov (United States)

    Stein, Claudia; Hansen, Ulrich

    2016-04-01

    Recently deep structures have been studied intensively. The observed large anomalies with reduced seismic velocities (LLSVPs) beneath Africa and the Pacific are obtained in numerical models as an initial dense layer at the core-mantle boundary (CMB) is pushed up to piles by the convective flow (e.g., McNamara et al., EPSL 229, 1-9, 2010). Adding a dense CMB layer to a model featuring active plate tectonics, Trim et al. (EPSL 405, 1-14, 2014) find that surface mobility is strongly hindered by the dense material and can even vanish completely for a CMB layer that has a too high density or too large a volume. In a further study we employed a fully rheological model in which oceanic plates form self-consistently. We observe that an initial dense CMB layer strongly affects the formation of plates and therefore the onset time of plate tectonics. In a systematic 2D parameter study of thermochemical convection we discuss the resulting viscosity structure and time of plate initiation.

  20. Deep Structures and Initiation of Plate Tectonics in Thermochemical Mantle Convection Models

    Science.gov (United States)

    Hansen, U.; Stein, C.

    2015-12-01

    Recently deep thermochemical structures have been studied intensively. The observed large anomalies with reduced seismic velocities (LLSVPs) beneath Africa and the Pacific are obtained in numerical models as an initial dense layer at the core-mantle boundary (CMB) is pushed up to piles by the convective flow (e.g., McNamara et al., EPSL 229, 1-9, 2010). Adding a dense CMB layer to a model featuring active plate tectonics, Trim et al. (EPSL 405, 1-14, 2014) find that surface mobility is strongly hindered by the dense material and can even vanish completely for a CMB layer that has a too high density or too large a volume.In a further study we employed a fully rheological model in which oceanic plates form self-consistently. We observe that an initial dense CMB layer strongly affects the formation of plates and therefore the onset time of plate tectonics. We present a systematic 2D parameter study exploring the time of plate initiation and discuss the resulting deep thermal and thermochemical structures in a self-consistent thermochemical mantle convection system.

  1. Plate tectonics on the Earth triggered by plume-induced subduction initiation.

    Science.gov (United States)

    Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A

    2015-11-12

    Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.

  2. Vertical tectonics at an active continental margin

    Science.gov (United States)

    Houlié, N.; Stern, T. A.

    2017-01-01

    Direct observations of vertical movements of the earth's surface are now possible with space-based GPS networks, and have applications to resources, hazards and tectonics. Here we present data on vertical movements of the Earth's surface in New Zealand, computed from the processing of GPS data collected between 2000 and 2015 by 189 permanent GPS stations. We map the geographical variation in vertical rates and show how these variations are explicable within a tectonic framework of subduction, volcanic activity and slow slip earthquakes. Subsidence of >3 mm/yr is observed along southeastern North Island and is interpreted to be due to the locked segment of the Hikurangi subduction zone. Uplift of 1-3 mm/yr further north along the margin of the eastern North Island is interpreted as being due to the plate interface being unlocked and underplating of sediment on the subduction thrust. The Volcanic Plateau of the central North Island is being uplifted at about 1 mm/yr, which can be explained by basaltic melts being injected in the active mantle-wedge at a rate of ∼6 mm/yr. Within the Central Volcanic Region there is a 250 km2 area that subsided between 2005 and 2012 at a rate of up to 14 mm/yr. Time series from the stations located within and near the zone of subsidence show a strong link between subsidence, adjacent uplift and local earthquake swarms.

  3. Grain-damage hysteresis and plate tectonic states

    Science.gov (United States)

    Bercovici, David; Ricard, Yanick

    2016-04-01

    Shear localization in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. The theoretical model for grain-damage and pinning in two-phase polycrystalline rocks provides a frame-work for understanding lithospheric shear weakening and plate-generation, and is consistent with laboratory and field observations of mylonites. Grain size evolves through the competition between coarsening, which drives grain-growth, and damage, which drives grain reduction. The interface between crystalline phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary positive self-weakening feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. However, the suppression of interface damage at low interface curvature (wherein inter-grain mixing is inefficient and other energy sinks of deformational work are potentially more facile) causes a hysteresis effect, in which three possible equilibrium grain-sizes for a given stress coexist: (1) a stable, large-grain, weakly-deforming state, (2) a stable, small-grain, rapidly-deforming state analogous to ultramylonites, and (3) an unstable, intermediate grain-size state perhaps comparable to protomylonites. A comparison of the model to field data suggests that shear-localized zones of small-grain mylonites and ultra-mylonites exist at a lower stress than the co-existing large-grain porphyroclasts, rather than, as predicted by paleopiezometers or paleowattmeters, at a much higher stress; this interpretation of field data thus allows localization to relieve instead of accumulate stress. The model also predicts that a lithosphere that

  4. Identifying active interplate and intraplate fault zones in the western Caribbean plate from seismic reflection data and the significance of the Pedro Bank fault zone in the tectonic history of the Nicaraguan Rise

    Science.gov (United States)

    Ott, B.; Mann, P.

    2015-12-01

    The offshore Nicaraguan Rise in the western Caribbean Sea is an approximately 500,000 km2 area of Precambrian to Late Cretaceous tectonic terranes that have been assembled during the Late Cretaceous formation of the Caribbean plate and include: 1) the Chortis block, a continental fragment; 2) the Great Arc of the Caribbean, a deformed Cretaceous arc, and 3) the Caribbean large igneous province formed in late Cretaceous time. Middle Eocene to Recent eastward motion of the Caribbean plate has been largely controlled by strike-slip faulting along the northern Caribbean plate boundary zone that bounds the northern margin of the Nicaraguan Rise. These faults reactivate older rift structures near the island of Jamaica and form the transtensional basins of the Honduran Borderlands near Honduras. Recent GPS studies suggest that small amount of intraplate motion within the current margin of error of GPS measurements (1-3 mm/yr) may occur within the center of the western Caribbean plate at the Pedro Bank fault zone and Hess Escarpment. This study uses a database of over 54,000 km of modern and vintage 2D seismic data, combined with earthquake data and results from previous GPS studies to define the active areas of inter- and intraplate fault zones in the western Caribbean. Intraplate deformation occurs along the 700-km-long Pedro Bank fault zone that traverses the center of the Nicaraguan Rise and reactivates the paleo suture zone between the Great Arc of the Caribbean and the Caribbean large igneous province. The Pedro Bank fault zone also drives active extension at the 200-km-long San Andres rift along the southwest margin of the Nicaraguan Rise. Influence of the Cocos Ridge indentor may be contributing to reactivation of faulting along the southwesternmost, active segment of the Hess Escarpment.

  5. Dynamic Analysis of Modifications to Simple Plate Tectonic Theory

    Science.gov (United States)

    Paczkowski, Karen

    A number of geological and geophysical observations suggest significant departures from simple, first-order plate tectonic theory. In this thesis we address the dynamic implications of some of these observations and propose generalized theories to explain their dynamics and conditions of formation. In Chapter 2, we develop a generalized theory and analytic model to predict the conditions under which large-volume removal of continental lithosphere can occur through the formation of drip instabilities. Using damage physics relevant for Earth, we find a large portion of the lithosphere may be mobilized and entrained into growing drip instabilities. For a critical amount of damage, the growth is accelerated sufficiently that large-volume drip instabilities may form within geologically feasible time frames. Our model suggests large-volume lithospheric drip instabilities may arise independently of tectonic settings through damage-assisted mobilization and entrainment of the highly viscous lithosphere. In Chapter 3, we develop a mechanical model independent of volcanism and thermal weakening to explain the initial formation and length scale of rifting and extension near convergent plate boundaries. We conduct a linear stability analysis of a simple viscous necking model, which includes the lithosphere's negative buoyancy, non-Newtonian rheology, and freely moving top surface, to determine which properties of the lithosphere govern the location of rifting. We find that the negative buoyancy of the lithosphere promotes the formation of rifting structures when simple Newtonian viscosities are present. However, localized weakening, introduced through a power law exponent, is required to generate realistic rifting length scales. Our model suggests that the initial location of rifting in the overriding plate at subduction zones is primarily due to the mechanical extension induced by rollback of the subducting slab. In Chapter 4, we propose a theory to explain the seismic

  6. Towards implementing plate tectonics in 3D mantle convection simulations

    Science.gov (United States)

    Bollada, Peter; Davies, Huw

    2010-05-01

    One of the great challenges in numerical mantle convection simulations is to achieve models that naturally develop plate tectonic like behaviour at the surface. In this work we are looking to achieve such models by investigating the set of models where a single consistent rheology is used for the whole model. We have started by investigating a viscoelastic rheology, related to the Oldroyd-B model from the field of polymers. The goal will be to have the parameter that controls the relaxation between elastic and viscous behaviour to depend upon temperature, pressure and strain-rate. With an appropriate choice of this dependence we have, on the near surface, high viscous/elastic regions interfaced with lower, pure viscous, regions of high strain-rate; while it also becomes more viscous at depth in the interior. In this way we hope to obtain plate like behaviour at the surface which naturally progresses to viscous convective behaviour in the interior. We have started to implement this model in the established mantle 3D finite element spherical mantle convection code TERRA (Baumgardner, 1984). Some parts of the model have been implemented as a force (to be combined with the gravitational body force) on the right hand side. The work has required us to develop and code in TERRA: (i) methods to overcome the continuity problem of the stress field stemming from the fact that the velocity field is represented by linear finite elements; (ii) new operators to handle stress and its gradients; (iii) methods to analyse plate-like behaviour at the surface (iv) the necessary functional dependence of viscosity and elastic relaxation time on temperature, strain-rate and pressure We will present the background to the work, its implementation and results.

  7. This Dynamic Planet: World map of volcanoes, earthquakes, impact craters and plate tectonics

    Science.gov (United States)

    Simkin, Tom; Tilling, Robert I.; Vogt, Peter R.; Kirby, Stephen H.; Kimberly, Paul; Stewart, David B.

    2006-01-01

    Our Earth is a dynamic planet, as clearly illustrated on the main map by its topography, over 1500 volcanoes, 44,000 earthquakes, and 170 impact craters. These features largely reflect the movements of Earth's major tectonic plates and many smaller plates or fragments of plates (including microplates). Volcanic eruptions and earthquakes are awe-inspiring displays of the powerful forces of nature and can be extraordinarily destructive. On average, about 60 of Earth's 550 historically active volcanoes are in eruption each year. In 2004 alone, over 160 earthquakes were magnitude 6.0 or above, some of which caused casualties and substantial damage. This map shows many of the features that have shaped--and continue to change--our dynamic planet. Most new crust forms at ocean ridge crests, is carried slowly away by plate movement, and is ultimately recycled deep into the earth--causing earthquakes and volcanism along the boundaries between moving tectonic plates. Oceans are continually opening (e.g., Red Sea, Atlantic) or closing (e.g., Mediterranean). Because continental crust is thicker and less dense than thinner, younger oceanic crust, most does not sink deep enough to be recycled, and remains largely preserved on land. Consequently, most continental bedrock is far older than the oldest oceanic bedrock. (see back of map) The earthquakes and volcanoes that mark plate boundaries are clearly shown on this map, as are craters made by impacts of extraterrestrial objects that punctuate Earth's history, some causing catastrophic ecological changes. Over geologic time, continuing plate movements, together with relentless erosion and redeposition of material, mask or obliterate traces of earlier plate-tectonic or impact processes, making the older chapters of Earth's 4,500-million-year history increasingly difficult to read. The recent activity shown on this map provides only a present-day snapshot of Earth's long history, helping to illustrate how its present surface came to

  8. Ongoing glacial-isostatic adjustment and present-day motion of tectonic plates

    OpenAIRE

    2008-01-01

    The effect of glacial-isostatic adjustment (GIA) on the motion of tectonic plates is usually neglected. Employing a recently developed numerical approach, we examine the effect of glacial loading on the motion of the Earth’s main tectonic plates where we consider an elastic lithosphere of laterally variable strength and the plates losely connected by low viscous zones. Aim of the paper is to show the physical processes which controls the GIA induced horizontal motion and to assess the impact ...

  9. Precambrian plate tectonic setting of Africa from multidimensional discrimination diagrams

    Science.gov (United States)

    Verma, Sanjeet K.

    2017-01-01

    New multi-dimensional discrimination diagrams have been used to identify plate tectonic setting of Precambrian terrains. For this work, nine sets of new discriminant-function based multi-dimensional discrimination diagrams were applied for thirteen case studies of Precambrian basic, intermediate and acid magmas from Africa to highlight the application of these diagrams and probability calculations. The applications of these diagrams indicated the following results: For northern Africa: to Wadi Ghadir ophiolite, Egypt indicated an arc setting for Neoproterozoic (746 ± 19 Ma). For South Africa: Zandspruit greenstone and Bulai pluton showed a collision and a transitional continental arc to collision setting at about Mesoarchaean and Neoarchaean (3114 ± 2.3 Ma and 2610-2577 Ma); Mesoproterozoic (1109 ± 0.6 Ma and 1100 Ma) ages for Espungabera and Umkondo sills were consistent with an island arc setting. For eastern Africa, Iramba-Sekenke greenstone belt and Suguti area, Tanzania showed an arc setting for Neoarchaean (2742 ± 27 Ma and 2755 ± 1 Ma). Chila, Bulbul-Kenticha domain, and Werri area indicated a continental arc setting at about Neoproterozoic (800-789 Ma); For western Africa, Sangmelima region and Ebolowa area, southern Cameroon indicated a collision and continental arc setting, respectively for Neoarchaean (∼2800-2900 Ma and 2687-2666 Ma); Finally, Paleoproterozoic (2232-2169 Ma) for Birimian supergroup, southern Ghana a continental arc setting; and Paleoproterozoic (2123-2108 Ma) for Katiola-Marabadiassa, Côte d'Ivoire a transitional continental arc to collision setting. Although there were some inconsistencies in the inferences, most cases showed consistent results of tectonic settings. These inconsistencies may be related to mixed ages, magma mixing, crustal contamination, degree of mantle melting, and mantle versus crustal origin.

  10. Subduction controls the distribution and fragmentation of Earth’s tectonic plates.

    Science.gov (United States)

    Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R Dietmar; Tackley, Paul J

    2016-07-07

    The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size–frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.

  11. Subduction controls the distribution and fragmentation of Earth’s tectonic plates

    Science.gov (United States)

    Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R. Dietmar; Tackley, Paul J.

    2016-07-01

    The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size-frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.

  12. Mantle convection and plate tectonics: toward an integrated physical and chemical theory

    Science.gov (United States)

    Tackley

    2000-06-16

    Plate tectonics and convection of the solid, rocky mantle are responsible for transporting heat out of Earth. However, the physics of plate tectonics is poorly understood; other planets do not exhibit it. Recent seismic evidence for convection and mixing throughout the mantle seems at odds with the chemical composition of erupted magmas requiring the presence of several chemically distinct reservoirs within the mantle. There has been rapid progress on these two problems, with the emergence of the first self-consistent models of plate tectonics and mantle convection, along with new geochemical models that may be consistent with seismic and dynamical constraints on mantle structure.

  13. Plate tectonic regulation of global marine animal diversity

    Science.gov (United States)

    Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E.

    2017-05-01

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

  14. Plate tectonic regulation of global marine animal diversity.

    Science.gov (United States)

    Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E

    2017-05-30

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

  15. [Comment on “Plate tectonics: Scientific revolution or scientific program?” by Jean-Claude Mareschal] Development of plate tectonics theory: The missing piece

    Science.gov (United States)

    Doe, Bruce R.

    The recent article by Jean-Claude Mareschal (“Plate Tectonics: Scientific Revolution or Scientific Program?” in Eos, May 19, 1987, p. 529) adds to the interesting literature on the evolution of the theory of plate tectonics. It is curious that an aspect of the general theory that seems to be little considered and mentioned by Mareschal or others who write about the history of development of the theory, but that was vitally important in my own acceptance of the theory, was the discovery of subduction and, to a lesser extent, abduction.

  16. Paleogene plate tectonic evolution of the Arabian and Eastern Somali basins

    Digital Repository Service at National Institute of Oceanography (India)

    Royer, J.-Y.; Chaubey, A; Dyment, J.; Bhattacharya, G.C.; Srinivas, K.; Yatheesh, V.; Ramprasad, T.

    Previous models reviewed for the Paleogene tectonic evolution of the Arabian and Eastern Somali basins and present a model based on a new compilation of magnetic and gravity data. Using plate reconstructions, a self-consistent set of isochrons...

  17. The Earth's Mantle Is Solid: Teachers' Misconceptions About the Earth and Plate Tectonics.

    Science.gov (United States)

    King, Chris

    2000-01-01

    Discusses the misconceptions revealed by the teachers' answers and outlines more accurate answers and explanations based on established evidence and uses these to provide a more complete understanding of plate tectonic process and the structure of Earth. (Author/YDS)

  18. The Earth's Mantle Is Solid: Teachers' Misconceptions About the Earth and Plate Tectonics.

    Science.gov (United States)

    King, Chris

    2000-01-01

    Discusses the misconceptions revealed by the teachers' answers and outlines more accurate answers and explanations based on established evidence and uses these to provide a more complete understanding of plate tectonic process and the structure of Earth. (Author/YDS)

  19. Students' mental model development during historically contextualized inquiry: how the `Tectonic Plate' metaphor impeded the process

    Science.gov (United States)

    Dolphin, Glenn; Benoit, Wendy

    2016-01-01

    At present, quality earth science education in grade school is rare, increasing the importance of post-secondary courses. Observations of post-secondary geoscience indicate students often maintain errant ideas about the earth, even after direct instruction. This qualitative case study documents model-building activities of students as they experienced classroom instruction that braids history, inquiry, and model-based-learning within the context of earth dynamics. Transcripts of students' conversations, and their written work indicate students primarily employed model accretion to enhance their mental models. Instances of accretion were descriptive, pertaining to what their model consisted of, as opposed to how it explained the target phenomenon. Participants also conflated "continent" with "tectonic plate" and had difficulty attributing elastic properties - the mechanism for earthquakes - to rocks or "plates". We assert that the documented learning difficulties resulted from use of the metaphor "tectonic plate", reinforced by other everyday experiences and meanings. We suggest students need time with new models or concepts to develop strong descriptions before developing explanations. They need concrete experiences and explicit discussions concerning mapping those experiences to concepts. Lastly, because students often apply common meanings to scientific terms, we should not ask if they understand, but ask how they understand the concept.

  20. Tectonic Plate Parameters Estimated in the International Terrestrial Reference Frame ITRF2008 Based on SLR Stations

    Directory of Open Access Journals (Sweden)

    Kraszewska Katarzyna

    2016-10-01

    Full Text Available This paper concerns an analysis of the accuracy of estimated parameters Ω(Φ, Λ, ω which define the tectonic plate motions. The study is based on the velocities of station positions published by ITRF2008 for Satellite Laser Ranging (SLR technique. The Eurasian, African, North American and Australian plates were used in the analysis. Influence of the number and location of stations on the plate surface on estimation accuracy of the tectonic plate motion parameters was discussed. The results were compared with the APKIM 2005 IGN model. In general, a remarkable concurrence agreement between our solutions and the APKIM 2005 model was found.

  1. Tertiary plate tectonics and high-pressure metamorphism in New Caledonia

    Science.gov (United States)

    Brothers, R.N.; Blake, M.C.

    1973-01-01

    The sialic basement of New Caledonia is a Permian-Jurassic greywacke sequence which was folded and metamorphosed to prehnite-pumpellyite or low-grade greenschist facies by the Late Jurassic. Succeeding Cretaceous-Eocene sediments unconformably overlie this basement and extend outwards onto oceanic crust. Tertiary tectonism occurred in three distinct phases. 1. (1) During the Late Eocene a nappe of peridotite was obducted onto southern New Caledonia from northeast to southwest, but without causing significant metamorphism in the underlying sialic rocks. 2. (2) Oligocene compressive thrust tectonics in the northern part of the island accompanied a major east-west subduction zone, at least 30 km wide, which is identified by an imbricate system of tectonically intruded melanges and by development of lawsonite-bearing assemblages in adjacent country rocks; this high-pressure mineralogy constituted a primary metamorphism for the Cretaceous-Eocene sedimentary pile, but was overprinted on the Mesozoic prehnite-pumpellyite metagreywackes. 3. (3) Post-Oligocene transcurrent faulting along a northwest-southeast line (the sillon) parallel to the west coast caused at least 150 km of dextral offset of the southwest frontal margin of the Eocene ultramafic nappe. At the present time, the tectonics of the southwest Pacific are related to a series of opposite facing subduction (Benioff) zones connected by transform faults extending from New Britain-Solomon Islands south through the New Hebrides to New Zealand and marking the boundary between the Australian and Pacific plates. Available geologic data from this region suggest that a similar geometry existed during the Tertiary and that the microcontinents of New Guinea, New Caledonia and New Zealand all lay along the former plate boundary which has since migrated north and east by a complex process of sea-floor spreading behind the active island arcs. ?? 1973.

  2. Tectonic escape of the Caribbean plate since the Paleocene: a consequence of the Chicxulub meteor impact?

    Science.gov (United States)

    Rangin, C.; Martinez-Reyes, J.; Crespy, A.; Zitter, T. A. C.

    2012-04-01

    The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic

  3. Tectonic plate under a localized boundary stress: fitting of a zero-range solvable model

    CERN Document Server

    Petrova, L

    2008-01-01

    We suggest a method of fitting of a zero-range model of a tectonic plate under a boundary stress on the basis of comparison of the theoretical formulae for the corresponding eigenfunctions/eigenvalues with the results extraction under monitoring, in the remote zone, of non-random (regular) oscillations of the Earth with periods 0.2-6 hours, on the background seismic process, in case of low seismic activity. Observations of changes of the characteristics of the oscillations (frequency, amplitude and polarization) in course of time, together with the theoretical analysis of the fitted model, would enable us to localize the stressed zone on the boundary of the plate and estimate the risk of a powerful earthquake at the zone.

  4. The importance of temporal stress variation and dynamic disequilibrium for the initiation of plate tectonics

    Science.gov (United States)

    Stamenković, V.; Höink, T.; Lenardic, A.

    2016-06-01

    We use 1-D thermal history models and 3-D numerical experiments to study the impact of dynamic thermal disequilibrium and large temporal variations of normal and shear stresses on the initiation of plate tectonics. Previous models that explored plate tectonics initiation from a steady state, single plate mode of convection concluded that normal stresses govern the initiation of plate tectonics, which based on our 1-D model leads to plate yielding being more likely with increasing interior heat and planet mass for a depth-dependent Byerlee yield stress. Using 3-D spherical shell mantle convection models in an episodic regime allows us to explore larger temporal stress variations than can be addressed by considering plate failure from a steady state stagnant lid configuration. The episodic models show that an increase in convective mantle shear stress at the lithospheric base initiates plate failure, which leads with our 1-D model to plate yielding being less likely with increasing interior heat and planet mass. In this out-of-equilibrium and strongly time-dependent stress scenario, the onset of lithospheric overturn events cannot be explained by boundary layer thickening and normal stresses alone. Our results indicate that in order to understand the initiation of plate tectonics, one should consider the temporal variation of stresses and dynamic disequilibrium.

  5. The ultra low frequency electromagnetic radiation observed in the topside ionosphere above boundaries of tectonic plates

    Directory of Open Access Journals (Sweden)

    Michael A. Athanasiou

    2015-01-01

    Full Text Available In this paper we present results of a comparison between ultra low frequency (ULF electromagnetic (EM radiation, recorded by an electric field instrument onboard the satellite detection of electromagnetic emissions transmitted from earthquake regions in the topside ionosphere, and the seismicity of regions with high and low seismic activity. In particular, we evaluated the energy variations of the ULF Ezelectric field component during a period of four years (2006-2009, in order to examine the possible relation of ULF EM radiation with seismogenic regions located in Central America, Indonesia, the Eastern Mediterranean Basin and Greece. As a tool for evaluating the ULF Ez energy variations we used singular spectrum analysis techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emitted from regions of highest seismic activity at the boundaries tectonic plates. Furthermore, we found that higher electromagnetic radiation was detected in a region above the northern- western Greek Arc (R1 than above the adjacent region including Athens and its urban area. We interpret these results of the present study as suggesting that: i the seismogenic regions at the boundary of tectonic plates radiate ULF EM emissions observed by satellites in the topside ionosphere; and ii that this EM radiation is not only related with the occurrence time of great (M≥5 earthquakes, but it is often present in intermediate times and it appears as a quasi-permanent phenomenon.

  6. Active tectonics and earthquake potential of the Myanmar region

    Science.gov (United States)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  7. Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere

    Science.gov (United States)

    van Hunen, Jeroen; van den Berg, Arie P.

    2008-06-01

    The tectonic style and viability of modern plate tectonics in the early Earth is still debated. Field observations and theoretical arguments both in favor and against the uniformitarian view of plate tectonics back until the Archean continue to accumulate. Here, we present the first numerical modeling results that address for a hotter Earth the viability of subduction, one of the main requirements for plate tectonics. A hotter mantle has mainly two effects: 1) viscosity is lower, and 2) more melt is produced, which in a plate tectonic setting will lead to a thicker oceanic crust and harzburgite layer. Although compositional buoyancy resulting from these thick crust and harzburgite might be a serious limitation for subduction initiation, our modeling results show that eclogitization significantly relaxes this limitation for a developed, ongoing subduction process. Furthermore, the lower viscosity leads to more frequent slab breakoff, and sometimes to crustal separation from the mantle lithosphere. Unlike earlier propositions, not compositional buoyancy considerations, but this lithospheric weakness could be the principle limitation to the viability of plate tectonics in a hotter Earth. These results suggest a new explanation for the absence of ultrahigh-pressure metamorphism (UHPM) and blueschists in most of the Precambrian: early slabs were not too buoyant, but too weak to provide a mechanism for UHPM and exhumation.

  8. A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust

    NARCIS (Netherlands)

    Tirel, C.; Brun, J.-P.; Burov, E.; Wortel, M.J.R.; Lebedev, S.

    2013-01-01

    Since plate tectonics began on Earth, grandiose "subduction factories" have continually shaped the continents, accreting continental blocks and new crust at the convergent plate boundaries. An enigmatic product of subduction factories is the high-pressure to ultrahigh-pressure (HP-UHP) metamorphic

  9. A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust

    NARCIS (Netherlands)

    Tirel, C.; Brun, J.-P.; Burov, E.; Wortel, M.J.R.; Lebedev, S.

    2013-01-01

    Since plate tectonics began on Earth, grandiose "subduction factories" have continually shaped the continents, accreting continental blocks and new crust at the convergent plate boundaries. An enigmatic product of subduction factories is the high-pressure to ultrahigh-pressure (HP-UHP) metamorphic c

  10. A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust

    NARCIS (Netherlands)

    Tirel, C.; Brun, J.-P.; Burov, E.; Wortel, M.J.R.; Lebedev, S.

    2013-01-01

    Since plate tectonics began on Earth, grandiose "subduction factories" have continually shaped the continents, accreting continental blocks and new crust at the convergent plate boundaries. An enigmatic product of subduction factories is the high-pressure to ultrahigh-pressure (HP-UHP) metamorphic c

  11. Tectonic lineaments in the cenozoic volcanics of southern Guatemala: Evidence for a broad continental plate boundary zone

    Science.gov (United States)

    Baltuck, M.; Dixon, T. H.

    1984-01-01

    The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.

  12. Subduction controls the distribution and fragmentation of Earth’s tectonic plates

    OpenAIRE

    2016-01-01

    International audience; The theory of plate tectonics describes how the surface of the Earth is split into an organized jigsaw of seven large plates 1 of similar sizes and a population of smaller plates, whose areas follow a fractal distribution 2,3. The reconstruction of global tectonics during the past 200 My 4 suggests that this layout is probably a long-term feature of our planet, but the forces governing it are unknown. Previous studies 3,5,6 , primarily based on statistical properties o...

  13. Initiation of Plate Tectonics from Post-Magma Ocean Thermo-Chemical Convection

    CERN Document Server

    Foley, Bradford J; Elkins-Tanton, Linda T

    2014-01-01

    Leading theories for the presence of plate tectonics on Earth typically appeal to the role of present day conditions in promoting rheological weakening of the lithosphere. However, it is unknown whether the conditions of the early Earth were favorable for plate tectonics, or any form of subduction, and thus how subduction begins is unclear. Using physical models based on grain-damage, a grainsize-feedback mechanism capable of producing plate-like mantle convection, we demonstrate that subduction was possible on the Hadean Earth (hereafter referred to as proto-subduction or proto-plate tectonics), that proto-subduction differed from modern day plate tectonics, and that it could initiate rapidly. Scaling laws for convection with grain-damage show that, though either higher mantle temperatures or higher surface temperatures lead to slower plates, proto-subduction, with plate speeds of $\\approx 1.75$ cm/yr, can still be maintained in the Hadean, even with a CO$_2$ rich primordial atmosphere. Furthermore, when the...

  14. Models of convection-driven tectonic plates - A comparison of methods and results

    Science.gov (United States)

    King, Scott D.; Gable, Carl W.; Weinstein, Stuart A.

    1992-01-01

    Recent numerical studies of convection in the earth's mantle have included various features of plate tectonics. This paper describes three methods of modeling plates: through material properties, through force balance, and through a thin power-law sheet approximation. The results obtained are compared using each method on a series of simple calculations. From these results, scaling relations between the different parameterizations are developed. While each method produces different degrees of deformation within the surface plate, the surface heat flux and average plate velocity agree to within a few percent. The main results are not dependent upon the plate modeling method and herefore are representative of the physical system modeled.

  15. Modeling the Philippine Mobile Belt: Tectonic blocks in a deforming plate boundary zone

    Science.gov (United States)

    Galgana, G. A.; Hamburger, M. W.; McCaffrey, R.; Bacolcol, T. C.; Aurelio, M. A.

    2007-12-01

    The Philippine Mobile Belt, a seismically active, rapidly deforming plate boundary zone situated along the convergent Philippine Sea/Eurasian plate boundary, is examined using geodetic and seismological data. Oblique convergence between the Philippine Sea Plate and the Eurasian plate is accommodated by nearly orthogonal subduction along the Philippine Trench and the Manila Trench, as well as by strike-slip faulting along the Philippine Fault system. We develop a model of active plate boundary deformation in this region, using elastic block models constrained by known fault geometries, published GPS observations and focal mechanism solutions. We then present an estimate of block rotations, fault coupling, and intra-block deformation, based on the best-fit model that minimizes the misfit between observed and predicted geodetic vectors and earthquake slip vectors. Slip rates along the Philippine fault vary from ~22 - 36 mm/yr in the Central Visayas and about 10 to 40 mm/yr in Luzon, trending almost parallel to the fault trace. In northern Luzon, Philippine Fault splays accommodate transpressional strain. The Central Visayas block experiences convergence with the Sundaland block along the Negros Trench and the Mindoro-Palawan collision zone. On the eastern side of Central Visayas, sinistral strike-slip faulting occurs along the NNW-SSE-trending Philippine Fault. Mindanao Island in southern Philippines is dominated by east-verging subduction along the Cotabato Trench, and strain partitioning (strike- slip faulting with west-verging subduction) in eastern Mindanao along the southern Philippine Fault and Philippine Trench, respectively. Oblique active sinistral strike slip faults in Central and Eastern Mindanao that were hypothesized to be responsible for basin formation are obvious boundaries for tectonic blocks. Located south of Mindanao Island we define an adjoining oceanic block defined by the N-S trending complex dual subduction zone of Sangihe and Halmahera

  16. Constraints on plate tectonics initiation from scaling laws for single-cell convection

    Science.gov (United States)

    Wong, Teresa; Solomatov, Viatcheslav S.

    2016-08-01

    The Earth is the only planet known to have plate tectonics, while other planets are covered with a stagnant lid. On the Earth, the initiation of subduction, which is thought to be the fundamental process for plate tectonics initiation, is caused not only by the negative buoyancy of the lithosphere but also by the forces from plate motions. However, for planets which do not have plate tectonics, the very first episode of lithospheric failure has to be caused by forces other than plate motions. Sublithospheric convection has been proposed as a possible mechanism that provides lithospheric instability through inducing stresses in the lithosphere, and lithospheric failure can occur when the yield stress is below a critical value. We test the applicability of scaling laws for the critical yield stress obtained in single-cell convection simulations to strongly time-dependent multi-cell systems. We show that with an appropriate choice of characteristic aspect ratio for the convective system, the scaling laws from single-cell simulations can be used to evaluate the conditions on the terrestrial planets in the inner Solar System for plate tectonics to exist. In agreement with previous studies, the estimated values for critical yield stress and coefficient of friction are much lower than the expected values for the Earth's lithosphere.

  17. Origins of Japan : the 'Big Picture' Revisited : A Review of New Plate Tectonics Research

    OpenAIRE

    BARNES, Gina L.

    2013-01-01

    This review essay mainly compares two articles by G. L. Barnes on Japanese geology, previously published in Japan Review (2003, 2008), with a series of articles on 'New Paradigms' in Japanese plate tectonics published in Chigaku zasshi in 2009-2010. The first purpose is to update and add new details to flesh out the previous Japan Review overviews. A discussion about collisional and accretionary tectonics then follows, outlining problems of interpretation by scholars coming from different a...

  18. Crustal structure and active tectonics in the Eastern Alps

    DEFF Research Database (Denmark)

    Brückl, E.; Behm, M.; Decker, K.

    2010-01-01

    During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian...... fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south...... and underthusting of AD mantle below PA from southwest to northeast. The Moho fragmentation correlates well with major upper crustal structures and is supported by gravity, seismic, and geodetic data. An analysis of crustal thickening suggests that active convergence is associated with continued thrusting...

  19. Neogene Caribbean plate rotation and associated Central American tectonic evolution

    Science.gov (United States)

    Wadge, G.; Burke, K.

    1983-01-01

    A theoretical model of the opening of the Cayman Trough is developed on the basis of geological evidence from a wide area. It is proposed that strike slip motion began about 30 Myr ago and proceeded at a rate of 37 + or - 6 mm/yr for a total of 1100 km of relative plate displacement, and that Central America Underwent an anticlockwise rotation with internal plate deformation. Maps of the reconstructed motion are provided.

  20. Neogene Caribbean plate rotation and associated Central American tectonic evolution

    Science.gov (United States)

    Wadge, G.; Burke, K.

    1983-01-01

    A theoretical model of the opening of the Cayman Trough is developed on the basis of geological evidence from a wide area. It is proposed that strike slip motion began about 30 Myr ago and proceeded at a rate of 37 + or - 6 mm/yr for a total of 1100 km of relative plate displacement, and that Central America Underwent an anticlockwise rotation with internal plate deformation. Maps of the reconstructed motion are provided.

  1. Plate-tectonic evolution of the western U.S.A.

    Science.gov (United States)

    Hamilton, W.

    1987-01-01

    Changing interactions of lithospheric plates provide the framework for this review of the 3100 m.y. geological history of some 3 million km2 of mountains, deserts, plateaux and plains. The Precambrian to Neogene development of the western U.S.A. is outlined in terms of plate collisions, subduction events and deformation of lithospheric slabs, with some interpretations based on SE Asia and other regions of complex tectonics.-R.A.H.

  2. The seismicity of Ethiopia; active plate tectonics

    Science.gov (United States)

    Mohr, P.

    1981-01-01

    "But I tell you, when you look at the way the pieces of the northeastern portion of the African continent seem to fit together, separated by a narrow gulf, you could almost make a believer [in continental drift] of anybody" Astronaut Harrison Schmidt, on the view from Apollo 17.

  3. Tectonics of the Nazca-Antarctic plate boundary

    Science.gov (United States)

    Anderson-Fontana, Sandra; Larson, Roger L.; Engeln, Joseph F.; Lundgren, Paul; Stein, Seth

    1987-01-01

    A new bathymetric chart of part of the Chile transform system is constructed, based mainly on an R/V Endeavor survey from 100 deg W to its intersection with the East Ridge of the Juan Fernandez microplate. A generally continuous lineated trend can be followed through the entire region, with the transform valley being relatively narrow and well-defined from 109 deg W to approximately 104 deg 30 min W. The fracture zone then widens to the east, with at least two probable en echelon offsets to the south at 104 deg and 102 deg W. Six new strike-slip mechanisms along the Chile Transform and one normal fault mechanism near the northern end of the Chile Rise, inverted together with other plate-motion data from the eastern portion of the boundary, produce a new best-fit Euler pole for the Nazca-Antarctic plate pair, providing tighter constraints on the relative plate motions.

  4. Tectonics of the Nazca-Antarctic plate boundary

    Science.gov (United States)

    Anderson-Fontana, Sandra; Larson, Roger L.; Engeln, Joseph F.; Lundgren, Paul; Stein, Seth

    1987-01-01

    A new bathymetric chart of part of the Chile transform system is constructed, based mainly on an R/V Endeavor survey from 100 deg W to its intersection with the East Ridge of the Juan Fernandez microplate. A generally continuous lineated trend can be followed through the entire region, with the transform valley being relatively narrow and well-defined from 109 deg W to approximately 104 deg 30 min W. The fracture zone then widens to the east, with at least two probable en echelon offsets to the south at 104 deg and 102 deg W. Six new strike-slip mechanisms along the Chile Transform and one normal fault mechanism near the northern end of the Chile Rise, inverted together with other plate-motion data from the eastern portion of the boundary, produce a new best-fit Euler pole for the Nazca-Antarctic plate pair, providing tighter constraints on the relative plate motions.

  5. A diffuse plate boundary model for Indian Ocean tectonics

    Science.gov (United States)

    Wiens, D. A.; Demets, C.; Gordon, R. G.; Stein, S.; Argus, D.

    1985-01-01

    It is suggested that motion along the virtually aseismic Owen fracture zone is negligible, so that Arabia and India are contained within a single Indo-Arabian plate divided from the Australian plate by a diffuse boundary. The boundary is a zone of concentrated seismicity and deformation commonly characterized as 'intraplate'. The rotation vector of Australia relative to Indo-Arabia is consistent with the seismologically observed 2 cm/yr of left-lateral strike-slip along the Ninetyeast Ridge, north-south compression in the Central Indian Ocean, and the north-south extension near Chagos.

  6. Early impact basins and the onset of plate tectonics. Ph.D. Thesis - Maryland Univ.

    Science.gov (United States)

    Frey, H.

    1977-01-01

    The fundamental crustal dichotomy of the Earth (high and low density crust) was established nearly 4 billion years ago. Therefore, subductable crust was concentrated at the surface of the Earth very early in its history, making possible an early onset for plate tectonics. Simple thermal history calculations spanning 1 billion years show that the basin forming impact thins the lithosphere by at least 25%, and increases the sublithosphere thermal gradients by roughly 20%. The corresponding increase in convective heat transport, combined with the highly fractured nature of the thinned basin lithosphere, suggest that lithospheric breakup or rifting occurred shortly after the formation of the basins. Conditions appropriate for early rifting persisted from some 100,000,000 years following impact. We suggest a very early stage of high temperature, fast spreading "microplate" tectonics, originating before 3.5 billion years ago, and gradually stabilizing over the Archaean into more modern large plate or Wilson Cycle tectonics.

  7. Introduction of the Concepts of Plate Tectonics into Secondary-School Earth Science Textbooks.

    Science.gov (United States)

    Glenn, William Harold

    1992-01-01

    Secondary school earth-science textbooks in print from 1960 through 1979 were examined to determine how rapidly concepts of plate tectonics were incorporated into those texts during the period when scientists' views about these concepts were evolving most rapidly. Suggests that delays were probably due to an unwillingness to engage in speculation…

  8. Plate tectonic controls on atmospheric CO2 levels since the Triassic

    NARCIS (Netherlands)

    van der Meer, D.G.; Zeebe, R.; van Hinsbergen, D.J.J.; Sluijs, A.; Spakman, W.; Torsvik, T.H.

    2014-01-01

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean rid

  9. ADOPT: A tool for automatic detection of tectonic plates at the surface of convection models

    Science.gov (United States)

    Mallard, C.; Jacquet, B.; Coltice, N.

    2017-08-01

    Mantle convection models with plate-like behavior produce surface structures comparable to Earth's plate boundaries. However, analyzing those structures is a difficult task, since convection models produce, as on Earth, diffuse deformation and elusive plate boundaries. Therefore we present here and share a quantitative tool to identify plate boundaries and produce plate polygon layouts from results of numerical models of convection: Automatic Detection Of Plate Tectonics (ADOPT). This digital tool operates within the free open-source visualization software Paraview. It is based on image segmentation techniques to detect objects. The fundamental algorithm used in ADOPT is the watershed transform. We transform the output of convection models into a topographic map, the crest lines being the regions of deformation (plate boundaries) and the catchment basins being the plate interiors. We propose two generic protocols (the field and the distance methods) that we test against an independent visual detection of plate polygons. We show that ADOPT is effective to identify the smaller plates and to close plate polygons in areas where boundaries are diffuse or elusive. ADOPT allows the export of plate polygons in the standard OGR-GMT format for visualization, modification, and analysis under generic softwares like GMT or GPlates.

  10. Seismicity and plate tectonics in south central Alaska

    Science.gov (United States)

    Van Wormer, J. D.; Davies, J.; Gedney, L.

    1974-01-01

    Hypocenter distribution shows that the Benioff zone associated with the Aleutian arc terminates in interior Alaska some 75 km north of the Denali fault. There appears to be a break in the subducting Pacific plate in the Yentna River-Prince William Sound area which separates two seismically independent blocks, similar to the segmented structure reported for the central Aleutian arc.

  11. Jules Verne Voyager, Jr: An Interactive Map Tool for Teaching Plate Tectonics

    Science.gov (United States)

    Hamburger, M. W.; Meertens, C. M.

    2010-12-01

    simultaneously and does not require any special software installation on users' systems. In addition, a javascript-based educational interface, dubbed "Exploring our Dynamic Planet", incorporates the map tool, explanatory material, background scientific material, and curricular activities that encourage users to explore Earth processes using the Jules Verne Voyager, Jr. tool. Exploring our Dynamic Planet can be viewed at http://www.dpc.ucar.edu/VoyagerJr/. Because of its flexibility, the map utilities can be used for hands-on exercises exploring plate interaction in a range of academic settings, from high school science classes to entry-level undergraduate to graduate-level tectonics courses.

  12. A seismic reflection image for the base of a tectonic plate.

    Science.gov (United States)

    Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T

    2015-02-05

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.

  13. The dynamics of plate tectonics and mantle flow: from local to global scales.

    Science.gov (United States)

    Stadler, Georg; Gurnis, Michael; Burstedde, Carsten; Wilcox, Lucas C; Alisic, Laura; Ghattas, Omar

    2010-08-27

    Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.

  14. Plate Tectonics as a Far-From-Equilibrium Self-Organized Dissipative System

    Science.gov (United States)

    Anderson, D. L.

    2001-12-01

    A fluid above the critical Rayleigh number is far from equilibrium and spontaneously organizes itself into patterns involving the collective motion of large numbers of molecules which are resisted by the viscosity of the fluid. No external template is involved in forming the pattern. In 1928 Pearson showed that Bénard's experiments were driven by variations in surface tension at the top of the fluid and the surface motions drove convection in the fluid. In this case, the surface organized itself AND the underlying fluid. Both internal buoyancy driven flow and flow driven by surface forces can be far-from-equilibrium self-organized open systems that receive energy and matter from the environment. In the Earth, the cold thermal boundary layer at the surface drives plate tectonics and introduces temperature, shear and pressure gradients into the mantle that drive mantle convection. The mantle provides energy and material but may not provide the template. Plate tectonics is therefore a candidate for a far-from-equilibrium dissipative self-organizing system. Alternatively, one could view mantle convection as the self-organized system and the plates as simply the surface manifestation. Lithospheric architecture also imposes lateral temperature gradients onto the mantle which can drive and organize flow. Far-from-equilibrium self-organization requires; an open system, interacting parts, nonlinearities or feedbacks, an outside steady source of energy or matter, multiple possible states and a source of dissipation. In uniform fluids viscosity is the source of dissipation. Sources of dissipation in the plate system include bending, breaking, folding, shearing, tearing, collision and basal drag. These can change rapidly, in contrast to plate driving forces, and introduce the sort of fluctuations that can reorganize far-from-equilibrium systems. Global plate reorganizations can alternatively be thought of as convective overturns of the mantle, or thermal weakening of plates

  15. The rapid drift of the Indian tectonic plate.

    Science.gov (United States)

    Kumar, Prakash; Yuan, Xiaohui; Kumar, M Ravi; Kind, Rainer; Li, Xueqing; Chadha, R K

    2007-10-18

    The breakup of the supercontinent Gondwanaland into Africa, Antarctica, Australia and India about 140 million years ago, and consequently the opening of the Indian Ocean, is thought to have been caused by heating of the lithosphere from below by a large plume whose relicts are now the Marion, Kerguelen and Réunion plumes. Plate reconstructions based on palaeomagnetic data suggest that the Indian plate attained a very high speed (18-20 cm yr(-1) during the late Cretaceous period) subsequent to its breakup from Gondwanaland, and then slowed to approximately 5 cm yr(-1) after the continental collision with Asia approximately 50 Myr ago. The Australian and African plates moved comparatively less distance and at much lower speeds of 2-4 cm yr(-1) (refs 3-5). Antarctica remained almost stationary. This mobility makes India unique among the fragments of Gondwanaland. Here we propose that when the fragments of Gondwanaland were separated by the plume, the penetration of their lithospheric roots into the asthenosphere were important in determining their speed. We estimated the thickness of the lithospheric plates of the different fragments of Gondwanaland around the Indian Ocean by using the shear-wave receiver function technique. We found that the fragment of Gondwanaland with clearly the thinnest lithosphere is India. The lithospheric roots in South Africa, Australia and Antarctica are between 180 and 300 km deep, whereas the Indian lithosphere extends only about 100 km deep. We infer that the plume that partitioned Gondwanaland may have also melted the lower half of the Indian lithosphere, thus permitting faster motion due to ridge push or slab pull.

  16. Active tectonics coupled to fluvial erosion in the NW Himalaya

    Science.gov (United States)

    Vannay, J.-C.; Grasemann, B.; Rahn, M.; Frank, W.; Carter, A.

