WorldWideScience

Sample records for plate compressive strengths

  1. Post-Buckling Strength of Uniformly Compressed Plates

    NARCIS (Netherlands)

    Bakker, M.C.M.; Rosmanit, M.; Hofmeyer, H.; Camotim, D; Silvestre, N; Dinis, P.B.

    2006-01-01

    In this paper it is discussed how existing analytical and semi-analytical formulas for describing the elastic-post-buckling behavior of uniformly compressed square plates with initial imperfections, for loads up to three times the buckling load can be simplified and improved. For loads larger than

  2. Investigations on the ultimate compressive strength of composite plates with geometrical imperfections

    DEFF Research Database (Denmark)

    Misirlis, K.; Downes, J.; Dow, R.S.

    2009-01-01

    with initial geometric imperfections. This paper presents the validation of finite element models against a series of plate tests that were performed within this framework and parametric studies that were carried out to identify the effects of geometric imperfections on the ultimate compressive strength......A series of studies has been performed within the MARSTRUCT Network of Excellence on Marine Structures in order to investigate the buckling response of glass fibre reinforced polymer plates. These studies include the fabrication, testing and finite element analysis of a large number of plates...

  3. An investigation on compression strength analysis of commercial aluminium tube to aluminium 2025 tube plate by using TIG welding process

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, S., E-mail: kannan.dgl201127@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India, 826004 (India); Senthil Kumaran, S., E-mail: sskumaran@ymail.com [Research and Development Center, Department of Mechanical Engineering, RVS Educational Trust' s Group of Institutions, RVS School of Engineering and Technology, Dindigul, Tamilnadu, India, 624005 (India); Kumaraswamidhas, L.A., E-mail: lakdhas1978@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian School of Mines University, Dhanbad, Jharkhand, India, 826004 (India)

    2016-05-05

    In this present study, Tungsten inert gas (TIG) welding was applied to weld the dissimilar materials and authenticate the mechanical and metallurgical properties of tube to tube plate made up of commercial aluminium and Al 2025 respectively using an Zirconiated tungsten electrode along with filler material aluminium ER 2219. In total, twenty five pieces has been subjected to compression strength and hardness value to evaluate the optimal joint strength. The three optimization technique has been used in this experiment. Taguchi L{sub 25} orthogonal array is used to identify the most influencing process parameter which affects the joint strength. ANOVA method is measured for both compression strength and hardness to calculate the percentage of contribution for each process parameter. Genetic algorithm is used to validate the results obtained from the both experimental value and optimization value. The micro structural study is depicted the welding joints characterization in between tube to tube plate joints. The radiograph test is conducted to prove the welds are non-defective and no flaws are found during the welding process. The mechanical property of compression strength and hardness has been measured to obtain the optimal joint strength of the welded sample was about 174.846 MPa and 131.364 Hv respectively. - Highlights: • Commercial Al tube and Al 2025 tube plate successfully welded by TIG welding. • Compression strength and hardness value proves to obtain optimal joint strength. • The maximum compression and hardness was achieved in various input parameters.

  4. An investigation on compression strength analysis of commercial aluminium tube to aluminium 2025 tube plate by using TIG welding process

    International Nuclear Information System (INIS)

    Kannan, S.; Senthil Kumaran, S.; Kumaraswamidhas, L.A.

    2016-01-01

    In this present study, Tungsten inert gas (TIG) welding was applied to weld the dissimilar materials and authenticate the mechanical and metallurgical properties of tube to tube plate made up of commercial aluminium and Al 2025 respectively using an Zirconiated tungsten electrode along with filler material aluminium ER 2219. In total, twenty five pieces has been subjected to compression strength and hardness value to evaluate the optimal joint strength. The three optimization technique has been used in this experiment. Taguchi L_2_5 orthogonal array is used to identify the most influencing process parameter which affects the joint strength. ANOVA method is measured for both compression strength and hardness to calculate the percentage of contribution for each process parameter. Genetic algorithm is used to validate the results obtained from the both experimental value and optimization value. The micro structural study is depicted the welding joints characterization in between tube to tube plate joints. The radiograph test is conducted to prove the welds are non-defective and no flaws are found during the welding process. The mechanical property of compression strength and hardness has been measured to obtain the optimal joint strength of the welded sample was about 174.846 MPa and 131.364 Hv respectively. - Highlights: • Commercial Al tube and Al 2025 tube plate successfully welded by TIG welding. • Compression strength and hardness value proves to obtain optimal joint strength. • The maximum compression and hardness was achieved in various input parameters.

  5. Degradation of the compressive strength of unstiffened/stiffened steel plates due to both-sides randomly distributed corrosion wastage

    Directory of Open Access Journals (Sweden)

    Zorareh Hadj Mohammad

    Full Text Available The paper addresses the problem of the influence of randomly distributed corrosion wastage on the collapse strength and behaviour of unstiffened/stiffened steel plates in longitudinal compression. A series of elastic-plastic large deflection finite element analyses is performed on both-sides randomly corroded steel plates and stiffened plates. The effects of general corrosion are introduced into the finite element models using a novel random thickness surface model. Buckling strength, post-buckling behaviour, ultimate strength and post-ultimate behaviour of the models are investigated as results of both-sides random corrosion.

  6. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  7. Relationship between the edgewise compression strength of ...

    African Journals Online (AJOL)

    The results of this study were used to determine the linear regression constants in the Maltenfort model by correlating the measured board edgewise compression strength (ECT) with the predicted strength, using the paper components' compression strengths, measured with the short-span compression test (SCT) and the ...

  8. Strength of Ship Plates under Combined Loading

    DEFF Research Database (Denmark)

    Cui, W.; Wang, Y.; Pedersen, Preben Terndrup

    2002-01-01

    Strength of ship plates plays a significant role in the ultimate strength analysis of ship structures. In recent years several authors have proposed simplified analytical methods to calculate the ultimate strength of unstiffened plates. The majority of these investigations deal with plates subjec...

  9. Strength of ship plates under combined loading

    DEFF Research Database (Denmark)

    Cui, Weiching; Wang, Yongjun; Pedersen, Preben Terndrup

    2000-01-01

    Strength of ship plates plays a significant role for the ultimate strength analysis of ship structures. In recent years several authors have proposed simplified methods to calculate the ultimate strength of unstiffened plates. The majority of these investigations deal with plates subjected to lon...

  10. optimizing compressive strength characteristics of hollow building

    African Journals Online (AJOL)

    eobe

    Keywords: hollow building Blocks, granite dust, sand, partial replacement, compressive strength. 1. INTRODUCTION ... exposed to extreme climate. The physical ... Sridharan et al [13] conducted shear strength studies on soil-quarry dust.

  11. Strength properties of interlocking compressed earth brick units

    Science.gov (United States)

    Saari, S.; Bakar, B. H. Abu; Surip, N. A.

    2017-10-01

    This study presents a laboratory investigation on the properties of interlocking compressed earth brick (ICEB) units. Compressive strength, which is one of the most important properties in masonry structures, is used to determine masonry performance. The compressive strength of the ICEB units was determined by applying a compressive strength test for 340 units from four types of ICEB. To analyze the strength of the ICEB units, each unit was capped by a steel plate at the top and bottom to create a flat surface, and then ICEB was loaded until failure. The average compressive strength of the corresponding ICEB units are as follows: wall brick, 19.15 N/mm2; beam brick, 16.99 N/mm2; column brick, 13.18 N/mm2; and half brick, 11.79 N/mm2. All the ICEB units had compressive strength of over 5 N/mm2, which is the minimum strength for a load-bearing brick. This study proves that ICEB units may be used as load-bearing bricks. The strength of ICEBs is equal to that of other common bricks and blocks that are currently available in the market.

  12. Compressive and flexural strength of high strength phase change mortar

    Science.gov (United States)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  13. Compressive strength of thick composite panels

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter

    2011-01-01

    The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used in the structu......The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used...

  14. Compressive strength improvement for recycled concrete aggregate

    Directory of Open Access Journals (Sweden)

    Mohammed Dhiyaa

    2018-01-01

    Full Text Available Increasing amount of construction waste and, concrete remnants, in particular pose a serious problem. Concrete waste exist in large amounts, do not decay and need long time for disintegration. Therefore, in this work old demolished concrete is crashed and recycled to produce recycled concrete aggregate which can be reused in new concrete production. The effect of using recycled aggregate on concrete compressive strength has been experimentally investigated; silica fume admixture also is used to improve recycled concrete aggregate compressive strength. The main parameters in this study are recycled aggregate and silica fume admixture. The percent of recycled aggregate ranged from (0-100 %. While the silica fume ranged from (0-10 %. The experimental results show that the average concrete compressive strength decreases from 30.85 MPa to 17.58 MPa when the recycled aggregate percentage increased from 0% to 100%. While, when silica fume is used the concrete compressive strength increase again to 29.2 MPa for samples with 100% of recycled aggregate.

  15. Relationship between pore structure and compressive strength

    Indian Academy of Sciences (India)

    Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and ...

  16. OPTIMISATION OF COMPRESSIVE STRENGTH OF PERIWINKLE ...

    African Journals Online (AJOL)

    In this paper, a regression model is developed to predict and optimise the compressive strength of periwinkle shell aggregate concrete using Scheffe's regression theory. The results obtained from the derived regression model agreed favourably with the experimental data. The model was tested for adequacy using a student ...

  17. Simulated effect on the compressive and shear mechanical properties of bionic integrated honeycomb plates.

    Science.gov (United States)

    He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun

    2015-05-01

    Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A locking compression plate versus the gold-standard non-locking plate with lag screw for first metatarsophalangeal fusion: A biomechanical comparison.

    Science.gov (United States)

    Mandell, Daniel; Karbassi, John; Zhou, Hanbing; Burroughs, Brian; Aurigemma, Philip; Patel, Abhay R

    2018-03-01

    The treatment of end-stage first metatarso-phalangeal joint (MTP) arthritis has been arthrodesis. A dorsal non-locking plate with a lag screw has been the standard traditional fixation method. This study compares the biomechanical strength of a locking compression plate (LCP) with and without internal compression versus this known gold standard. In group 1, six matched pairs of cadaver great toes were used to compare the standard non-locking dorsal plate and 3.5mm lag screw to an anatomic locking compression plate in which a lag screw was utilized rather than the internal compression features of the plate. In group 2, another six matched pairs of cadaver great toes were used to compare the gold standard to the locking compression plate, utilizing the plate's internal compression feature instead of a lag screw. A material testing system (MTS) machine applied loads to the MTP joints and measured displacement and stiffness of the constructs. The stiffness of the constructs (Young's modulus) was calculated from the force-displacement curves, and the displacement was measured. The locking compression plate group that used the compression features of the plate, without the lag screw, had less joint displacement and higher stiffness than control (p<0.05). The same plating construct in which a lag screw was used rather than internal compression of the plate was found to be stiffer than the control (p<0.05), but displacement was not statistically significant. The results suggest that a locking compression plate alone provides the stiffest construct for a first MTP joint fusion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    Science.gov (United States)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  20. Strength and compressibility of returned lunar soil.

    Science.gov (United States)

    Carrier, W. D., III; Bromwell, L. G.; Martin, R. T.

    1972-01-01

    Two oedometer and three direct shear tests have been performed in vacuum on a 200 g sample of lunar soil from Apollo 12 (12001, 119). The compressibility data have been used to calculate bulk density and shear wave velocity versus depth on the lunar surface. The shear wave velocity was found to increase approximately with the one-fourth power of the depth, and the results suggest that the Apollo 14 Active Seismic Experiment may not have detected the Fra Mauro formation at a depth of 8.5 m, but only naturally consolidated lunar soil. The shear data indicate that the strength of the lunar soil sample is about 65% that of a ground basalt simulant at the same void ratio.

  1. Buckling analysis for axially compressed flat plates, structural sections, and stiffened plates reinforced with laminated composites

    Science.gov (United States)

    Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.

    1971-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.

  2. mathematical model for the optimization of compressive strength

    African Journals Online (AJOL)

    ES Obe

    cement and sand either wholly or partially without adverse effect on the strength properties of the ... sandcrete block, compressive strength, laterite, scheffe's theory. 1. Introduction ... that for the properties of a q-component mix- ture which ...

  3. Non-Uniform Compressive Strength of Debonded Sandwich Panels

    DEFF Research Database (Denmark)

    Nøkkentved, Alexandros; Lundsgaard-Larsen, Christian; Berggreen, Carl Christian

    2005-01-01

    debonds show a considerable strength reduction with increasing debond diameter, with failure mechanisms varying between fast debond propagation and wrinkling-introduced face compression failure for large and small debonds, respectively. Residual strength predictions are based on intact panel testing...

  4. Axial Compressive Strength of Foamcrete with Different Profiles and Dimensions

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available Lightweight foamcrete is a versatile material; primarily consist of a cement based mortar mixed with at least 20% volume of air. High flow ability, lower self-weight, minimal requirement of aggregate, controlled low strength and good thermal insulation properties are a few characteristics of foamcrete. Its dry densities, typically, is below 1600kg/m3 with compressive strengths maximum of 15MPa. The ASTM standard provision specifies a correction factor for concrete strengths of between 14 and 42MPa to compensate for the reduced strength when the aspect height-to-diameter ratio of specimen is less than 2.0, while the CEB-FIP provision specifically mentions the ratio of 150 x 300mm cylinder strength to 150 mm cube strength. However, both provisions requirements do not specifically clarify the applicability and/or modification of the correction factors for the compressive strength of foamcrete. This proposed laboratory work is intended to study the effect of different dimensions and profiles on the axial compressive strength of concrete. Specimens of various dimensions and profiles are cast with square and circular cross-sections i.e., cubes, prisms and cylinders, and to investigate their behavior in compression strength at 7 and 28 days. Hypothetically, compressive strength will decrease with the increase of concrete specimen dimension and concrete specimen with cube profile would yield comparable compressive strength to cylinder (100 x 100 x 100mm cube to 100dia x 200mm cylinder.

  5. Experimental study on compressive strength of sediment brick masonry

    Science.gov (United States)

    Woen, Ean Lee; Malek, Marlinda Abdul; Mohammed, Bashar S.; Chao-Wei, Tang; Tamunif, Muhammad Thaqif

    2018-02-01

    The effects of pre-wetted unit bricks, mortar type and slenderness ratio of prisms on the compressive strength and failure mode of newly developed sediment brick have been evaluated and compared to clay brick and cement-sand bricks. The results show that pre-wetted sediment brick masonry exhibits higher compressive strength of up to 20% compared to the dry sediment masonry. Using cement-lime mortar leads to lower compressive strength compared to cement mortar. However, the sediment brick masonry with the cement lime mortar exhibit higher compressive strength in comparison with cement mortar masonry. More of diagonal shear cracks have been observed in the failure mode of the sediment bricks masonry compared to clay and cement-sand bricks masonry that show mostly vertical cracks and crushing. The sediment unit bricks display compressive strength in between clay and cement-sand bricks.

  6. Studies of the Buckling of Composite Plates in Compression

    DEFF Research Database (Denmark)

    Hayman, B.; Berggreen, Christian; Lundsgaard-Larsen, Christian

    2011-01-01

    As part of the Network of Excellence on Marine Structures (MARSTRUCT), a series of studies has been carried out into the buckling of glass-fibre-reinforced polymer plates with in-plane compression loading. The studies have included fabrication and testing of square, laminated panels with various...

  7. Studies of the buckling of composite plates in compression

    DEFF Research Database (Denmark)

    Hayman, B.; Berggreen, Christian; Lundsgaard-Larsen, Christian

    2009-01-01

    As part of the MARSTRUCT Network of Excellence on Marine Structures, a series of studies has been carried out into the buckling of glass fibre reinforced polymer plates with in-plane compression loading. The studies have included fabrication and testing of square, laminated panels with various...

  8. Compressive Strength of Compacted Clay-Sand Mixes

    Directory of Open Access Journals (Sweden)

    Faseel Suleman Khan

    2014-01-01

    Full Text Available The use of sand to improve the strength of natural clays provides a viable alternative for civil infrastructure construction involving earthwork. The main objective of this note was to investigate the compressive strength of compacted clay-sand mixes. A natural clay of high plasticity was mixed with 20% and 40% sand (SP and their compaction and strength properties were determined. Results indicated that the investigated materials exhibited a brittle behaviour on the dry side of optimum and a ductile behaviour on the wet side of optimum. For each material, the compressive strength increased with an increase in density following a power law function. Conversely, the compressive strength increased with decreasing water content of the material following a similar function. Finally, the compressive strength decreased with an increase in sand content because of increased material heterogeneity and loss of sand grains from the sides during shearing.

  9. A Simplified Model for the Effect of Weld-Induced Residual Stresses on the Axial Ultimate Strength of Stiffened Plates

    Science.gov (United States)

    Chen, Bai-Qiao; Guedes Soares, C.

    2018-03-01

    The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed.

  10. Screening of Low Clinker Binders, Compressive Strength and Chloride Ingress

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; De Weerdt, Klaartje; Garzón, Sergio Ferreiro

    2017-01-01

    This paper reports an initial screening of potential new binders for concrete with reduced CO2-emission. Mortars cured saturated for 90 days are compared with regard to a) compressive strength of mortars with similar water-to-binder ratio, and b) chloride ingress in similar design strength mortar...... compromising the 90 days compressive strength and resistance to chloride ingress in marine exposure by using selected alternative binders....

  11. Comparative performance of locally made and the foreign made dynamic compression plates

    International Nuclear Information System (INIS)

    Bilal, M.; Gul, R.M.; Mujahid, M.; Askar, Z.

    2011-01-01

    Bone implants are widely used to treat patients due to trauma in different causalities. The major types of bone implants are plates known as Dynamic Compression Plates (DCP) and nails, both made of stainless steel (AISI 316L Grade). In Pakistan both local made and foreign made (DCP) are available. The unit price of foreign made DCP is about 8 to 10 times that of the local made, however, no comprehensive study has been done on the comparison of these plates. An in-depth analysis was performed to compare the essential properties of six different brands of DCP including two foreign, two local and two unknown brands. These properties included mechanical properties, such as bending stiffness, yield strength, modulus of elasticity and hardness. Compositional analysis and various dimensions of plate important for bone healing process were also compared. The results show that all plates have similar mechanical properties. The compositional analysis showed some variations from the ASTM standards for most of the plates. The dimensional analysis of plates showed that Slot Width and Land were within range for most of the plates but the Spherical Radius was out of range for all the plates. Generally, all plates have no major differences in their properties, material and shape. (author)

  12. Strength of tensed and compressed concrete segments in crack spacing under short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Galyautdinov Zaur

    2018-01-01

    Full Text Available Formation of model describing dynamic straining of reinforced concrete requires taking into account the basic aspects influencing the stress-strain state of structures. Strength of concrete segments in crack spacing is one of the crucial aspects that affect general strain behavior of reinforced concrete. Experimental results demonstrate significant change in strength of tensed and compressed concrete segments in crack spacing both under static and under dynamic loading. In this case, strength depends on tensile strain level and the slope angle of rebars towards the cracks direction. Existing theoretical and experimental studies estimate strength of concrete segments in crack spacing under static loading. The present work presents results of experimental and theoretical studies of dynamic strength of plates between cracks subjected to compression-tension. Experimental data was analyzed statistically; the dependences were suggested to describe dynamic strength of concrete segments depending on tensile strain level and slope angle of rebars to cracks direction.

  13. Influence of cracks and pitting corrosion on residual ultimate strength of stiffened plates

    Directory of Open Access Journals (Sweden)

    ZHANG Jing

    2018-02-01

    Full Text Available [Objectives] Ships and offshore platforms serve in the harsh sea environment for a long time. Cracks and pitting corrosion will occur in such a structure and the damage will affect its ultimate strength.[Methods] To investigate the influence of cracks and pitting corrosion on ultimate bearing capacity, the ultimate strength of a structure under axial compression is studied by using a nonlinear finite element. The mesh size of a stiffened plate with cracks and pitting corrosion is first discussed. Then the influence of the relative positions of cracks and pitting corrosion, number of corrosion points and crack length impact on the residual ultimate strength of damaged stiffened plates is discussed via a series of calculations.[Results] The results indicate that the increase in crack length and pitting corrosion significantly decreases the ultimate strength of a stiffened plate. [Conclusions] This provides a useful reference for designing and maintaining ships and offshore structures in their life cycles.

  14. Elastic buckling strength of corroded steel plates

    Indian Academy of Sciences (India)

    structural safety assessment of corroded structures, residual strength should be ... Rahbar-Ranji (2001) has proposed a spectrum for random simulation of ... The main aim of the present work is to investigate the buckling strength of simply ...

  15. The strength of polyaxial locking interfaces of distal radius plates.

    Science.gov (United States)

    Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas

    2009-10-01

    Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.

  16. STOCHASTIC MODELING OF COMPRESSIVE STRENGTH OF PHOSPHORUS SLAG CONTENT CEMENT

    Directory of Open Access Journals (Sweden)

    Ali Allahverdi

    2016-07-01

    Full Text Available One of the common methods for quick determination of compressive strength as one of the most important properties for assessment of cement quality is to apply various modeling approaches. This study is aimed at finding a model for estimating the compressive strength of phosphorus slag content cements. For this purpose, the compressive strengths of chemically activated high phosphorus slag content cement prepared from phosphorus slag (80 wt.%, Portland cement (14 wt.% and a compound chemical activator containing sodium sulfate and anhydrite (6 wt.% were measured at various Blaine finenesses and curing times. Based on the obtained results, a primary stochastic model in terms of curing time and Blaine fineness has been developed. Then, another different dataset was used to incorporate composition variable including weight fractions of phosphorus slag, cement, and activator in the model. This model can be effectively used to predict the compressive strength of phosphorus slag content cements at various Blaine finenesses, curing times, and compositions.

  17. Relationship between pore structure and compressive strength of ...

    Indian Academy of Sciences (India)

    J BU

    compressive strength relationship in ... He applied this equation to experimental data on gypsum plasters and ... Popovics [15] observes that this is true even for different types of ... proportions and curing ages of concrete samples are listed in table 1.

  18. models for predicting compressive strength and water absorption

    African Journals Online (AJOL)

    user

    presents a mathematical model for predicting the compressive strength and water absorption of laterite-quarry dust cement block using ... building and construction of new infrastructure and .... In (6), R is a vector containing the real ratios of the.

  19. Postbuckling Analysis Of A Rectangular Plate Loaded In Compression

    Directory of Open Access Journals (Sweden)

    Havran Jozef

    2015-12-01

    Full Text Available The stability analysis of a thin rectangular plate loaded in compression is presented. The nonlinear FEM equations are derived from the minimum total potential energy principle. The peculiarities of the effects of the initial imperfections are investigated using the user program. Special attention is paid to the influence of imperfections on the post-critical buckling mode. The FEM computer program using a 48 DOF element has been used for analysis. Full Newton-Raphson procedure has been applied.

  20. History of internal fixation with plates (part 2): new developments after World War II; compressing plates and locked plates.

    Science.gov (United States)

    Hernigou, Philippe; Pariat, Jacques

    2017-07-01

    The first techniques of operative fracture with plates were developed in the 19th century. In fact, at the beginning these methods consisted of an open reduction of the fracture usually followed by a very unstable fixation. As a consequence, the fracture had to be opened with a real risk of (sometimes lethal) infection, and due to unstable fixation, protection with a cast was often necessary. During the period between World Wars I and II, plates for fracture fixation developed with great variety. It became increasingly recognised that, because a fracture of a long bone normally heals with minimal resorption at the bone ends, this may result in slight shortening and collapse, so a very rigid plate might prevent such collapse. However, as a consequence, delayed healing was observed unless the patient was lucky enough to have the plate break. One way of dealing with this was to use a slotted plate in which the screws could move axially, but the really important advance was recognition of the role of compression. After the first description of compression by Danis with a "coapteur", Bagby and Müller with the AO improved the technique of compression. The classic dynamic compression plates from the 1970s were the key to a very rigid fixation, leading to primary bone healing. Nevertheless, the use of strong plates resulted in delayed union and the osteoporosis, cancellous bone, comminution, and/or pathological bone resulted in some failures due to insufficient stability. Finally, new devices represented by locking plates increased the stability, contributing to the principles of a more biological osteosynthesis while giving enough stability to allow immediate full weight bearing in some patients.

  1. Quality Assessment of Compressed Video for Automatic License Plate Recognition

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Støttrup-Andersen, Jesper; Forchhammer, Søren

    2014-01-01

    Definition of video quality requirements for video surveillance poses new questions in the area of quality assessment. This paper presents a quality assessment experiment for an automatic license plate recognition scenario. We explore the influence of the compression by H.264/AVC and H.265/HEVC s...... recognition in our study has a behavior similar to human recognition, allowing the use of the same mathematical models. We furthermore propose an application of one of the models for video surveillance systems......Definition of video quality requirements for video surveillance poses new questions in the area of quality assessment. This paper presents a quality assessment experiment for an automatic license plate recognition scenario. We explore the influence of the compression by H.264/AVC and H.265/HEVC...... standards on the recognition performance. We compare logarithmic and logistic functions for quality modeling. Our results show that a logistic function can better describe the dependence of recognition performance on the quality for both compression standards. We observe that automatic license plate...

  2. Compressive Strength of Longitudinally Stiffened GRP Panels

    DEFF Research Database (Denmark)

    Böhme, J.; Noury, P.; Riber, Hans Jørgen

    1996-01-01

    A structural analysis of a cross stiffened orthotropic GRP panel subjected to uniaxial compressive loads is carried out. Analytical solutions to the buckling of such structures are proposed and validated by a finite element analysis. Both analytical and finite element approaches confirm an identi...

  3. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    Science.gov (United States)

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Predicting the Compressive Strength of Concretes Made with ...

    African Journals Online (AJOL)

    In most of these cases the cause of the collapse could be traced to the strength of the construction materials, mainly concrete. Secondly, experimental ... The compressive strength predictions were compared with predictions from an alternative model based on regression analysis. The results of the study show that for the ...

  5. predicting the compressive strength of concretes made with granite

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... computational model based on artificial neural networks for the determination of the compressive strength of concrete ... Strength being the most important property of con- ... to cut corners use low quality concrete materials in .... manner of operation of natural neurons in the human body. ... the output ai.

  6. Forecasting the compressive strength of soil-concretedepending on ...

    African Journals Online (AJOL)

    One of the most important physical and mechanical properties of soil-concrete is the compressive strength. To this end we carried out a study of soil-concrete strength depending on its curing conditions and percentage of cement. For our study we used loam soil with the plasticity index of Ip = 12.3, Portland cement of type I, ...

  7. Characterization of the Compressive Strength of Sandcrete Blocks in ...

    African Journals Online (AJOL)

    On the basis of the noted poor quality control, recommendations appropriate for improving the strength and effectiveness of sandcrete blocks production in Nigeria are made. Keywords: Sandcrete Blocks, Compressive Strength, Mix Ratio Journal of Civil Engineering Research and Practice Vol. 5 (1) 2008: pp. 15-28 ...

  8. Comparison of Open-Hole Compression Strength and Compression After Impact Strength on Carbon Fiber/Epoxy Laminates for the Ares I Composite Interstage

    Science.gov (United States)

    Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.

    2011-01-01

    Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.

  9. Compression strength perpendicular to grain of structural timber and glulam

    DEFF Research Database (Denmark)

    Damkilde, Lars; Hoffmeyer, Preben; Pedersen, Torben N.

    1998-01-01

    The characteristic strength values for compression perpendicular to grain as they appear in EN 338 (structural timber) and EN 1194 (glulam) are currently up for discussion. The present paper provides experimental results based on EN 1193 that may assist in the correct assignment of such strength...... values. The dominant failure mode of glulam specimens is shown to be fundamentally different from that of structural timber specimens. Glulam specimens often show tension perpendicular to grain failure before the compression strength value is reached. Such failure mode is not seen for structural timber....... Nonetheless test results show that the levels of characteristic compression strength perpendicular to grain are of the same order for structural timber and glulam. The values are slightly lower than those appearing in EN 1194 and less than half of those appearing in EN 338. The paper presents a numerical...

  10. Effect of Hand Mixing on the Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    James Isiwu AGUWA

    2010-12-01

    Full Text Available This paper presents the effect of hand mixing on the compressive strength of concrete. Before designing the concrete mix, sieve analysis of sharp sand and chippings was carried out and their fineness moduli were determined. Also the dry weight of chippings and the specific gravities of both sand and chippings were determined. A designed concrete mix of 1:2:4 was used and the number of turnings of the mixture over from one end to another by hand mixing was varying from one time up to and including seven times. The strengths were measured at the curing ages of 7, 14, 21 and 28 days respectively using 150mm concrete cubes cast, cured and crushed. The results revealed that the compressive strengths of concrete cubes appreciably increased with increase in number of turnings from one to four times but remained almost constant beyond four times of turning for all the ages tested. For example, at 1, 2, and 3 times turning; the compressive strengths at 28 days were 4.67, 13.37 and 20.28N/mm2 respectively while at 4, 5 and 6 times turning; the compressive strengths at 28 days were 21.15, 21.34 and 21.69N/mm2. From the data, adequate strengths were not developed at turnings below three times of hand mixing, concluding that a minimum of three times turning is required to produce concrete with satisfactory strength.

  11. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    Science.gov (United States)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  12. Compressive strength of brick masonry made with weak mortars

    DEFF Research Database (Denmark)

    Pedersen, Erik Steen; Hansen, Klavs Feilberg

    2013-01-01

    in the joint will ensure a certain level of load-carrying capacity. This is due to the interaction between compression in the weak mortar and tension in the adjacent bricks. This paper proposes an expression for the compressive strength of masonry made with weak lime mortars (fm... of masonry depends only on the strength of the bricks. A compression failure in masonry made with weak mortars occurs as a tension failure in the bricks, as they seek to prevent the mortar from being pressed out of the joints. The expression is derived by assuming hydrostatic pressure in the mortar joints......, which is the most unfavourable stress distribution with respect to tensile stresses in bricks. The expression is compared with the results of compression tests of masonry made with weak mortars. It can take into account bricks with arbitrary dimensions as well as perforated bricks. For a stronger mortar...

  13. Risk of vertebral insufficiency fractures in relation to compressive strength predicted by quantitative computed tomography

    International Nuclear Information System (INIS)

    Biggemann, M.; Hilweg, D.; Seidel, S.; Horst, M.; Brinckmann, P.

    1991-01-01

    Vertebral insufficiency fractures may result from excessive loading of normal and routine loading of osteoporotic spines. Fractures occur when the mechanical load exceeds the vertebral compressive strength, i.e., the maximum load a vertebra can tolerate. Vertebral compressive strength is determined by trabecular bone density and the size of end-plate area. Both parameters can be measured non-invasively by quanti-tative computed tomography (QCT). In 75 patients compressive strength (i.e., trabecular bone density and endplate area) of the vertebra L3 was determined using QCT. In addition, conventional radiographs of the spines were analysed for the prevalence of insufficiency fractures in each case. By relating fracture prevalence to strength, 3 fracture risk groups were found: a high-risk group with strength values of L3 5 kN and a fracture risk near 0 percent. Biomechanical measurements and model calculations indicate that spinal loads of 3 to 4 kN at L3/4 will be common in everyday activities. These data and the results described above suggest that spines with strength values of L3<3 kN are at an extremely high risk of insufficiency fractures in daily life. Advantages of fracture risk assessment by strength determination over risk estimation based on clinically used trabecular bone density measurements are discussed. (author). 18 refs.; 4 figs

  14. Compressive strength of concrete and mortar containing fly ash

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  15. Workability and Compressive Strength for Concrete With Coconut Shell Aggregate

    Directory of Open Access Journals (Sweden)

    Leman Alif Syazani

    2017-01-01

    Full Text Available This study was conducted to investigate the compressive strength and workability of concrete added with coconut shells. Comparisons were made between conventional concrete with concrete mix coconut shell. In this study, the concretes were mixes with coconut shell by percentage of weight concrete which is 0%, 5%, and 10%. The coconut shell has been crushed first, then it was sieved, to get the optimum size which, that retained on the 5mm sieve and passing 10mm sieve. Experimental tests conducted in this study are slump test and compressive test. The results from this study are workability of concrete added with 0% and 5% of coconut shell has medium degree of workability compared to concrete added with 10% that has low workability. For the compressive strength, the concrete added with 5% and 10% of coconut shell has lower strength compared with normal concrete.

  16. Research on the compressive strength of a passenger vehicle roof

    Science.gov (United States)

    Zhao, Guanglei; Cao, Jianxiao; Liu, Tao; Yang, Na; Zhao, Hongguang

    2017-05-01

    To study the compressive strength of a passenger vehicle roof, this paper makes the simulation test on the static collapse of the passenger vehicle roof and analyzes the stress and deformation of the vehicle roof under pressure in accordance with the Roof Crush Resistance of Passenger Cars (GB26134-2010). It studies the optimization on the major stressed parts, pillar A, pillar B and the rail of roof, during the static collapse process of passenger vehicle roof. The result shows that the thickness of pillar A and the roof rail has significant influence on the compressive strength of the roof while that of pillar B has minor influence on the compressive strength of the roof.

  17. Effect of Compaction on Compressive Strength of Unfired Clay Blocks

    International Nuclear Information System (INIS)

    Lakho, N.A.; Zardari, M.A.; Pathan, A.A.

    2016-01-01

    This study investigates the possible use of unfired compacted clay blocks as a substitute of CSEB (Compressed Stabilized Earth Blocks) for the construction of economical houses. Cubes of 150 mm size were cut from the clay blocks which were compacted at various intensities of pressure during the casting. The results show that the compressive strength of the clay cubes increased with the compacting pressure to which the blocks were subjected during casting. The average crushing strength of the cubes, sawed from clay blocks that were subjected to compacting pressure of 7.2 MPa, was found to be 4.4 MPa. This value of compressive strength is about 50 percent more than that of normal CSEB. This study shows that the compacted clay blocks could be used as economical walling material as replacement of CSEB. (author)

  18. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, Henrik; Brincker, Rune

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values....

  19. Relationship between the Compressive and Tensile Strength of Recycled Concrete

    International Nuclear Information System (INIS)

    El Dalati, R.; Haddad, S.; Matar, P.; Chehade, F.H

    2011-01-01

    Concrete recycling consists of crushing the concrete provided by demolishing the old constructions, and of using the resulted small pieces as aggregates in the new concrete compositions. The resulted aggregates are called recycled aggregates and the new mix of concrete containing a percentage of recycled aggregates is called recycled concrete. Our previous researches have indicated the optimal percentages of recycled aggregates to be used for different cases of recycled concrete related to the original aggregates nature. All results have shown that the concrete compressive strength is significantly reduced when using recycled aggregates. In order to obtain realistic values of compressive strength, some tests have been carried out by adding water-reducer plasticizer and a specified additional quantity of cement. The results have shown that for a limited range of plasticizer percentage, and a fixed value of additional cement, the compressive strength has reached reasonable value. This paper treats of the effect of using recycled aggregates on the tensile strength of concrete, where concrete results from the special composition defined by our previous work. The aim is to determine the relationship between the compressive and tensile strength of recycled concrete. (author)

  20. Optimum concrete compression strength using bio-enzyme

    OpenAIRE

    Bagio Tony Hartono; Basoeki Makno; Tistogondo Julistyana; Pradana Sofyan Ali

    2017-01-01

    To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the con...

  1. Testing compression strength of wood logs by drilling resistance

    Science.gov (United States)

    Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter

    2017-04-01

    Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.

  2. Unfired clay bricks – moisture properties and compressive strength

    DEFF Research Database (Denmark)

    Hansen, E.J. de Place; Hansen, Kurt Kielsgaard

    2002-01-01

    Apparatus, methods and test results from an experimental investigation of (1) the properties for moisture performance of the materials, including water vapour sorption and water vapour transmission, (2) humidity buffering of the indoor climate by an absorbent material, and (3) the compressive...... strength are presented....

  3. Effect of elevated temperature on the compressive strength of ...

    African Journals Online (AJOL)

    Based on results of tests, partial replacement of cement with 10 % PSMS is recommended for use in concrete production and resistance to elevated temperature. The studies show that at this replacement, the concrete compressive strength is not adversely affected when the elevated temperature reaches 500°C. Keywords: ...

  4. Compressive and flexural strength of cement mortar stabilized with ...

    African Journals Online (AJOL)

    Mortar is a material with wide range of applications in the construction industry. However, plain mortar matrices are usually brittle and often cracks and fails more suddenly than reinforced mortars. In this study, the compressive and flexural strengths of cement mortar stabilized with Raffia Palm Fruit Peel (RPFP) as fibre were ...

  5. comparative analysis of the compressive strength of hollow

    African Journals Online (AJOL)

    user

    2016-04-02

    Apr 2, 2016 ... Previous analysis showed that cavity size and number on one hand and combinations thickness affect the compressive strength of hollow sandcrete blocks. Series arrangement of the cavities is common but parallel arrangement has been recommended. This research performed a comparative analysis of ...

  6. optimisation of compressive strength of periwinkle shell aggregate

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... In this paper, a regression model is developed to predict and optimise the compressive strength of periwinkle shell aggregate concrete using Scheffe's regression theory. The results obtained from the derived regression model agreed favourably with the experimental data. The model was tested for ...

  7. Effects of Elevated Temperature on Compressive Strength Of Concrete

    African Journals Online (AJOL)

    This study presents the results of investigation of the effects of elevated temperatures on the compressive strength of Grade 40 concrete. A total of thirty cube specimens were cast, cured in water at ambient temperature in the laboratory and subjected to various temperature regimes before testing. A concrete mix of 1:1:3 ...

  8. Influence of curing regimes on compressive strength of ultra high

    Indian Academy of Sciences (India)

    The present paper is aimed to identify an efficient curing regime for ultra high performance concrete (UHPC), to achieve a target compressive strength more than 150 MPa, using indigenous materials. The thermal regime plays a vital role due to the limited fineness of ingredients and low water/binder ratio. By activation of the ...

  9. Damaging Effects of Dieldrex-20 on the Compressive Strength of ...

    African Journals Online (AJOL)

    Analysis of the results showed that as the percentage of aqueous solution of dilclrex-20 increases, the compressive strength of concrete decreases. This decrease is independent of concrete grade and age. It also showed that the 5 per cent aqueous solution of dieldrex-20 recommended dosage should be strictly adhered to ...

  10. Compressive Strength Of Rice Husk Ash-Cement Sandcrete Blocks ...

    African Journals Online (AJOL)

    There is growing demand for alternative, low-cost building material in developing countries. The effect of partial substitution of ordinary Portland cement with Rice Husk Ash (RHA) on the compressive strength of hollow sandcrete block was investigated through laboratory experimental procedures. The specific gravity, initial ...

  11. Models for predicting compressive strength and water absorption of ...

    African Journals Online (AJOL)

    This work presents a mathematical model for predicting the compressive strength and water absorption of laterite-quarry dust cement block using augmented Scheffe's simplex lattice design. The statistical models developed can predict the mix proportion that will yield the desired property. The models were tested for lack of ...

  12. [Compressive and bend strength of experimental admixed high copper alloys].

    Science.gov (United States)

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  13. Dataset of the relationship between unconfined compressive strength and tensile strength of rock mass

    International Nuclear Information System (INIS)

    Sugita, Yutaka; Yui, Mikazu

    2002-02-01

    This report summary the dataset of the relationship between unconfined compressive strength and tensile strength of the rock mass described in supporting report 2; repository design and engineering technology of second progress report (H12 report) on research and development for the geological disposal of HLW in Japan. (author)

  14. Insulation interlaminar shear strength testing with compression and irradiation

    International Nuclear Information System (INIS)

    McManamy, T.J.; Brasier, J.E.; Snook, P.

    1989-01-01

    The Compact Ignition Tokamak (CIT) project identified the need for research and development for the insulation to be used in the toroidal field coils. The requirements included tolerance to a combination of high compression and shear and a high radiation dose. Samples of laminate-type sheet material were obtained from commercial vendors. The materials included various combinations of epoxy, polyimide, E-glass, S-glass, and T-glass. The T-glass was in the form of a three-dimensional weave. The first tests were with 50 x 25 x 1 mm samples. These materials were loaded in compression and then to failure in shear. At 345-MPa compression, the interlaminar shear strength was generally in the range of 110 to 140 MPa for the different materials. A smaller sample configuration was developed for irradiation testing. The data before irradiation were similar to those for the larger samples but approximately 10% lower. Limited fatigue testing was also performed by cycling the shear load. No reduction in shear strength was found after 50,000 cycles at 90% of the failure stress. Because of space limitations, only three materials were chosen for irradiation: two polyimide systems and one epoxy system. All used boron-free glass. The small shear/compression samples and some flexure specimens were irradiated to 4 x 10 9 and 2 x 10 10 rad in the Advanced Technology Reactor at Idaho National Engineering Laboratory. A lead shield was used to ensure that the majority of the dose was from neutrons. The shear strength with compression before and after irradiation at the lower dose was determined. Flexure strength and the results from irradiation at the higher dose level will be available in the near future. 7 refs., 7 figs., 2 tabs

  15. Effect Of RPC Compositions On: Compressive Strength and Absorption

    Directory of Open Access Journals (Sweden)

    Ahmed Sultan Ali

    2016-03-01

    Full Text Available Concrete is a critical material for the construction of infrastructure facilities throughout the world. A new material known as Reactive Powder Concrete (RPC, or sometimes called Ultra-High Performance Concrete (UHPC, is becoming available that differs significantly from traditional concretes. It is an ultra high strength and high ductility composite material with advanced mechanical properties. It consists of special concrete whose microstructure is optimized by precise gradation of all particles in the mix to yield maximum density. Different RPC mixes in the experimental investigation of the present study the mechanical properties of RPC including compressive strength, density and absorption. The main variables used in the production of the different RPC mixes of the present research are three, namely, type of pozzolanic admixture (metakaolin, micro silica, and silica fume, type of fibers (steel and polypropylene fibers and volume fraction of fibers (1.0,1.5, and 2.0%. The experimental results indicated that RPC mixes with silica fume gave the highest values of compressive strength and density and lowest value of absorption in comparison with RPC using micro silica or metakaolin where metakaolin was the third in such comparisons. However the RPC mixes used in the present investigation gave group compressive strength ranging between 164 -195 MPa. It was also found that the use of steel fibers with high volume fraction (2% in an RPC mix increases the compressive strength by 8% and density of the concrete by 2.5% and reduces its absorption by 13%, unlike an RPC mix using polypropylene fibers of lesser volume fraction.

  16. Compressive Strength of Cometary Surfaces Derived from Radar Observations

    Science.gov (United States)

    ElShafie, A.; Heggy, E.

    2014-12-01

    Landing on a comet nucleus and probing it, mechanically using harpoons, penetrometers and drills, and electromagnetically using low frequency radar waves is a complex task that will be tackled by the Rosetta mission for Comet 67P/Churyumov-Gerasimenko. The mechanical properties (i.e. density, porosity and compressive strength) and the electrical properties (i.e. the real and imaginary parts of the dielectric constant) of the comet nucleus, constrain both the mechanical and electromagnetic probing capabilities of Rosetta, as well as the choice of landing site, the safety of the landing, and subsurface data interpretation. During landing, the sounding radar data that will be collected by Rosetta's CONSERT experiment can be used to probe the comet's upper regolith layer by assessing its dielectric properties, which are then inverted to retrieve the surface mechanical properties. These observations can help characterize the mechanical properties of the landing site, which will optimize the operation of the anchor system. In this effort, we correlate the mechanical and electrical properties of cometary analogs to each other, and derive an empirical model that can be used to retrieve density, porosity and compressive strength from the dielectric properties of the upper regolith inverted from CONSERT observations during the landing phase. In our approach we consider snow as a viable cometary material analog due to its low density and its porous nature. Therefore, we used the compressive strength and dielectric constant measurements conducted on snow at a temperature of 250 K and a density range of 0.4-0.9 g/cm3 in order to investigate the relation between compressive strength and dielectric constant under cometary-relevant density range. Our results suggest that compressive strength increases linearly as function of the dielectric constant over the observed density range mentioned above. The minimum and maximum compressive strength of 0.5 and 4.5 MPa corresponded to a

  17. The beetle elytron plate: a lightweight, high-strength and buffering functional-structural bionic material.

    Science.gov (United States)

    Zhang, Xiaoming; Xie, Juan; Chen, Jinxiang; Okabe, Yoji; Pan, Longcheng; Xu, Mengye

    2017-06-30

    To investigate the characteristics of compression, buffering and energy dissipation in beetle elytron plates (BEPs), compression experiments were performed on BEPs and honeycomb plates (HPs) with the same wall thickness in different core structures and using different molding methods. The results are as follows: 1) The compressive strength and energy dissipation capacity in the BEP are 2.44 and 5.0 times those in the HP, respectively, when the plates are prepared using the full integrated method (FIM). 2) The buckling stress is directly proportional to the square of the wall thickness (t). Thus, for core structures with equal wall thicknesses, although the core volume of the BEP is 42 percent greater than that of the HP, the mechanical properties of the BEP are several times higher than those of the HP. 3) It is also proven that even when the single integrated method (SIM) is used to prepare BEPs, the properties discussed above remain superior to those of HPs by a factor of several; this finding lays the foundation for accelerating the commercialization of BEPs based on modern manufacturing processes.

  18. Effect of Soorh Metakaolin on Concrete Compressive Strength and Durability

    Directory of Open Access Journals (Sweden)

    A. Saand

    2017-12-01

    Full Text Available Concrete durability is a key aspect for forecasting the expected life time of concrete structures. In this paper, the effect of compressive strength and durability of concrete containing metakaolin developed from a local natural material (Soorh of Thatta Distict of Sindh, Pakistan is investigated. Soorh is calcined by an electric furnace at 8000C for 2 hours to produce metakaolin. One mix of ordinary concrete and five mixes of metakaolin concrete were prepared, where cement is replaced by developed metakaolin from 5% to 25% by weight, with 5% increment step. The concrete durability was tested for water penetration, carbonation depth and corrosion resistance. The obtained outcomes demonstrated that, 15% replacement level of local developed metakaolin presents considerable improvements in concrete properties. Moreover, a considerable linear relationship was established between compressive strength and concrete durability indicators like water penetration, carbonation depth and corrosion resistance.

  19. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    Science.gov (United States)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  20. Research of compression strength of fissured rock mass

    Directory of Open Access Journals (Sweden)

    А. Г. Протосеня

    2017-03-01

    Full Text Available The article examines a method of forecasting strength properties and their scale effect in fissured rock mass using computational modelling with final elements method in ABAQUS software. It shows advantages of this approach for solving tasks of determining mechanical properties of fissured rock mass, main stages of creating computational geomechanic model of rock mass and conducting a numerical experiment. The article presents connections between deformation during loading of numerical model, inclination angle of main fracture system from uniaxial and biaxial compression strength value, size of the sample of fissured rock mass and biaxial compression strength value under conditions of apatite-nepheline rock deposit at Plateau Rasvumchorr OAO «Apatit» in Kirovsky region of Murmanskaya oblast. We have conducted computational modelling of rock mass blocks testing in discontinuities based on real experiment using non-linear shear strength criterion of Barton – Bandis and compared results of computational experiments with data from field studies and laboratory tests. The calculation results have a high-quality match to laboratory results when testing fissured rock mass samples.

  1. Study on conversion relationships of compressive strength indexes for recycled lightweight aggregate concrete

    Science.gov (United States)

    Zhang, Xiang-gang; Yang, Jian-hui; Kuang, Xiao-mei

    2017-01-01

    In order to study cube compressive strength and axial compressive strength of recycled lightweight aggregate concrete(RLAC), and conversion relationship between the two, with the replacement rate of recycled lightweight coarse aggregate as change parameters, 15 standard cube test specimens and 15 standard prism test specimens were produced to carry out the test. Then compressive strength of test specimens were measured, and the law of different replacement rate of recycled lightweight coarse aggregate influencing compressive strength of RLAC was analyzed, as the method of statistical regression adopted, the conversion relationships between of cube compressive strength and axial compressive strength of RLAC was obtained. It is shown that compressive strength of RLAC are lower than compressive strength of ordinary concrete; and that compressive strength of RLAC gradually decreases as replacement rate of recycled lightweight coarse aggregate increases; as well as, the conversion relationship between axial compressive strength and cube compressive strength of RLAC is different from ordinary concrete; based on the experimental data, conversion relationship formula between compressive strength indexes of RLAC was established. It is suggested that the replacement rate of recycled lightweight aggregate should be controlled within 25%.

  2. The impact of water content and ionic diffusion on the uniaxial compressive strength of shale

    Directory of Open Access Journals (Sweden)

    Talal AL-Bazali

    2013-12-01

    Finally, the impact of ionic diffusion on the compressive strength of shale was carried out in the absence of both chemical osmosis and capillary forces. Results show that the invasion of sodium and calcium ions into shale reduced its compressive strength considerably while the invasion of potassium ions enhanced its compressive strength.

  3. Scaling of compression strength in disordered solids: metallic foams

    Directory of Open Access Journals (Sweden)

    J. Kováčik

    2016-03-01

    Full Text Available The scaling of compression strength with porosity for aluminium foams was investigated. The Al 99.96, AlMg1Si0.6 and AlSi11Mg0.6 foams of various porosity, sample size with and without surface skin were tested in compression. It was observed that the compression strength of aluminium foams scales near the percolation threshold with Tf ≈ 1.9 - 2.0 almost independently on the matrix alloy, sample size and presence of surface skin. The difference of the obtained values of Tf to the theoretical estimate of Tf = 2.64 ± 0.3 by Arbabi and Sahimi and to Ashby estimate of 1.5 was explained using an analogy with the Daoud and Coniglio approach to the scaling of the free energy of sol-gel transition. It leads to the finding that, there are two different universality classes for the critical exponent Tf: when the stretching forces dominate Tf = f = 2.1, respectively when bending forces prevail Tf = .d = 2.64 seems to be valid. Another possibility is the validity of relation Tf ≤ f which varies only according to the universality class of modulus of elasticity in foam.

  4. Compressive strength test for cemented waste forms: validation process

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Candido, Francisco Donizete; Seles, Sandro Rogerio

    2007-01-01

    In the Cementation Laboratory (LABCIM), of the Development Centre of the Nuclear Technology (CNEN/CDTN-MG), hazardous/radioactive wastes are incorporated in cement, to transform them into monolithic products, preventing or minimizing the contaminant release to the environment. The compressive strength test is important to evaluate the cemented product quality, in which it is determined the compression load necessary to rupture the cemented waste form. In LABCIM a specific procedure was developed to determine the compressive strength of cement waste forms based on the Brazilian Standard NBR 7215. The accreditation of this procedure is essential to assure reproductive and accurate results in the evaluation of these products. To achieve this goal the Laboratory personal implemented technical and administrative improvements in accordance with the NBR ISO/IEC 17025 standard 'General requirements for the competence of testing and calibration laboratories'. As the developed procedure was not a standard one the norm ISO/IEC 17025 requests its validation. There are some methodologies to do that. In this paper it is described the current status of the accreditation project, especially the validation process of the referred procedure and its results. (author)

  5. Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars

    Science.gov (United States)

    Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.

    2018-01-01

    Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.

  6. Compressive and tensile strength for concrete containing coal bottom ash

    Science.gov (United States)

    Maliki, A. I. F. Ahmad; Shahidan, S.; Ali, N.; Ramzi Hannan, N. I. R.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Azmi, M. A. Mohammad; Rahim, M. Abdul

    2017-11-01

    The increasing demand in the construction industry will lead to the depletion of materials used in construction sites such as sand. Due to this situation, coal bottom ash (CBA) was selected as a replacement for sand. CBA is a by-product of coal combustion from power plants. CBA has particles which are angular, irregular and porous with a rough surface texture. CBA also has the appearance and particle size distribution similar to river sand. Therefore, these properties of CBA make it attractive to be used as fine aggregate replacement in concrete. The objectives of this study were to determine the properties of CBA concrete and to evaluate the optimum percentage of CBA to be used in concrete as fine aggregate replacement. The CBA was collected at Tanjung Bin power plant. The mechanical experiment (compressive and tensile strength test) was conducted on CBA concrete. Before starting the mechanical experiment, cubic and cylindrical specimens with dimensions measuring 100 × 100 × 100 mm and 150 × 300 mm were produced based on the percentage of coal bottom ash in this study which is 0% as the control specimen. Meanwhile 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of CBA were used to replace the fine aggregates. The CBA concrete samples were cured for 7 days and 28 days respectively to maintain the rate of hydration and moisture. After the experimental work was done, it can be concluded that the optimum percentage of CBA as fine aggregate is 60% for a curing period of both 7 days and 28 days with the total compressive strength of 36.4 Mpa and 46.2 Mpa respectively. However, the optimum percentage for tensile strength is at 70% CBA for a curing period of both 7 days and 28 days with a tensile strength of 3.03 MPa and 3.63 MPa respectively.

  7. Compressive strength and hydrolytic stability of fly ash based geopolymers

    Directory of Open Access Journals (Sweden)

    Nikolić Irena

    2013-01-01

    Full Text Available The process of geopolymerization involves the reaction of solid aluminosilicate materials with highly alkaline silicate solution yielding an aluminosilicate inorganic polymer named geopolymer, which may be successfully applied in civil engineering as a replacement for cement. In this paper we have investigated the influence of synthesis parameters: solid to liquid ratio, NaOH concentration and the ratio of Na2SiO3/NaOH, on the mechanical properties and hydrolytic stability of fly ash based geopolymers in distilled water, sea water and simulated acid rain. The highest value of compressive strength was obtained using 10 mol dm-3 NaOH and at the Na2SiO3/NaOH ratio of 1.5. Moreover, the results have shown that mechanical properties of fly ash based geopolymers are in correlation with their hydrolytic stability. Factors that increase the compressive strength also increase the hydrolytic stability of fly ash based geopolymers. The best hydrolytic stability of fly ash based geopolymers was shown in sea water while the lowest stability was recorded in simulated acid rain. [Projekat Ministarstva nauke Republike Srbije, br. 172054 i Nanotechnology and Functional Materials Center, funded by the European FP7 project No. 245916

  8. Effect of concrete strength gradation to the compressive strength of graded concrete, a numerical approach

    Science.gov (United States)

    Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa

    2017-09-01

    Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.

  9. Effect of amorphous silica ash used as a partial replacement for cement on the compressive and flexural strengths cement mortar.

    Science.gov (United States)

    Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura

    2018-04-01

    This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar

  10. Permeability, porosity and compressive strength of self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Valcuende, M.O.

    2005-12-01

    Full Text Available Most deterioration affecting the durability of self-compacting concrete structures is mediated by water penetration in the concrete, a condition related to its porous structure. The present study analyzes these two factors. To this end, two types of concrete were prepared, a self-compacting and a traditional vibrated concrete, with different W/C ratios and different types of cement. The results of low-pressure water testing to evaluate permeability and analyses to determine compressive strength and pore size distribution showed that self-compacting concrete has lower capillary porosity than traditional concrete, which would explain its greater resistance to water penetration. Such concrete likewise reached higher strength values, except where large proportions of lime powder with low sand equivalents were used in its manufacture, when lower strength was recorded. Lastly, the depth of water penetration and compressive strength were found to be linearly correlated. That correlation was seen to depend, in turn, on the type of concrete, since for any given strength level, self-compacting concrete was less permeable than the traditional material.

