WorldWideScience

Sample records for plate collectors water

  1. Influences of the Twisted Strips Insertion on the Performance of Flat Plate Water Solar Collector

    Directory of Open Access Journals (Sweden)

    Jafar M. Hassan

    2015-09-01

    Full Text Available In order to enhance the efficiency of flat plate solar water collectors without changing in its original shape and with low additional cost, twisted strips are inserted inside its riser pipes. Three flat plate collectors are used for test. Family of twisted strips are inserted inside each collector risers with different twisted ratios (TR=3,4,5. The collectors are connected in parallel mode (Z-Configuration and are exposed to the same conditions (solar radiation and ambient temperature .The experimental results show that, the highest heat transfer rate occurs at twisted ratio (3 .Consequently, for the same twisted ratio the daily efficiencies for the solar collector at different flow rate used (60,100 and 150 ℓ /hr. were 49 %, 57% and 63% respectively.

  2. Analysis of PV/T flat plate water collectors connected in series

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Swapnil; Tiwari, G.N. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2009-09-15

    Photovoltaic-thermal (PV/T) technology refers to the integration of a PV and a conventional solar thermal collector in a single piece of equipment. In this paper we evaluate the performance of partially covered flat plate water collectors connected in series using theoretical modeling. PV is used to run the DC motor, which circulates the water in a forced mode. Analytical expressions for N collectors connected in series are derived by using basic energy balance equations and computer based thermal models. This paper shows the detailed analysis of thermal energy, exergy and electrical energy yield by varying the number of collectors by considering four weather conditions (a, b, c and d type) for five different cities (New Delhi, Bangalore, Mumbai, Srinagar, and Jodhpur) of India. Annual thermal and electrical energy yield is also evaluated for four different series and parallel combination of collectors for comparison purpose considering New Delhi conditions. This paper also gives the total carbon credit earned by the hybrid PV/T water heater investigated as per norms of Kyoto Protocol for New Delhi climatic conditions. Cost analysis has also been carried out. It is observed that the collectors partially covered by PV module combines the production of hot water and electricity generation and it is beneficial for the users whose primary requirement is hot water production and collectors fully covered by PV is beneficial for the users whose primary requirement is electricity generation. We have also found that if this type of system is installed only in 10% of the total residential houses in Delhi then the total carbon credit earned by PV/T water heaters in terms of thermal energy is USD $144.5 millions per annum and in terms of exergy is USD $14.3 millions per annum, respectively. (author)

  3. Experimental Study on Performance of a Box Solar Cooker with Flat Plate Collector to Boil Water

    Science.gov (United States)

    Sitepu, T.; Gunawan, S.; Nasution, D. M.; Ambarita, H.; Siregar, R. E. T.; Ronowikarto, A. D.

    2017-03-01

    In this study, a flat plate type solar cooker is tested by exposing in solar irradiation. The objective is to examine the performance of solar cooker in boiling water. The solar cooker is a box type with collector area and height are 100 × 100 cm and 40 cm, respectively. Vessel for water is made of aluminum plate with diameter and height of 22 cm and 15 cm. The experiments are performed by varying mass of the water. It is 2 kg and 4 kg, respectively. Every experiment starts from 10:00 AM until the boiling temperature is reached. The parameters measured are radiance intensity, ambient and solar box cooker temperatures, and wind speed. The results show that the duration of water heating up to 100°C with water mass 2 kg within 2 hours 45 minutes and water mass 4 kg within 3 hours 17 minutes. The maximum temperatur of solar box cooker is 117°C at 12:56 PM and maximum efficiency is 46.30%. The main conclusion can be drawn here is that a simple solar box cooker can be used to boil water.

  4. Analysis of the Thermal Performance of a Solar Water Heating System with Flat Plate Collectors in a Temperate Climate

    OpenAIRE

    Ayompe, Lacour; DUFFY Aidan

    2013-01-01

    The thermal performance of a solar water heating system with 4 m2 flat plate collectors in Dublin, Ireland is presented in this paper. The experimental setup consisted of a commercially available forced circulation domestic scale system fitted with an automated sub‐system that controlled hot water draw‐offs and the operation of an auxiliary immersion heater. The system was tested over a year and the maximum recorded collector outlet fluid temperature was 70.4 oC while the maximum water temper...

  5. Standard Test Method for Water Penetration of Flat Plate Solar Collectors by Uniform Static Air Pressure Difference

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1986-01-01

    1.1 This test method covers the determination of the resistance of flat plate solar collectors to water penetration when water is applied to their outer surfaces with a static air pressure at the outer surface higher than the pressure at the interior of the collector. 1.2 This test method is applicable to any flat plate solar collector. 1.3 The proper use of this test method requires a knowledge of the principles of pressure and deflection measurement. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary information is contained in Section 6.

  6. Heat transfer performance of silver/water nanofluid in a solar flat-plate collector

    OpenAIRE

    Lazarus, Godson; Roy, Siddharth; Kunhappan, Deepak; Cephas, Enoch; Wongwises, Somchai

    2015-01-01

    An experimental study is carried out to investigate the heat transfer characteristics of silver/water nanofluid in a solar flatplate collector. The solar radiation heat flux varies between 800 W/m2and 1000W/m2, and the particle concentration varies between 0.01%, 0.03%, and 0.04%. The fluid Reynolds number varies from 5000 to 25000. The influence of radiation heat flux, mass flow rate of nanofluid, inlet temperature into the solar collector, and volume concentration of the particle on the con...

  7. SIMULATION OF SOLAR LITHIUM BROMIDE–WATER ABSORPTION COOLING SYSTEM WITH DOUBLE GLAZED FLAT PLATE COLLECTOR FOR ADRAR

    Directory of Open Access Journals (Sweden)

    ML CHOUGUI

    2014-12-01

    Full Text Available Adrar is a city in the Sahara desert, in southern Algeria known for its hot and dry climate, where a huge amount of energy is used for air conditioning. The aim of this research is to simulate a single effect lithium bromide–water absorption chiller coupled to a double-glazed flat plate collector to supply the cooling loads for a house of 200m2 in Adrar. The thermal energy is stored in an insulated thermal storage tank. The system was designed to cover a cooling load of 10.39KW for design day of July. Thermodynamic model was established to simulate the absorption cycle. The results have shown that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 65.3 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy.

  8. REVIEW OF PERFORMANCE AND ANALYSIS ISI FLAT PLATE COLLECTOR WITH MODIFIED FLAT PLATE COLLECTOR

    Directory of Open Access Journals (Sweden)

    MR.Y.Y.NANDURKAR

    2012-03-01

    Full Text Available The market of solar water heater of natural circulation type (thermo-siphon is fast growing in India. Initial cost of the solar water heater system at present is high because of store type design. It is necessary to make the product more popular by reducing the cost. This is possible by reducing area of liquid flat plate collector by increasing tube diameter and reducing riser length. Hence it is essential to make solar water heater in affordable range of the general public class. Present work is based on review of comparative performance and analysis of ISI flat plate collector with modified flat plat collector. The paper will be helpful for those who are working in the area of solar water heating system and their use in domestic areas.

  9. Flat plate collectors as facade elements for domestic hot water and heat insulation. Flachkollektoren als Fassadenelemente zur Brauchwassererwaermung und Waermedaemmung

    Energy Technology Data Exchange (ETDEWEB)

    Flamm, H.; Lochau, R.; Maeiss, M.; Schiele, J.