    2003-04-01

    Both syntaxial extremities of the Himalaya show a spatial correlation between active exhumation of deep crustal rocks and the presence of powerful rivers, the Indus and the Tsangpo-Brahmaputra, cutting across the range two of the deepest gorges on Earth. These features strongly suggests that vigorous fluvial erosion can locally enhance isostatic and tectonic uplift, which in turn contributes to heat advection and weakening of the crust, as well as to maintain steep topographic gradients [Zeitler et al., 2001]. In order to test this positive feedback model, we combined structural and geochronological data to constrain the tectono-thermal evolution along the Sutlej (NW India), the third largest river cross-cutting entirely the Himalaya. The Himalayan crystalline core zone exposed along the Sutlej Valley is composed of two gneiss sheets, that were successively underthrusted and tectonically extruded as a consequence of the foreland-directed propagation of deformation in the Indian plate margin. During Early to Middle Miocene, combined thrusting along the Main Central Thrust (MCT) and extension along the Sangla Detachment induced the rapid exhumation and cooling of the amphibolite facies to migmatitic High Himalayan Crystalline Sequence [Vannay &Grasemann, 2001]. Underthrusting beneath the MCT led to the creation of the amphibolite facies Lesser Himalayan Crystalline Sequence (LHCS). The LHCS cooled rapidly from Late Miocene to Pleistocene, as a consequence of tectonic extrusion controlled by thrusting along the Munsiari Thrust, and extension in the MCT hanging wall. This phase is still active, as indicated by: (1) cooling rates in excess of 100^oC/Myr during the past ˜3 Myr in the LHCS; (2) Holocene neo-tectonic activity; (3) present-day hydrothermal activity testifying to elevated near-surface geothermal gradients; and (4) seismic activity along the Munsiari Thrust. Modelling of fluvial erosion in the Himalaya indicate that the Sutlej Valley corresponds to the main

  17. Organization of the tectonic plates in the last 200 Myr (Invited)

    Science.gov (United States)

    Morra, G.; Seton, M.; Quevedo, L. E.; Müller, D.

    2013-12-01

    The present tessellation of the Earth's surface into tectonic plates displays a remarkably regular plate size distribution, described by either one (Sornette and Pisarenko, 2003) or two (Bird, 2003) statistically distinct groups, characterised by large and small plate size. A unique distribution implies a hierarchical structure from the largest to the smallest plate. Alternatively, two distributions indicate distinct evolutionary laws for large and small plates, the first tied to mantle flow, the second determined by a hierarchical fragmentation process. We analyse detailed reconstructions of plate boundaries during the last 200 Myr and find that (i) large and small plates display distinct statistical distributions, (ii) the small plates display little organisational change since 60 Ma and (iii) the large plates oscillate between heterogeneous (200-170 Ma and 65-50 Ma) and homogeneous (120-100 Ma) plate tessellations on a timescale of about 100 Myr. Heterogeneous states are reached more rapidly, while the plate configuration decays into homogeneous states following a slower asymptotic curve, suggesting that heterogeneous configurations are excited states while homogeneous tessellations are equilibrium states. We explain this evolution by proposing a model that alternates between bottom- and top-driven Earth dynamics, physically described by fluid-dynamic analogies, the Rayleigh-Benard and Bénard-Marangoni convection, respectively. We discuss the implications for true polar wander (TPW), global kinematic reorganisations (50 and 100 Ma) and the Earth's magnetic field inversion frequency. Earth's present tessellation: grey scale proportional to the logarithm of plate size. Plot: logarithm of complementary 'cumulative plate count' (Y-axis) vs. the logarithm of the plate size (X-axis). Time evolution of the 'standard deviation' of the plate size every one million years.

  18. The 2.0 Ga Usagaran eclogites, Tanzania: the onset of modern plate tectonics or a continuation of the norm?

    Science.gov (United States)

    Buchan, C.; Collins, A. S.; Reddy, S. M.; Mruma, A.

    2003-04-01

    formed during closure of a marginal basin, suggests that the plate tectonic processes active at this time were similar to those in modern settings. These results show that by 2.0 Ga, despite possibly elevated mantle temperatures, metamorphic conditions in subduction zones had evolved to produce and preserve low/med temperature eclogites.

  19. Gravity anomalies, plate tectonics and the lateral growth of Precambrian North America

    Science.gov (United States)

    Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.

    1988-01-01

    The widespread gravity coverage of North America provides a picture of the gross structural fabric of the continent via the trends of gravity anomalies. The structural picture so obtained reveals a mosaic of gravity trend domains, many of which correlate closely with structural provinces and orogenic terranes. The gravity trend map, interpreted in the light of plate-tectonic theory, thus provides a new perspective for examining the mode of assembly and growth of North America. Suture zones, palaeosubduction directions, and perhaps, contrasting tectonic histories may be identified using gravity patterns.

  20. Plate tectonic setting and genetic types of gas (oil)-bearing basins in China

    Institute of Scientific and Technical Information of China (English)

    张一伟; 陈发景; 陆克政; 漆家福

    1997-01-01

    The plate tectonic setting and genetic types of the gas (oil)-bearing basins in China are studied. Based on the history of break-up and amalgamation of Pangea, the three tectonic evolutionary megastages can be divided and the sedimentary basins in China are classified as Palaeozoic and Meso-Cenozoic basins. The Palaeozoic gas(oil)-bearing basins are mainly located in intracratonic basins, on which different types of Meso-Cenozoic basins are superimposed, and located in cratonic marginal basins and aulacogens destroyed with a slight degree, (n contrast, the Mesozoic and Cenozoic gas (oil)-bearing basins mainly formed in extensional foreland and intracontmental shortening flexural basins.

  1. Gravity anomalies, plate tectonics and the lateral growth of Precambrian North America

    Science.gov (United States)

    Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.

    1988-01-01

    The widespread gravity coverage of North America provides a picture of the gross structural fabric of the continent via the trends of gravity anomalies. The structural picture so obtained reveals a mosaic of gravity trend domains, many of which correlate closely with structural provinces and orogenic terranes. The gravity trend map, interpreted in the light of plate-tectonic theory, thus provides a new perspective for examining the mode of assembly and growth of North America. Suture zones, palaeosubduction directions, and perhaps, contrasting tectonic histories may be identified using gravity patterns.

  2. Areas of Unsolved Problems in Caribbean Active Tectonics

    Science.gov (United States)

    Mann, P.

    2015-12-01

    I review some unsolved problems in Caribbean active tectonics. At the regional and plate scale: 1) confirm the existence of intraplate deformation zones of the central Caribbean plate that are within the margin of error of ongoing GPS measurements; 2) carry out field studies to evaluate block models versus models for distributed fault shear on the densely populated islands of Jamaica, Hispaniola, Puerto Rico, and the Virgin Islands; 3) carry out paleoseismological research of key plate boundary faults that may have accumulated large strains but have not been previously studied in detail; 4) determine the age of onset and far-field effects of the Cocos ridge and the Central America forearc sliver; 4) investigate the origin and earthquake-potential of obliquely-sheared rift basins along the northern coast of Venezuela; 5) determine the age of onset and regional active, tectonic effects of the Panama-South America collision including the continued activation of the Maracaibo block; and 6) validate longterm rates on active subduction zones with improving, tomographic maps of subducted slabs. At the individual fault scale: 1) determine the mode of termination of large and active strike -slip faults and application of the STEP model (Septentrional, Polochic, El Pilar, Bocono, Santa Marta-Bucaramanaga); 2) improve the understanding of the earthquake potential on the Enriquillo-Plantain Garden fault zone given "off-fault" events such as the 2010 Haiti earthquake; how widespread is this behavior?; and 3) estimate size of future tsunamis from studies of historic or prehistoric slump scars and mass transport deposits; what potential runups can be predicted from this information?; and 4) devise ways to keep rapidly growing, circum-Caribbean urban populations better informed and safer in the face of inevitable and future, large earthquakes.

  3. Towards an Integrated Model of Earth's Thermo-Chemical Evolution and Plate Tectonics

    Science.gov (United States)

    Tackley, P. J.; Xie, S.

    2001-05-01

    It has long been a challenge for geodynamicists, who have typically modeled homogeneous mantles, to explain the geochemical evidence for the existence of several distinct chemical reservoirs, in terms of a dynamically and chemically self-consistent model. While the mixing behavior of generalized tracers has received much attention in the modeling community, a recent trend has been towards mantle convection models that track the evolution of specific chemical species, both major and minor, and can thus be related to geochemical observations. However, obtaining realistic chemical evolution in such models is dependent on their having a reasonable representation of plate tectonic behavior since the recycling of oceanic crust and complementary depleted residuum is a key process in Earth that other terrestrial planets may lack. In general, this has required inserting plate motions by hand in models. In recent years, however, we have learned how to perform numerical simulations of mantle convection in which plate tectonic behavior is introduced self-consistently through plastic yielding of the lithosphere. In this presentation, models of mantle convection that combine a treatment of geochemical evolution with self-consistently generated plate tectonics, will be presented. Preliminary results indicate that the system can self-consistently evolve regions which have a HIMU-like signature as well as regions with a high He3/He4 ratio.

  4. Global plate tectonics and the secular motion of the pole

    Science.gov (United States)

    Soler, T.

    1977-01-01

    Astronomical data compiled during the last 70 years by the international organizations providing the coordinates of the instantaneous pole clearly shows a persistent drift of the mean pole. The differential contributions to the earth's second-order tensor of inertia were obtained and applied, resulting in no significant displacement of the earth's principal axis. In view of the above, the effect that theoretical geophysical models for absolute plate velocities may have on an apparent displacement of the mean pole as a consequence of station drifting was analyzed. The investigation also reports new values for the crustal tensor of inertia (assuming an ellipsoidal earth) and the orientation of its axis of figure, reopening the old speculation of a possible sliding of the whole crustover the upper mantle, including the supporting geophysical and astronomic evidence.

  5. Supercontinents, mantle dynamics and plate tectonics: A perspective based on conceptual vs. numerical models

    Science.gov (United States)

    Yoshida, Masaki; Santosh, M.

    2011-03-01

    The periodic assembly and dispersal of supercontinents through the history of the Earth had considerable impact on mantle dynamics and surface processes. Here we synthesize some of the conceptual models on supercontinent amalgamation and disruption and combine it with recent information from numerical studies to provide a unified approach in understanding Wilson Cycle and supercontinent cycle. Plate tectonic models predict that superdownwelling along multiple subduction zones might provide an effective mechanism to pull together dispersed continental fragments into a closely packed assembly. The recycled subducted material that accumulates at the mantle transition zone and sinks down into the core-mantle boundary (CMB) provides the potential fuel for the generation of plumes and superplumes which ultimately fragment the supercontinent. Geological evidence related to the disruption of two major supercontinents (Columbia and Gondwana) attest to the involvement of plumes. The re-assembly of dispersed continental fragments after the breakup of a supercontinent occurs through complex processes involving 'introversion', 'extroversion' or a combination of both, with the closure of the intervening ocean occurring through Pacific-type or Atlantic-type processes. The timescales of the assembly and dispersion of supercontinents have varied through the Earth history, and appear to be closely linked with the processes and duration of superplume genesis. The widely held view that the volume of continental crust has increased over time has been challenged in recent works and current models propose that plate tectonics creates and destroys Earth's continental crust with more crust being destroyed than created. The creation-destruction balance changes over a supercontinent cycle, with a higher crustal growth through magmatic influx during supercontinent break-up as compared to the tectonic erosion and sediment-trapped subduction in convergent margins associated with supercontinent

  6. Late Miocene to recent plate tectonic history of the southern Central America convergent margin

    Science.gov (United States)

    Morell, Kristin D.

    2015-10-01

    New plate reconstructions constrain the tectonic evolution of the subducting Cocos and Nazca plates across the southern Central American subduction zone from late Miocene to recent. Because of the strong relationships between lower and upper (Caribbean) plate dynamics along this margin, these constraints have wide-ranging implications for the timing and growth of upper plate deformation and volcanism in southern Central America. The reconstructions outline three important events in the Neogene history of this margin: (1) the coeval development of the Panama Triple Junction with the initiation of oblique subduction of the Nazca plate at ˜8.5 Ma; (2) the initiation of seamount and rough crust subduction beginning at ˜3-4 Ma; and (3) Cocos Ridge subduction from ˜2 to 3 Ma. A comparison of these events with independent geologic, geomorphic, volcanic, and stratigraphic data sets reveals that the timing, rates, and origin of subducting crust directly impacted the Neogene growth of upper plate deformation and volcanism in southern Central America. These analyses constrain the timing, geometry, and causes of a number of significant tectonic and volcanic processes, including rapid Plio-Quaternary arc-fore arc contraction due to Cocos Ridge subduction, the detachment of the Panama microplate at ˜1-3 Ma, and the late Miocene cessation of mantle-wedge-derived volcanism across ˜300 km of the subduction zone.

  7. Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions

    Science.gov (United States)

    Hanks, T.C.

    1977-01-01

    A variety of geophysical observations suggests that the upper portion of the lithosphere, herein referred to as the elastic plate, has long-term material properties and frictional strength significantly greater than the lower lithosphere. If the average frictional stress along the non-ridge margin of the elastic plate is of the order of a kilobar, as suggested by the many observations of the frictional strength of rocks at mid-crustal conditions of pressure and temperature, the only viable mechanism for driving the motion of the elastic plate is a basal shear stress of several tens of bars. Kilobars of tectonic stress are then an ambient, steady condition of the earth's crust and uppermost mantle. The approximate equality of the basal shear stress and the average crustal earthquake stress drop, the localization of strain release for major plate margin earthquakes, and the rough equivalence of plate margin slip rates and gross plate motion rates suggest that the stress drops of major plate margin earthquakes are controlled by the elastic release of the basal shear stress in the vicinity of the plate margin, despite the existence of kilobars of tectonic stress existing across vertical planes parallel to the plate margin. If the stress differences available to be released at the time of faulting are distributed in a random, white fasbion with a mean-square value determined by the average earthquake stress drop, the frequency of occurrence of constant stress drop earthquakes will be proportional to reciprocal faulting area, in accordance with empirically known frequency of occurrence statistics. ?? 1977 Birkha??user Verlag.

  8. The Lord Howe Rise continental ribbon: a fragment of eastern Gondwana that reveals the drivers of continental rifting and plate tectonics

    Science.gov (United States)

    Saito, S.; Hackney, R. I.; Bryan, S. E.; Kimura, J. I.; Müller, D.; Arculus, R. J.; Mortimer, N. N.; Collot, J.; Tamura, Y.; Yamada, Y.

    2016-12-01

    Plate tectonics and resulting changes in crustal architecture profoundly influence global climate, oceanic circulation, and the origin, distribution and sustainability of life. Ribbons of continental crust rifted from continental margins are one product of plate tectonics that can influence the Earth system. Yet we have been unable to fully resolve the tectonic setting and evolution of huge, thinned, submerged, and relatively inaccessible continental ribbons like the Lord Howe Rise (LHR), which formed during Cretaceous fragmentation of eastern Gondwana. Thinned continental ribbons like the LHR are not easily explained or predicted by plate-tectonic theory. However, because Cretaceous rift basins on the LHR preserve the stratigraphy of an un-accreted and intact continental ribbon, they can help to determine whether plate motion is self-organised—passively driven by the pull of negatively-buoyant subducting slabs—or actively driven by convective flow in the mantle. In a self-organising scenario, the LHR formed in response to ocean-ward retreat of the long-lived eastern Gondwana subduction zone and linked upper-plate extension. In the mantle-driven scenario, the LHR resulted from rifting near the eastern edge of Gondwana that was triggered by processes linked to emplacement of a silicic Large Igneous Province. These scenarios can be distinguished using the ribbon's extensional history and the composition and tectonic affinity of igneous rocks within rift basins. However, current knowledge of LHR rift basins is based on widely-distributed marine and satellite geophysical data, limited dredge samples, and sparse shallow drilling (<600 m below-seafloor). This limits our ability to understand the evolution of extended continental ribbons, but a recent deep crustal seismic survey across the LHR and a proposed IODP deep stratigraphic well through a LHR rift basin provide new opportunities to explore the drivers behind rifting, continental ribboning and plate tectonics.

  9. Measurements of Active Tectonic Deformation on the Guerrero Coast, Mexico

    Science.gov (United States)

    Ramirez, T.; Cundy, A.; Carranza-Edwards, A.; Morales, E.; Kostoglodov, V.; Urrutia-Fucugauchi, J.

    2004-12-01

    The study of tectonic deformation rates using displaced shoreline features is relatively well-established, and has provided much useful information on seismic hazard. Such studies have frequently been complemented by analysis of the coastal sedimentary record, where past marine to terrestrial environmental changes (and vice versa) may be recorded by clear changes in stratigraphy. Studies of this type are particularly valuable for tectonically-active areas where the preservation of former shoreline features is poor, or where long-term subsidence has resulted in their erosion, drowning or burial. The specific objective of this study is to derive rates of tectonic deformation from geomorphic and stratigraphic studies of the Guerrero coastal area, and to examine the feasibility of this stratigraphic approach in the coastal lagoons of the Mexican Pacific coast, in the Guerrero gap. The Guerrero gap coastal area, where a major earthquake is expected to occur, parallels the Cocos plate subduction zone. Here convergence rates vary from 5.2 cm/yr to 5.8 cm/yr. The Guerrero gap has experienced several historical earthquakes, notably the 1911 (7.8 Ms). However, no large magnitude events since the 1911 earthquake and only a few Ms~6 events have occurred near the Guerrero gap edges. It is expected that a major interplate earthquake of estimated magnitude Mw=8.1 to 8.4 has a high probability to occur. Landforms within the Guerrero gap indicate that the coast is subsiding. A series of key indicators such as elongated islands reminiscent of ancient barriers, submerged barriers island, extensive marshy environments, increased depths in the lagoons, and submerged anthropogenic features (shell mounds), among others, suggest active tectonic subsidence of the coast. In contrast, the adjacent northwest area off the Guerrero gap exhibits landforms characteristic of tectonic uplift (marine terraces and uplifted beach ridges), indicating a different seismo-tectonic regime northwest of the

  10. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago.

    Science.gov (United States)

    Greber, Nicolas D; Dauphas, Nicolas; Bekker, Andrey; Ptáček, Matouš P; Bindeman, Ilya N; Hofmann, Axel

    2017-09-22

    Earth exhibits a dichotomy in elevation and chemical composition between the continents and ocean floor. Reconstructing when this dichotomy arose is important for understanding when plate tectonics started and how the supply of nutrients to the oceans changed through time. We measured the titanium isotopic composition of shales to constrain the chemical composition of the continental crust exposed to weathering and found that shales of all ages have a uniform isotopic composition. This can only be explained if the emerged crust was predominantly felsic (silica-rich) since 3.5 billion years ago, requiring an early initiation of plate tectonics. We also observed a change in the abundance of biologically important nutrients phosphorus and nickel across the Archean-Proterozoic boundary, which might have helped trigger the rise in atmospheric oxygen. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. JaMBES: A "New" Way of Calculating Plate Tectonic Reconstruction

    Science.gov (United States)

    Chambord, A. I.; Smith, E. G. C.; Sutherland, R.

    2014-12-01

    Calculating the paleoposition of tectonic plates using marine geophysical data has been usually done by using the Hellinger criterion [Hellinger, 1981]. However, for the Hellinger software [Kirkwood et al., 1999] to produce stable results, we find that the input data must be abundant and spatially well distributed. Although magnetic anomalies and fracture zone data have been increasingly abundant since the 1960s, some parts of the globe remain too sparsely explored to provide enough data for the Hellinger code to provide satisfactory rotations. In this poster, we present new software to calculate the paleopositions of tectonic plates using magnetic anomalies and fracture zone data. Our method is based on the theory of plate tectonics as introduced by [Bullard et al., 1965] and [Morgan, 1968], which states that ridge segments (ie. magnetic lineations) and fracture zones are at right angles to each other. In order to test our software, we apply it to a region of the world where climatic conditions hinder the acquisition of magnetic data: the Southwest Pacific, between New Zealand and Antarctica from breakup time to chron 20 (c43Ma). Bullard, E., J. E. Everett, and A. G. Smith (1965), The fit of continents around the atlantic, Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 258(1088), 41-51. Hellinger, S. J. (1981), The uncertainties of finite rotations in plate tectonics, Journal of Geophysical Research, 86(B10), 9312-9318. Kirkwood, B. H., J. Y. Royer, T. C. Chang, and R. G. Gordon (1999), Statistical tools for estimating and combining finite rotations and their uncertainties, Geophysical Journal International, 137(2), 408-428. Morgan, W. J. (1968), Rises, trenches, great faults, and crustal blocks, Journal of Geophysical Research, 73(6), 1959-1982.

  12. The fate of water within Earth and super-Earths and implications for plate tectonics.

    Science.gov (United States)

    Tikoo, Sonia M; Elkins-Tanton, Linda T

    2017-05-28

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Authors.

  13. Determination of the tectonic plate motion by satellite laser ranging in 1999-2003

    Science.gov (United States)

    Schillak, S.; Wnuk, E.

    The paper presents results of the tectonic plates motion determination from satellite laser ranging in the period 1999-2003 The SLR station velocities were calculated from station geocentric coordinates determined from one month orbital arcs of Lageos-1 and Lageos-2 satellites for the first day of each arc The mean orbital RMS-of-fit for 5 years was equal to 15 mm The station velocities were determined for 29 stations and points in 1999-2003 it means for all SLR stations with data time span longer than 20 months The accuracy of station velocities determination varied from 0 4 mm year to 3 mm year dependent on quality of data and data span The difference of station velocities between ITRF2000 and the presented results were in the range 0-5 mm year Only for four stations Riyad Maidanak-2 Beijng and Arequipa after earthquake in 2001 the differences were statistically significant For the most stations is a good agreement with the NUVEL1A model of tectonic plates motion The significant differences were detected for stations Arequipa Concepcion Shanghai and Simosato The results differs from the model NUVEL1A in the station velocities and azimuths for South America tectonic plate and Japan

  14. Using Google Earth to Teach Plate Tectonics and Science Explanations

    Science.gov (United States)

    Blank, Lisa M.; Plautz, Mike; Almquist, Heather; Crews, Jeff; Estrada, Jen

    2012-01-01

    "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" emphasizes that the practice of science is inherently a model-building activity focused on constructing explanations using evidence and reasoning (NRC 2012). Because building and refining is an iterative process, middle school students may view this practice…

  15. Using Google Earth to Teach Plate Tectonics and Science Explanations

    Science.gov (United States)

    Blank, Lisa M.; Plautz, Mike; Almquist, Heather; Crews, Jeff; Estrada, Jen

    2012-01-01

    "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" emphasizes that the practice of science is inherently a model-building activity focused on constructing explanations using evidence and reasoning (NRC 2012). Because building and refining is an iterative process, middle school students may view this practice…

  16. Active tectonics around the Mediterranean region: site studies and application of new methodologies

    Directory of Open Access Journals (Sweden)

    Luigi Cucci

    2013-01-01

    Full Text Available More than 25 years have passed since the definition of Active Tectonics as "tectonic movements that are expected to occur within a future time span of concern to society", formulated in a milestone book by the National Research Council on this topic (Studies in Geophysics, Active Tectonics, National Academy Press, Washington, D.C. 1986, and those words have still to be considered the most suitable and exhaustive way to explain this branch of the Earth Sciences. Indeed only bridging together basic studies ("tectonic movements", rates of occurrence ("time span" and hazard assessment ("society" can we fully evaluate ongoing tectonic activity and its associated hazards. The broad Mediterranean Sea region is a paradigmatic area from this point of view, as on one hand this region displays in a relatively limited geographic extent a great variety of tectonic processes such as plate collision, subduction, volcanic activity, large-magnitude earthquakes, active folding and faulting, vertical uplift and/or subsidence. On the other hand, all the above mentioned tectonic processes can potentially affect a total population of about 450 million, mostly concentrated in fast-growing urban areas and/or close to industrial compounds and critical facilities often located nearby hazard sources. […

  17. Filling in the juvenile magmatic gap: Evidence for uninterrupted Paleoproterozoic plate tectonics

    Science.gov (United States)

    Partin, C. A.; Bekker, A.; Sylvester, P. J.; Wodicka, N.; Stern, R. A.; Chacko, T.; Heaman, L. M.

    2014-02-01

    Despite several decades of research on growth of the continental crust, it remains unclear whether the production of juvenile continental crust has been continuous or episodic throughout the Precambrian. Models for episodic crustal growth have gained traction recently through compilations of global U-Pb zircon age frequency distributions interpreted to delineate peaks and lulls in crustal growth through geologic time. One such apparent trough in zircon age frequency distributions between ∼2.45 and 2.22 Ga is thought to represent a pause in crustal addition, resulting from a global shutdown of magmatic and tectonic processes. The ∼2.45-2.22 Ga magmatic shutdown model envisions a causal relationship between the cessation of plate tectonics and accumulation of atmospheric oxygen over the same period. Here, we present new coupled U-Pb, Hf, and O isotope data for detrital and magmatic zircon from the western Churchill Province and Trans-Hudson orogen of Canada, covering an area of approximately 1.3 million km2, that demonstrate significant juvenile crustal production during the ∼2.45-2.22 Ga time interval, and thereby argue against the magmatic shutdown hypothesis. Our data is corroborated by literature data showing an extensive 2.22-2.45 Ga record in both detrital and magmatic rocks on every continent, and suggests that the operation of plate tectonics continued throughout the early Paleoproterozoic, while atmospheric oxygen rose over the same time interval. We argue that uninterrupted plate tectonics between ∼2.45 and 2.22 Ga would have contributed to efficient burial of organic matter and sedimentary pyrite, and the consequent rise in atmospheric oxygen documented for this time interval.

  18. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics

    Institute of Scientific and Technical Information of China (English)

    ZHU RiXiang; ZHENG TianYu

    2009-01-01

    Much attention has been paid in the last two decades to the physical and chemical processes as well as temporal-spatial variations of the lithospheric mantle beneath the North China Craton. In order to provide insights into the geodynamics of this variation, it is necessary to thoroughly study the state and structure of the lithospheric crust and mantle of the North China Craton and its adjacent regions as an integrated unit. Based on the velocity structure of the crust and upper mantle constrained from seismological studies, this paper presents various available geophysical results regarding the lithosphere thickness, the nature of crust-mantle boundary, the upper mantle structure and deformation characteristics as well as their tectonic features and evolution systematics. Combined with the obtained data from petrology and geochemistry, a mantle flow model is proposed for the tectonic evolution of the North China Craton during the Mesozoic-Cenozoic. We suggest that subduction of the Pacific plate made the mantle underneath the eastern Asian continent unstable and able to flow faster. Such a regional mantle flow system would cause an elevation of melt/fluid content in the upper mantle of the North China Craton and the lithospheric softening, which, subsequently resulted in destruction of the North China Craton in different ways of delamination and thermal erosion in Yanshan, Taihang Mountains and the Tan-Lu Fault zone. Multiple lines of evidence recorded in the crust of the North China Craton, such as the amalgamation of the Archean eastern and western blocks, the subduction of Paleo-oceanic crust and Paleo-continental residue, indicate that the Earth in the Paleoproterozoic had already evolved into the plate tectonic system similar to the present plate tectonics.

  19. Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes

    Science.gov (United States)

    Lenardic, A.; Kaula, W. M.

    1994-01-01

    It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.

  20. The tectonic plates are shifting: cultural change vs. mural dyslexia.

    Science.gov (United States)

    Cohn, Kenneth; Friedman, Leonard H; Allyn, Thomas R

    2007-01-01

    In response to a rapidly changing healthcare marketplace, a variety of new business models have arisen, including new specialties (hospitalists), selective care (concierge medicine), and joint ventures (ambulatory surgical centers, specialty hospitals), some with hospitals and others with independent vendors. Since both hospitals and physicians are feeling the squeeze of rising expenses, burdensome regulations, heightened consumer expectations, and stagnant or decreasing reimbursement, the response to global economic competition and the need to improve clinical and financial outcomes can bring physicians and hospitals together rather than drive them farther apart. In response to perceived threats, physicians and hospital executives can engage in defensive reasoning that may feel protective but can also lead to mural dyslexia, the inability or unwillingness to see the handwriting on the wall. The strategies of positive deviance (finding solutions that already exist in the community rather than importing best practices), appreciative inquiry (building on success rather than relying solely on root-cause analyses of problems), and structured dialogue (allowing practicing physicians to articulate clinical priorities rather than assuming they lack the maturity and will to come to consensus) are field-tested approaches that allow hospital leaders to engage practicing physicians and that can help both parties work more interdependently to improve patient care in a dynamically changing environment. Physician-hospital collaboration based on transparency, active listening, and prompt implementation can offer sustainable competitive advantage to those willing to embark on a lifetime learning journey.

  1. Active NE-SW Compressional Strain Within the Arabian Plate

    Science.gov (United States)

    Floyd, M. A.; ArRajehi, A.; King, R. W.; McClusky, S.; Reilinger, R. E.; Douad, M.; Sholan, J.; Bou-Rabee, F.

    2012-12-01

    Motion of the Arabian plate with respect to Eurasia has been remarkably steady over more than 25 Myr as revealed by comparison of geodetic and plate tectonic reconstructions (e.g., McQuarrie et al., 2003, GRL; ArRajehi et al., 2010, Tectonics). While internal plate deformation is small in comparison to the rate of Arabia-Eurasia convergence, the improved resolution of GPS observations indicate ~ NE-SW compressional strain that appears to affect much of the plate south of latitude ~ 30°N. Seven ~ NE-SW oriented inter-station baselines all indicated shortening at rates in the range of 0.5-2 mm/yr, for the most part with 1-sigma velocity uncertainties < 0.4 mm/yr. Plate-scale strain rates exceed 2×10-9/yr. The spatial distribution of strain can not be resolved from the sparse available data, but strain appears to extend at least to Riyadh, KSA, ~ 600 km west of the Zagros Fold and Thrust Belt that forms the eastern, collisional boundary of the Arabian plate with Eurasia (Iran). Geodetic velocities in the plate tectonic reference frame for Arabia, derived from magnetic anomalies in the Red Sea (Chu and Gordon, 1998, GJI), show no significant E-W motion for GPS stations located along the Red Sea coast (i.e., geodetic and plate tectonic spreading rates across the Red Sea agree within their resolution), in contrast to sites in the plate interior and along the east side of the plate that indicate east-directed motions. In addition, NE-SW contraction is roughly normal to ~ N-S striking major structural folds in the sedimentary rocks within the Arabian Platform. These relationships suggest that geodetically observed contraction has characterized the plate for at least the past ~ 3 Myr. Broad-scale contraction of the Arabian plate seems intuitively reasonable given that the east and north sides of the plate are dominated by active continental collision (Zagros, E Turkey/Caucasus) while the west and south sides are bordered by mid-ocean ridge spreading (Red Sea and Gulf of

  2. Integrating Geochemical and Geodynamic Numerical Models of Mantle Evolution and Plate Tectonics

    Science.gov (United States)

    Tackley, P. J.; Xie, S.

    2001-12-01

    The thermal and chemical evolution of Earth's mantle and plates are inextricably coupled by the plate tectonic - mantle convective system. Convection causes chemical differentiation, recycling and mixing, while chemical variations affect the convection through physical properties such as density and viscosity which depend on composition. It is now possible to construct numerical mantle convection models that track the thermo-chemical evolution of major and minor elements, and which can be used to test prospective models and hypotheses regarding Earth's chemical and thermal evolution. Model thermal and chemical structures can be compared to results from seismic tomography, while geochemical signatures (e.g., trace element ratios) can be compared to geochemical observations. The presented, two-dimensional model combines a simplified 2-component major element model with tracking of the most important trace elements, using a tracer method. Melting is self-consistently treated using a solidus, with melt placed on the surface as crust. Partitioning of trace elements occurs between melt and residue. Decaying heat-producing elements and secular cooling of the mantle and core provide the driving heat sources. Pseudo-plastic yielding of the lithosphere gives a first-order approximation of plate tectonics, and also allows planets with a rigid lid or intermittent plate tectonics to be modeled simply by increasing the yield strength. Preliminary models with an initially homogeneous mantle show that regions with a HIMU-like signature can be generated by crustal recycling, and regions with high 3He/4He ratios can be generated by residuum recycling. Outgassing of Argon is within the observed range. Models with initially layered mantles will also be investigated. In future it will be important to include a more realistic bulk compositional model that allows continental crust as well as oceanic crust to form, and to extend the model to three dimensions since toroidal flow may alter

  3. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean

    Science.gov (United States)

    Brown, Michael

    2006-11-01

    Ultrahigh-temperature (UHT) granulite metamorphism is documented predominantly in the Neoarchean to Cambrian rock record, but UHT granulite metamorphism also may be inferred at depth in Cenozoic orogenic systems. The first occurrence of UHT granulite metamorphism in the record signifies a change in geodynamics that generated transient sites of very high heat flow. Many UHT granulite metamorphic belts may have developed in settings analogous to modern continental backarcs; on a warmer Earth, destruction of oceans floored by thinner lithosphere may have generated hotter backarcs than those associated with the modern Pacific ring of fire. Medium-temperature eclogite high- pressure (EHP) granulite metamorphism is documented in the Neoarchean rock record and at intervals throughout the Proterozoic and Paleozoic record. EHP granulite metamorphic belts are complementary to UHT granulite metamorphic belts in that they are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record, but lawsonite blueschist eclogite metamorphism (high pressure [HP]) and ultrahigh-pressure metamorphism (UHP) characterized by coesite or diamond are predominantly Phanerozoic phenomena. HP-UHP metamorphism registers the low thermal gradients and deep subduction of continental crust during the early stage of subduction-to-collision orogenesis. A duality of metamorphic belts—reflecting a duality of thermal regimes—appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics, and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both UHT and EHP granulite metamorphism since the Neoarchean marks the onset of a “Proterozoic plate tectonics” regime, which evolved during a Neoproterozoic transition to the modern plate tectonics regime, characterized by colder subduction as chronicled by HP

  4. Effect of Rheology on Mantle Dynamics and Plate Tectonics in Super-Earths

    Science.gov (United States)

    Tackley, P. J.; Ammann, M. W.; Brodholt, J. P.; Dobson, D. P.; Valencia, D. C.

    2011-12-01

    The discovery of extra-solar "super-Earth" planets with sizes up to twice that of Earth has prompted interest in their possible lithosphere and mantle dynamics and evolution. Simple scalings [1,2] suggest that super-Earths are more likely than an equivalent Earth-sized planet to be undergoing plate tectonics. Generally, viscosity and thermal conductivity increase with pressure while thermal expansivity decreases, resulting in lower convective vigor in the deep mantle, which, if extralopated to the largest super-Earths might, according to conventional thinking, result a very low effective Rayleigh number in their deep mantles and possibly no convection there. Here we evaluate this. (i) As the mantle of a super-Earth is made mostly of post-perovskite we here extend the density functional theory (DFT) calculations of post-perovskite activation enthalpy of [3] to a pressure of 1 TPa. The activation volume for diffusion creep becomes very low at very high pressure, but nevertheless for the largest super-Earths the viscosity along an adiabat may approach 10^30 Pa s in the deep mantle, which would be too high for convection. (ii) We use these DFT-calculated values in numerical simulations of mantle convection and lithosphere dynamics of planets with up to ten Earth masses. The models assume a compressible mantle including depth-dependence of material properties and plastic yielding induced plate-like lithospheric behavior, solved using StagYY [4]. Results confirm the likelihood of plate tectonics and show a novel self-regulation of deep mantle temperature. The deep mantle is not adiabatic; instead internal heating raises the temperature until the viscosity is low enough to facilitate convective loss of the radiogenic heat, which results in a super-adiabatic temperature profile and a viscosity increase with depth of no more than ~3 orders of magnitude, regardless of what is calculated for an adiabat. It has recently been argued [5] that at very high pressures, deformation

  5. Plate tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    of magnetic reversals. Matuyama's study, based on available age information of the rock samples, has revealed that during early part of the Quaternary period the earth's magnetic field was reversely magnetized and that has gradually changed over to normal...). While Heirtzler et al. (1968) proposed a magnetic polarity reversal time scale for the Late Cretaceous to 211 Recent, about 75 Ma (anomaly 32), based on the distribution of oceanic magnetic anomalies on a few long magnetic profiles. This time...

  6. Development of the Plate Tectonics and Seismology markup languages with XML

    Science.gov (United States)

    Babaie, H.; Babaei, A.

    2003-04-01

    The Extensible Markup Language (XML) and its specifications such as the XSD Schema, allow geologists to design discipline-specific vocabularies such as Seismology Markup Language (SeismML) or Plate Tectonics Markup Language (TectML). These languages make it possible to store and interchange structured geological information over the Web. Development of a geological markup language requires mapping geological concepts, such as "Earthquake" or "Plate" into a UML object model, applying a modeling and design environment. We have selected four inter-related geological concepts: earthquake, fault, plate, and orogeny, and developed four XML Schema Definitions (XSD), that define the relationships, cardinalities, hierarchies, and semantics of these concepts. In such a geological concept model, the UML object "Earthquake" is related to one or more "Wave" objects, each arriving to a seismic station at a specific "DateTime", and relating to a specific "Epicenter" object that lies at a unique "Location". The "Earthquake" object occurs along a "Segment" of a "Fault" object, which is related to a specific "Plate" object. The "Fault" has its own associations with such things as "Bend", "Step", and "Segment", and could be of any kind (e.g., "Thrust", "Transform'). The "Plate" is related to many other objects such as "MOR", "Subduction", and "Forearc", and is associated with an "Orogeny" object that relates to "Deformation" and "Strain" and several other objects. These UML objects were mapped into XML Metadata Interchange (XMI) formats, which were then converted into four XSD Schemas. The schemas were used to create and validate the XML instance documents, and to create a relational database hosting the plate tectonics and seismological data in the Microsoft Access format. The SeismML and TectML allow seismologists and structural geologists, among others, to submit and retrieve structured geological data on the Internet. A seismologist, for example, can submit peer-reviewed and

  7. 3-D simulation for the tectonic evolution around the Kanto Region of Japan using the kinematic plate subduction model

    Science.gov (United States)

    Hashima, A.; Sato, T.; Ito, T.; Miyauchi, T.; Kameo, K.; Yamamoto, S.

    2011-12-01

    In the Kanto region of Japan, we can observe one of the most active crustal deformations on the earth. In the southern part of the Boso peninsula to the south, the uplift rate is estimated to be 5 mm/yr from the height of marine terraces. From geological evidence, the Kanto mountains to the west are considered to uplift at 1mm/yr. In contrast, the center part of the Kanto region is stable or subsiding, covered by the Holocene sediments. The depth of the basement reaches 3 km at the deepest. Vertical deformation in the timescale of 1 Myr is being revealed by the analysis of the recent seismic reflection experiments compared with the heights of the dated sediment layers exposed on land. These crustal deformation occurs in a highly complex tectonic setting with four plates interacting with each other: beneath Kanto, situated on the Eurasian and North American plates, the Philippine sea plate subducts and the Pacific plate further descends beneath the North American and Philippine sea plates, forming the unique trench-trench-trench triple junction on the earth. In addition, the Izu-Bonin (Ogasawara) arc on the Philippine sea plate is colliding with the Japan islands due to the buoyancy of the arc crust. At the plate boundaries near the Izu-Bonin arc, large interplate earthquakes occurred at the Sagami trough in 1703 and 1923 (Kanto earthquake) and at the Nankai trough in 1707, 1854 and 1944. To reveal the crustal deformation under these plate-to-plate interactions, we use the kinematic plate subduction model based on the elastic dislocation theory. This model is based on the idea that mechanical interaction between plates can rationally be represented by the increase of the displacement discontinuity (dislocation) across plate interfaces. Given the 3-D geometry of plate interfaces, the distribution of slip rate vectors for simple plate subduction can be obtained directly from relative plate velocities. In collision zones, the plate with arc crust cannot easily descend

  8. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics.

    Science.gov (United States)

    Tang, Ming; Chen, Kang; Rudnick, Roberta L

    2016-01-22

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago. Copyright © 2016, American Association for the Advancement of Science.

  9. Numerical simulation of tectonic plates motion and seismic process in Central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Peryshkin, A. Yu., E-mail: alexb700@yandex.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Makarov, P. V., E-mail: bacardi@ispms.ru; Eremin, M. O., E-mail: bacardi@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    An evolutionary approach proposed in [1, 2] combining the achievements of traditional macroscopic theory of solid mechanics and basic ideas of nonlinear dynamics is applied in a numerical simulation of present-day tectonic plates motion and seismic process in Central Asia. Relative values of strength parameters of rigid blocks with respect to the soft zones were characterized by the δ parameter that was varied in the numerical experiments within δ = 1.1–1.8 for different groups of the zonal-block divisibility. In general, the numerical simulations of tectonic block motion and accompanying seismic process in the model geomedium indicate that the numerical solutions of the solid mechanics equations characterize its deformation as a typical behavior of a nonlinear dynamic system under conditions of self-organized criticality.

  10. Relative tectonic activity classification in Kermanshah area, west Iran

    Directory of Open Access Journals (Sweden)

    M. Arian

    2014-07-01

    Full Text Available The High Zagros region because of closing to subduction zone and the collision of the Arabian and Eurasian plates is imposed under the most tectonic variations. In this research, Gharasu river basin that it has located in Kermanshah area was selected as the study area and 6 geomorphic indices were calculated and the results of each ones were divided in 3 classes. Then, using the indices, relative tectonic activity was calculated and the values were classified and analyzed in 4 groups. Regions were identified as very high, high, moderate and low. In analyzing the results and combining them with field observation and regional geology the results are often associated and justified with field evidences. The highest value is located on Dokeral anticline in crush zone in Zagros Most of the areas with high and moderate values of lat are located on crush zone in Zagros too. Crushing of this zone is because of main faults mechanism of Zagros region. The result of this paper confirms previous researches in this region. At the end of the eastern part of the study area, the value of Iat is high that could be the result of Sarab and Koh-e Sefid faults mechanism.

  11. Initiation of modern-style plate tectonics recorded in Mesoarchean marine chemical sediments

    Science.gov (United States)

    Satkoski, Aaron M.; Fralick, Philip; Beard, Brian L.; Johnson, Clark M.

    2017-07-01

    The chemistry of the oceans in part reflects a balance between inputs from the continents and mantle. Traditionally, it has been thought that Archean ocean chemistry was dominated by mantle sources, but recent work has suggested that continental weathering during the Archean provided a much higher flux to the oceans than previously recognized. Here, we present new Rb-Sr and Sm-Nd isotope compositions on carbonate (dolomite and limestone) from the 2.94 Ga Red Lake and 2.80 Ga Steep Rock groups in the Superior Province, Canada to assess the potential impact continental weathering had on ocean chemistry during the Mesoarchean, a time when initiation of modern-style plate tectonics has been proposed to have occurred. The low Rb contents of all carbonate samples suggest that clastic contamination does not affect the Sr isotope compositions. Using O and Sr isotope modeling, we identified unaltered samples and estimate a 87Sr/86Sr ratio of 0.70173 for seawater at 2.94 Ga and 0.70182 at 2.80 Ga. Strontium isotope compositions from both Red Lake and Steep Rock indicate that seawater was significantly more radiogenic than contemporaneous mantle, and suggests that weathering of evolved continental crust was an important input to seawater. Continental weathering likely affected seawater chemistry through uplift of continental lithosphere during the initiation of modern-style plate tectonics at 3.2 Ga, a model that is contrary to those that suggest the Archean continents were small in extent and largely submerged. Initiation of modern-style plate tectonics and associated continental weathering had an important effect on the biosphere, including increased nutrient delivery, as well as creation of ecological niches that allowed development of the first biologically produced shallow marine redox gradients.

  12. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea.

    Science.gov (United States)

    Baldwin, Suzanne L; Monteleone, Brian D; Webb, Laura E; Fitzgerald, Paul G; Grove, Marty; Hill, E June

    2004-09-16

    As lithospheric plates are subducted, rocks are metamorphosed under high-pressure and ultrahigh-pressure conditions to produce eclogites and eclogite facies metamorphic rocks. Because chemical equilibrium is rarely fully achieved, eclogites may preserve in their distinctive mineral assemblages and textures a record of the pressures, temperatures and deformation the rock was subjected to during subduction and subsequent exhumation. Radioactive parent-daughter isotopic variations within minerals reveal the timing of these events. Here we present in situ zircon U/Pb ion microprobe data that dates the timing of eclogite facies metamorphism in eastern Papua New Guinea at 4.3 +/- 0.4 Myr ago, making this the youngest documented eclogite exposed at the Earth's surface. Eclogite exhumation from depths of approximately 75 km was extremely rapid and occurred at plate tectonic rates (cm yr(-1)). The eclogite was exhumed within a portion of the obliquely convergent Australian-Pacific plate boundary zone, in an extending region located west of the Woodlark basin sea floor spreading centre. Such rapid exhumation (> 1 cm yr(-1)) of high-pressure and, we infer, ultrahigh-pressure rocks is facilitated by extension within transient plate boundary zones associated with rapid oblique plate convergence.

  13. Plate tectonics 2.5 billion years ago: evidence at kolar, South India.

    Science.gov (United States)

    Krogstad, E J; Balakrishnan, S; Mukhopadhyay, D K; Rajamani, V; Hanson, G N

    1989-03-10

    The Archean Kolar Schist Belt, south India, is a suture zone where two gneiss terranes and at least two amphibolite terranes with distinct histories were accrted. Amphibolites from the eastern and western sides of the schist belt have distinct incompatible element and isotopic characteristics sugesting that their volcanic protoliths were derived from dint mantle sources. The amphibolite and gneiss terranes were juxtaposed by horizontal compression and shearing between 2530 and 2420 million years ago (Ma) along a zone marked by the Kolar Schist Belt. This history of accretion of discrete crustal terranes resembles those of Phanerozoic convergent margins and thus suggests that plate tectonics operated on Earth by 2500 Ma.

  14. Plate tectonics 2.5 billion years ago - Evidence at Kolar, south India

    Science.gov (United States)

    Krogstad, E. J.; Hanson, G. N.; Balakrishnan, S.; Rajamani, V.; Mukhopadhyay, D. K.

    1989-01-01

    The Archean Kolar Schist Belt, south India, is a suture zone where two gneiss terranes and at least two amphibolite terranes with distinct histories were accreted. Amphibolites from the eastern and western sides of the schist belt have distinct incompatible element and isotopic characteristics suggesting that their volcanic protoliths were derived from different mantle sources. The amphibolite and gneiss terranes were juxtaposed by horizontal compression and shearing between 2530 and 2420 million years ago (Ma) along a zone marked by the Kolar Schist Belt. This history of accretion of discrete crustal terranes resembles those of Phanerozoic convergent margins and thus suggests that plate tectonics operated on earth by 2500 Ma.

  15. Ever deeper phylogeographies: trees retain the genetic imprint of Tertiary plate tectonics.

    Science.gov (United States)

    Hampe, Arndt; Petit, Rémy J

    2007-12-01

    Changes in species distributions after the last glacial maximum (c. 18 000 years bp) are beginning to be understood, but information diminishes quickly as one moves further back in time. In this issue of Molecular Ecology, Magri et al. (2007) present the fascinating case of a Mediterranean tree species whose populations preserve the genetic imprints of plate tectonic events that took place between 25 million years and 15 million years ago. The study provides a unique insight into the pace of evolution of trees, which, despite interspecific gene flow, can retain a cohesive species identity over timescales long enough to allow the diversification of entire plant and animal genera.

  16. Plate tectonics 2.5 billion years ago - Evidence at Kolar, south India

    Science.gov (United States)

    Krogstad, E. J.; Hanson, G. N.; Balakrishnan, S.; Rajamani, V.; Mukhopadhyay, D. K.