    En este trabajo experimental se estudia la penetración de agua en hormigones autocompactables, analizando al mismo tiempo su estructura porosa, pues gran parte de los procesos de deterioro que afectan a la durabilidad de las estructuras están condicionados por estos dos aspectos. Para ello se han fabricado dos tipos de hormigones, uno autocompactable y otro tradicional vibrado, con diferentes relaciones A/C y distintos tipos de cemento. Tras determinar la permeabilidad al agua bajo presión, la resistencia a compresión y las distribuciones de tamaño de poro, los resultados obtenidos ponen de manifiesto que los hormigones autocompactables presentan menor porosidad capilar que los tradicionales, lo que les confiere mejores prestaciones frente a la penetración de agua. Asimismo, dichos hormigones

  11. Confined compressive strength model of rock for drilling optimization

    Directory of Open Access Journals (Sweden)

    Xiangchao Shi

    2015-03-01

    Full Text Available The confined compressive strength (CCS plays a vital role in drilling optimization. On the basis of Jizba's experimental results, a new CCS model considering the effects of the porosity and nonlinear characteristics with increasing confining pressure has been developed. Because the confining pressure plays a fundamental role in determining the CCS of bottom-hole rock and because the theory of Terzaghi's effective stress principle is founded upon soil mechanics, which is not suitable for calculating the confining pressure in rock mechanics, the double effective stress theory, which treats the porosity as a weighting factor of the formation pore pressure, is adopted in this study. The new CCS model combined with the mechanical specific energy equation is employed to optimize the drilling parameters in two practical wells located in Sichuan basin, China, and the calculated results show that they can be used to identify the inefficient drilling situations of underbalanced drilling (UBD and overbalanced drilling (OBD.

  12. Shear strength and compressibility behaviour of lime-treated organic clay

    OpenAIRE

    Yunus, NZM; Wanatowski, D; Hassan, NA; Marto, A

    2016-01-01

    Apart from strength characteristics, a review of studies on the compressibility of lime-treated soils is equally important that influenced the stability of soil structures. Due to the fact that no study has been carried out, an investigation on the effects of humic acid on strength and compressibility behaviour of lime-stabilised organic clay is presented in this paper. Unconfined Compressive Strength (UCS) and oedometer tests were carried out at different curing periods of 7, 28 and 90 days....

  13. Numerical analysis of the spacer grids' compression strength

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, C.F.M.; Gouvea, J.P.; Medeiros, N., E-mail: carlosschettino@inb.gov.br, E-mail: jpg@metal.eeimvr.uff.br [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Programa de Engenharia Metalurgica

    2013-07-01

    Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)

  14. Optimum concrete compression strength using bio-enzyme

    Directory of Open Access Journals (Sweden)

    Bagio Tony Hartono

    2017-01-01

    Full Text Available To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the concrete. Concrete with bio-enzyme 200 ml/m3, 400 ml/m3, 600 ml/m3, 800 ml/m3, 1000 ml/m3 and normal concrete. Refer to the crushing test result, its tends to the mathematical model using 4th degree polynomial regression (least quartic, as represent on the attached data series, which is for the design mix fc′ = 25 MPa generate optimum value for 33,98 MPa, on the bio-additive dosage of 509 ml bio enzymes.

  15. Numerical analysis of the spacer grids' compression strength

    International Nuclear Information System (INIS)

    Schettino, C.F.M.; Gouvea, J.P.; Medeiros, N.

    2013-01-01

    Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)

  16. Compressive strength evolution of thermally-stressed Saint Maximin limestone.

    Science.gov (United States)

    Farquharson, J.; Griffiths, L.; Baud, P.; Wadsworth, F. B.; Heap, M. J.

    2017-12-01

    The Saint Maximin quarry (Oise, France) opened in the early 1600s, and its limestone has been used extensively as masonry stone, particularly during the classical era of Parisian architecture from the 17th century onwards. Its widespread use has been due to a combination of its regional availability, its high workability, and its aesthetic appeal. Notable buildings completed using this material include sections of the Place de la Concorde and the Louvre in Paris. More recently, however, it has seen increasing use in the construction of large private residences throughout the United States as well as extensions to private institutions such as Stanford University. For any large building, fire hazard can be a substantial concern, especially in tectonically active areas where catastrophic fires may arise following large-magnitude earthquakes. Typically, house fires burn at temperatures of around 600 °C ( 1000 F). Given the ubiquity of this geomaterial as a building stone, it is important to ascertain the influence of heating on the strength of Saint Maximin limestone (SML), and in turn the structural stability of the buildings it is used in. We performed a series of compressive tests and permeability measurements on samples of SML to determine its strength evolution in response to heating to incrementally higher temperatures. We observe that the uniaxial compressive strength of SML decreases from >12 MPa at room temperature to 400 °C). We anticipate that this substantial weakening is in part a result of thermal microcracking, whereby changes in temperature induce thermal stresses due to a mismatch in thermal expansion between the constituent grains. This mechanism is compounded by the volumetric increase of quartz through its alpha - beta transition at 573 °C, and by the thermal decomposition of calcite. To track the formation of thermal microcracks, we monitor acoustic emissions, a common proxy for microcracking, during the heating of an SML sample. The

  17. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  18. Mechanical properties of Concrete with SAP. Part I: Development of compressive strength

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    The development of mechanical properties has been studied in a test program comprising 15 different concrete mixes with 3 different w/c ratios and different additions of superabsorbent polymers (SAP). The degree of hydration is followed for 15 corresponding paste mixes. This paper concerns...... compressive strength. It shows that results agree well with a model based on the following: 1. Concrete compressive strength is proportional to compressive strength of the paste phase 2. Paste strength depends on gel space ratio, as suggested by Powers 3. The influence of air voids created by SAP...... on compressive strength can be accounted for in the same way as when taking the air content into account in Bolomeys formula. The implication of the model is that at low w/c ratios (w/c SAP additions, SAP increases the compressive strength at later ages (from 3 days after casting and onwards...

  19. Loss of shear strength in polycrystalline tungsten under shock compression

    International Nuclear Information System (INIS)

    Dandekar, D.P.

    1976-01-01

    A reexamination of existing data on shock compression of polycrystalline tungsten at room temperature indicates that tungsten may be an exception to the common belief that metals do not behave like elastic-isotropic solids under shock compression

  20. Colour, compressive strength and workability of mortars with an iron rich sewage sludge ash

    DEFF Research Database (Denmark)

    Kappel, Annemette; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2017-01-01

    This paper reports a study of the colour, compressive strength and workability of mortar when cement is partly replaced by sewage sludge ash (SSA). In the study, an iron rich SSA was dry milled into six different fractions. The results showed that the colour, compressive strength and workability...

  1. Prediction of potential compressive strength of Portland clinker from its mineralogy

    DEFF Research Database (Denmark)

    Svinning, K.; Høskuldsson, Agnar; Justnes, H.

    2010-01-01

    Based on a statistical model first applied for prediction of compressive strength up to 28 d from the microstructure of Portland cement, potential compressive strength of clinker has been predicted from its mineralogy. The prediction model was evaluated by partial least squares regression...

  2. Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates

    Science.gov (United States)

    Mahatsente, Rezene

    2017-12-01

    An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.

  3. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  4. Poor relation between biomechanical and clinical studies for the proximal femoral locking compression plate

    DEFF Research Database (Denmark)

    Viberg, Bjarke; Voergård Rasmussen, Katrine Marie; Overgaard, Søren

    2017-01-01

    Background and purpose — The proximal femur locking compression plate (PF-LCP) is a new concept in the treatment of hip fractures. When releasing new implants onto the market, biomechanical studies are conducted to evaluate performance of the implant. We investigated the relation between biomecha......Background and purpose — The proximal femur locking compression plate (PF-LCP) is a new concept in the treatment of hip fractures. When releasing new implants onto the market, biomechanical studies are conducted to evaluate performance of the implant. We investigated the relation between...

  5. Effect of shelf life on compressive strength of zinc phosphate cement

    Science.gov (United States)

    Dwiputri, D. R.; Damiyanti, M.; Eriwati, Y. K.

    2017-08-01

    Usage of zinc phosphate cements with no account of the shelf life left before the expiry date can affect its compressive strength. The aim of this study is to determine the different compressive strength values of zinc phosphate cement with different shelf lives before expiry. Three groups of zinc phosphate cement (GC Elite cement 100) with different expiry dates were tested for compressive strength using a universal testing machine (crosshead speed 1 mm/min: load cell of 250 kgF). The results showed that there was a significant difference (p<0.05) between the compressive strengths of zinc phosphate cement in group III (2 months before expiry date), group I (2 years and 5 months before expiry date), and group II (11 months before expiry date). It can be concluded that there is a significant decrease in compressive strength of zinc phosphate cement near its expiry date.

  6. Dependence of compressive strength of green compacts on pressure, density and contact area of powder particles

    International Nuclear Information System (INIS)

    Salam, A.; Akram, M.; Shahid, K.A.; Javed, M.; Zaidi, S.M.

    1994-08-01

    The relationship between green compressive strength and compacting pressure as well as green density has been investigated for uniaxially pressed aluminium powder compacts in the range 0 - 520 MPa. Two linear relationships occurred between compacting pressure and green compressive strength which corresponded to powder compaction stages II and III respectively, increase in strength being large during stage II and quite small in stage III with increasing pressure. On the basis of both, the experimental results and a previous model on cold compaction of powder particles, relationships between green compressive strength and green density and interparticle contact area of the compacts has been established. (author) 9 figs

  7. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics

    International Nuclear Information System (INIS)

    Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng

    2013-01-01

    The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH 2 PO 4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH 2 PO 4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH 2 PO 4 ratio might be explained by the existence of the weak phase KH 2 PO 4 . However, the low value of compressive strength with the higher MgO-to-KH 2 PO 4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH 2 PO 4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH 2 PO 4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. - Highlights: • High packing density and amorphous hydrated phase improved the compressive strength. • Residual KH 2 PO 4 and poor bonding phase lower the compressive strength. • MPCBC fabricated with optimized parameters had the highest compressive strength

  8. Explosive magnetic flux compression plate generators as fast high-energy power sources

    International Nuclear Information System (INIS)

    Caird, R.S.; Erickson, D.J.; Garn, W.B.; Fowler, C.M.

    1976-01-01

    A type of explosive driven generator, called a plate generator, is described. It is capable of delivering electrical energies in the MJ range at TW power levels. Plane wave detonated explosive systems accelerate two large-area metal plates to high opposing velocities. An initial magnetic field is compressed and the flux transferred to an external load. The characteristics of the plate generator are described and compared with those of other types of generators. Methods of load matching are discussed. The results of several high-power experiments are also given

  9. Analytical results for post-buckling behaviour of plates in compression and in shear

    Science.gov (United States)

    Stein, M.

    1985-01-01

    The postbuckling behavior of long rectangular isotropic and orthotropic plates is determined. By assuming trigonometric functions in one direction, the nonlinear partial differential equations of von Karman large deflection plate theory are converted into nonlinear ordinary differential equations. The ordinary differential equations are solved numerically using an available boundary value problem solver which makes use of Newton's method. Results for longitudinal compression show different postbuckling behavior between isotropic and orthotropic plates. Results for shear show that change in inplane edge constraints can cause large change in postbuckling stiffness.

  10. FUNCTIONAL OUTCOME OF SUPRACONDYLAR FRACTURES OF FEMUR MANAGED BY OPEN REDUCTION AND INTERNAL FIXATION WITH LOCKING COMPRESSION PLATE

    Directory of Open Access Journals (Sweden)

    Madhusudhana

    2015-10-01

    Full Text Available INTRODUCTION : Incidence of distal femur fractures is approximately 37 per 1 , 00,000 person - years.¹Distal femoral fractures has two different injury mechanisms, high energy trauma and low energy trauma. In high - energy trauma, the problem of restoring the function in a destroyed knee joint persists. Complex knee ligament injuries frequently occur additionally to extensive cartilage injuries. In elderly patients, extreme osteoporosis represents a particular problem for anchoring the implant. 2 Supracondylar and inter condylar fractures often are unstable and comminuted and tend to occur in the elderly or those with multiple injuries. Treatment options are many with varied results. The final outcome would depend upon the type of fracture, stabilization of fixation and and perhaps patient general condition. 3 The options for operative treatment are traditional plating techniques that require compression of the implant to the femoral shaft (blade plate, Dynamic Condylar Screw, non - locking condylar buttress plate, antegrade nailing fixation, retrograde nailing, sub muscular locked internal fixation and external fixation. 4 However, as the complexity of fractures needing treatment has changed from simple extra - articular supra - condylar types to inter - condylar and metaphyseal comminuted types, these implants may not be ideal. Double plating, and more recently, locked plating techniques have been advocated 5 . However with double plating there is often extensive soft tissue stripping on both sides of the femur, resulting in reduced blood supply and potential non - union and failure of the implants 6 . The LCP is a single beam construct where the strength of its fixation is equal to the sum of all screw - bone interfaces rather than a single screw’s axial stiffness or pullout resistance as seen in unlocked plates 7,8 . Its unique biomechanical function is based on splinting rather than compression resulting in flexible stabilization

  11. Simulation techniques for spatially evolving instabilities in compressible flow over a flat plate

    NARCIS (Netherlands)

    Wasistho, B.; Geurts, Bernardus J.; Kuerten, Johannes G.M.

    1997-01-01

    In this paper we present numerical techniques suitable for a direct numerical simulation in the spatial setting. We demonstrate the application to the simulation of compressible flat plate flow instabilities. We compare second and fourth order accurate spatial discretization schemes in combination

  12. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, H.; Brincker, Rune

    1989-01-01

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...

  13. A method of vehicle license plate recognition based on PCANet and compressive sensing

    Science.gov (United States)

    Ye, Xianyi; Min, Feng

    2018-03-01

    The manual feature extraction of the traditional method for vehicle license plates has no good robustness to change in diversity. And the high feature dimension that is extracted with Principal Component Analysis Network (PCANet) leads to low classification efficiency. For solving these problems, a method of vehicle license plate recognition based on PCANet and compressive sensing is proposed. First, PCANet is used to extract the feature from the images of characters. And then, the sparse measurement matrix which is a very sparse matrix and consistent with Restricted Isometry Property (RIP) condition of the compressed sensing is used to reduce the dimensions of extracted features. Finally, the Support Vector Machine (SVM) is used to train and recognize the features whose dimension has been reduced. Experimental results demonstrate that the proposed method has better performance than Convolutional Neural Network (CNN) in the recognition and time. Compared with no compression sensing, the proposed method has lower feature dimension for the increase of efficiency.

  14. Strength and deformation behaviors of veined marble specimens after vacuum heat treatment under conventional triaxial compression

    Science.gov (United States)

    Su, Haijian; Jing, Hongwen; Yin, Qian; Yu, Liyuan; Wang, Yingchao; Wu, Xingjie

    2017-10-01

    The mechanical behaviors of rocks affected by high temperature and stress are generally believed to be significant for the stability of certain projects involving rocks, such as nuclear waste storage and geothermal resource exploitation. In this paper, veined marble specimens were treated to high temperature treatment and then used in conventional triaxial compression tests to investigate the effect of temperature, confining pressure, and vein angle on strength and deformation behaviors. The results show that the strength and deformation parameters of the veined marble specimens changed with the temperature, presenting a critical temperature of 600 °C. The triaxial compression strength of a horizontal vein (β = 90°) is obviously larger than that of a vertical vein (β = 0°). The triaxial compression strength, elasticity modulus, and secant modulus have an approximately linear relation to the confining pressure. Finally, Mohr-Coulomb and Hoek-Brown criteria were respectively used to analyze the effect of confining pressure on triaxial compression strength.

  15. Splitting in Dual-Phase 590 high strength steel plates

    International Nuclear Information System (INIS)

    Yang Min; Chao, Yuh J.; Li Xiaodong; Tan Jinzhu

    2008-01-01

    Charpy V-notch impact tests on 5.5 mm thick, hot-rolled Dual-Phase 590 (DP590) steel plate were evaluated at temperatures ranging from 90 deg. C to -120 deg. C. Similar tests on 2.0 mm thick DP590 HDGI steel plate were also conducted at room temperature. Splitting or secondary cracks was observed on the fractured surfaces. The mechanisms of the splitting were then investigated. Fracture surfaces were analyzed by optical microscope (OM) and scanning electron microscope (SEM). Composition of the steel plates was determined by electron probe microanalysis (EPMA). Micro Vickers hardness of the steel plates was also surveyed. Results show that splitting occurred on the main fractured surfaces of hot-rolled steel specimens at various testing temperatures. At temperatures above the ductile-brittle-transition-temperature (DBTT), -95 deg. C, where the fracture is predominantly ductile, the length and amount of splitting decreased with increasing temperature. At temperatures lower than the DBTT, where the fracture is predominantly brittle, both the length and width of the splitting are insignificant. Splitting in HDGI steel plates only appeared in specimens of T-L direction. The analysis revealed that splitting in hot-rolled plate is caused by silicate and carbide inclusions while splitting in HDGI plate results from strip microstructure due to its high content of manganese and low content of silicon. The micro Vickers hardness of either the inclusions or the strip microstructures is higher than that of the respective base steel

  16. The Statistical Analysis of Relation between Compressive and Tensile/Flexural Strength of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Kępniak M.

    2016-12-01

    Full Text Available This paper addresses the tensile and flexural strength of HPC (high performance concrete. The aim of the paper is to analyse the efficiency of models proposed in different codes. In particular, three design procedures from: the ACI 318 [1], Eurocode 2 [2] and the Model Code 2010 [3] are considered. The associations between design tensile strength of concrete obtained from these three codes and compressive strength are compared with experimental results of tensile strength and flexural strength by statistical tools. Experimental results of tensile strength were obtained in the splitting test. Based on this comparison, conclusions are drawn according to the fit between the design methods and the test data. The comparison shows that tensile strength and flexural strength of HPC depend on more influential factors and not only compressive strength.

  17. Effect of Specimen Shape and Size on the Compressive Strength of Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Sudin M.A.S.

    2014-03-01

    Full Text Available Lightweight concrete, in the form of foamed concrete, is a versatile material that primarily consists of a cement based mortar, mixed with at least 20% volume of air. Its dry density is typically below 1600 kg/m3 with a maximum compressive strength of 15MPa. The ASTM standard provision specifies a correction factor for concrete strength of between 14 and 42Mpa, in order to compensate for a reduced strength, when the aspect height-to-diameter ratio of a specimen is less than 2.0. However, the CEB-FIP provision specifically mentions a ratio of 150mm dia. × 300mm cylinder strength to 150 mm cube strength; though, both provision requirements do not specifically clarify the applicability and/or modification of the correction factors for the compressive strength to lightweight concrete (in this case, foamed concrete. The focus of this work is to study the effect of specimen size and shape on the axial compressive strength of concrete. Specimens of various sizes and shapes were cast with square and circular cross-sections i.e., cubes, prisms, and cylinders. Their compression strength behaviours at 7 and 28 days were investigated. The results indicate that, as the CEB-FIP provision specified, even for foamed concrete, 100mm cubes (l/d = 1.0 produce a comparable compressive strength with 100mm dia. × 200mm cylinders (l/d = 2.0.

  18. Experimental study on ultimate strength and strain behavior of concrete under biaxial compressive stresses

    International Nuclear Information System (INIS)

    Onuma, Hiroshi; Aoyagi, Yukio

    1976-01-01

    The purpose of this investigation was to study the ultimate strength failure mode and deformation behavior of concrete under short-term biaxial compressive stresses, as an aid to design and analyze the concrete structures subjected to multiaxial compression such as prestressed or reinforced concrete vessel structures. The experimental work on biaxial compression was carried out on the specimens of three mix proportions and different ages with 10cm x 10cm x 10cm cubic shape in a room controlled at 20 0 C. The results are summarized as follows. (1) To minimize the surface friction between specimens and loading platens, the pads of teflon sheets coated with silicone grease were used. The coefficient of friction was measured and was 3 percent on the average. (2) The test data showed that the strength of the concrete subjected to biaxial compression increased as compared to uniaxial compressive strength, and that the biaxial strength increase was mainly dependent on the ratio of principal stresses, and it was hardly affected by mix proportions and ages. (3) The maximum increase of strength, which occurred at the stress ratio of approximately sigma 2 /sigma 1 = 0.6, was about 27 percent higher than the uniaxial strength of concrete. (4) The ultimate strength in case of biaxial compression could be approximated by the parabolic equation. (Kako, I.)

  19. Buckling and postbuckling behavior of square compression-loaded graphite-epoxy plates with circular cutouts

    Science.gov (United States)

    Nemeth, Michael P.

    1990-01-01

    Results are presented for unidirectional (0, 10)(sub s) and (90,10)(sub s) plates, ((0/90)(sub 5)(sub s)) plates, and for aluminum plates. Results are also presented for ((+/- theta)(sub 6)(sub s)) angle-ply plates for values of theta = 30, 45, and 60 degrees. The results indicate that the change in axial stiffness of a plate at buckling is strongly dependent upon cutout size and plate orthotropy. The presence of a cutout gives rise to an internal load distribution that changes, sometimes dramatically, as a function of cutout size coupled with the plate orthotropy. In the buckled state, the role of orthotropy becomes more significant since bending in addition to membrane orthotropy is present. Most of the plates with cutouts exhibited less postbuckling stiffness than the corresponding plate without a cutout, and the postbuckling stiffness decreased with increasing cutout size. However, some of the highly orthotropic plates with cutouts exhibited more postbuckling stiffness than the corresponding plate without a cutout. These results suggest the possibility of tailoring the cutout size and the stacking sequence of a composite plate to optimize postbuckling stiffness. It was found that plates with large radius cutouts do exhibit some postbuckling strength. The results also indicate that a cutout can influence modal interaction in a plate. Specifically, results are presented that show a plate with a relatively small cutout buckling at a higher load than the corresponding plate without a cutout, due to modal interaction. Other results are presented that indicate the presence of nonlinear prebuckling deformations, due to material nonlinearity, in the angle-ply plates with theta = 45 and 60 degrees. The nonlinear prebuckling deformations are more pronounced in the plates with theta = 45 degrees and become even more pronounced as the cutout size increases. Results are also presented that show how load-path eccentricity due to improper machining of the test specimens

  20. Compressive Strength, Chloride Permeability, and Freeze-Thaw Resistance of MWNT Concretes under Different Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Xingang Wang

    2014-01-01

    Full Text Available This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4 and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane. To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.

  1. Compressive strength, chloride permeability, and freeze-thaw resistance of MWNT concretes under different chemical treatments.

    Science.gov (United States)

    Wang, Xingang; Rhee, Inkyu; Wang, Yao; Xi, Yunping

    2014-01-01

    This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT) concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4) and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane). To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.

  2. Reliability of using nondestructive tests to estimate compressive strength of building stones and bricks

    Directory of Open Access Journals (Sweden)

    Ali Abd Elhakam Aliabdo

    2012-09-01

    Full Text Available This study aims to investigate the relationships between Schmidt hardness rebound number (RN and ultrasonic pulse velocity (UPV versus compressive strength (fc of stones and bricks. Four types of rocks (marble, pink lime stone, white lime stone and basalt and two types of burned bricks and lime-sand bricks were studied. Linear and non-linear models were proposed. High correlations were found between RN and UPV versus compressive strength. Validation of proposed models was assessed using other specimens for each material. Linear models for each material showed good correlations than non-linear models. General model between RN and compressive strength of tested stones and bricks showed a high correlation with regression coefficient R2 value of 0.94. Estimation of compressive strength for the studied stones and bricks using their rebound number and ultrasonic pulse velocity in a combined method was generally more reliable than using rebound number or ultrasonic pulse velocity only.

  3. Green and early age compressive strength of extruded cement mortar monitored with compression tests and ultrasonic techniques

    International Nuclear Information System (INIS)

    Voigt, Thomas; Malonn, Tim; Shah, Surendra P.

    2006-01-01

    Knowledge about the early age compressive strength development of cementitious materials is an important factor for the progress and safety of many construction projects. This paper uses cylindrical mortar specimens produced with a ram extruder to investigate the transition of the mortar from plastic and deformable to hardened state. In addition, wave transmission and reflection measurements with P- and S-waves were conducted to obtain further information about the microstructural changes during the setting and hardening process. The experiments have shown that uniaxial compression tests conducted on extruded mortar cylinders are a useful tool to evaluate the green strength as well as the initiation and further development of the compressive strength of the tested material. The propagation of P-waves was found to be indicative of the internal structure of the tested mortars as influenced, for example, by the addition of fine clay particles. S-waves used in transmission and reflection mode proved to be sensitive to the inter-particle bonding caused by the cement hydration and expressed by an increase in compressive strength

  4. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    OpenAIRE

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were...

  5. Face compression yield strength of the copper-Inconel composite specimen

    International Nuclear Information System (INIS)

    Horie, T.

    1987-05-01

    A new equation for the face compression yield strength of copper-Inconel composite material has been derived. Elastic-plastic finite element analyses were also made for composite specimens with various aspect ratios to examine the edge effect of the specimen. According to the results of both the new equation and the analyses, the face compression yield strength of the composite should be decreased by about 25% from the value obtained with Becker's equation

  6. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Jiang-Jun Zhou

    2017-01-01

    Full Text Available In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP and a locking compression plate (LCP. CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing.

  7. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    Science.gov (United States)

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  8. Influence of bottom ash of palm oil on compressive strength of concrete

    Science.gov (United States)

    Saputra, Andika Ade Indra; Basyaruddin, Laksono, Muhamad Hasby; Muntaha, Mohamad

    2017-11-01

    The technological development of concrete demands innovation regarding the alternative material as a part of the effort in improving quality and minimizing reliance on currently used raw materials such as bottom ash of palm oil. Bottom ash known as domestic waste stemming from palm oil cultivation in East Kalimantan contains silica. Like cement in texture and size, bottom ash can be mixed with concrete in which the silica in concrete could help increase the compressive strength of concrete. This research was conducted by comparing between normal concrete and concrete containing bottom ash as which the materials were apart of cement replacement. The bottom ash used in this research had to pass sieve size (#200). The composition tested in this research involved ratio between cement and bottom ash with the following percentages: 100%: 0%, 90%: 10%, 85%: 15% and 80%: 20%. Planned to be within the same amount of compressive strength (fc 25 MPa), the compressive strength of concrete was tested at the age of 7, 14, and 28 days. Research result shows that the addition of bottom ash to concrete influenced workability in concrete, but it did not significantly influence the compressive strength of concrete. Based on the result of compressive strength test, the optimal compressive strength was obtained from the mixture of 100% cement and 0% bottom ash.

  9. Effect of Pelletized Coconut Fibre on the Compressive Strength of Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Jaini Zainorizuan

    2016-01-01

    Full Text Available Foamed concrete is a controlled low density ranging from 400kg/m3 to 1800kg/m3, and hence suitable for the construction of buildings and infrastructures. The uniqueness of foamed concrete is does not use aggregates in order to retain low density. Foamed concrete contains only cement, sand, water and foam agent. Therefore, the consumption of cement is higher in producing a good quality and strength of foamed concrete. Without the present of aggregates, the compressive strength of foamed concrete can only achieve as high as 15MPa. Therefore, this study aims to introduce the pelletized coconut fibre aggregate to reduce the consumption of cement but able to enhance the compressive strength. In the experimental study, forty-five (45 cube samples of foamed concrete with density 1600kg/m3 were prepared with different volume fractions of pelletized coconut fibre aggregate. All cube samples were tested using the compression test to obtain compressive strength. The results showed that the compressive strength of foamed concrete containing 5%, 10%, 15% and 20% of pelletized coconut fibre aggregate are 9.6MPa, 11.4MPa, 14.6MPa and 13.4MPa respectively. It is in fact higher than the controlled foamed concrete that only achieves 9MPa. It is found that the pelletized coconut fibre aggregate indicates a good potential to enhance the compressive strength of foamed concrete.

  10. Measurement and Improvement the Quality of the Compressive Strength of Product Concrete

    Directory of Open Access Journals (Sweden)

    Zohair Hassan Abdullah

    2018-01-01

    Full Text Available The research dealt with studying path technology to manufacture of concrete cubes according to specification design of Iraq to the degree of concrete C20 No. 52 of 1984, and in which sample was cubic shape and the dimensions (150 × 150 × 150 mm for each dimensions and the proportion of mixing of the concrete is (1:2:4 using in the casting floor. For concrete resistance required that achieve the degree of confidence of 100%, were examined compressive strength 40 samples of concrete cubes of age 28 days in the Labs section of Civil Department – Technical Institute of Babylon, all made from the same mixing concrete. Where, these samples classified within the acceptable tests were adopted in the implementation of investment projects in the construction sector. The research aims first, to measure the compressive strength of concrete cubes because the decrease or increase the compressive strength from specification design contributes to the failure of investment projects in the construction sector therefore, test was classified units that produced within damaged units. Second, to study an improvement the quality of compressive strength of concrete cubes. Results show that the proportion of damaged cubes are 0.00685, compressive strength was achieve confidence level 99.5% and producing of concrete cubes within the acceptable level of quality (3 Sigma. The quality of compressive strength was improved to good level use advanced sigma  levels. DOI: http://dx.doi.org/10.25130/tjes.24.2017.20

  11. Buckling strength of square composite plates with geometrical imperfections

    DEFF Research Database (Denmark)

    Berggreen, Christian; Jensen, Christian; Hayman, Brian

    2007-01-01

    of the plates rotated significantly during the tests. It was found nec-essary to include in the analysis the observed variation of edge rotation with applied in-plane displacement. Although material non-linearity was not modelled, some conclusions concerning the failure sequence were drawn from the analyses....

  12. 33 Effects of Sodium Chloride Solutions on Compressive Strength ...

    African Journals Online (AJOL)

    Arc. Usman A. Jalam

    strength increase at 3 and 7 days over control cubes; at 28 days concrete cubes containing 5%. RHA cured in NaCl solutions recorded higher strength loss compared to control cubes. Keywords: ... chloride in mixing water reported it to cause.

  13. Predicting the Compressive Strength of Concretes Made with ...

    African Journals Online (AJOL)

    Cases of collapsed buildings and structures are prevalent in Nigeria. In most of these cases the cause of the collapse could be traced to the strength of the construction materials, mainly concrete. Secondly, experimental determination of the strength of concrete materials used in buildings and structures is quite expensive ...

  14. Application of size effect to compressive strength of concrete members

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    (LSM) to obtain parameters for the modified size effect law (MSEL) by Kim and co workers. The results of the ... in tensile failure, because the formation of microcracks in compressive failure is distributed in a wider region ...... Benjamin J R, Cornell C A 1970 Probability, statistics, and decision for civil engineers (New York:.

  15. strength properties of shea-butter nuts under compressive loading

    African Journals Online (AJOL)

    NIJOTECH

    Compression tests were performed on heat-treated Shea-butter nuts to study the effects of ... the only source of vegetable oil. It was also .... the longitudinal axis, while in the lateral loading position ... Multiple Range Test (DMRT) was used to.

  16. Identification of Bacteria and the Effect on Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    Anneza L. H.

    2016-01-01

    Full Text Available This paper presents the species of bacteria used in this study as well as the effect of the bacteria on compressive strength of bioconcrete. Bioconcrete is not only more environmentally friendly but it is easy to procure. The objective of this research is to identify the ureolytic bacteria and sulphate reduction bacteria that have been isolated and further use the bacteria in concrete to determine the effect of bacteria on compressive strength. Identification of bacteria is conducted through Polymerase chain reaction (PCR method and DNA sequencing. The DNA of the bacteria was run through BLAST algorithm to determine the bacterial species.The bacteria were added into the concrete mix as a partial replacement of water. 3% of water is replaced by ureolytic bacteria and 5% of water is replaced by sulphate reduction bacteria. After running BLAST algorithm the bacteria were identified as Enterococcus faecalis (ureolytic bacteria and Bacillus sp (sulphate reduction bacteria. The result of the compressive strength for control is 36.0 Mpa. Partial replacement of 3% water by ureolytic bacteria has strength of 38.2Mpa while partial replacement of 5% of water by sulphate reduction bacteria has strength of 42.5Mpa. The significant increase of compressive strength with the addition of bacteria shows that bacteria play a significant role in the improvement of compressive strength.

  17. Compressive Strength Characteristics of Carbon, Palm Kernel and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-03-15

    Mar 15, 2018 ... reinforced concrete was one of the topics of interest. Once the health risks ... over the Portland cement concrete, some of which includes higher strength ... be used in the construction industry as a binder for aggregates.

  18. compressive and flexural strength of cement mortar stabilized with ...

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    concrete. However, plain mortar materials are usually brittle and often crack more easily and fail more suddenly than ... impact strength, higher elastic modulus, better sound proofness ..... in Concrete. Unpublished Ph.D. Thesis, Department.

  19. Improving the Bearing Strength of Sandy Loam Soil Compressed Earth Block Bricks Using Sugercane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Ramadhan W. Salim

    2014-06-01

    Full Text Available The need for affordable and sustainable alternative construction materials to cement in developing countries cannot be underemphasized. Compressed Earth Bricks have gained acceptability as an affordable and sustainable construction material. There is however a need to boost its bearing capacity. Previous research show that Sugarcane Bagasse Ash as a soil stabilizer has yielded positive results. However, there is limited research on its effect on the mechanical property of Compressed Earth Brick. This current research investigated the effect of adding 3%, 5%, 8% and 10% Sugarcane Bagasse Ash on the compressive strength of compressed earth brick. The result showed improvement in its compressive strength by 65% with the addition of 10% Sugarcane Bagasse Ash.

  20. Estimation of hardness and compressive strength of SP 100 aluminum powder epoxy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Young [Pusan National Univ., Busan (Korea, Republic of); Kim, Myung Hun [Korea Institute of Footwear and Leather Technology, Busan (Korea, Republic of); Kang, Sung Soo [Jeonju Univ., Jeonju (Korea, Republic of)

    2012-09-15

    In this study, we performed experimental tests on five SP 100 aluminum powder epoxy specimens with several after curing conditions in order to estimate their hardness with temperature and compressive strength. In the surface hardness test, it was found that the higher the after curing temperature, the higher was the hardness. In particular, it was found that the hardness of the specimens in cases 3 and 4 was much higher than in the other cases. In addition, in the compression tests carried out to evaluate the compressive strength, it was found that the specimens showed relatively similar stiffness and strength with after curing, and specimens with no after curing showed compression stress strain curves similar to those of thermoplastic resins.

  1. Estimation of hardness and compressive strength of SP 100 aluminum powder epoxy

    International Nuclear Information System (INIS)

    Han, Jeong Young; Kim, Myung Hun; Kang, Sung Soo

    2012-01-01

    In this study, we performed experimental tests on five SP 100 aluminum powder epoxy specimens with several after curing conditions in order to estimate their hardness with temperature and compressive strength. In the surface hardness test, it was found that the higher the after curing temperature, the higher was the hardness. In particular, it was found that the hardness of the specimens in cases 3 and 4 was much higher than in the other cases. In addition, in the compression tests carried out to evaluate the compressive strength, it was found that the specimens showed relatively similar stiffness and strength with after curing, and specimens with no after curing showed compression stress strain curves similar to those of thermoplastic resins

  2. Treatment Results Of Diaphyseal Forearm Fractures With Dynamique Compression Plate A Retrospective study of 156 Cases.

    Directory of Open Access Journals (Sweden)

    Hassan BOUSSAKRI

    2015-12-01

    Full Text Available This retrospective study addresses a series of 156 cases of forearm fractures. These 156 cases were managed in the trauma-orthopedic department (B4 of Fez University Hospital, Morocco, from May 2008 till January 2013. The purpose of this study is to analyze epidemiological and clinical factors of diaphyseal forearm fractures and the results of their treatment with dynamic compression plate (DCP, as well as the complications and therapeutic errors of this surgical technique. The frequency of hospitalization in the trauma-orthopedic department was 3,96%. Ages ranged between 16 and 83, the average age was 32. 132 patients were male (85%. 90% were managed at the day of trauma. Traffic accidents were the most frequent cause in 52% patients. The fracture was in the left forearm in 65% of patients. 53% of fracture lines were in the middle third of the forearm. 38 fractures were open, and 30 were admitted for polytrauma. Osteosynthesis was performed with dynamic compression plate for all patients. In comparison with the literature, our series shows the predominance of young male patients, with traffic accidents being the cause. Osteosynthesis with dynamic compression plate remains the treatment of choice that provides satisfactory results if the accuracy in this technique was respected.

  3. Enhancing the compressive strength of landfill soil using cement and bagasse ash

    Science.gov (United States)

    Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.

    2017-11-01

    The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.

  4. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate

    Science.gov (United States)

    Liu, J.; Wu, S. P.

    2017-04-01

    Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.

  5. The relationship between vickers microhardness and compressive strength of functional surface geopolymers

    Science.gov (United States)

    Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri

    2017-09-01

    An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70oC for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear. At the request of all authors and with the approval of the proceedings editor, article 020188 titled, "The relationship between vickers microhardness and compressive strength of functional surface geopolymers," is being retracted from the public record due to the fact that it is a duplication of article 020170 published in the same volume.

  6. Multiple Regression Analysis of Unconfined Compression Strength of Mine Tailings Matrices

    Directory of Open Access Journals (Sweden)

    Mahmood Ali A.

    2017-01-01

    Full Text Available As part of a novel approach of sustainable development of mine tailings, experimental and numerical analysis is carried out on newly formulated tailings matrices. Several physical characteristic tests are carried out including the unconfined compression strength test to ascertain the integrity of these matrices when subjected to loading. The current paper attempts a multiple regression analysis of the unconfined compressive strength test results of these matrices to investigate the most pertinent factors affecting their strength. Results of this analysis showed that the suggested equation is reasonably applicable to the range of binder combinations used.

  7. Effect of shelf life on compressive strength of type iv gypsum

    Science.gov (United States)

    Kusumastuti, K. S.; Irawan, B.; Damiyanti, M.

    2017-08-01

    Type IV gypsum, as a dental material for an indirect restoration’s working model, should have strength and abrasive-resistant properties. These properties depend on the product’s shelf life and its proper storage, which sometimes are easily missed by sellers. The aim of this research was to observe the effect of shelf life on the compressive strength of type IV gypsum with different production dates. Twenty cylindrical specimens were separated into two groups with different production dates and tested with a universal testing with the crosshead speed of 1 mm per minute and a load of 2,500 kgf. The data were analyzed with independent t-tests. There was a significant difference (p<0.05) in the compressive strength between the two groups with an increase in compressive strength seen in the gypsum that was stored longer.

  8. The influence of double nested layer waviness on compression strength of carbon fiber composite materials

    International Nuclear Information System (INIS)

    Khan, Z.M.

    1997-01-01

    As advanced composite materials having superior physical and mechanical properties are being developed, optimization of their production processes in eagerly being sought. One of the most common defect in production of structural composites is layer waviness. Layer waviness is more pronounced in thick section flat and cylindrical laminates that are extensively used in missile casings, submersibles and space platforms. Layer waviness undulates the entire layers of a multidirectional laminate in through-the-thickness direction leading to gross deterioration of its compression strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wave 0 degree centigrade layer fabricated in IM/85510-7 carbon - epoxy composite laminate on a steel mold using single step fabrication procedure. The laminate was cured on a heated press according to specific curing cycle. Static compression testing was performed using NASA short block compression fixture on an MTS servo Hydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of composite laminate. The experimental and analytical results revealed that up to about 35% fraction of wave 0 degree layer exceeded 35%. This analysis indicated that the percentage of 0 degree wavy layer may be used to estimate the reduction in compression strength of a composite laminate under restricted conditions. (author)

  9. Non-Uniform Compressive Strength of Debonded Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Simonsen, Bo Cerup

    2005-01-01

    .(2005)., shows that the model is indeed able to predict the failure modes and the residual strength of damaged panels with accuracy sufficient for practical applications. This opens up for a number of important engineering applications, for example risk-based inspection and repair schemes....

  10. The increase of compressive strength of natural polymer modified concrete with Moringa oleifera

    Science.gov (United States)

    Susilorini, Rr. M. I. Retno; Santosa, Budi; Rejeki, V. G. Sri; Riangsari, M. F. Devita; Hananta, Yan's. Dianaga

    2017-03-01

    Polymer modified concrete is one of some concrete technology innovations to meet the need of strong and durable concrete. Previous research found that Moringa oleifera can be applied as natural polymer modifiers into mortars. Natural polymer modified mortar using Moringa oleifera is proven to increase their compressive strength significantly. In this resesearch, Moringa oleifera seeds have been grinded and added into concrete mix for natural polymer modified concrete, based on the optimum composition of previous research. The research investigated the increase of compressive strength of polymer modified concrete with Moringa oleifera as natural polymer modifiers. There were 3 compositions of natural polymer modified concrete with Moringa oleifera referred to previous research optimum compositions. Several cylinder of 10 cm x 20 cm specimens were produced and tested for compressive strength at age 7, 14, and, 28 days. The research meets conclusions: (1) Natural polymer modified concrete with Moringa oleifera, with and without skin, has higher compressive strength compared to natural polymer modified mortar with Moringa oleifera and also control specimens; (2) Natural polymer modified concrete with Moringa oleifera without skin is achieved by specimens contains Moringa oleifera that is 0.2% of cement weight; and (3) The compressive strength increase of natural polymer modified concrete with Moringa oleifera without skin is about 168.11-221.29% compared to control specimens

  11. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  12. Investigation on Compressive Strength of Special Concrete made with Crushed Waste Glass

    Directory of Open Access Journals (Sweden)

    Mohd Sani Mohd Syahrul Hisyam

    2015-01-01

    Full Text Available Special concrete is the type of concrete that produced by using waste material or using unusual techniques/method of preparation. Special concrete made with waste material is becoming popular in a construction site. This is because the special concrete is selected due to quality, integrity, economic factor and environmental factor. The waste glass is selected as an additional material to provide a good in compressive strength value. The compressive strength is the importance of mechanical properties of concrete and typically the concrete is sustained and stiffed in compression load. The significant issue to utilize the waste glass from the automotive windscreen is to improve the strength of concrete. The waste glass is crushed to become 5 mm size and recognised as crushed waste glass that be used in concrete as additional material. The main objective of the study is to determine the appropriate percentage of crushed waste glass in concrete grade, 30 in order to enhance the compressive strength. There are four mixes of concrete that contained of crushed waste glass with percentage of 2 %, 4 %, 6 % and 8 % and one control mix with 0 % of crushed waste glass. As the result, crushed waste glass with an additional 4 % in concrete is reported having a higher value of compressive strength in early and mature stage. In addition, if the percentage of crushed glass wastes in concrete increases and it leads to a reduction in the workability of concrete.

  13. Influence of Curing Conditions on Long-Term Compressive Strength of Mortars with Accelerating Admixtures

    Science.gov (United States)

    Pizoń, Jan; Łaźniewska-Piekarczyk, Beata

    2017-10-01

    One of disadvantages of accelerating admixtures usage is possibility of significant decline of long-term compressive strength of concrete in comparison to non-modified one. Described tests were intended to define scale of lowered long-term compressive strength of mortars caused by accelerating admixtures in different curing conditions. Portland cement and blended cement with ground granulated blast furnace slag (GGBFS) addition and four types of non-chloride accelerating agents were used. Compressive strength was tested after 7 up to 360 days. Curing conditions were designed to simulate probable conditions close to reality. Such conditions are simulation of internal concrete elements, external elements cast on start of summer and external elements cast on start of winter. Results had shown that it is invalid to state that every accelerating admixture will cause drop of long-term compressive strength in every conditions and for every cement type. Change of curing conditions even after a long time (in this case half of the year) leads to significant differences in compression strength.

  14. Foamed concrete containing rice husk ash as sand replacement: an experimental study on compressive strength

    Science.gov (United States)

    Rum, R. H. M.; Jaini, Z. M.; Boon, K. H.; Khairaddin, S. A. A.; Rahman, N. A.

    2017-11-01

    This study presents the utilization of rice husk ash (RHA) as sand replacement in foamed concrete. The study focuses on the effect of RHA on the compressive strength of foamed concrete. RHA contains high pozzolanic material that reacts with cementitious to enhance the strength and durability of foamed concrete. RHA also acts as filler causing the foamed concrete to become denser while retaining its unique low density. A total 243 cube specimens was prepared for the compression test. Two sets of mix design were employed at water-cement (W/C) ratio of 0.55, 0.60 and cement-sand ratio of 0.50, 0.33. The results revealed that the presence of RHA as sand replacement resulted in an increase in the compressive strength of foamed concrete. Moreover, 30% to 40% RHA was the optimum content level, contributing to the compressive strength of 18.1 MPa to 22.4 MPa. The W/C ratio and superplasticiser dosage play small roles in improving workability. In contrast, density governs the compressive strength of foamed concrete.

  15. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279

  16. Effect of Pressure and Heat Treatments on the Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Helmi Masdar

    2018-01-01

    Full Text Available This paper presents the corresponding compressive strength of RPC with variable pressure combined with heating rate, heating duration, and starting time of heating. The treatments applied were 8 MPa static pressure on fresh RPC prims and heat curing at 240 °C in an oven. The compressive strength test was conducted at 7-d and 28-d. The images of RPC morphology were captured on the surface of a fractured specimen using Scanning Electron Microscopy in Secondary Electron detector mode to describe pore filing mechanism after treatments. The results show that a heating rate at 50 °C/hr resulted in the highest compressive strength about 40 % more than those at 10 or 100 °C/hr. A heating duration of 48 hours led to the maximum compressive strength. Heat curing applied 2 days after casting resulted in the maximum compressive. Heat curing had a signicant effect on the compresssive strength due to the acceleration of both reactions (hydration and pozzolanic and the degree of transformation from tobermorite to xonotlite. It is concluded that the optimum condition of treatments is both pressure and heat curing at 2-day after casting with a rate of 50 °C/hr for 48 hours.

  17. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.

    Science.gov (United States)

    Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan

    2018-01-01

    Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may

  18. Comparison of the Mechanical Characteristics of a Universal Small Biplane Plating Technique Without Compression Screw and Single Anatomic Plate With Compression Screw.

    Science.gov (United States)

    Dayton, Paul; Ferguson, Joe; Hatch, Daniel; Santrock, Robert; Scanlan, Sean; Smith, Bret

    2016-01-01

    To better understand the mechanical characteristics of biplane locked plating in small bone fixation, the present study compared the stability under cyclic cantilever loading of a 2-plate locked biplane (BPP) construct without interfragmentary compression with that of a single-plate locked construct with an additional interfragmentary screw (SPS) using surrogate bone models simulating Lapidus arthrodesis. In static ultimate plantar bending, the BPP construct failed at significantly greater load than did the SPS construct (556.2 ± 37.1 N versus 241.6 ± 6.3 N, p = .007). For cyclic failure testing in plantar bending at a 180-N starting load, the BPP construct failed at a significantly greater number of cycles (158,322 ± 50,609 versus 13,718 ± 10,471 cycles) and failure load (242.5 ± 25.0 N versus 180.0 ± 0.0 N) than the SPS construct (p = .002). For cyclic failure testing in plantar bending at a 120-N starting load, the results were not significantly different between the BPP and SPS constructs for the number of cycles (207,646 ± 45,253 versus 159,334 ± 69,430) or failure load (205.0 ± 22.4 N versus 185.0 ± 33.5 N; p = .300). For cyclic testing with 90° offset loading (i.e., medial to lateral bending) at a 120-N starting load, all 5 BPP constructs (tension side) and 2 of the 5 SPS constructs reached 250,000 cycles without failure. Overall, the present study found the BPP construct to have superior or equivalent stability in multiplanar orientations of force application in both static and fatigue testing. Thus, the concept of biplane locked plating, using 2 low profile plates and unicortical screw insertion, shows promise in small bone fixation, because it provides consistent stability in multiplanar orientations, making it universally adaptable to many clinical situations. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Predicting of the compressive strength of RCA concrete

    Directory of Open Access Journals (Sweden)

    Jaskulski Roman

    2017-01-01

    Full Text Available The paper presents the results of predicting the strength of 61 concretes made with the use of recycled concrete aggregate (RCA. Five models in the form of first-order polynomials containing two to six variables characterizing the composition of the mixture were formulated for this purpose. Factors for unknowns were selected using linear regression in two variants: with and without additional coefficient. For each model, the average absolute error of the concrete strength estimation was determined. Because of the various consequences of underestimation and overestimation of the results, the analysis of models quality was carried out with the distinction of the two cases. The results indicate that the key to improving the quality of models is to take into account the quality of the aggregate expressed by the ACV parameter. Better match results were also obtained for models with more variables and the additional coefficient.

  20. Dataset on predictive compressive strength model for self-compacting concrete.

    Science.gov (United States)

    Ofuyatan, O M; Edeki, S O

    2018-04-01

    The determination of compressive strength is affected by many variables such as the water cement (WC) ratio, the superplasticizer (SP), the aggregate combination, and the binder combination. In this dataset article, 7, 28, and 90-day compressive strength models are derived using statistical analysis. The response surface methodology is used toinvestigate the effect of the parameters: Varying percentages of ash, cement, WC, and SP on hardened properties-compressive strengthat 7,28 and 90 days. Thelevels of independent parameters are determinedbased on preliminary experiments. The experimental values for compressive strengthat 7, 28 and 90 days and modulus of elasticity underdifferent treatment conditions are also discussed and presented.These dataset can effectively be used for modelling and prediction in concrete production settings.

  1. Compressive Strength of Volcanic Ash/Ordinary Portland Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Olusola K. O.

    2010-01-01

    Full Text Available This study investigates the effect of partial replacement of cement with volcanic ash (VA on the compressive strength of laterized concrete. A total of 192 cubes of 150mm dimensions were cast and cured in water for 7, 14, 21, and 28 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively, while a control mix of 28-day target strength of 25 N/mm2 was adopted. The results show that the density and compressive strength of concrete decreased with increase in volcanic ash content. The 28-day, density dropped from 2390 kg/m3 to 2285 kg/m3 (i.e. 4.4% loss and the compressive strength from 25.08 N/mm2 to 17.98 N/mm2 (i.e. 28% loss for 0-30% variation of VA content with no laterite introduced. The compressive strength also decreased with increase in laterite content; the strength of the laterized concrete however increases as the curing age progresses.

  2. Compressive and flexural strength of expanded perlite aggregate mortar subjected to high temperatures

    Science.gov (United States)

    Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd

    2017-08-01

    Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.

  3. Perioperative lateral trochanteric wall fractures: sliding hip screw versus percutaneous compression plate for intertrochanteric hip fractures.

    Science.gov (United States)

    Langford, Joshua; Pillai, Gita; Ugliailoro, Anthony D; Yang, Edward

    2011-04-01

    This study was performed to determine the incidence of perioperative lateral wall fractures with a standard sliding hip screw (SHS) versus a percutaneous compression plate (PCCP) using identical meticulous closed reduction techniques in both groups. Retrospective analysis of a prospective trauma registry. Urban Level I trauma center. Over a 7-year period, 337 patients with intertrochanteric hip fractures were treated with either a SHS or a PCCP at our institution. The PCCP group (Group 1) consisted of 200 patients, of which 141 (71%) had adequate images to be included in the study. The SHS group (Group 2) consisted of 137 patients, of which 100 (73%) had adequate images to be included in the study. Closed reduction and plate application with either a standard sliding hip screw or a percutaneous compression plate for an Orthopaedic Trauma Association 31A1 or 31A2 intertrochanteric hip fracture. : Radiographic evidence of lateral trochanteric wall fracture as measured by intraoperative and perioperative radiographs. There was an overall lateral wall fracture incidence of 20% in the SHS group versus 1.4% in the PCCP group (P fracture types, there was a lateral wall fracture incidence of 29.8% in the SHS group versus 1.9% in the PCCP group (P trochanteric wall fracture compared with the SHS group. This difference became greater when just unstable intertrochanteric fractures were analyzed. An anatomic reduction, combined with a device (PCCP) that uses small-diameter defects in the lateral trochanteric wall, essentially eliminates perioperative lateral trochanteric wall fractures.

  4. Supraglenoid tubercle fractures repair with transverse locking compression plates in 4 horses.

    Science.gov (United States)

    Ahern, B J; Bayliss, I P M; Zedler, S T; Getman, L M; Richardson, D W

    2017-05-01

    To report on a series of 4 horses with supraglenoid tubercle fractures repaired with locking compression plates. Case series. Four horses ranging in age from 6 weeks to 20 months and weighing from 121 to 425 kg with supraglenoid tubercle fractures of 1 day to 6 weeks in duration. Supraglenoid tubercle fractures were reduced and stabilized with transversely positioned locking compression plate(s) with and without additional tension band wiring. All fractures reached bony union. Two postoperative surgical site infections were managed with drainage and antibiotherapy. Three of the 4 horses continued onto athletic careers including flat racing, dressage, and hunter/jumper competition. The remaining horse was lame for a prolonged period, but was sound at 4 years. The application of one or two, transversely positioned LCPs should be considered for the repair of SGT fractures because of the relative ease of the technique, and its elimination of a biceps brachii tenotomy. All screws can be inserted in a lateral to medial direction without transection or drill penetration of the biceps brachii tendon. SGT fractures of various durations can be repaired in a wide range of horses with transversely positioned LCPs, and allow return to athletic function. © 2017 The American College of Veterinary Surgeons.

  5. Design proposal for ultimate shear strength of tapered steel plate girders

    Directory of Open Access Journals (Sweden)

    A. Bedynek

    2017-03-01

    Full Text Available Numerous experimental and numerical studies on prismatic plate girders subjected to shear can be found in the literature. However, the real structures are frequently designed as non-uniform structural elements. The main objective of the research is the development of a new proposal for the calculation of the ultimate shear resistance of tapered steel plate girders taking into account the specific behaviour of such members. A new mechanical model is presented in the paper and it is used to show the differences between the behaviour of uniform and tapered web panels subjected to shear. EN 1993-1-5 design specifications for the determination of the shear strength for rectangular plates are improved in order to assess the shear strength of tapered elements. Numerical studies carried out on tapered steel plate girders subjected to shear lead to confirm the suitability of the mechanical model and the proposed design expression.

  6. A Study of Compressive Strength Characteristics of Laterite Sand Hollow Blocks

    Directory of Open Access Journals (Sweden)

    Abiodun Olanipekun

    2007-01-01

    Full Text Available This paper presents the results of experimental investigations carried out on partial replacement of sand with laterite as it affects the compressive strength of sandcrete hollow blocks. Two mix proportions (1:6 and 1:8 were used with laterite content varying between 0 and 50% at 10% intervals. Hand and machine compaction methods were used. Curing was done by sprinkling water on the specimens. The results showed that for each mix proportion and compaction method, the compressive strength decreases with increase in laterite content. Machine compacted hollow sandcrete blocks made from mix ratio 1:6 and with up to 10% laterite content is found suitable and hence recommended for building construction having attained a 28-day compressive strength of 2.07N/mm2 as required by the Nigerian Standards.

  7. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi [Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, Mataram, West Nusa Tenggara (Indonesia)

    2016-03-29

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.

  8. Effects of densified silica fume on microstructure and compressive strength of blended cement pastes

    International Nuclear Information System (INIS)

    Ji Yajun; Cahyadi, Jong Herman

    2003-01-01

    Some experimental investigations on the microstructure and compressive strength development of silica fume blended cement pastes are presented in this paper. The silica fume replacement varies from 0% to 20% by weight and the water/binder ratio (w/b) is 0.4. The pore structure by mercury intrusion porosimetry (MIP), the micromorphology by scanning electron microscopy (SEM) and the compressive strength at 3, 7, 14, 28, 56 and 90 days have been studied. The test results indicate that the improvements on both microstructure and mechanical properties of hardened cement pastes by silica fume replacement are not effective due to the agglomeration of silica fume particles. The unreacted silica fume remained in cement pastes, the threshold diameter was not reduced and the increase in compressive strength was insignificant up to 28 days. It is suggested that the proper measures should be taken to disperse silica fume agglomeration to make it more effective on improving the properties of materials

  9. The effects of shelf life on the compressive strength of resin-modified glass ionomer cement

    Science.gov (United States)

    Wajong, K. H.; Damiyanti, M.; Irawan, B.

    2017-08-01

    Resin-modified glass ionomer cement (RMGIC) is a restoration material composed of powder and liquid whose stability is affected by its shelf life. This is an issue that has not been taken into consideration by customers or sellers. To observe the effects of shelf life on the compressive strength of RMGIC, 30 cylindrical (d = 4mm and t = 6mm) specimens of RMGIC (Fuji II LC, GC, Tokyo, Japan) were divided into three groups with different storage times and their compressive strength was tested with a universal testing machine. Results were statistically analyzed with the one-way ANOVA test. There were significant differences (p<0.05) between the three groups of RMGIC. There is a decrease in the compressive strength value along with the duration of storage time.