    1984-07-01

    In a newly constructed south-west-facade 200 m/sup 2/ of flat plate collectors were integrated as construction elements to heat domestic water. The building needs 5-10 m/sup 3/ of hot water per day, i.e. 250-500 kWh/d. The solar circuit runs with a water-glycol-mixture with a specific volume flow rate of 20-40 l/m/sup 2/h. The storage capacity is 8 m/sup 3/, i.e. 40 l/m/sup 2/ collector area. The heating system is bivalent. The total cost was DM 220.000, excepting the cost of facade construction. The observation period was 2 years. The heat flow balance was measured daily using a microprocessor. As far as the construction was concerned, there were no defects during the observation period. The rooms behind solar collectors showed no additional thermal load. The most favourable season for running solar systems is from April to September. In this period the average efficiencies were 15 to 20%, the net energy yield was 76 kWh/m/sup 2/.

  10. Increasing thermal efficiency of solar flat plate collectors

    Science.gov (United States)

    Pona, J.

    A study of methods to increase the efficiency of heat transfer in flat plate solar collectors is presented. In order to increase the heat transfer from the absorber plate to the working fluid inside the tubes, turbulent flow was induced by installing baffles within the tubes. The installation of the baffles resulted in a 7 to 12% increase in collector efficiency. Experiments were run on both 1 sq ft and 2 sq ft collectors each fitted with either slotted baffles or tubular baffles. A computer program was run comparing the baffled collector to the standard collector. The results obtained from the computer show that the baffled collectors have a 2.7% increase in life cycle cost (LCC) savings and a 3.6% increase in net cash flow for use in domestic hot water systems, and even greater increases when used in solar heating systems.

  11. Experimental validation of dynamic simulation of the flat plate collector in a closed thermosyphon solar water heater

    DEFF Research Database (Denmark)

    Taherian, H.; Kolaei, Alireza Rezania; Sadeghi, S.;

    2011-01-01

    This work studies the dynamic simulation of thermosyphon solar water heater collector considering the weather conditions of a city in north of Iran. The simulation was done for clear and partly cloudy days. The useful energy, the efficiency diagrams, the inlet and the outlet of collector, center...

  12. High performance flat plate solar collector

    Science.gov (United States)

    Lansing, F. L.; Reynolds, R.

    1976-01-01

    The potential use of porous construction is presented to achieve efficient heat removal from a power producing solid and is applied to solar air heaters. Analytical solutions are given for the temperature distribution within a gas-cooled porous flat plate having its surface exposed to the sun's energy. The extracted thermal energy is calculated for two different types of plate transparency. Results show the great improvement in performance obtained with porous flat plate collectors as compared with analogous nonporous types.

  13. Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    in large solar heating plants for a district heating network, a hybrid solar collector field with 5960 m2 flat plate collectors and 4039 m2 parabolic trough collectors in series was constructed in Taars, Denmark. The design principle is that the flat plate collectors preheat the return water from...... for this type of hybrid solar district heating plants with flat plate collectors and parabolic trough collectors in the Nordic region, but also introduce a novel design concept of solar district heating plants to other high solar radiation areas.......Flat plate collectors have relatively low efficiency at the typical supply temperatures of district heating networks (70–95 °C). Parabolic trough collectors retain their high efficiency at these temperatures. To maximize the advantages of flat plate collectors and parabolic trough collectors...

  14. Validation of CFD simulation for flat plate solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Selmi, Mohamed; Al-Khawaja, Mohammed J.; Marafia, Abdulhamid [Department of Mechanical Engineering, University of Qatar, P.O. Box 2713, Doha, State of Qatar (Qatar)

    2008-03-15

    The problem of flat plate solar energy collector with water flow is simulated and analyzed using computational fluid dynamics (CFD) software. The considered case includes the CFD modeling of solar irradiation and the modes of mixed convection and radiation heat transfer between tube surface, glass cover, side walls, and insulating base of the collector as well as the mixed convective heat transfer in the circulating water inside the tube and conduction between the base and tube material. The collector performance, after obtaining 3-D temperature distribution over the volume of the body of the collector, was studied with and without circulating water flow. An experimental model was built and experiments were performed to validate the CFD model. The outlet temperature of water is compared with experimental results and there is a good agreement. (author)

  15. Electrostatic particle collector with improved features for installing and/or removing its collector plates

    Energy Technology Data Exchange (ETDEWEB)

    Siegfried, Matthew J.; Radford, Daniel R.; Huffman, Russell K.

    2017-04-04

    An electrostatic particle collector may generally include a housing having sidewalls extending lengthwise between a first end and a second end. The housing may define a plate slot that extends heightwise within the housing between a top end and a bottom end. The housing may further include a plate access window that provides access to the bottom end of the plate slot. The collector may also include a collector plate configured to be installed within the plate slot that extends heightwise between a top edge and a bottom edge. Additionally, when the collector plate is installed within the plate slot, the bottom edge of the collector plate may be accessible from an exterior of the housing via the plate access window so as to allow the bottom edge of the collector plate to be moved relative to the housing to facilitate removal of the collector plate from the housing.

  16. High temperature flat plate solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, S.; Aso, S.; Ebisu, K.; Uchino, H.

    1981-04-01

    Improvements in the efficiency of collectors are of great importance for extending the utilization of solar energy for heating and cooling in homes. A highly efficient collector makes the system size small and decreases the system cost effectively. From the view of the amount of energy collected, the efficient collector has a multiple effect, not only because of the high increase in instantaneous efficiency, but also because of the large usable intensity range of the insolation. On the basis of a functional analysis for a flat collector, the materials and parameters were selected and optimized, and a new high temperature flat collector was designed. The collector has 2 panes. The first pane is low iron glass and the second pane is a thin film of fluorinated ethylene-propylene copolymer. The overall solar transmittance for the two panes is 0.89. The collecting panel and its water paths were formed by means of welding and hydraulic expansion. The selective absorbing surface consists of colored stainless steel whose absorption characteristic is 0.89 and emission characteristic is 0.16. The thermal insulator preventing backward heatloss consists of double layers of urethane foam and glass wool. Furthermore, the sustained method for the second pane is contrived so as to prevent water condensation on the panes and excessive elevation of the absorber temperature during no load heating.

  17. COMPARATIVE FIELD EXPERIMENTAL INVESTIGATIONS OF DIFFERENT FLAT PLATE SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Guangming Chen

    2015-12-01

    Full Text Available Full-scale traditional metal solar collectors and solar collector specimens fabricated from polymeric materials were investigated in the present study. A polymeric collector is 67.8% lighter than a traditional metal solar collector, and a metal solar collector with transparent plastic covering is 40.3% lighter than a traditional metal solar collector. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. A test rig for the natural circulation of the working fluid in a solar collector was built for a comparative experimental investigation of various solar collectors operating at ambient conditions. It was shown experimentally that the efficiency of a polymeric collector is 8–15% lower than the efficiency of a traditional collector.

  18. Efficiencies of flat plate solar collectors at different flow rates

    DEFF Research Database (Denmark)

    Chen, Ziqian; Furbo, Simon; Perers, Bengt;

    2012-01-01

    Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rate are obtained. The calculated efficiencies are in good agreement...