    1989-01-01

    The Archean Kolar Schist Belt, south India, is a suture zone where two gneiss terranes and at least two amphibolite terranes with distinct histories were accreted. Amphibolites from the eastern and western sides of the schist belt have distinct incompatible element and isotopic characteristics suggesting that their volcanic protoliths were derived from different mantle sources. The amphibolite and gneiss terranes were juxtaposed by horizontal compression and shearing between 2530 and 2420 million years ago (Ma) along a zone marked by the Kolar Schist Belt. This history of accretion of discrete crustal terranes resembles those of Phanerozoic convergent margins and thus suggests that plate tectonics operated on earth by 2500 Ma.

  17. Cretaceous alkaline intra-plate magmatism in the Ecuadorian Oriente Basin: Geochemical, geochronological and tectonic evidence

    Science.gov (United States)

    Barragán, Roberto; Baby, Patrice; Duncan, Robert

    2005-08-01

    Small volumes of Cretaceous alkaline basaltic magmas have been identified in the sedimentary infill of the Ecuadorian Oriente foreland basin. They are characterized by a restricted range of compositional variation, low LILE/HFSE ratios and Sr-Nd isotope values within the range of oceanic island basalts (OIB). Reflection seismic data show that a pre-existing NNE-SSW Triassic and Jurassic rift controls the location and occurrence of these alkaline eruptive sites. Radiometric ages ( 40Ar- 39Ar, incremental heating method) and the biostratigraphic record of their surrounding sediments indicate a NNE-SSW systematic age variation for the emplacement of this alkaline volcanism: from Albian (110 ± 5.2 Ma) in the northern part of the Oriente Basin, to Campanian (82.2 ± 2.0 Ma) in the west-central part. The geochemical, geochronological and tectonic evidences suggest that asthenospheric mantle has upwelled and migrated to the SSW, into the region underlying the pre-existing Triassic and Jurassic rift (thin-spot?). We propose that subduction was abandoned, subsequent to the accretion of allochthonous terranes onto the Ecuadorian and Colombian margin in the latest Jurassic-earliest Cretaceous, causing the relict slab material, corresponding to the eastwards-directed leading plate, to roll-back. Unmodified asthenospheric mantle migrated into the region previously occupied by the slab. This resulted in partial melting and the release of magmatic material to the surface in the northern part of the Oriente Basin since at least Aptian times. Then, magmatism migrated along the SSW-trending Central Wrench Corridor of the Oriente Basin during the Upper Cretaceous, probably as a consequence of the lateral propagation of the transpressive inversion of the Triassic-Jurassic rift. Eventually, the Late Cretaceous east-dipping Andean subduction system was renewed farther west, and the development of the compressional retro-foreland Oriente Basin system halted the Cretaceous alkaline

  18. Tectonics of the Indo-Australian plate near the Ninetyeast Ridge constrained from marine gravity and magnetic data

    Science.gov (United States)

    Chen, Jie; Zhang, Jinchang

    2017-06-01

    Although the Indo-Australian plate near the Ninetyeast Ridge is important for understanding the formation of new plate boundaries, its tectonic problems are complex and most of them are poorly known. This paper made a detailed tectonic analysis based on the data of bathymetry, gravity and magnetics. Bathymetry and gravity maps show morphological features of many folds, which are related to the intraplate deformation of the Indo-Australian plate due to the collision between the Indian and Asian plates. Gravity anomalies show the structure of fracture zones, which are caused by the seafloor spreading and transform faulting. The characteristics of the folds and fracture zones are consistent with the hypothesis that diffuse plate boundaries and redefined plate components would occur within the Indo-Australian plate. In addition, compiled magnetic data demonstrate magnetic lineations, abandoned spreading centers, southward ridge jumps and plate motions. These features provide useful information for rebuilding the tectonic evolution history of the study area. Magnetic anomalies suggest that an additional plate boundary of transform fault type is developing.

  19. Thermochronology and tectonics of the Leeward Antilles: Evolution of the southern Caribbean Plate boundary zone

    Science.gov (United States)

    van der Lelij, Roelant; Spikings, Richard A.; Kerr, Andrew C.; Kounov, Alexandre; Cosca, Michael; Chew, David; Villagomez, Diego

    2010-01-01

    Tectonic reconstructions of the Caribbean Plate are severely hampered by a paucity of geochronologic and exhumation constraints from anastomosed basement blocks along its southern margin. New U/Pb, 40Ar/39Ar, apatite fission track, and apatite (U-Th)/He data constrain quantitative thermal and exhumation histories, which have been used to propose a model for the tectonic evolution of the emergent parts of the Bonaire Block and the southern Caribbean Plate boundary zone. An east facing arc system intruded through an oceanic plateau during ~90 to ~87 Ma and crops out on Aruba. Subsequent structural displacements resulted in >80°C of cooling on Aruba during 70–60 Ma. In contrast, exhumation of the island arc sequence exposed on Bonaire occurred at 85–80 Ma and 55–45 Ma. Santonian exhumation on Bonaire occurred immediately subsequent to burial metamorphism and may have been driven by the collision of a west facing island arc with the Caribbean Plate. Island arc rocks intruded oceanic plateau rocks on Gran Roque at ~65 Ma and exhumed rapidly at 55–45 Ma. We attribute Maastrichtian-Danian exhumation on Aruba and early Eocene exhumation on Bonaire and Gran Roque to sequential diachronous accretion of their basement units to the South American Plate. Widespread unconformities indicate late Eocene subaerial exposure. Late Oligocene–early Miocene dextral transtension within the Bonaire Block drove subsidence and burial of crystalline basement rocks of the Leeward Antilles to ≤1 km. Late Miocene–recent transpression caused inversion and ≤1 km of exhumation, possibly as a result of the northward escape of the Maracaibo Block.

  20. 3-D thermo-mechanical laboratory modelling of plate-tectonics

    Directory of Open Access Journals (Sweden)

    D. Boutelier

    2011-02-01

    Full Text Available We present an experimental apparatus for 3-D thermo-mechanical analogue modelling of plate-tectonics processes such as oceanic and continental subductions, arc-continent or continental collisions. The model lithosphere, made of temperature-sensitive elasto-plastic with softening analogue materials, is submitted to a constant temperature gradient producing a strength reduction with depth in each layer. The surface temperature is imposed using infrared emitters, which allows maintaining an unobstructed view of the model surface and the use of a high resolution optical strain monitoring technique (Particle Imaging Velocimetry. Subduction experiments illustrate how the stress conditions on the interplate zone can be estimated using a force sensor attached to the back of the upper plate and changed because of the density and strength of the subducting lithosphere or the lubrication of the plate boundary. The first experimental results reveal the potential of the experimental set-up to investigate the three-dimensional solid-mechanics interactions of lithospheric plates in multiple natural situations.

  1. Drilling to investigate processes in active tectonics and magmatism

    Science.gov (United States)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    convergent plate margins (subduction zones). This workshop brought together a diverse group of scientists with a broad range of scientific experience and interests. A particular strength was the involvement of both early-career scientists, who will initiate and carry out these new research programs, and more senior researchers with many years of experience in scientific drilling and active tectonics research. Each of the themes and questions outlined above has direct benefits to society, including improving hazard assessment, direct monitoring of active systems for early warning, renewable and non-renewable resource and energy exploitation, and predicting the environmental impacts of natural hazards, emphasizing the central role that scientific drilling will play in future scientific and societal developments.

  2. Evolution of the western segment of Juan Fernández Ridge (Nazca Plate): plume vs. plate tectonic processes

    Science.gov (United States)

    Lara, Luis E.; Rodrigo, Cristián; Reyes, Javier; Orozco, Gabriel

    2014-05-01

    The Juan Fernandez Ridge (Eastern Pacific, Nazca Plate) is thought to be a classic hot spot trail because of the apparent age progression observed in 40Ar-39Ar data. However, geological evidence and some thermochronological data suggest a more complex pattern with a rejuvenation stage in Robinson Crusoe Island, the most eroded of the Juan Fernandez Archipelago. In fact, a postshield stage at 900-700 ka separates the underlying shield-related pile from the post-erosional alkaline succession (Ba/Yb=38.15; La/Yb=15.66; Ba/Y=20.27; Ba/Zr=2.31). Shield volcanoes grew at high effusion rate at ca. 5-4 Ma erupting mostly tholeiitic to transitional magmas (Ba/Yb=18.07-8.32; La/Yb=4.59-9.84; Ba/Y=4.24-8.18; Ba/Zr=0.73-1.09). Taken together, shield volcanoes form a continuous plateau with a base at ca. 3900 mbsl. However, a more complex structural pattern can be inferred from geophysical data, which suggest some intracrustal magma storage and a more extended area of magma ascent. A role for the Challenger Fracture Zone is hypothesized fueling the controversy between pristine plume origin and the effect of plate tectonic processes in the origin of intraplate volcanism. This research is supported by FONDECYT Project 1110966.

  3. The emergence of seismic cycles from stress feedback between intra-plate faulting and far-field tectonic loading

    Science.gov (United States)

    So, Byung-Dal; Capitanio, Fabio A.

    2016-08-01

    Using numerical modeling we show the emergence of cyclic slip behavior of faults from stress feedback through an idealized fault, its surrounding plates and far-field tectonic stress. The tectonic stress is exerted on the fault through a force applied along an idealized plate margin, acting on the fault, resulting from the interactions of viscous embedding and external plates. We find that, in such coupled system, the interaction of plates results into feedback with periodic deformation, slip along the fault and episodic plate margin motions. The viscosity of the embedding and loading plates primarily control the stress-loading time and hence the slip recurrence interval. For an Earth-like range of lithospheric viscosities, we derive a power-law with negative exponent, -0.99 to -0.5, scaling the recurrence period with loading-rate, providing an explanation for the observables from paleoseismology and geodesy. The feedback between single fault and far-field stress that arises from interactions of deforming plates provides a context to understand the earthquake cycle within continents, while reconciling the short-term seismic deformation to the long-term plate tectonics frame.

  4. Rubidium-strontium geochronology and plate-tectonic evolution of the southern part of the Arabian Shield

    Science.gov (United States)

    Fleck, Robert J.; Greenwood, W.R.; Hadley, D.G.; Anderson, R.E.; Schmidt, D.L.

    1980-01-01

    Rubidium-strontium studies of Precambrian volcanic and plutonic rocks of the Arabian Shield document an early development of the Arabian craton between 900 and 680 m.y. (million years) ago. Geologic studies indicate an island-arc environment characterized by andesitic (dioritic) magmas, volcaniclastic sedimentation, rapid deposition, and contemporaneous deformation along north or northwest-trending axes. Magmatic trends show consistent variation in both composition and geographic location as a function of age. The oldest units belong to an assemblage of basaltic strata exposed in western Saudi Arabia that yield an age of 1165:!:110 m.y. The oldest andesitic strata studied yield an age of 912:!:76 m.y. The earliest plutonic units are diorite to trondhjemite batholiths that range from 800 to 9,00 m.y. in age and ,occur along the western and southern parts of Saudi Arabia. Younger plutonic units, 680 to 750 m.y. in age, range from quartz diorite to granodiodte and become more abundant in the central and northeastern parts of the Arabian Shield. Initial 'Sr/ 86 Sr ratios for both dioritic groups range from 0.7023 to 0.7030 and average 0.7027. The absence of sialic detritus in sedimentary units and the evidence for an island-arc environment suggest the early development of the Arabian craton at a convergent plate margin between plates of oceanic lithosphere. Active subduction apparently extended from at least 900 m.y. to about 680 m.y. Subsequent to this subduction-related magmatism and tectonism, called the Hijaz tectonic cycle, the Arabian craton was sutured to the late Precambrian African plate in a collisional event. This period of orogeny, represented in Arabia and eastern Africa by the Mozambiquian or Pan-African event, extended from some time before 650 m.y. to at least 540 m.y. and perhaps 520 m.y. B.P. Although the tectonic processes of subduction and continental collision during the 900+ to 500-m.y. period require similar directions of plate convergence, the

  5. The life cycle of continental rifts: Numerical models of plate tectonics and mantle convection.

    Science.gov (United States)

    Ulvrova, Martina; Brune, Sascha; Williams, Simon

    2017-04-01

    Plate tectonic processes and mantle convection form a self-organized system whose surface expression is characterized by repeated Wilson cycles. Conventional numerical models often capture only specific aspects of plate-mantle interaction, due to imposed lateral boundary conditions or simplified rheologies. Here we study continental rift evolution using a 2D spherical annulus geometry that does not require lateral boundary conditions. Instead, continental extension is driven self-consistently by slab pull, basal drag and trench suction forces. We use the numerical code StagYY to solve equations of conservation of mass, momentum and energy and transport of material properties. This code is capable of computing mantle convection with self-consistently generated Earth-like plate tectonics using a pseudo-plastic rheology. Our models involve an incompressible mantle under the Boussinesq approximation with internal heat sources and basal heating. Due to the 2D setup, our models allow for a comparably high resolution of 10 km at the mantle surface and 15 km at the core mantle boundary. Viscosity variations range over 7 orders of magnitude. We find that the causes for rift initiation are often related to subduction dynamics. Some rifts initiate due to increasing slab pull, others because of developing trench suction force, for instance by closure of an intra-oceanic back-arc basin. In agreement with natural settings, our models reproduce rifts forming in both young and old collision zones. Our experiments show that rift dynamics follow a characteristic evolution, which is independent of the specific setting: (1) continental rifts initiate during tens of million of years at low extension rates (few millimetres per year) (2) the extension velocity increases during less than 10 million years up to several tens of millimetres per year. This speed-up takes place before lithospheric break-up and affects the structural architecture of rifted margins. (3) high divergence rates

  6. Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport

    Science.gov (United States)

    Becker, Thorsten W.; Conrad, Clinton P.; Buffett, Bruce; Müller, R. Dietmar

    2009-02-01

    Variations in Earth's rates of seafloor generation and recycling have far-reaching consequences for sea level, ocean chemistry, and climate. However, there is little agreement on the correct parameterization for the time-dependent evolution of plate motions. A strong constraint is given by seafloor age distributions, which are affected by variations in average spreading rate, ridge length, and the age distribution of seafloor being removed by subduction. Using a simplified evolution model, we explore which physical parameterizations of these quantities are compatible with broad trends in the area per seafloor age statistics for the present-day and back to 140 Ma from paleo-age reconstructions. We show that a probability of subduction based on plate buoyancy (slab-pull, or "sqrt(age)") and a time-varying spreading rate fits the observed age distributions as well as, or better than, a subduction probability consistent with an unvarying "triangular" age distribution and age-independent destruction of ocean floor. Instead, we interpret the present near-triangular distribution of ages as a snapshot of a transient state of the evolving oceanic plate system. Current seafloor ages still contain hints of a ˜ 60 Myr periodicity in seafloor production, and using paleoages, we find that a ˜ 250 Myr period variation is consistent with geologically-based reconstructions of production rate variations. These long-period variations also imply a decrease of oceanic heat flow by ˜ - 0.25%/Ma during the last 140 Ma, caused by a 25-50% decrease in the rate of seafloor production. Our study offers an improved understanding of the non-uniformitarian evolution of plate tectonics and the interplay between continental cycles and the self-organization of the oceanic plates.

  7. Feeling and Understanding Plate Tectonics - How can We attract Museum Visitors Attention?

    Science.gov (United States)

    Simon, Gilla; Apel, Michael

    2017-04-01

    Earthquakes, volcano eruptions and other natural hazards are commonly paid attention to, if news about disastrous events reach us. The mission of an Earth Science or Natural History Museum, however, goes beyond explaining the causes of natural disasters, but should also present science history and cutting edge research. Since dealing with a subject, especially with one, which seems to be in the abstract, is more effective, we realised two new projects where our visitors can feel and understand plate tectonics in a more exciting way. In 2015 we installed an earthquake simulator in our permanent exhibition to allow our visitors the physical experience of an earthquake. Because of static restrictions the simulator is housed in a container outside the building where it can be visited as a booked program upon prior reservation or by joining public tours on Sundays and special occasions. The simulation of six real earthquakes in two spatial directions is accompanied by a movie presenting facts about the earthquake itself (e.g. location, magnitude, damage and victims), but also general information about plate tectonics. This standard program takes about 20 minutes. During an educational program, however, not only the simulator is visited, but also the permanent exhibition, where the guide can focus on different aspects and then might choose specific earthquakes and information blocs in the simulator. In addition workshops with experiments are offered for school classes and other groups. This allows us to offer an individual program fitting to the visitor group. In 2016 we converted an old movie room to a state of the art media room. In cooperation with Media Informatics students we developed a quiz for three different levels and various themes like earthquakes, volcanoes, history and plate tectonics in general. Starting the quiz, a virtual earthquake destroys a building which will be reconstructed if the participants answer multiple choice questions correctly. Though, the

  8. New Paleomagnetic Justification for the Plate Tectonic Reconstruction of the Arctic

    Science.gov (United States)

    Metelkin, D. V.; Vernikovskiy, V. A.; Matushkin, N. Y.; Zhdanova, A.; Mikhaltsov, N. E.; Abashev, V. V.; Kulakov, E.

    2015-12-01

    We report paleomagnetic and geologic data that support a new plate tectonic reconstruction for the Arctic from the Neoproterozoic to Mesozoic. We propose a new outlook on the history of the Arctida paleocontinent, which combined sialic blocks of the present Eurasian shelf of the Arctic Ocean. Our model implies two Arctidas at that time. The earlier Arctida-I was located near equator and connected the continental margins of Laurentia, Baltica and Siberia within the supercontinent of Rodinia. The Arcrtida-I disintegration was caused by a breakup of Rodinia. As a result, small plates like on Svalbard, Kara, New Siberia Island (NSI) terrane and others were formed. We have reconstructed the main stages of later remobilization and global drift of these plates before Pangea assemblage. In contrast to traditional interpretation of the NSI as a part of the Chukchi-Alaska terrane, our observation suggest a linkage between the NSI and Kolyma-Omolon terrane that framed Siberia. As a result of Pangea assembly at Paleozoic-Mesozoic boundary the second recovery of Arctida took place. We assume that Arctida-II also connected Laurentia, Baltica, and Siberia but constituted the Pangean periphery in the temperate latitudes. The later Arctida-II disintegrated during the Mesozoic during the opening of Arctic Ocean.

  9. The boundary between the Indian and Asian tectonic plates below Tibet.

    Science.gov (United States)

    Zhao, Junmeng; Yuan, Xiaohui; Liu, Hongbing; Kumar, Prakash; Pei, Shunping; Kind, Rainer; Zhang, Zhongjie; Teng, Jiwen; Ding, Lin; Gao, Xing; Xu, Qiang; Wang, Wei

    2010-06-22

    The fate of the colliding Indian and Asian tectonic plates below the Tibetan high plateau may be visualized by, in addition to seismic tomography, mapping the deep seismic discontinuities, like the crust-mantle boundary (Moho), the lithosphere-asthenosphere boundary (LAB), or the discontinuities at 410 and 660 km depth. We herein present observations of seismic discontinuities with the P and S receiver function techniques beneath central and western Tibet along two new profiles and discuss the results in connection with results from earlier profiles, which did observe the LAB. The LAB of the Indian and Asian plates is well-imaged by several profiles and suggests a changing mode of India-Asia collision in the east-west direction. From eastern Himalayan syntaxis to the western edge of the Tarim Basin, the Indian lithosphere is underthrusting Tibet at an increasingly shallower angle and reaching progressively further to the north. A particular lithospheric region was formed in northern and eastern Tibet as a crush zone between the two colliding plates, the existence of which is marked by high temperature, low mantle seismic wavespeed (correlating with late arriving signals from the 410 discontinuity), poor Sn propagation, east and southeast oriented global positioning system displacements, and strikingly larger seismic (SKS) anisotropy.

  10. Layer-block tectonics of Cenozoic basements and formation of intra-plate basins in Nansha micro-plate,southern South China Sea

    Institute of Scientific and Technical Information of China (English)

    LIU Hailing; XIE Guofa; LIN Qiujin; ZHENG Hongbo; LIU Yingchun

    2009-01-01

    Layer-block tectonics (LBT) concept, with the core of pluralistic geodynamic outlook and multi-layer-sliding tectonic outlook, is one of new keys to study 3-dimensional solid and its 4-dimensional evolution history of global tectonic system controlled by global geodynamics system. The LBT concept is applied to study the lithospheric tectonics of the southern South China Sea (SCS). Based on the analysis of about 30 000 km of geophysical and geological data, some layer-blocks in the Nansha micro-plate can be divided as Nansha ultra-crustal layer-block, Zengmu crustal layer-block, Nanwei (Rifleman bank)-Andu (Ardasier bank) and Liyue (Reed bank)-North Palawan crustal layer-blocks, Andu-Bisheng and Liyue-Banyue basemental layer-blocks. The basic characteristics of the basemental layer-blocks have been dicussed, and three intra-plate basin groups are identified. The intra-plate basins within Nansha micro-plate can be divided into three basin groups of Nanwei-Andu, Feixin-Nanhua, and Liyue-North Palawan based on the different geodynamics. In the light of pluralistic geodynamic concept, the upheaving force induced by the mid-crust plastic layer is proposed as the main dynamical force which causes the formation of the intra-plate basins within the Nansha micro-plate. Finally, models of a face-to-face dip-slip-detachment of basemental layer-block and a unilateral dip-slip-detachment of basemental layer-block are put forward for the forming mechanisms of the Nanwei-Andu and Liyue-North Palawan intra-plate basin groups, respectively.

  11. Linking geological evidence from the Eurasian suture zones to a regional Indian Ocean plate tectonic model

    Science.gov (United States)

    Gibbons, A.; Aitchison, J.; Müller, R.; Whittaker, J.

    2012-12-01

    We present a revised regional plate tectonic model for the Indian Ocean from the Late Jurassic to present, which assimilates both marine geophysical data constraining the seafloor spreading history as well as a variety of geological observations from the Eurasian collision zone. This model includes relative motion between Greater India, Sri Lanka, West Australia, East Antarctica, East Madagascar, the Seychelles and Argoland, a continental sliver which began migrating towards Eurasia in the Late Jurassic, forming the northern margins of Greater India and western Australia. Recently collected data offshore northwest Australia suggest that the majority of Greater India reached only halfway along the West Australian margin in an Early Mesozoic reconstruction, bounded by the Wallaby-Zenith Fracture Zone. The revised geometries and relative motion histories redefine the timing and nature of collisional events, as well as the history of back-arc basins and intra-oceanic arcs, such as the Kohistan-Ladakh intra-oceanic arc in northwest India and Pakistan. Abundant ophiolites have been identified throughout the Yarlung-Tsangpo Suture Zone, between the Indian-Himalaya and Tibet, several have boninitic compositions and almost all date to either the Mid Jurassic or late Early Cretaceous. Further evidence suggests that an intra-oceanic arc collided with Greater India before colliding with Eurasia. Our model features a transform boundary running north of East Africa, which initiated an oceanic arc following short-lived compression between the western and central Mesotethys in the Late Jurassic, coinciding with the initial motion of Argoland. The arc developed through extension and ophiolite generation until at least the mid-Cretaceous and consumed a narrow thinned sliver of West Argoland between ~120-65 Ma. The arc remained active in the same position until its eventual collision with Greater India ~55 Ma. The eastern portion of the intra-oceanic arc accreted to eastern Eurasia

  12. Active Tectonics Revealed by River Profiles along the Puqu Fault

    OpenAIRE

    Ping Lu,; Yu Shang

    2015-01-01

    The Puqu Fault is situated in Southern Tibet. It is influenced by the eastward extrusion of Northern Tibet and carries the clockwise rotation followed by the southward extrusion. Thus, the Puqu Fault is bounded by the principal dynamic zones and the tectonic evolution remains active alongside. This study intends to understand the tectonic activity in the Puqu Fault Region from the river profiles obtained from the remotely sensed satellite imagery. A medium resolution Digital Elevation Model (...

  13. Satellite Elevation Magnetic and Gravity Models of Major South American Plate Tectonic Features

    Science.gov (United States)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Lidiak, E. G.; Keller, G. R. (Principal Investigator); Longacre, M. B.

    1984-01-01

    Some MAGSAT scalar and vector magnetic anomaly data together with regional gravity anomaly data are being used to investigate the regional tectonic features of the South American Plate. An initial step in this analysis is three dimensional modeling of magnetic and gravity anomalies of major structures such as the Andean subduction zone and the Amazon River Aulacogen at satellite elevations over an appropriate range of physical properties using Gaus-Legendre quadrature integration method. In addition, one degree average free-air gravity anomalies of South America and adjacent marine areas are projected to satellite elevations assuming a spherical Earth and available MAGSAT data are processed to obtain compatible data sets for correlation. Correlation of these data sets is enhanced by reduction of the MAGSAT data to radial polarization because of the profound effect of the variation of the magnetic inclination over South America.

  14. Plate tectonics and offshore boundary delimitation: Tunisia-Libya case at the International Court of Justice

    Science.gov (United States)

    Stanley, Daniel Jean

    1982-03-01

    The first major offshore boundary dispute where plate tectonics constituted a significant argument was recently brought before the International Court of Justice by Libya and Tunisia concerning the delimitation of their continental shelves. Libya placed emphasis on this concept to determine natural prolongation of its land territory under the sea. Tunisia contested use of the entire African continental landmass as a reference unit and views geography, geomorphology and bathymetry as relevant as geology. The Court pronounced that “It is the outcome, not the evolution in the long-distant past, which is of importance.” Moreover, it is the present-day configuration of coasts and seabed that are the main factors, not geology.

  15. Satellite Elevation Magnetic and Gravity Models of Major South American Plate Tectonic Features

    Science.gov (United States)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Lidiak, E. G.; Keller, G. R. (Principal Investigator); Longacre, M. B.

    1984-01-01

    Some MAGSAT scalar and vector magnetic anomaly data together with regional gravity anomaly data are being used to investigate the regional tectonic features of the South American Plate. An initial step in this analysis is three dimensional modeling of magnetic and gravity anomalies of major structures such as the Andean subduction zone and the Amazon River Aulacogen at satellite elevations over an appropriate range of physical properties using Gaus-Legendre quadrature integration method. In addition, one degree average free-air gravity anomalies of South America and adjacent marine areas are projected to satellite elevations assuming a spherical Earth and available MAGSAT data are processed to obtain compatible data sets for correlation. Correlation of these data sets is enhanced by reduction of the MAGSAT data to radial polarization because of the profound effect of the variation of the magnetic inclination over South America.

  16. A PILOT SEARCH FOR EVIDENCE OF EXTRASOLAR EARTH-ANALOG PLATE TECTONICS

    Energy Technology Data Exchange (ETDEWEB)

    Jura, M.; Klein, B.; Xu, S. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1562 (United States); Young, E. D., E-mail: jura@astro.ucla.edu, E-mail: kleinb@astro.ucla.edu, E-mail: sxu@astro.ucla.edu, E-mail: eyoung@ess.ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095 (United States)

    2014-08-20

    Relative to calcium, both strontium and barium are markedly enriched in Earth's continental crust compared to the basaltic crusts of other differentiated rocky bodies within the solar system. Here, we both re-examine available archived Keck spectra to place upper bounds on n(Ba)/n(Ca) and revisit published results for n(Sr)/n(Ca) in two white dwarfs that have accreted rocky planetesimals. We find that at most only a small fraction of the pollution is from crustal material that has experienced the distinctive elemental enhancements induced by Earth-analog plate tectonics. In view of the intense theoretical interest in the physical structure of extrasolar rocky planets, this search should be extended to additional targets.

  17. A Pilot Search for Evidence of Extrasolar Earth-analog Plate Tectonics

    CERN Document Server

    Jura, M; Xu, S; Young, E D

    2014-01-01

    Relative to calcium, both strontium and barium are markedly enriched in Earth's continental crust compared to the basaltic crusts of other differentiated rocky bodies within the solar system. Here, we both re-examine available archived Keck spectra to place upper bounds on n(Ba)/n(Ca) and revisit published results for n(Sr)/n(Ca) in two white dwarfs that have accreted rocky planetesimals. We find that at most only a small fraction of the pollution is from crustal material that has experienced the distinctive elemental enhancements induced by Earth-analog plate tectonics. In view of the intense theoretical interest in the physical structure of extrasolar rocky planets, this search should be extended to additional targets.

  18. Plate Tectonics 2.0: Using GPS to Refine Global Crustal Kinematics and Rewrite Textbooks

    Science.gov (United States)

    Kreemer, C.; Blewitt, G.; Stamps, D. S.; Saria, E.

    2015-12-01

    Any model of the Earth's inner workings should be consistent with the observed motion and deformation at its surface. The whole idea that the entire Earth's surface comprises of a dozen or so tectonic plates with no deformation in between them (as most textbooks will tell you) is embarrassingly outdated. The advent of high-precision GNSS measurements of crustal motion has led to the direct observation of plate motion, the confirmation of plate rigidity, and the refinement of crustal kinematics in diffuse plate boundary zones. With the rapidly growing number of continuous GPS (cGPS) stations (as well as campaign-style measurements) some of the earlier results can now be reassessed while at the same time we can continue to quantify the motion and deformation of a large part of the Earth's surface. We present the latest version (v. 2.2) of the Global Strain Rate Model (GSRM), which is almost entirely constrained by horizontal GPS velocities. The model contains the rigid-body rotations of 50 plates as well as strain rate and vorticity estimates at a high spatial resolution for the ~14% of the Earth's surface that is caught up in between the plates. Resulting global or regional maps of dilatation, vorticity, and strain tensor amplitude and style, are poised to augment standard textbook images of plate motions, and we anticipate that they will foster further scientific and educational inquiry. GSRM v2.2 is constrained by >24,000 velocities. Of those ~7900 were determined by us from time-series that we obtained through a routine processing of all globally available RINEX data. Many of these stations were not installed with the intention to track crustal motions, but often are very usable. This station category is currently the biggest contributor to the data explosion; our solution has >1100 more stations compared with the previous solution of just 18 months ago. We transform to our solution GPS velocities from >250 published studies, >30 more than in the previous

  19. Early Paleozoic tectonics of Asia: A preliminary full-plate model

    Science.gov (United States)

    Domeier, Mat

    2017-04-01

    One of the largest and longest evolving orogens on Earth, the Central Asian Orogenic Belt (CAOB; alt. the Altaids) is as endlessly fascinating as it is astonishingly complex. By the slow grind of tectonics, the CAOB was forged over hundreds of millions of years, with a spectacular climax during the late Paleozoic and early Mesozoic, when a series of terrane collisions first melded a mosaic of island arcs and continental blocks into a colossal landmass that we now know as Asia. Unsurprisingly, that dynamic late Paleozoic to early Mesozoic interval has garnered tremendous interest, stimulated a great wealth of studies, and instigated captivating ongoing debates. But what set the stage for this action-packed display? Here I report on an ongoing initiative to weave together a self-consistent, full-plate tectonic model of the building blocks of Asia in the early Paleozoic ( 500-400 Ma), this will provide a testable and freely-available geodynamic framework for early CAOB genesis that can focus new work and foster new insights into the nature and evolution of Asia.

  20. Inherited segmentation of the Iberian-African margins and tectonic reconstruction of a diffuse plate boundary.

    Science.gov (United States)

    Fernàndez, Manel; Torne, Montserrat; Vergés, Jaume; Casciello, Emilio

    2016-04-01

    Diffuse plate-boundary regions are characterized by non-well defined contacts between tectonic plates thus making difficult their reconstruction through time. The Western Mediterranean is one of these regions, where the convergence between the African and Iberian plates since Late Cretaceous resulted in the Betic-Rif arcuate orogen, the Gulf of Cadiz imbricate wedge, and the Alboran back-arc basin. Whereas the Iberia-Africa plate boundary is well defined west to the Gorringe Bank and along the Gloria Fault, it becomes much more diffuse eastwards with seismicity spreading over both the south-Iberian and north-African margins. Gravity data, when filtered for short wavelengths, show conspicuous positive Bouguer anomalies associated with the Gorringe Bank, the Gulf of Cadiz High and the Ronda/Beni-Bousera peridotitic massifs reflecting an inherited Jurassic margin segmentation. The subsequent Alpine convergence between Africa and Iberia reactivated these domains, producing crustal-scale thrusting in the Atlantic segments and eventually subduction in the proto-Mediterranean segments. The Jurassic segmentation of the Iberia-Africa margins substantiates the double-polarity subduction model proposed for the region characterized by a change from SE-dipping polarity in the Gorringe, Gulf of Cadiz and Betic-Rif domains, to NW-dipping polarity in the proto-Algerian domain. Therefore, the Algerian and Tyrrhenian basins in the east and the Alboran basin in the west are the result of SSE-E and NW-W retreating slabs of oceanic and/or hyper-extended Tethyan domains, respectively.

  1. Segmentation of the eastern North Greenland oblique-shear margin – regional plate tectonic implications

    DEFF Research Database (Denmark)

    Andreasen, Arne Døssing; Stemmerik, Lars; Dahl-Jensen, T.

    2010-01-01

    a highly complex, Paleozoic–early Cenozoic pre-opening setting. However, due to extreme ice conditions, very little is known about the offshore areas seawards of – and between – the peninsulas. Consequently, prevailing structural-tectonic models of the margin tend to be significantly oversimplified...... and inadequate. We present the first, combined onshore–offshore, model of the margin integrating onshore outcrops with potential field data, new offshore seismic reflection data and receiver-function analysis of seismic broad band data. The results reveal a margin which is far more complex than previously...... anticipated. In particular, we interpret strong margin segmentation along N/NE-striking fault structures. The structures are likely to have formed by Late Mesozoic–early Cenozoic strike-slip tectonics and have continued to be active during the late Cenozoic. A more than 8 km deep sedimentary basin...

  2. A plate tectonic-paleoceanographic hypothesis for Cretaceous source rocks and cherts of northern South America

    Energy Technology Data Exchange (ETDEWEB)

    Villamil, T.; Arango, C. (Univ. of Colorado, Boulder, CO (United States))

    1996-01-01

    New paleocontinental reconstructions show a northern migration of the South American Plate with respect to the paleoequator from the Jurassic to the Late Cretaceous. This movement caused the northern margin of South America to migrate from a position south to a position north of the paleoequator. Ekman transport generated net surface water movement towards the south during times when northern South America was south of the paleoequator. This situation favored downwelling and prevented Jurassic and earliest Cretaceous marine source rocks from being deposited. When northern South America was north of the paleoequator Ekman transport forced net water movement to the north favoring upwelling, paleoproductivity, and the deposition of one of the best marine source rocks known (the La Luna, Villeta, and equivalents). This plate tectonic paleoceanographic hypothesis explains the origin of hydrocarbons in northern South America. The stratigraphic record reflects this increase in paleoproductivity through time. This can be observed in facies (non-calcareous shales to calcareous shales to siliceous shales and finally to bedded cherts) and in changing planktic communities which were initially dominated by healthy calcareous foraminifer assemblages, followed by stressed foraminifer populations and finally by radiolarians. Total organic carbon and source rock quality were affected by this long term increase in paleoproductivity but also, and more markedly, by a punctuated sequence stratigraphic record dominated by low- frequency changes in relative sea level. The magnitude of transgressive episodes caused by rise in sea level determined the extent of source rock intervals and indirectly the content of organic carbon.

  3. A plate tectonic-paleoceanographic hypothesis for Cretaceous source rocks and cherts of northern South America

    Energy Technology Data Exchange (ETDEWEB)

    Villamil, T.; Arango, C. [Univ. of Colorado, Boulder, CO (United States)

    1996-12-31

    New paleocontinental reconstructions show a northern migration of the South American Plate with respect to the paleoequator from the Jurassic to the Late Cretaceous. This movement caused the northern margin of South America to migrate from a position south to a position north of the paleoequator. Ekman transport generated net surface water movement towards the south during times when northern South America was south of the paleoequator. This situation favored downwelling and prevented Jurassic and earliest Cretaceous marine source rocks from being deposited. When northern South America was north of the paleoequator Ekman transport forced net water movement to the north favoring upwelling, paleoproductivity, and the deposition of one of the best marine source rocks known (the La Luna, Villeta, and equivalents). This plate tectonic paleoceanographic hypothesis explains the origin of hydrocarbons in northern South America. The stratigraphic record reflects this increase in paleoproductivity through time. This can be observed in facies (non-calcareous shales to calcareous shales to siliceous shales and finally to bedded cherts) and in changing planktic communities which were initially dominated by healthy calcareous foraminifer assemblages, followed by stressed foraminifer populations and finally by radiolarians. Total organic carbon and source rock quality were affected by this long term increase in paleoproductivity but also, and more markedly, by a punctuated sequence stratigraphic record dominated by low- frequency changes in relative sea level. The magnitude of transgressive episodes caused by rise in sea level determined the extent of source rock intervals and indirectly the content of organic carbon.

  4. Geochemistry of Mesoproterozoic Volcanic Rocks in the Western Kunlun Mountains:Evidence for Plate Tectonic Evolution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chuanlin; DONG Yongguan; ZHAO Yu; WANG Aiguo; GUO Kunyi

    2003-01-01

    Mesoproterozoic volcanic rocks occurring in the north of the western Kunlun Mountains can be divided into two groups. The first group (north belt) is an reversely-evolved bimodal series. Petrochemistry shows that the alkalinity of the rocks decreases from early to late: alkaline→calc-alkaline→tholeiite, and geochemistry proves that the volcanic rocks were formed in rifting tectonic systems. The sedimentary facies shows characteristics of back-arc basins. The second (south belt) group, which occurs to the south of Yutian-Minfeng-Cele, is composed of calc-alkaline island arc (basaltic) andesite and minor rhyolite. The space distribution, age and geochemistry of the two volcanite groups indicate that they were formed in a back-arc basin (the first group) and an island arc (the second group) respectively and indicate the plate evolution during the Mesoproterozoic. The orogeny took place at ~1.05 Ga, which was coeval with the Grenville orogeny. This study has provided important geological data for exploring the position of the Paleo-Tarim plate in the Rodinia super-continent.

  5. Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth's thermal evolution.

    Science.gov (United States)

    Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A

    2007-09-04

    The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.

  6. Plate tectonic controls on atmospheric CO2 levels since the Triassic.

    Science.gov (United States)

    Van Der Meer, Douwe G; Zeebe, Richard E; van Hinsbergen, Douwe J J; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H

    2014-03-25

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250-200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data.

  7. New constraints on the active tectonic deformation of the Aegean

    Science.gov (United States)

    Nyst, M.; Thatcher, W.

    2004-01-01

    revealed by seismicity, active faulting, fault geomorphology, and earthquake fault plane solutions, continental tectonics, at least in the Aegean, is to first order very similar to global plate tectonics and obeys the same simple kinematic rules. Although the widespread distribution of Aegean seismicity and active faulting might suggest a rather spatially homogeneous seismic hazard, the focusing of deformation near microplate boundaries implies the highest hazard is comparably localized.

  8. Plate Tectonics Constrained by Evidence-Based Magmatic Temperatures and Phase Relations of Fertile Lherzolite (Invited)

    Science.gov (United States)

    Green, D. H.; Falloon, T.

    2010-12-01

    In order to understand Earth’s plate tectonics we must interpret the most direct probes for mantle composition and temperature distribution i.e. the primitive basaltic magmas and peridotites representing partial melts and mantle residues. An evidence-based approach to identification of parental magmas and determination of their temperatures requires glass and phenocryst compositions and experimentally calibrated Fe/Mg partitioning between olivine and melt. We have compared magmatic crystallization temperatures between ‘hot-spot’(proposed to be plume-related) and normal mid-ocean ridge basalt (MORB) parental liquids, by examining three representative magmatic suites from both ocean island (Hawaii, Iceland, and Réunion) and mid-ocean ridge settings (Cocos-Nazca, East Pacific Rise, and Mid-Atlantic Ridge). We have glass and olivine phenocryst compositions, including volatile (H2O) contents, and have calculated parental liquid compositions at 0.2GPa by incrementally adding olivine back into the glass compositions until a liquid in equilibrium with the most-magnesian olivine phenocryst composition is obtained. The results of these calculations demonstrate that there is very little difference (maximum of ~20°C) between the ranges of crystallization temperatures of the parental liquids (MORB:1243-1351°C versus OIB:1286-1372°C) when volatile contents are taken into account. However while lacking temperature contrast, the source regions for ‘hot-spot’ parental magmas contain geochemical signatures of old subducted crust/lithosphere. The mantle depths of origin determined for both the MORB and OIB suites are similar (MORB:1-2 GPa; OIB:1-2.5 GPa). Calculations of mantle potential temperatures (Tp) are model dependent, particularly to melt fraction from an inferred source. Assuming similar fertile lherzolite sources, the differences in Tp values between the hottest MORB and the hottest ocean island tholeiite sources are ~80°C. These differences disappear if the

  9. The Proto Southern Gulf of California represented by GIS Plate Tectonic Reconstructions

    Science.gov (United States)

    Skinner, L. A.; Umhoefer, P. J.; Kluesner, J. W.

    2012-12-01

    We present GIS-based plate tectonic reconstruction maps for the southern Gulf of California oblique rift. The maps track plate boundary deformation back to 14 Ma. Tectonic blocks are defined by faults, geology, seismic data, and bathymetry/topography. Spreading center and fault-slip rates were acquired from geologic data, cross-Gulf tie points, and GPS studies. Baja California-North America GPS rates (47 mm/yr across the Gulf; 4 mm/yr in the borderland) agree remarkably with ~6 Ma geologic offsets across the Gulf and are used during reconstruction steps back to 6 Ma. The Alarcon and Guaymas spreading centers initiated at 2.4 Ma and 6 Ma (Lizarralde et al., 2007), respectively, while the Farallon, Pescadero, and Carmen spreading centers began between ~2-1 Ma (Lonsdale, 1989). Therefore, the 2, 4, and 6 Ma reconstruction steps include a long transtensional fault zone along much of the southern Gulf, connecting the Guaymas spreading center with either the Alarcon spreading center or East Pacific Rise. For reconstructions at 8, 10, and 12 Ma, a range of across-Gulf and borderland fault rates fit the current constraints, but all models suggest an increase in across-Gulf faulting rates at 8 - 6 Ma. We used 30 mm/yr across the Gulf and 20 mm/yr across the borderland. These models result in ~470 km northwestward offset across the Gulf (we also account for a minor E-W offset) and ~145 km offset across the borderland. The 12 - 14 Ma reconstructions suggest that the Gulf of California formed along a 100 x 1600 km volcanic arc and narrow extensional belt between the Cretaceous batholith and the Sierra Madre Occidental. The initial seaway at 8 - 6.5 Ma was only ~200-250 km wide by 1600 km long. We will also combine our 12 Ma map with the McQuarrie and Werrnicke (2005) reconstruction to present a new reconstruction for the whole Walker Lane to Gulf of California belt.

  10. Plate tectonics and the origin of the Juan Fernández Ridge: analysis of bathymetry and magnetic patterns

    Directory of Open Access Journals (Sweden)

    Cristián Rodrigo

    2014-10-01

    Full Text Available Juan Fernández Ridge (JFR is a cα. 800 km long alignment of seamounts and islands which is thought to be fed by a deep mantle plume. JFR includes the Friday and Domingo seamounts in the western active edge close to the active hotspot, and the O'Higgins Seamount and Guyot at the eastern limit just in front of the Chile-Perú trench. Recent bathymetric (Global Topography and magnetic (EMAG-2 datasets were interpreted both qualitatively and quantitatively by means of 3D inverse modeling and 2D direct modeling for geometry and susceptibility, together with an interpretation of the synthetic anomalies related to the classical hypothesis of deep seafloor spreading. Topographic and magnetic patterns are used to understand the tectonic evolution and origin of the JFR, especially in the western segment. Results show a continuous corridor with a base at ~3900 m depth formed by four groups of seamounts/islands with a number of summits. The deep ocean floor is ~22 to ~37 Myr old and is younger to the south of the Challenger Fracture Zone that runs in a SW-NE direction. The magnetic pattern of the western JFR segment, which is different than the eastern one, has no correlation with bathymetry and does not present a common polarity nor fit with magnetic models for isolated bodies. This superposition of magnetic patterns indicates a role of the faults/fractures of the Nazca Plate. Geological evidence supports the hypothesis of a fixed mantle plume for the origin of JFR but our data suggest that tectonic processes play a role, thus fueling the global controversy about these competing processes.

  11. Active Tectonics Revealed by River Profiles along the Puqu Fault

    Directory of Open Access Journals (Sweden)

    Ping Lu

    2015-04-01

    Full Text Available The Puqu Fault is situated in Southern Tibet. It is influenced by the eastward extrusion of Northern Tibet and carries the clockwise rotation followed by the southward extrusion. Thus, the Puqu Fault is bounded by the principal dynamic zones and the tectonic evolution remains active alongside. This study intends to understand the tectonic activity in the Puqu Fault Region from the river profiles obtained from the remotely sensed satellite imagery. A medium resolution Digital Elevation Model (DEM, 20 m was generated from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER stereo pair of images and the stream network in this region was extracted from this DEM. The indices of slope and drainage area were subsequently calculated from this ASTER DEM. Based on the stream power law, the area-slope plots of the streams were delineated to derive the indices of channel concavity and steepness, which are closely related to tectonic activity. The results show the active tectonics varying significantly along the Puqu Fault, although the potential influence of glaciations may exist. These results are expected to be useful for a better understanding of tectonic evolution in Southeastern Tibet.

  12. Origin and evolution of marginal basins of the NW Pacific: Diffuse-plate tectonic reconstructions

    CERN Document Server

    Xu, Junyuan; Ben-Avraham, Zvi; Yu, Ho-Shing

    2012-01-01

    Formation of the gigantic linked dextral pull-apart basin system in the NW Pacific is due to NNE- to ENE-ward motion of east Eurasia. This mainly was a response to the Indo-Asia collision which started about 50 Ma ago. The displacement of east Eurasia can be estimated using three aspects: (1) the magnitude of pull-apart of the dextral pull-apart basin system, (2) paleomagnetic data from eastern Eurasia and the region around the Arctic, and (3) the shortening deficits in the Large Tibetan Plateau. All the three aspects indicate that there was a large amount (about 1200 km) of northward motion of the South China block and compatible movements of other blocks in eastern Eurasia during the rifting period of the basin system. Such large motion of the eastern Eurasia region contradicts any traditional rigid plate tectonic reconstruction, but agrees with the more recent concepts of non-rigidity of both continental and oceanic lithosphere over geological times. Based on these estimates, the method developed for resto...

  13. New Insights into the Active Tectonics of Eastern Indonesia from GPS Measurements

    Science.gov (United States)

    Susilo, S.; Koulali Idrissi, A.; McClusky, S.; Meilano, I.; Cummins, P. R.; Tregoning, P.; Syafii, A.