  10. An investigation of the compressive strength of Kevlar 49/epoxy composites

    Science.gov (United States)

    Kulkarni, S. V.; Rosen, B. W.; Rice, J. S.

    1975-01-01

    Tests were performed to evaluate the effect of a wide range of variables including matrix properties, interface properties, fiber prestressing, secondary reinforcement, and others on the ultimate compressive strength of Kevlar 49/epoxy composites. Scanning electron microscopy is used to assess the resulting failure surfaces. In addition, a theoretical study is conducted to determine the influence of fiber anisotropy and lack of perfect bond between fiber and matrix on the shear mode microbuckling. The experimental evaluation of the effect of various constituent and process characteristics on the behavior of these unidirectional composites in compression did not reveal any substantial increase in strength. However, theoretical evaluations indicate that the high degree of fiber anisotropy results in a significant drop in the predicted stress level for internal instability. Scanning electron microscope data analysis suggests that internal fiber failure and smooth surface debonding could be responsible for the measured low compressive strengths.

  11. Statistical approach to predict compressive strength of high workability slag-cement mortars

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, N.A.; Sumadi, S.R.

    2009-01-01

    This paper reports an attempt made to develop empirical expressions to estimate/ predict the compressive strength of high workability slag-cement mortars. Experimental data of 54 mix mortars were used. The mortars were prepared with slag as cement replacement of the order of 0, 50 and 60%. The flow (workability) was maintained at 136+-3%. The numerical and statistical analysis was performed by using database computer software Microsoft Office Excel 2003. Three empirical mathematical models were developed to estimate/predict 28 days compressive strength of high workability slag cement-mortars with 0, 50 and 60% slag which predict the values accurate between 97 and 98%. Finally a generalized empirical mathematical model was proposed which can predict 28 days compressive strength of high workability mortars up to degree of accuracy 95%. (author)

  12. Effect of In-Situ Curing on Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Bali Ika

    2016-01-01

    Full Text Available A development of Reactive Powder Concrete (RPC currently is the use of quartz powder as a stabilizing agent with the content to cement ratio of 30% and steam curing method in an autoclave temperature of 250ºC which produced a high compressive strength of 180 MPa. That RPC can be generated due to one reason for using the technique of steam curing in an autoclave in the laboratory. This study proposes in-situ curing method in order the curing can be applied in the field and with a reasonable compressive strength results of RPC. As the benchmarks in this study are the curing methods in laboratory that are steam curing of 90°C for 8 hours (C1, and water curing for 28 days (C2. For the in-situ curing methods that are covering with tarpaulins and flowed steam of 3 hours per day for 7 days (C3, covering with wet sacks for 28 days (C4, and covering with wet sacks for 28 days for specimen with unwashed sand as fine aggregate (C5. The comparison of compressive strength of the specimens in this study showed compressive strength of RPC with in-situ steam curing (101.64 MPa close to the compressive strength of RPC with steam curing in the laboratory with 8.2% of different. While in-situ wet curing compared with the water curing in laboratory has the different of 3.4%. These results indicated that the proposed in-situ curing methods are reasonable good in term of the compressive strength that can be achieved.

  13. Evaluation of the Compressive Strength of Cement-Spent Resins Matrix Mixed with Bio char

    International Nuclear Information System (INIS)

    Zalina Laili; Muhamad Samudi Yasir; Zalina Laili; Mohd Abdul Wahab; Nur Azna Mahmud; Nurfazlina Zainal Abidin

    2015-01-01

    The evaluation of compressive strength of cement-spent resins matrix mixed with bio char was investigated. In this study, bio char with different percentage (5 %, 8 %, 11 % 14 % and 18 %) was used as alternative admixture material for cement solidification of spent resins. Some properties of the physical and chemical of spent resins and bio char were also investigated. The performance of cemented spent resins with the addition of bio char was evaluated based on their compressive strength and the water resistance test. The compressive strength was evaluated at three different curing periods of 7, 14 and 28 days, while 4 weeks of immersion in distilled water was chosen for water resistance test. The result indicated that the compressive strength at 7, 14 and 28 days of curing periods were above the minimum criterion for example > 3.45 MPa of acceptable level for cemented waste form. Statistical analysis showed that there was no significant relationship between the compressive strength of the specimen and the percentage of bio char content. Result from the water resistance test showed that only one specimen that contained of 5 % of bio char failed the water resistance test due to the high of spent resins/ bio char ratio. The compressive strength of cement solidified spent resins was found increased after the water resistance test indicating further hydration occurred after immersed in water. The results of this study also suggest that the specimen with 8 %, 11 %, 14 % and 18 % of bio char content were resistance in water and suitable for the leaching study of radionuclides from cement-bio char-spent resins matrix. (author)

  14. Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar

    International Nuclear Information System (INIS)

    Ranjbar, Navid; Mehrali, Mehdi; Behnia, Arash; Alengaram, U. Johnson; Jumaat, Mohd Zamin

    2014-01-01

    Highlights: • Results show POFA is adaptable as replacement in FA based geopolymer mortar. • The increase in POFA/FA ratio delay of the compressive development of geopolymer. • The density of POFA based geoploymer is lower than FA based geopolymer mortar. - Abstract: This paper presents the effects and adaptability of palm oil fuel ash (POFA) as a replacement material in fly ash (FA) based geopolymer mortar from the aspect of microstructural and compressive strength. The geopolymers developed were synthesized with a combination of sodium hydroxide and sodium silicate as activator and POFA and FA as high silica–alumina resources. The development of compressive strength of POFA/FA based geopolymers was investigated using X-ray florescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and field emission scanning electron microscopy (FESEM). It was observed that the particle shapes and surface area of POFA and FA as well as chemical composition affects the density and compressive strength of the mortars. The increment in the percentages of POFA increased the silica/alumina (SiO 2 /Al 2 O 3 ) ratio and that resulted in reduction of the early compressive strength of the geopolymer and delayed the geopolymerization process

  15. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials

    International Nuclear Information System (INIS)

    Wongkeo, Watcharapong; Thongsanitgarn, Pailyn; Pimraksa, Kedsarin; Chaipanich, Arnon

    2012-01-01

    Highlights: ► Autoclaved aerated concrete were produced using coal bottom ash as a cement replacement material. ► Coal bottom ash was found to enhance concrete strengths. ► Thermal conductivity of concrete was not significantly affected. ► X-ray diffraction and thermal analysis show tobermorite formation. -- Abstract: The bottom ash (BA) from Mae Moh power plant, Lampang, Thailand was used as Portland cement replacement to produce lightweight concrete (LWC) by autoclave aerated concrete method. Portland cement type 1, river sand, bottom ash, aluminium powder and calcium hydroxide (Ca(OH) 2 ) were used in this study. BA was used to replace Portland cement at 0%, 10%, 20% and 30% by weight and aluminium powder was added at 0.2% by weight in order to produce the aerated concrete. Compressive strength, flexural and thermal conductivity tests were then carried out after the concrete were autoclaved for 6 h and left in air for 7 days. The results show that the compressive strength, flexural strength and thermal conductivity increased with increased BA content due to tobermorite formation. However, approximately, 20% increase in both compressive (up to 11.61 MPa) and flexural strengths (up to 3.16 MPa) was found for mixes with 30% BA content in comparison to just around 6% increase in the thermal conductivity. Thermogravimetry analysis shows C–S–H formation and X-ray diffraction confirm tobermorite formation in bottom ash lightweight concrete. The use of BA as a cement replacement, therefore, can be seen to have the benefit in enhancing strength of the aerated concrete while achieving comparatively low thermal conductivity when compared to the results of the control Portland cement concrete.

  16. Development and Application of High Strength TMCP Plate for Coal Mining Machinery

    Science.gov (United States)

    Yongqing, Zhang; Aimin, Guo; Liandeng, Yao

    Coal, as the most major energy in China, accounted for about 70% of China's primary energy production and consumption. While the percentage of coal as the primary energy mix would drop in the future due to serious smog pollution partly resulted from coal-burning, the market demand of coal will maintain because the progressive process of urbanization. In order to improve productivity and simultaneously decrease safety accidents, fully-mechanized underground mining technology based on complete equipment of powered support, armored face conveyor, shearer, belt conveyor and road-header have obtained quick development in recent years, of which powered support made of high strength steel plate accounts for 65 percent of total equipment investment, so, the integrated mechanical properties, in particular strength level and weldability, have a significant effects on working service life and productivity. Take hydraulic powered supports as example, this paper places priority to introduce the latest development of high strength steel plates of Q550, Q690 and Q890, as well as metallurgical design conception and production cost-benefits analysis between QT plate and TMCP plate. Through production and application practice, TMCP or DQ plate demonstrate great economic advantages compared with traditional QT plate.

  17. The statitistical evaluation of the uniaxial compressive strength of the Ruskov andesite

    Directory of Open Access Journals (Sweden)

    Krepelka František

    2002-03-01

    Full Text Available The selection of a suitable model of the statistical distribution of the uniaxial compressive strength is discussed in the paper. The uniaxial compressive strength was studied on 180 specimens of the Ruskov andesite. The rate of loading was 1MPa.s-1. The experimental specimens had a prismatic form with a square base; the slightness ratio of specimens was 2:1. Three sets of specimens with a different length of the base edge were studied, namely 50, 30 and 10 mm. The result of the measurement were three sets with 60 values of the uniaxial compressive strength. The basic statistical parameters: the sample mean, the sample standard deviation, the variational interval, the minimum and maximum value, the sample obliqueness coefficient and the sharpness coefficient were evaluated for each collection. Two types of the distribution which can be joined with the real physical fundamentals of the desintegration of rocks ( the normal and the Weibull distribution were tested. The two-parametric Weibull distribution was tested. The basic characteristics of both distributions were evaluated for each set and the accordance of the model distribution with an experimental distribution was tested. The ÷2-test was used for testing. The two-parametric Weibull distribution was selected following the comparison of the test results of both model distributions as a suitable distribution model for the characterization of uniaxial compressive strength of the Ruskov andesite. The two-parametric Weibull distribution showed better results of the goodness-of-fit test. The normal distribution was suitable for two sets; one of the sets showed a negative result of the goodness-of-fit testing. At the uniaxial compressive strength of the Ruskov andesite, a scale effect was registered : the mean value of uniaxial compressive strength decreases with increasing the specimen base edge. This is another argument for using the Weibull distribution as a suitable statistical model of the

  18. A compressibility based model for predicting the tensile strength of directly compressed pharmaceutical powder mixtures.

    Science.gov (United States)

    Reynolds, Gavin K; Campbell, Jacqueline I; Roberts, Ron J

    2017-10-05

    A new model to predict the compressibility and compactability of mixtures of pharmaceutical powders has been developed. The key aspect of the model is consideration of the volumetric occupancy of each powder under an applied compaction pressure and the respective contribution it then makes to the mixture properties. The compressibility and compactability of three pharmaceutical powders: microcrystalline cellulose, mannitol and anhydrous dicalcium phosphate have been characterised. Binary and ternary mixtures of these excipients have been tested and used to demonstrate the predictive capability of the model. Furthermore, the model is shown to be uniquely able to capture a broad range of mixture behaviours, including neutral, negative and positive deviations, illustrating its utility for formulation design. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Temperature and moisture content effects on compressive strength parallel to the grain of paricá

    Directory of Open Access Journals (Sweden)

    Manuel Jesús Manríquez Figueroa

    Full Text Available The aim of this study is to evaluate the effect of the temperature and moisture content on the compressive strength parallel to the grain of paricá (Schizolobium amazonicum Huber ex. Ducke from cultivated forests. The experiments were carried out on 3 timber samples under different conditions: heated (HT, thermal treatment (TT and water saturated (WS. The HT sample consisted of 105 clear specimens assembled in 15 groups, the TT consisted of 90 clear specimens assembled in 15 groups and the WS consisted of 90 clear specimens assembled in 9 groups. The specimens from HT and WS samples were tested at a temperature range from 20 to 230 ºC and 20 to 100 ºC, respectively. The HT specimens were tested at ambient temperature, but after being submitted to thermal treatment. The HT, TT and WS samples present a decrease in the compressive strength, reaching 65%, 76% and 59% of the compressive strength at room temperature, respectively. The decrease in the compressive strength of the HT and WS samples can be associated to the thermal degradation of wood polymers and the moisture content. For the TT sample, the strength increased for a pre-heating temperature of up to 170 °C due to the reduction in the moisture content of the specimens.

  20. The chemical composition and compression strengths of refractory ceramics, tested for 3 curing temperatures

    International Nuclear Information System (INIS)

    Wan Khairuddin bin Wan Ali

    1994-01-01

    An investigation was carried out to determine and compile the mechanical strength of a refractory ceramic made of ground fire bricks and refractory fire mortar. Three different compositions were studied for the compression strength and it was found that the composition with 50% fire bricks and 50% fire mortar gives the best mechanical strength. With this composition the maximum failure compression stress is 3.2 MPa. and the Young Modulus is 403.5 MPa. The investigation also shows that the curing temperatures and the composition percentages play an important role in determining the strength of the ceramic. The trend obtained from the investigation shows that there is the possibility that an optimum value of composition percentage exist

  1. Determining the Compressive, Flexural and Splitting Tensile Strength of Silica Fume Reinforced Lightweight Foamed Concrete

    OpenAIRE

    Mydin M.A.O.; Sani N. Md.; Mohd Yusoff M.A.; Ganesan S.

    2014-01-01

    This study investigated the performance of the properties of foamed concrete in replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with ordinary Portland cement (OPC) and 10%, 15% and 20% silica fume was prepared. Three mechanical property parameters were studied such as compressive strength, flexural strength and splitting tensile of foamed concrete with different percentages of silica fume. Silica fume is commonly used to increase the m...

  2. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.

    Science.gov (United States)

    Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo

    2017-08-07

    Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals.

  3. Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

    International Nuclear Information System (INIS)

    Wang, H.M.; Jiang, J.S.; Huang, Z.Y.; Chen, Y.; Liu, K.; Lu, Z.W.; Qi, J.Q.; Li, F.; He, D.W.; Lu, T.C.; Wang, Q.Y.

    2016-01-01

    Nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts. In this study, nano-grained YAG transparent ceramics (NG-YAG) were prepared by low-temperature high-pressure technique (LTHP). The peak profile analysis of the X-ray diffraction was employed to investigate the compressive yield strength of NG-YAG. During the temperature at 450 °C, the residual micro-strain (RMS) increased with increasing loading pressure. However when the loading pressure was exceeded to 4.0 GPa the RMS exhibited a severe negative slop. The temperature effects on the compressive yield strength were also studied. It shows that the compressive yield strength of NG-YAG is 4.0 GPa and 5.0 GPa respectively at 450 °C and 350 °C. More importantly according to this investigation, a feasible technique to study the nano-grained ceramics is provided. - Graphical abstract: Fig. 2 shows the significant slope changes of calculated residual micro-strain (RMS) associated with five selected pressure-temperature conditions. Another the grain size estimated from Scherrer's formula, especially when it changes with the pressure-temperature condition is also plotted in Fig. 2. - Highlights: • Prepared the nano-grained YAG transparent ceramic by high pressure technique. • Obtained the compressive yield with different temperature. • Obtained the compressive yield of nano-grained YAG transparent ceramic.

  4. Effect of rice husk ash and fly ash on the compressive strength of high performance concrete

    Science.gov (United States)

    Van Lam, Tang; Bulgakov, Boris; Aleksandrova, Olga; Larsen, Oksana; Anh, Pham Ngoc

    2018-03-01

    The usage of industrial and agricultural wastes for building materials production plays an important role to improve the environment and economy by preserving nature materials and land resources, reducing land, water and air pollution as well as organizing and storing waste costs. This study mainly focuses on mathematical modeling dependence of the compressive strength of high performance concrete (HPC) at the ages of 3, 7 and 28 days on the amount of rice husk ash (RHA) and fly ash (FA), which are added to the concrete mixtures by using the Central composite rotatable design. The result of this study provides the second-order regression equation of objective function, the images of the surface expression and the corresponding contours of the objective function of the regression equation, as the optimal points of HPC compressive strength. These objective functions, which are the compressive strength values of HPC at the ages of 3, 7 and 28 days, depend on two input variables as: x1 (amount of RHA) and x2 (amount of FA). The Maple 13 program, solving the second-order regression equation, determines the optimum composition of the concrete mixture for obtaining high performance concrete and calculates the maximum value of the HPC compressive strength at the ages of 28 days. The results containMaxR28HPC = 76.716 MPa when RHA = 0.1251 and FA = 0.3119 by mass of Portland cement.

  5. Prediction of Corrosion Resistance of Concrete Containing Natural Pozzolan from Compressive Strength

    Science.gov (United States)

    al-Swaidani, A. M.; Ismat, R.; Diyab, M. E.; Aliyan, S. D.

    2015-11-01

    A lot of Reinforced Concrete (RC) structures in Syria have suffered from reinforcement corrosion which shortened significantly their service lives. Probably, one of the most effective approaches to make concrete structures more durable and concrete industry on the whole - more sustainable is to substitute pozzolan for a portion of Portland cement (PC). Syria is relatively rich in natural pozzolan. In the study, in order to predict the corrosion resistance from compressive strength, concrete specimens were produced with seven cement types: one plain Portland cement (control) and six natural pozzolan-based cements with replacement levels ranging from 10 to 35%. The development of the compressive strengths of concrete cube specimens with curing time has been investigated. Chloride penetrability has also been evaluated for all concrete mixes after three curing times of 7, 28 and 90 days. The effect on resistance of concrete against damage caused by corrosion of the embedded reinforcing steel has been investigated using an accelerated corrosion test by impressing a constant anodic potential for 7, 28 and 90 days curing. Test results have been statistically analysed and correlation equations relating compressive strength and corrosion performance have been developed. Significant correlations have been noted between the compressive strength and both rapid chloride penetrability and corrosion initiation times. So, this prediction could be reliable in concrete mix design when using natural pozzolan as cement replacement.

  6. Compressive strength of different brands of cement (OPC) in province of Sindh

    International Nuclear Information System (INIS)

    Khaskheli, G.B.; Kumar, A.; Sheikh, A.

    2009-01-01

    OPC (Ordinary Portland Cement) is the most common type of cement used in construction industry. Three major brands of OPC are normal OPC, SRC (Sulphate Resisting Cement) and SC (Slag Cement). It is seen that the variation in constituents of cement may cause serious effects on the quality of cement. Thus the motivation of this research is to study the basic properties (consistency, setting time, and fineness), compressive strength (cement mortar and concrete cubes) and modulus of elasticity of all the OPC brands (OPC, SRC and SC) manufactured in Sindh. In total 10 cement factories, altogether 21 different brands of cement, were studied in the light of BS and ASTM Code specifications. In total 126 mortar cubes (1:3), 252 concrete cubes (126 for 3000 psi mix design and remaining for 5000 psi) and 126 concrete cylinders (6 for the each brand of cement pertaining to 3000 psi and 5000 psi mix design) were manufactured and tested. Experimental results demonstrated that all the cement brands fulfilled the BS and ASTM Code requirements for (i) basic properties (ii) compressive strength of mortar cubes at 3 and 28 days curing age (iii) compressive strength of concrete cubes at 28 days curing age, and (iv) modulus of elasticity. Some of the cements did not fulfill the BS and ASTM Code requirements for compressive strength of concrete cubes at 7 days curing age. (author)

  7. The use of non-destructive tests to estimate Self-compacting concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Djamila Boukhelkhal

    2018-01-01

    Full Text Available Until now, there are few studies on the effect of mineral admixtures on correlation between compressive strength and ultrasonic pulse velocity for concrete. The aim of this work is to study the effect of mineral admixture available in Algeria such as limestone powder, granulated slag and natural pozzolana on the correlation between compressive strength and corresponding ultrasonic pulse velocity for self-compacting concrete (SCC. Compressive strength and ultrasonic pulse velocity (UPV were determined for four different SCC (with and without mineral admixture at the 3, 7, 28 and 90 day curing period. The results of this study showed that it is possible to develop a good correlation relationship between the compressive strength and the corresponding ultrasonic pulse velocity for all SCC studied in this research and all the relationships had exponential form. However, constants were different for each mineral admixture type; where, the best correlation was found in the case of SCC with granulated slag (R2 = 0.85. Unlike the SCC with pozzolana, which have the lowest correlation coefficient (R2 = 0.69.

  8. Effect of different dispersants in compressive strength of carbon fiber cementitious composites

    Science.gov (United States)

    Lestari, Yulinda; Bahri, Saiful; Sugiarti, Eni; Ramadhan, Gilang; Akbar, Ari Yustisia; Martides, Erie; Khaerudini, Deni S.

    2013-09-01

    Carbon Fiber Cementitious Composites (CFCC) is one of the most important materials in smart concrete applications. CFCC should be able to have the piezoresistivity properties where its resistivity changes when there is applied a stress/strain. It must also have the compressive strength qualification. One of the important additives in carbon fiber cementitious composites is dispersant. Dispersion of carbon fiber is one of the key problems in fabricating piezoresistive carbon fiber cementitious composites. In this research, the uses of dispersants are methylcellulose, mixture of defoamer and methylcellulose and superplasticizer based polycarboxylate. The preparation of composite samples is similar as in the mortar technique according to the ASTM C 109/109M standard. The additives material are PAN type carbon fibers, methylcellulose, defoamer and superplasticizer (as water reducer and dispersant). The experimental testing conducts the compressive strength and resistivity at various curing time, i.e. 3, 7 and 28 days. The results obtained that the highest compressive strength value in is for the mortar using superplasticizer based polycarboxylate dispersant. This also shown that the distribution of carbon fiber with superplasticizer is more effective, since not reacting with the cementitious material which was different from the methylcellulose that creates the cement hydration reaction. The research also found that the CFCC require the proper water cement ratio otherwise the compressive strength becomes lower.

  9. The Effect of Polymer-Cement Stabilization on the Unconfined Compressive Strength of Liquefiable Soils

    Directory of Open Access Journals (Sweden)

    Ali Ateş

    2013-01-01

    Full Text Available Soil stabilization has been widely used as an alternative to substitute the lack of suitable material on site. The use of nontraditional chemical stabilizers in soil improvement is growing daily. In this study a laboratory experiment was conducted to evaluate the effects of waterborne polymer on unconfined compression strength and to study the effect of cement grout on pre-venting of liquefiable sandy soils. The laboratory tests were performed including grain size of sandy soil, unit weight, ultrasonic pulse velocity, and unconfined compressive strength test. The sand and various amounts of polymer (1%, 2%, 3%, and 4% and cement (10%, 20%, 30%, and 40% were mixed with all of them into dough using mechanical kneader in laboratory conditions. Grouting experiment is performed with a cylindrical mould of  mm. The samples were subjected to unconfined compression tests to determine their strength after 7 and 14 days of curing. The results of the tests indicated that the waterborne polymer significantly improved the unconfined compression strength of sandy soils which have susceptibility of liquefaction.

  10. Effects of CuO nanoparticles on compressive strength of self ...

    Indian Academy of Sciences (India)

    In the present study, the compressive strength, thermal properties and microstructure of self-compacting concrete with different amounts of CuO nanoparticles have been investigated. CuO nanoparticles with an average particle size of 15 nm were added to self-compacting concrete and various properties of the specimens ...

  11. The Effects of Different Curing Methods on the Compressive Strength of Terracrete

    Directory of Open Access Journals (Sweden)

    O. Alake

    2009-01-01

    Full Text Available This research evaluated the effects of different curing methods on the compressive strength of terracrete. Several tests that included sieve analysis were carried out on constituents of terracrete (granite and laterite to determine their particle size distribution and performance criteria tests to determine compressive strength of terracrete cubes for 7 to 35 days of curing. Sand, foam-soaked, tank and open methods of curing were used and the study was carried out under controlled temperature. Sixty cubes of 100 × 100 × 100mm sized cubes were cast using a mix ratio of 1 part of cement, 1½ part of latrite, and 3 part of coarse aggregate (granite proportioned by weight and water – cement ratio of 0.62. The result of the various compressive strengths of the cubes showed that out of the four curing methods, open method of curing was the best because the cubes gained the highest average compressive strength of 10.3N/mm2 by the 35th day.

  12. The variability of wood density and compression strength of Norway spruce

    Czech Academy of Sciences Publication Activity Database

    Horáček, Petr; Fajstavr, Marek; Stojanović, Marko

    2017-01-01

    Roč. 10, 1-2 (2017), s. 17-26 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : Norway spruce * wood density * compression strength * variability Subject RIV: GK - Forestry OBOR OECD: Forestry

  13. Prediction of compressive strength up to 28 days from microstructure of Portland cement

    DEFF Research Database (Denmark)

    Svinning, K.; Høskuldsson, Agnar; Justnes, H.

    2008-01-01

    represented by curves from X-ray diffraction analysis and differential thermogravimetric analysis, as well as particle size distributions. PLS gave maximum explained variance in compressive strength at 1, 2, 7 and 28 days of 93%, 90%, 79% and 67%, respectively. The high explained variance makes the prediction...

  14. Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method

    NARCIS (Netherlands)

    Yuan, B.; Yu, Q.L.; Brouwers, H.J.H.

    2015-01-01

    This study investigates the reaction kinetics, the reaction products and the compressive strength of slag activated by ternary activators, namely waterglass, sodium hydroxide and sodium carbonate. Nine mixtures are designed by the Taguchi method considering the factors of sodium carbonate content

  15. Effect of silica fume on compressive strength of oil-polluted concrete in different marine environments

    Science.gov (United States)

    Shahrabadi, Hamid; Sayareh, Sina; Sarkardeh, Hamed

    2017-12-01

    In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.

  16. A STUDY OF SURGICAL MANAGEMENT OF DISTAL FEMORAL FRACTURES BY DISTAL FEMORAL LOCKING COMPRESSION PLATE OSTEOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    Dema Rajaiah

    2016-08-01

    Full Text Available AIMS AND OBJECTIVES To study the fractures of distal end of femur and the mechanism of injury in distal end femur fractures, the advantages and disadvantages of open reduction and internal fixation of distal end femur fractures by distal femoral locking compression plate osteosynthesis and to analyse the outcome in terms of range of Knee motion, time to union, and limb shortening. RESULTS The mean age of patient is 44 years, 85% are males, road traffic accidents account for majority (80%, right side involved in 70%, Muller’s type C fracture is common, good range of movements is seen 90% of cases and union occurred in 95% in 5 months. The results were assessed using Neer’s score, seven (35% patients had excellent results, eight (40% patients had good results, four (20% patients had fair results and one (5% patient had poor result. CONCLUSION From our study, we conclude that DF-LCP is a safe and reliable implant and has shown excellent to satisfactory results in majority of intra-articular fractures (AO type C. Fixation with locking compression plate showed more effectiveness in severely osteoporotic bones, shorter operative stay, faster recovery, faster union rates and excellent functional outcome.

  17. The influence of lay-up and thickness on composite impact damage and compression strength

    Science.gov (United States)

    Guynn, E. G.; Obrien, T. K.

    1985-01-01

    The effects of composite stacking sequence, thickness, and percentage of zero-degree plies on the size, shape, and distribution of delamination through the laminate thickness and on residual compression strength following impact were studied. Graphite/epoxy laminates were impacted with an 0.5 inch diameter aluminum sphere at a specific low or high velocity. Impact damage was measured nondestructively by ultrasonic C-scans and X-radiography and destructively by the deply technique, and compression strength tests were performed. It was found that differences in compression failure strain due to stacking sequence were small, while laminates with very low percentages of zero-degree plies had similar failure loads but higher failure strains than laminates with higher percentages of zero-degree plies. Failure strain did not correlate with planar impact damage area, and delaminations in impact regions were associated with matrix cracking.

  18. Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)

    Energy Technology Data Exchange (ETDEWEB)

    Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp; Liu, Xun [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Kodama, Masao [Sojo University, Kumamoto 860-0082 (Japan); Zaretsky, Eugene [Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Katayama, Masahide [Itochu Techno-Solutions Corporation, Tokyo 100-6080 (Japan); Nagayama, Kunihiko [Kyushu University, Fukuoka 812-8581 (Japan)

    2016-01-21

    The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity–particle velocity (U{sub S}–U{sub P}) Hugoniot relation in the plastic regime was determined to be U{sub S} = 4.137 + 1.242U{sub P} km/s (U{sub P} < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the U{sub S}–U{sub P} Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal U{sub s}–U{sub p} Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data.

  19. Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)

    International Nuclear Information System (INIS)

    Mashimo, Tsutomu; Liu, Xun; Kodama, Masao; Zaretsky, Eugene; Katayama, Masahide; Nagayama, Kunihiko

    2016-01-01

    The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity–particle velocity (U S –U P ) Hugoniot relation in the plastic regime was determined to be U S  = 4.137 + 1.242U P km/s (U P  < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the U S –U P Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal U s –U p Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data

  20. The effects of friction on the compressive behaviour of high strength steels

    International Nuclear Information System (INIS)

    Ashton, M.; Parry, D.J.

    1997-01-01

    An investigation, covering a wide range of strain rate and temperature, has been performed into the effects of interfacial friction on the compressive properties of an armour plate steel. In order to calculate the coefficient of friction, ring tests were carried out and the Avitzur analysis applied. In general, coefficients of friction decreased with increasing temperature and strain rate. Other specimen observations indicated the same friction trends. It is essential that friction corrections be applied if meaningful results are to be obtained. (orig.)

  1. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    OpenAIRE

    Solikin Mochamad; Setiawan Budi

    2017-01-01

    High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly ...

  2. Optimum Compressive Strength of Hardened Sandcrete Building Blocks with Steel Chips

    Directory of Open Access Journals (Sweden)

    Alohan Omoregie

    2013-02-01

    Full Text Available The recycling of steel chips into an environmentally friendly, responsive, and profitable commodity in the manufacturing and construction industries is a huge and difficult challenge. Several strategies designed for the management and processing of this waste in developed countries have been largely unsuccessful in developing countries mainly due to its capital-intensive nature. To this end, this investigation attempts to provide an alternative solution to the recycling of this material by maximizing its utility value in the building construction industry. This is to establish their influence on the compressive strength of sandcrete hollow blocks and solid cubes with the aim of specifying the range percent of steel chips for the sandcrete optimum compressive strength value. This is particularly important for developing countries in sub-Saharan Africa, and even Latin America where most sandcrete blocks exhibit compressive strengths far below standard requirements. Percentages of steel chips relative to the weight of cement were varied and blended with the sand in an attempt to improve the sand grading parameters. The steel chips variations were one, two, three, four, five, ten and fifteen percent respectively. It was confirmed that the grading parameters were improved and there were significant increases in the compressive strength of the blocks and cube samples. The greatest improvement was noticed at four percent steel chips and sand combination. Using the plotted profile, the margin of steel chips additions for the optimum compressive strength was also established. It is recommended that steel chip sandcrete blocks are suitable for both internal load bearing, and non-load bearing walls, in areas where they are not subjected to moisture ingress. However, for external walls, and in areas where they are liable to moisture attack after laying, the surfaces should be well rendered. Below ground level, the surfaces should be coated with a water

  3. Compressive strength of dental composites photo-activated with different light tips

    International Nuclear Information System (INIS)

    Galvão, M R; Campos, E A; Rastelli, A N S; Andrade, M F; Caldas, S G F R; Calabrez-Filho, S; Bagnato, V S

    2013-01-01

    The aim of this study was to evaluate the compressive strength of microhybrid (Filtek™ Z250) and nanofilled (Filtek™ Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm −2 when using the fiber optic light tip and 596 mW cm −2 with the polymer. After storage in distilled water at 37 ± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min −1 . The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane’s test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth. (paper)

  4. Retention Strength after Compressive Cyclic Loading of Five Luting Agents Used in Implant-Supported Prostheses

    Directory of Open Access Journals (Sweden)

    Angel Alvarez-Arenal

    2016-01-01

    Full Text Available The purpose of this study was to evaluate and compare the retention strength of five cement types commonly used in implant-retained fixed partial dentures, before and after compressive cyclic loading. In five solid abutments screwed to 5 implant analogs, 50 metal Cr-Ni alloy copings were cemented with five luting agents: resin-modified glass ionomer (RmGI, resin composite (RC, glass ionomer (GI, resin urethane-based (RUB, and compomer cement (CC. Two tensile tests were conducted with a universal testing machine, one after the first luting of the copings and the other after 100,000 cycles of 100 N loading at 0.72 Hz. The one way ANOVA test was applied for the statistical analysis using the post hoc Tukey test when required. Before and after applying the compressive load, RmGI and RC cement types showed the greatest retention strength. After compressive loading, RUB cement showed the highest percentage loss of retention (64.45%. GI cement recorded the lowest retention strength (50.35 N and the resin composite cement recorded the highest (352.02 N. The type of cement influences the retention loss. The clinician should give preference to lower retention strength cement (RUB, CC, and GI if he envisages any complications and a high retention strength one (RmGI, RC for a specific clinical situation.

  5. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    Directory of Open Access Journals (Sweden)

    Solikin Mochamad

    2017-01-01

    Full Text Available High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete. The experiment and data analysis were prepared using minitab, a statistic software for design of experimental. The specimens were concrete cylinder with diameter of 15 cm and height of 30 cm, tested for its compressive strength at 56 days. The result of the research demonstrates that high volume fly ash concrete can produce comparable compressive strength which meets the strength of OPC design strength especially for high strength concrete. In addition, the best mix proportion to achieve the design strength is the combination of high strength concrete and 50% content of fly ash. Moreover, the use of spraying method for curing method of concrete on site is still recommended as it would not significantly reduce the compressive strength result.

  6. Coefficient αcc in design value of concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Goleš Danica

    2016-01-01

    Full Text Available Coefficient αcc introduces the effects of rate and duration of loading on compressive strength of concrete. These effects may be partially or completely compensated by the increase in concrete strength over time. Selection of the value of this coefficient, in recommended range between 0.8 and 1.0, is carried out through the National Annexes to Eurocode 2. This paper presents some considerations related to the introduction of this coefficient and its value adopted in some European countries. The article considers the effect of the adoption of conservative value αcc=0.85 on design value of compressive and flexural resistance of rectangular cross-section made of normal and high strength concrete. It analyzes the influence of different values of coefficient αcc on the area of reinforcement required to achieve the desired resistance of cross-section.

  7. THE COMPRESSIVE AND FLEXURAL STRENGTHS OF SELF-COMPACTING CONCRETE USING RAW RICE HUSK ASH

    Directory of Open Access Journals (Sweden)

    MD NOR ATAN

    2011-12-01

    Full Text Available This study investigates the compressive and flexural strengths of self-compacting concrete incorporating raw rice husk ash, individually and in combination with other types of mineral additives, as partial cement replacement. The additives paired with raw rice husk ash were fine limestone powder, pulverized fuel ash and silica fumes. The mix design was based on the rational method where solid constituents were fixed while water and superplasticizer contents were adjusted to produce optimum viscosity and flowability. All mixes were designed to achieve SF1 class slump-flow with conformity criteria ≥ 520 mm and ≤ 700 mm. Test results show that 15% replacement of cement using raw rice husk ash produced grade 40 concrete. It was also revealed that 30% and 45% cement replacements using raw rice husk ash combined with limestone powder and raw rice husk ash combined with limestone powder and silica fume respectively, produced comparable compressive strength to normal concrete and improved flexural strengths.

  8. Influence of alkali-silica reaction and crack orientation on the uniaxial compressive strength of concrete cores from slab bridges

    DEFF Research Database (Denmark)

    Antonio Barbosa, Ricardo; Gustenhoff Hansen, Søren; Hansen, Kurt Kielsgaard

    2018-01-01

    ASR-damaged flat slab bridges in service. Furthermore, the influence of the ASR-induced crack orientation on the compressive strength and the Young’s modulus is investigated. Uniaxial compression tests, visual observations, and thin section examinations were performed on more than 100 cores drilled...... from the three severely ASR-damaged flat slab bridges. It was found that the orientation of ASR-induced cracks has a significant influence on the uniaxial compressive strength and the stress-strain relationship of the tested cores. The compressive strength in a direction parallel to ASR cracks can...

  9. Behaviour of venous flow rates in intermittent sequential pneumatic compression of the legs using different compression strengths

    International Nuclear Information System (INIS)

    Fassmann-Glaser, I.

    1984-01-01

    A study with 25 patients was performed in order to find out whether intermittent, sequential, pneumatic leg compression is of value in the preventive management of thrombosis due to its effect on the venous flow rates. For this purpose, xenon 133 was injected into one of the foot veins and the flow rate in each case determined for the distance between instep and inguen using different compression strengths, with pressure being exerted on the ankle, calf and thigh. Increased flow rates were already measured at an average pressure value of 34.5 mmHg, while the maximum effect was achieved by exerting a pressure of 92.5 mmHg, which increased the flow rate by 366% as compared to the baseline value. The results point to a significant improvement of the venous flow rates due to intermittent, sequential, pneumatic leg compression and thus provide evidence to prove the value of this method in the prevention of hemostasis and thrombosis. (TRV) [de

  10. Influence of uncoated and coated plastic waste coarse aggregates to concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Purnomo Heru

    2017-01-01

    Full Text Available The use of plastic waste as coarse aggregates in concrete is part of efforts to reduce environmental pollution. In one hand the use of plastic as aggregates can provide lighter weight of the concrete than concrete using natural aggregates, but on the other hand bond between plastic coarse aggregates and hard matrix give low concrete compressive strength. Improvement of the bond between plastic coarse aggregate and hard matrix through a sand coating to plastic coarse aggregate whole surface is studied. Sand used to coat the plastic aggregates are Merapi volcanic sand which are taken in Magelang. Three mixtures of polypropylene (PP coarse plastic aggregates, Cimangkok river sand as fine aggregates, water and Portland Cement Composite with a water-cement ratio of 0.28, 0.3 and 0.35 are conducted. Compression test are performed on concrete cylindrical specimens with a diameter of 10 cm and a height of 20 cm. The results in general show that concrete specimens using plastic aggregates coated with sand have higher compressive strength compared to those of concrete specimens using plastic aggregates without sand coating. The bond improvement is indirectly indicated by the betterment of concrete compressive strength.

  11. Precipitation Strengthening by Induction Treatment in High Strength Low Carbon Microalloyed Hot-Rolled Plates

    Science.gov (United States)

    Larzabal, G.; Isasti, N.; Rodriguez-Ibabe, J. M.; Uranga, P.

    2018-03-01

    The use of microalloyed steels in the production of thick plates is expanding due to the possibility of achieving attractive combinations of strength and toughness. As market requirements for high strength plates are increasing and new applications require reduced weight and innovative designs, novel approaches to attaining cost-effective grades are being developed. The mechanism of precipitation strengthening has been widely used in thin strip products, since the optimization of the coiling strategy offers interesting combinations in terms of final properties and microalloying additions. Precipitation strengthening in thick plates, however, is less widespread due to the limitation of interphase precipitation during continuous cooling after hot rolling. With the main objective of exploring the limits of this strengthening mechanism, laboratory thermomechanical simulations that reproduced plate hot rolling mill conditions were performed using low carbon steels microalloyed with Nb, NbMo, and TiMo additions. After continuous cooling to room temperature, a set of heat treatments using fast heating rates were applied simulating the conditions of induction heat treatments. An important increase of both yield and tensile strengths was measured after induction treatment without any important impairment in toughness properties. A significant precipitation hardening is observed in Mo-containing grades under specific heat treatment parameters.

  12. [APPLICATION OF BUTTERFLY SHAPED LOCKING COMPRESSION PLATE IN COMPLEX DISTAL RADIUS FRACTURES].

    Science.gov (United States)

    Jiang, Zongyuan; Ma, Tao; Xia, Jiang; Hu, Caizhi; Xu, Lei

    2014-06-01

    To investigate the effectiveness of butterfly shaped locking compression plate for the treatment of complex distal radius fractures. Between June 2011 and January 2013, 20 cases of complex distal radius fractures were treated with butterfly shaped locking compression plate fixation. There were 11 males and 9 females with an average age of 54 years (range, 25-75 years). Injury was caused by falling in 10 cases, by traffic accident in 7 cases, and by falling from height in 3 cases. All of fractures were closed. According to AO classification system, there were 8 cases of type C1, 8 cases of type C2, and 4 cases of type C3. Of them, 9 cases had radial styloid process fracture, 4 cases had sigmoid notch fracture, and 7 cases had both radial styloid process fracture and sigmoid notch fracture. The mean interval between injury and operation was 5.2 days (range, 3-15 days). All incisions healed by first intention; no complications of infection and necrosis occurred. All cases were followed up 14 months on average (range, 10-22 months). All factures healed after 9.3 weeks on average (range, 6-11 weeks). No complications such as displacement of fracture, joint surface subsidence, shortening of the radius, and carpal tunnel syndrome were found during follow-up. At last follow-up, the mean palmar tilt angle was 10.2° (range, 7-15°), and the mean ulnar deviation angle was 21.8° (range, 17-24°). The mean range of motion of the wrist was 45.3° (range, 35-68°) in dorsal extension, 53.5° (range, 40-78°) in palmar flexion, 19.8° (range, 12-27°) in radial inclination, 26.6° (range, 18-31°) in ulnar inclination, 70.2° (range, 45-90°) in pronation, and 68.4° (range, 25-88°) in supination. According to the Dienst scoring system, the results were excellent in 8 cases, good in 10 cases, and fair in 2 cases, and the excellent and good rate was 90%. Treatment of complex distal radius fractures with butterfly shaped locking compression plate can reconstruct normal anatomic

  13. Compressive strength of structural concrete made with locally available coarse aggregates

    International Nuclear Information System (INIS)

    Kumar, A.; Khaskheli, G.B.

    2009-01-01

    Quality of CA (Coarse Aggregate) is one of the prime factors to control the quality of concrete. But construction industry of Sindh is not very much bothered about the quality of CA in concrete manufacturing. In Sindh, Hyderabad vicinity is comparatively rich in production of CA. This research is to evaluate the compressive strength of structural concrete made with CA obtained from five different crush plants (Petaro, Parker, Palari, Ghulam Hyder Baloch and Ongar), available in the vicinity of Hyderabad. ln total 360 concrete cubes (150x150x150mm) were manufactured, 72 for each source of CA by keeping 1:2:4 and 1:1.5:3 material ratios. The cubes were manufactured with 0.45 w/c (water cement ratio), 0.5 and 0.55 w/c and tested for compressive strength after 3, 7, 14 and 28 days of curing. Results show that performance of CA obtained from all the five crush plants remained in agreement with BS and ACI Code recommendations. Concrete made with CA obtained from Petaro and Parker gave higher early strength than that of others while concrete made with CA obtained from Petaro, Parker together with Palari gave higher 28th day compressive strength. (author)

  14. Optimum mix for fly ash geopolymer binder based on workability and compressive strength

    Science.gov (United States)

    Arafa, S. A.; Ali, A. Z. M.; Awal, A. S. M. A.; Loon, L. Y.

    2018-04-01

    The request of concrete is increasing every day for sustaining the necessity of development of structure. The production of OPC not only consumes big amount of natural resources and energy, but also emit significant quantity of CO2 to the atmosphere. Therefore, it is necessary to find alternatives like Geopolymer to make the concrete environment friendly. Geopolymer is an inorganic alumino-silicate compound, produced from fly ash. This paper describes the experimental work conducted by casting 40 geopolymer paste mixes, and was cured at 80°C for 24 h to evaluate the effect of various parameters affecting the workability and compressive strength. Alkaline solution to fly ash ratio and sodium hydroxide (NaOH) concentration were chosen as the key parameters of strength and workability. Laboratory investigation with different percentage of sodium hydroxide concentration and different alkaline liquid to fly ash ratio reveals that the optimum ratios are 10 M, AL/FA=0.5. It has generally been found that the workability decreased and the compressive strength increased with an increase in the concentration of sodium hydroxide solution. However, workability was increased and the compressive strength was decreased with the increase in the ratio of fly ash to alkaline solution.

  15. Evaluation of Compressive Strength and Sorption/Solubility of Four Luting Cements

    Directory of Open Access Journals (Sweden)

    Tavangar MS

    2017-06-01

    Full Text Available Abstract: Statement of Problem: Compressive strength (CS and sorption/solubility of the luting cements are two associated factors. Searching a correlation between sorption/solubility and compressive strength of various luting cements is required. Objectives: To measure the water sorption/solubility, and compressive strength of three resin-based and one conventional glass ionomer (CGI luting cement after 1 and 24 h of immersion in distilled water and to determine if there is any correlation between those properties found. Materials and Methods: Four luting cements were investigated. For each material, 10 disc shaped specimens were prepared for measuring the sorption/solubility. The specimens were cured according to the manufacturer’s instructions, and the sorption/solubility were measured in accordance with the ISO 4049’s. For testing the compression strength, for each material 16 cylindrical specimens were prepared by insertion of cements into a stainless steel split mould. The specimens were cured, divided into groups of 8, and then stored in distilled water at (37 ± 1°C for 1 and 24 h. The test was performed using the universal testing machine, the maximum load was recorded and CS was calculated. The data were analysed using SPSS software version 18. One-way ANOVA, post-hoc Tukey’s test and Pearson’s correlation coefficient were performed. Results: G-CEM had the highest mean CS (153.60± 25.15 and CGI luting had the lowest CS (21.36±5.37 (p 0.05. The lowest mean sorption/solubility value was for RelyXTM U200 and Panavia F, and the highest for CGI luting (all p < 0.001. Conclusions: The compressive strength of all cements did not necessarily increase after 24 h and varied depending on the materials. There was a strong reverse correlation between sorption and CS values after both 1 and 24 h immersion. It may be practical for clinician to use those cements with the less sorption / solubility and more stable compression strength over

  16. Effect of Sporosarcina Pasteurii on the strength properties of compressed earth specimens

    International Nuclear Information System (INIS)

    Bernat-Maso, E.; Gil, L.; Escrig, C.; Barbé, J.; Cortés, P.

    2018-01-01

    Microbial biodeposition of calcite induction for improving the performance of rammed earth is a research area that must be analysed in a representative environment. This analysis must consider the compaction force, particle size distribution and curing process as production variables. This paper investigates the effects of adding specific bacteria, Sporosarcina Pasteurii, into compressed earth cubes and the effect of production variables. Uniaxial compressive tests and direct shear tests have been conducted for 80 specimens. The results indicate that calcite precipitation interacts with the drying process of clay/silt resulting in reducing the compressive strength, the apparent cohesion and the friction angle. Finally, bacterial activity, which is more likely in samples cured in a high humidity environment, tends to reduce the dilatancy effect. [es

  17. Strength properties and structure of a submicrocrystalline Al-Mg-Mn alloy under shock compression

    Science.gov (United States)

    Petrova, A. N.; Brodova, I. G.; Razorenov, S. V.

    2017-06-01

    The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg-0.6Mn-0.11Si-0.23Fe-0.03Cr-0.02Cu-0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s-1. The average size of crystallites in the alloy was 180-460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased.

  18. Predicting guar seed splitting by compression between two plates using Hertz theory of contact stresses.

    Science.gov (United States)

    Vishwakarma, R K; Shivhare, U S; Nanda, S K

    2012-09-01

    Hertz's theory of contact stresses was applied to predict the splitting of guar seeds during uni-axial compressive loading between 2 rigid parallel plates. The apparent modulus of elasticity of guar seeds varied between 296.18 and 116.19 MPa when force was applied normal to hilum joint (horizontal position), whereas it varied between 171.86 and 54.18 MPa when force was applied in the direction of hilum joint (vertical position) with in moisture content range of 5.16% to 15.28% (d.b.). At higher moisture contents, the seeds yielded after considerable deformation, thus showing ductile nature. Distribution of stresses below the point of contact were plotted to predict the location of critical point, which was found at 0.44 to 0.64 mm and 0.37 to 0.53 mm below the contact point in vertical and horizontal loading, respectively, depending upon moisture content. The separation of cotyledons from each other initiated before yielding of cotyledons and thus splitting of seed took place. The relationships between apparent modulus of elasticity, principal stresses with moisture content were described using second-order polynomial equations and validated experimentally. Manufacture of guar gum powder requires dehulling and splitting of guar seeds. This article describes splitting behavior of guar seeds under compressive loading. Results of this study may be used for design of dehulling and splitting systems of guar seeds. © 2012 Institute of Food Technologists®

  19. Effect of mineral admixtures on kinetic property and compressive strength of self Compacting Concrete

    Science.gov (United States)

    Jagalur Mahalingasharma, Srishaila; Prakash, Parasivamurthy; Vishwanath, K. N.; Jawali, Veena

    2017-06-01

    This paper presents experimental investigations made on the influence of chemical, physical, morphological and mineralogical properties of mineral admixtures such as fly ash, ground granulate blast furnace slag, metakaoline and micro silica used as a replacement of cement in self compacting concrete on workability and compressive strength. Nineteen concrete mixes were cast by replacing with cement by fly ash or ground granulated blast furnace slag as binary blend at 30%, 40%, 50% and with addition of micro silica and metakaoline at 10% as a ternary blend with fly ash, ground granulated blast furnace slag and obtained results were compare with control mix. Water powder ratio 0.3 and super plasticizer dosage 1% of cementitious material was kept constant for all the mixes. The self compacting concrete tested for slump flow, V-funnel, L-Box, J-Ring, T50, and compressive strength on concrete cube were determined at age of 3, 7, 28, 56, 90 days.

  20. Increasing the compressive strength of portland cement concrete using flat glass powder

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Junior, Edson Jansen Pedrosa de; Bezerra, Helton de Jesus Costa Leite; Politi, Flavio Salgado; Paiva, Antonio Ernandes Macedo, E-mail: edson.jansen@ifma.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Maranha (IFMA), Sao Luis, MA (Brazil). Dept. de Mecanica e Materiais

    2014-08-15

    This paper analyzes the compressive strength of Portland cement concrete in response to the incorporation of 5%, 10% and 20% of flat glass powder in place of sand, at w/c (water/cement) ratios of 0.50, 0.55 and 0.58. A statistical analysis of variance (ANOVA) was performed after 7, 14 and 28 days of curing. The compressive strength test results indicate that the concrete containing a w/c ratio of 0.50 can be used for structural applications, regardless of the waste glass content, as can that with a w/c ratio of 0.55 containing 20% of waste glass. We suggest that the use of flat glass powder in place of sand in the above mentioned percentages is feasible for the production of an environmentally appropriate and structurally applicable concrete. However, the concrete's fluidity and void content must be taken into account. (author)

  1. Comparison of Machine Learning Techniques for the Prediction of Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    Palika Chopra

    2018-01-01

    Full Text Available A comparative analysis for the prediction of compressive strength of concrete at the ages of 28, 56, and 91 days has been carried out using machine learning techniques via “R” software environment. R is digging out a strong foothold in the statistical realm and is becoming an indispensable tool for researchers. The dataset has been generated under controlled laboratory conditions. Using R miner, the most widely used data mining techniques decision tree (DT model, random forest (RF model, and neural network (NN model have been used and compared with the help of coefficient of determination (R2 and root-mean-square error (RMSE, and it is inferred that the NN model predicts with high accuracy for compressive strength of concrete.

  2. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Keon [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-10-15

    This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

  3. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    Science.gov (United States)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  4. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

    International Nuclear Information System (INIS)

    Lee, Myoung Keon; Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon

    2016-01-01

    This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

  5. Influence of Fly Ash on the Compressive Strength of Foamed Concrete at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Ahmad H.

    2014-01-01

    Full Text Available Foamed concrete is a lightweight concrete that is widely used in the construction industry recently. This study was carried out to investigate the influence of fly ash as a cement replacement material to the residual compressive strength of foamed concrete subjected to elevated temperature. For this study, the foamed concrete density was fixed at 1300 kg/m3 and the sand-cement ratio and water-cement was set at 1:2 and 0.45, respectively. The samples were prepared and tested at the age of 28 days. Based on the results, it has been found that with 25% inclusion of fly ash, the percentage of compressive strength loss was decreased by 3 – 50%.

  6. Use of triangular membership function for prediction of compressive strength of concrete containing nanosilica

    Directory of Open Access Journals (Sweden)

    Sakshi Gupta

    2015-12-01

    Full Text Available In this paper, application of fuzzy logic technique using triangular membership function for developing models for predicting compressive strength of concrete with partial replacement of cement with nanosilica has been carried out. For this, the data have been taken from various literatures and help in optimizing the constituents available and reducing cost and efforts in studying design to develop mixes by predefining suitable range for experimenting. The use of nanostructured materials in concrete can add many benefits that are directly related to the durability of various cementitious materials, besides the fact that it is possible to reduce the quantities of cement in the composite. Successful prediction by the model indicates that fuzzy logic could be a useful modelling tool for engineers and research scientists in the area of cement and concrete. Compressive strength values of concrete can be predicted in fuzzy logic models without attempting any experiments in a quite short period of time with tiny error rates.

  7. Notched Strength of Woven Fabric Kenaf Composite Plates with Different Stacking Sequences and Hole Sizes

    Directory of Open Access Journals (Sweden)

    Hans Romayne Anders

    2016-01-01

    Full Text Available Advantages of using kenaf fibres over synthetic fibres in composites manufacturing are relatively cheap, less abrasive and hazardous during handling, and renewable materials. Current work investigates parametric effects on notched strength of woven fabric kenaf polymer composites plates with variation of lay-up types, notch sizes and plate thickness. Testing coupons are prepared using hand lay-up technique and circular notch were drilled prior to mechanical testing. Stress concentration at the notch edge promotes micro-damage event as tensile loading was applied leading to crack initiation and propagations across the plate width. It is suggested that woven fabric kenaf polymer composites are potentially used in low and medium load bearing applications.

  8. Determination of composition of pozzolanic waste mixtures with optimized compressive strength

    Directory of Open Access Journals (Sweden)

    Nardi José Vidal

    2004-01-01

    Full Text Available The utilization of ceramic wastes with pozzolanic properties along with other compounds for obtaining new materials with cementating properties is an alternative for reducing the environmental pollution. The acceptance of these new products in the market demands minimal changes in mechanical properties according to its utilization. For a variable range of compositional intervals, attempts were made to establish limiting incorporation proportions that assure the achievement of minimum pre-established mechanical strength values in the final product. In this case minimum compressive strength value is 3,000 kPa. A simultaneous association of other properties is also possible.

  9. Effect of Pelletized Coconut Fibre on the Compressive Strength of Foamed Concrete

    OpenAIRE

    Mohd Jaini Zainorizuan; Mokhatar Shahrul Niza; Mohd Yusof Ammar Saifuddin; Zulkiply Syurafarina; Abd Rahman Mohd Hadi

    2016-01-01

    Foamed concrete is a controlled low density ranging from 400kg/m3 to 1800kg/m3, and hence suitable for the construction of buildings and infrastructures. The uniqueness of foamed concrete is does not use aggregates in order to retain low density. Foamed concrete contains only cement, sand, water and foam agent. Therefore, the consumption of cement is higher in producing a good quality and strength of foamed concrete. Without the present of aggregates, the compressive strength of foamed concre...

  10. The Evolution of Plate and Extruded Products with High Strength and Fracture Toughness

    Science.gov (United States)

    Denzer, D. K.; Rioja, R. J.; Bray, G. H.; Venema, G. B.; Colvin, E. L.

    From the first use of 2017-T74 on the Junkers F13, improvements have been made to plate and extruded products for applications requiring the highest attainable strength and adequate fracture toughness. One such application is the upper wing of large aircraft. The progression of these product improvements achieved through the development of alloys that include 7075-(T6 & T76), 7150-(T6 & T77) and 7055-(T77 & T79) and most recently 7255-(T77 & T79) is reviewed. The most current advancements include aluminum-copper-lithium, alloy 2055 plate and extruded products that can attain strength equivalent to that of 7055-T77 with higher modulus, similar fracture toughness and improved fatigue, fatigue crack growth and corrosion performance. The achievement of these properties is explained in terms of the several alloy design principles. The highly desired and balanced characteristics make these products ideal for upper wing applications.