  19. A diagram for defined flat plate solar collector area for solar floor heating

    Energy Technology Data Exchange (ETDEWEB)

    Altuntop, N.; Tekin, Y. [Erciyes University, Dept. of Mechanical Engineering (Turkey); Cengel, Y.A. [Nevada Reno University, Dept. of Mechanical Engineering, NV (United States)

    2000-07-01

    In winters, one of the best ways to heat living areas by using the low- temperature - water obtained from flat-plate solar collectors is the floor heating. In floor heating, low temperature-water (30 + 60 deg C) can be used and heat can be stored in water when solar radiation is not possible. In this study, it is aimed to define collector surface needed to supply heat for floor heating. It is also aimed to define and explain the diagram developed for every heating months. The calculations about the sun geometry are used to define the amount of radiation coming in to the collectors. Formulations are made about the definition of solar radiation absorbed by the collectors, the total heat loss coefficient, and the collector plate surface temperature. These formulations are transformed in to the diagram. In addition, the studies, heat transfer calculations and design parameters about the floor of the heating areas are used. A combined collector floor heating diagram is obtained. This diagram is used to define collector surface area necessary to supply heat for floor heated places. In this diagram, the collector surface area is obtained by giving the heat capacity of the place area, floor surface temperature, approximate modulation distance of the floor, the elevation of city, collector slope angle, wind speed, sun shine lime and the amount of the solar radiation obtained from the solar radiation diagram. (authors)

  20. Development of high efficiency collector plates. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Santala, T.; Sabol, R.

    1976-02-01

    Composite metal technology was used to manufacture intermetallic compound (IC) absorption surfaces and to combine them integrally with composite metal tube-in-sheet collector plates. Five material systems in which Al was one component metal and Fe, Cr, or Ni and their alloy was the other pair, were evaluated. All intermetallic compounds had high solar absorptance ..cap alpha.. approx. = 0.9. The AlNi was most promising and ..cap alpha.. > or = 0.95 and epsilon approx. = 0.3 were obtained over a broad range of compounding conditions. After eight months exposure in a flat plate collector enclosure the characteristic properties of AlNi surfaces remained virtually unchanged. Only LCS/Cu composite metal tube-in-sheet collector plates could be manufactured successfully. The technical difficulties associated with integrating the intermetallic compound and tube-in-sheet technologies make the manufacturing of composite metal collector plates at the time being economically unfeasible.

  1. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  2. Detailed Modeling of Flat Plate Solar Collector with Vacuum Glazing

    Directory of Open Access Journals (Sweden)

    Viacheslav Shemelin

    2017-01-01

    Full Text Available A theoretical analysis of flat plate solar collectors with a vacuum glazing is presented. Different configurations of the collector have been investigated by a detailed theoretical model based on a combined external and internal energy balance of the absorber. Performance characteristics for vacuum flat plate collector alternatives have been derived. Subsequently, annual energy gains have been evaluated for a selected variant and compared with state-of-the-art vacuum tube collectors. The results of modeling indicate that, in the case of using advanced vacuum glazing with optimized low-emissivity coating (emissivity 0.20, solar transmittance 0.85, it is possible to achieve efficiency parameters similar to or even better than vacuum tube collectors. The design presented in this paper can be considered promising for the extension of the applicability range of FPC and could be used in applications, which require low-to-medium temperature level.

  3. Improvement of flat plate collectors for solar energy conversion

    Science.gov (United States)

    Boeck, H.; Hallermayer, R.; Schoelkopf, W.; Sizman, R.

    1984-03-01

    Selective absorption for thermal conversion of radiative energy was investigated. Improvement and operation of various measuring devices for absorption and emission are presented. Selective coatings were produced by vapor deposition and galvanic treatment. Calculations of the transmittance of turbular collector fields are presented. Operational Characteristics of Collector were examined. A collector test field with simultaneous recording of data from 24 collectors or uncovered absorbers was built and connected to a high performance microprocessor system. The transient behavior of collectors by variation of the irradiation and the collector inlet temperature were investigated. A mechanism for stratification of hot water of fluctuating inlet temperature in a storage tank was studied. The operating conditions of a heat pump installed in the collector test plant are investigated. A large domestic hot water system is equipped with temperature sensors and flowmeters for computer recording.

  4. A high performance porous flat-plate solar collector

    Science.gov (United States)

    Lansing, F. L.; Clarke, V.; Reynolds, R.

    1979-01-01

    A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.

  5. Standardized solar simulator tests of flat plate solar collectors. 1: Soltex collector with two transparent covers

    Science.gov (United States)

    Simon, F.

    1975-01-01

    A Soltex flat plate solar collector was tested with a solar simulator for inlet temperatures of 77 to 201 F, flux levels of 240 and 350 Btu/hr-sq ft, a collant flow rate of 10.5 lb/hr sq ft, and incident angles of 0 deg, 41.5 deg, and 65.2 deg. Collector performance is correlated in terms of inlet temperature, flux level, and incident angle.

  6. Low cost bare-plate solar air collector

    Energy Technology Data Exchange (ETDEWEB)

    Maag, W.L.; Wenzler, C.J.; Rom, F.E.; VanArsdale, D.R.

    1980-09-01

    The purpose of this project was to develop a low cost, bare-plate collector, determine its performance for a variety of climatic conditions, analyze the economics of this type of solar collector and evaluate specific applications. Two prototype collectors were designed, fabricated and installed into an instrumented test system. Tests were conducted for a period of five months. Results of the tests showed consistent operating efficiencies of 60% or greater with air preheat temperature uses up to 20/sup 0/F for one of the prototypes. The economic analyses indicated that an installed cost of between $5 and $10 per square foot would make this type of solar system economically viable. For the materials of construction and the type of fabrication and installation perceived, these costs for the bare-plate solar collector are believed to be attainable. Specific applications for preheating ventilation air for schools were evaluated and judged to be economically viable.

  7. Calculating the Solar Energy of a Flat Plate Collector

    Directory of Open Access Journals (Sweden)

    Ariane Rosario

    2014-09-01

    Full Text Available The amount of solar energy that could be obtained by a flat plate solar collector of one square meter dimension is calculated in three different locations: Tampa FL, Fairbanks AL, and Pontianak Indonesia, considering the varying sunset time for each day of the year. The results show that if the collectors are placed near the equator, more total energy could be obtained. In fact, by placing a solar collector in Pontianak, Indonesia 12.42% more solar energy can be obtained than by placing it in Tampa and 96.9% more solar energy than Alaska.

  8. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  9. Certification and verification for calmac flat plate solar collector

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-27

    This document contains information used in the certification and verification of the Calmac Flat Plate Collector. Contained are such items as test procedures and results, information on materials used, Installation, Operation, and Maintenance Manuals, and other information pertaining to the verification and certification.

  10. Studies on solar flat plate collector evaporation systems for tannery effluent (soak liquor)

    Institute of Scientific and Technical Information of China (English)

    SRITHAR K.; MANIA.

    2006-01-01

    Heat and mass transfer analysis of an incompressible, laminar boundary layer over solar flat plate collector evaporation systems for tannery effluent (soak liquor) is investigated. The goveming equations are solved for various liquid to air velocity ratios. Profiles of velocity, temperature and concentration as well as their gradients are presented. The heat transfer and mass transfer coefficients thus obtained are used to evaluate mass of water evaporated for an inclined fibre-reinforced plastic (FRP)solar flat plate collector (FPC) with and without cover. Comparison of these results with the experimental performance shows encouraging trend of good agreement between them.