    2014-12-01

    The Indonesian archipelago encompasses a wide range of tectonic environments, including island arc volcanism, subduction zones, and arc-continent collision. Many of the details of this tectonic activity are still poorly understood, especially where the Australian continent collides with Indonesia, separating the Sunda Arc in west from that at the Banda Arc in the east. While it seems clear that the Australian plate is subducted under both the Sunda and Banda Arcs, it is not clear what happens along the 1000 km -long stretch in between. The question of just where the plate motion is accommodated is of major importance to assessments of earthquake and tsunami hazard in the region. To help resolve these questions the Geospatial Information Agency of Indonesia has collaborated with the Australian National University and the Bandung Institute of Technology in a GPS campaign spanning much of eastern Indonesia, from Lombok in the west to Alor in the east. We have combined these data with those from previous campaigns, resulting in over 27 campaign and 18 continuous GPS sites being used in the analysis. The improvement in site density allowed us to develop of a more complete description of tectonic activity in this region than has been obtained in previous studies. Our preliminary results suggests that there is a relatively simple transition from subduction at the Java Trench off east Java, to a partitioned convergence along both the Timor Trough and the Flores Thrust in the Nusa Tenggara region.

  14. Plate Tectonic Consequences of competing models for the origin and history of the Banda Sea subducted oceanic lithosphere

    CERN Document Server

    Heine, Christian; McKay, Hamish; Müller, R Dietmar

    2012-01-01

    The Banda Arc, situated west of Irian Jaya and in the easternmost extension of the Sunda subduction zone system, reveals a characteristic bowl-shaped geometry in seismic tomographic images. This indicates that the oceanic lithosphere still remains attached to the surrounding continental margins of northern Australia and the Bird's Head microcontinent. Major controversies exist between authors proposing an allochthonous or autochthonous origin of the Bird's Head block. Either scenario has important implications for plate kinematic models aiming to reconstruct the tectonic evolution of the region and the late Jurassic seaoor spreading geometry of this now subducted Argo-Tanimbar-Seram (ATS) ocean basin. Wider implications affect the tectonic conguration of the Tethyan-Pacic realm, the distribution of plate boundaries as well as the shape and size of continental blocks which have been rifted off the northeastern Gondwana margin during the Late Jurassic and are now accreted to the SE Asia margin. We apply structu...

  15. Lithospheric Rheology Constrained by Loading of the Hawaiian Islands and its Implications for the Dynamics of Plate Tectonics

    Science.gov (United States)

    Zhong, S.; Watts, A. B.

    2013-12-01

    Lithospheric rheology is important for understanding crustal and lithospheric dynamics, and the conditions for plate tectonics. For example, numerical modeling studies suggest that plate tectonics emerge from the dynamics of mantle convection when a small coefficient of friction (significantly to match the observations, together with frictional coefficient in the range from 0.1 to 0.7. However, the small coefficient of friction weakens the shallow part of the lithosphere so much that it causes the minima in strain rate and stress to occur at too large depths to be consistent with the depth distribution of seismicity at Hawaii. Our results therefore suggest that the coefficient of friction is between 0.25 and 0.7. Finally, maximum lithospheric stress under Hawaiian loads is about 100-200 MPa for models that match the observations, and this stress may be viewed as the largest lithospheric stress on the Earth.

  16. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic

    DEFF Research Database (Denmark)

    Døssing Andreasen, Arne; Japsen, Peter; Watts, Anthony B.

    2016-01-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to ...... by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.......Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses...... to inner margin episodic uplift, including the formation of coastal mountains. The origin of these events remains enigmatic. We present a seismic reflection study from the Greenland Fracture Zone – East Greenland Ridge (GFZ-EGR) and the NE Greenland shelf. We document a regional intra-Miocene seismic...

  17. Why Understanding When and How Plate Tectonics Began Is Essential for a Robust Theory of the Earth

    Science.gov (United States)

    Stern, R. J.; Gerya, T.

    2014-12-01

    Understanding when and how Plate Tectonics (PT) began and what came before has profound implications for understanding the Earth because the transition to PT from the previous tectonic regime - some variant of deformable lid tectonics (DLT)- resulted in faster cooling and enhanced recycling of surface materials to depth. The transition to PT also would have impacted ocean chemistry, climate and life evolution. There is no consensus about when PT began on Earth; estimates range from >4.2 Ga to ~0.85 Ga. Three pillars of a robust Theory of the Earth illustrate the importance of answering this question: (1) the solid Earth volatile cycle; (2) the Urey ratio; and (3) the kimberlite enigma. For (1), it is now clear that subduction injects more H2O (and probably CO2) into Earth's mantle- where it is stored - than is released to the surface by igneous activity. Presumably the volatile flux from the surface into the mantle was lower during DLT episodes, although delamination and Rayleigh-Taylor drippings would have sent some. Constraining PT H2O and CO2 fluxes requires knowing when PT began and interior soaking accelerated. Regarding (2), estimating Earth's Urey ratio (Ur; heat production/heat loss) evolution requires avoiding the "thermal catastrophe" implying that if Earth has been cooling off as fast as presently (Ur ~0.2) then it must have been totally molten 1-2 Ga; a transition from DLT (high Ur) to PT (low Ur) may resolve the paradox. Finally (3), why are the vast majority of kimberlites of Phaneozoic age? Is it because erosion has removed the evidence or because sufficient H2O-CO2 rich fluids that drive such eruptions have only been delivered below cratonic lithosphere since deep subduction associated with PT began? Determining when did PT start, what was Earth's DLT-regime before this, and how did the transition occur will require the insights of the entire geoscientific community, providing a worthy set of 21st Century geoscientific research priorities.

  18. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth

    Science.gov (United States)

    Chowdhury, Priyadarshi; Gerya, Taras; Chakraborty, Sumit

    2017-09-01

    The rock record and geochemical evidence indicate that continental recycling has been occurring since the early history of the Earth. The stabilization of felsic continents in place of Earth's early mafic crust about 3.0 to 2.0 billion years ago, perhaps due to the initiation of plate tectonics, implies widespread destruction of mafic crust during this time interval. However, the physical mechanisms of such intense recycling on a hotter, (late) Archaean and presumably plate-tectonic Earth remain largely unknown. Here we use thermomechanical modelling to show that extensive recycling via lower crustal peeling-off (delamination but not eclogitic dripping) during continent-continent convergence was near ubiquitous during the late Archaean to early Proterozoic. We propose that such destruction of the early mafic crust, together with felsic magmatism, may have caused both the emergence of silicic continents and their subsequent isostatic rise, possibly above the sea level. Such changes in the continental character have been proposed to influence the Great Oxidation Event and, therefore, peeling-off plate tectonics could be the geodynamic trigger for this event. A transition to the slab break-off controlled syn-orogenic recycling occurred as the Earth aged and cooled, leading to reduced recycling and enhanced preservation of the continental crust of present-day composition.

  19. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry.

    Science.gov (United States)

    Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M

    2017-05-12

    The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.

  20. Relief Evolution in Tectonically Active Mountain Ranges

    Science.gov (United States)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  1. Tectonic Storytelling with Open Source and Digital Object Identifiers - a case study about Plate Tectonics and the Geopark Bergstraße-Odenwald

    Science.gov (United States)

    Löwe, Peter; Barmuta, Jan; Klump, Jens; Neumann, Janna; Plank, Margret

    2014-05-01

    The communication of advances in research to the common public for both education and decision making is an important aspect of scientific work. An even more crucial task is to gain recognition within the scientific community, which is judged by impact factor and citation counts. Recently, the latter concepts have been extended from textual publications to include data and software publications. This paper presents a case study for science communication and data citation. For this, tectonic models, Free and Open Source Software (FOSS), best practices for data citation and a multimedia online-portal for scientific content are combined. This approach creates mutual benefits for the stakeholders: Target audiences receive information on the latest research results, while the use of Digital Object Identifiers (DOI) increases the recognition and citation of underlying scientific data. This creates favourable conditions for every researcher as DOI names ensure citeability and long term availability of scientific research. In the developed application, the FOSS tool for tectonic modelling GPlates is used to visualise and manipulate plate-tectonic reconstructions and associated data through geological time. These capabilities are augmented by the Science on a Halfsphere project (SoaH) with a robust and intuitive visualisation hardware environment. The tectonic models used for science communication are provided by the AGH University of Science and Technology. They focus on the Silurian to Early Carboniferous evolution of Central Europe (Bohemian Massif) and were interpreted for the area of the Geopark Bergstraße Odenwald based on the GPlates/SoaH hardware- and software stack. As scientific story-telling is volatile by nature, recordings are a natural means of preservation for further use, reference and analysis. For this, the upcoming portal for audiovisual media of the German National Library of Science and Technology TIB is expected to become a critical service

  2. Punctuated Neogene tectonics and stratigraphy of the African-Iberian plate-boundary zone: concurrent development of Betic-Rif basins (southern Spain, northern Morocco)

    NARCIS (Netherlands)

    Sissingh, W.

    2008-01-01

    This paper integrates the sequence stratigraphic and tectonic data related to the Neogene geodynamic and palaeogeographic development of the African-Iberian plate boundary zone between Spain and Morocco. Though the dating of individual tectonostratigraphic sequences and their delimiting sequence

  3. Plate tectonics and offshore boundary delimitation: Tunisia-Libya case at the International Court of Justice

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, D.J.

    1983-03-01

    Advances in the technology for exploiting resources of the oceans, particularly recovery of hydrocarbons and minerals in deep water, is benefiting a growing number of nations. At the same time, however, economic and political pressures have induced concern and there is now a much increased emphasis on jurisdiction to divide the offshore areas between the 132 coastal nations. Negotiations affect research operations at sea and, in consequence, marine scientists have been made aware of offshore problems as highlighted by the Law of the Sea Treaty (UNCLOS III) and complications arising from the legal versus scientific definitions of continental shelves and margins. The first major offshore boundary case of international scope where plate tectonics has constituted a significant argument is the one recently brought before the International Court of Justice by Libya and Tunisia concerning the delimitation of their continental shelves. Of the two parties, Libya placed the greatest emphasis on this concept as a means to determine natural prolongation of its land territory into and under the sea. Tunisia contested Libya's use of the whole of the African continental landmass as a reference unit; in Tunisia's view, considerations of geography, geomorphology, and bathymetry are at least as relevant as are those of geology. In its landmark judgment (February 1982) - which almost certainly will have far-reaching consequences in future such boundary delimitation cases - the court pronounced that It is the outcome, not the evolution in the long-distant past, which is of importance, and that it is the present-day configuration of the coasts and sea bed which are the main factors to be considered, not geology.

  4. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic.

    Science.gov (United States)

    Døssing, Arne; Japsen, Peter; Watts, Anthony; Nielsen, Tove; Jokat, Wilfried; Thybo, Hans

    2016-04-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to inner margin episodic uplift, including the formation of coastal mountains. The origin of these events remains enigmatic. We present a seismic reflection study from the Greenland Fracture Zone - East Greenland Ridge (GFZ-EGR) and the NE Greenland shelf. We document a regional intra-Miocene seismic unconformity (IMU), which marks the termination of syn-rift deposition in the deep-sea basins and onset of: (i) thermo-mechanical coupling across the GFZ, (ii) basin compression, and (iii) contourite deposition, north of the EGR. The onset of coupling across the GFZ is constrained by results of 2-D flexural backstripping. We explain the thermo-mechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf-progradation on the NE Greenland margin. Given an estimated middle-to-late Miocene (~15-10 Ma) age of the IMU, we speculate that the event is synchronous with uplift of the East and West Greenland margins. The correlation between margin uplift and plate-motion changes further indicates that the uplift was triggered by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.

  5. The Northern Caribbean Plate Boundary Offshore Hispaniola: Strike-slip and Compressive Tectonic Processes

    Science.gov (United States)

    Corbeau, J.; Rolandone, F.; Leroy, S. D.; Mercier De Lepinay, B. F.; Meyer, B.; Ellouz, N.

    2014-12-01

    The boundary between the Caribbean plate and the North American plate is transpressive due to the oblique collision between these two plates. The transpressive movement is partitioned and accommodated in the Hispaniola region along two left-lateral strike-slip structures surrounding a fold-and-thrust belt. New multibeam bathymetry data and multichannel seismic reflection profiles have been recently collected during the Haiti-SIS and Haiti-SIS 2 cruises, along part of the northern Caribbean plate boundary between Cuba, Jamaica and Hispaniola. From the north to the south, three types of deformations are observed. In the Windward Passage, the analysis of the data set reveals that the movement on the Oriente fault between Cuba and Hispaniola is purely left-lateral strike-slip according to the GPS measurements. In the Gonave basin, west of Hispaniola, the deformation is compressive. A series of folds is identified and moves toward the southwest. The Enriquillo-Plantain-Garden Fault (EPGF) is localized in the Jamaica Passage, between Jamaica and Hispaniola. The analysis of the data set reveals that the left-lateral EPGF recently intersects inherited basins from the eastern Cayman Trough margin. The study of the actual EPGF active trace shows that this fault moves with a pure strike-slip component, at least in its western part: the presence of a little push-up structure and a set of three en echelon folds is highlighting in the western part of the Jamaica Passage. The shortening rate in the inherited basins crossed by the EPGF increases from west to east (5.8% to 8.5%), indicating that a thrusting component is also accommodated around the EPGF.

  6. Global crustal movement and tectonic plate boundary deformation constrained by the ITRF2008

    Directory of Open Access Journals (Sweden)

    Zhu Ze

    2012-08-01

    Full Text Available On the basis of the newly released International Terrestrial Reference Frame(ITRF2008 by the International Earth Rotation Service (IERS, a new global plate model ITRF2008 plate for the major plates is established. This ITRF2008-derived model is analyzed in comparison with NNR-NUVEL1A model, which is mainly based on geological and geophysical data. The Eurasia and Pacific plates display obvious differences in terms of the velocity fields derived from the two plate motion models. Plate acceleration is also introduced to characterize the differences of the two velocity fields which obtained from ITRF2008 -plate and NNR-NUVEL1A models for major individual plates. The results show that the Africa, South America and Eurasia plates are undergoing acceleration, while the North America and Australia plates are in the state of deceleration motion.

  7. Plate flexure and volcanism: Late Cenozoic tectonics of the Tabar-Lihir-Tanga-Feni alkalic province, New Ireland Basin, Papua New Guinea

    Science.gov (United States)

    Lindley, I. D.

    2016-05-01

    Late Cenozoic Tabar-Lihir-Tanga-Feni (TLTF) alkaline volcanism, New Ireland Basin, PNG, is associated with extensional cracks along the crests of flexed ridges developed on the New Ireland Microplate (New name). The tectonic alignment of the TLTF volcanic arc is essentially perpendicular to the flexed ridges, suggesting that fractures parallel to the direction of maximum horizontal compression facilitated the rapid ascent of alkaline magmas from the mantle region, perhaps 60-70 km depth. The mainly Pliocene to Pleistocene volcanoes were localized at the intersection of ridge-parallel Kabang structures and arc-parallel Niffin structures, suggesting that the Kabang-Niffin structural intersections underlying each of the TLTF island groups provided a well developed, clustered network of open conduits which tapped the mantle source region. Periodic post-Miocene locking and unlocking along the strike-slip Kilinailau Fault (New name) are thought to have functioned as a valve, turning on (Pliocene) and then turning off (Pleistocene) volcanic activity, respectively. Partial locking of the Kilinailau Fault during the Pliocene resulted in the accumulation of intraplate stresses within the New Ireland Microplate, and caused plate flexure and ridge development, plate-cracking along ridge crests and the development of arc-parallel regional fractures parallel to the direction of maximum compression. Unlocking of the Kilinailau Fault in the Pleistocene resulted in the release of intraplate stresses in the New Ireland Microplate and a cessation of volcanic activity across most of the TLTF arc. The style and scale of plate flexure and cracking, accompanied by within-plate alkaline volcanism from equally spaced ridge-top eruptive centers confined to a narrow, linear volcanic arc are unknown from any other tectonic province.

  8. Crustal Structure at the North Eastern Tip of Rivera Plate, Nayarit- Marias Islands Region: Scenarios and Tectonic Implications. Tsujal Project

    Science.gov (United States)

    Danobeitia, J.; Bartolome, R.; Barba, D. C., Sr.; Nunez-Cornu, F. J.; Bandy, W. L.; Prada, M.; Cameselle, A. L.; Nunez, D.; Espindola, J. M.; Estrada, F.; Zamora, A.; Gomez, A.; Ortiz, M.

    2014-12-01

    A primarily analysis of marine geophysical data acquired aboard the RRS James Cook in the framework of the project "Characterization of seismic hazard and tsunami associated with cortical contact structure Rivera Jalisco Block Plate (TSUJAL)" is presented. This survey was held in the region of Nayarit-Tres Marias Islands between February and March 2014. The examination of data recorded by 16 OBS 's, deployed along 4 wide angle seismic profiles is presented, using an airgun-array seismic source of 6800 c.i., which allows sampling the crustal structure to the Moho. The profiles are located along the margin off the Marias Islands: a profile of over 200 km NNW-SSE direction and parallel to the western flank of the Islas Marias Islands and three orthogonal thereto. These perpendicular sections sample the lithosphere from the north of Maria Madre Island with a profile of 100 km length, across Maria Magdalena and Mari Cleofas Islands, with a profile of 50 km long, till south of Maria Cleofas with a profile of 100 km long. Coincident multichannel seismic profiles with refraction ones are also surveyed, although shooting with a source of 3,540 c. i., and acquired with a digital "streamer" of 6.0 km long. Simultaneously, multibeam, parametric and potential field data were recorded during seismic acquisition A first analysis shows an anomalously thickened crust in the western flank of the Marias Islands, as indicated by relatively short pre-critical distances of 30-35 km. While the moderate dip of 7 ° of the subduction of the Pacific oceanic plate favors somehow this effect, the existence of a remnant crustal fragment is also likely. Moreover, the images provided by the parametric sounding show abundant mass wasting deposits suggesting of recent active tectonics, possibly generated by earthquakes with moderate magnitude as those reported in the Marias Islands. This set of geophysical data, not only provide valuable information for the seismogenic characterization and

  9. Present-day kinematics of the Rivera plate and implications for tectonics in southwestern Mexico

    Science.gov (United States)

    Demets, Charles; Stein, Seth

    1990-01-01

    A model for the present-day motion of the Rivera plate relative to the North America, Cocos, and Pacific plates is derived using new data from the Pacific-Rivera rise and Rivera transform fault, together with new estimates of Pacific-Rivera motions. The results are combined with the closure-consistent NUVEL-1 global plate motion model of DeMets et al. (1990) to examine present-day deformation in southwestern Mexico. The analysis addresses several questions raised in previous studies of the Rivera plate. Namely, do plate motion data from the northern East Pacific rise require a distinct Rivera plate? Do plate kinematic data require the subduction of the Rivera plate along the seismically quiescent Acapulco trench? If so, what does the predicted subduction rate imply about the earthquake recurrence interval in the Jalisco region of southwestern Mexico?

  10. Global tectonics and the plate motion obtained from the ITRF97 station velocity vectors

    Institute of Scientific and Technical Information of China (English)

    MA; Zongjin(马宗晋); REN; Jinwei(任金卫); ZHANG; Jin(张进)

    2003-01-01

    By studying the characteristics of current crustal motion by using the ITRF97 station velocity vectors, it has been found that the ITRF97 station velocity vectors are coherent with those of NUVEL-1A model. Both the ITRF97 and NUVEL-1A velocity vectors show that the northern hemisphere is moving towards northeast and northwest along the North Atlantic Ridge. The Eurasian plate is moving to northeast, east, and southeast. The North American continent is moving to northwest, west, and southwest. The movement in the southern hemisphere is different completely.The movements of African, South American and Indian-Australian plates almost all direct to NE-NNE. The three plates take the South Atlantic Ridge and the Indian Ridge as boundaries, and the movement vectors increase gradually, showing a "lag" type stretch movement as the result of the superimposition of the whole movement of the southern hemisphere and the spreading of ocean ridges. The difference of velocity fields between the northern and southern hemispheres is obvious, and there is a disharmony zone between the two hemispheres. The geological data show that there is an oblique and discontinuous shear zone between the two hemispheres. Along this shear zone, eight large earthquakes (Ms≥7.8) took place from August 1999 to January 2001, while in the same time period, the seismic activities along the western and southern Pacific subduction zone is low, showing the significance of the shear zone on the global scale. The results in this paper indicate the relative shear motion between the northern and southern hemispheres.

  11. Correlation between abnormal trends in the spontaneous fields of tectonic plates and strong seismicities

    Science.gov (United States)

    Tan, Da-Cheng; Xin, Jian-Cun

    2017-06-01

    Tectonic activities, electrical structures, and electromagnetic environments are major factors that affect the stability of spontaneous fields. The method of correlating regional synchronization contrasts (CRSC) can determine the reliability of multi-site data trends or short-impending anomalies. From 2008 to 2013, there were three strong earthquake cluster periods in the North-South seismic belt that lasted for 8-12 months. By applying the CRSC method to analyze the spontaneous field E SP at 25 sites of the region in the past 6 years, it was discovered that for each strong earthquake cluster period, the E SP strength of credible anomalous trends was present at minimum 30% of the stations. In the southern section of the Tan-Lu fault zone, the E SP at four main geoelectric field stations showed significant anomalous trends after June 2015, which could be associated with the major earthquakes of the East China Sea waters (M S 7.2) in November 2015 and Japan's Kyushu island (M S 7.3) in April 2016.

  12. Tectonic regional subdivision of China in the light of plate theory%中国的板块构造区划

    Institute of Scientific and Technical Information of China (English)

    刘训; 游国庆

    2015-01-01

    Since the 1960’s,the plate tectonic theory has been widely Prevailing in China. Having been popularly adopted by Chinese geologists, this theory has been applied to different related fields. In the work of new“regional geology”, it has become the dominant idea. The theory of plate tectonics argues that a plate is formed by its core and its margins. Its core is a craton usually made of stable continental massif, whereas its margins include different active and passive continental margins. In the process of convergence of plates, the continental margins became different orogenic belts through their different convergences and collisions. There are different convergent zones between plates, among which the Convergent Crustal Consumption Zone is dominant. In the historical process of crustal development, huge changes of the plate tectonic framework took place. Based on the plate tectonic framework of Paleozoic, the authors discussed some problems concerning the regional subdivicion of China and suggested a tentative plan for regional subdivicion of China in this paper. According to the plan, China is divided into 7 first class units (plates), 30 second class units (cratons and orogenic belts) and 103 third class units.%提20世纪60年代板块构造学说传入中国,为广大地学工作者所接受并应用于相关的地质工作中。在新一代地质志的研究中,以板块学说为主导,已经成为共识。从板块构造来认识,板块的组成包括其核心及边缘。其核心为克拉通,由稳定的陆块组成;边缘包含了不同的活动大陆边缘和被动大陆边缘。边缘在后期板块汇聚的过程中,常由汇聚或碰撞等不同方式而成为不同的造山带。板块之间具有不同形式的汇聚带,其中主要是地壳对接消减带。在地球发展历史的过程中,不同时期的板块构造格局常有很大的变化。因此,本文以古生代的构造格架为主,

  13. Seismic tomographic constraints on plate-tectonic reconstruction of Nazca subduction under South America since late Cretaceous (~80 Ma)

    Science.gov (United States)

    Chen, Yi-Wei; Wu, Jonny; Suppe, John; Liu, Han-Fang

    2016-04-01

    Our understanding of the global plate tectonics is based mainly on seafloor spreading and hotspot data obtained from the present earth surface, which records the growth of present ocean basins. However, in convergent tectonic settings vast amounts of lithosphere has been lost to subduction, contributing to increasing uncertainty in plate reconstruction with age. However, subducted lithosphere imaged in seismic tomography provides important information. By analyzing subducted slabs we identify the loci of subduction and assess the size and shape of subducted slabs, giving better constrained global plate tectonic models. The Andean margin of South America is a classic example of continuous subduction up to the present day, providing an opportunity to test the global plate prediction that ~24×10e6 km2 (4.7% of earth surface) lithosphere has been subducted since ~80 Ma. In this study, we used 10 different global seismic tomographies and Benioff zone seismicity under South America. To identify slabs, we first compared all data sets in horizontal slices and found the subducted Nazca slab is the most obvious structure between the surface and 750 km depth, well imaged between 10°N and 30°S. The bottom of the subducted Nazca slab reaches its greatest depth at 1400 km at 3°N (Carnegie Andes) and gradually shallows towards the south with 900 km minimum depth at 30°S (Pampean Andes). To assess the undeformed length of subducted slab, we used a refined cross-sectional area unfolding method from Wu et al. (in prep.) in the MITP08 seismic tomography (Li et al., 2008). Having cut spherical-Earth tomographic profiles that parallel to the Nazca-South America convergence direction, we measured slab areas as a function of depth based on edges defined by steep velocity gradients, calculating the raw length of the slab by the area and dividing an assumed initial thickness of oceanic lithosphere of 100km. Slab areas were corrected for density based on the PREM Earth model

  14. Tracking the evolution of mantle sources with incompatible element ratios in stagnant-lid and plate-tectonic planets

    Science.gov (United States)

    Condie, Kent C.; Shearer, Charles K.

    2017-09-01

    The distribution of high field strength incompatible element ratios Zr/Nb, Nb/Th, Th/Yb and Nb/Yb in terrestrial oceanic basalts prior to 2.7 Ga suggests the absence or near-absence of an enriched mantle reservoir. Instead, most oceanic basalts reflect a variably depleted mantle source similar in composition to primitive mantle. In contrast, basalts from hydrated mantle sources (like those associated with subduction) exist from 4 Ga onwards. The gradual appearance of enriched mantle between 2 and 3 Ga may reflect the onset and propagation of plate tectonics around the globe. Prior to 3 Ga, Earth may have been in a stagnant-lid regime with most basaltic magmas coming from a rather uniform, variably depleted mantle source or from a non-subduction hydrated mantle source. It was not until the extraction of continental crust and accompanying propagation of plate tectonics that ;modern type; enriched and depleted mantle reservoirs developed. Consistent with the absence of plate tectonics on the Moon is the near absence of basalts derived from depleted (DM) and enriched (EM) mantle reservoirs as defined by the four incompatible element ratios of this study. An exception are Apollo 17 basalts, which may come from a mixed source with a composition similar to primitive mantle as one end member and a high-Nb component as the other end member. With exception of Th, which requires selective enrichment in at least parts of the martian mantle, most martian meteorites can be derived from sources similar to terrestrial primitive mantle or by mixing of enriched and depleted mantle end members produced during magma ocean crystallization. Earth, Mars and the Moon exhibit three very different planetary evolution paths. The mantle source regions for Mars and the Moon are ancient and have HFS element signatures of magma ocean crystallization well-preserved, and differences in these signatures reflect magma ocean crystallization under two distinct pressure regimes. In contrast, plate

  15. A Digital Tectonic Activity Map of the Earth

    Science.gov (United States)

    Lowman, Paul; Masuoka, Penny; Montgomery, Brian; OLeary, Jay; Salisbury, Demetra; Yates, Jacob

    1999-01-01

    The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither

  16. On the relationship between tectonic plates and thermal mantle plume morphology

    Science.gov (United States)

    Lenardic, A.; Kaula, W. M.

    1993-01-01

    Models incorporating plate-like behavior, i.e., near uniform surface velocity and deformation concentrated at plate boundaries, into a convective system, heated by a mix of internal and basal heating and allowing for temperature dependent viscosity, were constructed and compared to similar models not possessing plate-like behavior. The simplified numerical models are used to explore how plate-like behavior in a convective system can effect the lower boundary layer from which thermal plumes form. A principal conclusion is that plate-like behavior can significantly increase the temperature drop across the lower thermal boundary layer. This temperature drop affects the morphology of plumes by determining the viscosity drop across the boundary layer. Model results suggest that plumes on planets possessing plate-like behavior, e.g., the Earth, may differ in morphologic type from plumes on planets not possessing plate-like behavior, e.g., Venus and Mars.

  17. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    Science.gov (United States)

    Bercovici, David

    1995-01-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.

  18. Problems of the active tectonics of the Eastern Black Sea

    Science.gov (United States)

    Javakhishvili, Z.; Godoladze, T.; Dreger, D. S.; Mikava, D.; Tvaliashvili, A.

    2016-12-01

    The Black Sea Basin is the part of the Arabian Eurasian Collision zone and important unit for understanding the tectonic process of the region. This complex basin comprises two deep basins, separated by the mid-Black Sea Ridge. The basement of the Black Sea includes areas with oceanic and continental crust. It was formed as a "back-arc" basin over the subduction zone during the closing of the Tethys Ocean. In the past decades the Black Sea has been the subject of intense geological and geophysical studies. Several papers were published about the geological history, tectonics, basement relief and crustal and upper mantle structure of the basin. New tectonic schemes were suggested (e. g. Nikishin et al 2014, Shillington et al. 2008, Starostenko et al. 2004 etc.). Nevertheless, seismicity of the Black Sea is poorly studied due to the lack of seismic network in the coastal area. It is considered, that the eastern basin currently lies in a compressional setting associated with the uplift of the Caucasus and structural development of the Caucasus was closely related to the evolution of the Eastern Black Sea Basin. Analyses of recent sequence of earthquakes in 2012 can provide useful information to understand complex tectonic structure of the Eastern Black Sea region. Right after the earthquake of 2012/12/23, National Seismic monitoring center of Georgia deployed additional 4 stations in the coastal area of the country, close to the epicenter area, to monitor aftershock sequence. Seismic activity in the epicentral area is continuing until now. We have relocated approximately 1200 aftershocks to delineate fault scarf using data from Georgian, Turkish and Russian datacenters. Waveforms of the major events and the aftershocks were inverted for the fault plane solutions of the events. For the inversion were used green's functions, computed using new 1D velocity model of the region. Strike-slip mechanism of the major events of the earthquake sequence indicates extensional

  19. The Curious Decoupling of Magmatism and Plate Tectonics During the Cenozoic in Western North America: Insight From the NAVDAT Database

    Science.gov (United States)

    Glazner, A. F.; Walker, J. D.; Farmer, G. L.; Bowers, T. D.

    2004-12-01

    Since the widespread acceptance of plate tectonics, magmatism in the western U.S. has been explained by subduction along the west coast of North America and destruction of the subduction system by development of the San Andreas transform fault system. However, re-analysis of space-time patterns of magmatism in western North America calls many of these inferred patterns of magmatism into question. Animation of space-time patterns found in the developing NAVDAT dataset (which currently hosts about 10,000 Cenozoic age and/or geochemical analyses; navdat.geongrid.org), demonstrates that: (1) subduction-type (e.g., intermediate) volcanism is poorly linked to the subduction system; (2) there is little evidence that slab windows controlled magmatism; (3) magmatism was clearly migratory, but not in ways that can be explained by plate-tectonic processes; and (4) magmatism was migratory at length scales ranging from 1000s of km (continental) to 10s of km (county). Several space-time patterns are evident in the NAVDAT animations, including: (1) a sweep from Montana into Nevada from 50 to about 20 Ma; (2) a clockwise sweep around the Colorado Plateau from New Mexico to southern Nevada, from about 30 to 15 Ma; (3) a burst of magmatism at about 16 Ma in northern Nevada, followed by outward sweeps to Yellowstone, central Oregon, and the Sierra Nevada; (4) a burst of magmatism in the Sierra Nevada at 3.5 Ma; and (5) several local migrations, including from Phoenix north onto the Colorado Plateau and from the San Francisco Bay area north to the Geysers geothermal field. Some of these patterns have been tied to specific events (e.g., impingement of the Yellowstone plume and Pliocene delamination), but the others are difficult to relate to plate-tectonic events. They may be caused by local tectonic events (propagating rifts?), minor convective rolls in the asthenosphere, lithospheric delamination, or delamination of a flat Laramide slab. Whatever their origin, database animation

  20. Subduction Zone Geometry and Pre-seismic Tectonic Constraints From the Andaman Micro- plate Region.

    Science.gov (United States)

    Earnest, A.; Freymueller, J. T.; Rajendran, K.; C. P, R.

    2007-12-01

    The 2004 Sumatra-Andaman mega-thrust rupture broke along the narrow fore-arc sliver boundary of the Indo- Burmese collision. Earlier events of 1679 (M~7.5), 1941 (M 7.7), 1881 (M~7.9) and 2002 (Mw 7.3) generated spatially restricted ruptures along this margin. Spatio-temporal analysis of the pre-seismic earthquakes showed dense seismicity in the back-arc region but negligible activity towards the trench. The hypocentral distribution highlights the shallow subduction at the northern segment, which becomes steeper and deeper to the south. The pre-earthquake stress distribution, inferred from the P and T-axes of earthquake faulting mechanisms, represents the compressional fore-arc and extensional back-arc stress regimes. Shallow NNE-SSW under- thrusting and NNW-SSE opening up of the marginal sea basin stresses were observed and this trend changes to NE-SW to N-S at intermediate depths. We collected three epochs of campaign mode GPS data along the arc from May 2002 to September 2004. These observations show nearly pure convergence along the Andaman trench prior to the earthquake. During this period the GPS sites moved westward relative to India at ~5.5 mm/yr, consistent with the earlier results. Along arc GPS velocity vectors suggest that the Andaman trench is part of a purely slip partitioned boundary, with the strike- slip component of the India-Sunda relative plate motion being taken up on the transform fault in the Andaman Sea or on the West Andaman Fault, and the convergent component on the Andaman trench. Although near normal convergence was observed, it sampled only a fraction of a possible full Andaman microplate convergence velocity, because elastic deformation from the locked shallow megathrust caused displacements toward the overriding plate, that is, away from India. Based on the Indian plate velocity and Andaman spreading rates, this component amounts to ~85% of the pre-seismic convergence. These geodetic velocities represent the present day geologic

  1. 3-D thermo-mechanical laboratory modeling of plate-tectonics: modeling scheme, technique and first experiments

    Directory of Open Access Journals (Sweden)

    D. Boutelier

    2011-05-01

    Full Text Available We present an experimental apparatus for 3-D thermo-mechanical analogue modeling of plate tectonic processes such as oceanic and continental subductions, arc-continent or continental collisions. The model lithosphere, made of temperature-sensitive elasto-plastic analogue materials with strain softening, is submitted to a constant temperature gradient causing a strength reduction with depth in each layer. The surface temperature is imposed using infrared emitters, which allows maintaining an unobstructed view of the model surface and the use of a high resolution optical strain monitoring technique (Particle Imaging Velocimetry. Subduction experiments illustrate how the stress conditions on the interplate zone can be estimated using a force sensor attached to the back of the upper plate and adjusted via the density and strength of the subducting lithosphere or the lubrication of the plate boundary. The first experimental results reveal the potential of the experimental set-up to investigate the three-dimensional solid-mechanics interactions of lithospheric plates in multiple natural situations.

  2. Application of Laser Ranging and VLBI Data to a Study of Plate Tectonic Driving Forces

    Science.gov (United States)

    Solomon, S. C.

    1980-01-01

    The conditions under which changes in plate driving or resistive forces associated with plate boundary earthquakes are measurable with laser ranging or very long base interferometry were investigated. Aspects of plate forces that can be characterized by such measurements were identified. Analytic solutions for two dimensional stress diffusion in a viscoelastic plate following earthquake faulting on a finite fault, finite element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting, and quantitative constraints from modeling of global intraplate stress on the magnitude of deviatoric stress in the lithosphere are among the topics discussed.

  3. Closure of the Africa-Eurasia-North America plate motion circuit and tectonics of the Gloria fault

    Science.gov (United States)

    Argus, Donald F.; Gordon, Richard G.; Demets, Charles; Stein, Seth

    1989-01-01

    The current motions of the African, Eurasian, and North American plates are examined. The problems addressed include whether there is resolvable motion of a Spitsbergen microplate, the direction of motion between the African and North American plates, whether the Gloria fault is an active transform fault, and the implications of plate circuit closures for rates of intraplate deformation. Marine geophysical data and magnetic profiles are used to construct a model which predicts about 4 mm/yr slip across the Azores-Gibraltar Ridge, and west-northwest convergence near Gibraltar. The analyzed data are consistent with a rigid plate model with the Gloria fault being a transform fault.

  4. Pre-plate tectonics and structure of the Archean mantle lithosphere imaged by seismic anisotropy - inferences from the LAPNET array in northern Fennoscandia

    Science.gov (United States)

    Plomerova, Jaroslava; Vecsey, Ludek; Babuska, Vladislav; Lapnet Working Group

    2013-04-01

    Various studies of seismic anisotropy clearly demonstrate the Archean mantle lithosphere consists of domains with different fabrics reflecting fossil anisotropic structures. We detect anisotropic signal both in the P-wave travel-time deviations and shear-wave splitting recorded by the LAPNET array (2007-2009) in the Archean craton of Fennoscandia (Plomerova et al., 2011). The anisotropic parameters change across the array and stations with similar characteristics form groups. The geographical variations of seismic-wave anisotropy delimit individual sharply bounded domains of the mantle lithosphere, each of them having a consistent fabric. The domains can be modelled in 3D by peridotite aggregates with dipping lineation a, or foliation (a,c). Also radial anisotropy of the Archean lithosphere derived from surface waves indicates inclined structure of all the cratonic regions of the continents, though with less detailed lateral resolution in comparison with body-wave anisotropy. These findings allow us to interpret the domains as micro-plate fragments retaining fossil fabrics in the mantle lithosphere, reflecting thus an olivine LPO created before the micro-plates assembled. Successive subductions of oceanic lithosphere is a mechanism which can work in modern-style plate tectonics as we know it now, being considered as widespread since 2.7 Ga. Though the modern plate tectonics is the most distinct tectonic style acting up to now, we have to consider a mechanism creating oriented structures (fabrics) in a pre-plate-tectonic style. The early lithosphere formed in dynamic conditions far from simple cooling which would result in sub-horizontal layered structure of the lithosphere. Earlier tectonic modes in a hotter and more dynamic Earth might be similar in some respects to those of the modern-plate tectonics. Basaltic "rockbergs" on convecting magma ocean in the Hadean Earth are supposed to turn to either proto-plate tectonics with platelets and supercratonal, or, to

  5. Wiring the deep ocean: planned 'observatory' covering Juan de Fuca tectonic plate generating interest in the oilpatch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2005-03-01

    Following in the wake of the devastating earthquake and tsunami in Southeast Asia, calls for an urgent need to upgrade warning systems and improve ability to monitor, and even predict, such devastating earthquakes and killer waves are heard around the world. Calls for action are particularly urgent in the Northeast Pacific, which is not only one of the most seismically active area of the planet, but is widely considered to be due for a tremor of equal or greater magnitude in the near future. Accompanying this concern is increased curiosity about the likelihood of a bonanza of hydrocarbons awaiting discovery under the frigid waters, and if so, what are the obstacles to their removal and how these obstacles may be overcome. As if to respond to both types of concerns, the Royal Society of Canada's Expert Panel on Science Related to Oil and Gas Activities in its 2004 Annual Report warned of 'gaps in knowledge' and suggested a better network of earthquake activity recorders to be built as soon as possible. Such a network is about to become a reality with NEPTUNE, a 3,000 km network of optic/power cables encircling and crossing the Juan de Fuca tectonic plate. Between 30 and 50 experimental sites will be established at nodes along the cable and will be instrumented to interact with physical, chemical and biological phenomena that operate across multiple scales of space and time. Many of the technologies going into this project are of definite interest to the oil industry, since much of future oil and gas exploration is expected to be in deep water. Researchers believe that the offshore Hydrate Ridge is an ideal location to study gas hydrate dynamics and free gas expulsion. Data captured by means of the NEPTUNE network instruments may also have significant influence on any lifting of the drilling moratorium in the Queen Charlotte Straits. Two smaller prototype projects, VENUS (shallow water) and MARS (deep water) currently under construction off southern

  6. Tectonic and Hydrothermal Activities in Debagh, Guelma Basin (Algeria

    Directory of Open Access Journals (Sweden)

    Said Maouche

    2013-01-01

    Full Text Available Quaternary and Pliocene travertines, deposited from hot springs, can reveal much about neotectonic and hydrothermal activity. The aim of this work is the understanding of the actual tectonic activity in the Guelma Basin and in one of its spa structures. Gravity data were collected during a field study in the Hammam Debagh (HD area and then analyzed to better highlight the architecture of its subsurface underlying structures. This analysis was performed by means of a Bouguer anomaly, upward continuations, and residual and derivative maps. Comparison of gravity maps, field geology, geomorphic observations, and structural maps allowed us to identify the major structural features in the Hammam Debagh. As a result, we confirm the position of the Hammam Debagh active fault which is superimposed to the hydrothermal active source in the NW-SE direction characterized by a negative gravity anomaly.

  7. Parameter Estimation in Active Plate Structures

    DEFF Research Database (Denmark)

    Araujo, A. L.; Lopes, H. M. R.; Vaz, M. A. P.

    2006-01-01

    In this paper two non-destructive methods for elastic and piezoelectric parameter estimation in active plate structures with surface bonded piezoelectric patches are presented. These methods rely on experimental undamped natural frequencies of free vibration. The first solves the inverse problem...... through gradient based optimization techniques, while the second is based on a metamodel of the inverse problem, using artificial neural networks. A numerical higher order finite element laminated plate model is used in both methods and results are compared and discussed through a simulated...

  8. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods

    Science.gov (United States)

    Wu, Jonny; Suppe, John; Lu, Renqi; Kanda, Ravi

    2016-06-01

    We reconstructed Philippine Sea and East Asian plate tectonics since 52 Ma from 28 slabs mapped in 3-D from global tomography, with a subducted area of ~25% of present-day global oceanic lithosphere. Slab constraints include subducted parts of existing Pacific, Indian, and Philippine Sea oceans, plus wholly subducted proto-South China Sea and newly discovered "East Asian Sea." Mapped slabs were unfolded and restored to the Earth surface using three methodologies and input to globally consistent plate reconstructions. Important constraints include the following: (1) the Ryukyu slab is ~1000 km N-S, too short to account for ~20° Philippine Sea northward motion from paleolatitudes; (2) the Marianas-Pacific subduction zone was at its present location (±200 km) since 48 ± 10 Ma based on a >1000 km deep slab wall; (3) the 8000 × 2500 km East Asian Sea existed between the Pacific and Indian Oceans at 52 Ma based on lower mantle flat slabs; (4) the Caroline back-arc basin moved with the Pacific, based on the overlapping, coeval Caroline hot spot track. These new constraints allow two classes of Philippine Sea plate models, which we compared to paleomagnetic and geologic data. Our preferred model involves Philippine Sea nucleation above the Manus plume (0°/150°E) near the Pacific-East Asian Sea plate boundary. Large Philippine Sea westward motion and post-40 Ma maximum 80° clockwise rotation accompanied late Eocene-Oligocene collision with the Caroline/Pacific plate. The Philippine Sea moved northward post-25 Ma over the northern East Asian Sea, forming a northern Philippine Sea arc that collided with the SW Japan-Ryukyu margin in the Miocene (~20-14 Ma).

  9. Tectonic geomorphology

    National Research Council Canada - National Science Library

    Burbank, Douglas West; Anderson, Robert S

    2012-01-01

    Tectonic geomorphology is the study of the interplay between tectonic and surface processes that shape the landscape in regions of active deformation and at times scales ranging from days to millions of years...

  10. Plate convergence, crustal delamination, extrusion tectonics and minimization of shortening work as main controlling factors of the recent Mediterranean deformation pattern

    Directory of Open Access Journals (Sweden)

    D. Babbucci

    1997-06-01

    Full Text Available It is argued that the time-space distribution of major post middle Miocene deformation events in the Central-Eastern Mediterranean region, deduced from the relevant literature, can be coherently explained as a consequence of the convergence between the Africa/Arabia and Eurasia blocks. This plate convergence has mainly been accommodated by the consumption of the thinnest parts of the Northern African (Ionian and Levantine basins and peri-Adriatic margins. During each evolutionary phase the space distribution of trench zones is controlled by the basic physical requirement of minimizing the work of horizontal forces, induced by plate convergence, against the resisting forces, i.e., the cohesion of the upper brittle crustal layer and the buoyancy forces at the consuming boundaries. The significant changes of tectonic styles which determined the transition from one phase to the next, like those which occurred around the Messinian and the late Pliocene-early Pleistocene, were determined by the suture of consuming boundaries. When such an event occurs, the system must activate alternative consuming processes to accommodate the convergence of the major confining blocks. The observed deformations in the study area suggest that this tectonic reorganization mostly developed by the lateral extrusion of crustal wedges away from the sutured borders. This mechanism allowed the translation of maximum horizontal stresses from the locked collisional fronts to the zones where consumable lithosphere was still present, in order to activate the next consuming processes. The extensional episodes which led to the formation of basins and troughs in the Tyrrhenian and Aegean zones are interpreted as secondary effects of the outward escape of crustal wedges, like those which occurred in response to longitudinal compressional regimes in the Apennines and Aegean regions.

  11. Geological evidence for the geographical pattern of mantle return flow and the driving mechanism of plate tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, W.

    1982-08-10

    Tectonic features at the earth's surface can be used to test models for mantle return flow and to determine the geographic pattern of this flow. A model with shallow return and deep continental roots places the strongest constraints on the geographical pattern of return flow and predicts recognizable surface manifestations. Because of the progressive shrinkage of the Pacific (averaging 0.5 km/sup 2//yr over the last 180 m.y.) this model predicts upper mantle outflow through the three gaps in the chain of continents rimming the Pacific (Carribbean, Drake Passage, Australian-Antartic gap). In this model, upper mantle return flow streams originating at the western Pacific trenches and at the Java Trench meet south of Australia, filling in behind this rapidly northward-moving continent and provding an explanation for the negative bathymetric and gravity anomalies of the 'Australian-Antarctic-Discordance'. The long-continued tectonic movements toward the east that characterize the Caribbean and the eastenmost Scotia Sea may be produced by viscous coupling to the predicted Pacific outflow through the gaps, and the Caribbean floor slopes in the predicted direction. If mantle outflow does not pass through the gaps in the Pacific perimeter, it must pass beneath three seismic zones (Central America, Lesser Antiles, Scotia Sea); none of these seismic zones shows foci below 200 km. Mantle material flowing through the Caribbean and Drake Passage gaps would supply the Mid-Atlantic Ridge, while the Java Trench supplies the Indian Ocean ridges, so that deep-mantle upwellings need not be centered under spreading ridges and therefore are not required to move laterally to follow ridge migrations. The analysis up to this point suggests that upper mantle return flow is a response to the motion of the continents. The second part of the paper suggest driving mechanism for the plate tectonic process which may explain why the continents move.

  12. Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution.

    Science.gov (United States)

    Keith, S A; Baird, A H; Hughes, T P; Madin, J S; Connolly, S R

    2013-07-22

    Species richness gradients are ubiquitous in nature, but the mechanisms that generate and maintain these patterns at macroecological scales remain unresolved. We use a new approach that focuses on overlapping geographical ranges of species to reveal that Indo-Pacific corals are assembled within 11 distinct faunal provinces. Province limits are characterized by co-occurrence of multiple species range boundaries. Unexpectedly, these faunal breaks are poorly predicted by contemporary environmental conditions and the present-day distribution of habitat. Instead, faunal breaks show striking concordance with geological features (tectonic plates and mantle plume tracks). The depth range over which a species occurs, its larval development rate and genus age are important determinants of the likelihood that species will straddle faunal breaks. Our findings indicate that historical processes, habitat heterogeneity and species colonization ability account for more of the present-day biogeographical patterns of corals than explanations based on the contemporary distribution of reefs or environmental conditions.