  11. Prediction of concrete compressive strength considering humidity and temperature in the construction of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seung Hee; Jang, Kyung Pil [Department of Civil and Environmental Engineering, Myongji University, Yongin (Korea, Republic of); Bang, Jin-Wook [Department of Civil Engineering, Chungnam National University, Daejeon (Korea, Republic of); Lee, Jang Hwa [Structural Engineering Research Division, Korea Institute of Construction Technology (Korea, Republic of); Kim, Yun Yong, E-mail: yunkim@cnu.ac.kr [Structural Engineering Research Division, Korea Institute of Construction Technology (Korea, Republic of)

    2014-08-15

    Highlights: • Compressive strength tests for three concrete mixes were performed. • The parameters of the humidity-adjusted maturity function were determined. • Strength can be predicted considering temperature and relative humidity. - Abstract: This study proposes a method for predicting compressive strength developments in the early ages of concretes used in the construction of nuclear power plants. Three representative mixes with strengths of 6000 psi (41.4 MPa), 4500 psi (31.0 MPa), and 4000 psi (27.6 MPa) were selected and tested under various curing conditions; the temperature ranged from 10 to 40 °C, and the relative humidity from 40 to 100%. In order to consider not only the effect of the temperature but also that of humidity, an existing model, i.e. the humidity-adjusted maturity function, was adopted and the parameters used in the function were determined from the test results. A series of tests were also performed in the curing condition of a variable temperature and constant humidity, and a comparison between the measured and predicted strengths were made for the verification.

  12. Locking compression plate osteosynthesis of complicated mandibular fractures in six horses.

    Science.gov (United States)

    Kuemmerle, J M; Kummer, M; Auer, J A; Nitzl, D; Fürst, A E

    2009-01-01

    Complicated mandibular fractures were recognised in one foal, one pony and four horses. The foal was two months old while the adult animals ranged in age from 12 to 24 years. Three horses had a unilateral horizontal ramus fracture. Two fractures were open and one was closed. Comminution was present in one of these patients while the other two horses had marked displacement of the fragments. Two suffered from comminuted fractures of the horizontal and vertical ramus of the mandible. One of these patients had open and infected fractures. One foal had a bilateral horizontal ramus fracture with marked periosteal 'new bone' formation and malalignement which required corrective osteotomy. Each horse underwent locking compression plate (LCP) osteosynthesis consisting of open fracture reduction and application of one to three 4.5/5.0 mm LCP at the ventral, lateral or caudal aspect of the mandible under fluoroscopic control. Two 3.5 mm LCP were used in the foal. Plate fixation was supported by application of a cerclage wire construct between the incisor and premolar teeth in most patients. Complete fracture healing, with an excellent functional and cosmetic outcome, was achieved in all of the patients. Complications encountered included seroma formation, screw and wire breakage, as well as implant and apical tooth root infections. The LCP was removed after fracture healing had occurred in four patients.

  13. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    Science.gov (United States)

    Zhang, Zuhua; Wang, Hao

    2016-08-01

    The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.

  14. Influence of Temperature on Workability and Compressive Strength of Ordinary Concrete with High Calcium Fly Ash

    Directory of Open Access Journals (Sweden)

    Gołaszewski Jacek

    2017-06-01

    Full Text Available The rheological properties of fresh ordinary concrete are closely affected by temperature and time. The paper presents the study of consistency of fresh concrete mixtures made with Portland cement and cement with calcareous fly ash. Two types of admixtures were used. It was proven that the temperature has a clear effect on workability and compressive strength concrete. Influence on workability can be reduced by selecting the appropriate superplasticizer and cement.

  15. Calcium Lactate addition in Bioconcrete: Effect on Compressive strength and Water penetration

    Directory of Open Access Journals (Sweden)

    Irwan J.M

    2016-01-01

    Full Text Available This paper presents compressive strength and water penetration of bioconcrete with addition of calcium lactate. Bioconcrete has higher engineering concrete properties and durability compared to normal concrete but the natural production of calcium carbonate is limited to the calcium content in cement. Therefore, additional calcium is added as an additional calcium source to study the influence towards compressive strength and water penetration. The bacteria used in this research are Enterococcus faecalis and Bacillus sp. Calcium lactate was added into concrete mix in concentrations of 0.001mol/l, 0.005mol/l and 0.01mol/l of liquid used. The concentration of bacteria added into the mix is by partial replacement of water used in casting, which are 3% for Enterococcus faecalis and 5% for Bacillus sp. Both compressive strength and water penetration test used cubes of 150mm × 150mm × 150mm. The cubes were tested after 28 days. The result of compressive strength for control is 36 MPa while partial replacement of bacteria yields 38.2 MPa for 3% Enterococcus faecalis and 37.0 MPa for 5% Bacillus sp. Calcium lactate with 0.005 mol/L has the best performance with 42.8 MPa for Enterococcus faecalis and 39.6 MPa for Bacillus sp. Whereas for water penetration, the best concentration of calcium lactate which yielded the lowest water penetration is 0.01 mol/l for both Enterococcus faecalis and Bacillus sp which are 8.7 cm and 8 cm respectively. The addition of calcium lactate into bioconcrete is quite promising for improvement of concrete properties and durability.

  16. Strength and Compressibility Characteristics of Reconstituted Organic Soil at Khulna Region of Bangladesh

    OpenAIRE

    Tahia Rabbee; Islam M. Rafizul

    2012-01-01

    This study depicts the experimental investigations into the effect of organic content on the shear strength and compressibility parameters of reconstituted soil. To these attempts, disturbed soil samples were collected from two selected locations of Khulna region. The reconstituted soil having organic content of 5-35 % were prepared in the laboratory to mix at various proportions of inorganic and organic soil at the water content equal to 1.25 times of liquid limits of collected samples .The ...

  17. Compressive Strength of Concrete made from Natural Fine Aggregate Sources in Minna, Nigeria

    Directory of Open Access Journals (Sweden)

    M. Abdullahi

    2017-12-01

    Full Text Available This work presented an investigation of concrete developed from five fine aggregate sources in Minna, Niger state, Nigeria. Tests conducted on the fine aggregate samples included specific gravity, sieve analysis, bulk density and moisture content. The concrete mix design was done using absolute volume method at various mix proportion of 1:2:4, 1:2:3 and 1:1:2 and water-cement ratios of 0.4, 0.45, 0.5, 0.55 and 0.6. The compressive strengths of concrete were determined at 28-day curing age. Test results revealed that the specific gravities of the aggregate were between 2.60 to 2.70, compacted bulk densities also ranged from 1505.18 to 1701.15kg/m3, loose bulk densities ranged from 1379.32 to 1478.17kg/m3, and moisture content ranged from 0.93 to 2.47%. All the fine aggregate samples satisfied the overall and medium grading limits for natural fine aggregates. The coarse aggregate used fairly followed the grading limit for aggregate size of 20 to 5 mm. The compressive strength of the concrete obtained using the aggregate samples A, B, C, D, and Eall within the ranges of 18.97 to 34.98 N/mm2. Statistical models were developed for the compressive strength of concrete as a function of water-cement ratio for various fine aggregate sources and mix proportions. The models were found to have good predictive the capabilities of the compressive strength of concrete for given water-cement ratio. The properties of fine aggregates and the resulting concrete characteristics showed that all the fine aggregate samples are suitable to be used for concrete production.

  18. Influence of uncoated and coated plastic waste coarse aggregates to concrete compressive strength

    OpenAIRE

    Purnomo Heru; Pamudji Gandjar; Satim Madsuri

    2017-01-01

    The use of plastic waste as coarse aggregates in concrete is part of efforts to reduce environmental pollution. In one hand the use of plastic as aggregates can provide lighter weight of the concrete than concrete using natural aggregates, but on the other hand bond between plastic coarse aggregates and hard matrix give low concrete compressive strength. Improvement of the bond between plastic coarse aggregate and hard matrix through a sand coating to plastic coarse aggregate whole surface is...

  19. Compressive strength and magnetic properties of calcium silicate-zirconia-iron (III) oxide composite cements

    Science.gov (United States)

    Ridzwan, Hendrie Johann Muhamad; Shamsudin, Roslinda; Ismail, Hamisah; Yusof, Mohd Reusmaazran; Hamid, Muhammad Azmi Abdul; Awang, Rozidawati Binti

    2018-04-01

    In this study, ZrO2 microparticles and γ-Fe2O3 nanoparticles have been added into calcium silicate based cements. The purpose of this experiment was to investigate the compressive strength and magnetic properties of the prepared composite cement. Calcium silicate (CAS) powder was prepared by hydrothermal method. SiO2 and CaO obtained from rice husk ash and limestone respectively were autoclaved at 135 °C for 8 h and sintered at 950°C to obtain CAS powder. SiO2:CaO ratio was set at 45:55. CAS/ZrO2 sample were prepared with varying ZrO2 microparticles concentrations by 0-40 wt. %. Compressive strength value of CAS/ZrO2 cements range from 1.44 to 2.44 MPa. CAS/ZrO2/γ-Fe2O3 sample with 40 wt. % ZrO2 were prepared with varying γ-Fe2O3 nanoparticles concentrations (1-5 wt. %). The additions of γ-Fe2O3 nanoparticles showed up to twofold increase in the compressive strength of the cement. X-Ray diffraction (XRD) results confirm the formation of mixed phases in the produced composite cements. Vibrating sample magnetometer (VSM) analysis revealed that the ferromagnetic behaviour has been observed in CAS/ZrO2/γ-Fe2O3 composite cements.

  20. Experimental data on compressive strength and durability of sulfur concrete modified by styrene and bitumen.

    Science.gov (United States)

    Dehestani, M; Teimortashlu, E; Molaei, M; Ghomian, M; Firoozi, S; Aghili, S

    2017-08-01

    In this data article experimental data on the compressive strength, and the durability of styrene and bitumen modified sulfur concrete against acidic water and ignition are presented. The percent of the sulfur cement and the gradation of the aggregates used are according to the ACI 548.2R-93 and ASTM 3515 respectively. For the styrene modified sulfur concrete different percentages of styrene are used. Also for the bitumen modified sulfur concrete, different percentages of bitumen and the emulsifying agent (triton X-100) are utilized. From each batch three 10×10×10 cm cubic samples were casted. One of the samples was used for the compressive strength on the second day of casting, and one on the twenty-eighth day. Then the two samples were put under the high pressure flame of the burning liquid gas for thirty seconds and their ignition resistances were observed. The third sample was put into the acidic water and after twenty eight days immersion in water was dried in the ambient temperature. After drying its compressive strength has been evaluated.

  1. Mesoscopic Numerical Computation of Compressive Strength and Damage Mechanism of Rubber Concrete

    Directory of Open Access Journals (Sweden)

    Z. H. Xie

    2015-01-01

    Full Text Available Evaluations of both macroscopic and mesoscopic strengths of materials have been the topic of a great deal of recent research. This paper presents the results of a study, based on the Walraven equation of the production of a mesoscopic random aggregate structure containing various rubber contents and aggregate sizes. On a mesoscopic scale, the damage mechanism in the rubber concrete and the effects of the rubber content and aggregate-mortar interface on the rubber concrete’s compressive resistance property were studied. The results indicate that the random aggregate structural model very closely approximates the experimental results in terms of the fracture distribution and damage characteristics under uniaxial compression. The aggregate-mortar interface mechanical properties have a substantial impact on the test sample’s strength and fracture distribution. As the rubber content increases, the compressive strength and elastic modulus of the test sample decrease proportionally. This paper presents graphics of the entire process from fracture propagation to structural failure of the test piece by means of the mesoscopic finite-element method, which provides a theoretical reference for studying the damage mechanism in rubber concrete and performing parametric calculations.

  2. Influence of Random Inclusion of Coconut Fibres on the Short term Strength of Highly Compressible Clay

    Science.gov (United States)

    Ramani Sujatha, Evangelin; SaiSree, S.; Prabalini, C.; Aysha Farsana, Z.

    2017-07-01

    The choice of natural fibres for soil stabilization provides an economic, safe and eco-friendly alternative to improve the properties of soil. They are an important step forward toward sustainable development. An attempt was made to study the influence of the random addition of untreated coconut fibres on the short term strength of soil, its stress-strain behavior, compaction characteristics and index properties. The soil selected for the study is a highly compressible clay sample with a liquid limit of 52.5 % and plasticity index of 38 %. The soil has no organic content. The study reveals that the compaction curves tend to shift to the right side, indicating more plastic behavior with the addition of fibres. The addition of fibres also reorient the soil structure to a more dispersed fashion. A significant increase in the unconfined compressive strength is also observed. An increase of nearly 51 % in the unconfined compressive strength is observed at 0.75 % coir inclusion. The stress-strain behavior of the soil shows a shift toward more plastic behavior. The mode of failure of the soil specimen is by cracking and with fibre inclusion, length of the failure cracks is restrained as the fibre tends to hold the cracks together, resulting in shorter cracks, with significant bulging of the specimen at failure.

  3. Influence of aggregate characteristics on the compressive strength of normal weight concrete

    International Nuclear Information System (INIS)

    Qureshi, M.A.; Aslam, M.

    2015-01-01

    Experimental investigations on the properties of concrete have been performed around the globe and their correlation is interpreted in relevant design codes. The structural behavior of cement concrete significantly relies on the material resources, properties of the aggregates constituting the concrete and the local construction practice. These factors vary from place to place. Therefore, the compressive strength of concrete prepared from the aggregates available in one locality may not be directly applicable to the other areas. The purpose of this study is to evaluate the Influence of locally available coarse aggregates on the compressive strength of normal weight concrete (NWC) prepared under local environmental conditions of district Khairpur Mir's, Sindh, Pakistan. The coarse aggregates were collected from five different quarries in the vicinity of Khairpur Mir's, Pakistan. In total; 180 cubes were tested. 10 different batches were formed in order to arrange individual characterization of concrete. Each batch was contained of 18 cubes and each quarry contains 2 batches making a total of 36 cube with four different ratios for each quarry. Dry density and compressive strength of concrete was calculated and a comparison is provided as a guideline for the future construction work in the local community. (author)

  4. Compressive Strength and Modulus of Elasticity of Concrete with Cubed Waste Tire Rubbers as Coarse Aggregates

    Science.gov (United States)

    Haryanto, Y.; Hermanto, N. I. S.; Pamudji, G.; Wardana, K. P.

    2017-11-01

    One feasible solution to overcome the issue of tire disposal waste is the use of waste tire rubber to replace aggregate in concrete. We have conducted an experimental investigation on the effect of rubber tire waste aggregate in cuboid form on the compressive strength and modulus of elasticity of concrete. The test was performed on 72 cylindrical specimens with the height of 300 mm and diameter of 150 mm. We found that the workability of concrete with waste tire rubber aggregate has increased. The concrete density with waste tire rubber aggregate was decreased, and so was the compressive strength. The decrease of compressive strength is up to 64.34%. If the content of waste tire rubber aggregate is more than 40%, then the resulting concrete cannot be categorized as structural concrete. The modulus of elasticity decreased to 59.77%. The theoretical equation developed to determine the modulus of elasticity of concrete with rubber tire waste aggregate has an accuracy of 84.27%.

  5. Comparison of antimicrobial activities and compressive strength of alginate impression materials following disinfection procedure.

    Science.gov (United States)

    Alwahab, Zahraa

    2012-07-01

    This study investigated the effectiveness of disinfecting solution when incorporated into alginate powder instead of water against some microorganisms and on compressive strength of alginate. For measuring antimicrobial activity of alginate, 60 alginate specimens were prepared and divided into two groups: One with water incorporated in the mix (control) and the other with 0.2% chlorhexidine digluconate incorporated in the mix instead of water. The tested microorganisms were: gram +ve cocci, gram -ve bacilli and yeast (each group 10 samples). For measuring compressive strength, 20 specimens of alginate were divided into two groups: One with water incorporated in the mix (control) and the other with chlorhexidine incorporated in the mix. The statistical analysis of antimicrobial efficacy of alginate was performed with Mann-Whitney U-test, which revealed very high significant difference when comparing among groups (p 0.05). The incorporation of disinfecting agents into impression materials could serve an important role in dental laboratory infection control and it had no adverse effect on compressive strength of the hydrocolloid alginate. The risk of transmitting pathogenic microorganisms to dental laboratories via impression has been considered a topic of importance for a number of years.

  6. Experimental study of tensile strength of pharmaceutical tablets: effect of the diluent nature and compression pressure

    Directory of Open Access Journals (Sweden)

    Juban Audrey

    2017-01-01

    Full Text Available In the pharmaceutical field, tablets are the most common dosage form for oral administration in the world. Among different manufacturing processes, direct compression is widely used because of its economics interest and it is a process which avoids the steps of wet granulation and drying processes. Tablets are composed of at least two ingredients: an active pharmaceutical ingredient (API which is mixed with a diluent. The nature of the powders and the processing conditions are crucial for the properties of the blend and, consequently, strongly influence the mechanical characteristics of tablets. Moreover, tablets have to present a suitable mechanical strength to avoid crumbling or breaking when handling, while ensuring an appropriate disintegration after administration. Accordingly, this mechanical property is an essential parameter to consider. Experimental results showed that proportion of the diluent, fragmentary (DCPA or plastic (MCC, had a large influence on the tensile strength evolution with API content as well as the compression load applied during tableting process. From these results a model was developed in order to predict the tensile strength of binary tablets by knowing the compression pressure. The validity of this model was demonstrated for the two studied systems and a comparison was made with two existing models.

  7. Experimental study of tensile strength of pharmaceutical tablets: effect of the diluent nature and compression pressure

    Science.gov (United States)

    Juban, Audrey; Briançon, Stéphanie; Puel, François; Hoc, Thierry; Nouguier-Lehon, Cécile

    2017-06-01

    In the pharmaceutical field, tablets are the most common dosage form for oral administration in the world. Among different manufacturing processes, direct compression is widely used because of its economics interest and it is a process which avoids the steps of wet granulation and drying processes. Tablets are composed of at least two ingredients: an active pharmaceutical ingredient (API) which is mixed with a diluent. The nature of the powders and the processing conditions are crucial for the properties of the blend and, consequently, strongly influence the mechanical characteristics of tablets. Moreover, tablets have to present a suitable mechanical strength to avoid crumbling or breaking when handling, while ensuring an appropriate disintegration after administration. Accordingly, this mechanical property is an essential parameter to consider. Experimental results showed that proportion of the diluent, fragmentary (DCPA) or plastic (MCC), had a large influence on the tensile strength evolution with API content as well as the compression load applied during tableting process. From these results a model was developed in order to predict the tensile strength of binary tablets by knowing the compression pressure. The validity of this model was demonstrated for the two studied systems and a comparison was made with two existing models.

  8. Effects of Calcined clay minerals and Silica fume on the compressive strength of concrete

    Directory of Open Access Journals (Sweden)

    Abolfazl Soltani

    2017-05-01

    Full Text Available Pozzolanic materials are well known as potential replacements for cement manufacturing in order to increase compressive strength and improve durability of concrete in different environments and leading to save energy particularly reducing global warming effect. The present study reveals the effect of calcined clay minerals as natural pozzolanic material, separately and in combination with and without silica fume. To achieve this aim, 15 mixed designs with a constant water to cementitious ratio of  0.38 is made. In six mixed designs only metakaolin, zeolite or silica fume  and in eight other designs metakaolin and silica fume or zeolite and silica fume have been combined. Mixes containing metakaolin or zeolite with ratio of 10 or 20 percent and silica fume with 7 or 10 percent show significant increasing in compressive strength and improving durability, being valuable replacement for cement (in percentages. In particular, the best practice is attributed to the age of 28 days for compressive strength the replacement of the composition is 10% zeolite with 7% of silica fume and for electrical resistance the replacement of the composition is 10% zeolite with 7% of silica fume.

  9. Investigation of compressive strength of concrete with slag and silica fu

    International Nuclear Information System (INIS)

    Mostofinejad, D.; Mirtalee, K.; Sadeghi, M.

    2002-01-01

    Without doubt, concrete has special place in construction of different types of structures, and used as one of the most important materials in construction industry. Today, with development and modernization of human knowledge in construction industry, it is possible to reach h igh performance concrete . Mechanical properties and durability of high performance concrete is quite better than that of conventional concrete. In present, the use of supplementary cementitious materials, mainly silica fume, fly ash and blast furnace slag has become increasingly common for reasons of economy and technical benefits imparted by these materials. The aim of present research is investigation and comparison compressive strength of concrete specimens due to variation of water to cementitious materials ratio (W/C M), silica fume and slag percent and their proportions as cement replacement. Furthermore, it is intended to determine best combination of these materials with cement in concrete (optimum percent) to reach to maximum compressive strength. In the current study, specimens were made in 0.5,0.4 and 0.3 W/C M ratio contained 0,20,35 and 50 percent of slag as cement replacement, where in each slag replacement percent, 0, 5, 10 and 15 percent of of silica fume were used as cement replacement. Results of the current study show that the combination effect of slag and silica fume replacement in concrete leads to the maximum compressive strength in concrete; also there are some optimum percents for replacement of slag and silica fume to cement to get the best results

  10. Reliability estimate of unconfined compressive strength of black cotton soil stabilized with cement and quarry dust

    Directory of Open Access Journals (Sweden)

    Dayo Oluwatoyin AKANBI

    2017-06-01

    Full Text Available Reliability estimates of unconfined compressive strength values from laboratory results for specimens compacted at British Standard Light (BSLfor compacted quarry dust treated black cotton soil using cement for road sub – base material was developed by incorporating data obtained from Unconfined compressive strength (UCS test gotten from the laboratory test to produce a predictive model. Data obtained were incorporated into a FORTRAN-based first-order reliability program to obtain reliability index values. Variable factors such as water content relative to optimum (WRO, hydraulic modulus (HM, quarry dust (QD, cement (C, Tri-Calcium silicate (C3S, Di-calcium silicate (C2S, Tri-Calcium Aluminate (C3A, and maximum dry density (MDD produced acceptable safety index value of1.0and they were achieved at coefficient of variation (COV ranges of 10-100%. Observed trends indicate that WRO, C3S, C2S and MDD are greatly influenced by the COV and therefore must be strictly controlled in QD/C treated black cotton soil for use as sub-base material in road pavements. Stochastically, British Standard light (BSL can be used to model the 7 days unconfined compressive strength of compacted quarry dust/cement treated black cotton soil as a sub-base material for road pavement at all coefficient of variation (COV range 10 – 100% because the safety index obtained are higher than the acceptable 1.0 value.

  11. Effect of shallow angles on compressive strength of biaxial and triaxial laminates.

    Science.gov (United States)

    Jia, Hongli; Yang, Hyun-Ik

    2016-01-01

    Biaxial (BX) and triaxial (TX) composite laminates with ±45° angled plies have been widely used in wind turbine blades. As the scale of blades increases, BX and TX laminates with shallow-angled plies (i.e. off-axis ply angle shallow-angled BX and TX laminates are critical considering their locations in a wind turbine blade, and therefore in this study, the uniaxial static compression tests were conducted using BX and TX laminates with angled-plies of ±45°, ±35°, and ±25°, for the purpose of evaluation. On the other hand, Mori-Tanaka mean field homogenization method was employed to predict elastic constants of plies in BX and TX laminates involved in tests; linear regression analyses of experimentally measured ply strengths collected from various sources were then performed to estimate strengths of plies in BX and TX laminates; finally, Tsai-Wu, Hashin, and Puck failure criteria were chosen to predict compressive strengths of BX and TX laminates. Comparison between theoretical predictions and test results were carried out to illustrate the effectiveness of each criterion. The compressive strength of BX laminate decreases as ply angle increases, and the trend was successfully predicted by all three failure criteria. For TX laminates, ±35° angled plies rather than ±45° angled plies led to the lowest laminate compressive strength. Hashin and Puck criteria gave good predictions at certain ply angles for TX laminates, but Tsai-Wu criterion was able to capture the unexpected strength variation of TX laminates with ply angle. It was concluded that the transverse tensile stress in 0° plies of TX laminates, which attains its maximum when the off-axis ply angle is 35°, is the dominant factor in failure determination if using Tsai-Wu criterion. This explains the unexpected strength variation of TX laminates with ply angle, and also indicates that proper selection of ply angle is the key to fully utilizing the advantages of shallow-angled laminates.

  12. Strength, leachability and microstructure characteristics of cement-based solidified plating sludge

    International Nuclear Information System (INIS)

    Asavapisit, Suwimol; Naksrichum, Siripat; Harnwajanawong, Naraporn

    2005-01-01

    The solidification of the stabilized zinc-cyanide plating sludge was carried out using ordinary Portland cement (OPC) and pulverized fuel ash (PFA) as solidification binders. The plating sludge were used at the level of 0%, 10%, 20% and 30% dry weight, and PFA was used to replace OPC at 0%, 10%, 20% and 30% dry weight, respectively. Experimental results showed that a significant reduction in strength was observed when the plating sludge was added to both the OPC and OPC/PFA binders, but the negative effect was minimized when PFA was used as part substitute for OPC. SEM observation reveals that the deposition of the plating sludge on the surface of the clinkers and PFA could be the cause for hydration retardation. In addition, calcium zinc hydroxide hydrate complex and the unreacted di- and tricalcium silicates were the major phases in X-ray diffraction (XRD) patterns of the solidified plating waste hydrated for 28 days, although the retardation effect on hydration reactions but Cr concentration in toxicity characteristic leaching procedure (TCLP) leachates was lower than the U.S. EPA regulatory limit

  13. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC Concrete

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone is widely used in the construction industry to produce Portland limestone cement (PLC concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel–space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods.

  14. Prediction of compression strength of high performance concrete using artificial neural networks

    International Nuclear Information System (INIS)

    Torre, A; Moromi, I; Garcia, F; Espinoza, P; Acuña, L

    2015-01-01

    High-strength concrete is undoubtedly one of the most innovative materials in construction. Its manufacture is simple and is carried out starting from essential components (water, cement, fine and aggregates) and a number of additives. Their proportions have a high influence on the final strength of the product. This relations do not seem to follow a mathematical formula and yet their knowledge is crucial to optimize the quantities of raw materials used in the manufacture of concrete. Of all mechanical properties, concrete compressive strength at 28 days is most often used for quality control. Therefore, it would be important to have a tool to numerically model such relationships, even before processing. In this aspect, artificial neural networks have proven to be a powerful modeling tool especially when obtaining a result with higher reliability than knowledge of the relationships between the variables involved in the process. This research has designed an artificial neural network to model the compressive strength of concrete based on their manufacturing parameters, obtaining correlations of the order of 0.94

  15. SURGICAL MANAGEMENT OF TRAUMATIC MANUBRIO-STERNAL DISLOCATION WITH LOCKING COMPRESSION PLATE; A CASE REPORT AND REVIEW OF LITERATURE

    Directory of Open Access Journals (Sweden)

    FAREED AHMED SHAIKH

    2017-05-01

    Full Text Available Background: Manubriosternal joint dislocation as a result of trauma is rare with only few case reports published in literature. Materials that have been used for fixation of displaced manubriosternal joint are steel wires, polydioxanone ropes, and plates with screws. Case: We present a case of manubriosternal dislocation in which fixation was done with locking compression plate. This is a case of 32 years old lady with history of road traffic accident, car ran over her chest. She had bilateral lung contusions with multiple rib fractures on right side and manubriosternal joint dislocation of type-I. Patient was initially stabilized in high dependency unit, and once her contusions got better, she underwent fixation of her manubriosternal dislocation with locking compression plate. Post-operatively she remained pain free and was discharged home. Conclusion: This case is an important addition to literature regarding options that can be used for fixation of manubriosternal joint dislocation.

  16. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  17. Studying of Compressive, Tensile and Flexural Strength of Concrete by Using Steel Fibers

    Directory of Open Access Journals (Sweden)

    Muslim Abdul-Ameer

    2016-12-01

    Full Text Available This research aims to study the effect of adding steel fibers on the mechanical properties of concrete. Steel fiber has a very significant effect on concrete because it delays the propagation of micro cracks that generate due to loading on concrete members such as beams and slabs, therefore ,it increases the strength of concrete. The steel fiber was used in this study as a percentage of the volume of concrete. Mix proportion was 1: 2:4 (cement: sand: gravel by volume for all mixes and using 0% as (control mix,0.1 %,0.2%,0.5 % and 1.0% of steel fibers, these ratios leads to increase the compressive, tensile ,and flexural strength of concrete, where the improvement in flexural strength was significant

  18. Standard test method for compressive (crushing) strength of fired whiteware materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method covers two test procedures (A and B) for the determination of the compressive strength of fired whiteware materials. 1.2 Procedure A is generally applicable to whiteware products of low- to moderately high-strength levels (up to 150 000 psi or 1030 MPa). 1.3 Procedure B is specifically devised for testing of high-strength ceramics (over 100 000 psi or 690 MPa). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. Experimental Study on the Compressive Strength of Big Mobility Concrete with Nondestructive Testing Method

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2012-01-01

    Full Text Available An experimental study of C20, C25, C30, C40, and C50 big mobility concrete cubes that came from laboratory and construction site was completed. Nondestructive testing (NDT was carried out using impact rebound hammer (IRH techniques to establish a correlation between the compressive strengths and the rebound number. The local curve for measuring strength of the regression method is set up and its superiority is proved. The rebound method presented is simple, quick, and reliable and covers wide ranges of concrete strengths. The rebound method can be easily applied to concrete specimens as well as existing concrete structures. The final results were compared with previous ones from the literature and also with actual results obtained from samples extracted from existing structures.

  20. Influence of Nanolime and Curing Period on Unconfined Compressive Strength of Soil

    Directory of Open Access Journals (Sweden)

    Panbarasi Govindasamy

    2017-01-01

    Full Text Available This paper presents the improvement of the unconfined compressive strength (UCS of soil by mixing different percentages of nanolime and 5% lime with soil. The UCS of treated soil increased significantly over curing time with increasing percentage of nanolime. The optimum results were reached at only 0.5% nanolime admixtures which were much higher than 5% lime admixture. This may be due to higher ability of nanolime to flocculate and agglomerate the soil particles compared with the lime. In addition, the lime could fill only the micropores while nanolime could fill the micro- and nanopores as well. The strength gain is inversely proportional to the remolded moisture content and curing period. However, when the content of nanolime used is larger than 0.5%, nanolime particles are not uniformly dispersed. Therefore, a weak area in the form of voids is created, consequently the homogeneous hydrated microstructure cannot be formed, and finally the strength will decrease.

  1. Influence of Curing Humidity on the Compressive Strength of Gypsum-Cemented Similar Materials

    Directory of Open Access Journals (Sweden)

    Weiming Guan

    2016-01-01

    Full Text Available The analogous simulation experiment is widely used in geotechnical and mining engineering. However, systematic errors derived from unified standard curing procedure have been underestimated to some extent. In this study, 140 gypsum-cemented similar material specimens were chosen to study their curing procedure with different relative humidity, which is 10%–15%, 40%, 60%, and 80%, respectively. SEM microstructures and XRD spectra were adopted to detect the correlation between microstructures and macroscopic mechanical strength during curing. Our results indicated that the needle-like phases of similar materials began to develop in the early stage of the hydration process through intersecting with each other and eventually transformed into mat-like phases. Increase of humidity may inhibit the development of needle-like phases; thus the compressive strength changes more smoothly, and the time required for the material strength to reach the peak value will be prolonged. The peak strength decreases along with the increase of humidity while the humidity is higher than 40%; however, the reverse tendency was observed if the humidity was lower than 40%. Finally, we noticed that the material strength usually reaches the peak value when the water content continuously reduces and tends towards stability. Based on the above observation, a curing method determination model and experimental strength predication method for gypsum-cemented similar materials were proposed.

  2. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    Science.gov (United States)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  3. Influence of variables on the consolidation and unconfined compressive strength of crushed salt: Technical report

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Senseny, P.E.; Mellegard, K.D.

    1987-01-01

    Eight hydrostatic compression creep tests were performed on crushed salt specimens fabricated from Avery Island dome salt. Following the creep test, each specimen was tested in unconfined compression. The experiments were performed to assess the influence of the following four variables on the consolidation and unconfined strength of crushed salt: grain size distribution, temperature, time, and moisture content. The experiment design comprised a half-fraction factorial matrix at two levels. The levels of each variable investigated were grain size distribution, uniform-graded and well-graded (coefficient of uniformity of 1 and 8); temperature 25 0 C and 100 0 C; time, 3.5 x 10 3 s and 950 x 10 3 s (approximately 60 minutes and 11 days, respectively); and moisture content, dry and wet (85% relative humidity for 24 hours). The hydrostatic creep stress was 10 MPa. The unconfined compression tests were performed at an axial strain rate of 1 x 10 -5 s -1 . Results show that the variables time and moisture content have the greatest influence on creep consolidation, while grain size distribution and, to a somewhat lesser degree, temperature have the greatest influence on total consolidation. Time and moisture content and the confounded two-factor interactions between either grain size distribution and time or temperature and moisture content have the greatest influence on unconfined strength. 7 refs., 7 figs., 11 tabs

  4. The strength of compressed structures with CFRP materials reinforcement when exceeding the cross-section size

    Science.gov (United States)

    Polskoy, Petr; Mailyan, Dmitry; Georgiev, Sergey; Muradyan, Viktor

    2018-03-01

    The increase of high-rise construction volume or «High-Rise Construction» requires the use of high-strength concrete and that leads to the reduction in section size of structures and to the decrease in material consumption. First of all, it refers to the compressed elements for which, when the transverse dimensions are reduced, their flexibility and deformation increase but the load bearing capacity decreases. Growth in construction also leads to the increase of repair and restoration works or to the strengthening of structures. The most effective method of their strengthening in buildings of «High-Rise Construction» is the use of composite materials which reduces the weight of reinforcement elements and labour costs on execution of works. In this article the results of experimental research on strength and deformation of short compressed reinforced concrete structures, reinforced with external carbon fiber reinforcement, are presented. Their flexibility is λh=10, and the cross-section dimensions ratio b/h is 2, that is 1,5 times more, than recommended by standards in Russia. The following research was being done for three kinds of strained and deformed conditions with different variants of composite reinforcement. The results of the experiment proved the real efficiency of composite reinforcement of the compressed elements with sides ratio equal to 2, increasing the bearing capacity of pillars till 1,5 times. These results can be used for designing the buildings of different number of storeys.

  5. The effect of temperature on compressive and tensile strengths of commonly used luting cements: an in vitro study.

    Science.gov (United States)

    Patil, Suneel G; Sajjan, Mc Suresh; Patil, Rekha

    2015-02-01

    The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.

  6. The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste

    Science.gov (United States)

    Lăzărescu, A. V.; Szilagyi, H.; Baeră, C.; Ioani, A.

    2017-06-01

    Alkaline activation of fly ash is a particular procedure in which ash resulting from a power plant combined with a specific alkaline activator creates a solid material when dried at a certain temperature. In order to obtain desirable compressive strengths, the mix design of fly ash based geopolymer pastes should be explored comprehensively. To determine the preliminary compressive strength for fly ash based geopolymer paste using Romanian material source, various ratios of Na2SiO3 solution/ NaOH solution were produced, keeping the fly ash/alkaline activator ratio constant. All the mixes were then cured at 70 °C for 24 hours and tested at 2 and 7 days, respectively. The aim of this paper is to present the preliminary compressive strength results for producing fly ash based geopolymer paste using Romanian material sources, the effect of alkaline activators ratio on the compressive strength and studying the directions for future research.

  7. Evaluation of shear-compressive strength properties for laminated GFRP composites in electromagnet system

    Science.gov (United States)

    Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon

    2014-07-01

    Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.

  8. Estimate of compressive strength of an unidirectional composite lamina using cross-ply and angle-ply laminates

    OpenAIRE

    Scafè, M.; Raiteri, G.; Brentari, A.; Dlacic, R.; Troiani, E.; Falaschetti, M. P.; Besseghini, E.

    2014-01-01

    In this work has been estimated the compressive strength of a unidirectional lamina of a carbon/epoxy composite material, using the cross-ply and angle-ply laminates. Over the years various methods have been developed to deduce compressive properties of composite materials reinforced with long fibres. Each of these methods is characterized by a specific way of applying load to the specimen. The method chosen to perform the compression tests is the Wyoming Combined Loading Compr...

  9. Effect Of Coir Fibres On The Compaction And Unconfined Compressive Strength Of Bentonite-Lime-Gypsum Mixture

    Directory of Open Access Journals (Sweden)

    Tilak B. Vidya

    2015-06-01

    Full Text Available This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite – lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.

  10. Reliability-Based Approach for the Determination of the Required Compressive Strength of Concrete in Mix Design

    OpenAIRE

    Okasha , Nader M

    2017-01-01

    International audience; Concrete is recognized as the second most consumed product in our modern life after water. The variability in concrete properties is inevitable. The concrete mix is designed for a compressive strength that is different from, typically higher than, the value specified by the structural designer. Ways to calculate the compressive strength to be used in the mix design are provided in building and structural codes. These ways are all based on criteria related purely and on...

  11. A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes

    International Nuclear Information System (INIS)

    Shaikh, F.U.A.; Supit, S.W.M.; Sarker, P.K.

    2014-01-01

    Highlights: • The addition of NS compensates low early age compressive strength of HVFA system. • NS also contributes to later age compressive strength gain of HVFA system. • The XRD results confirm the reduction of CH in HVFA paste due to addition of NS. - Abstract: This paper presents the effect of nano silica (NS) on the compressive strength of mortars and concretes containing different high volume fly ash (HVFA) contents ranging from 40% to 70% (by weight) as partial replacement of cement. The compressive strength of mortars is measured at 7 and 28 days and that for concretes is measured at 3, 7, 28, 56 and 90 days. The effects of NS in microstructure development and pozzolanic reaction of pastes containing above HVFA contents are also studied through backscattered electron (BSE) image and X-ray diffraction (XRD) analysis. Results show that among different NS contents ranging from 1% to 6%, cement mortar containing 2% NS exhibited highest 7 and 28 days compressive strength. This NS content (2%) is then added to the HVFA mortars and concretes and the results show that the addition of 2% NS improved the early age (7 days) compressive strength of mortars containing 40% and 50% fly ash by 5% and 7%, respectively. However, this improvement is not observed at high fly ash contents beyond 50%. On the other hand, all HVFA mortars exhibited improvement in 28 days compressive strength due to addition of 2% NS and the most significant improvement is noticed in mortars containing more than 50% fly ash. In HVFA concretes, the improvement of early age (3 days) compressive strength is also noticed due to addition of 2% NS. The BSE and XRD analysis results also support the above findings

  12. Effect of Pin Geometry on the Mechanical Strength of Friction-Stir-Welded Polypropylene Composite Plates

    Science.gov (United States)

    Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.

    2017-09-01

    Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.

  13. Effect on Compressive Strength of Concrete Using Treated Waste Water for Mixing and Curing of Concrete

    Directory of Open Access Journals (Sweden)

    Humaira Kanwal

    2018-04-01

    Full Text Available Effective utilization of the available resources is imperative approach to achieve the apex of productivity. The modern world is focusing on the conditioning, sustainability and recycling of the assets by imparting innovative techniques and methodologies. Keeping this in view, an experimental study was conducted to evaluate the strength of concrete made with treated waste water for structural use. In this study ninetysix cylinders of four mixes with coarse aggregates in combination with FW (Fresh Water, WW (Wastewater, TWW (Treated Wastewater and TS (Treated Sewagewere prepared. The workability of fresh concrete was checked before pouring of cylinders. The test cylinders were left for 7, 14, 21 and 28 days for curing. After curing, the compressive strength was measured on hardened concrete cylinders accordingly. Test results showed that workability of all the four mixes were between 25-50mm but ultimate compressive strength of concrete with WW was decreased and with TWW, TS at the age of 28 days do not change significantly. This research will open a new wicket in the horizon of recycling of construction materials. The conditioning and cyclic utilization will reduce the cost of the construction and building materials as well as minimize the use of natural resources. This novelty and calculating approach will save our natural assets and resources.

  14. An Investigation of the Uniaxial Compressive Strength of a Cemented Hydraulic Backfill Made of Alluvial Sand

    Directory of Open Access Journals (Sweden)

    Guangsheng Liu

    2017-01-01

    Full Text Available Backfill is commonly used in underground mines. The quality control of the backfill is a key step to ensure it meets the designed strength requirement. This is done through sample collection from the underground environment, followed by uniaxial compression tests to obtain the Uniaxial Compressive Strength (UCS in the laboratory. When the cylindrical cemented backfill samples are axially loaded to failure, several failure modes can be observed and mainly classified into diagonal shear failure and axial split failure. To date, the UCS obtained by these two failure modes are considered to be the same with no distinction between them. In this paper, an analysis of the UCS results obtained on a cemented hydraulic backfill made of alluvial sand at a Canadian underground mine over the course of more than three years is presented. The results show that the UCS values obtained by diagonal shear failure are generally higher than those obtained by axial split failure for samples with the same recipe and curing time. This highlights the importance of making a distinction between the UCS values obtained by the two different modes of failure. Their difference in failure mechanism is explained. Further investigations on the sources of the data dispersion tend to indicate that the UCS obtained by laboratory tests following the current practice may not be representative of the in-situ strength distribution in the underground stopes due to segregation in cemented hydraulic backfill.

  15. Compressive Strength of Steel Frames after Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Hadryś D.

    2016-03-01

    Full Text Available Low carbon steel weld structures generally exhibit a very linear stress-strain relationship. In the study of strength of materials, the compressive strength is the capacity of a material or structure to withstand loads tending to reduce size of structure. It is mainly measured by plotting applied force against deformation in a testing machine. Compressive strength is a main key value for design of welded structures.The main goal of that paper was analysing of plastic properties of frame welds which were made with various parameters of micro-jet cooling. New technology of micro-jet welding could be regarded as a new way to improve plastic properties of welds. It allows to obtain welds with better mechanical properties in comparison to ordinary welding method. Furthermore it is possible to steering of weld structure and properties of the weld. There were given main information about influence of various micro-jet gases on metallographic and properties of structure steel welds.

  16. Compressive and flexural strength of concrete containing palm oil biomass clinker and polypropylene fibres

    Science.gov (United States)

    Ibrahim, M. H. Wan; Mangi, Sajjad Ali; Burhanudin, M. K.; Ridzuan, M. B.; Jamaluddin, N.; Shahidan, S.; Wong, YH; Faisal, SK; Fadzil, M. A.; Ramadhansyah, P. J.; Ayop, S. S.; Othman, N. H.

    2017-11-01

    This paper presents the effects of using palm oil biomass (POB) clinker with polypropylene (PP) fibres in concrete on its compressive and flexural strength performances. Due to infrastructural development works, the use of concrete in the construction industry has been increased. Simultaneously, it raises the demand natural sand, which causes depletion of natural resources. While considering the environmental and economic benefits, the utilization of industrial waste by-products in concrete will be the alternative solution of the problem. Among the waste products, one of such waste by-product is the palm oil biomass clinker, which is a waste product from burning processes of palm oil fibres. Therefore, it is important to utilize palm oil biomass clinker as partial replacement of fine aggregates in concrete. Considering the facts, an experimental study was conducted to find out the potential usage of palm oil fibres in concrete. In this study, total 48 number of specimens were cast to evaluate the compressive and flexural strength performances. Polypropylene fibre was added in concrete at the rate of 0.2%, 0.4% and 0.6%, and sand was replaced at a constant rate of 10% with palm oil biomass clinker. The flexural strength of concrete was noticed in the range of 2.25 MPa and 2.29 MPa, whereas, the higher value of flexural strength was recorded with 0.4% polypropylene fibre addition. Hence, these results show that the strength performances of concrete containing POB clinker could be improved with the addition of polypropylene fibre.

  17. Treatment of Unstable Trochanteric Femur Fractures: Proximal Femur Nail Versus Proximal Femur Locking Compression Plate.

    Science.gov (United States)

    Singh, Ashutosh Kumar; Narsaria, Nidi; G R, Arun; Srivastava, Vivek

    Unstable trochanteric femur fractures are common fractures that are difficult to manage. We conducted a prospective study to compare functional outcomes and complications of 2 different implant designs, proximal femur nail (PFN) and proximal femur locking compression plate (PFLCP), used in internal fixation of unstable trochanteric femur fractures. On hospital admission, 48 patients with unstable trochanteric fractures were randomly assigned (using a sealed envelope method) to treatment with either PFN (24 patients) or PFLCP (24 patients). Perioperative data and complications were recorded. All cases were followed up for 2 years. The groups did not differ significantly (P > .05) in operative time, reduction quality, complications, hospital length of stay, union rate, or time to union. Compared with the PFLCP group, the PFN group had shorter incisions and less blood loss. Regarding functional outcomes, there was no significant difference in mean Harris Hip Score (P = .48) or Palmer and Parker mobility score (P = .58). Both PFN and PFLCP are effective in internal fixation of unstable trochanteric femur fractures.

  18. Use of locking compression plates in ulnar fractures of 18 horses.

    Science.gov (United States)

    Jacobs, Carrie C; Levine, David G; Richardson, Dean W

    2017-02-01

    To describe the outcome, clinical findings, and complications associated with the use of the locking compression plate (LCP) for various types of ulnar fractures in horses. Retrospective case series. Client owned horses (n = 18). Medical records, radiographs, and follow-up for horses having an ulnar fracture repaired using at least 1 LCP were reviewed. Fifteen of 18 horses had fractures of the ulna only, and 3 horses had fractures of the ulna and proximal radius. All 18 horses were discharged from the hospital. Complications occurred in 5 horses; incisional infection (n = 4, 22%), implant-associated infection (n = 2, 11%), and colic (n = 1, 6%). Follow-up was available for all horses at a range of 13-120 months and 15 horses (83%) were sound for their intended purpose and 3 horses (17%) were euthanatized. One horse was euthanatized for complications associated with original injury and surgery. The LCP is a viable method of internal fixation for various types of ulnar fractures, with most horses in this series returning to soundness. © 2017 The American College of Veterinary Surgeons.

  19. [Comparative study on the strength of different mechanisms of operation of multidirectionally angle-stable distal radius plates].

    Science.gov (United States)

    Rausch, S; Hoffmeier, K; Gueorguiev, B G; Klos, K; Gras, F; Hofmann, G O; Mückley, T

    2011-12-01

    Polyaxial angle-stable plating is thought to be particularly beneficial in the management of complex intra-articular fractures of the distal radius. The present study was performed to investigate the strength of polyaxial locking interfaces of distal radius plates. We tested the polyaxial interfaces of 3 different distal radius plates (2.4 mm Variable Angle LCP Two-Column Volar Distal Radius Plate, Synthes, Palmar Classic, Königsee Implantate and VariAx Plate Stryker). The strength of 0° and 10° screw locking angle was obtained during static loading. The strength of Palmar Classic with a 0° locking angle is significantly the best of all tested systems. With a 10° locking angle there is no significant difference between Palmar Classic, Two column Plate and VariAx Plate. The strength of polyaxial interfaces differs between the tested systems. A reduction of ultimate strength is due to increases of screw locking angle. The design of polyaxial locking interfaces should be investigated in human bone models. © Georg Thieme Verlag KG Stuttgart · New York.

  20. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  1. Aggregate effects on γ-ray shielding characteristics and compressive strength on concrete

    International Nuclear Information System (INIS)

    Oh, Jeong Hwan; Choi, Soo Seok; Mun, Young Bun; Lee, Jae Hyung; Choi, Hyun Kook

    2016-01-01

    We observed the γ-ray shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of 0.371 cm-1 from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a γ-ray of "1"3"7Cs, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of 3,175 kg·m"-"3. Although the unit weight of the concrete with OSS and OSG was 3,052 kg·m"-"3, which was lower than the maximum unit weight condition by 123 kg·m"-"3, its attenuation coefficient was improved by 0.012 cm-1. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced γ-ray shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing

  2. Aggregate effects on γ-ray shielding characteristics and compressive strength on concrete

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jeong Hwan; Choi, Soo Seok [Jeju National University, Jeju (Korea, Republic of); Mun, Young Bun; Lee, Jae Hyung; Choi, Hyun Kook [Sungshin Cement Co., Ltd, Sejong (Korea, Republic of)

    2016-12-15

    We observed the γ-ray shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of 0.371 cm-1 from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a γ-ray of {sup 137}Cs, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of 3,175 kg·m{sup -3}. Although the unit weight of the concrete with OSS and OSG was 3,052 kg·m{sup -3}, which was lower than the maximum unit weight condition by 123 kg·m{sup -3}, its attenuation coefficient was improved by 0.012 cm-1. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced γ-ray shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing.

  3. Effect of hydrated lime on compressive strength mortar of fly ash laterite soil geopolymer mortar

    Science.gov (United States)

    Wangsa, F. A.; Tjaronge, M. W.; Djamaluddin, A. R.; Muhiddin, A. B.

    2017-11-01

    This paper explored the suitability of fly ash, hydrated lime, and laterite soil with several activator (sodium hydroxide and sodium tiosulfate) to produce geopolymer mortar. Furthermore, the heat that released by hydrated lime was used instead of oven curing. In order to produce geopolymer mortar without oven curing, three variations of curing condition has been applied. Based on the result, all the curing condition showed that the hardener mortar can be produced and exhibited the increasing of compressive strength of geopolymer mortar from 3 days to 7 days without oven curing.

  4. Soft computing methods for estimating the uniaxial compressive strength of intact rock from index tests

    Czech Academy of Sciences Publication Activity Database

    Mishra, A. Deepak; Srigyan, M.; Basu, A.; Rokade, P. J.

    2015-01-01

    Roč. 80, December 2015 (2015), s. 418-424 ISSN 1365-1609 Institutional support: RVO:68145535 Keywords : uniaxial compressive strength * rock indices * fuzzy inference system * artificial neural network * adaptive neuro-fuzzy inference system Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 2.010, year: 2015 http://ac.els-cdn.com/S1365160915300708/1-s2.0-S1365160915300708-main.pdf?_tid=318a7cec-8929-11e5-a3b8-00000aacb35f&acdnat=1447324752_2a9d947b573773f88da353a16f850eac

  5. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    OpenAIRE

    Gao, Lei; Hu, Guohui; Xu, Nan; Fu, Junyi; Xiang, Chao; Yang, Chen

    2015-01-01

    In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0...

  6. Comparison of Elastic Modulus and Compressive Strength of Ariadent and Harvard Polycarboxylate Cement and Vitremer Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Ahmadian Khoshemehr Leila

    2009-09-01

    Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.

  7. Compressive strength and hydration of wastepaper sludge ash-ground granulated blastfurnace slag blended pastes

    International Nuclear Information System (INIS)

    Bai, J.; Chaipanich, A.; Kinuthia, J.M.; O'Farrell, M.; Sabir, B.B.; Wild, S.; Lewis, M.H.

    2003-01-01

    Compressive strength and hydration characteristics of wastepaper sludge ash-ground granulated blastfurnace slag (WSA-GGBS) blended pastes were investigated at a water to binder (w/b) ratio of 0.5. The strength results are compared to those of normal Portland cement (PC) paste and relative strengths are reported. Early relative strengths (1 day) of WSA-GGBS pastes were very low but a marked gain in relative strength occurred between 1 and 7 days and this increased further after 28 and 90 days. For the 50% WSA-50% GGBS blended paste, the strength achieved at 90 days was nearly 50% of that of the PC control paste. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric (TG) analysis were carried out to identify the mineral components in the WSA and the hydration products of WSA and WSA-GGBS pastes. The principal crystalline components in the WSA are gehlenite, calcium oxide, bredigite and α'-C 2 S (stabilised with Al and Mg) together with small amounts of anorthite and calcium carbonate and traces of calcium hydroxide and quartz. The α'-C 2 S and bredigite, which phase separate from liquid phase that forms a glass on cooling, are difficult to distinguish by XRD. The hydration products identified in WSA paste are CH, C 4 AH 13 , C 3 A.0.5CC-bar.0.5CH.H 11.5 and C-S-H gel plus possible evidence of small amounts of C 2 ASH 8 and C 3 A.3CS-bar.H 32 . Based upon the findings, a hydration mechanism is presented, and a model is proposed to explain the observed strength development

  8. Nondestructive testing of the low-level radioactive waste drums for uni-axial compressive strength and free liquid content

    International Nuclear Information System (INIS)

    Yu Geping; Chang Mingyu; Wang Yeajeng; Chu, David S.L.; Ju Yihzen

    1992-01-01

    This paper summarizes the nondestructive test to determine the uni-axial compressive strength and free water content of solidified low level radioactive waste. The uni-axial compressive strength is determined by ultrasonic wave propagation speed, and the results are compared with those of compressive tests. Three methods of detecting the surface free water by ultrasonic testing are established, the ultrasonic wave speed, wave form and pulse height are used to determine the existence and amount of the surface free liquid. Possible difficulties are discussed. (author)

  9. Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure

    Directory of Open Access Journals (Sweden)

    Chang-Li Yu

    2015-03-01

    Full Text Available This paper concentrated on the ultimate uniaxial compressive strength of stiffened panel with opening under lateral load and also studied the design-oriented formulae. For this purpose, three series of well executed experiments on longitudinal stiffened panel with rectangular opening subjected to the combined load have been selected as test models. The finite element analysis package, ABAQUS, is used for simulation with considering the large elasticplastic deflection behavior of stiffened panels. The feasibility of the numerical procedure is verified by a good agreement of experimental results and numerical results. More cases studies are executed employing nonlinear finite element method to analyze the influence of design variables on the ultimate strength of stiffened panel with opening under combined pressure. Based on data, two design formulae corresponding to different opening types are fitted, and accuracy of them is illustrated to demonstrate that they could be applied to basic design of practical engineering structure.

  10. The role of frictional strength on plate coupling at the subduction interface

    KAUST Repository

    Tan, Eh

    2012-10-01

    At a subduction zone the amount of friction between the incoming plate and the forearc is an important factor in controlling the dip angle of subduction and the structure of the forearc. In this paper, we investigate the role of the frictional strength of sediments and of the serpentinized peridotite on the evolution of convergent margins. In numerical models, we vary thickness of a serpentinized layer in the mantle wedge (15 to 25km) and the frictional strength of both the sediments and serpentinized mantle (friction angle 1 to 15, or static friction coefficient 0.017 to 0.27) to control the amount of frictional coupling between the plates. With plastic strain weakening in the lithosphere, our numerical models can attain stable subduction geometry over millions of years. We find that the frictional strength of the sediments and serpentinized peridotite exerts the largest control on the dip angle of the subduction interface at seismogenic depths. In the case of low sediment and serpentinite friction, the subduction interface has a shallow dip, while the subduction zone develops an accretionary prism, a broad forearc high, a deep forearc basin, and a shallow trench. In the high friction case, the subduction interface is steep, the trench is deeper, and the accretionary prism, forearc high and basin are all absent. The resultant free-air gravity and topographic signature of these subduction zone models are consistent with observations. We believe that the low-friction model produces a geometry and forearc structure similar to that of accretionary margins. Conversely, models with high friction angles in sediments and serpentinite develop characteristics of an erosional convergent margin. We find that the strength of the subduction interface is critical in controlling the amount of coupling at the seismogenic zone and perhaps ultimately the size of the largest earthquakes at subduction zones. © 2012. American Geophysical Union. All Rights Reserved.

  11. Compressive Strength of EN AC-44200 Based Composite Materials Strengthened with α-Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-06-01

    Full Text Available The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250°C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the composite materials was 10, 20, 30 and 40 vol.%. The results of the compressive strength of manufactured materials were presented and basing on the microscopic observations the effect of the volume content of strengthening alumina particles on the cracking mechanisms during compression at indicated temperatures were shown and discussed. The highest compressive strength of 470 MPa at ambient temperature showed composite materials strengthened with 40 vol.% of α-Al2O3 particles.