  11. 空气-水复合平板型太阳能集热器%Experiment test of hybrid air-water solar flat plate collector

    Institute of Scientific and Technical Information of China (English)

    赵东亮; 代彦军; 李勇

    2011-01-01

    This paper focuses on a new type of solar collector that has the potential for using in solar heating systems. It can use both air and water as the circulation mediums. Experiment results show that the collector efficiency is between 55%~65% when air is used as the circulation medium, while the efficiency is between 32%~34% for using water as the circulation medium, and it can meet the requirement of solar heating systems. Moreover, this collector is fairly cheap, therefore, especially suitable for the rural areas in north China.%提出了一种适用于太阳能供热采暖工程的新型太阳能空气-水复合平板集热器.该集热器可以单独使用空气、水或同时以空气和水作为集热工质.测试显示,该集热器空气循环集热效率为55%~65%,水循环集热效率为32%~34%,能够满足太阳能供热采暖工程的要求.该集热器成本不高,适用于在我国北方广大农村地区推广使用.

  12. Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid

    Science.gov (United States)

    Faizal, M.; Saidur, R.; Mekhilef, S.

    2013-06-01

    Flat-plate solar collector is the most popular type of collector for hot water system to replace gas or electric heater. Solar thermal energy source is clean and infinite to replace fossil fuel source that is declining and harmful to the environment. However, current solar technology is still expensive, low in efficiency and takes up a lot of space. One effective way to increase the efficiency is by applying high conductivity fluid as nanofluid. This paper analyzes the potential of size reduction of solar collector when MWCNT nanofluid is used as absorbing medium. The analysis is based on different mass flow rate, nanoparticles mass fraction, and presence of surfactant in the fluid. For the same output temperature, it can be observed that the collector's size can be reduced up to 37% of its original size when applying MWCNT nanofluid as the working fluid and thus can reduce the overall cost of the system.

  13. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  14. Theoretical analysis of solar thermal collector and flat plate bottom reflector with a gap between them

    OpenAIRE

    Hiroshi Tanaka

    2015-01-01

    Augmentation of solar radiation absorbed on a flat plate solar thermal collector by a flat plate bottom reflector was numerically determined when there was a gap between the collector and reflector. The inclination of both the collector and reflector was assumed to be adjustable according to the season. A mirror-symmetric plane of the collector to the reflector was introduced, and a graphical model was proposed to calculate the amount of solar radiation reflected by the reflector and then abs...

  15. KARAKTERISTIK PENGERINGAN CHIPS MANGGA MENGGUNAKAN KOLEKTOR SURYA KACA GANDA [Characteristics of Mango Chips Drying Using a Double Plated Solar Collector

    Directory of Open Access Journals (Sweden)

    Safrani

    2012-12-01

    Full Text Available The objectives of this research were to study the characteristics of mango chips drying using a double plated solar collector. The materials used were sliced mangoes with the thickness of 3, 6, and 8 mm. The equipments used for this research were double plated solar collector, thermocouple, digital balance, thermometer, vacuum oven, and desiccators. The research parameters included the rate of heat energy absorbed by the double plated solar collector, the heat energy losses, the efficiency of the double plated solar collector and the moisture content of the chips. The results of this study suggested that the use of double plated solar collector could increase the temperature and the amount of heat energy, thus speed up the drying process of the mango chips. The energy needed to evaporate the moisture content in mango decreased in proportion to the increase in drying time. The difference in mango chips’ thickness resulted in different decrease rate in water content until it reached a constant state. The efficiency of the double plated solar collector was 77.82%.

  16. Influence of wire-coil inserts on the thermo-hydraulic performance of a flat-plate solar collector

    Science.gov (United States)

    Herrero Martín, R.; García, A.; Pérez-García, J.

    2012-11-01

    Enhancement techniques can be applied to flat-plate liquid solar collectors towards more compact and efficient designs. For the typical operating mass flow rates in flat-plate solar collectors, the most suitable technique is inserted devices. Based on previous studies from the authors, wire coils were selected for enhancing heat transfer. This type of inserted device provides better results in laminar, transitional and low turbulence fluid flow regimes. To test the enhanced solar collector and compare with a standard one, an experimental side-by-side solar collector test bed was designed and constructed. The testing set up was fully designed following the requirements of EN12975-2 and allow us to accomplish performance tests under the same operating conditions (mass flow rate, inlet fluid temperature and weather conditions). This work presents the thermal efficiency curves of a commercial and an enhanced solar collector, for the standardized mass flow rate per unit of absorber area of 0.02 kg/sm2 (in useful engineering units 144 kg/h for water as working fluid and 2 m2 flat-plate solar collector of absorber area). The enhanced collector was modified inserting spiral wire coils of dimensionless pitch p/D = 1 and wire-diameter e/D = 0.0717. The friction factor per tube has been computed from the overall pressure drop tests across the solar collectors. The thermal efficiency curves of both solar collectors, a standard and an enhanced collector, are presented. The enhanced solar collector increases the thermal efficiency by 15%. To account for the overall enhancement a modified performance evaluation criterion (R3m) is proposed. The maximum value encountered reaches 1.105 which represents an increase in useful power of 10.5% for the same pumping power consumption.

  17. The Effect of the Configuration of the Absorber on the Performance of Flat Plate Thermal Collector

    OpenAIRE

    Yan, Moyu; Qu, Ming; Peng, Steve

    2016-01-01

    In this study, a numerical thermal analysis for a new designed flat plate thermal collector was conducted through modeling. The new flat plate thermal collector has ellipse shaped tubes inside a wavy shaped absorber, which is made of stainless steel. For the comparison, the conventional flat plate thermal collector with circular copper tubes served as a base case was also modeled. Hottel-Whillier equations were utilized to formulate thermal networks for both models developed in Engineering Eq...

  18. A dynamic simulation of a flat-plate collector system

    Science.gov (United States)

    Annino, A.

    1983-04-01

    A numerical model for the performance of a flat plate solar collector array is presented, with account taken of thermal transients and calculation on a microcomputer. The system modeled consists of a flat plate array, the heat transfer fluid, an insulated storage tank, an exchange loop for heating a secondary fluid, and a load maintained by a pump. The one-dimensional analysis includes equations for the energy balances, with consideration given to heat losses to the outside. A function is defined for the total incident solar radiation, and behavior is simulated over the entire 24-hr day, weighted by the highest and lowest recorded temperatures. Good agreement has been found with experimental data.

  19. A dynamic performance simulation model of flat-plate solar collectors for a heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Arinze, E.A.; Schoenau, G.J.; Sokhansanj, S. (Saskatchewan Univ., Saskatoon, SK (Canada). College of Engineering); Adefila, S.S.; Mumah, S.M. (Ahmadu Bello Univ., Zaria (Nigeria). Dept. of Chemical Engineering)

    1993-01-01

    Flat-plate collectors are inherently exposed to time-varying meteorological and system parameters. Thus, dynamic modeling, rather than the commonly used steady-state models, is a more accurate approach for the design and performance evaluation of flat-plate solar collectors. The dynamic model presented in this study describes the fluid, plate and cover temperatures of the collector by three different differential equations. Taylor series expansion and the Runge-Kutta method are used in the solution of the differential equations. The accuracy of the dynamic model was tested by comparing the results predicted by the model with experimental performance data obtained for a liquid-cooled flat-plate solar collector with a corrugated transparent fiberglass cover. The predicted results by the dynamic model agreed favorably with the measured experimental data for the flat-plate solar collector. Experimentally determined collector temperatures varied by a maximum of [+-]3[sup o]C from values predicted by the model. (Author)