  13. Global coupling at 660 km is proposed to explain plate tectonics and the generation of the earth's magnetic field

    CERN Document Server

    Garai, Jozsef

    2007-01-01

    The presence of low viscosity layers in the mantle is supported by line of geological and geophysical observations. Recent high pressure and temperature investigations indicated that partial carbonate melt should exist at the bottom of the lithosphere and at 660 km. The presence of few percent carbonate melt reduces the viscosity by several order of magnitude. The globally existing 660 km very low viscosity layer allows the development of differential rotation between the upper and lower mantle. This differential rotation between the 660 km outer shell and the rest of the earth offers a plausible explanation for plate tectonics and for the generation of the earth's magnetic field. Simple dynamo model is proposed, which able to reproduce all of the features of the contemporary and, within reasonable uncertainty, the paleomagnetic field. The model is also consistent with geological and geophysical observations.

  14. Effects of Student-Generated Diagrams versus Student-Generated Summaries on Conceptual Understanding of Causal and Dynamic Knowledge in Plate Tectonics.

    Science.gov (United States)

    Gobert, Janice D.; Clement, John J.

    1999-01-01

    Grade five students' (n=58) conceptual understanding of plate tectonics was measured by analysis of student-generated summaries and diagrams, and by posttest assessment of both the spatial/static and causal/dynamic aspects of the domain. The diagram group outperformed the summary and text-only groups on the posttest measures. Discusses the effects…

  15. Punctuated Neogene tectonics and stratigraphy of the African-Iberian plate-boundary zone: concurrent development of Betic-Rif basins (southern Spain, northern Morocco)

    NARCIS (Netherlands)

    Sissingh, W.

    2008-01-01

    This paper integrates the sequence stratigraphic and tectonic data related to the Neogene geodynamic and palaeogeographic development of the African-Iberian plate boundary zone between Spain and Morocco. Though the dating of individual tectonostratigraphic sequences and their delimiting sequence bou

  16. The Role of Plate Tectonic-Climate Coupling and Exposed Land Area in the Development of Habitable Climates on Rocky Planets

    CERN Document Server

    Foley, Bradford J

    2015-01-01

    The long-term carbon cycle is vital for maintaining liquid water oceans on rocky planets due to the negative climate feedbacks involved in silicate weathering. Plate tectonics plays a crucial role in driving the long-term carbon cycle because it is responsible for CO$_2$ degassing at ridges and arcs, the return of CO$_2$ to the mantle through subduction, and supplying fresh, weatherable rock to the surface via uplift and orogeny. However, the presence of plate tectonics itself may depend on climate according to recent geodynamical studies showing that cool surface temperatures are important for maintaining vigorous plate tectonics. Using a simple carbon cycle model, I show that the negative climate feedbacks inherent in the long-term carbon cycle are uninhibited by climate's effect on plate tectonics. Furthermore, initial atmospheric CO$_2$ conditions do not impact the final climate state reached when the carbon cycle comes to equilibrium, as long as liquid water is present and silicate weathering can occur. ...

  17. Punctuated Neogene tectonics and stratigraphy of the African-Iberian plate-boundary zone: concurrent development of Betic-Rif basins (southern Spain, northern Morocco)

    NARCIS (Netherlands)

    Sissingh, W.

    2008-01-01

    This paper integrates the sequence stratigraphic and tectonic data related to the Neogene geodynamic and palaeogeographic development of the African-Iberian plate boundary zone between Spain and Morocco. Though the dating of individual tectonostratigraphic sequences and their delimiting sequence bou

  18. Effects of Student-Generated Diagrams versus Student-Generated Summaries on Conceptual Understanding of Causal and Dynamic Knowledge in Plate Tectonics.

    Science.gov (United States)

    Gobert, Janice D.; Clement, John J.

    1999-01-01

    Grade five students' (n=58) conceptual understanding of plate tectonics was measured by analysis of student-generated summaries and diagrams, and by posttest assessment of both the spatial/static and causal/dynamic aspects of the domain. The diagram group outperformed the summary and text-only groups on the posttest measures. Discusses the effects…

  19. Rotational Inerfia of Continents: A Proposed Link between Polar Wandering and Plate Tectonics.

    Science.gov (United States)

    Kane, M F

    1972-03-24

    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  20. An Experimental Study of Incremental Surface Loading of an Elastic Plate: Application to Volcano Tectonics

    Science.gov (United States)

    Williams, K. K.; Zuber, M. T.

    1995-01-01

    Models of surface fractures due to volcanic loading an elastic plate are commonly used to constrain thickness of planetary lithospheres, but discrepancies exist in predictions of the style of initial failure and in the nature of subsequent fracture evolution. In this study, we perform an experiment to determine the mode of initial failure due to the incremental addition of a conical load to the surface of an elastic plate and compare the location of initial failure with that predicted by elastic theory. In all experiments, the mode of initial failure was tension cracking at the surface of the plate, with cracks oriented circumferential to the load. The cracks nucleated at a distance from load center that corresponds the maximum radial stress predicted by analytical solutions, so a tensile failure criterion is appropriate for predictions of initial failure. With continued loading of the plate, migration of tensional cracks was observed. In the same azimuthal direction as the initial crack, subsequent cracks formed at a smaller radial distance than the initial crack. When forming in a different azimuthal direction, the subsequent cracks formed at a distance greater than the radial distance of the initial crack. The observed fracture pattern may explain the distribution of extensional structures in annular bands around many large scale, circular volcanic features.

  1. Sea Level Changes and Active Tectonics of the Guerrero Coast, Mexico

    Science.gov (United States)

    Ramirez-Herrera, M.; Cundy, A. B.; Sedor, M.; Kostoglodov, V.

    2003-12-01

    Understanding the interaction between sea-level changes and tectonic activity during the Holocene is essential in determining long-term tectonic deformation rates and in identifying prehistorical earthquake events along active margins. The Guerrero coast extends along the active Pacific margin of southwest Mexico and parallels the trench where the Cocos Plate subducts beneath the North American Plate. The last major earthquakes occurred in Guerrero in 1899, 1907, 1909, 1911, and 1957, but none have occurred since the major 1911 (Ms=7.6) earthquake in the northwest segment of the Guerrero seismic gap. The Guerrero gap is currently considered to be matured for a severe earthquake of estimated Mw= 8.1 to 8.4. We present preliminary results of geomorphic field surveying, sediment coring, and geochemical and microfaunal analyses of cored sediments on the Guerrero coast. The Coyuca lagoon strip of the Guerrero coast consists of long barrier beaches, behind which extends a lagoon, beach ridges, extensive swamps, mangrove swamps, salt pans, floodplains, alluvial plains, fluvial terraces, and abandoned meanders. Abandoned meanders and fluvial terraces indicate that the Coyuca River has migrated to the southeast. This migration, and changes in hill elevations near the coast, suggest a southeast tilting of this coastal segment. The morphology of the Guerrero coast has no evidence of long-term coastal uplift. This is consistent with short- term tide gauge measurements (1953-1999) and GPS data (1992-2000) indicative of subsidence rates of ~3 mm/yr (Kostoglodov et al., 2001) in this area. Five cores up to 5.5 m depth were taken nearby the Mitla, Coyuca, Tres Palos and Tecomate lagoons. Core stratigraphies show clear sequences of interbedded peats and clays, interspersed with sand units. The peat-clay sequences are similar to those observed along active margins elsewhere, and indicate fluctuations between marine and brackish/freshwater conditions. Two cores included sediments

  2. Mantle Convection, Plate Tectonics, and Volcanism on Hot Exo-Earths

    CERN Document Server

    van Summeren, Joost; Gaidos, Eric

    2011-01-01

    Recently discovered exoplanets on close-in orbits should have surface temperatures of 100's to 1000's of K. They are likely tidally locked and synchronously rotating around their parent stars and, if an atmosphere is absent, have surface temperature contrasts of many 100's to 1000's K between permanent day and night sides. We investigated the effect of elevated surface temperature and strong surface temperature contrasts for Earth-mass planets on the (i) pattern of mantle convection, (ii) tectonic regime, and (iii) rate and distribution of partial melting, using numerical simulations of mantle convection with a composite viscous/pseudo-plastic rheology. Our simulations indicate that, if a close-in rocky exoplanet lacks an atmosphere to redistribute heat, a >~ 400 K surface temperature contrast can maintain an asymmetric degree 1 pattern of mantle convection in which the surface of the planet moves preferentially toward subduction zones on the cold night side. The planetary surface features a hemispheric dicho...

  3. Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden

    Science.gov (United States)

    Schettino, Antonio; Macchiavelli, Chiara; Pierantoni, Pietro Paolo; Zanoni, Davide; Rasul, Najeeb

    2016-10-01

    The Red Sea and Gulf of Aden represent two young basins that formed between Africa and Arabia since the early Oligocene, floored by oceanic crust or by transitional and thinned continental crust. While in the easternmost Gulf of Aden, the rift-drift transition can be dated chron C6 (˜20.1 Ma), here we show that in the Red Sea the first pulse of seafloor spreading occurred during chron C3n.2n (˜4.6 Ma) around ˜17.1°N (present-day coordinates) and propagated southwards from this location, separating the Danakil microplate from Arabia. It is also shown that seafloor spreading between Arabia and Nubia started later, around chron 2A (˜2.58 Ma), and propagated northwards. At present, there is no magnetic evidence for the existence of a linear spreading centre in the northern Red Sea at latitudes higher than ˜24°N and in the southern Red Sea below ˜14.8°N. The present-day plate kinematics of this region can be described with high accuracy by a network of five interacting plates (Nubia, Arabia, Somalia, Sinai and Danakil) and six triple junctions. For times older than anomaly 2A (˜2.58 Ma) and up to anomaly 3, the absence of marine magnetic anomalies between Arabia and Nubia prevents a rigorous kinematic description of the five-plates system. However, there is strong evidence that the unique changes in plate motions during the last 5 Myr were a dramatic slowdown at chron C2 (˜1.77 Ma) in the spreading or extension rates along the ridge and rift axes, thereby a good representation of the real plate motions can be obtained anyway by backward extension of the oldest Arabia-Nubia and Arabia-Danakil stage rotations determined on the basis of marine magnetic anomalies, respectively, C2-C2A and C2A-C3. The proposed kinematic reconstructions are accompanied by a geodynamic explanation for the genesis of large continent-continent fracture zones at the rift-drift transition and by an analysis of the strain associated with plate motions in Afar, northeastern Egypt and

  4. What Controls Space-Time Patterns of Magmatism in Western North America: Plate Tectonics, Delamination, or Convection?

    Science.gov (United States)

    Glazner, A. F.

    2007-05-01

    Mesozoic and Cenozoic magmatism in western North America is commonly explained by shallowing and steepening of subduction along the west coast of North America, and progressive destruction of the subduction system by development of the San Andreas transform fault system. This hypothesis makes several specific predictions about space-time patterns of magmatism, including eastward and westward sweeps, development of slab-window magmatism, and progressive northward extinction of an ancestral Cascade arc. However, analysis of space-time patterns using the NAVDAT database indicates that these predicted patterns are curiously obscure in the magmatic record, although other unexplained patterns are strong. Animation of about 29,000 Cenozoic U.S. points from NAVDAT (www.navdat.org) demonstrates that: (1) calc- alkaline, intermediate volcanism is poorly linked to the subduction system; (2) there is little evidence for slab- window magmatism; (3) there was no ancestral Cascade arc south of Oregon until ca. 10 Ma; (4) magmatism shifted from primarily silicic to dominantly basaltic throughout the Miocene; and (5) magmatism was clearly migratory in several directions in ways that cannot be explained by plate-tectonic processes, at length scales ranging from 1000s to 10s of km. Space-time patterns that cannot be readily linked to plate-tectonic control include: (1) a silicic sweep from Montana into Nevada from 50 to 20 Ma; (2) a clockwise sweep around the Colorado Plateau from New Mexico to southern Nevada from about 30 to 15 Ma; (3) a burst of magmatism at about 16 Ma in northern Nevada, followed by outward sweeps to Yellowstone, Oregon, and the Sierra Nevada; (4) progressive encroachment of basaltic magmatism onto the Colorado Plateau, and (5) several local migrations, including from Phoenix north onto the Colorado Plateau and from the San Francisco Bay area north to the Geysers geothermal field. These migrations typically occurred at 20-50 mm/yr. Possible origins include

  5. The effect of plumes and a free surface on mantle dynamics with continents and self-consistent plate tectonics

    Science.gov (United States)

    Jain, Charitra; Rozel, Antoine; Tackley, Paul

    2014-05-01

    Rolf et al. (EPSL, 2012) and Coltice et al. (Science, 2012) investigated the thermal and dynamical influences of continents on plate tectonics and the thermal state of Earth's mantle, but they did not explicitly consider the influence of mantle plumes. When present, strong mantle plumes arising from the deep mantle can impose additional stresses on the continents, thereby facilitating continental rifting (Storey, Nature 1995; Santosh et al., Gondwana Research 2009) and disrupting the supercontinent cycle (Philips and Bunge, Geology 2007). In recent years, several studies have characterized the relation between the location of the plumes and the continents, but with contradicting observations. While Heron and Lowman (GRL, 2010; Tectonophysics, 2011) propose regions where downwelling has ceased (irrespective of overlying plate) as the preferred location for plumes, O'Neill et al. (Gondwana Research, 2009) show an anti-correlation between the average positions of subducting slabs at continental margins, and mantle plumes at continental/oceanic interiors. Continental motion is attributed to the viscous stresses imparted by the convecting mantle and the extent of this motion depends on the heat budget of the mantle. Core-mantle boundary (CMB) heat flux, internal heating from decay of radioactive elements, and mantle cooling contribute to this heat budget. Out of these sources, CMB heat flux is not well defined; however, the recent determination that the core's thermal conductivity is much higher than previously thought requires a CMB heat flow of at least 12 TW (de Koker et al., PNAS 2012; Pozzo et al., Nature 2012; Gomi et al., PEPI 2013), much higher than early estimates of 3-4 TW (Lay et al., Nature 2008). Thus, it is necessary to characterize the effect of increased CMB heat flux on mantle dynamics. In almost all mantle convection simulations, the top boundary is treated as a free-slip surface whereas Earth's surface is a deformable free surface. With a free

  6. Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska

    Science.gov (United States)

    SauberRosenberg, Jeanne M.; Molnia, Bruce F.

    2003-01-01

    Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

  7. Glacial reorganization of topography in a tectonically active mountain range

    Science.gov (United States)

    Adams, Byron; Ehlers, Todd

    2016-04-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on

  8. The River Network, Active Tectonics and the Mexican Subduction Zone, Southwest Mexico

    Science.gov (United States)

    Gaidzik, K.; Ramirez-Herrera, M. T.; Kostoglodov, V.; Basili, R.

    2014-12-01

    Rivers, their profiles and network reflect the integration of multiple processes and forces that are part of the fundamental controls on the relief structure of mountain belts. The motivation of this study is to understand active tectonic processes in the forearc region of subduction zones, by distinguishing evidence of active deformation using the river network and topography. To this end, morphotectonic and structural studies have been conducted on fifteen drainage basins on the mountain front, parallel to the Mexican subduction zone, where the Cocos plate underthrusts the North American plate. The southwest - northeast Cocos plate subduction stress regime initiated ca. 20 MA. NE-SW to NNE-SSW normal faults as well as sub-latitudinal to NW-SE strike-slip faults (both dextral and sinistral) constitute the majority of mesofaults recorded in the field within the studied drainage basins. Occasionally dextral N-S strike-slip faults also occur. The stress tensor reconstruction suggests two main evolution stages of these faults: 1) the older is dominated by a NW-SE to WNW-ESE extensional regime and 2) the younger is a transcurrent regime, with NNE-SSW σ1 axis. The drainage pattern is strongly controlled by tectonic features, whereas lithology is only a subordinate factor, with only one exception (Petatlán river). Generally, major rivers flow from north to south mainly through NE-SW and NNE-SSW normal faults, and/or sub-longitudinal dextral (also locally sinistral) strike-slip faults. In the central and eastern part of the studied area, rivers also follow NW-SE structures, which are generally normal or sinistral strike-slip faults (rarely reverse). In most cases, local deflections of the river main courses are related to sub-latitudinal strike-slip faults, both dextral and sinistral. Within the current stress field related to the active Cocos subduction, both normal and strike-slip fault sets could be reactivated. Our analysis suggests that strike-slip faults, mainly

  9. Active tectonics and Quaternary landscape evolution across the western Panama block, Costa Rica, Central America

    Science.gov (United States)

    Marshall, Jeffrey Scott

    Three aspects of active tectonism are examined across central Costa Rica: (1) fault kinematics; (2) volcanic arc retreat; and (3) spatially variable coastal uplift. Diffuse faulting along the Central Costa Rica Deformed Belt (CCRDB) defines the western margin of the Panama block and aligns with the rough-smooth boundary (RSB) on the subducting Cocos plate. Sub-horizontal subduction of rough, hotspot thickened crust (Cocos Ridge and seamounts) shifts active shortening into the volcanic arc along the CCRDB. Mesoscale faults express variable kinematics across three domains: transtension in the forearc, transcurrent motion across the volcanic arc, and transpression in the back arc. Fault kinematics agree with seismicity and GPS data, and isotopic ages confirm that faulting postdates the late Neogene onset of shallow subduction. Stratigraphic correlation augmented by 40Ar/39Ar dating constrain the timing of Quaternary arc migration from the Neogene Aguacate range to the modern Cordillera Central. The Valle Central basin, between the cordilleras, filled with thick sequences of lavas, pyroclastic flows, and lahars. Middle Pleistocene drainage capture across the Aguacate arc linked the Valle Central with the Pacific slope and ash flows descended onto the coastal Orotina debris fan. Arc retreat reflects slab shallowing and enhanced tectonic erosion as rough crust entered the subduction zone. Differing subduction parameters across the RSB (crustal age, slab dip, roughness) produce marked contrasts in coastal tectonism. Varying uplift rates across coastal faults reflect sub-horizontal subduction of seamount roughness. Three groups (I--III) of fluvial terraces are correlated along the coast by isotopic ages and geomorphic characteristics. Base level fluctuations and terrace genesis reflect interaction between eustatic sea level and spatially variable rock uplift. Low uplift rates (north of RSB), yield one surface per terrace group, whereas moderate rates (south of RSB

  10. Climate dominated topography in a tectonically active mountain range

    Science.gov (United States)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  11. Plate Tectonics at 3.8-3.7 Ga: Field Evidence from the Isua Accretionary Complex, Southern West Greenland.

    Science.gov (United States)

    Komiya; Maruyama; Masuda; Nohda; Hayashi; Okamoto

    1999-09-01

    Archean oceanic lithosphere was rigid. These conclusions-rigidity and lateral plate movement-support the idea that the modern style of plate tectonics was in operation only 0.7-0.8 G.yr. after the formation of the Earth.

  12. Applicability of dinoflagellate cyst stratigraphy to the analyses of passive and active tectonic settings

    NARCIS (Netherlands)

    Wilpshaar, M.

    1995-01-01

    The notion that fluctuating tectonic stress patterns within or between continental plates directly influence the development of a given sedimentary basin is a well-established concept in geotectonics. In recent years it has become increasingly understood that notably the phase of relative compressio

  13. Applicability of dinoflagellate cyst stratigraphy to the analyses of passive and active tectonic settings

    NARCIS (Netherlands)

    Wilpshaar, M.

    1995-01-01

    The notion that fluctuating tectonic stress patterns within or between continental plates directly influence the development of a given sedimentary basin is a well-established concept in geotectonics. In recent years it has become increasingly understood that notably the phase of relative compressio

  14. Active Tectonic Research for Seismic Safety Evaluation of Long-Line Engineering Sites in China

    Institute of Scientific and Technical Information of China (English)

    Ran Yongkang; Chen Lichun

    2005-01-01

    Long-line engineering sites usually have to pass through active tectonics, so the research of active tectonics is of great importance to seismic safety evaluation of this sort of site. In the paper, basing on the summarization and analysis of the requirements for seismic safety evaluation of long-line engineering site and the status quo of active tectonics research, we propose the focal points of active tectonics research for seismic safety evaluation of long-line engineering sites, including the research contents, technical targets and routes, and the submission of the achievements, etc. Finally, we make a preliminary analysis and discussion about the problems existing in the present-day active tectonics research for seismic safety evaluation of long-line engineering sites.

  15. Structural and Tectonic Map Along the Pacific-North America Plate Boundary in Northern Gulf of California, Sonora Desert and Valle de Mexicali, Mexico, from Seismic Reflection Evidence

    Science.gov (United States)

    Gonzalez-Escobar, M.; Suarez-Vidal, F.; Mendoza-Borunda, R.; Martin Barajas, A.; Pacheco-Romero, M.; Arregui-Estrada, S.; Gallardo-Mata, C.; Sanchez-Garcia, C.; Chanes-Martinez, J.

    2012-12-01

    Between 1978 and 1983, Petróleos Mexicanos (PEMEX) carried on an intense exploration program in the northern Gulf of California, the Sonora Desert and the southern part of the Mexicali Valley. This program was supported by a seismic reflection field operation. The collected seismic data was 2D, with travel time of 6 s recording, in 48 channels, and the source energy was: dynamite, vibroseis and air guns. Since 2007 to present time, the existing seismic data has been re-processing and ire-interpreting as part of a collaboration project between the PEMEX's Subdirección de Exploración (PEMEX) and CICESE. The study area is located along a large portion of the Pacific-North America plate boundary in the northern Gulf of California and the Southern part of the Salton Trough tectonic province (Mexicali Valley). We present the result of the processes reflection seismic lines. Many of the previous reported known faults were identify along with the first time described located within the study region. We identified regions with different degree of tectonic activity. In structural map it can see the location of many of these known active faults and their associated seismic activity, as well as other structures with no associated seismicity. Where some faults are mist placed they were deleted or relocated based on new information. We included historical seismicity for the region. We present six reflection lines that cross the aftershocks zone of the El Mayor-Cucapah earthquake of April 4, 2010 (Mw7.2). The epicenter of this earthquake and most of the aftershocks are located in a region where pervious to this earthquake no major earthquakes are been reported. A major result of this study is to demonstrate that there are many buried faults that increase the seismic hazard.

  16. Mantle-derived peridotites in southwestern Oregon: relation to plate tectonics.

    Science.gov (United States)

    Medaris, L G; Dott, R H

    1970-09-04

    A group of peridotites in southwestern Oregon contains high-pressure mineral assemblages reflecting recrystallization at high temperatures (1100 degrees to 1200 degrees C) over a range of pressure decreasing from 19 to 5 kilobars. It is proposed that the peridotites represent upper-mantle material brought from depth along the ancestral Gorda-Juan de Fuca ridge system, transported eastward by the spreading Gorda lithosphere plate, and then emplaced by thrust-faulting in the western margin of the Cordillera during late Mesozoic time.

  17. Taiwan: a perfect field trip to study active tectonics and erosion processes

    Science.gov (United States)

    Bigot-Cormier, Florence; Beauval, Véronique; Martinez, Claire-Marie; Seyeux, Jana

    2014-05-01

    Taiwan is located at the boundary between the Philippine Sea Plate to the East and the Eurasian Plate to the West. This plate boundary is rather complex since it comprises two subduction zones of reverse polarities. Due to this specific geodynamic context, this field is a perfect area to answer the French program in 5th grade (erosion processes) and 4th grade (active tectonics) in Earth Science class. That's why for the second year, students from the Lycée Français de Shanghai (LFS) in 4th grade will go for a 4-day field trip to discover volcanoes (in the Yangminshan National Park) and para-seismic constructions in the 101 Tower at Taipei. It will remind them the program of their previous class (5ème) through the visit of Yehliu Geographic Park and some other areas in the North of the Island where they will be able to observe different erosion processes (wind or water) carving the landscape. The aim of this field trip is first to show them that Earth Sciences cannot be studied only in class but also on the field to get a better understanding of the processes. In this manner, after having understood the internal thermal system of our Earth in class, they will see its manifestations on the surface of the Earth, by seeing an active explosive volcano with gas ejection, specific mineralization, and hot springs. Furthermore on the field, they will be able to do a link between the external and internal geodynamics processes usually studied separately in middle school. The poster presented will detail the first field trip in Taiwan realized in May 2013 by the LFS 4th grade students and will be made by the students going in June 2014. Thus, this activity will allow them to get a perspective of the topic that they will discover on the field trip.

  18. Dinosaur tectonics

    DEFF Research Database (Denmark)

    Graversen, Ole; Milàn, Jesper; B. Loope, David

    2007-01-01

    to crustal scale tectonics associated with plate tectonics and foreland fold-thrust belts. A structural analysis of the dinosaur tracks shows the timing and direction of the forces exercised on the substrate by the animal's foot during the stride. Based on the structural analysis, we establish a scenario...... of the undertrack. The total length of the tectonic disturbance created by the dinosaur is up to three times that of the original footprint. Early, near-surface cementation gave the substrate the rheological properties necessary for development of the observed structures....

  19. Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria

    Directory of Open Access Journals (Sweden)

    Briestenský Miloš

    2015-10-01

    Full Text Available The EU-TecNet monitoring network uses customized three-dimensional extensometers to record transient deformations across individual faults. This paper presents the first results from two newly established monitoring points in the Balkan Mountains in Bulgaria. The data from Saeva Dupka, recorded across an EEN-WWS striking fault, show sinistral strike-slip along the fault and subsidence of the southern block. Much of the subsidence occurred around the time of the distal MW = 5.6 Pernik Earthquake. An important transient deformation event, which began in autumn 2012, was reflected by significant compression and following extension, across the monitored fault. The data from Bacho Kiro, recorded across a NE–SW striking fault, show sinistral strike-slip along the fault and subsidence of the north-western block. The same important deformation event was reflected by changes in the strike-slip, dip-slip, and horizontal opening/closing trends. These results have been compared to data from other monitoring points in the Western Carpathians, External Dinarides, and Tian Shan. Many of the sites show evidence of simultaneous displacement anomalies and this observation is interpreted as a reflection of the plate-wide propagation of a tectonic pressure pulse towards the end of 2012.

  20. The Wisconsin magmatic terrane: An Early Proterozoic greenstone-granite terrane formed by plate tectonic processes

    Science.gov (United States)

    Schulz, K. J.; Laberge, G. L.

    1986-01-01

    The Wisconsin magmatic terrane (WMT) is an east trending belt of dominantly volcanic-plutonic complexes of Early Proterozoic age (approx. 1850 m.y.) that lies to the south of the Archean rocks and Early Proterozoic epicratonic sequence (Marquette Range Supergroup) in Michigan. It is separated from the epicratonic Marquette Range Supergroup by the high-angle Niagara fault, is bounded on the south, in central Wisconsin, by Archean gneisses, is truncated on the west by rocks of the Midcontinent rift system, and is intruded on the east by the post-orogenic Wolf river batholith. The overall lithologic, geochemical, metallogenic, metamorphic, and deformational characteristics of the WMT are similar to those observed in recent volcanic arc terranes formed at sites of plate convergence. It is concluded that the WMT represents an evolved oceanic island-arc terrane accreated to the Superior craton in the Early Proterozoic. This conclusion is strengthened by the apparent absence of Archean basement from most of the WMT, and the recent recognition of the passive margin character of the epicratonic Marquette Range Supergroup.

  1. Thick shell tectonics on one-plate planets - Applications to Mars

    Science.gov (United States)

    Banerdt, W. B.; Saunders, R. S.; Phillips, R. J.; Sleep, N. H.

    1982-01-01

    Using the zero frequency equations of a self-gravitating elastic spherical shell overlying a strengthless fluid, a theory for stress distribution in thick lithospheric shells on one-plate planets is developed. For both the compensated and flexural modes, stress distributions in lithospheres are reviewed. For compensated modes, surface stresses depend only on surface topography, whereas for flexural modes it is shown that, for long wavelengths, stress trajectories are mainly dependent on the lithospheric lateral density distribution and not on elastic properties. Computational analyses are performed for Mars, and it is found that isostatically compensated models correctly predict the graben structure in the immediate Tharsis region and a flexural loading model is satisfactory in explaining the graben in the regions surrounding Tharsis. A three-stage model for the evolution of Tharsis is hypothesized: isostasy with north-south graben formation on Tharsis, followed by flexural loading and radial graben formation on the perimeter of Tharsis, followed by a last stage of loading with little or no regional deformation.

  2. The margin between Senja and Spitsbergen fracture zones: Implications from plate tectonics

    Science.gov (United States)

    Myhre, Annik M.; Eldholm, Olav; Sundvor, Eirik

    1982-10-01

    Analysis of multichannel seismic data from the continental margin off Svalbard between the Senja and Spitsbergen fracture zones suggests that the transition between continental and oceanic crust is located at or close to the Hornsund Fault Zone. In the Late Paleocene/Early Eoeene (57 m.y.) the region between Svalbard and Northeast-Greenland was subjected to regional shear movements associated with a transform system between the young Lofoten-Greenland Basin and the Arctic Ocean. Approximately 50 m.y. ago the spreading axis migrated to the northeast creating a deep basin north of the Greenland-Senja Fracture Zone forming the passive margin between Bear Island and 76.5°N. North of 76.5°N the regional transform was maintained. At the time of the main reorganization of relative plate motion (36 m.y.) the northern margin evolved. A continental fragment was possibly cut off from the Svalbard margin forming a small microcontinent. The microcontinent appears as the submarine ridge which has been associated with the Hovgaard Fracture Zone. It is suggested that the sediments west of the Hornsund Fault Zone are not older than Eocene in the south and mid-Oligocene in the north. The position of the spreading axis has greatly influenced the margin sedimentation.

  3. Thick shell tectonics on one-plate planets - Applications to Mars

    Science.gov (United States)

    Banerdt, W. B.; Saunders, R. S.; Phillips, R. J.; Sleep, N. H.

    1982-01-01

    Using the zero frequency equations of a self-gravitating elastic spherical shell overlying a strengthless fluid, a theory for stress distribution in thick lithospheric shells on one-plate planets is developed. For both the compensated and flexural modes, stress distributions in lithospheres are reviewed. For compensated modes, surface stresses depend only on surface topography, whereas for flexural modes it is shown that, for long wavelengths, stress trajectories are mainly dependent on the lithospheric lateral density distribution and not on elastic properties. Computational analyses are performed for Mars, and it is found that isostatically compensated models correctly predict the graben structure in the immediate Tharsis region and a flexural loading model is satisfactory in explaining the graben in the regions surrounding Tharsis. A three-stage model for the evolution of Tharsis is hypothesized: isostasy with north-south graben formation on Tharsis, followed by flexural loading and radial graben formation on the perimeter of Tharsis, followed by a last stage of loading with little or no regional deformation.

  4. Actively controlling coolant-cooled cold plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.

    2016-04-26

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.

  5. Reidar Løvlie and Plate Tectonic consequences of sedimentary inclination shallowing

    Science.gov (United States)

    Torsvik, Trond H.

    2014-05-01

    Reidar Løvlie was my mentor and supervisor in the early 1980s and he thought me all about laboratory experiments and palaeomagnetic methods, but also various aspects of science philosophy. My first fieldworks were together with him and I enjoyed memorable trips to the Bear Island, Spitsbergen and Scotland. Acquisition of magnetism in sediments was always a favourite topic of Reidar and in the early 1980s he was particularly interested in sedimentary inclination shallowing. From one of our fieldtrips to Spitsbergen we sampled unconsolidated flood-plain deposits of hematite-bearing Devonian red sand/siltstone from Dicksonfjorden. These were used for redeposition experiments in a coil system that could simulate different latitudes (field inclinations) and in 1994 we published a paper entitled"Magnetic remanence and fabric properties of laboratory-deposited hematite-bearing red sandstone" that demonstrated the tangent relationship between inclinations of detrital remanent magnetization and the ambient magnetic field. Inclination (I) error in sediments is latitude dependent, antisymmetric and the bias closely mimics errors produced by octupole fields of the same sign as the dipole field. Inclination shallowing is commonly predicted from tan (Observed Inclination) = f * tan (Field Inclination) where f is the degree of inclination error. In our study we calculated a f value of 0.4 and this laboratory value (and many others) is significant lower than those estimated from the E/I or the magnetic fabric methods developed in the past decade (f typically around 0.6). There is now little doubt that inclination shallowing in detrital sediments is a serious problem that affects plate reconstructions and apparent polar wander paths. As an example, a f value of 0.6 amounts to a latitude error of 1600 km at around 50 degrees N or S (comparable to the effects of octupole contributions as high as 22%) and this have led to erroneous Pangea reconstructions.

  6. Relation of Isotope Geochemical Steep Zones with Geophysical Fields and Tectonics in the Junction Area of the Cathaysian, Yangtze and Indochina Plates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Through lead isotope geochemical mapping in the Yunnan-Guizhou area geochemical steep zones (GSZ) have been established, which clearly reveal the junction relationship of the Cathaysian, Yangtze and Indo-China plates. GSZ are closey related to gravity Moho gradient zones and lithospheric thickness. The GSZ between the Yangtze and Cathaysian plates is consistent with the Shizong-Mile tectonic belt, where island arc basalts are well developed. The Yangtze-Indo-China GSZ is parallel to the Jingdong-Mojiang volcanic belt in rift-island arc environments. The evidence of geology, geophysics and geochemistry all indicates that Cathaysia was subducted towards the Yangtze plate and that the Yangtze plate was underthrust beneath the Indo-China, which took place from the Early Carboniferous to the Early Triassic.

  7. Plate Tectonic Setting and Eruptive Characteristics of the K—rich Volcanic Belt in HeilingJiang Province,Northeast China

    Institute of Scientific and Technical Information of China (English)

    邱家骧; 吴志勤; 等

    1990-01-01

    Various lines of geological,geophysical and geochemical evidence indicate that the K-rich volcanic belt in Northeast China as represented by the volcanic groups at Wudalianchi,Erkeshan and Kelo was developed,in terms of plate tectonics,in a rift valley system within the continental plate,The volcanic material includes effusive lavas and explosive pyroclastics whose characteristics and flowing/accumulation mechanisms were studied in detail,The distribution of pyroclastics shows that the eruption is of Strombolian type with increasing intensity towards the late stages.

  8. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) 'The fit of the continents around the Atlantic'.

    Science.gov (United States)

    Dewey, John F

    2015-04-13

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  9. A Review of the Isotopic and Trace Element Evidence for Mantle and Crustal Processes in the Hadean and Archean: implications for the Onset of Plate Tectonic Subduction

    Science.gov (United States)

    Smart, Katie A.; Tappe, Sebastian; Stern, Richard A.; Webb, Susan J.; Ashwal, Lewis D.

    2016-03-01

    Plate tectonics plays a vital role in the evolution of our planet. Geochemical analysis of Earth’s oldest continental crust suggests that subduction may have begun episodically about 3.8 to 3.2 billion years ago, during the early Archaean or perhaps more than 3.8 billion years ago, during the Hadean. Yet, mantle rocks record evidence for modern-style plate tectonics beginning only in the late Archaean, about 3 billion years ago. Here we analyse the nitrogen abundance, as well as the nitrogen and carbon isotopic signatures of Archaean placer diamonds from the Kaapvaal craton, South Africa, which formed in the upper mantle 3.1 to 3.5 billion years ago. We find that the diamonds have enriched nitrogen contents and isotopic compositions compared with typical mantle values. This nitrogen geochemical fingerprint could have been caused by contamination of the mantle by nitrogen-rich Archaean sediments. Furthermore, the carbon isotopic signature suggests that the diamonds formed by reduction of an oxidized fluid or melt. Assuming that the Archaean mantle was more reduced than the modern mantle, we argue that the oxidized components were introduced to the mantle by crustal recycling at subduction zones. We conclude, on the basis of evidence from mantle-derived diamonds, that modern-style plate tectonics operated as early as 3.5 billion years ago.

  10. Pore-pressure sensitivities to dynamic strains: observations in active tectonic regions

    Science.gov (United States)

    Barbour, Andrew J.

    2015-01-01

    Triggered seismicity arising from dynamic stresses is often explained by the Mohr-Coulomb failure criterion, where elevated pore pressures reduce the effective strength of faults in fluid-saturated rock. The seismic response of a fluid-rock system naturally depends on its hydro-mechanical properties, but accurately assessing how pore-fluid pressure responds to applied stress over large scales in situ remains a challenging task; hence, spatial variations in response are not well understood, especially around active faults. Here I analyze previously unutilized records of dynamic strain and pore-pressure from regional and teleseismic earthquakes at Plate Boundary Observatory (PBO) stations from 2006 through 2012 to investigate variations in response along the Pacific/North American tectonic plate boundary. I find robust scaling-response coefficients between excess pore pressure and dynamic strain at each station that are spatially correlated: around the San Andreas and San Jacinto fault systems, the response is lowest in regions of the crust undergoing the highest rates of secular shear strain. PBO stations in the Parkfield instrument cluster are at comparable distances to the San Andreas fault (SAF), and spatial variations there follow patterns in dextral creep rates along the fault, with the highest response in the actively creeping section, which is consistent with a narrowing zone of strain accumulation seen in geodetic velocity profiles. At stations in the San Juan Bautista (SJB) and Anza instrument clusters, the response depends non-linearly on the inverse fault-perpendicular distance, with the response decreasing towards the fault; the SJB cluster is at the northern transition from creeping-to-locked behavior along the SAF, where creep rates are at moderate to low levels, and the Anza cluster is around the San Jacinto fault, where to date there have been no statistically significant creep rates observed at the surface. These results suggest that the strength

  11. Kinematic History and Tectonic Evolution of the Amerasian Basin: Investigating Palaeo-Plate Boundaries around the Chukchi Borderlands

    Science.gov (United States)

    Brumley, K.; Coakley, B.; Stone, D.; Wallace, W.

    2007-12-01

    The multi-stage opening of the Arctic Ocean's Amerasian Basin is only partially understood due to the difficulty of utilizing traditional marine geologic and geophysical techniques in ice-covered waters. While the kinematic development of the Eurasian Basin is well-understood to be the northernmost extension of the Mid-Atlantic Ridge, the history of the morphologically complex Amerasian Basin may be due to multiple events, significantly complicating interpretation of its history. Any detailed model for the opening of the Amerasian Basin must both incorporate structures that accommodate spreading as well as explain the tectonic mechanisms that drove basin development. Cretaceous-age tholeiitic flood basalts and associated radiating dike swarms of the High Arctic Large Igneous Province (HALIP), found along the basin margin, provide a tectonic mechanism and geometry to substantiate sound reconstruction. Detailed models need also consider pre-existing zones of weakness such as the deformation front of the Devonian Caledonides, which may underlie Barents Shelf sediments (Gee and Bogolepova, 2003). Reactivation of these ancient structural trends along this suture zone may explain the motion of Mendeleev Ridge as it rifted from Lomonosov Ridge and created the rectangular pull-apart basin between them. We propose a revised plate model for the development of the Amerasian Basin. A Cretaceous magmatic source localized under the Alpha Ridge accompanied the onset of rifting. This generated the HALIP radiating dike swarms and tholeiitic flood basalts found on the DeLong Islands, Svalbard, Franz Joseph Land, Greenland, Sverdrup Basin and, possibly, the Alpha and Mendeleev Ridges. New bathymetric and sub-bottom profiling data also suggests the existence of igneous dikes on Chukchi Cap. The subsequent development of a triple junction resulted in dilational opening of the Canada Basin. Spreading was accommodated by the migration of the southern edges of the northeastern Siberian

  12. Evidence for relative motions between the Indian and Australian Plates during the last 20 m.y. from plate tectonic reconstructions: Implications for the deformation of the Indo-Australian Plate

    Science.gov (United States)

    Royer, Jean-Yves; Chang, Ted

    1991-07-01

    We use plate tectonic reconstructions to establish whether motions between India and Australia occurred since chron 18 (43 Ma). We test the Africa/Antarctica/Australia/India plate circuit closure at chrons 5 (10 Ma), 6 (21 Ma) and 13 (36 Ma) using a compilation of magnetic anomalies and fracture zone traces from the Southeast, Southwest, Central Indian and the Carlsberg ridges. Additional reconstructions at chrons 23 (55 Ma) and 26 (61 Ma) are used to estimate the overall motion between India and Australia. Relative motions between the Indian and Australian plates are estimated using the plate circuit India → Africa → Australia. A new statistical approach, based on spherical regression analyses, is used to assess the uncertainty of the "best-fitting" finite rotations from the uncertainties in the data. The uncertainty in a rotation is described by a covariance matrix directly related to the geometry of the reconstructed plate boundary, to the distribution and estimated errors of the data points along it. Our parameterization of the rotations allows for simple combination of the rotation uncertainties along a plate circuit path. Results for chron 5 are remarkably consistent with present-day kinematics in the Indian Ocean, except that the Arabian and Indian plates are found to be separate plates. Comparisons of the motions between the Indian and African plates across the Carlsberg Ridge with that between the Australian and African plates across the Central Indian Ridge evidence a significant counterclockwise rotation of the Australian plate relative to the Indian plate about a pole located in the Central Indian Basin. The determinations are consistent for chrons 26, 13, 6 and 5. Determination at chron 23 is different but questionable due to the small number of available data. We propose two alternative solutions that both predict convergence within the Wharton and Central Indian basins and extension in the vicinity of the Chagos-Laccadive Ridge. The first

  13. Tectonic regimes at the N-Ecuador SW-Colombia active margin from multichannel seismic reflection data

    Science.gov (United States)

    Marcaillou, B.; Collot, J.-Y.; Sage, F.

    2003-04-01

    The North Andean convergent margin displays wide lateral variations in structural and sedimentary characters, which reflect the interaction between large sedimentary input derived from the nearby Andes, inherited structures, and the long-term tectonic deformation resulting from the Nazca plate subduction beneath the South America plate at ~5cm/yr. We use Multichannel Seismic Reflection lines as well as bathymetric data collected during the SISTEUR cruise to construct a tectonic and sedimentary model of the margin between latitudes 0°N and 3.5 °N. The margin shows a prominent re-entrant that is cut transversally by a major crustal fault, i.e. the Manglares Fault (MF). The northern and southern walls of the re-entrant together with the MF divide the margin into four morphostructural segments, with distinct tectonic regimes. The Esmeraldas segment, south of the re-entrant, shows a 100m-deep continental shelf, evidences for mass wasting, and a 10° steep innertrench wall underlain by steeply trenchward dipping horizons, suggesting tectonic erosion. The Manglares segment, located between the southern wall of the re-entrant and the MF, exhibits an up to 3-km-thick trench fill thrust beneath possible narrow frontal thrusts, a wide and largely un-deformed fore-arc basin that is split by a major crustal splay fault. Seaward of the splay fault, the fore-arc basin is tilted trenchward and overlays a thinned margin basement, supporting tectonic erosion. The Tumaco segment, between the MF and the reentrant northern wall, exhibits a 2.5-km-thick trench fill, which underthrusts the margin in the south, and shows clear incipient accretionary thrusts in the north. Splay faults across the margin are unclear, but an uplifted, folded and thrust faulted basement ridge and deformed fore-ar basins indicate active deformation across most of the margin width. The Patia segment, to the north of the re-entrant, shows a highly deformed fore-arc basin and outer ridge fronted by growing 30km

  14. Azimuthal seismic anisotropy in the Earth's upper mantle and the thickness of tectonic plates

    Science.gov (United States)

    Schaeffer, A. J.; Lebedev, S.; Becker, T. W.

    2016-11-01

    Azimuthal seismic anisotropy, the dependence of seismic wave speeds on propagation azimuth, is largely due to fabrics within the Earth's crust and mantle, produced by deformation. It thus provides constraints on the distribution and evolution of deformation within the upper mantle. Here, we present a new global, azimuthally anisotropic model of the crust, upper mantle and transition zone. Two versions of this new model are computed: the rough SL2016svAr and the smooth SL2016svA. Both are constrained by a very large data set of waveform fits (˜750 000 vertical component seismogram fits). Automated, multimode waveform inversion was used to extract structural information from surface and S wave forms in broad period ranges (dominantly from 11 to 450 s, with the best global sampling in the 20-350 s range), yielding resolving power from the crust down to the transition zone. In our global tomographic inversion, regularization of anisotropy is implemented to more uniformly recover the amplitude and orientation of anisotropy, including near the poles. Our massive waveform data set, with complementary large global networks and high-density regional array data, produces improved resolution of global azimuthal anisotropy patterns. We show that regional scale variations, related to regional lithospheric deformation and mantle flow, can now be resolved by the global models, in particular in densely sampled regions. For oceanic regions, we compare quantitatively the directions of past and present plate motions and the fast-propagation orientations of anisotropy. By doing so, we infer the depth of the boundary between the rigid, high-viscosity lithosphere (preserving ancient, frozen fabric) and the rheologically weak asthenosphere (characterized by fabric developed recently). The average depth of thus inferred rheological lithosphere-asthenosphere boundary (LAB) beneath the world's oceans is ˜115 km. The LAB depth displays a clear dependence on the age of the oceanic

  15. A Virtual Tour of Plate Tectonics: Using Google Earth for Inquiry Investigations

    Science.gov (United States)

    Mulvey, Bridget; Bell, Randy

    2012-01-01

    Google Earth is an exciting way to engage students in scientific inquiry--the foundation of science education standards and reforms. The National Science Education Standards identify inquiry as an active process that incorporates questioning, gathering and analyzing data, and thinking critically about the interplay of evidence and explanations.…

  16. Students' Mental Model Development during Historically Contextualized Inquiry: How the "Tectonic Plate" Metaphor Impeded the Process

    Science.gov (United States)

    Dolphin, Glenn; Benoit, Wendy

    2016-01-01

    At present, quality earth science education in grade school is rare, increasing the importance of post-secondary courses. Observations of post-secondary geoscience indicate students often maintain errant ideas about the earth, even after direct instruction. This qualitative case study documents model-building activities of students as they…

  17. Students' Mental Model Development during Historically Contextualized Inquiry: How the "Tectonic Plate" Metaphor Impeded the Process

    Science.gov (United States)

    Dolphin, Glenn; Benoit, Wendy

    2016-01-01

    At present, quality earth science education in grade school is rare, increasing the importance of post-secondary courses. Observations of post-secondary geoscience indicate students often maintain errant ideas about the earth, even after direct instruction. This qualitative case study documents model-building activities of students as they…

  18. A Virtual Tour of Plate Tectonics: Using Google Earth for Inquiry Investigations

    Science.gov (United States)

    Mulvey, Bridget; Bell, Randy

    2012-01-01

    Google Earth is an exciting way to engage students in scientific inquiry--the foundation of science education standards and reforms. The National Science Education Standards identify inquiry as an active process that incorporates questioning, gathering and analyzing data, and thinking critically about the interplay of evidence and explanations.…

  19. Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate

    Science.gov (United States)

    Harrison, R.W.; Tsiolakis, E.; Stone, B.D.; Lord, A.; McGeehin, J.P.; Mahan, S.A.; Chirico, P.