  12. Damage Behaviors and Compressive Strength of Toughened CFRP Laminates with Thin Plies Subjected to Transverse Impact Loadings

    Science.gov (United States)

    Yokozeki, Tomohiro; Aoki, Yuichiro; Ogasawara, Toshio

    It has been recognized that damage resistance and strength properties of CFRP laminates can be improved by using thin-ply prepregs. This study investigates the damage behaviors and compressive strength of CFRP laminates using thin-ply and standard prepregs subjected to out-of-plane impact loadings. CFRP laminates used for the evaluation are prepared using the standard prepregs, thin-ply prepregs, and combinations of the both. Weight-drop impact test and post-impact compression test of quasi-isotropic laminates are performed. It is shown that the damage behaviors are different between the thin-ply and the standard laminates, and the compression-after-impact strength is improved by using thin-ply prepregs. Effects of the use of thin-ply prepregs and the layout of thin-ply layers on the damage behaviors and compression-after-impact properties are discussed based on the experimental results.

  13. Investigation on solder joint strength of nickel tin-plated and CRS tabs with PCB

    International Nuclear Information System (INIS)

    Luay Hussain

    2002-01-01

    Failure analysis on easily peels off Nickel and CRS steel tabs from PCB was carried out. Nickel Tin plated tabs, CRS steel tabs and tube were joined to the PCB using reflow/ convection soldering, in an oven. The solder paste composition is Sn36/Pb35/Ag2. Peel test was conducted and it was found that many tabs could be easily peeled off with low force. Porosities which varies from 0.4 mm to < 0.01mm in diameter, developed during soldering process and solidification was noted. It was found, the number, size and position of these porosities inside the solder layer on both parts of the tabs affect the peel strength. Scanning Electron Microscopy study and EDX analysis were carried out. It was found that the low peel strength values were due to the combination of generation and development of porosities during soldering process which act as stress concentrators and the evolution (growth) of eutectic Sn/Pb and Sn/Ni/Cu brittle grainy phase. Large eutectic microstructure with brittle Sn-Ni-Cu grainy phase enhances the failure with low peeling forces. Sample showing no feature of Sn/Ni/Cu grain gave high peeling strength value. Solder reflow, an important process, can result in strength enhancement (if it was controlled for example in a furnace). (Author)

  14. Determination of deformation and strength characteristics of artificial geomaterial having step-shaped discontinuities under uniaxial compression

    Science.gov (United States)

    Tsoy, PA

    2018-03-01

    In order to determine the empirical relationship between the linear dimensions of step-shaped macrocracks in geomaterials as well as deformation and strength characteristics of geomaterials (ultimate strength, modulus of deformation) under uniaxial compression, the artificial flat alabaster specimens with the through discontinuities have been manufactured and subjected to a series of the related physical tests.

  15. Joining strength performances of metal skin and CFRP core laminate structures realized by compression-curing process, with supporting experiments

    Science.gov (United States)

    Quagliato, Luca; Jang, Changsoon; Kim, Naksoo

    2018-05-01

    In the recent years, the trend of lightening vehicles and structures of every kind has become an ever-growing issue, both for university and industrial researchers. As demonstrated in previous authors' works, laminate structures made of metal skin (MS) and carbon fiber reinforced polymer (CFRP) core show high specific bending strength properties while granting considerable weight reduction but, so far, no investigations have been carried out on the hole sensitivity and joinability of these hybrid structures. In the present research work, the hole size sensitivity of MS-CFRP structure has been studied by means of uniaxial tensile test on 160mm (length), 25mm (width), 2.0mm (average thickness) specimens bored with Ø06mm, Ø9mm, and Ø12mm holes. The specimen thickness is composed of two metal skins of 0.4mm thickness each, 8×0.2mm CFRP stacked layers and two thin epoxy-based adhesive layers. The specimens have been manufactured by means of a compression-curing process in which the different materials are stacked and, thanks to die pressure and temperature, the curing process is completed in a relatively short time (15˜20 minutes). The specimens have been tested by means of simple tension test showing that, for the MS-CFRP material, the smaller the hole the smaller the maximum bearable load. Moreover, specimens with the same hole sizes have been bolted together with class 12 resistance bolts and tested by means of tensile test, allowing to determine the maximum transferable load between the two MS-CFRP plates. Aiming to prove the improvement in the specific transferable load, experiments on only-steel specimens with the same weight of the MS-CFRP ones and joined with the same method and bolts have been carried out, allowing to conclude that, for the 9mm hole bolted plates, the proposed material has a specific maximum transferable 27% higher than that of the steel composing their skins.

  16. The effects of aging on compressive strength of low-level radioactive waste form samples

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Neilson, R.M. Jr.

    1996-06-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program, funded by the US Nuclear Regulatory Commission (NRC), is (a) studying the degradation effects in organic ion-exchange resins caused by radiation, (b) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified ion-exchange resins, (c) obtaining performance information on solidified ion-exchange resins in a disposal environment, and (d) determining the condition of liners used to dispose ion-exchange resins. Compressive tests were performed periodically over a 12-year period as part of the Technical Position testing. Results of that compressive testing are presented and discussed. During the study, both portland type I-II cement and Dow vinyl ester-styrene waste form samples were tested. This testing was designed to examine the effects of aging caused by self-irradiation on the compressive strength of the waste forms. Also presented is a brief summary of the results of waste form characterization, which has been conducted in 1986, using tests recommended in the Technical Position on Waste Form. The aging test results are compared to the results of those earlier tests. 14 refs., 52 figs., 5 tabs

  17. High failure rate of trochanteric fracture osteosynthesis with proximal femoral locking compression plate.

    Science.gov (United States)

    Wirtz, C; Abbassi, F; Evangelopoulos, D S; Kohl, S; Siebenrock, K A; Krüger, A

    2013-06-01

    Stable reconstruction of proximal femoral (PF) fractures is especially challenging due to the peculiarity of the injury patterns and the high load-bearing requirement. Since its introduction in 2007, the PF-locking compression plate (LCP) 4.5/5.0 has improved osteosynthesis for intertrochanteric and subtrochanteric fractures of the femur. This study reports our early results with this implant. Between January 2008 and June 2010, 19 of 52 patients (12 males, 7 females; mean age 59 years, range 19-96 years) presenting with fractures of the trochanteric region were treated at the authors' level 1 trauma centre with open reduction and internal fixation using PF-LCP. Postoperatively, partial weight bearing was allowed for all 19 patients. Follow-up included a thorough clinical and radiological evaluation at 1.5, 3, 6, 12, 24, 36 and 48 months. Failure analysis was based on conventional radiological and clinical assessment regarding the type of fracture, postoperative repositioning, secondary fracture dislocation in relation to the fracture constellation and postoperative clinical function (Merle d'Aubigné score). In 18 patients surgery achieved adequate reduction and stable fixation without intra-operative complications. In one patient an ad latus displacement was observed on postoperative X-rays. At the third month follow-up four patients presented with secondary varus collapse and at the sixth month follow-up two patients had 'cut-outs' of the proximal fragment, with one patient having implant failure due to a broken proximal screw. Revision surgeries were performed in eight patients, one patient receiving a change of one screw, three patients undergoing reosteosynthesis with implantation of a condylar plate and one patient undergoing hardware removal with secondary implantation of a total hip prosthesis. Eight patients suffered from persistent trochanteric pain and three patients underwent hardware removal. Early results for PF-LCP osteosynthesis show major

  18. [Treatment type C fracture of the distal radius with locking compression plate and external fixators].

    Science.gov (United States)

    Yang, Xiang; Zhao, You-ming; Chen, Lin; Ye, Cong-cong; Guo, Wei-jun; Wang, Bo

    2013-12-01

    To compare efficacy of unilateral external fixators and locking compression plates in treating type C fractures of the distal radius. From January 2009 to June 2010, 76 patients with distal radius fracture were treated with LCP and external fixators, 54 patients were followed up. Among them, 29 cases were male and 25 cases were female with an average age of 45.31 (ranged, 24 to 68) years old. There were 29 patients in LCP group. According to AO classification, 8 cases were type C1, 7 cases were type C2 and 14 cases were type C3. There were 25 cases in external fixators group. According to AO classification, 6 cases were type C1, 8 cases were type C2 and 11 cases were type C3. Radial height, volar tilt and radial inclination were compared, advanced Gartland-Werley scoring were used to assessed wrist joint function after 6 and 12 months' following up. Two cases were suffered from nail infection in external fixators group. Fifty-four patients were followed up from 12 to 24 months with an average of 21.3 months. Radial height was (9.60 +/- 0.72) mm, volar tilt was (9.55 +/- 0.80) degrees and radial inclination was (21.40 +/- 0.78) degrees in LCP group,while those were (9.40 +/- 0.70) mm, (9.47 +/- 0.71) degrees and (21.20 +/- 0.73) degrees in external fixtors group, and with no statistical significance (P>0.05). Advanced Gartland-Werley score after 6 months' following up was 3.31 +/- 1.17 in LCP group, 5.56 +/- 1.58 in external fixtors group, and with significant difference (t=-5.99,Pmeaning (t=-1.55, P>0.05). LCP and external fixtors can receive good curative effects in treating type C distal radius fracture, and LCP can obtain obviously short-term efficacy, while there is no significant difference between two groups in long-term results. For serious distal radius comminuted fracture which unable to plate internal fixation, external fixators is a better choice.

  19. Effect of mix proportion of high density concrete on compressive strength, density and radiation absorption

    International Nuclear Information System (INIS)

    Noor Azreen Masenwat; Mohamad Pauzi Ismail; Suhairy Sani; Ismail Mustapha; Nasharuddin Isa; Mohamad Haniza Mahmud; Mohammad Shahrizan Samsu

    2014-01-01

    To prevent radiation leaks at nuclear reactors, high-density concrete is used as an absorbent material for radiation from spreading into the environment. High-density concrete is a mixture of cement, sand, aggregate (usually high-density minerals) and water. In this research, hematite stone is used because of its mineral density higher than the granite used in conventional concrete mixing. Mix concrete in this study were divided into part 1 and part 2. In part 1, the concrete mixture is designed with the same ratio of 1: 2: 4 but differentiated in terms of water-cement ratio (0.60, 0.65, 0.70, 0.75, 0.80 ). Whereas, in part 2, the concrete mixture is designed to vary the ratio of 1: 1: 2, 1: 1.5: 3, 1: 2: 3, 1: 3: 6, 1: 2: 6 with water-cement ratio (0.7, 0.8, 0.85, 0.9). In each section, the division has also performed in a mixture of sand and fine sand hematite. Then, the physical characteristics of the density and the compressive strength of the mixture of part 1 and part 2 is measured. Comparisons were also made in terms of absorption of radiation by Cs-137 and Co-60 source for each mix. This paper describes and discusses the relationship between the concrete mixture ratio, the relationship with the water-cement ratio, compressive strength, density, different mixture of sand and fine sand hematite. (author)

  20. In vitro comparison of DE-QCT parameters with the compressive strength of cancellous bone

    International Nuclear Information System (INIS)

    Oravez, W.T.; Robertson, D.D.

    1986-01-01

    Quantitative computed tomography (QCT) is used as a method for assessing bone mineral in patients with osteoporosis. The implication being that if the mass of bone mineral is low enough then the patient is at risk for developing symptoms, i.e., fracture. The authors performed an in vitro test which compared dual-energy-QCT (DE-QCT) parameters with compressive strength. The bone samples were placed in a water bath and CT scanned using a Siemens DR-3. Alternating x-ray pulses of 125 and 85 kVp were used to generate the dual energy images. Four images, high kVp, low kVp, monoenergenic, and calcium equivalent, were reconstructed from each scan. A specially constructed bone mineral calibration phantom, consisting of a polyethylene rod and varying tubes of K2HP04, was placed within the water bath along with the specimens. Comparisons will be made between the various DE parameters and their relationship to the compressive strength of cancellous bone. The critical effect of trabecular bone orientation will also be discussed

  1. Development of ultra-lightweight slurries with high compressive strength for use in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P. [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ribeiro, Danilo; Fernandes, Thiago; Santos, Reened [Halliburton Energy Services Aberdeen, Scotland (United Kingdom)

    2008-07-01

    Formations with low fracture gradients or depleted reservoirs often lead to difficult oil well cementing operations. Commonly employed cement slurries (14.0 to 15.8 lb/gal), generate an equivalent circulating density (ECD) higher than the fracture gradient and ultimately lead to formation damage, lost circulation and a decreased top of cement. Given the high price of oil, companies are investing in those and other wells that are difficult to explore. Naturally, lightweight cement slurries are used to reduce the ECD (10.0 to 14.0 lb/gal), using additives to trap water and stabilize the slurry. However, when the density reaches 11.0 lb/gal, the increase in water content may cause a change in characteristics. The focus of this study is extreme cases where it is necessary to employ ultra-lightweight cement slurries (5.5 to 10.0 lb/gal). Foamed slurries have been widely used, and the objective is to set an alternative by developing cement slurries containing uncompressible microspheres, aiming for a density of 7.5 lb/gal as well as high compressive strength. Another benefit in contrast to preparing foamed cement slurries is that there is no requirement for special equipment in the field. Routine laboratory tests such as fluid-loss control, sedimentation, thickening time, free water, compressive strength, and rheology (at room and high temperatures) were performed. Thus, it was concluded that the proposed cement slurries can be used in oil wells. (author)

  2. Influence of the waste glass in the axial compressive strength of Portland cement concrete

    International Nuclear Information System (INIS)

    Miranda Junior, E.J.P.; Paiva, A.E.M.

    2012-01-01

    In this work, was studied the influence of the incorporation of waste glass, coming from the stage of thinning and polishing of a company of thermal glass treatments, in the axial compressive strength of Portland cement concrete. The coarse and ground aggregates used was crushed stone and sand, respectively. For production of the concrete, percentages of glass residues of 5%, 10% and 20% had been used in substitution to the sand, and relations water/cement (a/c) 0,50, 0,55 and 0,58. The cure of the test bodies was carried through in 7, 14 and 28 days. The statistics analysis of the results was carried out through of the analysis of variance for each one of the cure times. From the results of the compressive strength of the concrete, it could be observed that the concrete has structural application for the relation a/c 0,5, independently of waste glass percentage used, and for the relation a/c 0,55 with 20% of waste glass. (author)

  3. Compressive strength and microstructural characteristics of class C fly ash geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaolu; Shi, Huisheng; Dick, Warren A [Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Shanghai (China)

    2010-02-15

    Geopolymers prepared from a class C fly ash (CFA) and a mixed alkali activator of sodium hydroxide and sodium silicate solution were investigated. A high compressive strength was obtained when the modulus of the activator viz., molar ratio of SiO{sub 2}/Na{sub 2}O was 1.5, and the proper content of this activator as evaluated by the mass proportion of Na{sub 2}O to CFA was 10%. The compressive strength of these samples was 63.4 MPa when they were cured at 75{sup o}C for 8 h followed by curing at 23{sup o}C for 28 d. In FTIR spectroscopy, the main peaks at 1036 and 1400 cm{sup -1} have been attributed to asymmetric stretching of Al-O/Si-O bonds, while those at 747 cm{sup -1} are due to the Si-O-Si/Si-O-Al bending band. The main geopolymeric gel and calcium silicate hydrate (C-S-H) gel co-exist and bond some remaining unreacted CFA spheres as observed in XRD and SEM-EXDA. The presence of gismondine (zeolite) was also observed in the XRD pattern.

  4. Application of Minimally Invasive Treatment of Locking Compression Plate in Schatzker Ⅰ-Ⅲ Tibial Plateau Fracture

    OpenAIRE

    Guohui Zhao

    2014-01-01

    Objective: To investigate the clinical effect of minimally invasive treatment of locking compression plate (LCP) in Schatzker Ⅰ-Ⅲ tibial plateau fracture. Methods: Thirty-eight patients with Schatzker Ⅰ-Ⅲ tibial plateau fracture in our hospital were given minimally invasive treatment of LCP, and the artificial bone was transplanted to the depressed bone. Adverse responses, wound healing time and clinical efficacy were observed. Results: All patients were followed-up for 14- 20 months, and the...

  5. Effect of isothermal annealing on the compressive strength of a ZrAlNiCuNb metallic glass

    International Nuclear Information System (INIS)

    Song Min; He Yuehui

    2011-01-01

    Research highlights: → Only structural relaxation happens during annealing at the temperature below T g . → Nanocrystallization happens during annealing at the temperature above T g . → The compressive strength increases with annealing time up to 20 min. → The compressive strength decreases with annealing time after 20 min. - Abstract: The effects of isothermal annealing on the microstructures and compressive strength of a Zr 56 Al 10.9 Ni 4.6 Cu 27.8 Nb 0.7 bulk metallic glass (BMG) have been studied using X-ray diffraction, scanning electron microscopy and compression tests. It has been shown that only structural relaxation happens during annealing at the temperature below T g (glass transition temperature), while both structural relaxation and nanocrystallization happen during annealing at the temperature above T g . Compression tests indicated that the strength of the BMG increases with annealing time at 437 deg. C up to 20 min, after which the strength starts to decrease. The strength evolution of the BMG with the annealing time is due to combined effects of the variations of the free volume and nanocrystals.

  6. Influence of Curing Age and Mix Composition on Compressive Strength of Volcanic Ash Blended Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Babafemi A.J.

    2012-01-01

    Full Text Available This study investigates the influence of curing age and mix proportions on the compressive strength of volcanic ash (VA blended cement laterized concrete. A total of 288 cubes of 100mm dimensions were cast and cured in water for 3, 7, 28, 56, 90 and 120 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively while a control mix of 28-day target strength of 25N/mm2 (using British Method was adopted. The results show that the compressive strength of the VA-blended cement laterized concrete increased with the increase in curing age but decreased as the VA and laterite (LAT contents increased. The optimum replacement level was 20%LAT/20%VA. At this level the compressive strength increased with curing age at a decreasing rate beyond 28 days. The target compressive strength of 25N/mm2 was achieved for this mixture at 90 days of curing. VA content and curing age was noted to have significant effect (α ≤ 0.5 on the compressive strength of the VA-blended cement laterized concrete.

  7. Using the Maturity Method in Predicting the Compressive Strength of Vinyl Ester Polymer Concrete at an Early Age

    Directory of Open Access Journals (Sweden)

    Nan Ji Jin

    2017-01-01

    Full Text Available The compressive strength of vinyl ester polymer concrete is predicted using the maturity method. The compressive strength rapidly increased until the curing age of 24 hrs and thereafter slowly increased until the curing age of 72 hrs. As the MMA content increased, the compressive strength decreased. Furthermore, as the curing temperature decreased, compressive strength decreased. For vinyl ester polymer concrete, datum temperature, ranging from −22.5 to −24.6°C, decreased as the MMA content increased. The maturity index equation for cement concrete cannot be applied to polymer concrete and the maturity of vinyl ester polymer concrete can only be estimated through control of the time interval Δt. Thus, this study introduced a suitable scaled-down factor (n for the determination of polymer concrete’s maturity, and a factor of 0.3 was the most suitable. Also, the DR-HILL compressive strength prediction model was determined as applicable to vinyl ester polymer concrete among the dose-response models. For the parameters of the prediction model, applying the parameters by combining all data obtained from the three different amounts of MMA content was deemed acceptable. The study results could be useful for the quality control of vinyl ester polymer concrete and nondestructive prediction of early age strength.

  8. Effects of Elevated Temperatures on the Compressive Strength Capacity of Concrete Cylinders Confined with FRP Sheets: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Sherif El-Gamal

    2015-01-01

    Full Text Available Due to their high strength, corrosion resistance, and durability, fiber reinforced polymers (FRP are very attractive for civil engineering applications. One of these applications is the strengthening of concrete columns with FRP sheets. The performance of this strengthening technique at elevated temperature is still questionable and needs more investigations. This research investigates the effects of exposure to high temperatures on the compressive strength of concrete cylinders wrapped with glass and carbon FRP sheets. Test specimens consisted of 30 unwrapped and 60 wrapped concrete cylinders. All specimens were exposed to temperatures of 100, 200, and 300°C for periods of 1, 2, and 3 hours. The compressive strengths of the unwrapped concrete cylinders were compared with their counterparts of the wrapped cylinders. For the unwrapped cylinders, test results showed that the elevated temperatures considered in this study had almost no effect on their compressive strength; however, the wrapped specimens were significantly affected, especially those wrapped with GFRP sheets. The compressive strength of the wrapped specimens decreased as the exposure period and the temperature level increased. After three hours of exposure to 300°C, a maximum compressive strength loss of about 25.3% and 37.9%, respectively, was recorded in the wrapped CFRP and GFRP specimens.

  9. Fixation of waste materials in grouts. Part II. An empirical equation for estimating compressive strength for grouts from different wastes

    International Nuclear Information System (INIS)

    Tallent, O.K.; McDaniel, E.W.; Godsey, T.T.

    1986-04-01

    Compressive strength data for grouts prepared from three different nuclear waste materials have been correlated. The wastes include ORNL low-level waste (LLW) solution, Hanford Facility Waste (HFW) solution, and Hanford cladding removal waste (CRW) slurry. Data for the three wastes can be represented with a 0.96 coefficient of correlation by the following equation: S = -9.56 + 9.27 D/I + 18.11/C + 0.010 R, where S denotess 28-d compressive strength, in mPa; D designates Waste concentration, fraction of the original; I is ionic strength; C denotes Attapulgite-150 clay content of dry blend, in wt %; and R is the mix ratio, kg/m 3 . The equation may be used to estimate 28-d compressive strengths of grouts prepared within the compositional range of this investigation

  10. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    Science.gov (United States)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  11. Repeatability and Reproducibility of Compression Strength Measurements Conducted According to ASTM E9

    Science.gov (United States)

    Luecke, William E.; Ma, Li; Graham, Stephen M.; Adler, Matthew A.

    2010-01-01

    Ten commercial laboratories participated in an interlaboratory study to establish the repeatability and reproducibility of compression strength tests conducted according to ASTM International Standard Test Method E9. The test employed a cylindrical aluminum AA2024-T351 test specimen. Participants measured elastic modulus and 0.2 % offset yield strength, YS(0.2 % offset), using an extensometer attached to the specimen. The repeatability and reproducibility of the yield strength measurement, expressed as coefficient of variations were cv(sub r)= 0.011 and cv(sub R)= 0.020 The reproducibility of the test across the laboratories was among the best that has been reported for uniaxial tests. The reported data indicated that using diametrically opposed extensometers, instead of a single extensometer doubled the precision of the test method. Laboratories that did not lubricate the ends of the specimen measured yield stresses and elastic moduli that were smaller than those measured in laboratories that lubricated the specimen ends. A finite element analysis of the test specimen deformation for frictionless and perfect friction could not explain the discrepancy, however. The modulus measured from stress-strain data were reanalyzed using a technique that finds the optimal fit range, and applies several quality checks to the data. The error in modulus measurements from stress-strain curves generally increased as the fit range decreased to less than 40 % of the stress range.

  12. Study on the compressive strength of fly ash based geo polymer concrete

    Science.gov (United States)

    Anand Khanna, Pawan; Kelkar, Durga; Papal, Mahesh; Sekar, S. K.

    2017-11-01

    Introduction of the alternative materials for complete replacement of cement in ordinary concrete will play an important role to control greenhouse gas and its effect. The 100% replacement of binder with fly ash (in integration with potassium hydroxide (koh) and potassium silicate (k2sio3) solutions) in concrete gives a significant alternative to conventional cement concrete. This paper focuses on the effect of alkaline solutions koh and k2sio3 on strength properties of fly ash based geo polymer concrete (fgpc); compared the strength at different molarities of alkaline activator koh at different curing temperature. Fly ash based geo polymer concrete was produced from low calcium fly ash, triggered by addition of koh and k2sio3 solution and by assimilation of superplasticizer for suitable workability. The molarities of potassium hydroxide as 8m, 10m and 12m molarities were used at various curing temperatures such as 60°c, 70 °c and 80°c. Results showed that for given proportion to get maximum compressive strength the optimum molarity of alkaline solution is 12m and optimum curing temperature is 70 °c.

  13. Modeling and Optimization of Compressive Strength of Hollow Sandcrete Block with Rice Husk Ash Admixture

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available The paper presents the report of an investigation into the model development and optimization of the compressive strength of 55/45 to 70/30 cement/Rice Husk Ash (RHA in hollow sandcrete block. The low cost and local availability potential of RHA, a pozzolanic material gasps for exploitation. The study applies the Scheffe\\'s optimization approach to obtain a mathematical model of the form f(xi1 ,xi2 ,xi3 xi4 , where x are proportions of the concrete components, viz: cement, RHA, sand and water. Scheffe\\'s i experimental design techniques are followed to mould various hollow block samples measuring 450mm x 225mm x 150mm and tested for 28 days strength. The task involved experimentation and design, applying the second order polynomial characterization process of the simplex lattice method. The model adequacy is checked using the control factors. Finally, a software is prepared to handle the design computation process to take the desired property of the mix, and generate the optimal mix ratios. Reversibly, any mix ratios can be desired and the attainable strength obtained.

  14. Optimization of compressive strength in admixture-reinforced cement-based grouts

    Directory of Open Access Journals (Sweden)

    Sahin Zaimoglu, A.

    2007-12-01

    Full Text Available The Taguchi method was used in this study to optimize the unconfined (7-, 14- and 28-day compressive strength of cement-based grouts with bentonite, fly ash and silica fume admixtures. The experiments were designed using an L16 orthogonal array in which the three factors considered were bentonite (0%, 0.5%, 1.0% and 3%, fly ash (10%, 20%, 30% and 40% and silica fume (0%, 5%, 10% and 20% content. The experimental results, which were analyzed by ANOVA and the Taguchi method, showed that fly ash and silica fume content play a significant role in unconfined compressive strength. The optimum conditions were found to be: 0% bentonite, 10% fly ash, 20% silica fume and 28 days of curing time. The maximum unconfined compressive strength reached under the above optimum conditions was 17.1 MPa.En el presente trabajo se ha intentado optimizar, mediante el método de Taguchi, las resistencias a compresión (a las edades de 7, 14 y 28 días de lechadas de cemento reforzadas con bentonita, cenizas volantes y humo de sílice. Se diseñaron los experimentos de acuerdo con un arreglo ortogonal tipo L16 en el que se contemplaban tres factores: la bentonita (0, 0,5, 1 y 3%, las cenizas volantes (10, 20, 30 y 40% y el humo de sílice (0, 5, 10 y 20% (porcentajes en peso del sólido. Los datos obtenidos se analizaron con mediante ANOVA y el método de Taguchi. De acuerdo con los resultados experimentales, el contenido tanto de cenizas volantes como de humo de sílice desempeña un papel significativo en la resistencia a compresión. Por otra parte, las condiciones óptimas que se han identificado son: 0% bentonita, 10% cenizas volantes, 20% humo de sílice y 28 días de tiempo de curado. La resistencia a compresión máxima conseguida en las anteriores condiciones era de 17,1 MPa.

  15. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Uswatta, Suren P.; Okeke, Israel U. [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614 (United States)

    2016-12-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33 mm (n = 25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93 mm (n = 25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores < 10 and 2 μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59 MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93 MPa. Standardize UCS values were 79.98 MPa and 357 MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p < 0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p < 0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro

  16. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration

    International Nuclear Information System (INIS)

    Uswatta, Suren P.; Okeke, Israel U.; Jayasuriya, Ambalangodage C.

    2016-01-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33 mm (n = 25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93 mm (n = 25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores < 10 and 2 μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59 MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93 MPa. Standardize UCS values were 79.98 MPa and 357 MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p < 0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p < 0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro

  17. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    Science.gov (United States)

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  18. Evaluation of Variation in Residual Strength of Carbon Fiber Reinforced Plastic Plate with a Hole Subjected to Fatigue Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Young; Kang, Min Sung; Koo, Jae Mean; Seok, Chang Sung [Sungkyunkwan University, Seoul (Korea, Republic of)

    2010-10-15

    CFRP (Carbon Fiber Reinforced Plastic) has received considerable attention in various fields as a structural material, because of its high specific strength, high specific stiffness, excellent design flexibility, favorable chemical properties, etc. Most products consisting of several parts are generally assembled by mechanical joining methods (using rivets, bolts, pins, etc.). Holes must be drilled in the parts to be joined, and the strength of the components subjected to static and fatigue loads caused by stress concentration must be decreased. In this study, we experimentally evaluated the variation in the residual strength of a holenotched CFRP plate subjected to fatigue load. We repeatedly subjected the hole-notched specimen to fatigue load for a certain number of cycles, and then we investigated the residual strength of the hole-notched specimen by performing the fracture test. From the results of the test, we can observe the initiation of a directional crack caused by the applied fatigue load. Further, we observed that the residual strength increases with a decrease in the notch effect due to this crack. It was evaluated that the residual strength increases to a certain level and subsequently decreases. This variation in the residual strength was represented by a simple equation by using a model of the decrease in residual strength for plain plate, which was developed by Reifsnider and a stress redistribution model for hole-notched plate, which was developed by Yip.

  19. Drilling the near cortex with elongated figure-of-8 holes to reduce the stiffness of a locking compression plate construct.

    Science.gov (United States)

    Chen, Jerry Yongqiang; Zhou, Zhihong; Ang, Benjamin Fu Hong; Yew, Andy Khye Soon; Chou, Siaw Meng; Chia, Shi-Lu; Koh, Joyce Suang Bee; Howe, Tet Sen

    2015-12-01

    To compare the stiffness of locking compression plate (LCP) constructs with or without drilling the near cortex with elongated figure-of-8 holes. 24 synthetic bones were sawn to create a 10-mm gap and were fixed with a 9-hole 4.5-mm narrow LCP. In 12 bones, the near cortex of the adjacent holes to the LCP holes was drilled to create elongated figure-of-8 holes before screw insertion. The stiffness of LCP constructs under axial loading or 4-point bending was assessed by (1) dynamic quasi-physiological testing for fatigue strength, (2) quasi-static testing for stiffness, and (3) testing for absolute strength to failure. None of the 24 constructs had subcatastrophic or catastrophic failure after 10 000 cycles of fatigue loading (p=1.000). The axial stiffness reduced by 16% from 613±62 to 517±44 N/mm (p=0.012) in the case group, whereas the bending stiffness was 16±1 Nm2 in both groups (p=1.000). The maximum axial load to catastrophic failure was 1596±84 N for the control group and 1627±48 N for the case group (p=0.486), whereas the maximum bending moment to catastrophic failure was 79±12 and 80±10 Nm, respectively (p=0.919). Drilling the near cortex with elongated figure-of-8 holes reduces the axial stiffness of the LCP construct, without compromising its bending stiffness or strength.

  20. Effects of material properties and speed of compression on microbial survival and tensile strength in diclofenac tablet formulations.

    Science.gov (United States)

    Ayorinde, J O; Itiola, O A; Odeniyi, M A

    2013-03-01

    A work has been done to study the effects of material properties and compression speed on microbial survival and tensile strength in diclofenac tablet formulations. Tablets were produced from three formulations containing diclofenac and different excipients (DC, DL and DDCP). Two types of machines (Hydraulic hand press and single punch press), which compress the tablets at different speeds, were used. The compression properties of the tablets were analyzed using Heckel and Kawakita equations. A 3-dimensional plot was produced to determine the relationship between the tensile strength, compression speed and percentage survival of Bacillus subtilis in the diclofenac tablets. The mode of consolidation of diclofenac was found to depends on the excipient used in the formulation. DC deformed mainly by plastic flow with the lowest Py and Pk values. DL deformed plastically at the initial stage, followed by fragmentation at the later stage of compression, whereas DDCP deformed mainly by fragmentation with the highest Py and Pk values. The ranking of the percentage survival of B. subtilis in the formulations was DDCP > DL > DC, whereas the ranking of the tensile strength of the tablets was DDCP > DL > DC. Tablets produced on a hydraulic hand press with a lower compression speed had a lower percentage survival of microbial contaminants than those produced on a single punch press, which compressed the tablets at a much higher speed. The mode of consolidation of the materials and the speed at which tablet compression is carried out have effects on both the tensile strength of the tablets and the extent of destruction of microbial contaminants in diclofenac tablet formulations.

  1. ALKALI-ACTIVATION KINETICS OF PHOSPHORUS SLAG CEMENT USING COMPRESSIVE STRENGTH DATA

    Directory of Open Access Journals (Sweden)

    Hojjatollah Maghsoodloorad

    2015-09-01

    Full Text Available In this research, through compressive strength data, the order and kinetics of alkali-activation of phosphorus slag activated with two compound activators of NaOH + Na2CO3 and Na2CO3 + Ca(OH2, has been evaluated. The kinetics and order of alkali activation is a key factor to forecasting the mechanical behavior of alkali activated cement at different curing time and temperatures without carrying out experimental tests. The apparent activation energy was obtained as 35.6 kJ.mol-1 and 60.7 kJ.mol-1 for the two activators, respectively. Investigations proved that the alkali-activation kinetics of phosphorus slag resembles chemical reactions of second order. Moreover, the order of alkali-activation of phosphorus slag does not depend on the type of activator.

  2. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    Directory of Open Access Journals (Sweden)

    Auday A Mehatlaf

    2017-12-01

    Full Text Available Cement Klin Dust (CKD was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40 had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28 day. In addition, mechanical properties included the coefficient of thermal conductivity and compressive strength had also observed with different age (3,7, and 28 for all prepared specimens. From the obtained the experimental results and their discussion, it was clear that the addition (20% of CKD had the good results in cement mortars.  

  3. Improved critical current densities and compressive strength in porous superconducting structures containing calcium

    International Nuclear Information System (INIS)

    Walsh, D; Hall, S R; Wimbush, S C

    2008-01-01

    Templated control of crystallization by biopolymers is a new technique in the synthesis of high temperature superconducting phases. By controlling the way YBa 2 Cu 3 O 7-δ (Y123) materials crystallize and are organized in three dimensions, the critical current density can be improved. In this work, we present the results of doping superconducting sponges with calcium ions, which result in higher critical current densities (J c ) and improved compressive strength compared to that of commercially available Y123, in spite of minor reductions in T c . Y123 synthesis using the biopolymer dextran achieves not only an extremely effective oxygenation of the superconductor but also an in situ template-directing of the crystal morphology producing high J c , homogeneous superconducting structures with nano-scale crystallinity

  4. Numerical investigation of the effects of compressibility on the flutter of a cantilevered plate in an inviscid, subsonic, open flow

    Science.gov (United States)

    Colera, Manuel; Pérez-Saborid, Miguel

    2018-06-01

    We have carried out a numerical study of the influence of the upstream Mach number on the flutter of a two-dimensional, cantilevered, flexible plate subject to a subsonic, inviscid, open flow. We have assumed a linear elastic model for the plate and that the fluid flow is governed by the linearized potential theory. The fluid equations are solved with a novel frequency-domain, finite differences method to obtain the generalized aerodynamic forces as a function of the plate displacements. Then, these generalized forces are coupled to the equation of motion of the plate and an eigenvalue analysis is performed to find the flutter point. The obtained results are in good agreement with those of related theoretical and experimental studies found in the literature. To the best of our knowledge, the analysis performed here is the first self-consistent, parametric study of the influence of the compressibility on the flutter point of a two-dimensional cantilevered plate in subsonic flow.

  5. Comparison of the compressive strength of impregnated and nonimpregnated eucalyptus subjected to two different pressures and impregnation times

    Directory of Open Access Journals (Sweden)

    Waldemir Rodrigues

    2004-06-01

    Full Text Available The durability of wood is affected by several factors. For this reason, much research has been done on a variety of chemical compounds for impregnating wood, aimed at preserving it while simultaneously improving its properties. Recent studies of the properties of impregnated wood have demonstrated the possibility of substantially improving its mechanical characteristics. Thus, the purpose of this work was to compare the strength to parallel compression of wooden fibers (Eucalyptus grandis, both nonimpregnated and impregnated with a monocomponent resin, from the standpoint of pressure and impregnation time, aiming at its structural utilization. The results demonstrate that the compressive strength of impregnated test specimens is greater than that of nonimpregnated ones, indicating that monocomponent polyurethane resin can be considered suitable for impregnating wood, since it increases the compressive strength of eucalyptus.

  6. Effects of different crumb rubber sizes on the flowability and compressive strength of hybrid fibre reinforced ECC

    Science.gov (United States)

    Khed, Veerendrakumar C.; Mohammed, Bashar S.; Fadhil Nuruddin, Muhd

    2018-04-01

    The different sizes of crumb rubber have been used to investigate the effects on flowability and the compressive strength of the hybrid fibre reinforced engineered cementitious composite. Two sizes of crumb rubber 30 mesh and 1 to 3mm were used in partial replacement with the fine aggregate up to 60%. The experimental study was carried out through mathematical and statistical analysis by response surface methodology (RSM) using the Design Expert software. The response models have been developed and the results were validated by analysis of variance (ANOVA). It was found that finer sized crumb rubber inclusion had produced better workability and higher compressive strength when compared to the larger size and it was concluded that crumb rubber has negative effect on compressive strength and positive effect on workability. The optimization results are found to an approximately good agreement with the experimental results.

  7. Compressive Strength Properties of Natural Gas Hydrate Pellet by Continuous Extrusion from a Twin-Roll System

    Directory of Open Access Journals (Sweden)

    Yun-Hoo Lee

    2013-01-01

    Full Text Available This study investigates the compressive strength of natural gas hydrate (NGH pellet strip extruded from die holes of a twin-roll press for continuous pelletizing (TPCP. The lab-scale TPCP was newly developed, where NGH powder was continuously fed and extruded into strip-type pellet between twin rolls. The system was specifically designed for future expansion towards mass production of solid form NGH. It is shown that the compressive strength of NGH pellet strip heavily depends on parameters in the extrusion process, such as feeding pressure, pressure ratio, and rotational speed. The mechanism of TPCP, along with the compressive strength and density of pellets, is discussed in terms of its feasibility for producing NGH pellets in the future.

  8. Experimental Study on Unconfined Compressive Strength of Organic Polymer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2018-01-01

    Full Text Available The natural sand is loose in structure with a small cohesive force. Organic polymer can be used to reinforce this sand. To assess the effectiveness of organic polymer as soil stabilizer (PSS, a series of unconfined compressive strength tests have been performed on reinforced sand. The focus of this study was to determine a curing method and a mix design to stabilize sand. The curing time, PSS concentration, and sand density were considered as variables in this study. The reinforcement mechanism was analyzed with images of scanning electron microscope (SEM. The results indicated that the strength of stabilized sand increased with the increase in the curing time, concentration, and sand density. The strength plateaus are at about curing time of 48 h. The UCS of samples with density of 1.4 g/cm3 at 10%, 20%, 30%, 40%, and 50% PSS concentration are 62.34 kPa, 120.83 kPa, 169.22 kPa, 201.94 kPa, and 245.28 kPa, respectively. The UCS of samples with PSS concentration of 30% at 1.4 g/cm3, 1.5 g/cm3, and 1.6 g/cm3 density are 169.22 kPa, 238.6 kPa 5, and 281.69 kPa, respectively. The chemical reaction between PSS and sand particle is at its microlevel, which improves the sand strength by bonding its particles together and filling the pore spaces. In comparison with the traditional reinforcement methods, PSS has the advantages of time saving, lower cost, and better environment protection. The research results can be useful for practical engineering applications, especially for reinforcement of foundation, embankment, and landfill.

  9. Stress Linearization and Strength Evaluation of the BEP's Flow Plates for a Dual Cooled Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Jae Yong; Yoon, Kyung Ho; Kang, Heung Seok; Lee, Young Ho; Lee, Kang Hee; Kim, Hyung Kyu

    2009-01-01

    A fuel assembly is composed of 5 major components, such as a top end piece (TEP), a bottom end piece (BEP), spacer grids (SGs), guide tubes (GTs) and an instrumentation tube (IT) and fuel rods (FRs). There are no ASME criteria about all components except for a TEP/BEP. The TEP/BEP should satisfy stress intensity limits in case of condition A and B of ASME, Section III, Division 1 . Subsection NB. In a dual cooled fuel assembly, the array and position of fuels are changed from those of a conventional PWR fuel assembly to achieve a power uprating. The flow plates of top/bottom end pieces (TEP/BEP) have to be modified into proper shape to provide flow holes to direct the heated coolant into/out of the fuel assembly but structural intensity of these plates within a 22.241 kN axial loading should satisfy Tresca stress limits in ASME code. In this paper, stress linearization procedure and strength evaluation of a newly designed BEP for the dual cooled fuel assembly are described

  10. SHEAR STRENGTH, COLLAPSIBILITY AND COMPRESSIBILITY CHARACTERISTICS OF COMPACTED BAIJI DUNE SOILS

    Directory of Open Access Journals (Sweden)

    ABBAS JAWAD AL-TAIE

    2017-03-01

    Full Text Available Baiji city is a vital industrial centre in Iraq since it has the biggest oil refinery. Therefore, Baiji has become an attractive site for strategic construction projects. Dune sand covers about 220 km2 of the area of Baiji city. However, few researches had attempted to study its behaviour. In this study laboratory tests were conducted to determine the shear strength, collapsibility and compressibility of the dune sand at its natural and compacted status. The effect of dry unit weight, moisture content, relative density and soaking on mechanical properties of dune soil was investigated. The results demonstrated that dry and soaked dune specimens tested at their in-situ condition exhibited similar volume changes during shear and identical friction angles. The results of shear tests of both of compacted soaked and unsoaked samples were identical. The collapse potential of dune soil is inversely proportional with the relative density. The minimum axial strain is observed when the samples are compacted to modified effort. The compression index of the compacted specimens is affected by moulding water content, while the rebound index is less sensitive.

  11. A practical method for estimating maximum shear modulus of cemented sands using unconfined compressive strength

    Science.gov (United States)

    Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin

    2017-12-01

    The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.

  12. Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network

    Science.gov (United States)

    MolaAbasi, H.; Shooshpasha, I.

    2016-04-01

    The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.

  13. Optimum Mix for Pervious Geopolymer Concrete (GEOCRETE Based on Water Permeability and Compressive Strength

    Directory of Open Access Journals (Sweden)

    Abdulsalam Arafa Salaheddin

    2017-01-01

    Full Text Available The production of ordinary Portland cement (OPC consumes considerable natural resources and energy, and it also affects the emission of a significant quantity of CO2 in the atmosphere. This pervious geopolymer concrete study aims to explore an alternative binder without OPC. Pervious geopolymer concretes were prepared from fly ash (FA, sodium silicate (NaSiO3, sodium hydroxide (NaOH solution, and coarse aggregate (CA. The effects of pervious geopolymer concrete parameters that affect water permeability and compressive strength are evaluated. The FA to CA ratios of 1:6, 1:7,1:8, and 1:9 by weight, CA sizes of 5–10, 10–14, and 14–20 mm, constant NaSiO3/NaOH ratio of 2.5, alkaline liquid to fly ash (AL/FA ratios of 0.4, 0.5, and 0.6, and NaOH concentrations of 8, 10, and 12 M were the pervious geopolymer concrete mix proportions. The curing temperature of 80 °C for 24 h was used. The results showed that a pervious geopolymer concrete with CA of 10 mm achieved water permeability of 2.3 cm/s and compressive strength of 20 MPa with AL/FA ratio of 0.5, NaOH concentration of 10 M, and FA:CA of 1:7. GEOCRETE is indicated to have better engineering properties than does pervious concrete that is made of ordinary Portland cement.

  14. Improvement of the adhesion strength between copper plated layer and resin substrate using a chemically adsorbed monolayer

    Directory of Open Access Journals (Sweden)

    Tsuchiya K.

    2013-08-01

    Full Text Available With reducing the size and weight of electric devices, high-tensile, light and fine copper wire is demanded. So the production technique of a copper wire plated on a super fiber resin (Vectran film was researched for improving the adhesion strength between the copper and the resin. In this study, we used the Cu2+ or Pd2+ complex prepared with a chemically adsorbed monolayer (CAM to improve the adhesion strength between the copper plated layer and the Vectran film. As the result of scotch tape test, it was observed that the adhesion strength between the copper plated layer and Vectran film was improved by the Cu2+ or Pd2+ complex CAM.

  15. Estimate of compressive strength of an unidirectional composite lamina using cross-ply and angle-ply laminates

    Directory of Open Access Journals (Sweden)

    M. Scafè

    2014-07-01

    Full Text Available In this work has been estimated the compressive strength of a unidirectional lamina of a carbon/epoxy composite material, using the cross-ply and angle-ply laminates. Over the years various methods have been developed to deduce compressive properties of composite materials reinforced with long fibres. Each of these methods is characterized by a specific way of applying load to the specimen. The method chosen to perform the compression tests is the Wyoming Combined Loading Compression (CLC Test Method, described in ASTM D 6641 / D 6641M-09. This method presents many advantages, especially: the load application on the specimen (end load combined with shear load, the reproducibility of measurements and the experimental equipment quite simplified. Six different laminates were tested in compressive tests. They were realized by the same unidirectional prepreg, but with different stacking sequences: two cross-ply [0/90]ns, two angle-ply [0/90/±45]ns and two unidirectional laminates [0]ns and [90]ns. The estimate of the compressive strength of the unidirectional laminates at 0°, was done by an indirect analytical method, developed from the classical lamination theory, and which uses a multiplicative parameter known as Back-out Factor (BF. The BF is determined by using the experimental values obtained from compression tests.

  16. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete.

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-03-22

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete.

  17. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-01-01

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete. PMID:29565830

  18. Comparison of low-strength compression stockings with bandages for the treatment of recalcitrant venous ulcers.

    Science.gov (United States)

    Brizzio, Eugenio; Amsler, Felix; Lun, Bertrand; Blättler, Werner

    2010-02-01

    To compare the proportion and rate of healing, pain, and quality of life of low-strength medical compression stockings (MCS) with traditional bandages applied for the treatment of recalcitrant venous leg ulcers. A single-center, randomized, open-label study was performed with consecutive patients. Sigvaris prototype MCS providing 15 mm Hg-25 mm Hg at the ankle were compared with multi-layer short-stretch bandages. In both groups, pads were placed above incompetent perforating veins in the ulcer area. The initial static pressure between the dressing-covered ulcer and the pad was 29 mm Hg and 49 mm Hg with MCS and bandages, respectively. Dynamic pressure measurements showed no difference. Compression was maintained day and night and changed every week. The primary endpoint was healing within 90 days. Secondary endpoints were healing within 180 days, time to healing, pain (weekly Likert scales), and monthly quality of life (ChronIc Venous Insufficiency Quality of Life [CIVIQ] questionnaire). Of 74 patients screened, 60 fulfilled the selection criteria and 55 completed the study; 28 in the MCS and 27 in the bandage group. Ulcers were recurrent (48%), long lasting (mean, 27 months), and large (mean, 13 cm2). All but one patient had deep venous reflux and/or incompetent perforating veins in addition to trunk varices. Characteristics of patients and ulcers were evenly distributed (exception: more edema in the MCS group; P = .019). Healing within 90 days was observed in 36% with MCS and in 48% with bandages (P = .350). Healing within 180 days was documented in 50% with MCS and in 67% with bandages (P = .210). Time to healing was identical. Pain scored 44 and 46 initially (on a scale in which 100 referred to maximum and 0 to no pain) and decreased within the first week to 20 and 28 in the MCS and bandage groups, respectively (P ulcers only. Our study illustrates the difficulty of bringing large and long-standing venous ulcers to heal. The effect of compression with MCS was

  19. Study on compressive strength of self compacting mortar cubes under normal & electric oven curing methods

    Science.gov (United States)

    Prasanna Venkatesh, G. J.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    In the majority of civil engineering applications, the basic building blocks were the masonry units. Those masonry units were developed as a monolithic structure by plastering process with the help of binding agents namely mud, lime, cement and their combinations. In recent advancements, the mortar study plays an important role in crack repairs, structural rehabilitation, retrofitting, pointing and plastering operations. The rheology of mortar includes flowable, passing and filling properties which were analogous with the behaviour of self compacting concrete. In self compacting (SC) mortar cubes, the cement was replaced by mineral admixtures namely silica fume (SF) from 5% to 20% (with an increment of 5%), metakaolin (MK) from 10% to 30% (with an increment of 10%) and ground granulated blast furnace slag (GGBS) from 25% to 75% (with an increment of 25%). The ratio between cement and fine aggregate was kept constant as 1: 2 for all normal and self compacting mortar mixes. The accelerated curing namely electric oven curing with the differential temperature of 128°C for the period of 4 hours was adopted. It was found that the compressive strength obtained from the normal and electric oven method of curing was higher for self compacting mortar cubes than normal mortar cube. The cement replacement by 15% SF, 20% MK and 25%GGBS obtained higher strength under both curing conditions.

  20. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete.

    Science.gov (United States)

    Vashisht, Rajneesh; Attri, Sampan; Sharma, Deepak; Shukla, Abhilash; Goel, Gunjan

    2018-03-01

    The present study reports the potential of newly isolated calcite precipitating bacteria isolated from alluvial soil to improve the strength and durability of concrete. A total of sixteen samples of alluvial soil and sewage were collected from the different locations of province Solan (India). For isolation, enrichment culture technique was used to enrich calcite precipitating strains in Urea broth. After enrichment, fourteen distinct bacterial strains were obtained on Urea agar. Based on qualitative and quantitative screening for urease activity, five isolates were obtained possessing higher calcite formation and urease activities (38-77 μmhos/cm) as compared with standard strain of Bacillus megaterium MTCC 1684 (77 μmhos/cm). An isolate I13 identified as Lysinibacillus sp. was selected for self healing property in the concrete mix of M20. An improved compressive strength of 1.5 fold was observed in concrete samples amended with Lysinibacillus sp. over the concrete amended with B. megaterium MTCC 1684 after 28 days of curing. The higher calcite precipitation activity was indicated in Lysinibacillus sp. by FE-SEM micrographs and EDX analysis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Effect of Microwave Disinfection on Compressive and Tensile Strengths of Dental Stones

    Directory of Open Access Journals (Sweden)

    Mahmood Robati Anaraki

    2013-03-01

    Full Text Available Background and aims. Although microwave irradiation has been used for disinfection of dental stone casts, there are concerns regarding mechanical damage to casts during the process. The aim of this study was to evaluate the effect of microwave irradiation on the compressive strength (CS and diametral tensile strength (DTS of stone casts. Materials and methods. In this in vitro study, 80 cylindrical type III and IV stone models (20 × 40 mm were prepared and divided into 8 groups of 10. The DTS and CS of the specimens were measured by a mechanical testing machine at a crosshead speed of 0.5 cm/min after 7 times of frequent wetting, irradiating at an energy level of 600 W for 3 minutes and cooling. Data were analyzed by Student’s t-test. Results. Microwave irradiation significantly increased DTS of type III and IV to 5.23 ± 0.64 and 8.17 ± 0.94, respectively (P < 0.01. Conclusion. According to the results, microwave disinfection increases DTS of type III and IV stone casts without any effects on their CS.

  2. Determining the Compressive, Flexural and Splitting Tensile Strength of Silica Fume Reinforced Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Mydin M.A.O.

    2014-01-01

    Full Text Available This study investigated the performance of the properties of foamed concrete in replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with ordinary Portland cement (OPC and 10%, 15% and 20% silica fume was prepared. Three mechanical property parameters were studied such as compressive strength, flexural strength and splitting tensile of foamed concrete with different percentages of silica fume. Silica fume is commonly used to increase the mechanical properties of concrete materials and it is also chosen due to certain economic reasons. The foamed concrete used in this study was cured at a relative humidity of 70% and a temperature of ±28°C. The improvement of mechanical properties was due to a significant densification in the microstructure of the cement paste matrix in the presence of silica fume hybrid supplementary binder as observed from micrographs obtained in the study. The overall results showed that there is a potential to utilize silica fume in foamed concrete, as there was a noticeable enhancement of thermal and mechanical properties with the addition of silica fume.

  3. Strength and Permeability Evolution of Compressed Bentonite in Response to Salinity and Temperature Changes

    Science.gov (United States)

    Winnard, B. R.; Mitchell, T. M.; Browning, J.; Cuss, R. J.; Norris, S.; Meredith, P. G.

    2017-12-01

    Deep geological repositories are the preferred solution to dispose of radioactive waste; design concepts for these disposal facilities include compacted, saturated bentonite as a buffer between waste canister and host rock. Bentonite is favoured for its high swelling capacity, low permeability, and radionuclide retention properties. However, its thermo-hydro-mechanical tolerances must be thoroughly tested to ensure adequate long term performance. Climate variations are likely to induce periods of permafrost, and consequently, changes in groundwater salinity at depth. We performed laboratory experiments investigating effects of temperature and salinity change on uniaxial compressive strength (UCS), and permeability of compacted MX-80 bentonite cylinders. These specimens (moisture content = 22.9±0.1%, dry density = 1.66±0.02 g.cm-3) were compacted with deionised water, and a range of wt% NaCl, CaCl2, or KCl, to compare the effects of compaction fluid. Samples of compressed bentonite were cooled to -20 °C, and heated to 90 ºC, a possible temperature forecast for a repository dependent on factors such as geographical location, waste type, and facility design. Tests were all performed at room temperature, however in situ temperature tests are planned. The UCS of samples that experienced freeze thaw, and 40 ºC treatment failed at 6.5 MPa, with 4% strain, maintaining the same values as untreated bentonite compacted with deionised water. Samples compacted with saline solutions also yielded similar strengths, of 7 MPa, and failed at 4%. However, the 90 ºC, regardless of compaction fluid, failed at 15-18 MPa, at just 2% strain. In all experiments, the spread of strain accommodated varied inconsistently, however, peak stress was uniform. Further experiments into heterogeneity are needed to understand the responsible mechanisms. To obtain permeability, we utilised the pore pressure oscillation (PPO) technique with argon as the pore fluid. We also tested water as the pore

  4. Structural strength of cancellous specimens from bovine femur under cyclic compression

    Directory of Open Access Journals (Sweden)

    Kaori Endo

    2016-01-01

    Full Text Available The incidence of osteoporotic fractures was estimated as nine million worldwide in 2000, with particular occurrence at the proximity of joints rich in cancellous bone. Although most of these fractures spontaneously heal, some fractures progressively collapse during the early post-fracture period. Prediction of bone fragility during progressive collapse following initial fracture is clinically important. However, the mechanism of collapse, especially the gradual loss of the height in the cancellous bone region, is not clearly proved. The strength of cancellous bone after yield stress is difficult to predict since structural and mechanical strength cannot be determined a priori. The purpose of this study was to identify whether the baseline structure and volume of cancellous bone contributed to the change in cancellous bone strength under cyclic loading. A total of fifteen cubic cancellous bone specimens were obtained from two 2-year-old bovines and divided into three groups by collection regions: femoral head, neck, and proximal metaphysis. Structural indices of each 5-mm cubic specimen were determined using micro-computed tomography. Specimens were then subjected to five cycles of uniaxial compressive loading at 0.05 mm/min with initial 20 N loading, 0.3 mm displacement, and then unloading to 0.2 mm with 0.1 mm displacement for five successive cycles. Elastic modulus and yield stress of cancellous bone decreased exponentially during five loading cycles. The decrease ratio of yield stress from baseline to fifth cycle was strongly correlated with bone volume fraction (BV/TV, r = 0.96, p < 0.01 and structural model index (SMI, r = − 0.81, p < 0.01. The decrease ratio of elastic modulus from baseline to fifth cycle was also correlated with BV/TV (r = 0.80, p < 0.01 and SMI (r = − 0.78, p < 0.01. These data indicate that structural deterioration of cancellous bone is associated with bone strength after yield stress. This study suggests that

  5. Characterization of cell mechanical properties by computational modeling of parallel plate compression.

    Science.gov (United States)

    McGarry, J P

    2009-11-01

    A substantial body of work has been reported in which the mechanical properties of adherent cells were characterized using compression testing in tandem with computational modeling. However, a number of important issues remain to be addressed. In the current study, using computational analyses, the effect of cell compressibility on the force required to deform spread cells is investigated and the possibility that stiffening of the cell cytoplasm occurs during spreading is examined based on published experimental compression test data. The effect of viscoelasticity on cell compression is considered and difficulties in performing a complete characterization of the viscoelastic properties of a cell nucleus and cytoplasm by this method are highlighted. Finally, a non-linear force-deformation response is simulated using differing linear viscoelastic properties for the cell nucleus and the cell cytoplasm.