  20. Numerical 3-D heat flux simulations on flat plate solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Villar, N. Molero; Lopez, J.M. Cejudo; Munoz, F. Dominguez; Garcia, E. Rodriguez; Andres, A. Carrillo [Grupo de Energetica, Escuela Tecnica Superior de Ingenieros Industriales, UMA, Plaza El Ejido s/n, 29013 Malaga (Spain)

    2009-07-15

    A transient 3-D mathematical model for solar flat plate collectors has been developed. The model is based on setting mass and energy balances on finite volumes. The model allows the comparison of different configurations: parallel tubes collectors (PTC), serpentine tube collectors (STC), two parallel plate collectors (TPPC), and other non-usual possibilities like the use of absorbent fluids with semitransparent or transparent plates. Transparent honeycomb insulation between plate and cover can also be modelled. The effect of temperature on the thermal properties of the materials has also been considered. The model has been validated experimentally with a commercial PTC. The model is a useful tool to improve the design of plate solar collectors and to compare different configurations. In order to show the capabilities of the model, the performance of a PTC collector with non-uniformity flow is analysed and compared with experimental data from literature with good agreement. (author)

  1. Standarized performance tests of collectors of solar thermal energy: A steel flat-plate collector with two transparent covers and a proprietary coating

    Science.gov (United States)

    1976-01-01

    Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.

  2. Natural convection characteristics of flat plate collectors. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Randall, K.R.; Wl-Wakil, M.M.; Mitchell, J.W.

    1977-09-01

    The results of an experimental investigation into the convective heat losses in large aspect ratio flat-plate solar collectors are described. An experimental study has been undertaken on a specially designed test cell using a 3 inch Mach-Zehnder interferometer. Air at atmospheric pressure was used as the heat-transfer fluid. The experimental results include interferograms which show the thermal boundary layer formations and the temperature profiles. Local temperature profiles have been analyzed through the use of an optical comparator to determine local Nusselt number profiles, which have, in turn, been integrated to give average heat-transfer results. Angles of inclination from the horizontal of 45, 60, 75 and 90 degrees have been investigated. Aspect ratios from 9 to 36 were examined over a Rayleigh number range of 4,000 to 310,000. Finally, heat-transfer correlations have been developed for the prediction of local Nusselt numbers in the starting and departure corners and for the average heat-transfer results as a function of collector tilt angle.

  3. Status of the NASA-Lewis flat-plate collector tests with a solar simulator

    Science.gov (United States)

    Simon, F. F.

    1974-01-01

    Simulator test results of 15 collector types are reported. Collectors are given performance ratings according to their use for pool heating, hot water, absorption A/C or heating and solar Rankine machines. Collectors found to be good performers in the above categories, except for pool heating, were a black nickel coated, 2 glass collector, and a black paint 2 glass collector containing a mylar honeycomb. For pool heating, a black paint, one glass collector was found to be the best performer. Collector performance parameters of 5 collector types were determined to aid in explaining the factors that govern performance. The two factors that had the greatest effect on collector performance were the collector heat loss and the coating absorptivity.

  4. Theoretical analysis of solar thermal collector and flat plate bottom reflector with a gap between them

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2015-11-01

    Full Text Available Augmentation of solar radiation absorbed on a flat plate solar thermal collector by a flat plate bottom reflector was numerically determined when there was a gap between the collector and reflector. The inclination of both the collector and reflector was assumed to be adjustable according to the season. A mirror-symmetric plane of the collector to the reflector was introduced, and a graphical model was proposed to calculate the amount of solar radiation reflected by the reflector and then absorbed on the collector. The performance was analyzed for three typical days at a latitude of 30°N. Solar radiation absorbed on the collector can be increased by the bottom reflector even if there is a gap between the collector and reflector. The optimum inclinations of both the collector and reflector are almost the same while the gap length is less than the lengths of the collector and reflector. However, the range of inclination of the reflector that can increase the solar radiation absorbed on the collector decreases with an increase in gap length, and the solar radiation absorbed on the collector rapidly decreased with an increase in the gap length when the reflector and/or collector were not set at a proper angle.

  5. Design optimization of sinusoidal glass honeycomb for flat plate solar collectors

    Science.gov (United States)

    Mcmurrin, J. C.; Buchberg, H.

    1980-01-01

    The design of honeycomb made of sinusoidally corrugated glass strips was optimized for use in water-cooled, single-glazed flat plate solar collectors with non-selective black absorbers. Cell diameter (d), cell height (L), and pitch/diameter ratio (P/d) maximizing solar collector performance and cost effectiveness for given cell wall thickness (t sub w) and optical properties of glass were determined from radiative and convective honeycomb characteristics and collector performance all calculated with experimentally validated algorithms. Relative lifetime values were estimated from present materials costs and postulated production methods for corrugated glass honeycomb cover assemblies. A honeycomb with P/d = 1.05, d = 17.4 mm, L = 146 mm and t sub w = 0.15 mm would provide near-optimal performance over the range delta T sub C greater than or equal to 0 C and less than or equal to 80 C and be superior in performance and cost effectiveness to a non-honeycomb collector with a 0.92/0.12 selective black absorber.

  6. Comparison of the effects of Al2O3 and CuO nanoparticles on the performance of a solar flat-plate collector

    Science.gov (United States)

    Munuswamy, Dinesh Babu; Madhavan, Venkata Ramanan; Mohan, Mukunthan

    2015-12-01

    To improve the efficiency of solar flat-plate collectors further, a study had been carried out wherein the conventional working fluid was replaced by nanofluids. A 25-L/day solar flat-plate water heater with collector area of 0.5 {m}^2 has been designed and fabricated. The thermosyphon system of the solar water heater was monitored at 15 locations using T-type thermocouples. Alumina and CuO nanoparticles were synthesized and characterized using Brunauer-Emmett-Teller and X-ray diffraction techniques and dispersed using ultrasonic mechanism. To stabilize the system at an optimum level, the collector is operated with volume fractions of 0.2% and 0.4% of synthesized Al2O3 and CuO nanoparticles mixed with distilled water and used in the solar flat-plate collector. The temperature profile was compared with different volume fractions of the nanoparticles in the flowing medium. Enhanced heat transfer was observed in the solar flat-plate collector using nanoparticles, and hence, it is inferred that addition of nanoparticles improves the efficiency of the solar water heaters. This paper details the temperature profile observed in the collectors, variation of insolation over the day, and change in efficiency both on the primary side (collector) and on the secondary side (storage tank) of the solar water heater.

  7. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    Science.gov (United States)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  8. An Experimental and Analytical Study of a Radiative Cooling System with Unglazed Flat Plate Collectors

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Taherian, Hessam

    2012-01-01

    On an average about 40% of world energy is used in residential buildings and the largest energy consumption is allocated to the cooling and air-conditioning systems. So every attempt to economize energy consumption is very valuable. In this research a nocturnal radiative cooling system with flat...... as a guideline to derive the governing equations of a night sky radiator. Then, a cooling loop, including a storage tank, pump, connecting pipes, and a radiator has been studied experimentally. The water is circulated through the unglazed flat-plate radiator having 4 m2 of collector area at night to be cooled...