    2013-01-01

    The nature of the southern margin of the Anatolian microplate during the Neogene is complex, controversial and fundamental in understanding active plate-margin tectonics and natural hazards in the Eastern Mediterranean region. Our investigation provides new insights into the Late Pleistocene uplift history of Cyprus and the Troodos Ophiolite. We provide isotopic (14C) and radiogenic (luminescence) dates of outcropping marine sediments in eastern Cyprus that identify periods of deposition during marine isotope stages (MIS) 3, 4, 5 and 6. Past sea-levels indicated by these deposits are c. 95±25 m higher in elevation than estimates of worldwide eustatic sea-level. An uplift rate of c. 1.8 mm/year and possibly as much as c. 4.1 mm/year in the past c. 26–40 ka is indicated. Holocene marine deposits also occur at elevations higher than those expected for past SL and suggest uplift rates of c. 1.2–2.1 mm/year. MIS-3 marine deposits that crop out in southern and western Cyprus indicate uniform island-wide uplift. We propose a model of tectonic wedging at a plate-bounding restraining bend as a mechanism for Late Pleistocene to Holocene uplift of Cyprus; uplift is accommodated by deformation and seismicity along the margins of the Troodos Ophiolite and re-activation of its low-angle, basal shear zone.

  20. 4D Arctic: A Glimpse into the Structure and Evolution of the Arctic in the Light of New Geophysical Maps, Plate Tectonics and Tomographic Models.

    Science.gov (United States)

    Gaina, Carmen; Medvedev, Sergei; Torsvik, Trond H; Koulakov, Ivan; Werner, Stephanie C

    Knowledge about the Arctic tectonic structure has changed in the last decade as a large number of new datasets have been collected and systematized. Here, we review the most updated, publicly available Circum-Arctic digital compilations of magnetic and gravity data together with new models of the Arctic's crust. Available tomographic models have also been scrutinized and evaluated for their potential to reveal the deeper structure of the Arctic region. Although the age and opening mechanisms of the Amerasia Basin are still difficult to establish in detail, interpreted subducted slabs that reside in the High Arctic's lower mantle point to one or two episodes of subduction that consumed crust of possibly Late Cretaceous-Jurassic age. The origin of major igneous activity during the Cretaceous in the central Arctic (the Alpha-Mendeleev Ridge) and in the proximity of rifted margins (the so-called High Arctic Large Igneous Province-HALIP) is still debated. Models of global plate circuits and the connection with the deep mantle are used here to re-evaluate a possible link between Arctic volcanism and mantle plumes.

  1. On the motion and geometry of the Sierra Nevada Great Valley micro-plate: Implications for Walker Lane tectonics

    Science.gov (United States)

    Kreemer, C.; Hammond, W. C.; Blewitt, G.

    2006-12-01

    The Sierra Nevada Great Valley (SNGV) micro-plate, a.k.a. the Fresno block, has long been recognized as a tectonically stable entity within the Pacific North America plate boundary zone. Some early geodetic studies have confirmed and defined its rigid behavior. However, those studies were based on a very limited amount of geodetic station velocities, and were unable to assess the extent of rigidity towards the edges of the block. The San Andreas and Garlock fault systems define the western and southern edges of the block, but no such features are readily recognizable to the north and east, along the Walker Lane belt. A better assessment of the location of the boundary or transition between the stable SNGV block and the Walker Lane is important for three reasons. It will provide a better understanding of what controls Walker Lane development and evolution, it will provide important boundary conditions in understanding the present-day kinematics of the Walker Lane, and it is contributes to the assessment of seismic hazard levels for the Reno-Carson City area. We analyze data from all the available GPS sites in the greater SNGV region, including data from the SCIGN, BARD and BARGEN networks, semi-continuous data from our own MAGNET network, and campaign-style data (e.g., USGS, SCEC). Also we have started to analyze regional PBO sites, however time-series for most of those sites are at present too short to infer reliable velocity estimates. We use the GIPSY OASIS II software which employs precise point positioning using dual-frequency carrier phase and pseudorange data, and the precise orbit, clock, and reference frame transformation products publicly available from JPL. The analysis includes carrier phase ambiguity resolution and regional filtering. Using these velocities we perform a kinematic analysis of the station velocity solution, solving for an angular velocity that best describes the motion of the SNGV. We analyze the residuals to investigate where the SNGV

  2. The Effect of Plumes on the Dynamics of Supercontinents in a Self-Consistent Plate Tectonics Setting

    Science.gov (United States)

    Jain, C.; Rozel, A.; Tackley, P. J.

    2014-12-01

    Strong mantle plumes arising from the deep mantle can impose stresses on the continents, thereby facilitating continental rifting and disrupting the supercontinent cycle (Storey, Nature 1995; Santosh et al., Gondwana Research 2009). In recent years, several studies have characterized the relation between the location of the plumes and the continents, but with contradicting observations. While Heron and Lowman (GRL, 2010; Tectonophysics, 2011) propose regions where downwelling has ceased (irrespective of overlying plate) as the preferred location for plumes, O'Neill et al. (Gondwana Research, 2009) show an anti-correlation between the average positions of subducting slabs at continental margins, and mantle plumes at continental/oceanic interiors. Extent of continental motion depends on the heat budget of the mantle (CMB heat flux, radiogenic heating, mantle cooling). CMB heat flux is not well defined; however, the recent determination of core's high thermal conductivity requires a CMB heat flow of at least 12 TW (de Koker et al., PNAS 2012; Pozzo et al., Nature 2012; Gomi et al., PEPI 2013), much higher than early estimates of 3-4 TW (Lay et al., Nature 2008). Thus, it is necessary to characterize the effect of increased CMB heat flux on mantle dynamics. In almost all mantle convection simulations, the top boundary is treated as a free-slip surface whereas Earth's surface is a deformable free surface. Unlike free-slip, a free surface boundary condition allows for the development of topography and leads to realistic single-sided (asymmetric) subduction (Crameri et al., GJI 2012; Crameri et al., GRL 2012). Using StagYY code (Tackley, PEPI 2008), we test (i) the impact of increased basal heating on mantle dynamics with continents and self-consistent plate tectonics, including whether plumes prefer to develop under continents; (ii) the influence of a free surface on continents using the 'sticky air' approach, in which a low density and a small viscosity fluid layer is

  3. Student Misconceptions: A Qualitative Study of Conceptual Barriers in Plate Tectonics and in the Solar System among Upper Elementary Students

    Science.gov (United States)

    Brodsky, L. M.; Corrigan, S.

    2010-12-01

    Constructivist theory points to the importance of recognizing student conceptions and the need to address them if students are going to move from their first conceptions to scientifically accepted understandings. Research into students’ conceptions has therefore been conducted in the disciplines of physics, biology and chemistry, but so far has been limited in the earth sciences. In addition to this gap in the literature, there is a growing interest in making such research more accessible and useful to practitioners. Helpful to both of these needs are recent efforts to describe a particular class of students’ geoscience misconceptions termed “conceptual barriers”. Conceptual barriers are foundational or fundamental misconceptions in the sense that they bare relationships with many other concepts in a domain and stand to seriously impede students’ conceptual understanding. Rather than investigating discrete misconceptions, studies of conceptual barriers investigate the ramifications of such fundamental misconceptions for students’ understanding and reasoning throughout a topic. Where examples of students’ ill- or misconceived patterns of reasoning can be generated, they stand to aid practitioners in not only diagnosing students misconceptions but also in responding to them. We have conducted interviews with over twenty upper elementary and middle school students in order to investigate and describe conceptual barriers to student understanding in the earth sciences - specifically plate tectonics and gravity in the solar system. Student interviews were analyzed using a constant comparative method. Through this work we have been able to identify several possible conceptual barriers in students’ understandings and to describe the ways these barriers impact students’ understanding of related phenomena.

  4. Active tectonics in the Argentine Precordillera and Western Sierras Pampeanas

    Directory of Open Access Journals (Sweden)

    L.L. Siame

    2006-12-01

    Full Text Available The Andean foreland of western Argentina (28°S-33°S corresponds to retroarc deformations associated with the ongoing flat subduction of the Nazca plate beneath the South American lithosphere. This region is characterized by high levels of seismic activity and crustal active faulting. To improve earthquake source identification and characterization in the San Juan region, data from seismology, structural geology and quantitative geomorphology were integrated and combined to provide a seismotectonic model. In this seismotectonic model, the Andean back-arc of western Argentina can be regarded as an obliquely converging foreland where Plio-Quaternary deformations are partitioned between strike-slip and thrust motions that are localized on the E-verging, thin-skinned Argentine Precordillera, and the W-verging thick-skinned Sierras Pampeanas, respectively. In this seismotectonic model, the Sierra Pie de Palo appears to be a key structure playing a major role in the partitioning of the Plio-Quaternary deformations.

  5. Reducing risk where tectonic plates collide—U.S. Geological Survey subduction zone science plan

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.; Bekins, Barbara; Brocher, Thomas M.; Brock, John C.; Brothers, Daniel; Chaytor, Jason D.; Frankel, Arthur; Geist, Eric L.; Haney, Matt; Hickman, Stephen H.; Leith, William S.; Roeloffs, Evelyn A.; Schulz, William H.; Sisson, Thomas W.; Wallace, Kristi; Watt, Janet; Wein, Anne

    2017-06-19

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information and tools to build resilience in communities exposed to subduction zone earthquakes, tsunamis, landslides, and volcanic eruptions. Improving the application of USGS science to successfully reduce risk from these events relies on whole community efforts, with continuing partnerships among scientists and stakeholders, including researchers from universities, other government labs and private industry, land-use planners, engineers, policy-makers, emergency managers and responders, business owners, insurance providers, the media, and the general public.Motivated by recent technological advances and increased awareness of our growing vulnerability to subduction-zone hazards, the USGS is uniquely positioned to take a major step forward in the science it conducts and products it provides, building on its tradition of using long-term monitoring and research to develop effective products for hazard mitigation. This science plan provides a blueprint both for prioritizing USGS science activities and for delineating USGS interests and potential participation in subduction zone science supported by its partners.The activities in this plan address many USGS stakeholder needs:High-fidelity tools and user-tailored information that facilitate increasingly more targeted, neighborhood-scale decisions to mitigate risks more cost-effectively and ensure post-event operability. Such tools may include maps, tables, and simulated earthquake ground-motion records conveying shaking intensity and frequency. These facilitate the prioritization of retrofitting of vulnerable infrastructure;Information to guide local land-use and response planning to minimize development in likely hazardous zones (for example, databases, maps, and scenario documents to guide evacuation route planning in communities near volcanoes, along coastlines vulnerable to tsunamis, and built on landslide-prone terrain);New tools

  6. Seafloor morphology of the Eurasia-Nubia (Africa) plate boundary between the Tore-Madeira Rise and the Straits of Gibraltar: a case of coexistent Mesozoic through Present day features of tectonic, oceanographic and sedimentary origin

    Science.gov (United States)

    Terrinha, Pedro; Duarte, João.; Valadares, Vasco; Batista, Luis; Zitellini, Nevio; Grácia, Eulalia; Lourenço, Nuno; Rosas, Filipe; Roque, Cristina

    2010-05-01

    The joint use of more than 10.000 km multichannel seismic reflection profiles and 180.000km2 of multibeam swath bathymetry and backscatter allowed for a new vision of the seafloor tectonic and geomorphic processes of the area that encompasses the present day plate boundary between Africa and Eurasia, between the Gibraltar Straits and the Tore-Madeira Rise, in the southern sector of the North Atlantic Ocean. The interpretation of this data allowed for the detailed description of the seafloor morphology (i.e. a morphologic map) and the classification of the morphologic features in what respects the genetic process and age. It can be seen that in the same region coexist morphologic features that result from tectonic processes associated with the Triassic-Cretaceous break-up of Pangea, the Paleogene-Miocene compressive phase, the Miocene through Present subduction under the Gibraltar Arc (Gutscher et al., 2002), the Pliocene-Quaternary wrench tectonics and possible coeval plate boundary (Zitellini et al., 2009), the Present day mud volcanism and propagation of the compressive deformation along the West Continental Margin of Portugal (Terrinha et al., 2009). Interpretation of the seismic profiles together with the bathymetry allows the understanding of endogenous and exogenous processes that creates reliefs associated with active structures (related to the Miocene through Present compressive stress field). Other reliefs generated in Mesozoic times by analogous processes can be as well preserved as these active ones. In what concerns exogenous processes, the analysis of the two datasets (reflection seismics and bathymetry) allowed for the description of morphologic features associated with oceanic currents that interact with the seafloor forming these important features. As is the case of the well known active contourites but also less known features, like giant scours at 4 km water depth that have recently been described, suggesting the interaction of deep currents and

  7. Strike-slip tectonics within the northernmost Philippine Sea plate in an arc-continent collisional setting

    Science.gov (United States)

    Gong, Wei; Jiang, Xiaodian; Guo, Yufan; Xing, Junhui; Li, Congying; Sun, Yang

    2017-09-01

    The geological processes in the northernmost Philippine Sea plate, which is bounded by the Suruga and Sagami troughs, are a typical example of an active collision zone. We attempt to illustrate the stress field through seismic estimations and geodetic analysis and propose the kinematic mode of the northernmost tip of the Philippine Sea plate. Seven events (M ≥ 4.0) are chosen for waveform inversion by the ISOLA software to distinguish the stress field. In particular, six of the chosen events, which exhibit strike-slip motion, are distributed in the eastern area, where few focal mechanisms have been reported by previous studies. According to the available focal mechanisms, strike-slip faults with similar P and T axes are widely distributed in the study area. The stress inversion suggests that the northern area is characterized by a NW-SE compression and a NE-SW extension stress regime, although some spatial differences exist. As indicated by an analysis of the geodesy, epicenters, focal mechanisms, gravity anomalies and velocity structure, the deformation in the northernmost tip is mainly accommodated by several conjugate strike-slip fault systems with steep dips that center on the Izu volcanic line. Generally, the maximum principal stress of the kinematics is derived from the collision between the Philippine Sea plate and Central Japan. Because of the different subduction angles, rates and directions of the down-going plate, diverging slab-pull forces along the Suruga and Sagami troughs may be causing the NE-NNE extension in most of the areas that are bounded by the two troughs. The extension propagates southwards along the Izu volcanic line and reaches the area adjacent to Miyake-jima.

  8. Tectonic and Kinematic Regime along the Northern Caribbean Plate Boundary: New Insights from Broad-band Modeling of the May 25, 1992, Ms = 6.9 Cabo Cruz, Cuba, Earthquake

    Science.gov (United States)

    Perrot, J.; Calais, E.; Mercier de Lépinay, B.

    On May 25th, 1992, an Ms = 6.9 earthquake occurred off the southwestern tip of Cuba, along the boundary between the Caribbean and North American plates. This earthquake was the largest to strike southern Cuba since 1917 and the largest ever recorded in that region by global seismic networks. It is therefore a key element for our understanding of the tectonic and kinematic regime along the northern Caribbean plate boundary. In order to test the previously proposed source parameters of the Cabo Cruz earthquake and to better constrain its focal mechanism, we derived a new set of source parameters from unfiltered broad-band teleseismic records. We used a hybrid ray tracing method that allows us to take into account propagation effects of seismic waves in a realistic crustal model around the source. Our solution is consistent with the long-period focal mechanism solution of Virieux et al. (1992). Our solution also models the higher frequency crustal and water layer phases. The primarily strike-slip focal mechanism has a small thrust component. Its shows an east-west trending nodal plane dipping 55° to the north that we interpret as the rupture plane since it corresponds to the geometry of the major active fault in that area. The displacement on this plane is a left-lateral strike-slip combined with a small amount of southward thrust. The result is in good agreement with the active tectonic structures observed along the Oriente fault south of Cuba. The small thrust component demonstrates that, contrary to prior belief, the transpressive regime extends along this whole segment of the Caribbean/North American plate boundary. Together with historical seismicity, it suggests that most of the stress accumulated by the Caribbean/North American plate motion is released seismically along the southern Cuban margin during relatively few but large earthquakes.

  9. Actively controlling coolant-cooled cold plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  10. Epeirogeny and plate tectonics

    Science.gov (United States)

    Menard, H. W.

    1975-01-01

    Vertical motions of the earth crust and their causes are considered in relation to epeirogenic phenomena. Factors discussed include: external loading and unloading; bending at subduction zones; internal density changes; and dynamic effects of mantle motion. The relationship between epeirogeny and drift is briefly reviewed along with oceanic epeirogeny.

  11. Tectonic Plates of China

    Science.gov (United States)

    1977-04-01

    following two featuies are noteworthy: (i) The 4,000-5,000 m contour almost coincides with the West Kunlun- Arkin-North Chilien- Lungmen -Kantien...The 50-55 km isopack coinciden with the border of the Chinhai-Tibet highland. It coincides with the West Kunlun-Arkin-North Chilien- Lungmen range

  12. Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis

    Directory of Open Access Journals (Sweden)

    Syed Amer Mahmood

    2012-07-01

    The results obtained from these indices were combined to yield an index of relative active tectonics (IRAT using GIS. The average of the seven measured geomorphic indices was used to evaluate the distribution of relative tectonic activity in the study area. We defined four classes to define the degree of relative tectonic activity: class 1__very high (1.0 ≤ IRAT < 1.3; class 2__high (1.3 ≥ IRAT < 1.5; class 3—moderate (1.5 ≥ IRAT < 1.8; and class 4—low (1.8 ≥ IRAT. In view of the results, we conclude that this combined approach allows the identification of the highly deformed areas related to active tectonics. Landsat imagery and field observations also evidence the presence of active tectonics based on the deflected streams, deformed landforms, active mountain fronts and triangular facets. The indicative values of IRAT are consistent with the areas of known relative uplift rates, landforms and geology.

  13. An Introduction to the Latest-generation Spatial Database of Active Tectonics of China

    Institute of Scientific and Technical Information of China (English)

    Qu Chunyan; Deng Qidong

    2009-01-01

    Based on ArcGIS and MapInfo software, we digitized the active tectonics map (1:4,000,000) of China, which was compiled and revised by academician Deng Qidong, and built the spatial database of active tectonics of China. The database integrates rich active tectonic data, such as a catalogue of earthquakes with magnitude above 6.0, active faults, Quaternary basins, active folds and their associated attribute parameters, and implements scientific and effective management to this data. At the same time, the spatial database joins the spatial map data and the associated attribute data together, which implements the data query between spatial properties and attribute parameters and also makes it possible to perform spatial analysis with different data layers. These provide much convenience for earthquake study and allows engineering construction institutions to use this data in practical applications.

  14. Spatial-temporal variation of the land surface temperature field and present-day tectonic activity

    Directory of Open Access Journals (Sweden)

    Jin Ma

    2010-10-01

    Full Text Available This study attempts to acquire information on tectonic activity in western China from land surface temperature (LST field data. On the basis of the established relationship between heat and strain, we analyzed the LST distribution in western China using the satellite data product MODIS/Terra. Our results show that: 1. There are departures from annual changes of LST in some areas, and that these changes are associated with the activity of some active tectonic zones. 2. When annual-change background values caused by climate factors are removed, the long-period component (LSTLOW of temperature residual (ΔT of the LST is able to serve as an indicator for tectonic activity. We have found that a major earthquake can produce different effects on the LST fields of surrounding areas. These effects are characterized by both rises and drops in temperature. For example, there was a noteworthy temperature decline associated with the Sumatran M9 earthquake of 2004 in the Bayan Har-Songpan block of central Tibetan Plateau. 3. On the other hand, the LST field of a single area may respond differently to major shocks occurring in different areas in the regions surrounding China. For instance, the Kunlun M 8.1 event made the LST on the Longmen Mountains fault zone increase, whereas the Zaisan Lake M 7.9 quake of 2003, and the Sumatran M 9 event of 2004, caused decreases in the same area’s LST. 4. The variations of land surface temperature (LST over time are different in different tectonic areas. These phenomena may provide clues for the study of tectonic deformation processes. On the basis of these phenomena, we use a combination of temperature data obtained at varied depths, regional seismicity and strain results obtained with GPS measurements, to test the information related to tectonic activity derived from variations of the LST field, and discuss its implications to the creation of models of regional tectonic deformation.

  15. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) ‘The fit of the continents around the Atlantic’

    Science.gov (United States)

    Dewey, John F.

    2015-01-01

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142

  16. 3-D simulation of temporal change in tectonic deformation pattern and evolution of the plate boundary around the Kanto Region of Japan due to the collision of the Izu-Bonin Arc

    Science.gov (United States)

    Hashima, A.; Sato, T.; Ito, T.; Miyauchi, T.; Furuya, H.; Tsumura, N.; Kameo, K.; Yamamoto, S.

    2010-12-01

    The Kanto region of Japan is in a highly complex tectonic setting with four plates interacting with each other: beneath Kanto, situated on the Eurasian and North American plates, the Philippine sea plate subducts and the Pacific plate further descends beneath the North American and Philippine sea plates, forming the unique trench-trench-trench triple junction on the earth. In addition, the Izu-Bonin (Ogasawara) arc on the Philippine sea plate is colliding with the Japan islands, which is considered to be a significant effect on the tectonics of Kanto. To reveal the present crustal structure and the present internal stress fields in such a complex tectonic setting, it is essential to comprehend them through the long-term tectonic evolution process. In this study, we estimate the temporal change in tectonic deformation pattern along with the geometry of the plate boundary around Kanto by numerical simulation with a kinematic plate subduction model based on the elastic dislocation theory. This model is based on the idea that mechanical interaction between plates can rationally be represented by the increase of the displacement discontinuity (dislocation) across plate interfaces. Given the 3-D geometry of plate interfaces, the distribution of slip rate vectors for simple plate subduction can be obtained directly from relative plate velocities. In collision zones, the plate with arc crust cannot easily descend because of its buoyancy. This can be represented by giving slip-rate deficit. When crustal deformation occurs, it also causes change in geometry of the plate boundary itself. This geometry change sensitively affects mechanical interaction at the plate boundary. Then the renewed plate-to-plete interaction alters crustal deformation rates. This feedback system has a large effect on collision zones. Indeed, the plate boundary around the Izu peninsula, the northernmost end of the Izu-Bonin arc, intends landward as large as 100 km. Iterating this effect sequentially

  17. CHARACTERISTICS OF PLATE TECTONICS AND DIVISION OF GEOTECTONIC UNITS IN IJAONING REGION%辽宁板块构造特征及大地构造单元划分

    Institute of Scientific and Technical Information of China (English)

    赵光慧; 关玉波; 赵建军

    2011-01-01

    利用板块构造理论,依据近年来1:5万区域地质调查及相关科研成果,对辽宁地壳发展演化进行了分析研究,提出辽宁地壳发展可暂划分为早前寒武纪大陆增生构造体制和中元古宙以来的板块构造体制.中太古代-古元古代发现了绿岩地体和古元古宙裂谷,因此将早前寒武纪视作原始板块,中元古代-古生代视作古板块,中生代以来视作现代板块.在此基础上对辽宁大地构造单元进行了划分.辽宁Ⅰ级构造单元为塔里木-华北板块.Ⅱ级构造单元为天山-赤峰陆缘活动带和华北陆块.Ⅲ级构造单元5个,分别为建平-西丰华力西陆缘造山带、冀辽地块、铁岭-清原微地块、辽吉地块及下辽河-辽东湾新生代裂谷.Ⅳ级构造单元16个.为清楚地了解辽宁地壳发展演化特点,对5个Ⅲ级构造单元地质特征进行简要阐述.%Based on the theory of plate tectonics and the results of the 1:50000 regional geological survey in recent years and related achievements, the crustal evolution and development of Liaoning region are analyzed. It is suggested that the crustal development in the region should be divided into Early Precambrian continental accretion tectonic system and Mesoproterozoic plate tectonic system. Because of the discovery of the Mesoarchean-Paleoproterozoic greenstone terrane and Paleoproterozoic rift, the Early Precambrian era can be regarded as primitive plate period; while the Mesoproterozoic to Paleozoic as ancient plate period; and since Mesozoic, modern plate. On this basis, the tectonic units of Liaoning region are divided. The Grade I unit is Tarim-North China plate. Grade Ⅱ involves Tianshan-Chifeng continental margin active belt and North China landmass. The Grade III units include Jianping-Xifeng Variscan continental margin orogeny, HebeiLiaoning massif, Tieling-Qingyuan micro-massif, Liaoning-Jilin massif and Lower Liaohe-Liaodong Bay Cenozoic rift.There are 16 tectonic

  18. The feedback between active tectonics, fluid flow and mineralization in an Andean geotermal reservoir

    Science.gov (United States)

    Reich, M.; Arancibia, G.; Perez, P.; Sanchez, P.; Cembrano, J. M.; Stimac, J. A.; Lohmar, S.

    2012-12-01

    In the Andean Cordillera of Central-Southern Chile, geothermal resources occur in close spatial relationship with active volcanism. The nature of the relationship between tectonics and volcanism in this region is the result of interaction between the crustal structures of the basement and the ongoing regional stress field, which is primarily controlled by the oblique convergence of the Nazca and South America Plates. Between 39° and 46°S, the volcanic and geothermal activity is controlled by the NNE-trending, 1,000 km long Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system. Although there is consensus that volcanism (and hence geothermal activity) in southern Chile is largely controlled by the regional-scale tectonic stress field and architecture of the volcanic arc, there is limited scientific information about the role of local kinematic conditions on fluid flow and mineralization during the development and evolution of geothermal reservoirs. In this report, we present the preliminary results of an undergoing structural, mineralogical and geochemical study of the Tolhuaca geothermal system in southern Chile. The Tolhuaca geothermal reservoir formed as a liquid-dominated hydrothermal system, where shallow upflow resulted in near-boiling temperatures in a roughly horizontal liquid reservoir at 100-200 m depth (Melosh et al., 2010, 2012). In an early stage of evolution, hydrothermal brecciation and phase-separation (boiling) episodes penetrated at least 950 m depth into the deeper reservoir, and boiling was followed by steam-heated water invasion that cooled the reservoir. In a later stage, the preliminary conceptual model involves boiling and reheating of the reservoir, forming a system with deep hot brines that is connected to the shallow steam zone by an upflow conduit that is characterized by high-temperature mineralogy. The structural analysis of veins, fault-veins and faults of the Tol-1 drillcore (~1080 m depth) provide insights

  19. Application of laser ranging and VLBI data to a study of plate tectonic driving forces. [finite element method

    Science.gov (United States)

    Solomon, S. C.

    1980-01-01

    The measurability of changes in plate driving or resistive forces associated with plate boundary earthquakes by laser rangefinding or VLBI is considered with emphasis on those aspects of plate forces that can be characterized by such measurements. Topics covered include: (1) analytic solutions for two dimensional stress diffusion in a plate following earthquake faulting on a finite fault; (2) two dimensional finite-element solutions for the global state of stress at the Earth's surface for possible plate driving forces; and (3) finite-element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting.

  20. Note on: "Inevitability of Plate Tectonics on Super-Earths" by Valencia, O Connell and Sasselov, arXiv preprint 0710.0699

    CERN Document Server

    Omerbashich, Mensur

    2008-01-01

    Valencia et al. recently claimed that the mass of a Super-Earth (SE) is a sole factor in determining whether a SE is tectonically active or not. However, mass resolving astrometry is unable to discern between a SE and its moons if any. The fact that no exomoons have been discovered yet is rather a matter of instrumentation imperfection at the present, not of physical absence of exomoons. This, with recently discovered relationships between geometric and physical properties in astronomical bodies (Transiting planets; the Earth) makes it impossible to know yet if the Wageners (here constraining) supposition on somehow-tidally caused tectonics holds universally or not also.

  1. Mixing in mantle convection models with self-consistent plate tectonics and melting and crustal production: Application to mixing in the early Earth

    Science.gov (United States)

    Tackley, Paul

    2016-04-01

    It is generally thought that the early Earth's mantle was hotter than today, which using conventional convective scalings should have led to vigorous convection and mixing. Geochemical observations, however, suggest that mixing was not as rapid as would be expected, leading to the suggestion that early Earth had stagnant lid convection (Debaille et al., EPSL 2013). Additionally, the mantle's thermal evolution is difficult to explain using conventional scalings because early heat loss would have been too rapid, which has led to the hypothesis that plate tectonics convection does not follow the conventional convective scalings (Korenaga, GRL 2003). One physical process that could be important in this context is partial melting leading to crustal production, which has been shown to have the major effects of buffering mantle temperature and carrying a significant fraction of the heat from hot mantle (Nakagawa and Tackley, EPSL 2012), making plate tectonics easier (Lourenco et al., submitted), and causing compositional differentiation of the mantle that can buffer core heat loss (Nakagawa and Tackley, GCubed 2010). Here, the influence of this process on mantle mixing is examined, using secular thermo-chemical models that simulate Earth's evolution over 4.5 billion years. Mixing is quantified both in terms of how rapidly stretching occurs, and in terms of dispersion: how rapidly initially close heterogeneities are dispersed horizontally and vertically through the mantle. These measures are quantified as a function of time through Earth's evolution. The results will then be related to geochemically-inferred mixing rates.

  2. Active Motion of Tectonic Blocks in East Asia: Evidence from GPS Measurement

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The relative Euler vectors of the Pacific, Philippine, Amurian, Okhotsk, N. Honshu and South China plates or blocks are deduced from earthquake slip vectors, transform fault azimuths and spreading rates, which are consistent with new results derived from the International Terrestrial Reference Frame ITRF2000 velocity field, the velocity field of GPS stations in China and the GPS measurement data of the GEONET network in Japan. Based on the two groups of Euler vectors, analysis and comparative study of the relative motions and deformations of the tectonic blocks in East Asia reveal the present-day motion characteristics of the blocks.

  3. Recent Tectonic Activity on Pluto Driven by Phase Changes in the Ice Shell

    CERN Document Server

    Hammond, Noah P; Parmentier, Edgar M

    2016-01-01

    The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock (see Moore et al., 2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m$^{-1}$ K$^{-1}$, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than $260$ km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.

  4. Plate tectonic reconstruction of South and East Asia since 43 Ma using seismic tomographic constraints: role of the subducted ';East Asia Sea' (Invited)

    Science.gov (United States)

    Wu, J. E.; Suppe, J.; Renqi, L.; Kanda, R. V.

    2013-12-01

    Lithosphere that subducts at convergent plate boundaries provides a potentially decipherable plate tectonic record. In this study we use global seismic tomography to map subducted slabs in the upper and lower mantle under South and East Asia to constrain plate reconstructions. The mapped slabs include the Pacific, the Indian Ocean and Banda Sea, the Molucca Sea, Celebes Sea, the Philippine Sea and Eurasia, New Guinea and other lower mantle detached slabs. The mapped slabs were restored to the earth surface and used with Gplates software to constrain a globally-consistent, fully animated plate reconstruction of South and East Asia. Three principal slab elements dominate possible plate reconstructions: [1] The mapped Pacific slabs near the Izu-Bonin and the Marianas trenches form a subvertical slab curtain or wall extending down to 1500 km in the lower mantle. The ';slab curtain' geometry and restored slabs lengths indicate that the Pacific subduction zone has remained fixed within +/- 250 km of its present position since ~43 Ma. In contrast, the Tonga Pacific slab curtain records at least 1000 km trench rollback associated with expansion of back-arc basins. [2] West of the Pacific slab curtain, a set of flat slabs exist in the lower mantle and record a major 8000km by 2500-3000km ocean that existed at ~43 Ma. This now-subducted ocean, which we call the ';East Asian Sea', existed between the Ryukyu Asian margin and the Lord Howe hotspot, present-day eastern Australia, and fills a major gap in Cenozoic plate reconstructions between Indo-Australia, the Pacific Ocean and Asia. [3] An observed ';picture puzzle' fit between the restored edges of the Philippine Sea, Molucca Sea and Indian Ocean slabs suggests that the Philippine Sea was once part of a larger Indo-Australian Ocean. Previous models of Philippine Sea plate motions are in conflict with the location of the East Asian Sea lithosphere. Using the mapped slab constraints, we propose the following 43 Ma to 0 plate

  5. Applications of Morphochronology to the Active Tectonics of Tibet

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, F J; Tapponnier, P; Finkel, R C; Meriaux, A; der Woerd, J V; Lasserre, C; Chevalier, M; Xiwei, X; Haibing, L; King, G P

    2005-01-28

    The Himalayas and the Tibetan Plateau were formed as a result of the collision of India and Asia, and provide an excellent opportunity to study the mechanical response of the continental lithosphere to tectonic stress. Geophysicists are divided in their views on the nature of this response advocating either (1) homogeneously distributed deformation with the lithosphere deforming as a fluid continuum or (2) deformation is highly localized with the lithosphere that deforms as a system of blocks. The resolution of this issue has broad implications for understanding the tectonic response of continental lithosphere in general. Homogeneous deformation is supported by relatively low decadal, geodetic slip-rate estimates for the Altyn Tagh and Karakorum Faults. Localized deformation is supported by high millennial, geomorphic slip-rates constrained by both cosmogenic and radiocarbon dating on these faults. Based upon the agreement of rates determined by radiocarbon and cosmogenic dating, the overall linearity of offset versus age correlations, and on the plateau-wide correlation of landscape evolution and climate history, the disparity between geomorphic and geodetic slip-rate determinations is unlikely to be due to the effects of surface erosion on the cosmogenic age determinations. Similarly, based upon the consistency of slip-rates over various observation intervals, secular variations in slip-rate appear to persist no longer than 2000 years and are unlikely to provide reconciliation. Conversely, geodetic and geomorphic slip-rate estimates on the Kunlun fault, which does not have significant splays or associated thrust faults, are in good agreement, indicating that there is no fundamental reason why these complementary geodetic and geomorphic methods should disagree. Similarly, the geodetic and geomorphic estimates of shortening rates across the northeastern edge of the plateau are in reasonable agreement, and the geomorphic rates on individual thrust faults demonstrate

  6. Evolution of the North China Craton and Early Plate Tectonics%华北克拉通的形成以及早期板块构造

    Institute of Scientific and Technical Information of China (English)

    翟明国

    2012-01-01

    The oldset rock discovered on the Earth is the TTG gneiss but whether there was oldest oceanic crust and how continental crust formed deal with all aspects of continental dynamics. Among them is when the plate tectonics started , "which has been a front scientific question for decades. The popular answer is from Neoproterozoic, others suggest Paleoproterozoic or Neoarchean, or even some believe the plate tectonics started from the occurrence of water. In various marks identifying the plate tectonics, ophiolite and high-pressure metamorphic belt are no doubt the most important issues. The former implies that the old oceanic crust slab was involved in orogenic belt, and the latter probably indicates that supracrustal rock unit was subducted under deep crust or mantle and can be lithological evidence of subduction, denudation and collision. Based on the discussion and comparison between Archean greenstone belt and ophiolite and between UH-HP/UT-UHT granulites and Phanerozoic HP metamorphic belt, authors come to a primitive conclusion that these two can not be used as the convincing evidence to support plate tectonics. The paper also discussed Archean continental formation and rift-subdution-collision tectonic process of Paleoproterozoic mobile belts of the NCC. It is proposed that the Neoarchean tectonic pattern of greenstone belt-high grade region in the NCC probably indicates a dominant heat tectonic regime (mantle plume) with limited transverse movement. The micro-blocks were welded by greenstone belts, followed by metamorphism and granitization, completing craton process of stable continent. The tectonic regime is likely controlled by frequent moderate-scale mantle plumbs, accompanied by small-scale horizontal tectonic movement. The Paleoproterozoic supracrustal rocks in the NCC occur as a linear mobile belt with middle-grade metamorphism, multi-stage deformation, intruded by nearly synchronous or little later granitic intrusion and associated by Cu

  7. Research on the Characteristics of Large Earthquake Activity on the Active Tectonic Boundaries on the Chinese Mainland

    Institute of Scientific and Technical Information of China (English)

    Ma Hongsheng; Zhang Guomin; Liu Jie; Wang Hui

    2006-01-01

    Based on the research and the division of the active tectonic blocks and their boundaries on the Chinese mainland, the feature of the large earthquake activities on the 24 boundaries between the 6 active tectonic block regions (grade Ⅰ ) and the 22 active tectonic blocks (grade Ⅱ ) are studied. The seismicity levels on the active tectonic block boundaries are discussed considering the large earthquake frequency and the released strain energy in unit distance and time. The theoretic maximal magnitude and the recurrence period of each boundary are then calculated from the G-R relation. By comparing this with the actual earthquake records, it is found that the intensities of the earthquake deduced from the seismic activity parameter (a/b) on the main active boundaries on the Chinese mainland are consistent with that of the natural earthquakes. Meanwhile, an inverse relation is found between the recurrence periods of large earthquakes and the tectonic motion rate on the boundaries. These results show that the a, b values of each boundary obtained in this paper are valuable. In addition, the present seismic activities and hazards of these boundaries are also probed into with the historical data and their elapsed time on each boundary based on the hypothesis that the large earthquakes satisfy Poisson distribution.

  8. Morphometric analysis of relative tectonic activity in the Baturagung Mountain, Central Java, Indonesia

    Science.gov (United States)

    Mulyasari, Rahmi; Brahmantyo, Budi; Supartoyo

    2017-06-01

    Special Region of Yogyakarta and Klaten district, Central Java is one of areas in Indonesia that is prone to earthquake caused by subduction in Indian Ocean and active fault in land. The earthquake sources from active fault probable from Opak and other faults located in Baturagung Mountain. Active faults controlling landform development in tectonically active regions, and it has significantly affected fluvial systems and mountain - front landscapes in the Baturagung Mountain. To assess tectonic activities in the area used quantitative analysis (morphometric). Morphometric analysis consists of 5 parameters geomorphic indices: drainage basin asymmetry (AF), hypsometric curve and integral (Hc and Hi), stream length gradient (SL) index, basin shape index (Bs), and mountain-front sinuosity (Smf). These indices were combined to yield the relative tectonic activity index (RTAI) using geographic information systems (GIS). The result found that RTAI in the study area are divided into three classes: Class 2 (high 0.6% of the watershed area (1.32 km2)); Class 3 (moderate 58.9% (122.1 km2)); and Class 4 (low 40.4% (83.75 km2)). All of morphometric analysis generally indicates this area more influenced by tectonics than erosion. The results are consistent with geomorphological observations.

  9. Preliminary study on hydrogeology in tectonically active areas.

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Thomas Stephen; Lappin, Allen R.; Gettemy, Glen L.; Jensen, Richard Pearson; Arnold, Bill Walter; James, Scott Carlton; Lee, Moo Yul; Meier, Diane A.

    2006-09-01

    This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

  10. Drainage - Structure Correlation in tectonically active Regions: Case studies in the Bolivian and Colombian Andes

    Science.gov (United States)

    Zeilinger, Gerold; Parra, Mauricio; Kober, Florian

    2017-04-01

    It is widely accepted, that drainage patterns are often controlled by tectonics/climate and geology/rheology. Classical drainage patterns can be found 1) in fault-and-thrust belt, where rives follow the valleys parallel or cut perpendicular to strike trough the ridges, forming a trellis pattern, 2) at dome structures where the drainage form a radial pattern or 3) rectangular patterns in strongly fractured regions. In this study, we focus on fault-and-thrust belts, that undergone different phases of tectonic activity. According to classical models, the deformation is propagating into the foreland, hence being youngest at the frontal part and getting successively older towards the axis of the orogen. Drainage patterns in the more interior parts of the orogenic wedge should be then less influenced by the direction of structures, as landscape evolution is changing to a tectonic passive stage. This relationship might represent the transience and maturity of drainage pattern evolution. Here we study drainage patterns of the Bolivian and the eastern Colombian Andes by comparing the relative orientation of the drainage network with the orogen structural grain. The drainage is extracted from Digital Elevation Models (SRTM 30 m) and indexed by their Strahler Order. Order 1 channels have an upstream area of 1 km2. The direction of all segments is analyzed by linear directional mean function that results in the mean orientation of input channels with approx. 500 m average length. The orientation of structures for different structural domains is calculated using the same function on digitized faults and fold-axis. Rose diagrams show the length-weighted directional distribution of structures, of higher (>= 4) and of lower order (tectonic activity. The only weakly preferred orientation of drainages in the interior parts (EC and IR) suggests a balance between structural control and drainage occupation, and higher maturity of the landscape. In contrast, the distinct pattern of

  11. Advances in Structural Geology and Tectonics in the Late 20th Century: A Review

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on analyses of the share of documents of structural geology and tectonics in the GeoRef system over 100 years in the last century, and the historical change of international (31 years) and domestic (16 years) document counts of various topics in structural geology and tectonics, the position of structural geology and tectonics in the geosciences is evaluated and the major advaces in fields of plate tectonics, continental dynamics and global dynamics are reviewed. Our attention mainly focuses on the advances in studies of structural analysis, deformation mechanisms and rheology of rocks,contractional tectonics and late- and post-orogenic extensional collapse in orogens, large-scale strikeslip faults and indentation-extrusion tectonics, active tectonics and natural hazards. The relationships of structural geology and tectonics with petrology and geochronology are also discussed in terms of intersection of scientific disciplines. Finally, some suggestions are proposed for the further development of structural geology and tectonics in China.

  12. Assessment of relative tectonic activity in the Trichonis Lake graben (Western Greece) using geomorphometry

    Science.gov (United States)

    Karymbalis, Efthimios; Valkanou, Kanella; Fubelli, Giandomenico; Ferentinou, Maria; Giles, Philip; Papanastassiou, Dimitris; Gaki-Papanastassiou, Kalliopi; Tsanakas, Konstantinos

    2016-04-01

    In tectonically active areas fluvial systems and mountain fronts are controlled by the type, geometry, and recent activity of faults. The aim of this study is to investigate the contribution of neotectonics to the development of the fluvial landscape of the broader Trichonis Lake area (located in western continental Greece) through quantitative geomorphological analysis. The Trichonis Lake graben is a well-known tectonic depression of Quaternary age, which cuts across the early Tertiary NW-SE fold and thrust structures of the Pindos Mountain belt. It strikes WNW-ESE for a distance of 32 km and has a width of 10 km. The graben at the north and south flanks of the lake is bounded by E-W and NW-SE trending faults. Recent seismic activity (a shallow earthquake sequence in 1975 and a 2007 earthquake swarm) showed the existence of a NNW-SSE normal fault that dips to the NE and bounds the south-eastern shore of the lake. The studied catchments are developed on the hanging walls of these active normal faults. To evaluate the relative tectonic activity in the study area, various morphometric indices were measured for 35 catchments (slope of the valley sides of the catchment, hypsometric integral, catchment asymmetry factor, relief ratio, Melton's ruggedness number, stream-gradient index, ratio of valley floor width to valley height, and catchment shape) and 20 mountain fronts (mountain-front sinuosity index) around the lake. For the measurement of the geomorphometric variables a digital elevation model (DEM) with 2-m spatial resolution was derived from topographic maps at 1:5000 scale with 4-m contour lines, and a series of maps showing the spatial distribution of the variables were produced in a GIS environment. For each morphometric variable the catchments were classified into three classes. The combination of these morphometric variables allowed us to yield two new indices of relative tectonic activity (named IRTA - Index of Relative Tectonic Activity and IAT - Index of

  13. A kinematic model for Afar Depression lithospheric thinning and its implications for hominid evolution: an exercise in plate-tectonic paleoanthropology

    Science.gov (United States)

    Redfield, T.; Often, M.; Wheeler, W. H.

    2002-12-01

    We present a detailed Nubia-Arabia-Somalia (NU-AR-SOM) kinematic reconstruction based on magnetic sea floor isochrons in the Gulf of Aden and Red Sea and piercing points along the Red Sea margins. The reconstruction is combined with digital topographic and depth-to-Moho data to constrain in 4D the Late Oligocene to present-day evolution of the Afar supra-Moho crust. Opposite end-member models for crustal evolution are described. We conclude that less than 20% of the present-day Afar supra-Moho crust was constructed by magmatic processes such as diking and underplating. The reconstructions indicate that the greater percentage of crustal thinning (extension) occurred before 6.2 Ma. We model the thinning of the effective elastic lithosphere that accompanied extension, and show that the regional-scale topographic development of the Afar depression was virtually complete by Mid Pliocene time. The plate-tectonic model has paleoanthropological implications. Prior to 6.2 Ma the proximal positions of NU-SOM, AR, and the Danakil block suggest subaerial conditions prevailed between Yemen and Ethiopia. Uninhibited Africa-Eurasia faunal exchange through Afar and Arabia (corroborated by isotopic and paleontologic data) was tectonically permissible until the time of the earliest hominids. Continued stretching caused the Afar land bridge(s) to disappear during Early to Mid Pliocene time. Primitive hominid populations living within the Afar Depression became isolated from AR sometime before ~3.2 Ma. With the plateau becoming less habitable due to long-term Late Neogene cooling, hominids that remained in the Afar Depression were required to adapt to a smaller range that was effectively bounded by the already well-developed NU-SOM escarpments and the newly opened Straits of Bab el Mandeb. The combination of high quality habitat,topographic confinement, and a gradual (tectonic) reduction in range, exacerbated by potentially severe fluctuations in local climate (well documented by land

  14. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    Science.gov (United States)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  15. Active inversion tectonics, simple shear folding and back-thrusting at Rioni Basin, Georgia

    Science.gov (United States)

    Tibaldi, A.; Alania, V.; Bonali, F. L.; Enukidze, O.; Tsereteli, N.; Kvavadze, N.; Varazanashvili, O.

    2017-03-01

    The Rioni Basin, located between the Greater and Lesser Caucasus in Georgia, is an outstanding example of ongoing inversion tectonics. Marine and continental deposits of Cretaceous-Neogene age have been locally uplifted since the end of Miocene. The uplifted area totals 1300 km2, and Plio-Quaternary river deposits have been raised up to 200 m above the surrounding plains. Inversion tectonics has been accompanied by the development of south-vergent asymmetrical folds and strike-slip faults along the border of the uplifted area. The folds have locally an en-échelon geometry and microtectonic data indicate rotation of the paleostress direction over time, suggesting simple shear deformation. In the interiors of the uplifted area, there are gentle symmetrical folds and one main active south-dipping reverse fault, corresponding to a backthrust. Morphostructural evidence, as well as the tilting of Quaternary strata, the offset of Quaternary alluvial deposits and the presence of crustal seismic activity, indicate that compressional tectonics is still active. The combination of field data with seismic reflection sections shows that inversion tectonics took place through a series of north-dipping blind thrusts and a wedge with passive back-thrusting. Uplift and contraction are more developed along the eastern part of the study area, suggesting the westward propagation of the closure of the Transcaucasian depression.

  16. Re-examination of geophysical data off Northwest India: Implications to the Late Cretaceous plate tectonics between India and Africa.

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Desa, M.; Ramprasad, T.

    processes. Late Cretaceous seafloor spreading between India and Africa formed the Mascarene Basin, and the plate reconstruction models depict unequal crustal accretion in this basin. Re-interpretation of magnetic data in the Gop and Laxmi Basins suggests...