  6. EFFECT OF SODIUM HYDROXIDE CONCENTRATION ON FRESH PROPERTIES AND COMPRESSIVE STRENGTH OF SELF-COMPACTING GEOPOLYMER CONCRETE

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2013-02-01

    Full Text Available This paper reports the results of the laboratory tests conducted to investigate the effect of sodium hydroxide concentration on the fresh properties and compressive strength of self-compacting geopolymer concrete (SCGC. The experiments were conducted by varying the concentration of sodium hydroxide from 8 M to 14 M. Test methods such as Slump flow, V-Funnel, L-box and J-Ring were used to assess the workability characteristics of SCGC. The test specimens were cured at 70°C for a period of 48 hours and then kept in room temperature until the day of testing. Compressive strength test was carried out at the ages of 1, 3, 7 and 28 days. Test results indicate that concentration variation of sodium hydroxide had least effect on the fresh properties of SCGC. With the increase in sodium hydroxide concentration, the workability of fresh concrete was slightly reduced; however, the corresponding compressive strength was increased. Concrete samples with sodium hydroxide concentration of 12 M produced maximum compressive strength.

  7. Improving the standard of the standard for glass ionomers: an alternative to the compressive fracture strength test for consideration?

    LENUS (Irish Health Repository)

    Dowling, Adam H

    2012-03-01

    Three strength tests (compressive, three point flexure and biaxial) were performed on three glass ionomer (GI) restoratives to assess the most appropriate methodology in terms of validity and reliability. The influence of mixing induced variability on the data sets generated were eliminated by using encapsulated GIs.

  8. Improvement of compressive strength of segmentation of zeolites as absorber of Sr-90 liquid waste using coconut fibres

    International Nuclear Information System (INIS)

    Kasmudin; Kusnanto

    2002-01-01

    The use of the coconut fibres to increase compressive strength of segmentation of zeolites as absorber of Sr-90 liquid waste was studied. The purpose of this research was to find the optimum content and length of fibres that give maximum compressive strength. This research was done with mortar-zeolites specimen of cylinder 2,2 cm diameter and 4,4 cm high, the content of zeolites was 13% volume of specimen, weight ratio of water and cement 0,3, length of fibres 1,5 cm, 2 cm, 2,5 cm, and 3 cm (aspect ratio ± 60, ± 80, ± 100 and ± 120) with the fibres content of each fibre 0%, 0,5%, 0,10%, 0,25%, 0,50%, 0,75%, and 1,00%. Addition of fibres was done with a direction of orientation longitudinal to the specimen. The specimens were tested on 28 days old test specimens. The result showed that addition of coconut fibres until certain content would increase compressive strength. The optimum size of fibres with 92,313 N/MM 2 of compressive strength or increased 119,21% of no fibres specimen were 0,50% of volume and 3 cm in length

  9. THE EFFECT OF VOLUME VARIATION OF SILVER NANOPARTICLE SOLUTION TOWARDS THE POROSITY AND COMPRESSIVE STRENGTH OF MORTAR

    Directory of Open Access Journals (Sweden)

    W.S.B. Dwandaru

    2016-10-01

    Full Text Available As the world is growing rapidly, people need better building materials such as mortar. The aim of this research is to determine the effect of adding silver nanoparticle solution towards the porosity and compressive strength of mortar. This research was started by making silver nanoparticle solution from nitrate silver (AgNO3. The solution is then characterized using Uv-Vis spectrophotometer. 5 mM silver nanoparticle is added in the process of mortar production with volume variation of the silver nanoparticle solution. The porosity, compressive strength, and the content of mortar were determined by digital scale, universal testing machine, and X-ray diffraction, respectively. For silver nanoparticle solution volumes of (in mL 0, 5, 10, 15, 20, and 25 the porosity obtained are (in % 20.38, 19.48, 19.42, 18.9, 17.8, and 17.5, respectively. The best increase in compressive strength is obtained for (in MPa 29,068, 29,308, and 31,385, with nanoparticle solution volumes of (in mL 5, 10, and 15   Keywords: mortar, silver nanoparticle, compressive strength

  10. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    Energy Technology Data Exchange (ETDEWEB)

    Nochaiya, Thanongsak [Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Sekine, Yoshika [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Choopun, Supab [Applied Physics Research Laboratory, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Chaipanich, Arnon, E-mail: arnon.chaipanich@cmu.ac.th [Advanced Cement-Based Materials Research Unit, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-05-05

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes.

  11. Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating.

    Science.gov (United States)

    Kim, Beom-Su; Kang, Hyo Jin; Lee, Jun

    2013-10-01

    Cuttlefish bones (CBs) have emerged as attractive biomaterials because of their porous structure and components that can be converted into hydroxyapatite (HAp) via a hydrothermal reaction. However, their brittleness and low strength restrict their application in bone tissue engineering. Therefore, to improve the compressive strength of the scaffold following hydrothermal conversion to a HAp form of CB (CB-HAp), the scaffold was coated using a polycaprolactone (PCL) polymer at various concentrations. In this study, raw CB was successfully converted into HAp via a hydrothermal reaction. We then evaluated their surface properties and composition by scanning electron microscopy and X-ray diffraction analysis. The CB-HAp coated with PCL showed improved compressive performance and retained a microporous structure. The compressive strength was significantly increased upon coating with 5 and 10% PCL, by 2.09- and 3.30-fold, respectively, as compared with uncoated CB-HAp. However, coating with 10% PCL resulted in a reduction in porosity. Furthermore, an in vitro biological evaluation demonstrated that MG-63 cells adhered well, proliferated and were able to be differentiated on the PCL-coated CB-HAp scaffold, which was noncytotoxic. These results suggest that a simple coating method is useful to improve the compressive strength of CB-HAp for bone tissue engineering applications. Copyright © 2013 Wiley Periodicals, Inc.

  12. Compressive strength measurements of hybrid dental composites treated with dry heat and light emitting diodes (LED post cure treatment

    Directory of Open Access Journals (Sweden)

    Jenny Krisnawaty

    2014-11-01

    Full Text Available Hybrid composites are mostly used on large cavities as restorative dental materials, whether it is used directly or indirectly. The mechanical properties of composite resin shall increase if it is treated with post cure treatment. The aim of this study is to evaluate compressive strength differences between dry heat and Light Emitting Diodes (LED treatment on the hybrid dental composite. A quasi-experimental was applied on this research with a total of 30 samples that were divided into two groups. Each sample was tested using LLOYD Universal Testing Machine with 1 mm/min speed to evaluate the compressive strength. The compressive strength results were marked when the sample was broken. The results of two groups were then analyzed using t-test statistical calculation. The results of this study show that post cure treatment on hybrid composite using LED light box (194.138 MPa was lower than dry heat treatment (227.339 MPa, which was also significantly different from statistical analysis. It can be concluded that compressive strength of LED light box was lower than dry heat post-cure treatment on the hybrid composite resin.

  13. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    International Nuclear Information System (INIS)

    Nochaiya, Thanongsak; Sekine, Yoshika; Choopun, Supab; Chaipanich, Arnon

    2015-01-01

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes

  14. Investigation of test methods for measuring compressive strength and modulus of two-dimensional carbon-carbon composites

    Science.gov (United States)

    Ohlhorst, Craig W.; Sawyer, James Wayne; Yamaki, Y. Robert

    1989-01-01

    An experimental evaluation has been conducted to ascertain the the usefulness of two techniques for measuring in-plane compressive failure strength and modulus in coated and uncoated carbon-carbon composites. The techniques involved testing specimens with potted ends as well as testing them in a novel clamping fixture; specimen shape, length, gage width, and thickness were the test parameters investigated for both coated and uncoated 0/90 deg and +/-45 deg laminates. It is found that specimen shape does not have a significant effect on the measured compressive properties. The potting of specimen ends results in slightly higher measured compressive strengths than those obtained with the new clamping fixture. Comparable modulus values are obtained by both techniques.

  15. Strength and Absorption Rate of Compressed Stabilized Earth Bricks (CSEBs Due to Different Mixture Ratios and Degree of Compaction

    Directory of Open Access Journals (Sweden)

    Abdullah Abd Halid

    2017-01-01

    Full Text Available Compressed Stabilized Earth Brick (CSEB is produced by compressing a mixture of water with three main materials such as Ordinary Portland Cement (OPC, soil, and sand. It becomes popularfor its good strength, better insulation properties, and a sustainable product due to its easy production with low carbon emission and less skilled labour required. Different types of local soils usedwill produce CSEB of different physical properties in terms of its strength, durability, and water absorption rate. This study focuses on laterite soil taken from the surrounding local area in Parit Raja, Johor, and CSEB samples are produced based on prototype brick size 100×50×30 mm. The investigations are based on four different degree of compactions (i.e. 1500, 2000, 2500, and 3000 Psi and three different mix proportion ratios of cement:sand:laterite soil (i.e. 1:1:9, 1:2:8, 1:3:7. A total of 144 CSEB samples have been tested at 7 and 28 days curing periods to determine the compressive strength (BS 3921:1985 and water absorption rate (MS 76:1972. It was found that maximum compressive strength of CSEB was 14.68 N/mm2 for mixture ratio of 1:3:7 at 2500 Psi compaction. Whereas, the minimum strengthis 6.87 N/mm2 for 1:1:9mixture ratio at 1500 Psi. Meanwhile, the lowest water absorption was 12.35% for mixture ratio of 1:2:8 at 3000 Psi; while the 1:1:9 mixture ratio at 1500 Psi gave the highest rate of 16.81%. This study affirms that the sand content in the mixture and the degree of compaction would affect the value of compressive strength and water absorption of CSEB.

  16. The Influence Of Loam Type And Cement Content On The Compressive Strength Of Rammed Earth

    Directory of Open Access Journals (Sweden)

    Narloch P. L.

    2015-03-01

    Full Text Available Currently, a worldwide dynamic rise of interest in using soil as a construction material can be observed. This trend is evident in the rapid rise of the amount of standards that deal with soil techniques. In 2012 the number of standards was larger by one third than five years prior. To create a full standardization of the rammed earth technique it is necessary to take into account the diversity of used soil and stabilizing additives. The proportion of the components, the process of element production and the research methods must also be made uniform. The article describes the results of research on the compressive strength of rammed earth samples that differed from each other with regards to the type of loam used for the mixture and the amount of the stabilizer. The stabilizer used was Portland cement CEM I 42.5R. The research and the analysis of the results were based on foreign publications, the New Zealand standard NZS 4298:1998, the American Standard NMAC14.7.4 and archival Polish Standards from the 1960’s that dealt with earth material.

  17. Compressive strength of concrete by partial replacement of cement with metakaolin

    Science.gov (United States)

    Ganesh, Y. S. V.; Durgaiyya, P.; Shivanarayana, Ch.; Prasad, D. S. V.

    2017-07-01

    Metakaolin or calcined kaolin, other type of pozzolan, produced by calcination has the capability to replace silica fume as an alternative material. Supplementary cementitious materials have been widely used all over the world in concrete due to their economic and environmental benefits; hence, they have drawn much attention in recent years. Mineral admixtures such as fly ash, rice husk ash, silica fume etc. are more commonly used SCMs. They help in obtaining both higher performance and economy. Metakaolin is also one of such non - conventional material, which can be utilized beneficially in the construction industry. This paper presents the results of an experimental investigations carried out to find the suitability of metakaolin in production of concrete. In the present work, the results of a study carried out to investigate the effects of Metakaolin on compressive strength of concrete are presented. The referral concrete M30 was made using 43 grade OPC and the other mixes were prepared by replacing part of OPC with Metakaolin. The replacement levels were 5%, 10%, 15% and 20%(by weight) for Metakaolin. The various results, which indicate the effect of replacement of cement by metakalion on concrete, are presented in this paper to draw useful conclusions.

  18. Correlation development between indentation parameters and uniaxial compressive strength for Colombian sandstones

    International Nuclear Information System (INIS)

    Mateus, Jefferson; Saavedra, Nestor Fernando; Calderon Carrillo, Zuly; Mateus, Darwin

    2007-01-01

    A new way to characterize the perforated formation strength has been implemented using the indentation test. This test can be performed on irregular cuttings mounted in acrylic resins forming a disc. The test consists of applying load on each sample by means of a flat and indenter. A graph of the load applied VS penetration of the indenter is developed, and the modules of the test, denominated indentation modulus (IM) and Critical Transition Force (CTF) are obtained (Ringstad et al., 1998). Based on the success of previous studies we developed correlations between indentation and mechanical properties for some Colombian sandstone. These correlations were obtained using o set of 248 indentation tests and separate compression fasts on parallel sandstone samples from the same depth. This analysis includes Barco Formation, Mirador Formation, and Tambor Formation. For the correlations, IM-UCS and CTF-UCS, the correlation coefficient is 0.81 and 0.70 respectively. The use of the correlations and the indentation test is helpful for in-situ calibration of the geomechanical models since the indentation test can be performed in real time thus reducing costs and time associated with delayed conventional characterization

  19. Roughness and compressive strength of FDM 3D printed specimens affected by acetone vapour treatment

    Science.gov (United States)

    Beniak, Juraj; Križan, Peter; Šooš, Ľubomír; Matúš, Miloš

    2018-01-01

    Rapid Prototyping technologies are the fastest growing technologies in the manufacturing of components and parts. There are many techniques which can be used with different materials and different purposes of produced part. Gradually, Rapid Prototyping systems have grown into Additive Manufacturing, because technology expansion brings faster production, improved manufactured components, and expanded palette of used materials. So now this techniques are also used for regular production of special parts, where is usual change of part design, where is necessary to produce variety of different designs and shapes. The following article deals with Fused Deposition Modelling (FDM) technology, the core of which is the manufacture models and components from thermoplastic polymers by deposition single fibres of semi-molten plastic material layer by layer. The article focuses on the results of research for testing of manufactured specimens by FDM technology. Components are modified by acetone vapour for surface smoothing. The purpose is to point out how the additional specimen treatment influence the strength properties. Presented paper shows realized experiments and measurements of compressive force on specimens and surface roughness which are influenced by acetone vapour treatment.

  20. Compressive Strength Enhancement of Vertically Aligned Carbon Nanotube Forests by Constraint of Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Chih-Chung Su

    2017-02-01

    Full Text Available We fabricated a 3D sandwich hybrid material composed of graphene and vertically aligned carbon nanotube forests (VACNTs using chemical vapor deposition. The graphene was first synthesized on Cu foil. Then it was transferred to a substrate which had a pre-deposited catalyst Fe film and a buffer film of Al2O3 for the growth of VACNTs. The VACNTs were grown underneath the graphene and lifted up the graphene. The graphene, with its edges anchored on the Al2O3, provided a constrained boundary condition for the VACNTs and hence affected the growth height and mechanical strength of the VACNTs. We prepared three groups of samples: VACNTs without graphene, VACNTs with graphene transferred once (1-Gr/VACNTs, and VACNTs with graphene transferred twice (2-Gr/VACNTs. A nano-indentation system was used to measure the reduced compressive modulus (Er and hardness (H. The Er and H of Gr/VACNTs increased with the number of transfers of the anchored graphene. The 2-Gr/VACNTs had the largest Er and H, 23.8 MPa and 912 KPa, which are 6.6 times and 5.2 times those of VACNTs without the anchored graphene, respectively. In this work, we have demonstrated a simple method to increase the mechanical properties and suppress the height of VACNTs with the anchored graphene and number of transfers.

  1. Comparative experimental study of dynamic compressive strength of mortar with glass and basalt fibres

    Directory of Open Access Journals (Sweden)

    Kruszka Leopold

    2015-01-01

    Full Text Available Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1 and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.

  2. Comparative experimental study of dynamic compressive strength of mortar with glass and basalt fibres

    Science.gov (United States)

    Kruszka, Leopold; Moćko, Wojciech; Fenu, Luigi; Cadoni, Ezio

    2015-09-01

    Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1) and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.

  3. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2015-01-01

    Full Text Available In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net.

  4. Influence of Eco-Friendly Mineral Additives on Early Age Compressive Strength and Temperature Development of High-Performance Concrete

    Science.gov (United States)

    Kaszynska, Maria; Skibicki, Szymon

    2017-12-01

    High-performance concrete (HPC) which contains increased amount of both higher grade cement and pozzolanic additives generates more hydration heat than the ordinary concrete. Prolonged periods of elevated temperature influence the rate of hydration process in result affecting the development of early-age strength and subsequent mechanical properties. The purpose of the presented research is to determine the relationship between the kinetics of the heat generation process and the compressive strength of early-age high performance concrete. All mixes were based on the Portland Cement CEM I 52.5 with between 7.5% to 15% of the cement mass replaced by the silica fume or metakaolin. Two characteristic for HPC water/binder ratios of w/b = 0.2 and w/b = 0.3 were chosen. A superplasticizer was used to maintain a 20-50 mm slump. Compressive strength was determined at 8h, 24h, 3, 7 and 28 days on 10x10x10 cm specimens that were cured in a calorimeter in a constant temperature of T = 20°C. The temperature inside the concrete was monitored continuously for 7 days. The study determined that the early-age strength (t<24h) of concrete with reactive mineral additives is lower than concrete without them. This is clearly visible for concretes with metakaolin which had the lowest compressive strength in early stages of hardening. The amount of the superplasticizer significantly influenced the early-age compressive strength of concrete. Concretes with additives reached the maximum temperature later than the concretes without them.

  5. The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste.

    Science.gov (United States)

    Hossain, M S; Gabr, M A; Asce, F

    2009-09-01

    In many situations, MSW components are processed and shredded before use in laboratory experiments using conventional soil testing apparatus. However, shredding MSW material may affect the target property to be measured. The objective of this study is to contribute to the understanding of the effect of shredding of MSW on the measured compressibility and strength properties. It is hypothesized that measured properties can be correlated to an R-value, the ratio of waste particle size to apparatus size. Results from oedometer tests, conducted on 63.5 mm, 100 mm, 200 mm diameter apparatus, indicated the dependency of the compressibility parameters on R-value. The compressibility parameters are similar for the same R-value even though the apparatus size varies. The results using same apparatus size with variable R-values indicated that shredding of MSW mainly affects initial compression. Creep and biological strain rate of the tested MSW are not significantly affected by R-value. The shear strength is affected by shredding as the light-weight reinforcing materials are shredded into smaller pieces during specimen preparation. For example, the measured friction angles are 32 degrees and 27 degrees for maximum particle sizes of 50 mm and 25 mm, respectively. The larger MSW components in the specimen provide better reinforcing contribution. This conclusion is however dependent on comparing specimen at the same level of degradation since shear strength is also a function of extent of degradation.

  6. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  7. Influence of Molarity and Chemical Composition on the Development of Compressive Strength in POFA Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    S. M. Alamgir Kabir

    2015-01-01

    Full Text Available The investigation concerns the use of the optimum mix proportion of two locally available pozzolanic waste materials, namely, ground granulated blast furnace slag (GGBS and palm oil fuel ash (POFA, together with metakaolin (MK as binders. In addition, another local waste material, manufactured sand (M-sand, was used as a replacement for conventional sand in the development of green geopolymer mortar. Twenty-four mortar mixtures were designed with varying binder contents and alkaline activators. The oven dry curing was also kept consistent for all the mix proportions at a temperature of 65°C for 24 hours. The highest 28-day compressive strength of about 48 MPa was obtained for the mortar containing 20% of MK, 35% of GGBS, and 45% of POFA. The increment of MK beyond 20% leads to reduction of the compressive strength. The GGBS replacement beyond 35% also reduced the compressive strength. The entire specimen achieved average 80% of the 28-day strength at the age of 3 days. The density decreased with the increase of POFA percentage. The finding of this research by using the combination of MK, GGBS, and POFA as binders to wholly replace conventional ordinary Portland cement would lead to alternate eco-friendly geopolymer matrix.

  8. Effect of palm oil fuel ash on compressive strength of palm oil boiler stone lightweight aggregate concrete

    Science.gov (United States)

    Muthusamy, K.; Zamri, N. A.; Kusbiantoro, A.; Lim, N. H. A. S.; Ariffin, M. A. Mohd

    2018-04-01

    Both palm oil fuel ash (POFA) and palm oil boiler stone (POBS) are by-products which has been continuously generated by local palm oil mill in large amount. Both by products is usually disposed as profitless waste and considered as nuisance to environment. The present research investigates the workability and compressive strength performance of lightweight aggregate concrete (LWAC) made of palm oil boiler stone (POBS) known as palm oil boiler stone lightweight aggregate concrete (POBS LWAC) containing various content of palm oil fuel ash. The control specimen that is POBS LWAC of grade 60 were produced using 100% OPC. Then, another 4 mixes were prepared by varying the POFA percentage from 10%, 20%, 30% and 40% by weight of cement. Fresh mixes were subjected to slump test to determine its workability before casted in form of cubes. Then, all specimens were subjected to water curing up to 28 days and then tested for its compressive strength. It was found out that utilizing of optimum amount of POFA in POBS LWAC would improve the workability and compressive strength of the concrete. However, inclusion of POFA more than optimum amount is not recommended as it will increase the water demand leading to lower workability and strength reduction.

  9. Combined effect of nano-SiO2 and nano-Fe2O3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars

    International Nuclear Information System (INIS)

    Sanjuán, M.A.; Argiz, C.; Gálvez, J.C.; Reyes, E.

    2018-01-01

    The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe2O3 and nano-SiO2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C3S and C2S) hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe2O3 and nano-SiO2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe2O3 and nano-SiO2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP) measurements, pore-size distribution (PSD), total porosity and critical pore diameter also confirmed such results. [es

  10. Combined effect of nano-SiO2 and nano-Fe2O3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars

    Directory of Open Access Journals (Sweden)

    M. A. Sanjuán

    2018-03-01

    Full Text Available The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe2O3 and nano-SiO2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C3S and C2S hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe2O3 and nano-SiO2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe2O3 and nano-SiO2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP measurements, pore-size distribution (PSD, total porosity and critical pore diameter also confirmed such results.

  11. Characteristic compression strength of a brickwork masonry starting from the strength of its components. Experimental verification of analitycal equations of european codes

    Directory of Open Access Journals (Sweden)

    Rolando, A.

    2006-09-01

    Full Text Available In this paper the compression strength of a clay brickwork masonry bound with cement mortar is analyzed. The target is to obtain the characteristic compression strength of unreinforced brickwork masonry. This research try to test the validity of the analytical equations in European codes, comparing the experimental strength with the analytically obtained from the strength of its components (clay brick and cement mortar.En este artículo se analiza la resistencia a compresión de una fábrica de ladrillo cerámico, asentado con mortero de cemento.El objetivo es obtener la resistencia característica a compresión de la fábrica sin armar.La investigación comprueba la fiabilidad de las expresiones analíticas existentes en la normativa europea, comparando la resistencia obtenida experimentalmente con la obtenida analíticamente, a partir de la resistencia de sus componentes (ladrillo cerámico y mortero de cemento.

  12. Close Intramedullary Interlocking Nailing Versus Locking Compression Plating In the Treatment of Closed Fracture Shaft of the Tibia.

    Science.gov (United States)

    Kundu, I K; Datta, N K; Chowdhury, A Z; Das, K P; Tarik, M M; Faisal, M A

    2016-07-01

    Fracture of tibial shaft is the commonest site of long bone fractures due to its superficial location involving young or middle-age people. Proper management is an important issue regarding the future effective movements. In this study patients were grouped in closed Intra medullary interlocking nailing and locking compression plating. Post-operative follow up at 2 weeks, 6 weeks, 12 weeks and 3 months thereafter up to 6 months were done. Each of the patients was evaluated clinically and radiologically by tucker criteria of Tuker et al. Patients were assessed for pain on full weight bearing and kneeling, shortening and range of motion of knee and ankle joints. Radiological assessment for union of fracture, alignment of fracture and angulations and position of nail and screws and infection were observed during follow up. A total number of 32 patients were selected but only 27 patients were available for follow up for a period of 6 months. They were grouped into Group A, consisting of 15 patients who took the treatment in the form of closed intramedullary interlocking nailing and Group B, consisting of 12 patients those underwent ORIF with locking compression plating. In both of the groups Motor Vehicle Accident was the main mechanism of trauma. Fracture involving the middle 3rd of the tibia is common in both the groups. During post-operative follow up, four patients in Group A complained anterior knee pain, one patient in Group B had superficial infection, most of the patients had no restriction of movement in the ankle and knee joints and a single patient in Group B showed 1.5cm shortening of the lower limb. Period of hospital stay and fracture union time were less in Group A, which was statistically significant. Both groups showed excellent result with minimum complications. So this study permits to conclude that close IM interlocking nailing and open reduction and internal fixation by locking compression plating is equally effective for the management of close

  13. The influence of using accelerator addition on High strength self-compacting concrete (HSSCC) in case of enhancement early compressive strength and filling ability parameters

    Science.gov (United States)

    Wibowo; Fadillah, Y.

    2018-03-01

    Efficiency in a construction works is a very important thing. Concrete with ease of workmanship and rapid achievement of service strength will to determine the level of efficiency. In this research, we studied the optimization of accelerator usage in achieving performance on compressive strength of concrete in function of time. The addition of variation of 0.3% - 2.3% to the weight of cement gives a positive impact of the rapid achievement of hardened concrete, however the speed of increasing of concrete strength achievement in term of time influence present increasing value of filling ability parameter of self-compacting concrete. The right composition of accelerator aligned with range of the values standard of filling ability parameters of HSSCC will be an advantage guidance for producers in the ready-mix concrete industry.

  14. Drag Induced by Flat-Plate Imperfections in Compressible Turbulent Flow Regimes

    OpenAIRE

    Molton , Pascal; Hue , David; Bur , Reynald

    2014-01-01

    International audience; This paper presents the results of a coupled experimental and numerical study aimed at evaluating the influence of typical aircraft surface imperfections on the flat-plate drag production in fully turbulent conditions. A test campaign involving high-level measurement techniques, such as microdrag evaluation, near-wall laser Doppler velocimetry, and oil-film interferometry, has been carried out at several Mach numbers from 0.5 to 1.3 to quantify the impact of a large ra...

  15. Embedded NMR Sensor to Monitor Compressive Strength Development and Pore Size Distribution in Hydrating Concrete

    Science.gov (United States)

    Díaz-Díaz, Floriberto; de J. Cano-Barrita, Prisciliano F.; Balcom, Bruce J.; Solís-Nájera, Sergio E.; Rodríguez, Alfredo O.

    2013-01-01

    In cement-based materials porosity plays an important role in determining their mechanical and transport properties. This paper describes an improved low–cost embeddable miniature NMR sensor capable of non-destructively measuring evaporable water loss and porosity refinement in low and high water-to-cement ratio cement-based materials. The sensor consists of two NdFeB magnets having their North and South poles facing each other, separated by 7 mm to allow space for a Faraday cage containing a Teflon tube and an ellipsoidal RF coil. To account for magnetic field changes due to temperature variations, and/or the presence of steel rebars, or frequency variation due to sample impedance, an external tuning circuit was employed. The sensor performance was evaluated by analyzing the transverse magnetization decay obtained with a CPMG measurement from different materials, such as a polymer phantom, fresh white and grey cement pastes with different w/c ratios and concrete with low (0.30) and high (0.6) w/c ratios. The results indicated that the sensor is capable of detecting changes in water content in fresh cement pastes and porosity refinement caused by cement hydration in hardened materials, even if they are prepared with a low w/c ratio (w/c = 0.30). The short lifetime component of the transverse relaxation rate is directly proportional to the compressive strength of concrete determined by destructive testing. The r2 (0.97) from the linear relationship observed is similar to that obtained using T2 data from a commercial Oxford Instruments 12.9 MHz spectrometer.

  16. Embedded NMR Sensor to Monitor Compressive Strength Development and Pore Size Distribution in Hydrating Concrete

    Directory of Open Access Journals (Sweden)

    Floriberto Díaz-Díaz

    2013-11-01

    Full Text Available In cement-based materials porosity plays an important role in determining their mechanical and transport properties. This paper describes an improved low–cost embeddable miniature NMR sensor capable of non-destructively measuring evaporable water loss and porosity refinement in low and high water-to-cement ratio cement-based materials. The sensor consists of two NdFeB magnets having their North and South poles facing each other, separated by 7 mm to allow space for a Faraday cage containing a Teflon tube and an ellipsoidal RF coil. To account for magnetic field changes due to temperature variations, and/or the presence of steel rebars, or frequency variation due to sample impedance, an external tuning circuit was employed. The sensor performance was evaluated by analyzing the transverse magnetization decay obtained with a CPMG measurement from different materials, such as a polymer phantom, fresh white and grey cement pastes with different w/c ratios and concrete with low (0.30 and high (0.6 w/c ratios. The results indicated that the sensor is capable of detecting changes in water content in fresh cement pastes and porosity refinement caused by cement hydration in hardened materials, even if they are prepared with a low w/c ratio (w/c = 0.30. The short lifetime component of the transverse relaxation rate is directly proportional to the compressive strength of concrete determined by destructive testing. The r2 (0.97 from the linear relationship observed is similar to that obtained using T2 data from a commercial Oxford Instruments 12.9 MHz spectrometer.

  17. An Experimental Investigation On Minimum Compressive Strength Of Early Age Concrete To Prevent Frost Damage For Nuclear Power Plant Structures In Cold Climates

    International Nuclear Information System (INIS)

    Koh, Kyungtaek; Kim, Dogyeum; Park, Chunjin; Ryu, Gumsung; Park, Jungjun; Lee, Janghwa

    2013-01-01

    Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates

  18. An Experimental Investigation On Minimum Compressive Strength Of Early Age Concrete To Prevent Frost Damage For Nuclear Power Plant Structures In Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyungtaek; Kim, Dogyeum; Park, Chunjin; Ryu, Gumsung; Park, Jungjun; Lee, Janghwa [Korea Institute Construction Technology, Goyang (Korea, Republic of)

    2013-06-15

    Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates.

  19. Relationship between splitting tensile and compressive strengths for self-compacting concrete containing nano- and micro silica

    Directory of Open Access Journals (Sweden)

    Jaber Ali

    2018-01-01

    Full Text Available This paper describes the relationship between splitting tensile strength and compressive strength of self-consolidating concrete using data collected from laboratory specimens tested at standard conditions. The results were then compared with some expressions published in international literature. The investigated variables included: type of cement, percentage of nanosilica and percentage of microsilica as a cement replacement by weight. In spite of concrete not being designed to resist direct tension the knowledge of tensile strength is needed to estimate the cracking load. In the absence of test results an estimate of the tensile strength may be obtained by using the relationship proposed. The verification of the proposed formula based on experimental data was estimated by means of the integral absolute error (IAE. The output of this study has provided a better understanding of the correlation between splitting and compressive strengths of SCCs and the effect of some related variables on the resultant behavior, which has therefore, helped to generate new expression with better accuracy.

  20. EVALUATION OF FUNCTIONAL OUTCOME AFTER OPEN REDUCTION AND INTERNAL FIXATION OF DISTAL FEMUR FRACTURES BY LOCKING COMPRESSION PLATE

    Directory of Open Access Journals (Sweden)

    L. Lokanadha Rao

    2016-09-01

    Full Text Available BACKGROUND In the supra and intercondylar fractures of femur particularly with intra articular extension, patient may develop stiffness of knee, shortening, rotational deformities, internal derangement of knee with instability, varus and valgus deformities which affect patient’s routine lifestyle. If these cases were treated with locking compression plate, the results obtained were successful, superior, timesaving providing early ambulation and least disability improving the functional outcome. MATERIALS AND METHODS This is a prospective interventional study. This study includes 25 supracondylar and intercondylar fractures of femur (both Muller’s Type ‘A’, Type B and Type ‘C’ fractures treated with open reduction and internal fixation by Locking Compression Plate in the Department of Orthopaedics, King George Hospital, Visakhapatnam from September 2013 to September 2015. There are 16 males and 9 females with age ranging from 20 to 80 years with an average of 44.6 years. Average age for males is 28.9 years and average age for females is 25 years. 18 fractures were due to road traffic accidents and 6 cases are due to fall from significant heights, 1 case due to simple fall from standing (osteoporosis. 15 cases were in right femur (60% and 10 cases were in left femur (40%. RESULTS 25 cases were included in the study. There is an increase in the rate of union, decreased time taken for union, increased knee range of motion, decreased time for weight-bearing, postoperative complications and duration for hospital stay. CONCLUSION LCP proved to be a good implant which could take the challenges like poor bone stock, severe comminution both metaphyseal and articular and prove successful. The locking head screws distally have prevented varus collapse, even in cases of osteoporosis. The Condylar LCP can be used in either an open or a minimally invasive manner.

  1. Haemodynamic Performance of Low Strength Below Knee Graduated Elastic Compression Stockings in Health, Venous Disease, and Lymphoedema.

    Science.gov (United States)

    Lattimer, C R; Kalodiki, E; Azzam, M; Geroulakos, G

    2016-07-01

    To test the in vivo haemodynamic performance of graduated elastic compression (GEC) stockings using air-plethysmography (APG) in healthy volunteers (controls) and patients with varicose veins (VVs), post-thrombotic syndrome (PTS), or lymphoedema. Responsiveness data were used to determine which group benefited the most from GEC. There were 12 patients per group compared using no compression, knee-length Class 1 (18-21 mmHg) compression, and Class 2 (23-32 mmHg) compression. Stocking/leg interface pressures (mmHg) were measured supine in two places using an air-sensor transducer. Stocking performance parameters, investigated before and after GEC, included the standard APG tests (working venous volume [wVV], venous filling index [VFI], venous drainage index [VDI], ejection fraction [EF]) and the occlusion plethysmography tests (incremental pressure causing the maximal increase in calf volume [IPMIV], outflow fraction [OF]). Results were expressed as median and interquartile range. Significant graduated compression was achieved in all four groups with higher interface pressures at the ankle. Only the VVs patients had a significant reduction in their wVV (without: 133 [109-146] vs. class1: 93 [74-113] mL) and the VFI (without: 4.6 [3-7.1] vs. class1: 3.1 [1.9-5] mL/s), both at p <.05. The IPMIV improved significantly in all groups except in the PTS group (p <.05). The OF improved only in the controls (without: 43 [38-51] vs. class1: 50 [48-53] %) and the VVs patients (without: 47 [39-58] vs. class1: 56 [50-64] %), both at p <.05. There were no significant differences in the VDI or the EF with GEC. Compression dose-response relationships were not observed. Patients with varicose veins improved the most, whereas those with PTS improved the least. Performance seemed to depend more on disease pathophysiology than compression strength. However, the lack of responsiveness to compression strength may be related to the low external pressures used. Stocking performance tests

  2. Study of Compressive Strength of Concrete with Coal Power Plant Fly Ash as Partial Replacement of Cement and Fine Aggregate

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2010-10-01

    Full Text Available This research study comprises of concrete cubes made with Ordinary Portland Cement and with different configurations of fly ash by replacing cement and fine aggregate. To achieve the aim of this study, total 81 concrete cubes were cast. Among 81 cubes, 9 cubes were made with normal concrete, 36 cubes were made by replacing 25%, 50%, 75% and 100% of fine aggregate with fly ash and 36 cubes were made by replacing 10%, 25%, 50%, and 75% of cement with fly ash. The cubes were 6\\" x 6\\" in cross-section, and the mix design was aimed for 5000 psi. After proper curing of all 81 cubes, they were tested at 3, 7 and 28 days curing age. The cubes were tested in Forney Universal Testing Machine. By analyzing the test results of all the concrete cubes, the following main findings have been drawn. The compressive strength of concrete cubes made by replacing 100 % fine aggregate by fly ash was higher than the concrete cubes made with Ordinary Portland Cement at all 3, 7 and 28 days curing ages. On the other hand, the compressive strength of concrete cubes made by replacing 10 % and 25 % cement by fly ash was slightly lower than the concrete cubes made with Ordinary Portland Cement at all curing ages, whereas, the compressive strength of concrete cubes made by replacing 50 % and 75 % of cement by fly ash were quite lower than the concrete cubes made with Ordinary Portland Cement at all curing ages.

  3. Application of Minimally Invasive Treatment of Locking Compression Plate in Schatzker Ⅰ-Ⅲ Tibial Plateau Fracture

    Directory of Open Access Journals (Sweden)

    Guohui Zhao

    2014-06-01

    Full Text Available Objective: To investigate the clinical effect of minimally invasive treatment of locking compression plate (LCP in Schatzker Ⅰ-Ⅲ tibial plateau fracture. Methods: Thirty-eight patients with Schatzker Ⅰ-Ⅲ tibial plateau fracture in our hospital were given minimally invasive treatment of LCP, and the artificial bone was transplanted to the depressed bone. Adverse responses, wound healing time and clinical efficacy were observed. Results: All patients were followed-up for 14- 20 months, and the mean duration was 16 months. Within 1 week after operation, 1 patient suffered from short-term rejection reaction to artificial bone, but he healed after corresponding measures were taken. There were no complications like skin necrosis and externally-exposed steel plate among the patients. In addition, all fractures were recovered, and the recovery time was 2.6 - 4.1 months, with the mean duration being 3.4 months. The recovery of knee function was favorable, in which 20 cases were excellent, 14 were good, and 4 were general. The excellent and good rate was 89.5%. Conclusion: Minimally invasive treatment of LCP for Schatzker Ⅰ - Ⅲ tibial plateau fracture can reduce the postoperative relocation loss, and has small trauma and stable fixation.

  4. A Pitfall in Fixation of Distal Humeral Fractures with Pre-Contoured Locking Compression Plate

    Directory of Open Access Journals (Sweden)

    Prakash Jayakumar

    2015-04-01

    Full Text Available Anatomically precontoured locking plates are intended to facilitate the fixation of articular fractures and particularly those associated with osteoporosis. Fractures of the distal humerus are relatively uncommon injuries where operative intervention can be exceptionally challenging. The distal humeral trochlea provides a very narrow anatomical window through which to pass a fixed-angle locking screw, which must also avoid the olecranon, coronoid, and radial fossae. We describe 3 patients (ages 27, 49, and 73 years with a bicolumnar fracture of the distal humerus where very short distal locking screws were used. Intra-articular screw placement was avoided but loss of fixation occurred in two patients and a third was treated with a prolonged period of immobilization. We postulate that fixed-angle screw trajectories may make it difficult for the surgeon to place screws of adequate length in this anatomically confined region, and may lead to insufficient distal fixation. Surgical tactics should include placement of as many screws as possible into the distal fragment, as long as possible, and that each screw pass through a plate without necessarily locking in.

  5. An in vitro study to compare the transverse strength of thermopressed and conventional compression-molded polymethylmethacrylate polymers.

    Science.gov (United States)

    Raut, Anjana; Rao, Polsani Laxman; Vikas, B V J; Ravindranath, T; Paradkar, Archana; Malakondaiah, G

    2013-01-01

    Acrylic resins have been in the center stage of Prosthodontics for more than half a century. The flexural fatigue failure of denture base materials is the primary mode of clinical failure. Hence there is a need for superior physical and mechanical properties. This in vitro study compared the transverse strength of specimens of thermopressed injection-molded and conventional compression-molded polymethylmethacrylate polymers and examined the morphology and microstructure of fractured acrylic specimens. The following denture base resins were examined: Brecrystal (Thermopressed injection-molded, modified polymethylmethacrylate) and Pyrax (compression molded, control group). Specimens of each material were tested according to the American Society for Testing and Materials standard D790-03 for flexural strength testing of reinforced plastics and subsequently examined under SEM. The data was analyzed with Student unpaired t test. Flexural strength of Brecrystal (82.08 ± 1.27 MPa) was significantly higher than Pyrax (72.76 ± 0.97 MPa). The tested denture base materials fulfilled the requirements regarding flexural strength (>65 MPa). The scanning electron microscopy image of Brecrystal revealed a ductile fracture with crazing. The fracture pattern of control group specimens exhibited poorly defined crystallographic planes with a high degree of disorganization. Flexural strength of Brecrystal was significantly higher than the control group. Brecrystal showed a higher mean transverse strength value of 82.08 ± 1.27 MPa and a more homogenous pattern at microscopic level. Based on flexural strength properties and handling characteristics, Brecrystal may prove to be an useful alternative to conventional denture base resins.

  6. An in vitro study to compare the transverse strength of thermopressed and conventional compression-molded polymethylmethacrylate polymers

    Directory of Open Access Journals (Sweden)

    Anjana Raut

    2013-01-01

    Full Text Available Statement of Problem: Acrylic resins have been in the center stage of Prosthodontics for more than half a century. The flexural fatigue failure of denture base materials is the primary mode of clinical failure. Hence there is a need for superior physical and mechanical properties. Purpose: This in vitro study compared the transverse strength of specimens of thermopressed injection-molded and conventional compression-molded polymethylmethacrylate polymers and examined the morphology and microstructure of fractured acrylic specimens. Materials and Methods: The following denture base resins were examined: Brecrystal (Thermopressed injection-molded, modified polymethylmethacrylate and Pyrax (compression molded, control group. Specimens of each material were tested according to the American Society for Testing and Materials standard D790-03 for flexural strength testing of reinforced plastics and subsequently examined under SEM. The data was analyzed with Student unpaired t test. Results: Flexural strength of Brecrystal (82.08 ± 1.27 MPa was significantly higher than Pyrax (72.76 ± 0.97 MPa. The tested denture base materials fulfilled the requirements regarding flexural strength (>65 MPa. The scanning electron microscopy image of Brecrystal revealed a ductile fracture with crazing. The fracture pattern of control group specimens exhibited poorly defined crystallographic planes with a high degree of disorganization. Conclusion: Flexural strength of Brecrystal was significantly higher than the control group. Brecrystal showed a higher mean transverse strength value of 82.08 ± 1.27 MPa and a more homogenous pattern at microscopic level. Based on flexural strength properties and handling characteristics, Brecrystal may prove to be an useful alternative to conventional denture base resins.

  7. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression.

    Science.gov (United States)

    Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong

    2017-10-26

    The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation.

  8. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Gary Wayne [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression.

  9. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    International Nuclear Information System (INIS)

    Pinkerton, G.W.

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression

  10. A Mathematical Model for the Non-Stationary Process of Compression Molding of Plates from Granulate of Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Vladimir N. Vodyakov

    2017-12-01

    Full Text Available Introduction: Mathematical modeling allows assigning optimal parameters for the process of compression molding of plates and calculating the dimensions of the mold without costly and long-term experiments. The options ensure the required precision of pressing. The disadvantages of the known models are the assumptions about the process isothermicity and independence of the thermal-physical coefficients from temperature. The models do not take into account the dependence of the pressure in the cavity of the mold on the excess of the melt; the problem of calculating the dimensions of the mold cavity for given plate dimensions is not posed. The known models do not give a complete description of all stages of the process. The aim of this paper is to develop a perfect mathematical model without limitations for the compression molding of plates from a granulate of highly filled thermoplastic composites. Materials and Methods: The paper proposes a non-stationary mathematical model. The model takes into account the presence of physical states transitions and dependence of the thermophysical characteristics of composites on temperature. The model is based on the known equations of thermal physics and continuum mechanics. Results: Initial and boundary conditions, rheological equations, systems of equations for the material, thermal, and power balance are determined for three stages of the process. The calculation problems are determined too. A program of iterative numerical calculation has been developed because of the resulting system of equations has no analytical solution. A convergence of experimental and theoretical results with the correlation coefficient confirms the adequacy of the developed mathematical model and the calculation program. Discussion and Conclusions: The results of the study allow calculating the dimensions of the mold cavity, the initial granulate required mass, technological losses, the time functions of pressure and temperature

  11. Steel shear strength of anchors with stand-off base plates.

    Science.gov (United States)

    2013-09-01

    Sign and signal structures are often connected to concrete foundations through a stand-off annular base plate with a double-nut anchor bolt connection, which leaves exposed anchor bolt lengths below leveling nuts used in these connections. Cantilever...

  12. Early age compressive strength, porosity, and sorptivity of concrete using peat water to produce and cure concrete

    Science.gov (United States)

    Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.

    2017-09-01

    Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.

  13. The influence of poly(acrylic) acid number average molecular weight and concentration in solution on the compressive fracture strength and modulus of a glass-ionomer restorative.

    LENUS (Irish Health Repository)

    Dowling, Adam H

    2011-06-01

    The aim was to investigate the influence of number average molecular weight and concentration of the poly(acrylic) acid (PAA) liquid constituent of a GI restorative on the compressive fracture strength (σ) and modulus (E).

  14. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    Science.gov (United States)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated

  15. Experimental Investigation and Prediction of Compressive Strength of Ultra-High Performance Concrete Containing Supplementary Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Jisong Zhang

    2017-01-01

    Full Text Available Ultra-high performance concrete (UHPC has superior mechanical properties and durability to normal strength concrete. However, the high amount of cement, high environmental impact, and initial cost are regarded as disadvantages, restricting its wider application. Incorporation of supplementary cementitious materials (SCMs in UHPC is an effective way to reduce the amount of cement needed while contributing to the sustainability and cost. This paper investigates the mechanical properties and microstructure of UHPC containing fly ash (FA and silica fume (SF with the aim of contributing to this issue. The results indicate that, on the basis of 30% FA replacement, the incorporation of 10% and 20% SF showed equivalent or higher mechanical properties compared to the reference samples. The microstructure and pore volume of the UHPCs were also examined. Furthermore, to minimise the experimental workload of future studies, a prediction model is developed to predict the compressive strength of the UHPC using artificial neural networks (ANNs. The results indicate that the developed ANN model has high accuracy and can be used for the prediction of the compressive strength of UHPC with these SCMs.

  16. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  17. Improvement of linerboard compressive strength by hot-pressing and addition of recovered lignin from spent pulping liquor

    Directory of Open Access Journals (Sweden)

    Saidan Motasem N.

    2015-01-01

    Full Text Available This paper evaluates the effect of addition of precipitated lignin, from spent pulping black liquor, to a wet single-ply linerboard handsheet followed by hot-pressing at different temperatures, on the improvement of its compressive strength. Linerboard handsheets for testing the effect of lignin addition were prepared so that the lignin-modified sheets would have the same basis weights as the control handsheets. Both the commercial and the black liquor lignin were added as a powder to wet handsheets after couching from the handsheet mold. The experiments and testing of the physical and strength properties of dried handsheets were conducted according to TAPPI test methods. The results revealed that the addition of the recovered lignin (at pH of 2 to the wet handsheet followed by hot-pressing at 150°C increased the compressive strength of linerboard handsheets by 10% to 20% above that for handsheets made without the addition of lignin. The same results were achieved using purchased lignin. However, with a 16% addition to linerboard, purchased lignin would be too expensive. These results indicate that inclusion of kraft lignin in linerboard sheets could be proved as an attractive option to reduce linerboard basis weight.

  18. A study on the compressive and tensile strength of foamed concrete containing pulverized bone as a partial replacement of cement

    International Nuclear Information System (INIS)

    Falade, F.

    2013-01-01

    In this study, structural properties of foamed aerated concrete with and without pulverized bone were investigated. These properties are workability, plastic and testing densities, compressive strength, and tensile strength at the design density of 1600kg/m/sub 3/. The tensile strength was evaluated by subjecting 150 x 150 x750mm unreinforced foamed concrete beams to flexural test and 150x300mm cylinder specimens were subjected to splitting test. 150mm cube specimens were used for the determination of both the compressive strength and the testing density of the foamed aerated concrete. The plastic density was investigated using a container of known volume, and its workability determined using the slump test. The pulverized bone content was varied from 0 to 20% at interval of 5%. The specimens without the pulverized bone served as the control. At the designed density of 1600 kg/m/sub 3/, the results for the control specimens at 28-day curing age are 15.43 and 13.89N/mm/sub 2/ for air-and water-cured specimens respectively. The modulus of rupture and splitting tensile strength are 2.53 and 1.63N/mm/sub 2/ respectively. The results for specimens with pulverized bone did not differ significantly from the specimens without pulverized bone. From the results of this investigation, it can be concluded that foamed aerated concrete used for this study has potential for structural applications. Also pulverized bone can be used to reduce (partially replace) the quantity of cement used in aerated concrete production; thus ridding our environment of potentially harmful wastes, as well as reduce the consumption of non-renewable resources. (author)

  19. Influence of Palm Oil Fuel Ash and W/B Ratios on Compressive Strength, Water Permeability, and Chloride Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    Wachilakorn Sanawung

    2017-01-01

    Full Text Available This research studies the effects of W/B ratios and palm oil fuel ash (POFA on compressive strength, water permeability, and chloride resistance of concrete. POFA was ground until the particles retained on sieve number 325 were less than 5% by weight. POFA was used to partially replace OPC at rates of 15, 25, and 35% by weight of binder. The water to binder (W/B ratios of concrete were 0.40 and 0.50. The compressive strength, water permeability, and chloride resistance of concrete were investigated up to 90 days. The results showed that POFA concrete with W/B ratio of 0.40 had the compressive strengths ranging from 45.8 to 55.9 MPa or 82–94% of OPC concrete at 90 days, while POFA concrete with W/B ratio of 0.50 had the compressive strengths of 33.9–41.9 MPa or 81–94% of OPC concrete. Furthermore, the compressive strength of concrete incorporation of ground POFA at 15% was the same as OPC concrete. The water permeability coefficient and the chloride ion penetration of POFA concrete were lower than OPC concrete when both types of concrete had the same compressive strengths. The findings also indicated that water permeability and chloride ion penetration of POFA concrete were significantly reduced compared to OPC concrete.

  20. Effect of Abrasive Waterjet Peening Surface Treatment of Steel Plates on the Strength of Single-Lap Adhesive Joints

    Directory of Open Access Journals (Sweden)

    Kamil Anasiewicz

    2017-09-01

    Full Text Available The paper presents results of comparative study of shear strength of single–lap adhesive joints, depending on the method of surface preparation of steel plates with increased corrosion resistance. The method of preparing adherend surfaces is often one of the most important factors determining the strength of adhesive joints. Appropriate geometric surface development and cleaning of the surface enhances adhesion forces between adherend material and adhesive. One of the methods of shaping engineering materials is waterjet cutting, which in the AWJP – abrasive waterjet peening variant, serves to shape flat surfaces of the material by changing the roughness and introducing stresses into the surface layer. These changes are valuable when preparing adhesive joints. In the study, surface roughness parameters obtained with AWJP treatment, were analyzed in direct relation to the strength of the adhesive joint. As a consequence of the experimental results analysis, the increase in the strength of the adhesive joints was observed in a certain range of parameters used for AWJP treatment. A decrease in shear strength of adhesive joint with the most modified topography of overlap surface was observed.

  1. EVALUATION OF RESULTS IN FRACTURES OF BOTH BONES FOREARM TREATED WITH DYNAMIC COMPRESSION PLATING

    Directory of Open Access Journals (Sweden)

    Sindhuja G

    2017-06-01

    incisions for radius and ulna and preservation of the natural curves of radius will lessen the rate of complications. Rigid fixation of fractures after perfect anatomical reduction with 3.5 mm DCP and screws allows early mobilisation, prevents soft tissue contracture, muscular tethering and improves vascularity. A minimum of 6 cortices have to be fixed in each fracture fragment and the nearest screw to the fracture line should be at least 1 cm away. It minimises vascular damage to the plated bone segment.

  2. A hybrid approach to predict the relationship between tablet tensile strength and compaction pressure using analytical powder compression.

    Science.gov (United States)

    Persson, Ann-Sofie; Alderborn, Göran

    2018-04-01

    The objective was to present a hybrid approach to predict the strength-pressure relationship (SPR) of tablets using common compression parameters and a single measurement of tablet tensile strength. Experimental SPR were derived for six pharmaceutical powders with brittle and ductile properties and compared to predicted SPR based on a three-stage approach. The prediction was based on the Kawakita b -1 parameter and the in-die Heckel yield stress, an estimate of maximal tensile strength, and a parameter proportionality factor α. Three values of α were used to investigate the influence of the parameter on the SPR. The experimental SPR could satisfactorily be described by the three stage model, however for sodium bicarbonate the tensile strength plateau could not be observed experimentally. The shape of the predicted SPR was to a minor extent influenced by the Kawakita b -1 but the width of the linear region was highly influenced by α. An increased α increased the width of the linear region and thus also the maximal predicted tablet tensile strength. Furthermore, the correspondence between experimental and predicted SPR was influenced by the α value and satisfactory predictions were in general obtained for α = 4.1 indicating the predictive potential of the hybrid approach. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Aging and Curing Temperature Effects on Compressive Strength of Mortar Containing Lime Stone Quarry Dust and Industrial Granite Sludge

    Directory of Open Access Journals (Sweden)

    Muhammad Nasir Amin

    2017-06-01

    Full Text Available In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD and granite sludge (GS, respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD, fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures and curing moisture (continuously moist and partially moist followed by air curing. Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM and mortar containing fly ash (FA. The test results indicated that under normal curing (20 °C, moist cured, the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more incorporating local environmental conditions.

  4. The role of frictional strength on plate coupling at the subduction interface

    KAUST Repository

    Tan, Eh; Lavier, Luc L.; Van Avendonk, Harm J. A.; Heuret, Arnauld

    2012-01-01

    and serpentinized mantle (friction angle 1 to 15, or static friction coefficient 0.017 to 0.27) to control the amount of frictional coupling between the plates. With plastic strain weakening in the lithosphere, our numerical models can attain stable subduction

  5. Effects of equal channel angular extrusion on microstructure, strength and ballistic performance of AA5754 plates

    DEFF Research Database (Denmark)

    Mishin, Oleg; Hong, Chuanshi; Toftegaard, Helmuth Langmaack

    2014-01-01

    The microstructure, hardness, tensile properties and ballistic performance have been investigated in thick plates of the AA5754 alloy both in a coarse-grained as-received condition and after 4 passes of equal channel angular extrusion (ECAE) conducted at elevated temperatures. It is found that ECAE...

  6. Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing

    Science.gov (United States)

    Yin, Peng-Fei; Yang, Sheng-Qi

    2018-05-01

    As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.

  7. Compressive Strength of EN AC-44200 Based Composite Materials Strengthened with α-Al2O3 Particles

    OpenAIRE

    Kurzawa A.; Kaczmar J. W.

    2017-01-01

    The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250°C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the co...

  8. Experimental investigation and empirical modelling of FDM process for compressive strength improvement

    Directory of Open Access Journals (Sweden)

    Anoop K. Sood

    2012-01-01

    Full Text Available Fused deposition modelling (FDM is gaining distinct advantage in manufacturing industries because of its ability to manufacture parts with complex shapes without any tooling requirement and human interface. The properties of FDM built parts exhibit high dependence on process parameters and can be improved by setting parameters at suitable levels. Anisotropic and brittle nature of build part makes it important to study the effect of process parameters to the resistance to compressive loading for enhancing service life of functional parts. Hence, the present work focuses on extensive study to understand the effect of five important parameters such as layer thickness, part build orientation, raster angle, raster width and air gap on the compressive stress of test specimen. The study not only provides insight into complex dependency of compressive stress on process parameters but also develops a statistically validated predictive equation. The equation is used to find optimal parameter setting through quantum-behaved particle swarm optimization (QPSO. As FDM process is a highly complex one and process parameters influence the responses in a non linear manner, compressive stress is predicted using artificial neural network (ANN and is compared with predictive equation.