  9. Experimental and numerical investigation of a flat-plate solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A. [Departamento de Construcciones Navales, E.U. Politecnica, Universidade da Coruna, 15405 Ferrol (Spain); Cabeza, O. [Departamento de Fisica, Universidade da Coruna, 15072 A Coruna (Spain); Muniz, M.C. [Departamento de Matematica Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Varela, L.M. [Departamento de Fisica de la Materia Condensada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2010-09-15

    In the present paper we present an experimental analysis and a thermal and hydrodynamic modelling of a newly designed flat-plate solar collector characterized by its corrugated channel and by the high surface area directly in contact with the heat transport fluid. The thermal and hydrodynamic modelling of the collector has been performed by means of the Finite Element Method (FEM), validated with analytical results for a well-known fin-and-tube type solar collector. The thermodynamic efficiency of the collector is analyzed by means of its experimental heating curves. The yield of the new collector has been compared to a previously existing commercial collector of related geometry but with less area in direct contact with the heat transport fluid. The experimental results are seen to adequately fit the simulation predictions, and a methodology to use in order to compute the parameters characterizing the thermal behavior of the collector is introduced. (author)

  10. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    Science.gov (United States)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  11. A Dynamic Multinode Model for Component-Oriented Thermal Analysis of Flat-Plate Solar Collectors

    OpenAIRE

    Reiter, Christoph N.; Christoph Trinkl; Wilfried Zörner; Hanby, Vic I.

    2015-01-01

    A mathematical model of a flat-plate solar collector was developed on the basis of the physical principles of optics and heat transfer in order to determine collector’s component temperatures as well as collector efficiency. In contrast to many available models, the targeted use of this dynamic model is the detailed, theoretical investigation of the thermal behaviour of newly developed or adjusted collector designs on component level, for example, absorber, casing, or transparent cover. The d...

  12. Experimental investigation on a flat plate solar collector using Al2O3 Nanofluid as a heat transfer agent

    Directory of Open Access Journals (Sweden)

    Abbas Sahi Shareef, Mohammed Hassan Abbod, Sura Qahtan Kadhim

    2015-01-01

    Full Text Available This work introduces experimental results of an Al2O3 -water based nanofluid as the working fluid for flat tube in plate type solar collector. Experimental test setup comprises a solar collector, closed working fluid system and measurement devices (flow meter, thermocouples, temperature meter and digital solar power meter. The Base case was experimented with di-ionized water with a flow rate of 1 lpm. In second case, Al2O3 nanoparticles are mixed in di-ionized water to get nanofluid of 0.5% volume fraction concentration. The maximum difference between outlet and inlet temperatures of the solar collector was 14.4 ̊ C with the solar irradiance of about 788 W/m2 while in case of water the maximum temperatures difference was 10.7 ̊ C with a solar irradiance of about 781 W/m2.

  13. A Didactic Experiment and Model of a Flat-Plate Solar Collector

    Science.gov (United States)

    Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2011-01-01

    We report on an experiment performed with a home-made flat-plate solar collector, carried out together with high-school students. To explain the experimental results, we propose a model that describes the heating process of the solar collector. The model accounts quantitatively for the experimental data. We suggest that solar-energy topics should…

  14. Performance Study of a Double-Pass Thermoelectric Solar Air Collector with Flat-Plate Reflectors

    Science.gov (United States)

    Lertsatitthanakorn, C.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2012-06-01

    In this paper the results of the influence of flat-plate reflectors made of aluminum foil on the performance of a double-pass thermoelectric (TE) solar air collector are presented. The proposed TE solar collector with reflectors was composed of transparent glass, an air gap, an absorber plate, TE modules, a rectangular fin heat sink, and two flat-plate reflectors. The flat-plate reflectors were placed on two sides of the TE solar collector (east and west directions). The TE solar collector was installed on a one-axis sun-tracking system to obtain high solar radiation. Direct and reflected incident solar radiation heats up the absorber plate so that a temperature difference is created across the TE modules to generate a direct current. Only a small part of the absorbed solar radiation is converted to electricity, while the rest increases the temperature of the absorber plate. Ambient air flows through the heat sink located in the lower channel to gain heat. The heated air then flows to the upper channel, where it receives additional heating from the absorber plate. Improvements to the thermal energy and electrical power outputs of the system can be achieved by the use of the double-pass collector system with reflectors and TE technology. It was found that the optimum position of the reflectors is 60°, which gave significantly higher thermal energy and electrical power outputs compared with the TE solar collector without reflectors.

  15. Design and Development of ZigBee Based Instantaneous Flat-plate Collector Efficiency Measurement System

    Science.gov (United States)

    Vairamani, K.; Venkatesh, K. Arun; Mathivanan, N.

    2011-01-01

    Computing the efficiency of flat-plate collector is vital in solar thermal system testing. This paper presents the design of ZigBee enabled data acquisition system for instantaneous flat-plate collector efficiency calculation. It involves measurement of parameters like inlet and outlet fluid temperatures, ambient temperature and solar radiation intensity. The designed system has a base station and a sensor node. ZigBee wireless communication protocol is used for communication between the base station and the sensor node for wireless data acquisition. The wireless sensor node which is mounted over the collector plate includes the necessary sensors and associated signal-conditioners. An application program has been developed on LabVIEW platform for data acquisition, processing and analysis and is executed in base station PC. Instantaneous flat-plate collector efficiency is computed and reported.

  16. A graphical approach to the efficiency of flat-plate collectors

    Science.gov (United States)

    Selcuk, M. K.

    1978-01-01

    A nomogram is described which can be used to determine the thermal performance of flat plate solar collectors, resulting in two performance factors: the net absorptance and the net heat loss coefficient. The nomogram takes into account angle of incidence, collector slope, absorber plate design, insulating materials, thicknesses, optical properties of absorbing surfaces and glazing materials, and flow factors. A case example is given to illustrate the use of the nomogram.

  17. Exergy efficiency analysis of a flat plate solar collector using graphene based nanofluid

    Science.gov (United States)

    Said, Z.; Alim, M. A.; Janajreh, Isam

    2015-10-01

    The thermal efficiency of a flat plate solar thermal collector is largely affected by the thermal conductivity of the fluid used. In this paper, we theoretically analyzed the heat transfer performance, the entropy generation rate, and the exergy efficiency of the two different graphene based nanofluids (graphene/Acetone and graphene/water). From the analyses, it is revealed that by inserting a small amount of graphene nanoparticles in water, exergy efficiency could be enhanced by 21%, comparing to conventional fluids and entropy generation is decreased by 4%. However, the graphene/water nanofluid shows a lower entropy generation. This characteristic suggests that graphene/water nanofluid is a better candidate for flat solar thermal application.

  18. A Numerical Study on the Performance of an Open-type Flat-plate Solar Collector

    OpenAIRE

    Song, Baoyin; Inaba, Hideo; Horibe, Akihiko

    1999-01-01

    A set mathematical models was developed for predicting the performance of an open-type flat-plate solar collector, and solved numerically through an implicit difference method. The effects of various parameters on the absorption of solar energy for the collector were investigated. The results showed that the solar energy absorptance of the open-type flat-plate collector was relatively high especially for the region where the weather was humid and hot, and there were an optimum length and an o...