  17. Far-Field Deformation Resulting from Rheologic Differences Interacting with Tectonic Stresses: An Example from the Pacific/Australian Plate Boundary in Southern New Zealand

    Directory of Open Access Journals (Sweden)

    Phaedra Upton

    2014-07-01

    Full Text Available The Miocene in Southern New Zealand was dominated by strike-slip tectonics. Stratigraphic evidence from this time attests to two zones of subsidence in the south: (a a middle Cenozoic pull-apart basin and (b a regionally extensive subsiding lake complex, which developed east and distal to the developing plate boundary structure. The lake overlay a block of crust with a significantly weak mid-crustal section and we pose the question: can rheological transitions at an angle to a plate boundary produce distal subsidence and/or uplift? We use stratigraphic, structural and geophysical observations from Southern New Zealand to constrain three-dimensional numerical models for a variety of boundary conditions and rheological scenarios. We show that coincident subsidence and uplift can result from purely strike-slip boundary conditions interacting with a transition from strong to weak to strong mid-crustal rheology. The resulting pattern of vertical displacement is a function of the symmetry or asymmetry of the boundary conditions and the extent and orientation of the rheological transitions. For the Southern New Zealand case study, subsidence rates of ~0.1 mm/yr are predicted for a relative plate motion of 25 mm/yr, leading to ~500 m of subsidence over a 5 Ma time period, comparable to the thickness of preserved lacustrine sediments.

  18. A subdued topography among the high relief, tectonic-active island ---registered middle to late Pleistocene climatic changes in Taiwan

    Science.gov (United States)

    Liew, P.; Chen, B.

    2003-12-01

    The island of Taiwan is geographically in the frontal zone of the Asian monsoon region, and is geologically located in the collision boundary between the Philippine Sea plate and the Eurasian plate. A Holocene uplifting rate of up to 10mm/yr in the eastern coast has been documented in this high relief mountainous island, and active folds and thrusts are common. When tracing the rivers backward to the mountain, one often encounters a subdued topography, covered by primary lateritic soil, above the higher river terrace and below the rugged mountains, and is referred to as lateritic highland (LH) by a previous author. Studies in paleoclimatology and geomorphology enable us to refine the possible age and origin of this remarkable topography. The penultimate glacial-interglacial cycle and the last interglacial period should be the major interval for the development of lateritic highland. LH may be looked upon as a reference surface for studying the dynamic evolution of the tectonic landscape of Taiwan. It shows that the lower uplifting rate is the most important factor for the preservation of the LH topography in this island. Based on the morphology of LH, different deformation styles are recognized in north and south Chiayi (near tropic of cancer), in western Taiwan. To the north, platforms originating from piedmont LH are well developed, whereas to the south, platforms and piedmont LH are hardly visible. This contrast is probably due to a lithological variance between them.

  19. Evaluating influence of active tectonics on spatial distribution pattern of floods along eastern Tamil Nadu, India

    Science.gov (United States)

    Selvakumar, R.; Ramasamy, SM.

    2014-12-01

    Flooding is a naturally recurrent phenomenon that causes severe damage to lives and property. Predictions on flood-prone zones are made based on intensity-duration of rainfall, carrying capacity of drainage, and natural or man-made obstructions. Particularly, the lower part of the drainage system and its adjacent geomorphic landforms like floodplains and deltaic plains are considered for analysis, but stagnation in parts of basins that are far away from major riverine systems is less unveiled. Similarly, uncharacteristic flooding in the upper and middle parts of drainage, especially in zones of an anomalous drainage pattern, is also least understood. Even though topographic differences are attributed for such anomalous spatial occurrence of floods, its genetic cause has to be identified for effective management practice. Added to structural and lithological variations, tectonic movements too impart micro-scale terrain undulations. Because active tectonic movements are slow-occurring, long-term geological processes, its resultant topographical variations and drainage anomalies are least correlated with floods. The recent floods of Tamil Nadu also exhibit a unique distribution pattern emphasizing the role of tectonics over it. Hence a detailed geoinformatics-based analysis was carried out to envisage the relationship between spatial distribution of flood and active tectonic elements such as regional arches and deeps, block faults, and graben and drainage anomalies such as deflected drainage, compressed meander, and eyed drainages. The analysis reveals that micro-scale topographic highs and lows imparted by active tectonic movements and its further induced drainage anomalies have substantially controlled the distribution pattern of flood.

  20. The distribution and composition characteristics of siliceous rocks from Qinzhou Bay-Hangzhou Bay joint belt, South China: constraint on the tectonic evolution of plates in South China.

    Science.gov (United States)

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Zhou, Yongzhang; Yang, Zhijun; He, Junguo; Liang, Jin; Zhou, Liuyu

    2013-01-01

    The Qinzhou Bay-Hangzhou Bay joint belt is a significant tectonic zone between the Yangtze and Cathaysian plates, where plentiful hydrothermal siliceous rocks are generated. Here, the authors studied the distribution of the siliceous rocks in the whole tectonic zone, which indicated that the tensional setting was facilitating the development of siliceous rocks of hydrothermal genesis. According to the geochemical characteristics, the Neopalaeozoic siliceous rocks in the north segment of the Qinzhou Bay-Hangzhou Bay joint belt denoted its limited width. In comparison, the Neopalaeozoic Qinzhou Bay-Hangzhou Bay joint belt was diverse for its ocean basin in the different segments and possibly had subduction only in the south segment. The ocean basin of the north and middle segments was limited in its width without subduction and possibly existed as a rift trough that was unable to resist the terrigenous input. In the north segment of the Qinzhou Bay-Hangzhou Bay joint belt, the strata of hydrothermal siliceous rocks in Dongxiang copper-polymetallic ore deposit exhibited alternative cycles with the marine volcanic rocks, volcanic tuff, and metal sulphide. These sedimentary systems were formed in different circumstances, whose alternative cycles indicated the release of internal energy in several cycles gradually from strong to weak.

  1. The Distribution and Composition Characteristics of Siliceous Rocks from Qinzhou Bay-Hangzhou Bay Joint Belt, South China: Constraint on the Tectonic Evolution of Plates in South China

    Directory of Open Access Journals (Sweden)

    Hongzhong Li

    2013-01-01

    Full Text Available The Qinzhou Bay-Hangzhou Bay joint belt is a significant tectonic zone between the Yangtze and Cathaysian plates, where plentiful hydrothermal siliceous rocks are generated. Here, the authors studied the distribution of the siliceous rocks in the whole tectonic zone, which indicated that the tensional setting was facilitating the development of siliceous rocks of hydrothermal genesis. According to the geochemical characteristics, the Neopalaeozoic siliceous rocks in the north segment of the Qinzhou Bay-Hangzhou Bay joint belt denoted its limited width. In comparison, the Neopalaeozoic Qinzhou Bay-Hangzhou Bay joint belt was diverse for its ocean basin in the different segments and possibly had subduction only in the south segment. The ocean basin of the north and middle segments was limited in its width without subduction and possibly existed as a rift trough that was unable to resist the terrigenous input. In the north segment of the Qinzhou Bay-Hangzhou Bay joint belt, the strata of hydrothermal siliceous rocks in Dongxiang copper-polymetallic ore deposit exhibited alternative cycles with the marine volcanic rocks, volcanic tuff, and metal sulphide. These sedimentary systems were formed in different circumstances, whose alternative cycles indicated the release of internal energy in several cycles gradually from strong to weak.

  2. Laser Induced Selective Activation For Subsequent Autocatalytic Electroless Plating

    DEFF Research Database (Denmark)

    Zhang, Yang

    The subject of this PhD thesis is “Laser induced selective activation for subsequent autocatalytic electroless plating.” The objective of the project is to investigate the process chains for micro structuring of polymer surfaces for selective micro metallization. Laser induced selective activation...

  3. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin

    2015-04-01

    Studying recent volcanic and tectonic events in the Red Sea region is important for improving our knowledge of the Red Sea plate boundary and for regional geohazard assessments. However, limited information has been available about the past activity due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report on three volcanic eruptions in the southern Red Sea, the 2007-8 Jebel at Tair eruption and the 2011-12 & 2013 Zubair eruptions, which resulted in formation of two new islands. Series of high- resolution optical images were used to map the extent of lava flows and to observe and analyze the growth and destructive processes of the new islands. I used Interferometric Synthetic Aperture Radar (InSAR) data to study the evolution of lava flows, to estimate their volumes, as well as to generate ground displacements maps, which were used to model the dikes that fed the eruptions. I then report on my work of the 2009 Harrat Lunayyir dike intrusion and the 2004 Tabuk earthquake sequence in western Saudi Arabia. I used InSAR observations and stress calculations to study the intruding dike at Harrat Lunayyir, while I combined InSAR data and Bayesian estimation to study the Tabuk earthquake activity. The key findings of the thesis are: 1) The recent volcanic eruptions in the southern Red Sea indicate that the area is magmatically more active than previously acknowledged and that a rifting episode has been taken place in the southern Red Sea; 2) Stress interactions between an ascending dike intrusion and normal faulting on graben-bounding faults above the dike can inhibit vertical propagation of magma towards the surface; 3) InSAR observations can improve locations of shallow earthquakes and fault model uncertainties are useful to associate earthquake activity with mapped faults; 4). The

  4. Active tectonics of the Oran (Algeria) Quaternary plain

    Science.gov (United States)

    youcef, Bouhadad; rabah, Bensalem; e-hadi, oubaiche

    2016-04-01

    The Oran region, in north-western Algeria, has been hit several times in the past by destructive moderate-sized and strong earthquakes. The Oran October 9th , 1790 (I0= X) was among the strongest seismic events in the western Mediterranean area comparable, if we consider the described effects, to the El- Asnam (1980, Ms=7.3) and Zemmouri (2003, Mw=6.8) earthquakes. Such strong seismic events requires the presence of major active geological structures that are re-activated several times in the past. In this work we present results of a multi- disciplinary study combining geomorphic analysis, field earthquake geological investigations and geophysical methods, undertaken to study the southern border of the Oran Quaternary plain. A 50 km long, SW-dipping and NE-SW trending active fault has been identified that showing clear quaternary deformation. Keywords: earthquake geology, active fault, geomorphic, geophysics, Algeria.

  5. Coupling dynamic mechanisms between plate tectonics evolution and mantle convection of south and north Tianshan%天山南北地块构造演化与地幔对流耦合动力机制

    Institute of Scientific and Technical Information of China (English)

    刘玉虎; 刘兴旺; 郑建京; 赵丹丹; 杨鑫; 王亚东

    2011-01-01

    天山造山带南北分别于塔里木盆地和准噶尔盆地相接,经历古生代时期超级大陆裂解、南北天山洋裂开、洋盆持续扩张、洋壳俯冲消减、陆陆碰撞缝合过程及中新生代陆内再造山构造调整,是现今世界上较为活跃的陆内造山带,成为国内外大陆动力学研究的热点地带.在综合分析地质学、地球物理(地震剖面、重力异常、地震层析)、地球化学、岩石学及天文学等资料基础上,结合天山造山带大地构造演化历史、地表构造变形、盆地基底构造样式,以及对5种地幔对流模式的深入探究,基于全地幔对流和上地幔小尺度对流模式,提出天山地区板块构造演化与地幔对流的耦合动力机制,总体呈现为“启动-同步-超越-消减”模式,中间过程则伴随微观振荡旋回动力模式向前发展,该模式可与经典威尔逊旋回比较,同时现今地球深部板决演化痕迹及地幔对流数值模拟一定程度上支持了该模式.总之,将板块构造演化历史与地幔对流结合起来、纳入统一的动力学模型中,对于今后研究地球各子系统之间的耦合状态、相互作用有十分重要的意义.%Tianshan orogenic belt connects with the Tarim basin and Junggar basin from south to north respectively. Through a joint Paleozoic continental breakup, the South Tianshan Ocean and the North Tianshan ocean cracked, the continued expansion of ocean basins, oceanic crust subduction, continental collision and suture and Cenozoic tectonic adjustments, now it is the world's more active orogenic belt and become a domestic hot zone of continental dynamics. Based on comprehensive analysis of geological, geophysical ( seismic profiles, gravity anomalies, seismic tomography), geochemical, petrological, and astronomy, etc. , combined with the tectonic evolution history of the Tianshan orogenic belt, the surface structural deformation, base tectonic style of the basin, and the deeply

  6. Kinematic evidence for the effect of changing plate boundary conditions on the tectonics of the northern U.S. Rockies

    Science.gov (United States)

    Schmeelk, Dylan; Bendick, Rebecca; Stickney, Michael; Bomberger, Cody

    2017-06-01

    We derive surface velocities from GPS sites in the interior Northwest U.S. relative to a fixed North American reference frame to investigate surface tectonic kinematics from the Snake River Plain (SRP) to the Canadian border. The Centennial Tectonic Belt (CTB) on the northern margin of the SRP exhibits west directed extensional velocity gradients and strain distributions similar to the main Basin and Range Province (BRP) suggesting that the CTB is part of the BRP. North of the CTB, however, the vergence of velocities relative to North America switches from westward to eastward along with a concomitant rotation of the principal stress axes based on available seismic focal mechanisms, revealing paired extension in the northern Rockies and shortening across the Rocky Mountain Front. This change in orientation of surface velocities suggests that the change in the boundary conditions on the western margin of North America influences the direction of gravitational collapse of Laramide thickened crust. Throughout the study region, fault slip rate estimates calculated from the new geodetic velocity field are consistently larger than previously reported fault slip rates determined from limited geomorphic and paleoseismic studies.

  7. Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history

    NARCIS (Netherlands)

    Ren, Y.; Stutzmann, E.; Hilst, R.D. van der; Besse, J.

    2007-01-01

    We combine results from seismic tomography and plate motion history to investigate slabs of subducted lithosphere in the lower mantle beneath the Americas. Using broadband waveform cross correlation, we measured 37,000 differential P and S traveltimes, 2000 PcP-P and ScS-S times along a wide corrido

  8. Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history

    NARCIS (Netherlands)

    Ren, Y.; Stutzmann, E.; Hilst, R.D. van der; Besse, J.

    2007-01-01

    We combine results from seismic tomography and plate motion history to investigate slabs of subducted lithosphere in the lower mantle beneath the Americas. Using broadband waveform cross correlation, we measured 37,000 differential P and S traveltimes, 2000 PcP-P and ScS-S times along a wide corrido

  9. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    Science.gov (United States)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    Palaeo-uplift also was developed in the Early Permian to Middle Triassic (277-236 Ma), related to the final closure of the Paleo-Asian Ocean. Furthermore, we advocate that the tectonic setting of Inner Mongolia Palaeo-uplift probably belonged to the plate marginal orogenic belt during Early Permian-Middle Triassic.

  10. Obliquity along plate boundaries

    Science.gov (United States)

    Philippon, Mélody; Corti, Giacomo

    2016-12-01

    Most of the plate boundaries are activated obliquely with respect to the direction of far field stresses, as roughly only 8% of the plate boundaries total length shows a very low obliquity (ranging from 0 to 10°, sub-orthogonal to the plate displacement). The obliquity along plate boundaries is controlled by (i) lateral rheological variations within the lithosphere and (ii) consistency with the global plate circuit. Indeed, plate tectonics and magmatism drive rheological changes within the lithosphere and consequently influence strain localization. Geodynamical evolution controls large-scale mantle convection and plate formation, consumption, and re-organization, thus triggering plate kinematics variations, and the adjustment and re-orientation of far field stresses. These geological processes may thus result in plate boundaries that are not perpendicular but oblique to the direction of far field stresses. This paper reviews the global patterns of obliquity along plate boundaries. Using GPlate, we provide a statistical analysis of present-day obliquity along plate boundaries. Within this framework, by comparing natural examples and geological models, we discuss deformation patterns and kinematics recorded along oblique plate boundaries.

  11. Linking Europa's plume activity to tides, tectonics, and liquid water

    CERN Document Server

    Rhoden, Alyssa R; Roth, Lorenz; Retherford, Kurt

    2015-01-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30 - 80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and...

  12. Inferring tectonic activity using drainage network and RT model: an example from the western Himalayas, India

    Science.gov (United States)

    Sahoo, Ramendra; Jain, Vikrant

    2017-04-01

    Morphology of the landscape and derived features are regarded to be an important tool for inferring about tectonic activity in an area, since surface exposures of these subsurface processes may not be available or may get eroded away over time. This has led to an extensive research in application of the non-planar morphological attributes like river long profile and hypsometry for tectonic studies, whereas drainage network as a proxy for tectonic activity has not been explored greatly. Though, significant work has been done on drainage network pattern which started in a qualitative manner and over the years, has evolved to incorporate more quantitative aspects, like studying the evolution of a network under the influence of external and internal controls. Random Topology (RT) model is one of these concepts, which elucidates the connection between evolution of a drainage network pattern and the entropy of the drainage system and it states that in absence of any geological controls, a natural population of channel networks will be topologically random. We have used the entropy maximization principle to provide a theoretical structure for the RT model. Furthermore, analysis was carried out on the drainage network structures around Jwalamukhi thrust in the Kangra reentrant in western Himalayas, India, to investigate the tectonic activity in the region. Around one thousand networks were extracted from the foot-wall (fw) and hanging-wall (hw) region of the thrust sheet and later categorized based on their magnitudes. We have adopted the goodness of fit test for comparing the network patterns in fw and hw drainage with those derived using the RT model. The null hypothesis for the test was, the drainage networks in the fw are statistically more similar than those on the hw, to the network patterns derived using the RT model for any given magnitude. The test results are favorable to our null hypothesis for networks with smaller magnitudes (< 9), whereas for larger

  13. Neutron flux variations near the Earth’s crust. A possible tectonic activity detection

    Directory of Open Access Journals (Sweden)

    B. M. Kuzhevskij

    2003-01-01

    Full Text Available The present work contains some results of observations of neutron flux variations near the Earth’s surface. The Earth’s crust is determined to be a significant source of thermal and slow neutrons, originated from the interaction between the nuclei of the elements of the Earth’s crust and the atmosphere and α-particles, produced by decay of radioactive gases (Radon, Thoron and Actinon. In turn, variations of radioactive gases exhalation is connected with geodynamical processes in the Earth’s crust, including tectonic activity. This determined relation between the processes in the Earth’s crust and neutrons’ flux allow to use variations of thermal and slow neutrons’ flux in order to observe increasing tectonic activity and to develop methods for short-term prediction of natural hazards.

  14. Integrated morphometric analysis in GIS environment applied to active tectonic areas.

    OpenAIRE

    Nappi, Rosa; Alessio, Giuliana

    2012-01-01

    This chapter describes a methodology for identifying the structural lineaments in active tectonic areas by integrating morphological and morphometrical data derived by DEMs (Digital Elevation Models) processing, with local seismicity data. Moreover, validation of the lineaments extracted from DEM has been carried out by examining literature geological and geomorphological data, aerial photo interpretation and field surveys. The morphometric parameters as the terrain slope, terrain aspect, ...

  15. Drainage Characteristics of Tectonically Active Areas: An Example from Rajasthan, India

    Directory of Open Access Journals (Sweden)

    SWATI JAIN

    2010-06-01

    Full Text Available The morphotectonic studies help in deciphering the role of tectonics and neotectonics in morphological evolution of drainage basins. On the basis of remote sensing technique, the relationship between morphology and tectonics have been investigated in Bundi-Indergarh sector of southeast Rajasthan. The area selected for present study is drained by Mej river and its tributaries and occupies the southeastern part of the Aravalli Mountain Range (AMR. The course of Mej river is mostly controlled by the Great Boundary Thrust (GBT and associated tectonic elements. GBT separates the folded, faulted and metamorphosed older rocks of the AMR in the west and relatively undeformed Vindhyan rocks in the east. This study has been carried out using digital and hard copy product of IRS 1C/1D LISS III geocoded FCC data. The morphometric and morphotectonic aspects have been studied for identification of present day tectonic activities in the area. The remote sensing data interpretation indicates that the landforms of the area are structurally controlled and mainly covered by linear and parallel strike ridges and valleys. These valleys indicate sign of stream rejuvenation and occasional presence of dynamic ravines. General morphometric parameters, bifurcation ratio, stream length and shape parameters have been computed. Longitudinal river profiles can be quantified by normalizing the elevation and the distance along rivers. Several parameters such as profile shape (concavity, gradient fluctuations, river grade and valley incision have been derived from longitudinal river profile. These quantified parameters and their interrelations are useful in comparing different drainage basins and also help drawing inferences on neotectonism. The computed values suggest that the area is covered by resistant rock and drainage network, affected by tectonic distur-bance. The valley floor ratio is very low, indicating channel down cutting vis-a-vis ground uplift. The gradient index

  16. Tectonic and metamorphic discontinuities in the Greater Himalayan Sequence in Central Himalaya: in-sequence shearing by accretion from the Indian plate

    Science.gov (United States)

    Carosi, Rodolfo

    2016-04-01

    The Greater Himalayan Sequence (GHS) is the main metamorphic unit of the Himalayas, stretching for over 2400 km, bounded to the South by the Main Central Thrust (MCT) and to the North by the South Tibetan Detachment (STD) whose contemporanous activity controlled its exhumation between 23 and 17 Ma (Godin et al., 2006). Several shear zones and/or faults have been recognized within the GHS, usually regarded as out of sequence thrusts. Recent investigations, using a multitechnique approach, allowed to recognize a tectonic and metamorphic discontinuity, localized in the mid GHS, with a top-to-the SW sense of shear (Higher Himalayan Discontinuity: HHD) (Carosi et al., 2010; Montomoli et al., 2013). U-(Th)-Pb in situ monazite ages provide temporal constraint of the acitivity of the HHD from ~ 27-25 Ma to 18-17 Ma. Data on the P and T evolution testify that this shear zone affected the tectono-metamorphic evolution of the belt and different P and T conditions have been recorded in the hanging-wall and footwall of the HHD. The HHD is a regional tectonic feature running for more than 700 km, dividing the GHS in two different portions (Iaccarino et al., 2015; Montomoli et al., 2015). The occurrence of even more structurally higher contractional shear zone in the GHS (above the HHD): the Kalopani shear zone (Kali Gandaki valley, Central Nepal), active from ~ 41 to 30 Ma (U-Th-Pb on monazite) points out to a more complex deformation pattern in the GHS characterized by in sequence shearing. The actual proposed models of exhumation of the GHS, based exclusively on the MCT and STD activities, are not able to explain the occurrence of the HHD and other in-sequence shear zones. Any model of the tectonic and metamorphic evolution of the GHS should account for the occurrence of the tectonic and metamorphic discontinuities within the GHS and its consequences on the metamorphic paths and on the assembly of Himalayan belt. References Godin L., Grujic D., Law, R. D. & Searle, M. P. 2006

  17. A revised estimate of Pacific-North America motion and implications for Western North America plate boundary zone tectonics

    Science.gov (United States)

    Demets, Charles; Gordon, Richard G.; Stein, Seth; Argus, Donald F.

    1987-01-01

    Marine magnetic profiles from the Gulf of Californa are studied in order to revise the estimate of Pacific-North America motion. It is found that since 3 Ma spreading has averaged 48 mm/yr, consistent with a new global plate motion model derived without any data. The present data suggest that strike-slip motion on faults west of the San Andreas is less than previously thought, reducing the San Andreas discrepancy with geodetic, seismological, and other geologic observations.

  18. Active cloaking for clusters of pins in thin plates

    CERN Document Server

    O'Neill, Jane; Haslinger, Stewart; Movchan, Natasha; Craster, Richard

    2016-01-01

    This paper considers active cloaking of a square array of evenly spaced pins in a Kirchhoff plate in the presence of flexural waves. Active sources are distributed exterior to the cluster and are represented by the non-singular Green's function for the biharmonic operator. The complex amplitudes of the active sources, which cancel out selected multipole orders of the scattered field, are found by solving an algebraic system of equations. For frequencies in the zero-frequency stop band, we find that a small number of active sources located on a grid is sufficient for cloaking. For higher frequencies, we achieve efficient cloaking with the active sources positioned on a circle surrounding the cluster. We demonstrate the cloaking efficiency with several numerical illustrations, considering key frequencies from band diagrams and dispersion surfaces for a Kirchhoff plate pinned in a doubly periodic fashion.

  19. One-step pickling-activation before magnesium alloy plating

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-juan; YU Gang; OUYANG Yue-jun; HE Xiao-mei; ZHANG Jun; YE Li-yuan

    2009-01-01

    A one-step pickling-activation process was proposed as an environmental friendly pretreatment method in phosphate-permanganate solution before electroplating on magnesium alloys. The effects of pickling-activation on qualities of coating were assessed by adhesion and porosity testing of copper plating. The interfacial reactions between specimen and solution were analyzed with SEM, EDX and XRD. The results show that the developed process of pickling-activation can equalize the potentials on substrate surface. The compacted zinc film can be obtained by zinc immersion after treating magnesium alloy in the pH 4-6 phosphate-permanganate solution for 3-5 min. The adhesion and corrosion resistance of copper plating are enhanced. The one-step pickling-activation can replace the existing two-step process of acid pickling and activation which contains a great deal of chromium and fluorine. The procedure of surface pretreatment is simplified and the production environment is improved.

  20. Recent earthquake activity in Trichonis region and its tectonic significance

    Directory of Open Access Journals (Sweden)

    N. DELIBASIS

    1977-06-01

    Full Text Available SUMMARY. - The aftershock activity associated with the central Greece
    (Trichonis Lake earthquake of |une-Dec. 1975, has been studied, with emphasis
    on the time and magnitude distribution. It has been found that the value of b,
    in Gutenberg - R i c h t e r ' s relationship was near the same for the primary as
    well as the secondary or second order aftershocks of the sequences, but depends
    upon the focal depth.
    A correlation between the calculated focal mechanisms and the associated
    stress components to the distribution pattern of meizoseismic effects as well
    as to the geological structure of the seismic region was found.
    The seismic region lies at the top of an anticline which was found moving
    downwards, apparently due to compressional stresses.
    Within the series of three earthquakes the progress of the destruction of
    the buildings was observed and reported. The interest is concentrated to modern
    buildings out of reinforced concrete and infill brick walls. The relatively unexpected
    rather bad performance of the later case of buildings was compared to that
    of the traditional small houses out of brick or stone masonry, the behaviour of
    which may be considered as better from what it was expected.

  1. 超大陆旋回与成矿作用%Active Global Tectonics and Ore-Forming Processes

    Institute of Scientific and Technical Information of China (English)

    李文渊

    2012-01-01

    Most of the world's great mineral deposits are the products of a superposition of geological processes which resulted in anomalous concentration of ores, generally occurred at the end of a geological period. Crust-forming processes and the global plate tectonic and mantle plumes paradigm have become indispensable to the broader understanding of how ore deposits form, and a successful exploration of modern ore deposits has been an appreciation of the history and evolution of the continents and oceans. Consequently, the relationship of the formation of ore deposits between global tectonics and the evolution of the continents is a study basement of ore-forming dynamics. In this paper, from the point of view of active global tectonics, and the rates of historic records of amalgamation and dispersal of the super-continents, we study the ore-forming processes in a setting of active global evolution in order to stimulate more further study and reflection of the field.%世界上绝大多数大矿床都是超级地质作用导致矿石异常集中的结果,一般多发生于一个地质作用结束的时期.地壳形成作用和板块构造、地幔柱模型已经成为如何认识矿床形成的关键所在,现代矿床成功的探索实践历史就是对大陆和海洋的深人认识进程.因此,矿床形成与全球构造和大陆的演化关系是研究成矿动力学的基础.本文以全球活动构造的视角,从超大陆聚散的历史纪录角度,对活动的地球演化环境下的成矿作用进行总结探索,以图激发对该领域更为深入的研究和思考.

  2. Recent tectonic activity on Mercury revealed by small thrust fault scarps

    Science.gov (United States)

    Watters, Thomas R.; Daud, Katie; Banks, Maria E.; Selvans, Michelle M.; Chapman, Clark R.; Ernst, Carolyn M.

    2016-10-01

    Large tectonic landforms on the surface of Mercury, consistent with significant contraction of the planet, were revealed by the flybys of Mariner 10 in the mid-1970s. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission confirmed that the planet's past 4 billion years of tectonic history have been dominated by contraction expressed by lobate fault scarps that are hundreds of kilometres long. Here we report the discovery of small thrust fault scarps in images from the low-altitude campaign at the end of the MESSENGER mission that are orders of magnitude smaller than the large-scale lobate scarps. These small scarps have tens of metres of relief, are only kilometres in length and are comparable in scale to small young scarps on the Moon. Their small-scale, pristine appearance, crosscutting of impact craters and association with small graben all indicate an age of less than 50 Myr. We propose that these scarps are the smallest members of a continuum in scale of thrust fault scarps on Mercury. The young age of the small scarps, along with evidence for recent activity on large-scale scarps, suggests that Mercury is tectonically active today and implies a prolonged slow cooling of the planet's interior.

  3. The composition and the source of hydrocarbons in sediments taken from the tectonically active Andaman Backarc Basin, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Chernova, T.G.; Rao, P.S.; Pikovskii, Yu.I.; Alekseeva, T.A.; Nath, B.N.; Rao, B.R.; Rao, Ch.M.

    or hydrothermal organic matter. Anthropogenic sources in region studied are of minor importance. From the results obtained, it may be deduced that the hydrocarbons in the sediments of the tectonically active part of the Andaman Basin are mainly due...

  4. Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics

    Directory of Open Access Journals (Sweden)

    N. Wright

    2013-03-01

    Full Text Available A variety of paleogeographic reconstructions have been published, with applications ranging from paleoclimate, ocean circulation and faunal radiation models to resource exploration; yet their uncertainties remain difficult to assess as they are generally presented as low-resolution static maps. We present a methodology for ground-truthing the digital Palaeogeographic Atlas of Australia by linking the GPlates plate reconstruction tool to the global Paleobiology Database and a Phanerozoic plate motion model. We develop a spatio-temporal data mining workflow to validate the Phanerozoic Palaeogeographic Atlas of Australia with paleoenvironments derived from fossil data. While there is general agreement between fossil data and the paleogeographic model, the methodology highlights key inconsistencies. The Early Devonian paleogeographic model of southeastern Australia insufficiently describes the Emsian inundation that may be refined using biofacies distributions. Additionally, the paleogeographic model and fossil data can be used to strengthen numerical models, such as the dynamic topography and the associated inundation of eastern Australia during the Cretaceous. Although paleobiology data provide constraints only for paleoenvironments with high preservation potential of organisms, our approach enables the use of additional proxy data to generate improved paleogeographic reconstructions.

  5. Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs.

    Science.gov (United States)

    Apperson, K D

    1991-11-01

    Tectonic stress fields in the overriding plate at convergent plate margins are complex and vary on local to regional scales. Volcanic arcs are a common element of overriding plates. Stress fields in the volcanic arc region are related to deformation generated by subduction and to magma generation and ascent processes. Analysis of moment tensors of shallow and intermediate depth earthquakes in volcanic arcs indicates that the seismic strain field in the arc region of many convergent margins is subhorizontal extension oriented nearly perpendicular to the arc. A process capable of generating such a globally consistent strain field is induced asthenospheric corner flow below the arc region.

  6. Implications for the tectonic transition zone of active orogeny in Hoping drainage basin, by landscape evolution at the multi-temporal timescale

    Science.gov (United States)

    Chang, Q.; Chen, R. F.; Lin, W.; Hsieh, P. S.

    2015-12-01

    In an actively orogeny the landscape are transient state of disequilibrium in response to climatic and tectonic inputs. At the catchment scale, sensitivity of river systems plays an important role in landscape evolution. Hoping drainage basin is located at the tectonic transition zone in the north-eastern Taiwan, where the behavior of Philippine Sea plate switches from overriding above the east-dipping Eurasian Continental plate to northward subducting under the Ryukyu arc. However, extensive deep-seated landslides, debris flow, and numerous large alluvial terraces can be observed, suggesting strong surface processes in this watershed. This effect on regional climate fundamentally changed the landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. In this study we review the morphological evidence from multi-temporal timescale, including in-situ cosmogenic nuclides denudation rate and suspension load data, coupled with the analysis of the longitudinal profiles. The main goal of this study is to compare Holocene erosion rates with thermochronology and radiometric dating of river terraces to investigate the erosion history of Hoping area. The result shows that short-term erosion rate is around twice as large as the long-term denudation rate, which might due to the climate-driven erosion events such as typhoon-induced landslide. We've also mapped detail morphological features by using the high-resolution LiDAR image, which help us to identify not only the landslide but also tectonic features such as lineation, fault scarps, and fracture zones. The tectonic surface features and field investigation results show that the drainage basin is highly fractured, suggesting that even though the vertical tectonic activity rate is small, the horizontal shortening influenced by both southward opening of the back-arc Okinawa trough and the north-western collision in this area is significant. This might cause the reducing in rock strength

  7. Analysis of geometry of volcanoes and faults in Terceira Island (Azores): Evidence for reactivation tectonics at the EUR/AFR plate boundary in the Azores triple junction

    Science.gov (United States)

    Navarro, A.; Lourenço, N.; Chorowicz, J.; Miranda, J. M.; Catalão, J.

    2009-02-01

    The late Pliocene to Quaternary (5 Ma) volcanism in the central and eastern Azores Archipelago is related to the Eurasia/Africa divergence, but a clear deformation pattern has not yet been established at this location. This work focuses on the contribution of Synthetic Aperture Radar (SAR) scenes and Digital Elevation Models (DEM), complemented with geophysical, geodetic and morpho-structural data, to establish the geometric relationships between volcanic edifices and tectonic structures in the central and eastern Azores Archipelago. Bathymetric data were also used to extend field observations to the significant submarine area of the Azores plateau. Strikes of extension fractures, directly observed or inferred from elongated volcanic vents or linear volcanic clusters in Terceira Island, indicate that volcanism is mainly controlled by regional extension as given by NUVEL-1A plate motion model. Additionally, other directions were also detected for extension fractures around the Santa Barbara volcano (defining a radial pattern) and in the central part of the island (exhibiting an S-shape pattern). Although most of the volcanic vents are controlled by extension fractures, some seem to be controlled by faulting, such as the case of the ones rooted in releasing bends along strike-slip or oblique-slip faults in the central part of the island. Concerning the Azores plateau, most of the structures have directions that do not directly fit with present-day direction of relative motion (˜ N70°) between Eurasia and Africa. Directions ranging from N110° to N125°, found mainly along the Terceira rift, are interpreted as ancient transform directions, reactivating as transtensional fault zones due to the present-day plate motion. N-S directions are also visible in the plateau, being interpreted as former middle-oceanic rift faults reactivated as left-lateral fault zones. These results contrast with the volcanic expression in other hotspot dominated oceanic islands such as the

  8. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through......Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  9. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  10. Identification of paleoearthquakes based on geomorphological evidence and their tectonic implications for the southern part of the active Anqiu-Juxian fault, eastern China

    Science.gov (United States)

    Jiao, Qisong; Jiang, Wenliang; Zhang, Jingfa; Jiang, Hongbo; Luo, Yi; Wang, Xin

    2016-12-01

    This study utilized an unmanned aerial vehicle (UAV) photogrammetry system to acquire orthoimages and generate a digital elevation model (DEM) covering the southern part of the Anqiu-Juxian fault for geomorphological analysis and paleoearthquake identification. Six offset gullies were identified and analyzed on the orthoimages. Our results indicate that at least three large and several moderate earthquakes have occurred along the fault zone. Knickpoints recognized from the DEM reveal several paleoearthquakes. An average Holocene horizontal slip rate of 2.86 ± 0.35 mm yr-1 was estimated from the offset gullies, which is consistent with previous results from field surveys. The tectonic evolution of this fault zone is most likely related to subduction of the Pacific plate under the Eurasian plate, which gave rise to the right-lateral strike-slip and thrust movement of the Tan-Lu fault zone. This study provided valuable information regarding fault activity and paleoearthquake occurrence along the Anqiu-Juxian fault zone during the Holocene and demonstrated the potential of using UAVs for studies involving tectonic geomorphology.

  11. Active tectonics on Lanzarote (Canary Islands) from the analysis of CGPS data

    Science.gov (United States)

    Riccardi, Umberto; Arnoso, Jose; Benavent, María Teresa; Velez, Emilio; Tammaro, Umberto; González Montesinos, Fuensanta

    2017-04-01

    We report on the analysis of about three years of CGPS data collected on a small network consisting in five permanent stations, with the largest baseline up to 40 km, spread over Timanfaya National Park in Lanzarote Island. The GPS stations are operated by different institutions, as follows: CAME is co-operated by the Institute of Geosciences (CSIC-UCM), DiSTAR and the Geodesy Research Group of University Complutense of Madrid (GRG-UCM), while LACV is operated by (CSIC-UCM and GRG-UCM). Stations HRIA, TIAS, YAIZ, belong to GRAFCAN (Cartographical Service of the Government of Canary Islands). Lanzarote is the most Northeast and the oldest island of the Canarian Archipelago (Spain), which is located on a transitional zone, a passive margin, between oceanic and continental crust. Due to some peculiarities in geochemistry and geochronology of the rocks as well as tectonics, the origin of the archipelago from a hot spot is still debated. In fact, the most recent Holocenic volcanism is scattered over the islands and the last eruption was a submarine one, occurred in October 2011 at El Hierro Island. The last eruption in Lanzarote was a 7 years voluminous eruptive cycle, occurred during the 18th century. Historical seismicity registered in the region, is customarily attributed to diffuse tectonic activity. This study is intended to contributing to shed light on the active tectonics on Lanzarote island and to separate between local and regional strain fields. With the aid of Gamit 10.6 software, we compute from the GPS observations the "ionofree" linear combinations in order to obtain the positions of the stations in ITRF2008 frame using daily sessions, and IGS precise ephemeris. The frame referencing of the network is realized by eleven IGS GPS stations. Then through a Kalman filtering procedure, implemented in GLOBK software, we obtain the final daily solutions by constraining the fiducial GPS stations to their ITRF2008 coordinates. For a reliable strain field retrieval

  12. Spatial analysis of Budovar stream catchment (Srem Loess Plateau, Serbia) in a tectonically active region

    Science.gov (United States)

    Jovanovic, Mladjen; Rvovic, Ivan; Sorak, Rada; Petrovic, Milos

    2016-04-01

    Budovar is the far longest stream on Srem Loess Plateau, with a length of a 52 km, and catchment area of 245 km2. Budovar stream drains a quite complex landscape in terms of generally flat loess plateau, with elevations decreasing gradually southeastward - from 213 m at slopes of Fru\\vska Gora Mountain to 70,9 m at the confluence with Danube river. The youngest (Pleistocene/Holocene) sedimentary formations in the catchment vary from slope loess on Fru\\vska Gora Mtn. in upper part, through typical plateau loess in middle part, and the finest bog-sediments in tectonic depressions in lower part. These deposits lie over the bog-lake-terrestrial sediments with thickness over 100 m. According the geodetic measurements, uplift of Fru\\vska Gora Mtn., which has been the strongest during the Middle Pleistocene, is still present, with rates of up to 1 mm/y in contrast of general uplift of the area, subsidence is recorded in two distinct parts of the catchment. Spatial analysis is done using a DEM, generated in ArcGIS 10.0 from the elevation points, 10 m contours and stream coverage available in 1:25.000 topographical maps. Both longitudinal and cross-section profiles of the valley reflect the influence of tectonic distortions and climatic fluctuations. Valleys in Budovar catchment have composite character - the valleys cross-sections vary from deep incised V-shape, reversed trapezoid shape and completely flat valleys in tectonic depressions. Moreover, there is almost no correlation between the shape of cross-sectional profiles and the direction of curvature of the main valley's long axis (left/right or straight), suggesting that the tectonic activity has the key role in shaping. The width of valleys in Budovar catchment area is in sharp contrast with present stream discharge, which suggests strong climate fluctuations since Upper Pleistocene. The longitudinal profiles also shows signs of kickpoints and some short reaches with increasing elevation in the flow direction. Key

  13. METAMORPHISM, PLATE TECTONICS, AND THE SUPERCONTINENT CYCLE%变质作用、板块构造及超级大陆旋回

    Institute of Scientific and Technical Information of China (English)

    Michael; Brown

    2007-01-01

    Era. A duality of thermal regimes is the hallmark of modern plate tectonics and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both G - UHTM and E - HPGM belts since the Neoarchean manifests the onset of a "Proterozoic plate tectonics regime", although the style of tectonics likely involved differences. The "Proterozoic plate tectonics regime" evolved during a Neoproterozoic transition to the "modern plate tectonics regime" characterized by colder subduction and subduction of continental crust deep into the mantle and its (partial) return from depths of up to 300 km, as chronicled by the appearance of HPM - UHPM in the rock record. The age distribution of metamorphic belts that record extreme conditions of metamorphism is not uniform, and metamorphism occurs in periods that correspond to amalgamation of continental lithosphere into supercratons (e.g. Superia/Sclavia) or supercontinents (e.g. Nuna (Columbia), Rodinia, Gondwana, and Pangea).%麻粒岩相超高温变质作用(G - UHTM)主要发育于新太古代至寒武纪岩石中;推测在深部较年轻的,特别是新生代造山带岩石中也会有G - UHTM存在.岩石中最初出现G - UHTM记录意味着产生瞬时极高热流处的地球动力学发生了改变.许多G - UHTM带可能发育于类似现代大陆弧后的构造背景中.在较热的地球上,超大陆及其裂解形成的循环组合,尤其是经岩石圈减薄的洋盆卷入到其外翻过程中可能产生比现代太平洋边缘更热的大陆弧后.中温榴辉岩-高压麻粒岩相变质作用(E - HPGM)也是最先发现于新太古代岩石记录中,并发育于从元古宙至古生代岩石中.E - HPGM带是对G - UHTM带的补充,并经常认为是记录了从俯冲至碰撞造山作用的过程.在元古宙岩石记录中的蓝片岩明显记录了与现代俯冲作用相关的低热流梯度.以发育柯石英(±硬柱石)或金刚石

  14. Geology of the Eoarchean, > 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics

    Science.gov (United States)

    Komiya, Tsuyoshi; Yamamoto, Shinji; Aoki, Shogo; Sawaki, Yusuke; Ishikawa, Akira; Tashiro, Takayuki; Koshida, Keiko; Shimojo, Masanori; Aoki, Kazumasa; Collerson, Kenneth D.

    2015-11-01

    The Earth is a unique planet, which has been highly evolved, diversified and complicated through geologic time, and underwent many key events, including giant impact, magma ocean, core formation, large-scale mantle differentiation and late heavy bombardment, especially in its dawn. But, our knowledge of early Earth is limited due to the lack of the Hadean supracrustal rocks. The supracrustal rocks with the Eoarchean ages provide key evidence for the Earth's early evolution, but few supracrustal rocks have been comprehensively investigated. Therefore, we mapped in seven areas of the Saglek Block, northern Labrador, where ancient supracrustal sequences are interleaved with a diverse assemblage of orthogneisses. Early studies suggested that some of them have the Mesoarchean ages because of the lack of the Mesoarchean Saglek dyke, but we found the Saglek dykes in the areas to recognize the Eoarchean Nulliak supracrustal rocks and Uivak Gneiss in all the areas. Recent reassessment of U-Pb dating and cathodoluminescence observation of zircons from the oldest suites of the Uivak Gneiss showed that the Uivak Gneiss has the Eoarchean age, > 3.95 Ga, and forms the Iqaluk-Uivak Gneiss series. Because our geological survey clearly showed that the Iqaluk-Uivak Gneisses were intruded into the Nulliak supracrustal belts, the Nulliak supracrustal rocks are the oldest supracrustal rock in the world. The supracrustal belts consist of piles of fault-bounded blocks, which are composed of the ultramafic rocks, mafic rocks and sedimentary rocks in ascending order, similar to modern ocean plate stratigraphy (OPS). In addition, small-scale duplex structures are found over the areas. The presence of duplex structure and OPS indicates that the > 3.95 Ga Nulliak supracrustal belts originate from an accretionary complex. The presence of the accretionary complex, ophiolite and granitic continental crust provides the oldest evidence for the plate tectonics on the early Earth.

  15. Coal forming environments and their relationship to tectonic activity in the Cévennes Stephanian coal basin

    Institute of Scientific and Technical Information of China (English)

    王华; 庄新国; 任建业; 张瑞生

    2002-01-01

    Coal forming environments in the tectonically controlled intermontane Stephanian Cévennes coal basin (Massif central, France) show a complex interelationship between structural and sedimentological features. The study of the general structural features and the geometry of the coal beds developed during the different stages in the evolution of the basin, and the spatial relation of the lithofacial units to the early tectonic activities, lead the authors to suggest the following model. The synsedimentary faults that occurred as both intrabasinal and marginal faults controlled not only the spatial distribution, shape and thickness of the detrital rock units and coal seams, but also caused the inversion of the tectonic style. The marginal faults exercised important controls on the geometry of the basin and the distribution of lithofacial units. However due to the subsidence of the central part of the basin and the depocenter, and the to differences in the timing and intensity of the displacement the coal enrichment zones shifted both vertically and laterally. This eventually resulted in the inversion of the whole tectonic framework from semi-graben through graben to a new semi-graben. The style and rate of the tectonic movement and basin filling that occurred in the Stephanian Cévennes coal basin were in turn closely linked with the tectonic movement in the surrounding area. Therefore the authors propose that the environment and processes of coal formation in this basin are closely linked to its tectonic evolution.

  16. Detection and Analysis of Deep Seated Gravitational Slope Deformation and Relations with the Active Tectonics

    Science.gov (United States)

    Moro, M.; Saroli, M.; Lancia, M.; Albano, M.; Lo Sardo, L.; Stramondo, S.

    2015-12-01

    Modern geomorphological investigations focused on the definition of major factors conditioning the landscape evolution. The interaction of some of these factors as the litho-structural setting, the local relief, the tectonic activity, the climatic conditions and the seismicity plays a key-role in determining large scale slope instability phenomena which display the general morphological features of deep seated gravitational deformations (DSGD). The present work aims to detect the large scale gravitational deformation and relations with the active tectonics affecting the Abruzzo Region and to provide a description of the morphologic features of the deformations by means of aerial photograph interpretation, geological/geomorphological field surveys and DInSAR data. The investigated areas are morphologically characterized by significant elevation changes due to the presence of high mountain peaks, separated from surrounding depressed areas by steep escarpments, frequently represented by active faults. Consequently, relief energy favours the development of gravity-driven deformations. These deformations seem to be superimposed on and influenced by the inherited structural and tectonic pattern, related to the sin- and post-thrusting evolution. The morphological evidences of these phenomena, are represented by landslides, sackungen or rock-flows, lateral spreads and block slides. DInSAR analysis measured deformation of the large scale gravitative phenomena previously identified through aerial-photo analysis. DSGD may evolve in rapid, catastrophic mass movements and this paroxistic evolution of the deformations may be triggered by high magnitude seismic events. These assumptions point out the great importance of mapping in detail large scale slope instability phenomena in relation to the active faults, in a perspective of land-use planning such as the Abruzzo Region characterized by a high magnitude historical seismicity.