  9. Experimental and statistical investigation of the compressive strength anisotropy in structural concrete

    DEFF Research Database (Denmark)

    Hansen, Soren Gustenhoff; Lauridsen, Jorgen Trankjaer; Hoang, Linh Cao

    2018-01-01

    design parameters and conditions on the anisotropy. This includes the influence of reinforcement, w/c-ratio, curing time, load history and structural geometry. For this purpose, cores were drilled out at different angles from beam- and slab specimens for compressive testing. The main findings include: a...

  10. Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression

    International Nuclear Information System (INIS)

    Wei, Q.; Jiao, T.; Ramesh, K.T.; Ma, E.; Kecskes, L.J.; Magness, L.; Dowding, R.; Kazykhanov, V.U.; Valiev, R.Z.

    2006-01-01

    We have systematically investigated the quasi-static and dynamic mechanical behavior (especially dynamic failure) of ultra-fine grained (UFG) tungsten (W) under uniaxial compression. The starting material is of commercial purity and large grain size. We utilized severe plastic deformation to achieve the ultrafine microstructure characterized by grains and subgrains with sizes of ∼500 nm, as identified by transmission electron microscopy. Results of quasi-static compression show that the UFG W behaves in an elastic-nearly perfect plastic manner (i.e., vanishing strain hardening), with its flow stress approaching 2 GPa, close to twice that of conventional coarse grain W. Post-mortem examinations of the quasi-statically loaded samples show no evidence of cracking, in sharp contrast to the behavior of conventional W (where axial cracking is usually observed). Under uniaxial dynamic compression (strain rate ∼10 3 s -1 ), the true stress-true strain curves of the UFG W exhibit significant flow softening, and the peak stress is ∼3 GPa. Furthermore, the strain rate sensitivity of the UFG W is reduced to half the value of the conventional W. Both in situ high-speed photography and post-mortem examinations reveal shear localization and as a consequence, cracking of the UFG W under dynamic uniaxial compression. These observations are consistent with recent observations on other body-centered cubic metals with nanocrystalline or ultrafine microstructures. The experimental results are discussed using existing models for adiabatic shear localization in metals

  11. Functional Recovery Following Pertrochanteric Hip Fractures Fixated with the Dynamic Hip Screw vs. the Percutaneous Compression Plate

    Directory of Open Access Journals (Sweden)

    Yocheved Laufer

    2005-01-01

    Full Text Available The Dynamic Hip Screw (DHS is currently the most frequently used implant for the treatment of pertrochanteric hip fractures. The Percutaneous Compression Plate (PCCP is a recently developed, alternative device that involves minimal invasive surgery. The objective of the present study was to compare functional recovery following these two surgical procedures. A total of 76 consecutive elderly subjects (mean age and standard deviation, 80.6 ± 5.5 following pertrochanteric hip fracture fixation were evaluated prospectively. Functional recovery was assessed 3 and 12 weeks and 2 years following surgery. Differences between groups 3 weeks postsurgery were found only in pain level during ambulation and in the weight-bearing capability of the operated extremity, which were both in favor of the PCCP. By 3 months, both groups had improved in all measures, but did not reach their preinjury level of independence. However, the PCCP group ambulated with fewer assistive devices and demonstrated better recovery of basic activities of daily living (BADL. While the majority of the subjects from both groups ambulated independently 2 years postsurgery, the PCCP group exhibited less pain during ambulation, was more independent in ADL, and required fewer assistive devices for ambulation. To summarize, the PCCP presents enhanced short- and long-term recovery of functional abilities in comparison to DHS. However, given the limited number of patients, further studies are necessary to substantiate these results.

  12. Unstable recent intracapsular femoral neck fractures in young adults: Osteosynthesis and primary valgus osteotomy using broad dynamic compression plate

    Directory of Open Access Journals (Sweden)

    Singh M

    2008-01-01

    Full Text Available Background: Displaced intracapsular femoral neck fractures continue to be a difficult problem to treat. Various treatment modalities and their modifications have been proposed to improve the outcome. Osteosynthesis and primary valgus angulation osteotomy is one of them. Technique and outcome in a consecutive series of recent intracapsular femoral neck fractures in young adults, from a single center, is presented. Materials and Methods: Fifty-five patients of recent (< 3 weeks old displaced intracapsular fracture neck femur (Garden III and IV, Pauwels III, with or without comminution in the age group 20-50 years (mean 35.4±10.4 years were subjected to osteosynthesis and primary valgus intertrochanteric osteotomy using contoured broad dynamic compression plate (DCP. The patients were followed up from two to six years (mean 4.6 years. Results: Fifty-one fractures united by six months of the index procedure (92.7% union range. Avascular necrosis (AVN developed in six patients (11%. The other complications were shortening (six, coxa vara (two, infection (two and delayed union at osteotomy site (one. Excellent results were achieved in 48, good/fair in four and poor in three patients. Conclusion: Osteosynthesis with cancellous screw and primary valgus intertrochanteric osteotomy stabilized by a contoured broad DCP is a simple, easy to perform, biological treatment. Failure in a particular case can be treated with any appropriate second procedure. Level of Evidence: IV

  13. Optimization of the Adhesion Strength of Arc Ion Plating TiAlN Films by the Taguchi Method

    Directory of Open Access Journals (Sweden)

    Tong-Yul Cho

    2009-06-01

    Full Text Available A three-level six-factor (arc power, substrate temperature, pre-treatment bias voltage, working pressure, deposition bias voltage and pretreatment time orthogonal experimental array (L18 to optimize the adhesion strength of arc ion plating (AIP TiAlN films was designed using the Taguchi method. An optimized film process, namely substrate temperature 220 °C, arc power 60 A, negative bias voltage -800 V, nitrogen pressure 10-2 Torr, pretreated voltage -450 V and pretreated time 15 minutes was obtained by the Taguchi program for the purpose of obtaining a larger critical load. The critical load of the optimized TiAlN film (53 N was increased by 43% compared to the film with the highest critical load before optimization. The improvement in the adhesion strength of the films was attributed to the enhancement of hardness and the competitive growth of the (111, (200 and (220 orientations in the film.

  14. Compressive Strength Prediction of Square Concrete Columns Retrofitted with External Steel Collars

    Directory of Open Access Journals (Sweden)

    Pudjisuryadi, P.

    2013-01-01

    Full Text Available Transverse confining stress in concrete members, commonly provided by transverse reinforcement, has been recognized to enhance strength and ductility. Nowadays, the confining method has been further developed to external confinement approach. This type of confinement can be used for retrofitting existing concrete columns. Many external confining techniques have been proven to be successful in retrofitting circular columns. However, for square or rectangular columns, providing effective confining stress by external retrofitting method is not a simple task due to high stress concentration at column’s corners. This paper proposes an analytical model to predict the peak strength of square concrete columns confined by external steel collars. Comparison with the experimental results showed that the model can predict the peak strength reasonably well. However, it should be noted that relatively larger amount of steel is needed to achieve comparable column strength enhancement when it is compared with those of conve tional internally-confined columns.

  15. STUDY OF EXPERIMENTAL SAMPLES WITH DIFFERENT CONFIGURATIONS AT THE JOINTS COMPRESSIVE STRENGTH

    Directory of Open Access Journals (Sweden)

    E. N. Magomedova

    2013-01-01

    Full Text Available The article marked the behavior of concrete under the action of water, the effect of moisture and water saturation on the performance and durability of concrete waterproofing; offered special configuration interface, allowing to increase the strength characteristics of the concrete structure, the results of experimental studies; conclusions about the relationship configuration of joints and their strength.

  16. Multicriteria decision-making analysis based methodology for predicting carbonate rocks' uniaxial compressive strength

    Directory of Open Access Journals (Sweden)

    Ersoy Hakan

    2012-10-01

    Full Text Available

    ABSTRACT

    Uniaxial compressive strength (UCS deals with materials' to ability to withstand axially-directed pushing forces and especially considered to be rock materials' most important mechanical properties. However, the UCS test is an expensive, very time-consuming test to perform in the laboratory and requires high-quality core samples having regular geometry. Empirical equations were thus proposed for predicting UCS as a function of rocks' index properties. Analytical hierarchy process and multiple regression analysis based methodology were used (as opposed to traditional linear regression methods on data-sets obtained from carbonate rocks in NE Turkey. Limestone samples ranging from Devonian to late Cretaceous ages were chosen; travertine-onyx samples were selected from morphological environments considering their surface environmental conditions Test results from experiments carried out on about 250 carbonate rock samples were used in deriving the model. While the hierarchy model focused on determining the most important index properties affecting on UCS, regression analysis established meaningful relationships between UCS and index properties; 0. 85 and 0. 83 positive coefficient correlations between the variables were determined by regression analysis. The methodology provided an appropriate alternative to quantitative estimation of UCS and avoided the need for tedious and time consuming laboratory testing


    RESUMEN

    La resistencia a la compresión uniaxial (RCU trata con la capacidad de los materiales para soportar fuerzas empujantes dirigidas axialmente y, especialmente, es considerada ser uno de las más importantes propiedades mecánicas de

  17. In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure

    International Nuclear Information System (INIS)

    Huang, Lin; Jiang, Lin; Topping, Troy D.; Dai, Chen; Wang, Xin; Carpenter, Ryan; Haines, Christopher; Schoenung, Julie M.

    2017-01-01

    In this work a novel process methodology to concurrently improve the compressive strength (2078 MPa at a strain rate of 5 × 10"−"4 s"−"1) and strain-to-failure (over 40%) of bulk tungsten materials has been described. The process involves the in situ formation of intragranular tungsten oxide nanoparticles, facilitated by the application of a pressure of 1 GPa at a low sintering temperature of 1200 °C during spark plasma sintering (SPS). The results show that the application of a high pressure of 1 GPa during SPS significantly accelerates the densification process. Concurrently, the second phase oxide nanoparticles with an average grain size of 108 nm, which are distributed within the interiors of the W grains, simultaneously provide strengthening and plasticity by inhibiting grain growth, and generating, blocking, and storing dislocations. - Graphical abstract: In this work a novel process methodology to concurrently improve the compressive strength (2078 MPa at a strain rate of 5 × 10"−"4 s"−"1) and strain-to-failure (over 40%) of bulk W materials has been described. The process involves the in situ formation of intragranular tungsten oxide nanoparticles, facilitated by the application of a pressure of 1 GPa at a low sintering temperature of 1200 °C during spark plasma sintering (SPS).

  18. Evaluation of compressive strength and water absorption of soil-cement bricks manufactured with addition of pet (polyethylene terephthalate wastes

    Directory of Open Access Journals (Sweden)

    João Alexandre Paschoalin Filho

    2016-04-01

    Full Text Available This paper presents the evaluation of compressive strength of soil-cement bricks obtained by the inclusion in their mixture of PET flakes through mineral water bottles grinding. The Polyethylene Terephthalate (PET has been characterized by its difficulty of disaggregation in nature, requiring a long period for this. On the other hand, with the increase in civil construction activities the demand for raw material also increases, causing considerable environmental impacts. In this context, the objective of this research is to propose a simple methodology, preventing its dumping and accumulation in irregular areas, and reducing the demand of raw materials by the civil construction industry. The results showed that compressive strengths obtained were lower than recommended by NBR 8491 (Associação Brasileira de Normas Técnicas [ABNT], 2012b at seven days of curing time. However, they may be used as an alternative solution in masonry works in order to not submit themselves to great loads or structural functions. The studied bricks also presented water absorption near to recommended values by NBR 8491 (ABNT, 2012b. Manufacturing costs were also determined for this brick, comparing it with the costs of other brick types. Each brick withdrew from circulation approximately 300 g of PET waste. Thus, for an area of 1 m2 the studied bricks can promote the withdrawal of approximately 180 beverage bottles of 2 L capacity.

  19. Effect of heat bed temperature of 3D bioprinter to hardness and compressive strength of scaffold bovine hydroxyapatite

    Science.gov (United States)

    Triyono, Joko; Pratama, Aditya; Sukanto, Heru; Nugroho, Yohanes; Wijayanta, Agung Tri

    2018-02-01

    This study aimed to investigate the effect of heat bed temperature of 3D bioprinter toward compressive strength and hardness bovine bone hydroxyapatite scaffold for bone filler applications. BHA-glycerin mixed with a ratio of 1:1, and keep it for 24 hours. After the homogenization process acquired, bio-Ink with shaped slurry will be used as a material for a 3D printer. The printing process with a temperature variation have performed by setting up heat bed temperature. After printing process was completed, the 3D scaffold was detained on the heat bed for 10 minutes before being picked up. The test results in this study had the lowest hardness value of 9.82±0.62 VHN and the highest number of 24.32±0.99 VHN. The compressive strength testing had the lowest value of 1.62±0.16 MPa with the highest number of 5.67±0.39 MPa. Pore observation using a scanning electron microscope. The result shows that the size of the pores were not much different, that was ±100-200 µm. This observation also indicated that the pore form was square pores.

  20. Axial compressive strength of human vertebrae trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus

    Directory of Open Access Journals (Sweden)

    Reinaldo Cesar

    2017-06-01

    Full Text Available Abstract Introduction Biomechanical assessment of trabecular bone microarchitecture contributes to the evaluation of fractures risk associated with osteoporosis and plays a crucial role in planning preventive strategies. One of the most widely clinical technics used for osteoporosis diagnosis by health professionals is bone dual-energy X-ray absorptiometry (DEXA. However, doubts about its accuracy motivate the introduction of congruent technical analysis such as calcaneal ultrasonometry (Quantitative Ultrasonometry - QUS. Methods Correlations between Bone Quality Index (BQI, determined by calcaneal ultrasonometry of thirty (30 individuals classified as normal, osteopenic and osteoporotic, and elastic modulus (E and ultimate compressive strength (UCS from axial compression tests of ninety (90 proof bodies from human vertebrae trabecular bone, which were extracted from cadavers in the twelfth thoracic region (T12, first and fourth lumbar (L1 and L4. Results Analysis of variance (ANOVA showed significant differences for E (p = 0.001, for UCS (p = 0.0001 and BQI. Spearman’s rank correlation coefficient (rho between BQI and E (r = 0.499 and BQI and UCS (r = 0.508 were moderate. Discussion Calcaneal ultrasonometry technique allowed a moderate estimate of bone mechanical strength and fracture risk associated with osteoporosis in human vertebrae.

  1. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Li, Shuhui [Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Bing; Gao, Yongsheng [Automotive Steel Research Institute, R and D Center, BaoShan Iron and Steel Co.,Ltd, Shanghai 201900 (China)

    2013-12-16

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  2. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    International Nuclear Information System (INIS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-01-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully

  3. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis

    OpenAIRE

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rota...

  4. Treatment of type 2 and 4 olecranon fractures with locking compression plate (LCP) osteosynthesis in horses: a prospective study (2002-2008)

    OpenAIRE

    Jackson, M; Kummer, M; Auer, J; Hagen, R; Fürst, A

    2011-01-01

    This prospective study describes a series of 18 olecranon fractures in 16 horses that were treated with locking compression plates (LCP). Twelve of the 18 fractures were simple (type 2), whereas six were comminuted (type 4). Six fractures were open and 12 were closed. Each horse underwent LCP osteosynthesis consisting of open reduction and application of one or two LCP. Complete fracture healing was achieved in 13 horses. Three horses had to be euthanatized: two because of severe infection an...

  5. modified water-cement ratio law for compressive strength of rice

    African Journals Online (AJOL)

    user

    various types of structures due to its structural stability and strength [1]. ... value of water-cement ratio results in greater pore spaces in .... as well as removing the excess water on the surface of the soil particles. ... and aggregate impact value.

  6. Intramedullary nail versus dynamic compression plate fixation in treating humeral shaft fractures: grading the evidence through a meta-analysis.

    Directory of Open Access Journals (Sweden)

    JianXiong Ma

    Full Text Available There is a debate regarding the choice of operative intervention in humeral shaft fractures that require surgical intervention. The choices for operative interventions include intramedullary nailing (IMN and dynamic compression plate (DCP. This meta-analysis was performed to compare fracture union, functional outcomes, and complication rates in patients treated with IMN or DCP for humeral shaft fractures and to develop GRADE (Grading of Recommendations, Assessment, Development, and Evaluation-based recommendations for using the procedures to treat humeral shaft fractures. A systematic search of all the studies published through December 2012 was conducted using the Medline, Embase, Sciencedirect, OVID and Cochrane Central databases. The randomized controlled trials (RCTs and quasi-RCTs that compared IMN with DCP in treating adult patients with humeral shaft fractures and provided data regarding the safety and clinical effects were identified. The demographic characteristics, adverse events and clinical outcomes were manually extracted from all of the selected studies. Ten studies that included a total of 448 patients met the inclusion criteria. The results of a meta-analysis indicated that both IMN and DCP can achieve similar fracture union with a similar incidence of radial nerve injury and infection. IMN was associated with an increased risk of shoulder impingement, more restriction of shoulder movement, an increased risk of intraoperative fracture comminution, a higher incidence of implant failure, and an increased risk of re-operation. The overall GRADE system evidence quality was very low, which reduces our confidence in the recommendations of this system. DCP may be superior to IMN in the treatment of humeral shaft fractures. Because of the low quality evidence currently available, high-quality RCTs are required.

  7. Elevated Temperature, Residual Compressive Strength of Impact-Damaged Sandwich Structure Manufactured Out-of-Autoclave

    Science.gov (United States)

    Grimsley, Brian W.; Sutter, James K.; Burke, Eric R.; Dixon, Genevieve D.; Gyekenyesi, Thomas G.; Smeltzer, Stanley S.

    2012-01-01

    Several 1/16th-scale curved sandwich composite panel sections of a 10 m diameter barrel were fabricated to demonstrate the manufacturability of large-scale curved sections using minimum gauge, [+60/-60/0]s, toughened epoxy composite facesheets co-cured with low density (50 kilograms per cubic meters) aluminum honeycomb core. One of these panels was fabricated out of autoclave (OoA) by the vacuum bag oven (VBO) process using Cycom(Registered Trademark) T40-800b/5320-1 prepreg system while another panel with the same lay-up and dimensions was fabricated using the autoclave-cure, toughened epoxy prepreg system Cycom(Registered Trademark) IM7/977-3. The resulting 2.44 m x 2 m curved panels were investigated by non-destructive evaluation (NDE) at NASA Langley Research Center (NASA LaRC) to determine initial fabrication quality and then cut into smaller coupons for elevated temperature wet (ETW) mechanical property characterization. Mechanical property characterization of the sandwich coupons was conducted including edge-wise compression (EWC), and compression-after-impact (CAI) at conditions ranging from 25 C/dry to 150 C/wet. The details and results of this characterization effort are presented in this paper.

  8. The Influence of GI and GII on the Compression After Impact Strength of Carbon Fiber/Epoxy Laminates and Sandwich Structure

    Science.gov (United States)

    Nettles, A. T.; Scharber, L. L.

    2017-01-01

    This study measured the compression after impact strength of IM7 carbon fiber laminates made from epoxy resins with various mode I and mode II toughness values to observe the effects of these toughness values on the resistance to damage formation and subsequent residual compression strength-carrying capabilities. Both monolithic laminates and sandwich structure were evaluated. A total of seven different epoxy resin systems were used ranging in approximate GI values of 245-665 J/sq m and approximate GII values of 840-2275 J/sq m. The results for resistance to impact damage formation showed that there was a direct correlation between GII and the planar size of damage, as measured by thermography. Subsequent residual compression strength testing suggested that GI had no influence on the measured values and most of the difference in compression strength was directly related to the size of damage. Thus, delamination growth assumed as an opening type of failure mechanism does not appear to be responsible for loss of compression strength in the specimens examined in this study.

  9. Spall strength and ejecta production of gold under explosively driven shock wave compression

    International Nuclear Information System (INIS)

    La Lone, B. M.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Holtkamp, D. B.

    2013-01-01

    Explosively driven shock wave experiments were conducted to characterize the spall strength and ejecta production of high-purity cast gold samples. The samples were from 0.75 to 1.84 mm thick and 30 mm in diameter. Peak stresses up to 44 GPa in gold were generated using PBX-9501 high explosive. Sample free surface and ejecta velocities were recorded using photonic Doppler velocimetry techniques. Lithium niobate pins were used to quantify the time dependence of the ejecta density and the total ejected mass. An optical framing camera for time-resolved imaging and a single-image x-ray radiograph were used for additional characterization. Free surface velocities exhibited a range of spall strengths from 1.7 to 2.4 GPa (mean: 2.0 ±0.3 GPa). The pullback signals were faint, minimal ringing was observed in the velocity records, and the spall layer continued to decelerate after first pull back. These results suggest finite tensile strength was present for some time after the initial void formation. Ejecta were observed for every sample with a roughened free surface, and the ejecta density increased with increased surface roughness, which was different in every experiment. The total ejected mass is consistent with the missing mass model.

  10. Development of plate-fin heat exchanger for intermediate heat exchanger of high-temperature gas cooled reactor. Fabrication process, high-temperature strength and creep-fatigue life prediction of plate-fin structure made of Hastelloy X

    International Nuclear Information System (INIS)

    Mizokami, Yorikata; Igari, Toshihide; Nakashima, Keiichi; Kawashima, Fumiko; Sakakibara, Noriyuki; Kishikawa, Ryouji; Tanihira, Masanori

    2010-01-01

    The helium/helium heat exchanger (i.e., intermediate heat exchanger: IHX) of a high-temperature gas-cooled reactor (HTGR) system with nuclear heat applications is installed between a primary system and a secondary system. IHX is operated at the highest temperature of 950degC and has a high capacity of up to 600 MWt. A plate-fin-type heat exchanger is the most suitable for IHX to improve construction cost. The purpose of this study is to develop an ultrafine plate-fin-type heat exchanger with a finer pitch fin than a conventional technology. In the first step, fabrication conditions of the ultrafine plate fin were optimized by press tests. In the second step, a brazing material was selected from several candidates through brazing tests of rods, and brazing conditions were optimized for plate-fin structures. In the third step, tensile strength, creep rupture, fatigue, and creep-fatigue tests were performed as typical strength tests for plate-fin structures. The obtained data were compared with those of the base metal and plate-fin element fabricated from SUS316. Finally, the accuracy of the creep-fatigue life prediction using both the linear cumulative damage rule and the equivalent homogeneous solid method was confirmed through the evaluation of creep-fatigue test results of plate-fin structures. (author)

  11. Experimental Tensile Strength Analysis of Woven-Glass/Epoxy Composite Plates with Central Circular Hole

    Science.gov (United States)

    Hadi, Bambang K.; Rofa, Bima K.

    2018-04-01

    The use of composite materials in aerospace engineering, as well as in maritime structure has increased significantly during the recent years. The extensive use of composite materials in industrial applications should make composite structural engineers and scientists more aware of the advantage and disadvantage of this material and provide them with necessary data and certification process. One of the problems in composite structures is the existence of hole. Hole can not be avoided in actual structures, since it may be the necessity of providing access for maintenance or due to impact damage. The presence of hole will weaken the structures. Therefore, in this paper, the effect of hole on the strength of glass-woven/epoxy composite will be discussed. Extensive tests have been carried out to study the effect of hole-diameter on the tensile strengths of these specimens. The results showed that the bigger the hole-diameter compared to the width of the specimens has weakened the structures further, as expected. Further study should be carried in the future to model it with the finite element and theoretical analysis precisely.

  12. Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength

    Directory of Open Access Journals (Sweden)

    Y. Luna-Galiano

    2016-09-01

    Full Text Available The main contribution of this paper relates to the development of a systematic study involving a set of parameters which could potentially have an impact on geopolymer properties: curing temperature, type of activating solution, alkali metal in solution, incorporation of slag (Ca source and type of slag used. The microstructures, degrees of reaction, porosities and compressive strengths of geopolymers have been evaluated. Geopolymers prepared with soluble silicate presented a more compacted and closed structure, a larger amount of gel, lower porosity and greater compressive strength than those prepared with hydroxides. On the other hand, Na-geopolymers were more porous but more resistant than K-geopolymers. Although there is an inverse relation between degree of reaction and porosity, between compressive strength and porosity it is not always inversely proportional and could, in some cases, be masked by changes produced in other influencing parameters.

  13. The influence of kind of coating additive on the compressive strength of RCA-based concrete prepared by triple-mixing method

    Science.gov (United States)

    Urban, K.; Sicakova, A.

    2017-10-01

    The paper deals with the use of alternative powder additives (fly ash and fine fraction of recycled concrete) to improve the recycled concrete aggregate and this occurs directly in the concrete mixing process. Specific mixing process (triple mixing method) is applied as it is favourable for this goal. Results of compressive strength after 2 and 28 days of hardening are given. Generally, using powder additives for coating the coarse recycled concrete aggregate in the first stage of triple mixing resulted in decrease of compressive strength, comparing the cement. There is no very important difference between samples based on recycled concrete aggregate and those based on natural aggregate as far as the cement is used for coating. When using both the fly ash and recycled concrete powder, the kind of aggregate causes more significant differences in compressive strength, with the values of those based on the recycled concrete aggregate being worse.

  14. Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites

    Science.gov (United States)

    Haque, A.; Jeelani, S.

    1992-01-01

    The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range of 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming.

  15. The influence of using volcanic ash and lime ash as filler on compressive strength in self compacting concrete

    Science.gov (United States)

    Karolina, Rahmi; Panatap Simanjuntak, Murydrischy

    2018-03-01

    Self Compacting Concrete (SCC) is a technology which is developing today in which concrete solidifies by itself without using vibrator. Casting conventional concrete which has a lot of reinforcement bars sometimes finds difficulty in achieving optimal solidity. The method used to solve this problem is by using SCC technology. SCC was made by using filler, volcanic ash, and lime ash as the filling materials so that the concrete became more solid and hollow space could be filled up. The variation of using these two materials was 10%, 15%, 20%, and 25% of the cementitious mass and using 1% of superplasticizer from cementitious material. The supporting testing was done by using the test when the concrete was still fluid and when it was solid. Malleable concrete was tested by using EFNARC 2002 standard in slump flow test, v-funnel test, l-shaped box test, and j-ring test to obtain filling ability and passing ability. In this malleable lime concrete test, there was the decrease, compared with normal SCC concrete without adding volcanic ash and lime ash. Testing was also done in solid concrete in compressive strength, tensile strength, and concrete absorption. The result of the testing showed that the optimum tensile strength in Variation 1, without volcanic ash and lime ash – with 1% of superplasticizer was 39.556 MPa, the optimum tensile strength in Variation 1, without volcanic ash and lime ash- with 1% of super-plasticizer was 3.563 MPa, while the value of optimum absorption which occurred in Variation 5 (25% of volcanic ash + 25% of lime ash + 50% of cement + 1% of superplasticizer) was 1.313%. This was caused by the addition of volcanic ash and lime ash which had high water absorption.

  16. Solidification/stabilization of ASR fly ash using Thiomer material: Optimization of compressive strength and heavy metals leaching.

    Science.gov (United States)

    Baek, Jin Woong; Choi, Angelo Earvin Sy; Park, Hung Suck

    2017-12-01

    Optimization studies of a novel and eco-friendly construction material, Thiomer, was investigated in the solidification/stabilization of automobile shredded residue (ASR) fly ash. A D-optimal mixture design was used to evaluate and optimize maximum compressive strength and heavy metals leaching by varying Thiomer (20-40wt%), ASR fly ash (30-50wt%) and sand (20-40wt%). The analysis of variance was utilized to determine the level of significance of each process parameters and interactions. The microstructure of the solidified materials was taken from a field emission-scanning electron microscopy and energy dispersive X-ray spectroscopy that confirmed successful Thiomer solidified ASR fly ash due to reduced pores and gaps in comparison with an untreated ASR fly ash. The X-ray diffraction detected the enclosed materials on the ASR fly ash primarily contained sulfur associated crystalline complexes. Results indicated the optimal conditions of 30wt% Thiomer, 30wt% ASR fly ash and 40wt% sand reached a compressive strength of 54.9MPa. For the optimum results in heavy metals leaching, 0.0078mg/LPb, 0.0260mg/L Cr, 0.0007mg/LCd, 0.0020mg/L Cu, 0.1027mg/L Fe, 0.0046mg/L Ni and 0.0920mg/L Zn were leached out, being environmentally safe due to being substantially lower than the Korean standard leaching requirements. The results also showed that Thiomer has superiority over the commonly used Portland cement asa binding material which confirmed its potential usage as an innovative approach to simultaneously synthesize durable concrete and satisfactorily pass strict environmental regulations by heavy metals leaching. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ballistic Limit of High-Strength Steel and Al7075-T6 Multi-Layered Plates Under 7.62-mm Armour Piercing Projectile Impact

    OpenAIRE

    Rahman, N. A.; Abdullah, S.; Zamri, W. F. H.; Abdullah, M. F.; Omar, M. Z.; Sajuri, Z.

    2016-01-01

    Abstract This paper presents the computational-based ballistic limit of laminated metal panels comprised of high strength steel and aluminium alloy Al7075-T6 plate at different thickness combinations to necessitate the weight reduction of existing armour steel plate. The numerical models of monolithic configuration, double-layered configuration and triple-layered configuration were developed using a commercial explicit finite element code and were impacted by 7.62 mm armour piercing projectil...

  18. Understanding size effects on the strength of single crystals through high-temperature micropillar compression

    International Nuclear Information System (INIS)

    Soler, Rafael; Wheeler, Jeffrey M.; Chang, Hyung-Jun; Segurado, Javier; Michler, Johann; Llorca, Javier; Molina-Aldareguia, Jon M.

    2014-01-01

    Compression tests of 〈1 1 1〉-oriented LiF single-crystal micropillars 1–5 μm in diameter were carried out from 25 °C to 250 °C. While the flow stress at ambient temperature was independent of the micropillar diameter, a strong size effect developed with elevated temperature. This behavior was explained by rigorously accounting for the different contributions to the flow stress of the micropillars as a function of temperature and pillar diameter: the lattice resistance, the forest hardening; and the size-dependent contribution as a result of the operation of single-arm dislocation sources. This was possible because the micropillars were obtained by chemically etching away the surrounding matrix in directionally solidified LiF–NaCl and LiF–KCl eutectics, avoiding any use of focused ion beam methods, yielding micropillars with a controlled dislocation density, independent of the sample preparation technique. In particular, the role of the lattice resistance on the size effect of micrometer-size single crystals was demonstrated unambiguously for the first time. This result rationalizes the different values of power-law exponent for the size effect found in the literature for face-centered cubic and body-centered cubic metals as well as for covalent and ionic solids

  19. [Comparison study on locking compress plate external fixator and standard external fixator for treatment of tibial open fractures].

    Science.gov (United States)

    Wu, Gang; Luo, Xiaozhong; Tan, Lun; Lin, Xu; Wu, Chao; Guo, Yong; Zhong, Zewei

    2013-11-01

    To compare the clinical results of locking compress plate (LCP) as an external fixator and standard external fixator for treatment of tibial open fractures. Between May 2009 and June 2012, 59 patients with tibial open fractures were treated with LCP as an external fixator in 36 patients (group A), and with standard external fixator in 23 patients (group B). There was no significant difference in gender, age, cause of injury, affected side, type of fracture, location, and interval between injury and surgery between 2 groups (P > 0.05). The time of fracture healing and incision healing, the time of partial weight-bearing, the range of motion (ROM) of knee and ankle, and complications were compared between 2 groups. The incidence of pin-track infection in group A (0) was significantly lower than that in group B (21.7%) (P=0.007). No significant difference was found in the incidence of superficial infection and deep infection of incision, and the time of incision healing between 2 groups (P > 0.05). Deep vein thrombosis occurred in 5 cases of group A and 2 cases of group B, showing no significant difference (Chi(2)=0.036, P=0.085). All patients were followed up 15.2 months on average (range, 9-28 months) in group A, and 18.6 months on average (range, 9-47 months) in group B. The malunion rate and nonunion rate showed no significant difference between groups A and B (0 versus 13.0% and 0 versus 8.7%, P > 0.05); the delayed union rate of group A (2.8%) was significantly lower than that of group B (21.7%) (Chi(2)=5.573, P=0.018). Group A had shorter time of fracture healing, quicker partial weight-bearing, greater ROM of the knee and ankle than group B (P fracture, and has good patients' compliance, so it is helpful to do functional exercise, improve fracture healing and function recovery, and reduce the complication incidence.

  20. Improvement of the Early-Age Compressive Strength, Water Permeability, and Sulfuric Acid Resistance of Scoria-Based Mortars/Concrete Using Limestone Filler

    Directory of Open Access Journals (Sweden)

    Aref Al-Swaidani

    2017-01-01

    Full Text Available Natural pozzolan is being widely used as cement replacement. Despite the economic, ecological, and technical benefits of its adding, it is often associated with shortcomings such as the need of moist-curing for longer time and a lower early strength. This study is an attempt to investigate the effect of adding limestone filler on the compressive strength and durability of mortars/concrete containing scoria. Sixteen types of binders with different replacement levels of scoria (0, 10, 20, and 30% and limestone (0, 5, 10, and 15% were prepared. The development of the compressive strength of mortar/concrete specimens was investigated after 2, 7, 28, and 90 days’ curing. In addition, the acid resistance of the 28 days’ cured mortars was evaluated after 90 days’ exposure to 5% H2SO4. Concrete permeability was also evaluated after 2, 7, 28, and 90 days’ curing. Test results revealed that there was an increase in the early-age compressive strength and a decrease in water penetration depths with adding limestone filler. Contrary to expectation, the best acid resistance to 5% H2SO4 solution was noted in the mortars containing 15% limestone. Based on the results obtained, an empirical equation was derived to predict the compressive strength of mortars.

  1. The effect of fly ash and limestone fillers on the viscosity and compressive strength of self-compacting repair mortars

    Energy Technology Data Exchange (ETDEWEB)

    Burak Felekoglu; Kamile Tosun; Bulent Baradan; Akin Altun; Bahadir Uyulgan [Dokuz Eylul University (Turkey). Faculty of Engineering

    2006-09-15

    Today, self-compacting mortars are preferred for repair purposes due to the application easiness and mechanical advantages. However, for self-compatibility, the paste phase must meet some certain criteria at fresh state. The cement as well as the ingredients of the paste, powders with cementitious, pozzolanic or inert nature and plasticizing chemical admixtures should be carefully chosen in order to obtain a suitable paste composition to enrich the granular skeleton of the mix. The physical properties of powders (shape, surface morphology, fineness, particle size distribution, particle packing) and physico-chemical (time-dependent hydration reactions, zeta potentials) interactions between cement powder and plasticizer should be taken into consideration. All these parameters affect the performance of fresh paste in different manners. There is no universally accepted agreement on the effect of these factors due to the complexity of combined action; thus, it is hard to make a generalization. This study deals with the selection of amount and type of powders from the viewpoint of fresh state rheology and mechanical performance. The influence of powder materials on self-compatibility, viscosity and strength were compared with a properly designed set of test methods (the mini-slump, V-funnel tests, viscosity measurements and compressive strength tests). It may be advised that, for each cement-powder-plasticizer mixture, a series of test methods can be used to determine the optimum content and type of materials for a specified workability.

  2. Study on effects of different patterns and cracking for wastes FRP (used banner) wrapping on compressive strength of confined concrete

    Science.gov (United States)

    Syazani Leman, Alif; Shahidan, Shahiron; Azmi, M. A. M.; Syamir Senin, Mohamad; Ali, N.; Abdullah, S. R.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Nazri, Fadzli Mohamed

    2017-11-01

    Previous researches have shown that FRP are being introduce into wide variety of civil engineering applications. Fibre Reinforce Concrete (FRP) are also used as repairing method in concrete structures. FRP such as S-glass, AR-glass, E-glass, C-glass, and Aramid Fibre are the common material used in industry. The FRP strips provide the necessary longitudinal and hoop reinforcement. However, there are lots waste materials that can be form as fibre and used in repairing. Banner is a type of waste material fibre that can be used in repairing. In this study, banner will be used as the replacement of the common FRP. The confined concrete (cylinder) of 300mm height and 150mm diameter were cast with M35 grade concrete and tested until it is crack. Next banner are used as the wrapping along the cracking of the concrete with three different pattern that are full wrapping, two band wrapping and cross wrapping using epoxy. Epoxy is a common name for a type of strong adhesive used for sticking things together and covering surface. The objective of this study is to determine the maximum strength and the effect of different patterns wrapping of FRP (banner) on the compressive strength of confined concrete. The results are shows that banner are suitable as a replacement of material for FRP.

  3. Influence of cactus mucilage and marine brown algae extract on the compressive strength and durability of concrete

    Directory of Open Access Journals (Sweden)

    Hernández, E. F.

    2016-03-01

    Full Text Available This paper presents the mechanical performance and durability of concrete with water/cement (w/c ratios of 0.30 and 0.60 containing cactus mucilage and brown marine seaweed extract solutions (at 0.5° Brix concentrations. Cylindrical specimens (100 mm x 200 mm were cast and moist-cured for 0 and 28 days. Compressive strength, rapid chloride permeability, and chloride diffusion tests were conducted to evaluate all of the concrete mixes at the ages of 60 and 120 days. In addition, accelerated carbonation tests were carried out on specimens at the age of 180 days by exposure to 23 °C, 60% RH and at 4.4% CO2 for 120 days. The compressive strength results showed that only one concrete mix with admixtures increased in strength compared to the control. Regarding the rapid chloride permeability, chloride diffusion and carbonation, the results indicated that the durability of concretes containing organic additions was enhanced compared to the control.Este trabajo presenta el comportamiento mecánico y de durabilidad de concretos con relaciones agua/cemento de 0.30 y 0.60, conteniendo soluciones de mucílago de nopal y extracto de algas marinas cafés (0.5 °Brix de concentración. Especímenes cilíndricos (100 mm x 200 mm fueron elaborados y curados en húmedo por 0 y 28 días. Se evaluó la resistencia a la compresión, permeabilidad rápida y difusión de cloruros a los 60 y 120 días de edad. Adicionalmente, se realizaron pruebas de carbonatación acelerada en especímenes con 180 días de edad, expuestos a 23 °C, 60% HR y 4.4% de CO2 por 120 días. Los resultados de resistencia a la compresión muestran que únicamente una mezcla de concreto con adición orgánica incrementó su resistencia con respecto al control. Con respecto a la permeabilidad rápida a cloruros, difusión de cloruros y carbonatación, los resultados indican que la durabilidad de los concretos que contenían adiciones orgánicas fue mejorada con respecto al control.

  4. First Metatarsophalangeal Joint Arthrodesis in Hallux Valgus Versus Hallux Rigidus Using Cup and Cone Preparation Compression Screw and Dorsal Plate Fixation.

    Science.gov (United States)

    Chien, Calvin; Alfred, Terrence; Freihaut, Richard; Pit, Sabrina

    2017-10-19

    Various techniques have been described for first metatarsophalangeal (MTP) joint arthrodesis. The purpose of this study was to determine if cup and cone preparation by a single surgeon with an interfragmentary screw and dorsal plate fixation provides a comparable union rate in hallux valgus versus hallux rigidus. Our study included all patients who underwent first MTP joint fusions using cup and cone preparation with an interfragmentary compression screw and dorsal plate fixation from 2010 to 2015. We compared union rates in 65 patients with hallux rigidus with 47 who had hallux valgus. One of 65 hallux rigidus cases developed non-union and underwent revision surgery. One of 47 patients in the hallux valgus group developed a painless non-union. All other patients achieved union based on post operative radiographs. Our rate of painful non-union was 1.5% for hallux rigidus and 0% for hallux valgus, which is lower than recent published literature of 7% for hallux valgus and 3.7% for hallux rigidus. We found no difference between the two groups suggesting this method may provide stronger fixation and may be preferable when dealing with hallux valgus. First metatarsophalangeal joint fusion in patients with severe hallux valgus and hallux rigidus, using spherical reamers, compression screw and dorsal plate fixation is equally successful at achieving clinical and radiographic fusion in both hallux valgus and hallux rigidus.

  5. Development of superhigh-strength mortars with compressive strength of 3000kgf/cm sup 2 or higher. 3000kgf/cm sup 2 ijo no asshuku kyodo wo motsu mortar no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ohama, Y; Izumura, K [Nihon University, Tokyo (Japan). Collete of Engineering; Hayashi, S [Onoda Cement Co. Ltd., Yamaguchi (Japan)

    1991-08-01

    This paper discusses the preparation factors and curing conditions of superhigh-strength mortar, and explains a method of manufacturing superhigh-strength mortar having still higher strength and its superhigh strength generating mechanism. A recommended cement material for the superhigh-strength mortar is a Portland cement mixed with a high-purity silica at 20% and silica fume at 20%. This was made to a water-cement material ratio of 15% and fine aggregate cement material ratio of 1.06, cured in an autoclave, and further heat-cured at 200{degree}C for one day to obtain a superhigh-strength mortar. The compression and bending strengths reach 2,200 kgf/cm{sup 2} and 180 kgf/cm{sup 2} respectively when used with silica sand, and 3000 kgf/cm{sup 2} and 220 kgf/cm{sup 2} or more when used with stainless steel grits. The heat curing at 200{degree}C for a day increases remarkably the compression strength of the superhigh-strength mortar regardless of the curing conditions before the heat curing. 7 refs., 11 figs., 1 tab.

  6. A finite element study on the effects of toughness and permanent out-of-plane deformation on post-impact compressive strength

    OpenAIRE

    Bull, Daniel; Spearing, Simon; Sinclair, Ian

    2015-01-01

    This study applies mechanisms observed from previous work (the undamaged cone, toughness and extent of permanent out-of-plane deformation) to parametrically study their effects on residual compression after impact (CAI) strength using finite element models. Based on previous experimental work, tougher material systems exhibited up to 30% greater CAI strength for a given damage area. Based on this, it is necessary to understand what other parameters, beyond damage area, contribute to a loss in...

  7. 4D-CT scans reveal reduced magnitude of respiratory liver motion achieved by different abdominal compression plate positions in patients with intrahepatic tumors undergoing helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yong, E-mail: hu.yong@zs-hospital.sh.cn; Zhou, Yong-Kang, E-mail: zhouyk2009@163.com; Chen, Yi-Xing, E-mail: chen.yixing@zs-hospital.sh.cn; Shi, Shi-Ming, E-mail: shiming32@126.com; Zeng, Zhao-Chong, E-mail: zeng.zhaochong@zs-hospital.sh.cn [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032 (China)

    2016-07-15

    Purpose: While abdominal compression (AC) can be used to reduce respiratory liver motion in patients receiving helical tomotherapy for hepatocellular carcinoma, the nature and extent of this effect is not well described. The purpose of this study was to evaluate the changes in magnitude of three-dimensional liver motion with abdominal compression using four-dimensional (4D) computed tomography (CT) images of several plate positions. Methods: From January 2012 to October 2015, 72 patients with intrahepatic carcinoma and divided into four groups underwent 4D-CT scans to assess respiratory liver motion. Of the 72 patients, 19 underwent abdominal compression of the cephalic area between the subxiphoid and umbilicus (group A), 16 underwent abdominal compression of the caudal region between the subxiphoid area and the umbilicus (group B), 11 patients underwent abdominal compression of the caudal umbilicus (group C), and 26 patients remained free breathing (group D). 4D-CT images were sorted into ten-image series, according to the respiratory phase from the end inspiration to the end expiration, and then transferred to treatment planning software. All liver contours were drawn by a single physician and confirmed by a second physician. Liver relative coordinates were automatically generated to calculate the liver respiratory motion in different axial directions to compile the 10 ten contours into a single composite image. Differences in respiratory liver motion were assessed with a one-way analysis of variance test of significance. Results: The average respiratory liver motion in the Y axial direction was 4.53 ± 1.16, 7.56 ± 1.30, 9.95 ± 2.32, and 9.53 ± 2.62 mm in groups A, B, C, and D, respectively, with a significant change among the four groups (p < 0.001). Abdominal compression was most effective in group A (compression plate on the subxiphoid area), with liver displacement being 2.53 ± 0.93, 4.53 ± 1.16, and 2.14 ± 0.92 mm on the X-, Y-, and Z

  8. Comparative study of bridge plate associated to the intramedullary pin and the dynamic compression plate on the experimental osteotomy fixation of femoral in rabbits (Oryctolagus cuniculus). Clinical, radiographic, histological and scintigraphy analyses

    International Nuclear Information System (INIS)

    Borges, Natalie Ferreira

    2011-01-01

    The objectives were to benchmark and monitor the fracture healing of femoral osteotomy in rabbits after fixation with dynamic compression plate and bridge plate associated with intramedullary pin. Were used 14 New Zealand rabbits, four months old with mean weight of 3.5 pounds, from the Experimental Farm Professor Helio Barbosa of the Veterinary School of Minas Gerais Federal Univ. (UFMG). The animals were randomly divided into two groups (I and II). All rabbits underwent osteotomy across the middle third of right femur. In the group I was made to fix the osteotomy with the bridge plate (BP) associated with intramedullary pin, introduced the technique of minimal invasion. In group II, we used dynamic compression plate (DCP) via the conventional approach. Both groups were evaluated clinical, radiographic, histologic and scintigraphic findings. Clinical assessments were performed weekly until the 12 th postoperative week and radiographic examinations were performed before, immediately after, at 15, 30, 45, 60 and 90 days. The bone scintigraphy were performed before and at 20, 50 and 90 days after surgery to monitor the bone metabolism qualitatively and quantitatively. Observed perfusion and bone healing process. After 90 days of study, there was histopathologic evaluation of the osteotomized area and the insertion of screws. In the region of the osteotomy was observed predominance of trabecular bone in group I and group II, the predominance of bone osteons, compatible with the original bone. On insertion of the screws did not differ between groups and there was cortical discontinuity, little necrosis and local hemorrhage. The two types of fixation have led to consolidation within the scheduled period, maturing in early fixation with DCP fixation compared with BP. Scintigraphy demonstrated by the indices of activity and image characteristics, the process of bone healing was significantly greater in animals undergoing early fixation with DCP. (author)

  9. Factors affecting early compressive strength of alkali activated fly ash (OPC-free concrete

    Directory of Open Access Journals (Sweden)

    Palomo, A.

    2007-08-01

    Full Text Available This paper presents the findings of experimental research into the chief characteristics of a new type of concrete made solely with alkali activated fly ash (AAFA: i.e., free of ordinary Portland cement (OPC. The results of testing to determine specific properties of the fresh concrete and the development of its mechanical strength showed that most of the factors that affect the manufacture and final properties of Portland cement concrete (water/cement ratio, curing conditions, etc. also impact the preparation and final quality of this new material. A number of parameters specific to AAFA concrete (nature and concentration of alkali present in the system were also explored to determine their role in the setting and hardening process.Este trabajo presenta los resultados de una investigación experimental llevada a cabo para evaluar las principales características de un nuevo tipo de hormigón fabricado solamente con ceniza volante activada alcalinamente (AAFA; es decir, sin cemento Portland comercial (OPC. Los resultados de los ensayos realizados para determinar las propiedades específicas del hormigón fresco y el desarrollo de resistencias mecánicas mostraron que la mayoría de los factores que afectan al proceso de fabricación y a las propiedades finales de los hormigones de cemento Portland (relación agua/cemento, condiciones de curado, etc. también afectan a la preparación y calidad final de estos nuevos materiales. También fueron estudiados otros parámetros específicos de los hormigones de AAFA (la naturaleza y concentración del álcali presente en el sistema para determinar su papel en el proceso de fraguado y endurecimiento.

  10. The Impact of Nitinol Staples on the Compressive Forces, Contact Area, and Mechanical Properties in Comparison to a Claw Plate and Crossed Screws for the First Tarsometatarsal Arthrodesis.

    Science.gov (United States)

    Aiyer, Amiethab; Russell, Nicholas A; Pelletier, Matthew H; Myerson, Mark; Walsh, William R

    2016-06-01

    Background The optimal fixation method for the first tarsometatarsal arthrodesis remains controversial. This study aimed to develop a reproducible first tarsometatarsal testing model to evaluate the biomechanical performance of different reconstruction techniques. Methods Crossed screws or a claw plate were compared with a single or double shape memory alloy staple configuration in 20 Sawbones models. Constructs were mechanically tested in 4-point bending to 1, 2, and 3 mm of plantar displacement. The joint contact force and area were measured at time zero, and following 1 and 2 mm of bending. Peak load, stiffness, and plantar gapping were determined. Results Both staple configurations induced a significantly greater contact force and area across the arthrodesis than the crossed screw and claw plate constructs at all measurements. The staple constructs completely recovered their plantar gapping following each test. The claw plate generated the least contact force and area at the joint interface and had significantly greater plantar gapping than all other constructs. The crossed screw constructs were significantly stiffer and had significantly less plantar gapping than the other constructs, but this gapping was not recoverable. Conclusions Crossed screw fixation provides a rigid arthrodesis with limited compression and contact footprint across the joint. Shape memory alloy staples afford dynamic fixation with sustained compression across the arthrodesis. A rigid polyurethane foam model provides an anatomically relevant comparison for evaluating the interface between different fixation techniques. Clinical Relevance The dynamic nature of shape memory alloy staples offers the potential to permit early weight bearing and could be a useful adjunctive device to impart compression across an arthrodesis of the first tarsometatarsal joint. Therapeutic, Level V: Bench testing. © 2015 The Author(s).

  11. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  12. Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures

    Science.gov (United States)

    Andy W.C. Lee; Zhongli Hong; Douglas R. Phillips; Chung-Yun Hse

    1987-01-01

    This study investigated the effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures made from six wood species: southern pine, white oak, southern red oak, yellow-poplar, sweetgum, and hickory. Cement/wood ratios varied from 13/1 to 4/1. Wood storage conditions consisted of air-...

  13. Comparative analysis of compressive strength tests at age of 28 and 90 days and density of products using chemical additives in cementing radioactive waste

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Cledola Cassia Oliveira de

    2013-01-01

    In this research it has been studied the effects of chemical additives (admixtures) in the cementation process of radioactive wastes, which are used to improve the properties of waste cementation process, both of the paste and of the solidified product. However there are a large variety of these materials that are frequently changed or taken out of the market, then it is essential to know the commercially available materials and their effects. The tests were carried out with a solution simulating the evaporator concentrate waste coming from PWR nuclear reactors. It was cemented using two formulations, A and B, incorporating higher or lower amount of waste, respectively. It was added chemical admixtures from two manufacturers (S and H), which were: accelerators, set retarders and superplasticizers. The experiments were organized by a factorial design 2 3 . The measured parameters were the viscosity, the setting time, the paste and product density and the compressive strength. In this study we performed comparative analyzes of the results of compressive strength at age of 28 and 90 days and between the densities of the samples at the same ages.The compressive strength test at age of 28 days is considered a parameter essential issues related to security handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented product, but presented lower values density products. (author)

  14. Fabrication of carbon-polymer composite bipolar plates for polymer electrolyte membrane fuel cells by compression moulding

    International Nuclear Information System (INIS)

    Raza, M.A.; Ahmed, R.; Saleem, A.; Din, R.U.

    2009-01-01

    Fuel cells are considered as one of the most important technologies to address the future energy and environmental pollution problems. These are the most promising power sources for road transportation and portable devices. A fuel cell is an electrochemical device that converts chemical energy into electrical energy. A fuel cell stack consists of bipolar plates and membrane electrode assemblies (MEA). The bipolar plate is by weight, volume and cost one of the most significant components of a fuel cell stack. Major functions of bipolar plates are to separate oxidant and fuel gas, provide flow channels, conduct electricity and provide heat transfer. Bipolar plates can be made from various materials including graphite, metals, carbon / carbon and carbon/ polymer composites. Materials for carbon-polymer composites are relatively inexpensive, less corrosive, strong and channels can be formed by means of a moulding process. Carbon-polymer composites are of two type i.e; thermosetting and thermoplastic. For thermosetting composite a bulk molding compound (BMC) was prepared by adding graphite, vinyl ester resin, methyl ethyl ketone peroxide and cobalt naphthalate. The BMC was thoroughly mixed, poured into a die mould of a bipolar plate with channels and hot pressed at a specific temperature and pressure. A bipolar plate was formed according to the die mould. Design of the mould is also discussed. Conducting polymers were also added to BMC to increase the conductivity of bipolar plates. Particle size of the graphite has also a significant effect on the conductivity of the bipolar plates. Thermoplastic composites were also prepared using polypropylene and graphite.

  15. The Effect of Variation of Molarity of Alkali Activator and Fine Aggregate Content on the Compressive Strength of the Fly Ash: Palm Oil Fuel Ash Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Iftekhair Ibnul Bashar

    2014-01-01

    Full Text Available The effect of molarity of alkali activator, manufactured sand (M-sand, and quarry dust (QD on the compressive strength of palm oil fuel ash (POFA and fly ash (FA based geopolymer mortar was investigated and reported. The variable investigated includes the quantities of replacement levels of M-sand, QD, and conventional mining sand (N-sand in two concentrated alkaline solutions; the contents of alkaline solution, water, POFA/FA ratio, and curing condition remained constant. The results show that an average of 76% of the 28-day compressive strength was found at the age of 3 days. The rate of strength development from 3 to 7 days was found between 12 and 16% and it was found much less beyond this period. The addition of 100% M-sand and QD shows insignificant strength reduction compared to mixtures with 100% N-sand. The particle angularity and texture of fine aggregates played a significant role in the strength development due to the filling and packing ability. The rough texture and surface of QD enables stronger bond between the paste and the fine aggregate. The concentration of alkaline solution increased the reaction rate and thus enhanced the development of early age strength. The use of M-sand and QD in the development of geopolymer concrete is recommended as the strength variation between these waste materials and conventional sand is not high.

  16. Continuous cooling transformations and microstructures in a low-carbon, high-strength low-alloy plate steel

    Science.gov (United States)

    Thompson, S. W.; Vin, D. J., Col; Krauss, G.

    1990-06-01

    A continuous-cooling-transformation (CCT) diagram was determined for a high-strength low-alloy plate steel containing (in weight percent) 0.06 C, 1.45 Mn, 1.25 Cu, 0.97 Ni, 0.72 Cr, and 0.42 Mo. Dilatometric measurements were supplemented by microhardness testing, light microscopy, and transmission electron microscopy. The CCT diagram showed significant suppression of polygonal ferrite formation and a prominent transformation region, normally attributed to bainite formation, at temperatures intermediate to those of polygonal ferrite and martensite formation. In the intermediate region, ferrite formation in groups of similarly oriented crystals about 1 μm in size and containing a high density of dislocations dominated the transformation of austenite during continuous cooling. The ferrite grains assumed two morphologies, elongated or acicular and equiaxed or granular, leading to the terms “acicular ferrite” and “granular ferrite,” respectively, to describe these structures. Austenite regions, some transformed to martensite, were enriched in carbon and retained at interfaces between ferrite grains. Coarse interfacial ledges and the nonacicular morphology of the granular ferrite grains provided evidence for a phase transformation mechanism involving reconstructive diffusion of substitutional atoms. At slow cooling rates, polygonal ferrite and Widmanstätten ferrite formed. These latter structures contained low dislocation densities and e-copper precipitates formed by an interphase transformation mechanism.

  17. Compressive strength and interfacial transition zone of sugar cane bagasse ash concrete: A comparison to the established pozzolans

    Science.gov (United States)

    Hussein, Asma Abd Elhameed; Shafiq, Nasir; Nuruddin, Muhd Fadhil

    2015-05-01

    Agricultural and industrial by-products are commonly used in concrete production as cement replacement materials (CRMs) or as admixtures to enhance both fresh and hardened properties of concrete as well as to save the environment from the negative effects caused by their disposal. Sugar Cane Bagasse Ash (SCBA) is one of the promising CRMs, it is used as a partial replacement of cement for producing concrete; properties of such concrete depend on the chemical composition, fineness, and burning temperature of SCBA. Approximately 1500 Million tons of sugarcane are annually produced over all the world which leave about 40-45% bagasse after juice crushing for sugar industry giving an average annual production of about 600 Million tons of bagasse as a waste material. This paper presents some findings on the effect of SCBA on workability, compressive strength and microstructure of interfacial zone of concrete and its performance is compared to some of the established CRMs namely Densified Silica Fume, Fly Ash and Microwave Incinerated Rice Husk Ash.