  19. Solar energy dryer kinetics using flat-plate finned collector and forced convection for potato drying

    Science.gov (United States)

    Batubara, Fatimah; Misran, Erni; Dina, Sari Farah; Heppy

    2017-06-01

    Research on potato drying using the indirect solar dryer with flat-plate finned collector and forced convection has been done. The research was conducted at the outdoor field of Laboratory of Institute for Research and Standardization of Industry on June 14th-23rd, 2016 from 9:00 am to 4:00 pm. This research aims to obtain the drying kinetics model of potato (Solanumtuberosum L.) using an indirect solar dryer's (ISD) with flat plate-finned collector and forced convection. The result will be compared to the open sun drying (OSD) method. Weather conditions during the drying process took place as follows; surrounding air temperature was in the range 27 to 34.7 °C, relative humidity (RH) 29.5 to 61.0% and the intensity of solar radiation 105.6 to 863.1 Watt/m2. The dried potato thicknesses were 1.0 cm, 1.5 cm and 2.0 cm, with the average initial water content of 76.46%. The average temperature in the collector chamber ranged from 42.2 to 57.4 °C and the drying chamber was at 46.2 °C. The best drying result was obtained from a sample size of 1 cm thickness using the IDS method with an average drying rate of 0.018 kg H2O per kg dry-weight.hour and the water content was constant at 5.02% in 21 hours of drying time. The most suitable kinetics model is Page model, equation MR = exp (-0.049 t1,336) for 1.0 cm thickness, exp (-0.066 t1,222) for 1.5 cm thickness and exp (-0.049 t1,221) for 2.0 cm thickness. The quality of potato drying using ISD method is better than using OSD which can be seen from the color produced.

  20. A diagram for defined solar radiation absorbed per unit area of flat plate solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Y.; Altuntop, N. [Erciyes University, Dept. of Mechanical Engineering (Turkey); Cengel, Y.A. [Nevada Reno University, Dept. of Mechanical Engineering, NV (United States); Cengel, Y.A. [Nevada University, Dept. Mechanical Engineering, Reno, NV (United States)

    2000-07-01

    In Erciyes University, the Solar House (28.75 m{sup 2}) is heated from the floor by using flat plate liquid solar collectors. Required solar radiation for heating and heat losses are calculated. In this work, the required calculations for Erciyes Solar House were generalized and required calculation were done to evaluate absorbed solar radiation per unit surface of the flat plate liquid collector. At the end, three generalized diagrams for nine different months are obtained using obtained numerical values. The goal of preparing diagrams is to determine absorbed solar radiation per unit surface area of flat plate liquid collector at any instant at any latitude, In this work, the diagram is explained by means of sample calculations for November. This diagram was prepared to find out absorbed solar radiation per unit area of black surface collector by means obtained equations. With this diagram, all instant solar radiation can be evaluated in 19 steps. (authors)

  1. REVIEW ON POROUS AND NON-POROUS FLAT PLATE AIR COLLECTOR WITH MIRROR ENCLOSURE

    Directory of Open Access Journals (Sweden)

    M. PRADHAPRAJ,

    2010-09-01

    Full Text Available In solar air heater, flat plat collectors are the best heat transferring devices. But the effectiveness of these collectorsis very low because of lack of technology. Solar assisted heated air is successfully used for drying applications and space heating under controlled conditions. From the solar flat plate air heater the hot air is transferred to a conventional dryer or to the combined heater and drying chamber directly. Hence, solar assisted air heaters arecheaper and reliable. The important factors affecting these systems are the solar radiation, mechanical loading, temperature and leakage. The air heater efficiency depends on the design of the system as well as the construction materials and the assembly. The solar air heating systems has acceptable life span of 15 to 20 years. The addition ofside mirror enclosures is to increase the amount of solar radiation absorption at the collector plate so that the collector increases the yield and operate in a higher temperature range. Therefore with the addition of side mirrors one can able to maximize the output of fixed flat plate collectors. A flat plate air collector will be more efficient if it is made up of porous medium when comparing it with the non porous collectors according to the study. In this paper, the performances of porous and non-porous absorber plates are discussed. Also the possible methods of finding out air leakages and the methodology adopted for the performance and efficiency calculations are also discussed.

  2. Effect of Glass Thickness on Performance of Flat Plate Solar Collectors for Fruits Drying

    Directory of Open Access Journals (Sweden)

    Ramadhani Bakari

    2014-01-01

    Full Text Available This study aimed at investigating the effect of thickness of glazing material on the performance of flat plate solar collectors. Performance of solar collector is affected by glaze transmittance, absorptance, and reflectance which results into major heat losses in the system. Four solar collector models with different glass thicknesses were designed, constructed, and experimentally tested for their performances. Collectors were both oriented to northsouth direction and tilted to an angle of 10° with the ground toward north direction. The area of each collector model was 0.72 m2 with a depth of 0.15 m. Low iron (extra clear glass of thicknesses 3 mm, 4 mm, 5 mm, and 6 mm was used as glazing materials. As a control, all collector performances were analysed and compared using a glass of 5 mm thickness and then with glass of different thickness. The results showed that change in glass thickness results into variation in collector efficiency. Collector with 4 mm glass thick gave the best efficiency of 35.4% compared to 27.8% for 6 mm glass thick. However, the use of glass of 4 mm thick needs precautions in handling and during placement to the collector to avoid extra costs due to breakage.

  3. Comparison under a simulated sun of two black-nickel-coated flat-plate solar collectors with a nonselective black-paint-coated collector

    Science.gov (United States)

    Simon, F. F.

    1975-01-01

    A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).

  4. Design, construction and testing of a liquid-heating flat-plate solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Tuttle, R E

    1980-02-01

    The purpose of this study was to design, construct, and test a liquid-heating flat-plate solar collector. From the literature search, information was gathered concerning the basic components of the collector, the different processes and materials that can be used in the construction of these components, and their advantages and disadvantages. The literature search also revealed a method used to measure the performance of the collector in terms of efficiency and heat output. Design considerations were then listed for each of the major components as well as the collector as a single unit. Then, each component was designed, taking into consideration the final assembly of the completed unit. Detailed designs were required for the absorber plate and the box and frame assembly because of their complexity in construction and assembly. Once the components were designed, the construction details were arranged in a logical sequence, again considering the final assembly of the unit. The collector was then carefully constructed and assembled following the design details. After the solar collector was assembled completely, tests were made, data were obtained and recorded, and a collector performance curve was developed.

  5. Flat-plate solar-collector performance data base and user's manual

    Science.gov (United States)

    Kirkpatrick, D. L.; Kolar, W. A.

    1983-07-01

    The reader is provided with a thorough understanding on the type of collector thermal performance information which is required in active system design and analysis. Thermal performance test data on 109 commercially available solar collectors which were evaluated in a single, uniform test program, the Interim Solar Collector Test (ISCT) Program are given. In addition to recounting the ISCT program and its results, the an introduction is given on the engineering and physics of a flat-plate solar collector operation. A step-by-step analysis of heat gains and losses is provided to help the reader understand both the source and applicability of the parameters used to describe collector thermal performance. A brief description of the engineering basis for the ASHRAE Standard 93-77 test procedure and the method are included. To demonstrate the sensitivity to variations of collector performance parameters of the annual output of representative solar heating systems, three sets of F-Chart (4.0) system performance predictions are given. Finally, a sensitivity analysis study is presented which considers the heat loss and optical gain parameters of flat-plate collectors, in terms of how they affect the overall solar heating system solar fraction.