  17. Topographyc metrics in the southern sector of the Marche foothills: implication for active tectonic analysis

    Science.gov (United States)

    Materazzi, Marco; Aringoli, Domenico; Carducci, Tamara; Cavitolo, Paolo; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Quantitative geomorphic analysis can be provided a useful contribution to the study of recent tectonics. Some parameters, that quantify the channels morphology, as the Stream Length-Gradient (SL) Index (Hack, 1973) and the Steepness (Ks) Index (Flint, 1974), are generally used to detect anomalies on the expected concave-up equilibrium stream-profile, which can result in local abrupt changes in stream gradient (i.e., knickpoints) and/or broad convexities on stream long-profiles extending for tens of kilometres (i.e., knickzones). The main goal of this work is the study of the morphological and morphometrical features in the southern sector of the Marche Region, with the aim to gain new knowledge on the influences of rock resistance and rock uplift on the fluvial and topographic system. The investigated area is situated in central Italy and it extends from the axial zone of the Umbria-Marche Apennines to the Adriatic Sea, including the southern sector of the Marche Region and belongs to the foredeep domain of the Apennines orogenic system, which has affected by tectonic activity up to very recent times. The rheology of outcropping deposits doesn't allow the strain to be easily recorded at the outcrop scale. The analyses have been aimed at to test the sensitivity of both SL and Ks for evaluating active crustal deformations, acting at different wavelengths on land surface, within a low tectonically active thrust-and-fold belt. Additional purpose was the understanding of the pattern of regional differential crustal activity in the topographic arrangement of the study area In this research project two sets of analysis were conducted. References Hack J.T. 1973. Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1, 421-429. Flint J.J. 1974. Stream gradient as a function of order, magnitude and discharge. Water Resources Research, 10, 969-973.

  18. The Floral Response to the Permian Tectonic Evolution in Tarim Plate%塔里木板块二叠纪构造演化的古植物群(大植物、孢粉)响应

    Institute of Scientific and Technical Information of China (English)

    朱怀诚

    2001-01-01

    The Tarim plate drifted constantly northward and collided with the Kazakhstan Plate during Permo-Carboniferous. In Carboniferous, the Tarim Plate was pieced together with the Yili Terrane of the Kazakhstan Plate. Then the Tarim-Yili Plate collided with the Kazakhstan Plate, and the Junggar Ocean finished subduction during Late Carboniferous and Early Permian. At last, the two plates were united into the southern part of the Angaran Land of the Pangea. The plate drifting resulted in the disappearance of the ocean between the Tarim Plate, the Kazakhstan Plate and the Junggar Plate. The plant distribution is mainly controlled by the climatic condition, and the geographic barriers also have an effect on the plant migration. The northward drift of the Tarim Plate led to the elevation of the plate and the cooling of climate there. As a result, the Euramerican flora of the plate was replaced by the exotic flora during the Permian. The northward drift of theTarim Plate is thought to be the principal impetus to the floral provincial succession of the plate. The Permian dry climate inthe northern hemisphere and the plant migration might have played positive roles in this succession. The whole floral succession of the Tarim Plate from the Euramerican stage to the Angara stage as described in this paper was recorded in the Permian deposits. The Permian floral succession of the Tarim Plate was controlled by the tectonic setting then and reflected the corresponding history of the plate drift. Three developing stages of the floral succession of the Tarim Plate have been recognized, viz.,①the Euramerican flora stage (Asselian-Roadian);②the Euramerican and Angara mixed flora stage (Wordian-Early Wuchiapingian);③the Angara flora stage (Middle-Late Wuchiapingian-Changhsingian).%塔里木板块二叠纪的构造演化导致板块古地理位置、古地貌和古环境的演变(包括气候条件的改变),相应地塔里木板块的植物群在区系性质方面发

  19. Andean tectonics: Implications for Satellite Geodesy

    Science.gov (United States)

    Allenby, R. J.

    1984-01-01

    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  20. Andean tectonics: Implications for Satellite Geodesy

    Science.gov (United States)

    Allenby, R. J.

    1984-09-01

    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  1. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    Science.gov (United States)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of 50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  2. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    Science.gov (United States)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-15

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of 50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  3. 论菲律宾海板块大地构造分区%Discussion on the tectonic division of the Philippine Sea Plate

    Institute of Scientific and Technical Information of China (English)

    吴时国; 范建柯; 董冬冬

    2013-01-01

    菲律宾海板块是毗邻中国大陆的一个独特的小型板块.除南端表现十分复杂外,它的构造边界多以海沟为界,比较清楚,然而次级大地构造单元划分则比较复杂.本文根据近年来的研究成果,按照块体构造理论注重统一的地球物理场、相似的地壳结构、有机的成因联系等3个基本原则,将菲律宾海板块划分为3个具有不同构造演化特征的单元,即西菲律宾海块体、四国—帕里西维拉块体和伊豆—博宁—马里亚纳块体.西菲律宾海块体包括两部分:一个是西菲律宾海盆,始新世以来受太平洋板块和印澳板块近南北向的相对俯冲作用影响,并顺时针旋转形成了现今的构造样式,于30 Ma左右停止扩张.另一个包括大东盆岭、花东盆地、帕劳海盆和吕宋岛弧蛇绿岩等洋壳在内的白垩纪洋盆.根据形成年代和形成时的扩张方向可将四国—帕里西维拉块体分为两部分:四国海盆和帕里西维拉海盆,两者以索夫干断裂为界.伊豆—博宁—马里亚纳块体沿博宁高原南缘分为南北两部分,两者表现出不同的地质特征.%Philippine Sea Plate(PSP) is a unique minor plate close to China mainland.Except for the complicated southern part,the tectonic boundaries of the PSP are clear,most of which consist of trenches.However,it is hard to divide the plate into the secondary even three-level units.Based on the research in the recent years and referring to block tectonic theory with the principals of unitary geophysical field,similar crustal structure and organic genesis,the PSP is partitioned into three units with different evolutionary history,i.e.West Philippine Sea Block (WPSB),Shikoku-Parece Vela Block (SPB)and Izu-Bonin-Mariana Block (IBMB).The WPSB consists of two major parts,Cenozoic oceanic basin (west Philippine Basin)which was opened between two opposed subduction zones,rotated clockwise to the present place and culminated at ca.30 Ma

  4. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    Science.gov (United States)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor faults connect major structures and

  5. Interplay between active and past tectonics in the Hellenic Arc (Greece): Geological and geomorphic evidences from Kythira Island

    Science.gov (United States)

    Fernández-Blanco, David; de Gelder, Gino; Delorme, Arthur; Lacassin, Robin; Armijo, Rolando

    2016-04-01

    The Hellenic Arc undergoes the largest convergence velocity and highest seismic activity among Mediterranean subduction systems. The outer-arc high islands of the Hellenic Arc are thus key to understand the mode of deformation of the crust during subduction and the mechanisms behind vertical motions at the front of overriding plates, here and elsewhere. Kythira Island, located between SW Peloponnese and NE Crete, provides an exceptional opportunity to understand the interaction between past and active tectonics in the Hellenic Arc. The recent uplift of the Kythira Island is marked in its landscape as paleosurfaces, marine terraces, abandon valleys and gorges. Together with the sedimentary record of the island and its geologic structures, we attempt to reconstruct its tectonic evolution since the latest Miocene. Here, we present exceptionally detailed geological and geomorphological maps of the Kythira Island based on fieldwork, Pleiades satellite imagery and 2-m resolution DEM, as well as the analyses of marine terraces and river network morphometrics. Pliocene or younger infill sequences rest atop of Palaeocene or older rocks in several marine basins in the island. In the largest marine basin, we found a stratigraphic sequence with a (tilted) continental conglomerate at the base, passing upwards to a disconformal subhorizontal conglomerate, calcarenites and fine sands, and terminating with a marine conglomerate. This marine conglomerate acts as a "cap rock" that marks the topography and shapes the highermost, and most extensive, low-relief surface. Overall, the infill sequence onlaps basement with the exception of the western margin where normal faults partly controlled the deposition of its lower sector. These faults reactivated older Hellenic fold-and-thrust structures, parallel to the subduction trench, and were not active during the maximum marine transgression that led to the deposition of the subhorizontal part of the infill sequence, including the topmost

  6. Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey

    Science.gov (United States)

    Sağlam Selçuk, Azad

    2016-10-01

    The eastern part of the Lake Van basin (Van region, Turkey) is controlled by reverse faults, such as the Gürpınar, Everek and Alaköy faults. These represent the major tectonic structures within the Van region and have caused many devastating earthquakes. Based on quantitative analyses, the Quaternary activity and topographic relief control of each of these faults was investigated. The Gürpınar, Everek and Alaköy faults are restricted to the southern slopes of the Güzelsu, Everek, and Karasu basins, respectively. Analyses of the mountain front sinuosity (Smf) and valley floor width-to-height ratio (Vf) suggest high activity along the Gürpınar fault, the Everek fault, and the western part of the Alaköy fault. Furthermore, based on the integration between Smf and Vf, the estimated uplift rates were observed to increase from north to south. The Gürpınar and Everek hanging-wall blocks are characterized by uplift rates of > 0.5 mm yr- 1, whereas the Alaköy fault exhibited a rate of 0.05 to 0.5 mm yr- 1. These faults produce knickpoints or knickzones, complex basin hypsometric curves, and high values of the stream length-gradient index. Based on these geomorphic analyses, it was established that the tectonic activity of both the Gürpınar and Everek faults is greater than that of the Alaköy fault.

  7. Tectonic isolation of the Levant basin offshore Galilee-Lebanon effects of the Dead Sea fault plate boundary on the Levant continental margin, eastern Mediterranean

    Science.gov (United States)

    Schattner, U.; Ben-Avraham, Z.; Lazar, M.; Hüebscher, C.

    2006-11-01

    The continental margin of the central Levant, offshore northern Israel and southern Lebanon is characterized by a sharp continental-oceanic crustal transition, exhibited on the bathymetry as a steep continental slope. At the base of the slope a narrow zone of faulting deforms the upper Messinian-recent sedimentary sequence. Further into the basin no major deformations are observed. However, onland a restraining bend along the Dead Sea fault plate boundary results in the formation of the Lebanon and anti-Lebanon mountain ranges, which exhibit a large positive isostatic anomaly not compensated at depth. All these geologic features follow a NNE-SSW trend. A dense network of multi-channel and single-channel seismic profiles, covering 5000 km of ship-track offshore northern Israel and southern Lebanon, was analyzed for the purpose of characterizing the continental margin. Additional seismic surveys covering the area between the Levant margin and the Cyprean arc were examined. Data were then incorporated with magnetic, gravity and earthquake measurements to reveal the deep crustal structure of the area and integrated with bathymetry data to describe the behavior of the young sedimentary basin fill. Results indicate that the Levant basin, offshore northern Israel and southern Lebanon (up to Beirut) is more-or-less unaffected by the intense tectonic deformation occurring onland. The transition between the deformed area onland and the undeformed Levant basin occurs along the base of the continental slope. Along the base, the upper Messinian-recent sedimentary sequence is cut by two sets of faults: shallow growth faults resulting from salt tectonics and high angle faults, marking the surface expression of a deeper crustal discontinuity - the marine extension of the Carmel fault zone. The central Levant continental margin is being reactivated by transpressional faulting of the marine continuation of the Carmel fault, at the base of the continental slope. This fault system

  8. Ganges-Brahmaputra Delta: Balance of Subsidence, Sea level and Sedimentation in a Tectonically-Active Delta (Invited)

    Science.gov (United States)

    Steckler, M. S.; Goodbred, S. L.; Akhter, S. H.; Seeber, L.; Reitz, M. D.; Paola, C.; Nooner, S. L.; DeWolf, S.; Ferguson, E. K.; Gale, J.; Hossain, S.; Howe, M.; Kim, W.; McHugh, C. M.; Mondal, D. R.; Petter, A. L.; Pickering, J.; Sincavage, R.; Williams, L. A.; Wilson, C.; Zumberge, M. A.

    2013-12-01

    Bangladesh is vulnerable to a host of short and long-term natural hazards - widespread seasonal flooding, river erosion and channel avulsions, permanent land loss from sea level rise, natural groundwater arsenic, recurrent cyclones, landslides and huge earthquakes. These hazards derive from active fluvial processes related to the growth of the delta and the tectonics at the India-Burma-Tibet plate junctions. The Ganges and Brahmaputra rivers drain 3/4 of the Himalayas and carry ~1 GT/y of sediment, 6-8% of the total world flux. In Bangladesh, these two great rivers combine with the Meghna River to form the Ganges-Brahmaputra-Meghna Delta (GBMD). The seasonality of the rivers' water and sediment discharge is a major influence causing widespread flooding during the summer monsoon. The mass of the water is so great that it causes 5-6 cm of seasonal elastic deformation of the delta discerned by our GPS data. Over the longer-term, the rivers are also dynamic. Two centuries ago, the Brahmaputra River avulsed westward up to 100 km and has since captured other rivers. The primary mouth of the Ganges has shifted 100s of km eastward from the Hooghly River over the last 400y, finally joining the Brahmaputra in the 19th century. These avulsions are influenced by the tectonics of the delta. On the east side of Bangladesh, the >16 km thick GBMD is being overridden by the Burma Arc where the attempted subduction of such a thick sediment pile has created a huge accretionary prism. The foldbelt is up to 250-km wide and its front is buried beneath the delta. The main Himalayan thrust front is geologic research in Bangladesh is that the rapid sediment accumulation preserves a detailed structural and stratigraphic archive. We have been tapping into these records using the combination of a local, low-cost drilling method, resistivity imaging and MCS seismics, while GPS, seismology and other geophysical methods are helping to unravel GBMD dynamics. Five transects of >130 wells are

  9. Statistical Modelling of Global Tectonic Activity and some Physical Consequences of its Results

    Directory of Open Access Journals (Sweden)

    Konstantin Statnikov

    2015-02-01

    Full Text Available Based on the analysis of global earthquake data bank for the last thirty years, a global tectonic activity indicator was proposed comprising a weekly globally averaged mean earthquake magnitude value. It was shown that 84% of indicator variability is a harmonic oscillation with a fundamental period of 37.2 years, twice the maximum period in the tidal oscillation spectrum (18.6 years. From this observation, a conclusion was drawn that parametric resonance (PR exists between global tectonic activity and low-frequency tides. The conclusion was also confirmed by the existence of the statistically significant PR response at the second lowest tidal frequency i.e. 182.6 days. It was shown that the global earthquake flow, with a determination factor 93%, is a sum of two Gaussian streams, nearly equally intense, with mean values of 23 and 83 events per week and standard deviations of 9 and 30 events per week, respectively. The Earth periphery to 'mean time interval between earthquakes' ratios in the first and the second flow modes described above match, by the order of magnitude, the sound velocity in the fluid (~1500 m/s and in elastic medium (5500 m/s.

  10. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    Science.gov (United States)

    Gallen, Sean F; Clark, Marin K; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  11. Hamburger Sternwarte plate archives: Historic long-term variability study of active galaxies based on digitized photographic plates

    CERN Document Server

    Wertz, M; Groote, D; Tuvikene, T; Czesla, S; Schmitt, J H M M

    2016-01-01

    At the Hamburger Sternwarte an effort was started in 2010 with the aim of digitizing its more than 45000 photographic plates and films stored in its plate archives. At the time of writing, more than 31000 plates have already been made available on the Internet for researchers, historians, as well as for the interested public. The digitization process and the Internet presentation of the plates and accompanying hand written material (plate envelopes, logbooks, observer notes) are presented here. To fully exploit the unique photometric and astrometric data, stored on the plates, further processing steps are required including registering the plate to celestial coordinates, masking of the plates, and a calibration of the photo-emulsion darkening curve. To demonstrate the correct functioning of these procedures, historical light curves of two bright BL Lac type active galactic nuclei are extracted. The resulting light curve of the blazar 1ES 1215+303 exhibits a large decrease in the magnitude from $14.25^{+0.07}_...

  12. A Natural Model of Active Transpressional Tectonics the en Échelon Structures of the Oriente Deep, Along the Northern Caribbean Transcurrent Plate Boundary (Southern Cuban Margin Un modèle naturel de tectonique transpressive active Les structures en échelon de la fosse de l'Oriente le long de la limite de plaques décrochante Nord-Caraïbe

    Directory of Open Access Journals (Sweden)

    Calais E.

    2006-11-01

    Full Text Available A seabearn and seismic reflection structural study of the Oriente Deep, located along the northern Caribbean transcurrent plate boundary, allows us to image in three dimensions active transpressional structures (cruise SEA-CARIB II, R/V Jean Charcot. These structures are folds and reverse faults. The folds display an en échelon arrangement and are set within three E-W trending alignments. The folds appear with an axis trending 30° to 40° to the shear direction. Their axes have undergone a rotation which gives them in plan a sigmoidal Zshape. The reverse faults formed after the folds and are located at the bases of the anticlines. The folding occurs outside the main strike-slip fault, above inactive burried faults affecting the basement of the Oriente Deep. The Oriente Deep is a exceptional natural model for the study of active transpressional deformation along a major strike-slip fault. La campagne océanographique SEACARIB II du N/O Jean Charcot a permis l'étude structurale du bassin de l'Oriente, situé le long de la limite de plaques décrochante nord caraïbe au sud de Cuba. Cette étude, par Seabeam et sismique réflexion, y a révélé des structures transpressives actives (plis et failles inverses et a permis de les illustrer en trois dimensions. Au sein de ce bassin, les plis sont disposés en échelon en trois alignements E-W. La direction de l'axe des plis naissant fait un angle de 30° à 40° avec la direction du décrochement principal. Les axes des plis subissent ensuite une rotation qui leur donne, en carte, une forme sigmoïdale en Z . Des failles inverses se forment après les plis à la base des anticlinaux. Le plissement est localisé en avant du décrochement principal, au-dessus de failles inactives enfouies affectant le substratum du bassin de l'Oriente. Le bassin de l'Oriente est un modèle naturel exceptionnel pour l'étude de déformations transpressives actives le long d'un décrochement actif majeur.

  13. The Relative Tectonic Activity Evaluation of Some River Basins Developing on a Fault Line: The Case of the Ganos Fault (Tekirdað)

    OpenAIRE

    Emre Özþahin

    2015-01-01

    River systems are one of the important indicators of crustal deformation in tectonically active areas. This is because; tectonic activity mostly determines the general character of valley morphology and drainage in such areas. In this regard, the relative effect of tectonic activity on topography has been evaluated more precisely in recent years through studies based on digital measurements that employ various morphometric parameters (geomorphic indices). The present study aims to make a tect...

  14. Characteristics of helium isotopes in natural gas and its tectonic implication in Bohai Bay Basin

    Institute of Scientific and Technical Information of China (English)

    DING Weiwei; DAI Jinxin; YANG Shufeng; CHEN Hanlin

    2006-01-01

    Analysis on helium isotopes in natural gas in Bohai Bay Basin showed their mantle-origin indicated by high 3He/4He ratio. The span of 3He/4He ratio increased from west to east. This pattern implied a close relationship to the local tectonic setting. Bohai Bay Basin experienced intensive neo-tectonic activities in the Cenozoic. Widespread faulted-depressions and strong volcanic eruptions manifested its extensional tectonics. Abiogenic natural gas could be released from magmas and migrate upward through deep faults during the extension. Tectonic conditions in the area would favor upward invasion and reservation of mantle-originated helium. Furthermore, with decrease of convergence rate between the Pacific and the Eurasia Plate, the subduction slab of the Pacific Plate rolled back and became steeper, resulting in mantle flow and other tectonic activities migrating from west to east in nature, and caused the variation in isotopic helium ratios.

  15. The northeast Japan margin: an example of slow accretion rather than tectonic erosion?

    Science.gov (United States)

    Regalla, C.; Fisher, D. M.; Kirby, E.; Furlong, K. P.

    2015-12-01

    Tectonic erosion at convergent plate boundaries is invoked to explain the evolution of nearly half the world's subduction zones. In northeast Japan, basal tectonic erosion is argued to explain regional Miocene forearc subsidence and the lack of a large, young accretionary prism. However, new analysis of upper and lower plate kinematics in northeast Japan suggest that both of can be explained by alternate mechanisms. New analysis of the timing and kinematics of deformation demonstrate that the onset of Miocene forearc tectonic subsidence was coeval with the initiation of upper plate extension and subsidence associated with the opening of the Sea of Japan, and with a rapid acceleration in local plate convergence. The coincidence of tectonic events across the upper and lower plates suggest they are both a response to lithospheric-scale processes, and that forearc tectonic subsidence represents a response to changes in plate boundary geometry, rather than tectonic erosion. New high resolution seismic profiles and 10Be geochronology of the outer wedge at the Japan Trench indicate that much of the incoming Pacific plate sediments are actively accreted, and while subducting horst and graben topography severely deforms the frontal prism, it is not an efficient mechanism for frontal tectonic erosion. The presence of a small, Plio-Quaternary accretionary wedge and the eastward younging of basal slope basin sediments argue that the outer forearc crustal structure could be explained as the result of slow, but relatively continuous frontal accretion throughout the Cenozoic. These data suggest that the northeast Japan margin has not experienced large quantities of tectonic erosion, but instead experienced: 1) forearc subsidence caused by plate velocity driven changes in slab geometry, and 2) slow accretion and frontal wedge growth disrupted by subduction of seafloor topography.

  16. Electroless Plating on Plastic Induced by Selective Laser Activation

    DEFF Research Database (Denmark)

    Zhang, Yang; Tang, Peter Torben; Hansen, Hans Nørgaard

    2009-01-01

    This paper presents a new method for selective micro metallization of polymers. A Nd:YAG laser is employed to draw patterns on polymer surfaces that are submerged in a liquid (usually water). After subsequent activation with palladium chloride and followed by auto-catalytic electroless plating...... in width with 50μm between two tracks, but further optimization is expected in this field. Due to the porous and rough structure of the laser track, excellent adhesion between metallization and substrate is obtained. On top of the first copper layer, additional metal such as nickel, gold, palladium or tin...

  17. Active landsliding and landscape denudation in response to transient tectonic uplift, Northern California.

    Science.gov (United States)

    Bennett, G. L.; Roering, J. J.; Miller, S. R.; Kirby, E.; Schmidt, D. A.

    2014-12-01

    The northern Californian Coast ranges present a unique area to study landscape response to transient tectonic uplift. Studies have shown that an increase in uplift may be balanced by the rate of landsliding in settings of steady uplift. However, the landsliding response to transient tectonic uplift remains to be elucidated. The Californian Coast ranges are shaped by the northward migration of the Mendocino Triple Junction (MTJ), which geodynamic modeling suggests produces a transient double-humped uplift field. A major research question is whether we can detect a signature of this transient tectonic uplift in landslide activity and document how the channel network communicates this signal to hillslopes. Using air photos and Worldview imagery, we manually mapped more than 2000 earthflows and debris slides in the Eel and surrounding catchments that span the ~400 km-long region. The velocities of active earthflows were estimated by visually tracking features between images spanning 1993 to 2013. We mapped channel steepness from 10m NED DEMs in Topotoolbox 2 and developed a new tool to automatically define knickpoints along the channel network. Earthflows occur almost exclusively in a band of Franciscan mélange oriented along the MTJ transect whilst debris slides are more evenly distributed by lithology. Both earthflows and debris slides are clustered in the Eel catchment around the proposed uplift peaks and are largely absent outside of these zones. Within these areas of high landslide densities, we observe peaks in active earthflows adjacent to peaks in dormant earthflows to the south, suggesting that the signature of earthflow activity remains for a period of time once the uplift peak has passed. Landslide density, mean landslide area, and earthflow velocity all increase rapidly above threshold values of channel steepness and local relief. In the Eel catchment, where the zone of rapid uplift is commencing, landslides, particularly earth flows, are concentrated

  18. Role of the offshore Pedro Banks left-lateral strike-slip fault zone in the plate tectonic evolution of the northern Caribbean

    Science.gov (United States)

    Ott, B.; Mann, P.; Saunders, M.

    2013-12-01

    Previous workers, mainly mapping onland active faults on Caribbean islands, defined the northern Caribbean plate boundary zone as a 200-km-wide bounded by two active and parallel strike-slip faults: the Oriente fault along the northern edge of the Cayman trough with a GPS rate of 14 mm/yr, and and the Enriquillo-Plaintain Garden fault zone (EPGFZ) with a rate of 5-7 mm/yr. In this study we use 5,000 km of industry and academic data from the Nicaraguan Rise south and southwest of the EPGFZ in the maritime areas of Jamaica, Honduras, and Colombia to define an offshore, 700-km-long, active, left-lateral strike-slip fault in what has previously been considered the stable interior of the Caribbean plate as determined from plate-wide GPS studies. The fault was named by previous workers as the Pedro Banks fault zone because a 100-km-long segment of the fault forms an escarpment along the Pedro carbonate bank of the Nicaraguan Rise. Two fault segments of the PBFZ are defined: the 400-km-long eastern segment that exhibits large negative flower structures 10-50 km in width, with faults segments rupturing the sea floor as defined by high resolution 2D seismic data, and a 300-km-long western segment that is defined by a narrow zone of anomalous seismicity first observed by previous workers. The western end of the PBFZ terminates on a Quaternary rift structure, the San Andres rift, associated with Plio-Pleistocene volcanism and thickening trends indicating initial rifting in the Late Miocene. The southern end of the San Andreas rift terminates on the western Hess fault which also exhibits active strands consistent with left-lateral, strike-slip faults. The total length of the PBFZ-San Andres rift-Southern Hess escarpment fault is 1,200 km and traverses the entire western end of the Caribbean plate. Our interpretation is similar to previous models that have proposed the "stable" western Caribbean plate is broken by this fault whose rate of displacement is less than the threshold

  19. Spiral tectonics

    Science.gov (United States)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  20. Geomorphological effects of plate movemen during Quaternary in China's tropics

    Institute of Scientific and Technical Information of China (English)

    ZHANGWeiqiang; HUANGZhenguo

    2004-01-01

    The eastern and western fronts of plate movement in Taiwan Island and Tibetan Plateau respectively are the two major sources of tectonic force for the morphogensis during Quaternary in China's tropics. Seven examples of geomorphological effects of plate movement are enumerated to discuss the differentiation of tectonic landforms in space and time during Quaternary. The tectonic movement tends to be more active since middle Pleistocene. Some phenomena such as the arc-shape mountain systems, volcanism and crustal deformation imply that the juncture zone of eastern and western tectonic forces is located at about 110°E.

  1. Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data

    Directory of Open Access Journals (Sweden)

    R. Reilinger

    1997-06-01

    Full Text Available This paper reviews the main tectonic features of the Eastern Mediterranean region combining the recent information obtained from GPS measurements, seismicity and neotectonic studies. GPS measurements reveal that the Arabian plate moves northward with respect to Eurasia at a rate of 23 ± 1 mm/yr, 10 mm/yr of this rate is taken up by shortening in the Caucasus. The internal deformation in Eastern Anatolia by conjugate strike-slip faulting and E-W trending thrusts, including the Bitlis frontal thrust, accommodates approximately a 15 mm/yr slip rate. The Northeast Anatolian fault, which extends from the Erzincan basin to Caucasus accommodates about 8 ± 5 mm/yr of left-lateral motion. The neotectonic fault pattern in Eastern Anatolia suggests that the NE Anatolian block moves in an E-ENE direction towards the South Caspian Sea. According to the same data, the Anatolian-Aegean block is undergoing a counter-clockwise rotation. However, from the residuals it appears that this solution can only be taken as a preliminary approximation. The Eulerian rotation pole indicates that slip rate along the North Anatolian fault is about 26 ± 3 mm/yr. This value is 10 mm/yr higher than slip rates obtained from geological data and historical earthquake records and it includes westward drift of the Pontides of a few millimetres/year or more. GPS measurements reveal that the East Anatolian fault accommodates an 11 ± 1 mm/yr relative motion. GPS data suggest that Central Anatolia behaves as a rigid block, but from neotectonic studies, it clearly appears that it is sliced by a number of conjugate strike-slip faults. The Isparta Angle area might be considered a major obstacle for the westward motion of the Anatolian block (Central and Eastern Anatolia. The western flank of this geological structure, the Fethiye-Burdur fault zone appears to be a major boundary with a slip rate of 15-20 mm/yr. The Western Anatolian grabens take up a total of 15 mm/yr NE-SW extension

  2. Tectonic activity revealed by morphostructural analysis: Development of the Sierra de la Candelaria range, northwestern Argentina

    Science.gov (United States)

    Barcelona, H.; Peri, G.; Tobal, J.; Sagripanti, L.; Favetto, A.

    2014-12-01

    The tectonically active broken foreland of NW Argentina is a recent analog of the eastern margin of the Puna plateau during Mio-Pliocene times and likely of other broken forelands worldwide. In order to evaluate active tectonism in the broken foreland of the NW Argentine Andes, we examined the complex geomorphology in the vicinity of the basement-cored Sierra de la Candelaria range at ˜26°S and deciphered multiple episodes of crustal deformation spanning the Pliocene to the Quaternary. Digital elevation models, satellite images and geological data within a GIS environment allowed us to analyze the terrain, drainage networks, river dynamics and structure, as well as to obtain detailed geomorphological mapping, active tectonic indices, longitudinal river profiles and structural sections. Three morphostructural segments were defined based on the structural features, the differential vertical dissection pattern over the basement, the faulted Pliocene to recent deposits, the stepwise propagation of anticlines and the distortion over the fluvial system. By combining the several lines of evidence, we concluded that the Sierra de la Candelaria range was subjected to a multi-stage development. The first stage uplifted the central segment concomitant with the formation of the surrounding ranges and with the main partition phase of the foreland. After a significant time lapse, the mountain range was subjected to southward thick-skinned growth and northward growth via stepwise thin-skinned deformation and exerted control over the dynamics of the Río Rosario. Taking into account the surrounding basins and ranges of the Sierra de la Candelaria, the southern Santa Bárbara System is characterized by partially isolated intramontane basins (Choromoro and Rosario) limited by shielded ranges that caused moisture block and shows continuous deformation. These features were related to early stages of a broken foreland evolution model and modern analogs were found at the northern

  3. The Geomorphological Evolution of a Landscape in a Tectonically Active Region: the Sennwald Landslide

    Science.gov (United States)

    Aksay, Selçuk; Ivy-Ochs, Susan; Hippe, Kristina; Graemiger, Lorenz; Vockenhuber, Christof

    2016-04-01

    earthquake activity shows that this region is tectonically still active (Mosar, 1999) with numerous earthquakes. The exposure ages imply that the rock failure occurred during the middle Holocene, a period of increased neotectonic activity in Eastern Alps suggested by Prager et al. (2007). This time period also coincides with notably wet climate, which has been suggested as an important trigger for landslides around this age across the Alps (Zerathe et al., 2014).

  4. Vertical tectonics at a continental crust-oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia

    Science.gov (United States)

    Villagómez, Diego; Spikings, Richard; Mora, AndréS.; GuzmáN, Georgina; Ojeda, GermáN.; CortéS, Elizabeth; van der Lelij, Roelant

    2011-08-01

    The topographically prominent Sierra Nevada de Santa Marta forms part of a faulted block of continental crust located along the northern boundary of the South American Plate, hosts the highest elevation in the world (˜5.75 km) whose local base is at sea level, and juxtaposes oceanic plateau rocks of the Caribbean Plate. Quantification of the amount and timing of exhumation constrains interpretations of the history of the plate boundary, and the driving forces of rock uplift along the active margin. The Sierra Nevada Province of the southernmost Sierra Nevada de Santa Marta exhumed at elevated rates (≥0.2 Km/My) during 65-58 Ma in response to the collision of the Caribbean Plateau with northwestern South America. A second pulse of exhumation (≥0.32 Km/My) during 50-40 Ma was driven by underthrusting of the Caribbean Plate beneath northern South America. Subsequent exhumation at 40-25 Ma (≥0.15 Km/My) is recorded proximal to the Santa Marta-Bucaramanga Fault. More northerly regions of the Sierra Nevada Province exhumed rapidly during 26-29 Ma (˜0.7 Km/My). Further northward, the Santa Marta Province exhumed at elevated rates during 30-25 Ma and 25-16 Ma. The highest exhumation rates within the Sierra Nevada de Santa Marta progressed toward the northwest via the propagation of NW verging thrusts. Exhumation is not recorded after ˜16 Ma, which is unexpected given the high elevation and high erosive power of the climate, implying that rock and surface uplift that gave rise to the current topography was very recent (i.e., ≤1 Ma?), and there has been insufficient time to expose the fossil apatite partial annealing zone.

  5. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    Science.gov (United States)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  6. Recent seismicity of Italy: Active tectonics of the central Mediterranean region and seismicity rate changes after the Mw 6.3 L'Aquila earthquake

    Science.gov (United States)

    Chiarabba, Claudio; De Gori, Pasquale; Mele, Francesco Mariano

    2015-01-01

    In this paper we present a new image of the instrumental seismicity of Italy, obtained by refining hypocentral determinations for about 100,000 earthquakes that occurred in the period 2005-2012. The improved locations yield new constraints on active tectonics of the central Mediterranean area, where prolonged interaction between nested plates and continental slivers led to the development of the Alpine and Apennines systems. Intermediate-depth and deep earthquakes define a lateral heterogeneous process of delamination and sinking of the continental lithosphere active beneath the mountain belts. Shallow seismicity prevalently occurs beneath elevated topography and correlates with low velocity mantle anomalies, suggesting a superposition of gravity-related forces to the Eurasia-Africa plate convergence. The delamination process drives a paired system of compression and extension that stretches the mountain range while shortening the external side of the belts. The updated seismic catalog permits us to resolve a sharp variation of seismic rates that occurred in recent years, timely after the 2009 Mw 6.3 L'Aquila earthquake. The increase of seismic rates is reasonably due to regional-scale perturbation of the stress field induced by fluid flow and pore-pressure variations within the crust, probably related to deep dehydration processes active beneath the mountain belt.

  7. Plate tectonics: Crustal recycling evolution

    Science.gov (United States)

    Magni, Valentina

    2017-09-01

    The processes that form and recycle continental crust have changed through time. Numerical models reveal an evolution from extensive recycling on early Earth as the lower crust peeled away, to limited recycling via slab break-off today.

  8. Tectonic stress in the plates

    Science.gov (United States)

    Richardson, R. M.; Solomon, S. C.; Sleep, N. H.

    1979-01-01

    In the present paper, the basic set of global intraplate stress orientation data is plotted and tabulated. Although the global intraplate stress field is complicated, several large-scale patterns can be seen. Much of stable North America is characterized by an E-W to NE-SW trend for the maximum compressive stress. South American lithosphere beneath the Andes, and perhaps farther east in the stable interior, has horizontal compressive stresses trending E-W to NW-SE. Western Europe north of the Alps is characterized by a NW-SE trending maximum horizontal compression, while Asia has the maximum horizontal compressive stress trending more nearly N-S, especially near the Himalayan front.

  9. Tectonic stress in the plates

    Science.gov (United States)

    Richardson, R. M.; Solomon, S. C.; Sleep, N. H.

    1979-01-01

    In the present paper, the basic set of global intraplate stress orientation data is plotted and tabulated. Although the global intraplate stress field is complicated, several large-scale patterns can be seen. Much of stable North America is characterized by an E-W to NE-SW trend for the maximum compressive stress. South American lithosphere beneath the Andes, and perhaps farther east in the stable interior, has horizontal compressive stresses trending E-W to NW-SE. Western Europe north of the Alps is characterized by a NW-SE trending maximum horizontal compression, while Asia has the maximum horizontal compressive stress trending more nearly N-S, especially near the Himalayan front.

  10. Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study (Ligurian Western Alps, Italy)

    Science.gov (United States)

    Cannaò, E.; Scambelluri, M.; Agostini, S.; Tonarini, S.; Godard, M.

    2016-10-01

    , whereas mylonitic serpentinite is reset in its concentrations of FME and its B, Sr and Pb isotope compositions, due to interaction with sediment- and crust-derived fluids. The environment of this interaction is either compatible with (i) an outer-rise zone setting, with percolation of seawater-derived fluids enriched in sedimentary components into bending-related fault structures, or with (ii) subduction channel domains, where ascending sediment-derived slab fluids infiltrate slices of former oceanic serpentinite accreted to the plate interface domain. Influx of sediment-derived subduction fluids along major deformation zones in serpentinite modifies the element budget of the rocks, with important implications for element recycling and the tectonic history of serpentinite. The B, Sr and Pb isotopic systematics, coupled with FME concentration in serpentinites are particularly helpful geochemical tracers of interaction between different reservoirs in subduction-interface environments, and are more sensitive than the traditionally applied stable oxygen and hydrogen isotope compositions.

  11. Active tectonic deformation along rejuvenated faults in tropical Borneo: Inferences obtained from tectono-geomorphic evaluation

    Science.gov (United States)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine

    2016-08-01

    The island of Borneo is enveloped by tropical rainforests and hostile terrain characterized by high denudation rates. Owing to such conditions, studies pertaining to neotectonics and consequent geomorphic expressions with regard to surface processes and landscape evolution are inadequately constrained. Here we demonstrate the first systematic tectono-geomorphic evaluation of north Borneo through quantitative and qualitative morphotectonic analysis at sub-catchment scale, for two large drainage basins located in Sarawak: the Rajang and Baram basins. The extraction of morphometric parameters utilizing digital elevation models arranged within a GIS environment focuses on hypsometric curve analysis, distribution of hypsometric integrals through spatial autocorrelation statistics, relative uplift values, the asymmetry factor and the normalized channel steepness index. Hypsometric analysis suggests a young topography adjusting to changes in tectonic boundary conditions. Autocorrelation statistics show clusters of high values of hypsometric integrals as prominent hotspots that are associated with less eroded, young topography situated in the fold and thrust belts of the Interior Highlands of Borneo. High channel steepness and gradients (> 200 m0.9) are observed in zones corresponding to the hotspots. Relative uplift values reveal the presence of tectonically uplifted blocks together with relatively subsided or lesser uplifted zones along known faults. Sub-catchments of both basins display asymmetry indicating tectonic tilting. Stream longitudinal profiles demonstrate the presence of anomalies in the form of knickzones without apparent lithological controls along their channel reaches. Surfaces represented by cold spots of low HI values and low channel gradients observed in the high elevation headwaters of both basins are linked to isolated erosional planation surfaces that could be remnants of piracy processes. The implication of our results is that Borneo experiences

  12. Along-strike Deformation in Quaternary Valleys of Tropical NW Borneo: Implications for Active Tectonics, Seismicity and Geomorphology

    Science.gov (United States)

    Sautter, B.; Mathew, M. J.; Menier, D.; Pubellier, M. F.; Sapin, F.; Siddiqui, N.

    2015-12-01

    In the wee hours of 5th June, 2015, NW Borneo was jolted by a 6.0 magnitude earthquake, caused by fault movement at a shallow depth of 10 km. The quake that originated from near the foot of the picturesque Mount Kinabalu, Sabah, was felt as far as 350 km away from the epicentre and has produced more than 90 aftershocks to date; ranging in magnitudes from 1.6 to 5.2. Although the geologically complex NW Borneo has experienced more than 60 mainshocks and numerous aftershocks since 1970 to present; research pertaining to active tectonics, morphotectonics analysis and subsequent geomorphic response to resulting transient dynamic topography remains inadequate.Here, we show evidences of active tectonics in tropical Sabah, NW Borneo, using morphometric indices, geomorphic indicators and report our results of morphotectonic analysis and consequent feedback of landscape and topography. Results from stream length gradient index, normalized channel steepness index and spatial distribution of hypsometric integral showed evidences of fault rejuvenation during Quaternary and recent periods. River longitudinal profiles showed the presence of several knickpoints indicating fault reactivations as the study area lacks lithological contrasts and similar climatic conditions along the channel reach. Field survey revealed the presence of highly elevated Quaternary fluvial terraces illustrating recent and important tectonic uplift rates in the trend of the exhumation rates calculated on Mt. Kinabalu by means of thermochronology. The uplifted terraces show a positive correlation with geomorphic analysis along the main valleys and other areas of active tectonics. Our analysis show the competition between important uplifts related to the dynamics of the NW Borneo Wedge and active normal faulting. These faults are in trend to the major earthquakes that occurred recently in this area, which have a normal faulting mechanism. The cause of the mechanism for recent tectonism and/or decoupling

  13. The effect of flow maldistribution in heterogeneous parallel-plate active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Engelbrecht, Kurt

    2013-01-01

    The heat transfer properties and performance of parallel plate active magnetic regenerators (AMR) with heterogeneous plate spacing are investigated using detailed models previously published. Bulk heat transfer characteristics in the regenerator are predicted as a function of variation in plate s...

  14. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G. [UNR; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J.; Pullammanappallil, S. [Optim

    2016-08-01

    Amy Eisses, Annie M. Kell, Graham Kent, Neal W. Driscoll, Robert E. Karlin, Robert L. Baskin, John N. Louie, Kenneth D. Smith, Sathish Pullammanappallil, 2011, Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract NS14A-08.

  15. Quaternary volcano-tectonic activity in the Soddo region, western margin of the Southern Main Ethiopian Rift

    NARCIS (Netherlands)

    Corti, G.; Sani, F.; Philippon, M.; Sokoutis, D.; Willingshofer, E.; Molin, P.

    2013-01-01

    We present an analysis of the distribution, timing, and characteristics of the volcano-tectonic activity on the western margin of the Southern Main Ethiopian Rift in the Soddo area (latitudes between ~7°10'N and ~6°30'N). The margin is characterized by the presence of numerous normal faults, with li

  16. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G. [UNR; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    Amy Eisses, Annie M. Kell, Graham Kent, Neal W. Driscoll, Robert E. Karlin, Robert L. Baskin, John N. Louie, Kenneth D. Smith, Sathish Pullammanappallil, 2011, Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract NS14A-08.

  17. Incipient mantle delamination, active tectonics and crustal thickening in Northern Morocco: Insights from gravity data and numerical modeling

    Science.gov (United States)

    Baratin, Laura-May; Mazzotti, Stéphane; Chéry, Jean; Vernant, Philippe; Tahayt, Abdelilah; Mourabit, Taoufik

    2016-11-01

    The Betic-Rif orocline surrounding the Alboran Sea, the westernmost tip of the Mediterranean Sea, accommodates the NW-SE convergence between the Nubia and Eurasia plates. Recent GPS observations indicate a ∼4 mm/yr SW motion of the Rif Mountains, relative to stable Nubia, incompatible with a simple two-plate model. New gravity data acquired in this study define a pronounced negative Bouguer anomaly south of the Rif, interpreted as a ∼40 km-thick crust in a state of non-isostatic equilibrium. We study the correlation between these present-day kinematic and geodynamic processes using a finite-element code to model in 2-D the first-order behavior of a lithosphere affected by a downward normal traction (representing the pull of a high-density body in the upper mantle). We show that intermediate viscosities for the lower crust and uppermost mantle (1021-1022Pas) allow an efficient coupling between the mantle and the base of the brittle crust, thus enabling (1) the conversion of vertical movement, resulting from the downward traction, to horizontal movement and (2) shortening in the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to slab pull, can explain the present-day abnormal tectonics, contribute to the gravity anomaly observed in northern Morocco, and give insight into recent tectonics in the Western Mediterranean region.

  18. Lesser Himalayan sequences in Eastern Himalaya and their deformation: Implications for Paleoproterozoic tectonic activity along the northern margin of India

    Directory of Open Access Journals (Sweden)

    Dilip Saha

    2013-05-01

    Full Text Available Substantial part of the northern margin of Indian plate is subducted beneath the Eurasian plate during the Caenozoic Himalayan orogeny, obscuring older tectonic events in the Lesser Himalaya known to host Proterozoic sedimentary successions and granitic bodies. Tectonostratigraphic units of the Proterozoic Lesser Himalayan sequence (LHS of Eastern Himalaya, namely the Daling Group in Sikkim and the Bomdila Group in Arunachal Pradesh, provide clues to the nature and extent of Proterozoic passive margin sedimentation, their involvement in pre-Himalayan orogeny and implications for supercontinent reconstruction. The Daling Group, consisting of flaggy quartzite, meta-greywacke and metapelite with minor mafic dyke and sill, and the overlying Buxa Formation with stromatolitic carbonate-quartzite-slate, represent shallow marine, passive margin platformal association. Similar lithostratigraphy and broad depositional framework, and available geochronological data from intrusive granites in Eastern Himalaya indicate strikewise continuity of a shallow marine Paleoproterozoic platformal sequence up to Arunachal Pradesh through Bhutan. Multiple fold sets and tectonic foliations in LHS formed during partial or complete closure of the sea/ocean along the northern margin of Paleoproterozoic India. Such deformation fabrics are absent in the upper Palaeozoic–Mesozoic Gondwana formations in the Lesser Himalaya of Darjeeling-Sikkim indicating influence of older orogeny. Kinematic analysis based on microstructure, and garnet composition suggest Paleoproterozoic deformation and metamorphism of LHS to be distinct from those associated with the foreland propagating thrust systems of the Caenozoic Himalayan collisional belt. Two possibilities are argued here: (1 the low greenschist facies domain in the LHS enveloped the amphibolite to granulite facies domains, which were later tectonically severed; (2 the older deformation and metamorphism relate to a Pacific type

  19. Performative Tectonics

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Mullins, Michael; Kirkegaard, Poul Henning

    2010-01-01

    This paper studies two digital generative tools in terms of Performative Tectonics. Performative Tectonics is a term developed in the paper, which links the contemporary development of digital tools to the tectonic tradition of architecture. Within the theoretical framework of this definition...

  20. Geomorphological features of active tectonics and ongoing seismicity of northeastern Kumaun Himalaya, Uttarakhand, India

    Indian Academy of Sciences (India)

    Vivekanand Pathak; Charu C Pant; Gopal Singh Darmwal

    2015-08-01

    The northeastern part of Kumaun Lesser Himalaya, Uttarakhand, India, lying between the rupture zones of 1905, Kangra and 1934, Bihar–Nepal earthquakes and known as ‘central seismic gap’ is a segment of an active fault known to produce significant earthquakes and has not slipped in an unusually long time when compared to other segments. The studied section forms a part of this seismic gap and is seismically an active segment of the Himalayan arc, as compared to the remaining part of the Kumaun Lesser Himalaya and it is evident by active geomorphological features and seismicity data. The geomorphological features of various river valley transects suggest that the region had a history of tectonic rejuvenation which is testified by the deposition of various levels of terraces and their relative uplift, shifting and ponding of river channels, uplifted potholes, triangular facets on fault planes, fault scarps, etc. Further, the seismic data of five-station digital telemetered seismic network along with two stand alone systems show the distribution of earthquakes in or along the analyzed fault transects. It is observed that the microseismic earthquakes (magnitude 1.0–3.0) frequently occur in the region and hypocenters of these earthquakes are confined to shallow depths (10–20 km), with low stress drop values (1.0–10 bar) and higher peak ground velocity (PGV). The cluster of events is observed in the region, sandwiched between the Berinag Thrust (BT) in south and Main Central Thrust (MCT) in north. The occurrences of shallow focus earthquakes and the surface deformational features in the different river valley transect indicates that the region is undergoing neotectonic rejuvenation. In absence of chronology of the deposits it is difficult to relate it with extant seismicity, but from the geomorphic and seismic observations it may be concluded that the region is still tectonically active. The information would be very important in identifying the areas of