  18. Evaluation of the effect of blood contamination on the compressive strength of MTA modified with hydration accelerators

    Directory of Open Access Journals (Sweden)

    Kaveh Oloomi

    2013-08-01

    Full Text Available Objectives This study was performed to evaluate the effect of blood contamination on the compressive strength (CS of Root MTA (RMTA modified with Calcium chloride (CaCl2 and Disodium hydrogen phosphate (Na2HPO4 as setting accelerators over time. Materials and Methods A total of 110 cylindrical specimens of RMTA were divided into 6 experimental groups as follows: Group1, RMTA; Group 2, RMTA modified with CaCl2 (RMTA-C; Group 3, RMTA modified with Na2HPO4 (RMTA-N; Group 4, RMTA contaminated with blood; Group 5, RMTA-C contaminated with blood; Group 6, RMTA-N contaminated with blood. The CS of specimens in all groups was evaluated after 3 hr, 24 hr, and 1 wk. In the modified groups (groups 2, 3, 5, and 6 the CS of five specimens per group was also evaluated after 1 hr. Results Blood contamination significantly reduced the CS of all materials at all time intervals (p < 0.05. After 3 hr, the CS of specimens in the RMTA groups (with and without blood contamination was significantly lower than those in the RMTA-C and RMTA-N groups (p < 0.05. The CS values were not significantly different at the other time intervals. In all groups, the CS of specimens significantly increased over time (p < 0.05. Conclusions Blood contamination decreased the CS of both original and accelerated RMTA.

  19. Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis

    Directory of Open Access Journals (Sweden)

    González-Taboada, I.

    2016-09-01

    Full Text Available This work studies the physical and mechanical properties of recycled concrete aggregate (recycled aggregate from concrete waste and their influence in structural recycled concrete compressive strength. For said purpose, a database has been developed with the experimental results of 152 works selected from over 250 international references. The processed database results indicate that the most sensitive properties of recycled aggregate quality are density and absorption. Moreover, the study analyses how the recycled aggregate (both percentage and quality and the mixing procedure (pre-soaking or adding extra water influence the recycled concrete strength of different categories (high or low water to cement ratios. When recycled aggregate absorption is low (under 5%, pre-soaking or adding extra water to avoid loss in workability will negatively affect concrete strength (due to the bleeding effect, whereas with high water absorption this does not occur and both of the aforementioned correcting methods can be accurately employed.El estudio analiza las propiedades físico-mecánicas de los áridos reciclados de hormigón (procedentes de residuos de hormigón y su influencia en la resistencia a compresión del hormigón reciclado estructural. Para ello se ha desarrollado una base de datos con resultados de 152 trabajos seleccionados a partir de más de 250 referencias internacionales. Los resultados del tratamiento de la base indican que densidad y absorción son las propiedades más sensibles a la calidad del árido reciclado. Además, este estudio analiza cómo el árido reciclado (porcentaje y calidad y el procedimiento de mezcla (presaturación o adición de agua extra influyen en la resistencia del hormigón reciclado de diferentes categorías (alta o baja relación agua-cemento. Cuando la absorción es baja (inferior al 5% presaturar o añadir agua para evitar pérdidas de trabajabilidad afectan negativamente a la resistencia (debido al bleeding

  20. A COMPARATIVE STUDY OF PROXIMAL FEMUR LOCKING COMPRESSION PLATE VERSUS PROXIMAL FEMORAL NAILING IN THE MANAGEMENT OF COMMINUTED TROCHANTERIC AND SUBTROCHANTERIC FRACTURE

    Directory of Open Access Journals (Sweden)

    Satish Koti

    2016-11-01

    Full Text Available BACKGROUND Fractures of proximal femur and hip are relatively common injuries in elderly individuals constituting 11.6% of total fractures. The latest implant for management of intertrochanteric fracture is Proximal Femoral Locking Compression Plate (PF-LCP. In this study, we compare the clinical outcome of fractures treated by proximal femoral nail with that of proximal femur locking compression plate. MATERIALS AND METHODS The present study consists of 24 elderly patients of peritrochanteric factures of femur satisfying the inclusion criteria who were treated with PF-LCP or PFN in Department of Orthopaedics, S.V.R.R.G.G.H, Tirupati, during a period between December 2013 to October 2015. RESULTS 24 cases were treated with PF-LCP or PFN in a randomised pattern who satisfied inclusion criteria. Intraoperative complication were found to be more with PF-LCP in contrast to PFN. Postoperative rehabilitation was easier with PFN though not statistically significant functional and anatomical outcomes were found to be better with PFN. CONCLUSION Both PFN and PF-LCP have good effectiveness in the treatment of intertrochanteric fractures with the lateral unsubstantial femoral wall in the elderly patients. Each has its own advantages and disadvantages. Further studies with large number of patients and long-term follow up is needed to determine the optimal implant for the internal fixation of comminuted pertrochanteric femoral fractures.

  1. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  2. [Case-control study on minimally invasive percutaneous locking compression plate internal fixation for the treatment of type II and III pilon fractures].

    Science.gov (United States)

    Zhang, Zhi-Da; Ye, Xiu-Yi; Shang, Li-Yong; Xu, Rong-Ming; Zhu, Yan-Zhao

    2011-12-01

    To explore the clinical efficacy of delayed open reduction and internal fixation with minimally invasive percutaneous locking compression plate for the treatment of type II and III Pilon fractures. From January 2007 to September 2009, 32 patients with type II and III Pilon fractures were treated with open reduction and anatomic plate fixation (AP group) and minimally invasive percutaneous locking compression plate osteosynthesis (LCP group). There were 11 males and 6 females in AP group, with an average age of (37.4 +/- 13.3) years (ranged, 19 to 55 years). And there were 10 males and 5 females in LCP group, with an average age of (34.6 +/- 11.3) years(ranged, 21 to 56 years). The operating time, fracture healing time, aligned angulation and ankle function were compared between the two groups. All the patients were followed up, and the during ranged from 12 to 25 months, with a mean of (15.0 +/- 1.7) months. The average operation time was (76.5 +/- 8.3) min for AP group and (58.3 +/- 3.4) min for LCP group; the average time of fracture healing was (20.5 +/- 0.4) weeks for AP group and (15.7 +/- 0.2) weeks for LCP group; the total angulation between anterior posterior film and lateral film was averaged (6.6 +/- 0.5) degrees for AP group and (3.6 +/- 0.2) degrees for LCP group. As to above index, the results of LCP group were better than those of AP group (P ankle joint, the results of LCP group were better than those of AP group in ankle joint pain, wakling and ankle joint function (P fracture with less invasion, faster bone union, more stabilized fixation, quicker recovery of ankle function and fewer complications, which is more advantaged for type II and III Pilon fractures.

  3. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.

    Science.gov (United States)

    Jain, R; Podworny, N; Hearn, T; Anderson, G I; Schemitsch, E H

    1997-10-01

    Comparison of the effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture. Randomized, prospective. Orthopaedic research laboratory. Ten large (greater than twenty-five kilogram) adult dogs. A short, midshaft spiral tibial fracture was created, followed by lag screw fixation and neutralization with an eight-hole, 3.5-millimeter, low-contact dynamic compression plate (LCDCP) made of either 316L stainless steel (n = five) or commercially pure titanium (n = five). After surgery, animals were kept with unrestricted weight-bearing in individual stalls for ten weeks. Cortical bone blood flow was assessed by laser Doppler flowmetry using a standard metalshafted probe (Periflux Pf303, Perimed, Jarfalla, Sweden) applied through holes in the custom-made LCDCPs at five sites. Bone blood flow was determined at four times: (a) prefracture, (b) postfracture, (c) postplating, and (d) ten weeks postplating. After the dogs were killed, the implant was removed and both the treated tibia and contralateral tibia were tested for bending stiffness and load to failure. Fracture creation decreased cortical perfusion in both groups at the fracture site (p = 0.02). The application of neither stainless steel nor titanium LCDCPs further decreased cortical bone blood flow after fracture creation. However, at ten weeks postplating, cortical perfusion significantly increased compared with acute postplating levels in the stainless steel (p = 0.003) and titanium (p = 0.001) groups. Cortical bone blood flow ten weeks postplating was not significantly different between the titanium group and the stainless steel group. Biomechanical tests performed on the tibiae with the plates removed did not reveal any differences in bending stiffness nor load required to cause failure between the two groups. Both titanium and stainless steel LCDCPs were equally effective in allowing revascularization, and

  4. Uniaxial Compressive Strength and Fracture Mode of Lake Ice at Moderate Strain Rates Based on a Digital Speckle Correlation Method for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2017-05-01

    Full Text Available Better understanding of the complex mechanical properties of ice is the foundation to predict the ice fail process and avoid potential ice threats. In the present study, uniaxial compressive strength and fracture mode of natural lake ice are investigated over moderate strain-rate range of 0.4–10 s−1 at −5 °C and −10 °C. The digital speckle correlation method (DSCM is used for deformation measurement through constructing artificial speckle on ice sample surface in advance, and two dynamic load cells are employed to measure the dynamic load for monitoring the equilibrium of two ends’ forces under high-speed loading. The relationships between uniaxial compressive strength and strain-rate, temperature, loading direction, and air porosity are investigated, and the fracture mode of ice at moderate rates is also discussed. The experimental results show that there exists a significant difference between true strain-rate and nominal strain-rate derived from actuator displacement under dynamic loading conditions. Over the employed strain-rate range, the dynamic uniaxial compressive strength of lake ice shows positive strain-rate sensitivity and decreases with increasing temperature. Ice obtains greater strength values when it is with lower air porosity and loaded vertically. The fracture mode of ice seems to be a combination of splitting failure and crushing failure.

  5. An Invitro Comparative Evaluation of Compressive Strength and Antibacterial Activity of Conventional GIC and Hydroxyapatite Reinforced GIC in Different Storage Media.

    Science.gov (United States)

    Bali, Praveen; Prabhakar, Attiguppe Ramasetty; Basappa, Nadig

    2015-07-01

    GIC is the most commonly used restorative material in pediatric dentistry since it has got various advantages like fluoride release, anticariogenic property and chemical adhesion to tooth but a major disadvantage is its contraindication in posterior teeth because of poor mechanical properties. The purpose of this study is a modest attempt to explore the influence of the addition of 8% hydroxyapatite to conventional GIC on its compressive strength when immersed in different storage media and antibacterial activity. One hundred and twenty six pellets of the specific dimension of 6 x 4 mm were prepared and divided into 6 groups and were immersed in deionized water, artificial saliva, lactic acid solution respectively for three hours everyday over 30 days test period. The compressive strength was measured by using a universal testing machine (AG-50kNG) at cross head of 1mm(2)/min and strength was determined after 1 day, 7 days, 30 days respectively and the antibacterial activity evaluated against Streptococcus mutans strain in brain heart infusion broth using serial dilution method. Group wise comparisons were made by one-way ANOVA followed by post-hoc Tukey's test, Intergroup comparison was done with Mann-Whitney test. GIC±HAp showed significantly greater antibacterial activity against Streptococcus mutans when compared to GIC group. There was no statistically significant change in the compressive strength among the groups except for group 3 and group 6 when immersed in lactic acid had shown significant difference at the end of 24 hours. The addition of 8% hydroxyapatite to GIC showed marked increased in the antibacterial activity of the conventional GIC against caries initiating organism without much increase in the compressive strength of the GIC when immersed in the different storage media.

  6. Effects of augmented trunk stabilization with external compression support on shoulder and scapular muscle activity and maximum strength during isometric shoulder abduction.

    Science.gov (United States)

    Jang, Hyun-jeong; Kim, Suhn-yeop; Oh, Duck-won

    2015-04-01

    The aim of the present study was to investigate the effects of augmented trunk stabilization with external compression support (ECS) on the electromyography (EMG) activity of shoulder and scapular muscles and shoulder abductor strength during isometric shoulder abduction. Twenty-six women volunteered for the study. Surface EMG was used to monitor the activity of the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and middle deltoid (MD), and shoulder abductor strength was measured using a dynamometer during three experimental conditions: (1) no external support (condition-1), (2) pelvic support (condition-2), and (3) pelvic and thoracic supports (condition-3) in an active therapeutic movement device. EMG activities were significantly lower for UT and higher for MD during condition 3 than during condition 1 (p strength was significantly higher during condition 3 than during condition 1 (p isometric shoulder abduction and increasing shoulder abductor strength. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis.

    Science.gov (United States)

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rotator muscle. [Results] Significantly higher shoulder external rotator peak torque and peak torque per body weight were found in the HHCT condition than in the no-taping condition. [Conclusion] HHCT may effectively increase the shoulder external rotator muscle strength in patients with rotator cuff tendinitis.

  8. Effect of High-Temperature Curing Methods on the Compressive Strength Development of Concrete Containing High Volumes of Ground Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Wonsuk Jung

    2017-01-01

    Full Text Available This paper investigates the effect of the high-temperature curing methods on the compressive strength of concrete containing high volumes of ground granulated blast-furnace slag (GGBS. GGBS was used to replace Portland cement at a replacement ratio of 60% by binder mass. The high-temperature curing parameters used in this study were the delay period, temperature rise, peak temperature (PT, peak period, and temperature down. Test results demonstrate that the compressive strength of the samples with PTs of 65°C and 75°C was about 88% higher than that of the samples with a PT of 55°C after 1 day. According to this investigation, there might be optimum high-temperature curing conditions for preparing a concrete containing high volumes of GGBS, and incorporating GGBS into precast concrete mixes can be a very effective tool in increasing the applicability of this by-product.

  9. Conventional compressive strength parallel to the grain and mechanical resistance of wood against pin penetration and microdrilling established by in-situ semidestructive devices

    Czech Academy of Sciences Publication Activity Database

    Kloiber, Michal; Drdácký, Miloš; Tippner, J.; Hrivnák, J.

    2015-01-01

    Roč. 48, č. 10 (2015), s. 3217-3229 ISSN 1359-5997 R&D Projects: GA MK(CZ) DF11P01OVV001; GA MŠk(CZ) LO1219 Keywords : compressive strength * density * in situ testing * non-destructive testing (NDT) * small size loading jack * wood Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.453, year: 2015 http://link.springer.com/article/10.1617/s11527-014-0392-6

  10. Ballistic Limit of High-Strength Steel and Al7075-T6 Multi-Layered Plates Under 7.62-mm Armour Piercing Projectile Impact

    Directory of Open Access Journals (Sweden)

    N. A. Rahman

    Full Text Available Abstract This paper presents the computational-based ballistic limit of laminated metal panels comprised of high strength steel and aluminium alloy Al7075-T6 plate at different thickness combinations to necessitate the weight reduction of existing armour steel plate. The numerical models of monolithic configuration, double-layered configuration and triple-layered configuration were developed using a commercial explicit finite element code and were impacted by 7.62 mm armour piercing projectile at velocity range of 900 to 950 m/s. The ballistic performance of each configuration plate in terms of ballistic limit velocity, penetration process and permanent deformation was quantified and considered. It was found that the monolithic panel of high-strength steel has the best ballistic performance among all panels, yet it has not caused any weight reduction in existing armour plate. As the weight reduction was increased from 20-30%, the double-layered configuration panels became less resistance to ballistic impact where only at 20% and 23.2% of weight reduction panel could stop the 950m/s projectile. The triple-layered configuration panels with similar areal density performed much better where all panels subjected to 20-30% weight reductions successfully stopped the 950 m/s projectile. Thus, triple-layered configurations are interesting option in designing a protective structure without sacrificing the performance in achieving weight reduction.

  11. Laboratory Investigation on Compressive Strength and Micro-structural Features of Foamed Concrete with Addition of Wood Ash and Silica Fume as a Cement Replacement

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available Wood Ash (WA and Silica Fume (SF exhibit good cementation properties and have great potential as supplementary binder materials for the concrete production industry. This study will focus on enhancing the micro-structural formation and compressive strength of foamed concrete with the addition of WA and SF. A total of 3 mixes were prepared with the addition of WA and SF at various cement replacement levels by total binder weight. For this particular study, the combination of WA (5%, 10%, and 15% by binder weight and SF (5%, 10%, and 15% by binder weight were utilized as supplementary binder materials to produce foamed concrete mixes. As was made evident from micrographs obtained in the study, the improvement observed in the compressive strength of the foamed concrete was due to a significant densification in the microstructure of the cement paste matrix in the presence of WA and SF hybrid supplementary binders. Experimental results indicated that the combination of 15% SF and 5% WA by binder weight had a more substantial influence on the compressive strength of foamed concrete compared to the control mix. Furthermore, the addition of WA and SF significantly prolonged the setting times of the blended cement paste of the foamed concrete.

  12. A COMPARATIVE STUDY OF FUNCTIONAL OUTCOMES OF FRACTURE SHAFT HUMERUS IN ADULTS TREATED WITH DYNAMIC COMPRESSION PLATING AND INTERLOCKING NAILING

    Directory of Open Access Journals (Sweden)

    Nagesh Desai

    2015-02-01

    Full Text Available INTRODUCTION: Opti m al m ethod of hu m eral shaft f r acture f i xation remains in debate till date. Two techniq u es under study include i n tra m edullary nailing and dyna m ic co m pression plate fixation. Plating provides satisfactory results but requires extensive dissection and m eticulous radial nerve protection. Theoretical advantage of intra m ed u llary nailing included less invasive surgery, undisturbed fractu r e hemato m a and use of load sharing device support. Purpose of this study is to co m p are o u tco m es of each m ethod of fixation for fracture shaft of humerus. MATERIALS AND METHODS: P atients with diaphyseal fractures of the hu m erus were divided in two groups of 20 treated with dynam i c co m pression plate or w i th i n tra m edullary interlocking nail. Postoperatively both groups received sa m e type of physiotherapy. They were followed up regularly . T i me taken for radiological union in two groups was co m pared. After satisfactory radiological un i on, functional out c o m e was assessed by “Disabilities of Hand, Shoulder and Elbow (DASH Questionnaire”. RESULTS: F unctional outco m e was better in DCP group co m pared to int e rloc ki ng nailing group which was statistically significant ( P = 0.062. Rate of healing was marginally better in DCP group as compared to I.M nail. CONCLUSION: W e are of opi n i on that when s u r ge r y is opted as a c h oice of treat m ent, both modalities of treat m ent i.e. dyn a m i c co m pression plating and interlocking nailing are good as far as union of fracture is concerned, but considering number of co m plications and functional outco m e, we opine that d y na m i c co m p ression plating o f f ers bett e r result than anteg r ade i n te r l ocking nailing with respect to pain and function of shoulder joint

  13. Treatment of type 2 and 4 olecranon fractures with locking compression plate osteosynthesis in horses: a prospective study (2002-2008).

    Science.gov (United States)

    Jackson, M; Kummer, M; Auer, J; Hagen, R; Fuerst, A

    2011-01-01

    This prospective study describes a series of 18 olecranon fractures in 16 horses that were treated with locking compression plates (LCP). Twelve of the 18 fractures were simple (type 2), whereas six were comminuted (type 4). Six fractures were open and 12 were closed. Each horse underwent LCP osteosynthesis consisting of open reduction and application of one or two LCP. Complete fracture healing was achieved in 13 horses. Three horses had to be euthanatized: two because of severe infection and one because of a comminuted radial fracture 11 days after fixation of the olecranon fracture. Complications encountered after discharge of the horses from the Equine Hospital at the Vetsuisse Faculty (University of Zurich) included implant infection (n=2) and lameness (n=3), which were successfully treated with implant removal. Despite being easier to use, LCP osteosynthesis resulted in a clinical outcome similar to DCP osteosynthesis.

  14. Analysis of Environmental Impact for Concrete Using LCA by Varying the Recycling Components, the Compressive Strength and the Admixture Material Mixing

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-04-01

    Full Text Available Concrete is a type of construction material in which cement, aggregate, and admixture materials are mixed. When cement is produced, large amounts of substances that impact the environment are emitted during limestone extraction and clinker manufacturing. Additionally, the extraction of natural aggregate causes soil erosion and ecosystem destruction. Furthermore, in the process of transporting raw materials such as cement and aggregate to a concrete production company, and producing concrete in a batch plant, substances with an environmental impact are emitted into the air and water system due to energy use. Considering the fact that the process of producing concrete causes various environmental impacts, an assessment of various environmental impact categories is needed. This study used a life cycle assessment (LCA to evaluate the environmental impacts of concrete in terms of its global warming potential, acidification potential, eutrophication potential, ozone depletion potential, photochemical ozone creation potential, and abiotic depletion potential (GWP, AP, EP, ODP, POCP, ADP. The tendency was that the higher the strength of concrete, the higher the GWP, POCP, and ADP indices became, whereas the AP and EP indices became slightly lower. As the admixture mixing ratio of concrete increased, the GWP, AP, ODP, ADP, and POCP decreased, but EP index showed a tendency to increase slightly. Moreover, as the recycled aggregate mixing ratio of concrete increased, the AP, EP, ODP, and ADP decreased, while GWP and POCP increased. The GWP and POCP per unit compressed strength (1 MPa of high strength concrete were found to be about 13% lower than that for its normal strength concrete counterpart. Furthermore, in the case of AP, EP, ODP, and ADP per unit compressed strength (1 MPa, high-strength concrete was found to be about 10%~25% lower than its normal strength counterpart. Among all the environmental impact categories, ordinary cement was found to have

  15. Study of the microstructural evolution and rheological behavior by semisolid compression between parallel plate of the alloy A356 solidified under a continuously rotating magnetic field

    International Nuclear Information System (INIS)

    Leiva L, Ricardo; Sanchez V, Cristian; Mannheim C, Rodolfo; Bustos C, Oscar

    2004-01-01

    This work presents a study of the rheological behavior of the alloy A356, with and without continuous magnetic agitation during its solidification, in semisolid state. The evaluation was performed using a parallel plate compression rheometer with the digital recording of position and time data. The microstructural evolution was also studied at the start and end of the semisolid compression test. The procedure involved tests of short cylinders extracted from billets with a non dendritic microstructure cast under a continuously rotating magnetic field. These pieces were tested in different solid fractions, at constant charges and at constant deformation velocities. When the test is carried out at a constant charge the equation can be determined that governs the rheological behavior of the material in semisolid state following a power grade of two Ostwald-de-Waele parameters. But when the test is done at a constant deformation speed the flow behavior of the material can be described in the semisolid shaping process. The results obtained show that the morphology of the phases present in the microstructure is highly relevant to its rheological behavior. A globular coalesced rosette to rosette type microstructure was found to have the typical behavior of a fluid when shaped in a semisolid state but a cast dendritic structure did not behave this way. Also the Arrhenius type dependence of viscosity with temperature was established (CW)

  16. Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications

    International Nuclear Information System (INIS)

    Vipulanandan, C; Mohammed, A

    2015-01-01

    In this study, smart cement with a 0.38 water-to-cement ratio was modified with iron oxide nanoparticles (NanoFe 2 O 3 ) to have better sensing properties, so that the behavior can be monitored at various stages of construction and during the service life of wells. A series of experiments evaluated the piezoresistive smart cement behavior with and without NanoFe 2 O 3 in order to identify the most reliable sensing properties that can also be relatively easily monitored. Tests were performed on the smart cement from the time of mixing to a hardened state behavior. When oil well cement (Class H) was modified with 0.1% of conductive filler, the piezoresistive behavior of the hardened smart cement was substantially improved without affecting the setting properties of the cement. During the initial setting the electrical resistivity changed with time based on the amount of NanoFe 2 O 3 used to modify the smart oil well cement. A new quantification concept has been developed to characterize the smart cement curing based on electrical resistivity changes in the first 24 h of curing. Addition of 1% NanoFe 2 O 3 increased the compressive strength of the smart cement by 26% and 40% after 1 day and 28 days of curing respectively. The modulus of elasticity of the smart cement increased with the addition of 1% NanoFe 2 O 3 by 29% and 28% after 1 day and 28 days of curing respectively. A nonlinear curing model was used to predict the changes in electrical resistivity with curing time. The piezoresistivity of smart cement with NanoFe 2 O 3 was over 750 times higher than the unmodified cement depending on the curing time and nanoparticle content. Also the nonlinear stress–strain and stress–change in resistivity relationships predicated the experimental results very well. Effects of curing time and NanoFe 2 O 3 content on the model parameters have been quantified using a nonlinear model. (paper)

  17. Effects of increasing the allowable compressive stress at release on the shear strength of prestressed concrete girders.

    Science.gov (United States)

    2008-09-01

    In recent years, several research projects have been conducted to study the feasibility of increasing the allowable : compressive stress in concrete at prestress transfer, currently defined as 0.60f'ci in the AASHTO LRFD Bridge : Design Specification...

  18. The Development and Microstructure Analysis of High Strength Steel Plate NVE36 for Large Heat Input Welding

    Science.gov (United States)

    Peng, Zhang; Liangfa, Xie; Ming, Wei; Jianli, Li

    In the shipbuilding industry, the welding efficiency of the ship plate not only has a great effect on the construction cost of the ship, but also affects the construction speed and determines the delivery cycle. The steel plate used for large heat input welding was developed sufficiently. In this paper, the composition of the steel with a small amount of Nb, Ti and large amount of Mn had been designed in micro-alloyed route. The content of C and the carbon equivalent were also designed to a low level. The technology of oxide metallurgy was used during the smelting process of the steel. The rolling technology of TMCP was controlled at a low rolling temperature and ultra-fast cooling technology was used, for the purpose of controlling the transformation of the microstructure. The microstructure of the steel plate was controlled to be the mixed microstructure of low carbon bainite and ferrite. Large amount of oxide particles dispersed in the microstructure of steel, which had a positive effects on the mechanical property and welding performance of the steel. The mechanical property of the steel plate was excellent and the value of longitudinal Akv at -60 °C is more than 200 J. The toughness of WM and HAZ were excellent after the steel plate was welded with a large heat input of 100-250 kJ/cm. The steel plate processed by mentioned above can meet the requirement of large heat input welding.

  19. Effects of bioDensity Training and Power Plate Whole-Body Vibration on Strength, Balance, and Functional Independence in Older Adults.

    Science.gov (United States)

    Smith, Derek T; Judge, Stacey; Malone, Ashley; Moynes, Rebecca C; Conviser, Jason; Skinner, James S

    2016-01-01

    Reduced strength, balance, and functional independence diminish quality of life and increase health care costs. Sixty adults (82.2 ± 4.9 years) were randomized to a control or three 12-week intervention groups: bioDensity (bD); Power Plate (PP) whole-body vibration (WBV); or bD+PP. bD involved one weekly 5-s maximal contraction of four muscle groups. PP involved two 5-min WBV sessions. Primary outcomes were strength, balance, and Functional Independence Measure (FIM). No groups differed initially. Strength significantly increased 22-51% for three muscle groups in bD and bD+PP (P Balance significantly improved in PP and bD+PP but not in control or bD. bD, PP, and bD+PP differentially improved FIM self-care and mobility. Strength improvements from weekly 5-min sessions of bD may impart health/clinical benefits. Balance and leg strength improvements suggest WBV beneficially impacts fall risk and incidence. Improved FIM scores are encouraging and justify larger controlled trials on bD and bD+PP efficacy.

  20. Effects of the addition of nanoparticulate calcium carbonate on setting time, dimensional change, compressive strength, solubility and pH of MTA.

    Science.gov (United States)

    Bernardi, A; Bortoluzzi, E A; Felippe, W T; Felippe, M C S; Wan, W S; Teixeira, C S

    2017-01-01

    To evaluate nanoparticulate calcium carbonate (NPCC) using transmission electron microscopy and the effects of NPCC addition to MTA in regard to the setting time, dimensional change, compressive strength, solubility and pH. The experimental groups were G1 (MTA), G2 (MTA with 5% NPCC) and G3 (MTA with 10% NPCC). The tests followed ISO and ADA standards. The specimens in the dimensional change and compressive strength tests were measured immediately after setting, after 24 h and after 30 days. In the solubility test, rings filled with cement were weighed after setting and after 30 days. The pH was measured after 24 h and 30 days. The data were analysed with the ANOVA, Tukey's and Kruskal-Wallis tests (α = 5%). The setting time was reduced (P  G2 > G3). The solubility test revealed a difference amongst the groups when the specimens were hydrated: G2 > G1 > G3 and dehydrated: G3 > G2 > G1. The pH of the groups was similar at 24 h with higher values in each group after 30 days (P calcium carbonate had a cubic morphology with few impurities. The addition of nanoparticulate calcium carbonate to MTA accelerated the setting time, decreased compressive strength and, after 30 days, resulted in lower dimensional change (G2), higher solubility and a higher pH. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  1. Lithospheric strength in the active boundary between the Pacific Plate and Baja California microplate constrained from lower crustal and upper mantle xenoliths

    Science.gov (United States)

    Chatzaras, Vasileios; van der Werf, Thomas; Kriegsman, Leo M.; Kronenberg, Andreas; Tikoff, Basil; Drury, Martyn R.

    2017-04-01

    The lower crust is the most poorly understood of the lithospheric layers in terms of its rheology, particularly at active plate boundaries. We studied naturally deformed lower crustal xenoliths within an active plate boundary, in order to link their microstructures and rheological parameters to the well-defined active tectonic context. The Baja California shear zone (BCSZ), located at the western boundary of the Baja California microplate, comprises the active boundary accommodating the relative motion between the Pacific plate and Baja California microplate. The basalts of the Holocene San Quintin volcanic field carry lower crustal and upper mantle xenoliths, which sample the Baja California microplate lithosphere in the vicinity of the BCSZ. The lower crustal xenoliths range from undeformed gabbros to granoblastic two-pyroxene granulites. Two-pyroxene geothermometry shows that the granulites equilibrated at temperatures of 690-920 oC. Phase equilibria (P-T pseudosections using Perple_X) indicate that symplectites with intergrown pyroxenes, plagioclase, olivine and spinel formed at 3.6-5.4 kbar, following decompression from pressures exceeding 6 kbar. FTIR spectroscopy shows that the water content of plagioclase varies among the analyzed xenoliths; plagioclase is relatively dry in two xenoliths while one xenolith contains hydrated plagioclase grains. Microstructural observations and analysis of the crystallographic texture provide evidence for deformation of plagioclase by a combination of dislocation creep and grain boundary sliding. To constrain the strength of the lower crust and upper mantle near the BCSZ we estimated the differential stress using plagioclase and olivine grain size paleopiezomtery, respectively. Differential stress estimates for plagioclase range from 10 to 32 MPa and for olivine are 30 MPa. Thus the active microplate boundary records elevated crustal temperatures, heterogeneous levels of hydration, and low strength in both the lower crust and

  2. A comparative evaluation of compressive strength of Portland cement with zinc oxide eugenol and Polymer-reinforced cement: An in vitro analysis

    OpenAIRE

    S Prakasam; Prakasam Bharadwaj; S C Loganathan; B Krishna Prasanth

    2014-01-01

    Objective: The purpose of this study is to evaluate the ultimate compressive strength of 50% and 25% Portland cement mixed with Polymer-reinforced zinc oxide eugenol and zinc oxide eugenol cement after 1 hour, 24 hours, and 7 days. Materials and Methods: One hundred and eighty samples were selected. The samples were made cylindrical of size 6 × 8 mm and were divided into six groups as follows with each group consisting of 10 samples. Group 1: Polymer-reinforced zinc oxide eugenol with...

  3. Equine ulnar fracture repair with locking compression plates can be associated with inadvertent penetration of the lateral cortex of the radius.

    Science.gov (United States)

    Kuemmerle, Jan M; Kühn, Karolin; Bryner, Marco; Fürst, Anton E

    2013-10-01

    To evaluate if the use of locking head screws (LHS) in the distal holes of a locking compression plate (LCP) applied to the caudal aspect of the ulna to treat equine ulnar fractures is associated with a risk of injury to the lateral cortex of the radius. Controlled laboratory study. Cadaveric equine forelimbs (n = 8 pair). After transverse ulnar osteotomy, osteosynthesis was performed with a narrow 10-13 hole 4.5/5.0 LCP applied to the caudal aspect of each ulna. The distal 3 holes were filled with 4.5 mm cortex screws (CS) in 1 limb (group 1) and with 5.0 mm LHS contralaterally (group 2). CS were inserted in an angle deemed appropriate by the surgeon and LHS were inserted perpendicular to the plate. Implant position and injury to the lateral cortex of the radius were assessed by radiography, CT, and limb dissection. In group 1, injury of the lateral radius cortex did not occur. In group 2, 4 limbs and 6/24 LHS were associated with injury of the lateral radius cortex by penetration of a LHS. This difference was statistically significant. CS were inserted with a mean angle of 17.6° from the sagittal plane in a caudolateral-craniomedial direction. Use of LHS in the distal part of a LCP applied to the caudal aspect of the ulna is associated with a risk of inadvertent injury to the lateral cortex of the radius. © Copyright 2013 by The American College of Veterinary Surgeons.

  4. COMPARATIVE STUDY BETWEEN TITANIUM ELASTIC NAILING (TENS AND DYNAMIC COMPRESSION PLATING (DCP IN THE TREATMENT OF FEMORAL DIAPHYSEAL FRACTURES IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Ramasubba Reddy

    2015-08-01

    Full Text Available BACKGROUND : Orthopaedic surgeons have long maintained that all children who have sustained a diaphyseal fracture of femur recover with c onservative treatment, given the excellent remodeling ability of immature bone in children. Angulations, shortenings and malrotations are not always corrected by conservative treatment. Of many surgical options, titanium elastic nailing has been the newer implant which is being used regularly. Although good results have been reported with elastic intramedullary nails, plate fixation continues to be a viable alternative in surgical treatment of femoral shaft fractures. However there are not many studies comp aring the efficiency of titanium elastic nailing and plating for femoral diaphyseal fractures in pediatric age group. AIM : The present study aims to compare the surgical management of diaphyseal fractures of femur in children with Dynamic Compression Plati ng versus Titanium Elastic Nailing. DESIGN : This is a prospective study . MATERIALS AND METHODS : This prospective study was conducted in a tertiary hospital. Patients who presented to the out - patient department and casualty of the hospital with femoral diap hyseal fractures during April 2012 to June 2014 were considered for the study. Subjects fulfilling the predetermined inclusion and exclusion criteria were included in the study. STATISTICAL METHODS : Fisher Exact test, Chi - Square Test, Student t test (Two t ailed, independent . RESULTS : Patients in the age group of 6 - 14 years were considered for the study, Patients were divided into two groups and treated with DCP/TENS. The duration of surgery, hospital stay, and, amount of blood loss was minimal in TENS grou p. Callus was seen early in TENS group. Radiological union was early in TENS group by 2 - 3 weeks. Outcome was better in patients treated with TENS (Excellent - 70%; Satisfactory – 30%; Poor - 0% in comparison to DCP (Excellent - 70%; Satisfactory - 25%; Poor - 5%. CO NCLUSION : TENS

  5. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions

    Science.gov (United States)

    Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang

    2015-01-01

    Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source

  6. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions.

    Directory of Open Access Journals (Sweden)

    Xiaowei Feng

    Full Text Available Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three

  7. Evaluation of critical resolved shear strength and deformation mode in proton-irradiated austenitic stainless steel using micro-compression tests

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyung-Ha; Ko, Eunsol; Kwon, Junhyun; Hwang, Seong Sik [Nuclear Materials Safety Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Shin, Chansun, E-mail: c.shin@mju.ac.kr [Department of Materials Science and Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Youngin, Gyeonggi-do, 449-728 (Korea, Republic of)

    2016-03-15

    Micro-compression tests were applied to evaluate the changes in the strength and deformation mode of proton-irradiated commercial austenitic stainless steel. Proton irradiation generated small dots at low dose levels and Frank loops at high dose levels. The increase in critical resolved shear stresses (CRSS) was measured from micro-compression of pillars and the Schmid factor calculated from the measured loading direction. The magnitudes of the CRSS increase were in good agreement with the values calculated from the barrier hardening model using the measured size and density of radiation defects. The deformation mode changed upon increasing the irradiation dose level. At a low radiation dose level, work hardening and smooth flow behavior were observed. Increasing the dose level resulted in the flow behavior changing to a distinct heterogeneous flow, yielding a few large strain bursts in the stress–strain curves. The change in the deformation mode was related to the formation and propagation of defect-free slip bands. The effect of the orientation of the pillar or loading direction on the strengths is discussed.

  8. Application of Geostatistical Modelling to Study the Exploration Adequacy of Uniaxial Compressive Strength of Intact Rock alongthe Behesht-Abad Tunnel Route

    Directory of Open Access Journals (Sweden)

    Mohammad Doustmohammadi

    2014-12-01

    Full Text Available Uniaxial compressive strength (UCS is one of the most significant factors on the stability of underground excavation projects. Most of the time, this factor can be obtained by exploratory boreholes evaluation. Due to the large distance between exploratory boreholes in the majority of geotechnical projects, the application of geostatistical methods has increased as an estimator of rock mass properties. The present paper ties the estimation of UCS values of intact rock to the distance between boreholes of the Behesht-Abad tunnel in central Iran, using SGEMS geostatistical program. Variography showed that UCS estimation of intact rock using geostatistical methods is reasonable. The model establishment and validation was done after assessment that the model was trustworthy. Cross validation proved the high accuracy (98% and reliability of the model to estimate uniaxial compressive strength. The UCS values were then estimated along the tunnel axis. Moreover, using geostatistical estimation led to better identification of the pros and cons of geotechnical explorations in each location of tunnel route.

  9. Influence of the waste glass in the axial compressive strength of Portland cement concrete; Influencia dos residuos vitreos na resistencia a compressao axial do concreto de cimento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Junior, E.J.P.; Paiva, A.E.M., E-mail: edson.jansen@hotmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia do Maranhao (PPGEM/IFMA), Sao Luis, MA (Brazil). Programa de Pos-Graduacao em Engenharia de Materiais

    2012-07-01

    In this work, was studied the influence of the incorporation of waste glass, coming from the stage of thinning and polishing of a company of thermal glass treatments, in the axial compressive strength of Portland cement concrete. The coarse and ground aggregates used was crushed stone and sand, respectively. For production of the concrete, percentages of glass residues of 5%, 10% and 20% had been used in substitution to the sand, and relations water/cement (a/c) 0,50, 0,55 and 0,58. The cure of the test bodies was carried through in 7, 14 and 28 days. The statistics analysis of the results was carried out through of the analysis of variance for each one of the cure times. From the results of the compressive strength of the concrete, it could be observed that the concrete has structural application for the relation a/c 0,5, independently of waste glass percentage used, and for the relation a/c 0,55 with 20% of waste glass. (author)

  10. Optimization and influence of parameter affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate: using full factorial design approach

    Science.gov (United States)

    Krishnan, Thulasirajan; Purushothaman, Revathi

    2017-07-01

    There are several parameters that influence the properties of geopolymer concrete, which contains recycled concrete aggregate as the coarse aggregate. In the present study, the vital parameters affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate are analyzedby varying four parameters with two levels using full factorial design in statistical software Minitab® 17. The objective of the present work is to gain an idea on the optimization, main parameter effects, their interactions and the predicted response of the model generated using factorial design. The parameters such as molarity of sodium hydroxide (8M and 12M), curing time (6hrs and 24 hrs), curing temperature (60°C and 90°C) and percentage of recycled concrete aggregate (0% and 100%) are considered. The results show that the curing time, molarity of sodium hydroxide and curing temperature were the orderly significant parameters and the percentage of Recycled concrete aggregate (RCA) was statistically insignificant in the production of geopolymer concrete. Thus, it may be noticeable that the RCA content had negligible effect on the compressive strength of geopolymer concrete. The expected responses from the generated model showed a satisfactory and rational agreement to the experimental data with the R2 value of 97.70%. Thus, geopolymer concrete comprising recycled concrete aggregate can solve the major social and environmental concerns such as the depletion of the naturally available aggregate sources and disposal of construction and demolition waste into the landfill.

  11. Effect of process variables on the calorific value and compressive strength of the briquettes made from high moisture Empty Fruit Bunches (EFB)

    Science.gov (United States)

    Helwani, Z.; Fatra, W.; Arifin, L.; Othman, M. R.; Syapsan

    2018-04-01

    In this study, the manual hydraulic press was designed to prepare the briquettes from selected biomass waste. Each biomass was sun-dried and milled into small particle sizes before mixing with crude glycerol that used as a biomass binder. The effects of applied pressure levels of 100, 110, 120 bars, the particle size of 60, 80 and 100 mesh and the binder composition on the density, compressive strength and calorific heating value of the prepared briquettes were investigated using response surface methodology (RSM). Results showed that the briquettes have an average inside diameter, average outside diameter, and height of 12, 38, and 25-30 mm, respectively. The density of the briquettes increased with increasing the applied pressure, was in the range of 623-923 kg/m3. The densest briquettes were obtained at 80 mesh of particle size, 53:47 binder composition ratio and 110 bars of pressurizing. The heating value of the briquette reached up to 28.99 MJ/kg obtained on the particle size of 80 mesh, 53:47 binder composition, and 110 bars and the best compressive strength of 6.991 kg/cm2 obtained at a particle size of 100 mesh, 60:40 binder composition, and 120 bars. Process conditions influence the calorific value significantly.

  12. Dynamic compression plate (DCP) fixation of propagating medial condylar fractures of the third metacarpal/metatarsal bone in 30 racehorses: retrospective analysis (1990-2005).

    Science.gov (United States)

    Goodrich, L R; Nixon, A J; Conway, J D; Morley, P S; Bladon, B M; Hogan, P M

    2014-11-01

    An in-depth review of dynamic compression plate (DCP) fixation of propagating medial condyle fractures of the third metacarpus or metatarsus has not been previously reported. To describe the technique, evaluate short-term outcome and long-term race performance of racehorses that underwent DCP fixation for repair of propagating or spiralling medial condylar fractures of the third metacarpal (McIII) or metatarsal (MtIII) bone. Retrospective case series. The surgical case records of 30 horses with propagating fractures of the medial condyle of McIII or MtIII were reviewed. Medical information included: age, breed, sex, presentation, how injury occurred (racing or training), surgical treatment and post operative complications. Racing information included: starts, top 3 placing and career earnings. Long propagating fractures of the medial condyle of Mc/tIII were identified in 23 Thoroughbred (TB) and 7 Standardbred (STB) racehorses. The fracture spiralled proximally in 22 of 30 cases (73%). Standardbreds had a higher propensity for hindlimb involvement (71%), whereas TBs tended to have more front limb involvement (61%). Twelve of 30 (40%) horses raced post surgery. Career earnings were significantly lower for TB horses with medial condylar fractures; $34,916 when compared with the national average of $60,841 (P≤0.03). Overall, horses having DCP fixation for medial condylar fractures had less starts post surgery (3.1 TBs and 5.8 STBs) compared with the national average (7 TBs and 17.3 STBs) and decreased lifetime starts 13.4 (TBs) compared with 17.3 nationally. Propagating medial condyle fractures can be repaired with plate fixation to potentially lessen the risk of catastrophic fracture destabilisation and return to racing can be expected in 40% of horses. Further prospective studies are warranted comparing lag screw fixation with DCP fixation for repair of severe medial condylar fractures of the metacarpus/metatarsus. © 2013 The Authors. Equine Veterinary Journal

  13. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.

    Science.gov (United States)

    Sim, Jongsung; Park, Cheolwoo

    2011-11-01

    Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effective strength of incoming sediments and its implications for plate boundary propagation: Nankai and Costa Rica as type examples of accreting vs. erosive convergent margins

    Science.gov (United States)

    Kopf, Achim

    2013-11-01

    The location of the seaward tip of a subduction thrust controls material transfer at convergent plate margins, and hence global mass balances. At approximately half of those margins, the material of the subducting plate is completely underthrust so that no accretion or even subduction erosion takes place. Along the remaining margins, material is scraped off the subducting plate and added to the upper plate by frontal accretion. We here examine the physical properties of subducting sediments off Costa Rica and Nankai, type examples for an erosional and an accretionary margin, to investigate which parameters control the level where the frontal thrust cuts into the incoming sediment pile. A series of rotary-shear experiments to measure the frictional strength of the various lithologies entering the two subduction zones were carried out. Results include the following findings: (1) At Costa Rica, clay-rich strata at the top of the incoming succession have the lowest strength (μres = 0.19) while underlying calcareous ooze, chalk and diatomite are strong (up to μres = 0.43; μpeak = 0.56). Hence the entire sediment package is underthrust. (2) Off Japan, clay-rich deposits within the lower Shikoku Basin inventory are weakest (μres = 0.13-0.19) and favour the frontal proto-thrust to migrate into one particular horizon between sandy, competent turbidites below and ash-bearing mud above. (3) Taking in situ data and earlier geotechnical testing into account, it is suggested that mineralogical composition rather than pore-pressure defines the position of the frontal thrust, which locates in the weakest, clay mineral-rich (up to 85 wt.%) materials. (4) Smectite, the dominant clay mineral phase at either margin, shows rate strengthening and stable sliding in the frontal 50 km of the subduction thrust (0.0001-0.1 mm/s, 0.5-25 MPa effective normal stress). (5) Progressive illitization of smectite cannot explain seismogenesis, because illite-rich samples also show velocity

  15. The effect of tensile and compressive loading on the hierarchical strength of idealized tropocollagen-hydroxyapatite biomaterials as a function of the chemical environment

    International Nuclear Information System (INIS)

    Dubey, Devendra K; Tomar, Vikas

    2009-01-01

    Hard biomaterials such as bone, dentin and nacre have primarily a polypeptide phase (e.g. tropocollagen (TC)) and a mineral phase (e.g. hydroxyapatite (HAP) or aragonite) arranged in a staggered manner. It has been observed that the mechanical behaviour of such materials changes with the chemical environment and the direction of applied loading. In the presented investigation, explicit three-dimensional molecular dynamics (MD) simulations based analyses are performed on idealized TC-HAP composite biomaterial systems to understand the effects of tensile and compressive loadings in three different chemical environments: (1) unsolvated, (2) solvated with water and (3) calcinated and solvated with water. The MD analyses are performed on two interfacial supercells corresponding to the lowest structural level (level n) of TC-HAP interactions and on two other supercells with HAP supercells arranged in a staggered manner (level n+1) in a TC matrix. The supercells at level n+1 are formed by arranging level n interfacial supercells in a staggered manner. Analyses show that at level n, the presence of water molecules results in greater stability of TC molecules and TC-HAP interfaces during mechanical deformation. In addition, water also acts as a lubricant between adjacent TC molecules. Under the application of shear stress dominated loading, water molecules act to strengthen the TC-HAP interfacial strength in a manner similar to the action of glue. An overall effect of the observed mechanisms is that, in a staggered arrangement, tensile strength increases in the presence of water and calcinated water environments. On the other hand, corresponding compressive strength decreases under similar circumstances. Fundamentally, supercells with primarily normal load transfer at the TC-HAP interfaces are stronger in tensile shear loading. On the other hand, supercells with primarily tangential or shear load transfer at the TC-HAP interfaces are stronger in compressive shear loading. A

  16. A comparative evaluation of compressive strength of Portland cement with zinc oxide eugenol and Polymer-reinforced cement: an in vitro analysis.

    Science.gov (United States)

    Prakasam, S; Bharadwaj, Prakasam; Loganathan, S C; Prasanth, B Krishna

    2014-01-01

    The purpose of this study is to evaluate the ultimate compressive strength of 50% and 25% Portland cement mixed with Polymer-reinforced zinc oxide eugenol and zinc oxide eugenol cement after 1 hour, 24 hours, and 7 days. One hundred and eighty samples were selected. The samples were made cylindrical of size 6 × 8 mm and were divided into six groups as follows with each group consisting of 10 samples. Group 1: Polymer-reinforced zinc oxide eugenol with 50% Portland cement (PMZNPC 50%) Group 2: Polymer-reinforced zinc oxide eugenol with 25% Portland cement (PMZNPC 25%) Group 3: Polymer-reinforced zinc oxide eugenol with 0% Portland cement (PMZNPC 0%) Group 4: Zinc oxide eugenol with 50% Portland cement (ZNPC 50%) Group 5: Zinc oxide eugenol with 25% Portland cement (ZNPC 25%) Group 6: Zinc oxide eugenol with 0% Portland cement (ZNPC 0%) These samples were further subdivided based on time interval and were tested at 1 hour, 24 hours and at 7 th day. After each period of time all the specimens were tested by vertical CVR loaded frame with capacity of 5 tones/0473-10kan National Physical laboratory, New Delhi and the results were statistically analyzed using ANOVA and Scheffe test. Polymer-reinforced cement with 50% Portland cement, Zinc oxide with 50% Portland cement, Polymer-reinforced cement with 25% Portland cement and Zinc oxide with 25% Portland cement exhibited higher compressive strength when compared to Zinc oxide with 0% Portland cement and Polymer-reinforced cement with 0% Portland cement, at different periods of time. The difference between these two groups were statistically significant (P Portland cement in Zinc oxide eugenol and Polymer-modified zinc oxide cement can be used as core build up material and permanent filling material. It is concluded that 50% and 25% Portland cement in zinc oxide eugenol and polymer-modified zinc oxide eugenol results in higher compressive strength and hence can be used as permanent filling material and core built

  17. A PROSPECTIVE STUDY ON FUNCTIONAL OUTCOME OF HUMERUS SHAFT FRACTURES TREATED WITH OPEN REDUCTION AND INTERNAL FIXATION WITH DYNAMIC COMPRESSION PLATE AND SCREWS

    Directory of Open Access Journals (Sweden)

    Vidyadhar S. Donimath

    2017-12-01

    Full Text Available BACKGROUND Fracture of the humerus shaft accounts to 3% to 5% of all fractures. Majority of the fractures are unstable due to distraction force of the gravity in the upper limb and strong muscle contraction leading to displacement. Internal fixation and early mobilisation is more stressed on than splinting and prolonged immobilisation to allow earlier mobilisation and rapid return to work. The aim of the study was to study the union rates and the functional outcome and complications associated with shaft humerus fractures in KIMS Hospital. MATERIALS AND METHODS A prospective study which was carried out from October 2015 to September 2017 in Karnataka Institute of Medical Sciences, Hubballi, Karnataka State, India. In this study period, 25 cases of fracture shaft of the humerus were treated by open reduction and internal fixation using DCP. Skeletally mature patients with fresh humerus diaphysis fractures were included in the study. Pathological fractures and Tscherne grade 2 and above, Gustilo Anderson type2 and above were excluded from the study. RESULTS In our series of 25 cases, there were 21 men and 4 women with average age of 42.5 years. Sixteen (64% cases were due to RTA and with predominance of right side. Transverse fractures were most common that is 15 (60% patients. Eleven (31% cases were having associated injuries. 92% of the fractures united with good to excellent outcome. There were 2 (8% cases of non-union due to infection and comminution. CONCLUSION Open reduction and internal fixation with dynamic compression plate is still the standard treatment of choice for fracture shaft of humerus achieving excellent to good functional outcome.

  18. A CLINICAL STUDY OF PROXIMAL FEMUR LOCKING COMPRESSION PLATE (LCP - PF IN THE MANAGEMENT OF COMMUNITED INTERTROCHANTERIC AND SUBTROCHANTERIC FRACTURES OF THE FEMUR

    Directory of Open Access Journals (Sweden)

    Hari Babu

    2015-10-01

    Full Text Available Fractures of proximal femur and hip are relatively common injuries in elderly individuals . The incidence of peritrochanteric and intertrochanteric fracture is also increasing among young population, who sustain high energy trauma Rigid Internal fixation and early mobilization has been the standard method of treatment. A combination of orthopaedic surgery and early postoperative physiotherapy and ambulation is the best approach. The overall goal in the treatment of hip fractures is to return the patient to pre - morbid level of function. AIMS & OBJECTIVE : To analyse the anatomical and f unctional outcome of the treatment with LCP - Proximal femur. METHODOLOGY : The present study consists of 12 adult patients of peritrochanteric factures of femur satisfying the inclusion criteria , treated with Proximal Femoral Locking Compression Plate at S. V. R. R . Govt . General Hospital, Tirupati during the period of nov 2013 to Oct 2015. INCLUSION CRITERIA : Age >18years , comminuted trochanteric and sub trochanteric fractures , Signed written informed consent . EXCLUSION CRITERIA: Inter trochanteric fractures involving piriformis fossa , Compound fractures . Pathological fractures . Any displacement of a femoral neck fracture . A ssociated malignancy. RESULTS : Average age incidence in the present study was 62.7 years. , Predominantly males (75% were affected. , Most cases occurred after a fall 10 (50% cases which was statistically significant , Right side involvement was more common. , Average post - operative stay was 13.5 days. , Out of the 12 cases, evaluated using Salvati - Wilson scoring : 3 cases (25% had good, 8 cases (66.67% fair, 1 case (8.33% had poor score , Average weight bearing time was14.5 weeks , Average union rate was 19.45 weeks.

  19. Influence of deposited nanoparticles on the spall strength of metals under the action of picosecond pulses of shock compression

    Science.gov (United States)

    Ebel, A. A.; Mayer, A. E.

    2018-01-01

    Molecular dynamic simulations of the generation and propagation of shock pulses of picosecond duration initiated by nanoscale impactors, and their interaction with the rear surface is carried out for aluminum and copper. It is shown that the presence of deposited nanoparticles on the rear surface increases the threshold value of the impact intensity leading to the rear spallation. The interaction of a shock wave with nanoparticles leads to severe plastic deformation in the surface layer of the metal including nanoparticles. A part of the compression pulse energy is expended on the plastic deformation, which suppresses the spall fracture. Spallation threshold substantially increases at large diameters of deposited nanoparticles, but instability develops on the rear surface of the target, which is accompanied by ejection of droplets. The instability disrupts the integrity of the rear surface, though the loss of integrity occurs through the ejection of mass, rather than a spallation.

  20. Compressive strength of glass ionomer cements using different specimen dimensions Resistência à compressão de cimentos de ionômero de vidro utilizando-se diferentes tamanhos de corpos-de-prova

    Directory of Open Access Journals (Sweden)

    André Mallmann

    2007-09-01

    Full Text Available The purpose of this study was to evaluate the compressive strength of two glass ionomer cements, a conventional one (Vitro Fil® - DFL and a resin-modified material (Vitro Fil LC® - DFL, using two test specimen dimensions: One with 6 mm in height and 4 mm in diameter and the other with 12 mm in height and 6 mm in diameter, according to the ISO 7489:1986 specification and the ANSI/ADA Specification No. 66 for Dental Glass Ionomer Cement, respectively. Ten specimens were fabricated with each material and for each size, in a total of 40 specimens. They were stored in distilled water for 24 hours and then subjected to a compressive strength test in a universal testing machine (EMIC, at a crosshead speed of 0.5 mm/min. The data were statistically analyzed using the Kruskal-Wallis test (5%. Mean compressive strength values (MPa were: 54.00 ± 6.6 and 105.10 ± 17.3 for the 12 mm x 6 mm sample using Vitro Fil and Vitro Fil LC, respectively, and 46.00 ± 3.8 and 91.10 ± 8.2 for the 6 mm x 4 mm sample using Vitro Fil and Vitro Fil LC, respectively. The resin-modified glass ionomer cement obtained the best results, irrespective of specimen dimensions. For both glass ionomer materials, the 12 mm x 6 mm matrix led to higher compressive strength results than the 6 mm x 4 mm matrix. A higher variability in results was observed when the glass ionomer cements were used in the larger matrices.Este estudo teve como objetivo avaliar a resistência à compressão de dois cimentos de ionômero de vidro, um convencional (Vitro Fil® - DFL e outro modificado por resina (Vitro Fil LC® - DFL, utilizando-se dois tamanhos de amostras: uma com 6 mm de altura e 4 mm de diâmetro e outra com 12 mm de altura e 6 mm de diâmetro,