  6. Efficiency of liquid flat-plate solar energy collector with solar tracking system

    Directory of Open Access Journals (Sweden)

    Chekerovska Marija

    2015-01-01

    Full Text Available An extensive testing programme is performed on a solar collector experimental set-up, installed on a location in Shtip (Republic of Macedonia, latitude 41º 45’ and longitude 22º 12’, in order to investigate the effect of the sun tracking system implementation on the collector efficiency. The set-up consists of two flat plate solar collectors, one with a fixed surface tilted at 30о towards the South, and the other one equipped with dual-axis rotation system. The study includes development of a 3-D mathematical model of the collectors system and a numerical simulation programme, based on the computational fluid dynamics (CFD approach. The main aim of the mathematical modelling is to provide information on conduction, convection and radiation heat transfer, so as to simulate the heat transfer performances and the energy capture capabilities of the fixed and moving collectors in various operating modes. The feasibility of the proposed method was confirmed by experimental verification, showing significant increase of the daily energy capture by the moving collector, compared to the immobile collector unit. The comparative analysis demonstrates a good agreement between the experimental and numerically predicted results at different running conditions, which is a proof that the presented CFD modelling approach can be used for further investigations of different solar collectors configurations and flow schemes.

  7. Effect of Installation of Solar Collector on Performance of Balcony Split Type Solar Water Heaters

    Directory of Open Access Journals (Sweden)

    Xu Ji

    2015-01-01

    Full Text Available The influences of surface orientation and slope of solar collectors on solar radiation collection of balcony split type solar water heaters for six cities in China were analyzed by employing software TRNSYS. The surface azimuth had greater effect on solar radiation collection in high latitude regions. For deviation of the surface slope angle within ±20° around the optimized angle, the variation of the total annual collecting solar radiation was less than 5%. However, with deviation of 70° to 90°, the variation was up to 20%. The effects of water cycle mode, reverse slope placement of solar collector, and water tank installation height on system efficiency were experimentally studied. The thermal efficiencies of solar water heater with single row horizontal arrangement all-glass evacuated tubular collector were higher than those with vertical arrangement at the fixed surface slope angle of 90°. Compared with solar water heaters with flat-plate collector under natural circulation, the system thermal efficiency was raised up to 63% under forced circulation. For collector at reverse slope placement, the temperature-based water stratification in water tank deteriorated, and thus the thermal efficiency became low. For improving the system efficiency, an appropriate installation height of the water tank was suggested.

  8. Experimental study on flat plate air solar collector using a thin sand layer

    Science.gov (United States)

    Lati, Moukhtar; Boughali, Slimane; Bouguettaia, Hamza; Mennouche, Djamel; Bechki, Djamel

    2016-07-01

    A flat plate air solar collector was constructed in the laboratory of New and Renewable Energy in Arid Zones LENREZA, Ouargla University-South East Algeria. The absorber of the flat plate air solar collector was laminated with a thin layer of local sand. This acted as a thermal storage system (packed bed) with a collecting area of 2.15 m2 (0.86 m × 2.5 m). It was noticed that the solar heater integrated with the thermal storage material delivered comparatively higher temperatures; thus, giving a better efficiency than the air heater without the thermal storage system.

  9. Comparative performance of twenty-three types of flat plate solar energy collectors

    Science.gov (United States)

    Simon, F. F.

    1975-01-01

    Report compares efficiencies of 23 solar collectors for four different purposes: operating a Rankine-cycle engine, heating or absorption air conditioning, heating hot water, and heating a swimming pool.

  10. Heat transfer and energy analysis of a solar air collector with smooth plate

    Science.gov (United States)

    Chabane, Foued; Moummi, Noureddine

    2014-04-01

    The heat transfer and thermal performance of a single pass solar air heater a smooth plate was investigated experimentally. In the present paper, energy and heat transfer analysis of a solar air collector with smooth plate, this technique is used to determine the optimal thermal performance of flat plate solar air heater by considering the different system and operating parameters to obtain maximum thermal performance. Thermal performance is obtained for different mass flow rate varying in the array 0.0108-0.0202 kg/s with five values, solar intensity; tilt angle and ambient temperature. We discuss the thermal behavior of this type of collector with new design and with my proper construction. An experimental study was carried out on a prototype installed on the experimental tests platform within the University of Biskra in the Algeria. The effects of air mass flow rate, emissivity of channel plates and wind heat transfer coefficient on the accuracy of the criterion are also investigated.

  11. Hybrid Photovoltaic Thermal (PV/T Air and Water Based Solar Collectors Suitable for Building Integrated Applications

    Directory of Open Access Journals (Sweden)

    Adnan Ibrahim

    2009-01-01

    Full Text Available Problem statement: Experiments have been conducted to investigate the effect of mass flow rates on the electrical, thermal and combined of photovoltaic thermal efficiencies of the hybrid collectors. Approach: Two photovoltaic thermal solar collectors were designed and fabricated. The first collector, known as spiral flow absorber collector, designed to generate hot water and electricity. The second collector, known as single pass rectangular tunnel absorber collector designed to generate hot air and electricity. Both absorber collectors were fixed underneath the flat plate single glazing sheet of polycrystalline silicon PV module. Water was used as a heat transfer medium in spiral flow absorber collector and air for the Single pass rectangular tunnel absorber collector respectively. Results: The experiment results showed that the single flow absorber collector generates combined PV/T efficiency of 64%, electrical efficiency of 11% and power maximum achieved at 25.35 W. Moreover, Single pass rectangular tunnel absorber collector generated combined PV/T efficiency of 55%, electrical efficiency of 10% and maximum power of 22.45 W. Conclusion/Recommendations: The best mass flow rate achieved for spiral flow absorber collector is 0.011 kg sec-1 at surface temperature of 55% and 0.0754 kg sec-1 at surface temperature of 39°C for single pass rectangular collector absorber. It was recommended for PV/T system to further improve its efficiency by optimizing the contact surfaces between the solar panel (photovoltaic module and the tubes underneath and also recommended to use other type of photovoltaic cell such as amorphous silicon cell that posses the black mat surfaces property that will improve it thermal absorption.

  12. Flat plate solar collector design and performance. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The bibliography contains citations concerning the design and thermal efficiency of air and liquid type flat plate solar collectors. Topics include convection characteristics, methods to reduce heat loss, optical coatings, and corrosion prevention. Emphasis is on research and modeling. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Flat plate solar collector design and performance. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The bibliography contains citations concerning the design and thermal efficiency of air and liquid type flat plate solar collectors. Topics include convection characteristics, methods to reduce heat loss, optical coatings, and corrosion prevention. Emphasis is on research and modeling. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Flat plate solar collector design and performance. Citations from the NTIS data base

    Science.gov (United States)

    Hundemann, A. S.

    1980-09-01

    Federally funded research on the design and thermal efficiency of air and liquid type flat plate collectors is discussed. Topic areas cover convection characteristics, methods to reduce heat loss, optical coatings, and corrosion control. Emphasis of the bibliography is on basic research studies. This updated bibliography contains 196 citations, 36 of which are new entries to the previous edition.

  15. Hot-air flat-plate solar collector-design package

    Science.gov (United States)

    1979-01-01

    Report contains design data, performance specifications, and drawings for hot-air flat-plate solar-energy collector. Evaluation consists of tests on thermal performance time constance, and incidence angle modifier test. Results are presented in table and graph form and are analyzed in detail.

  16. Hot-air flat-plate solar collector-design package

    Science.gov (United States)

    1979-01-01

    Report contains design data, performance specifications, and drawings for hot-air flat-plate solar-energy collector. Evaluation consists of tests on thermal performance time constance, and incidence angle modifier test. Results are presented in table and graph form and are analyzed in detail.

  17. Craft-Joule Project: Stagnation proof transparently insulated flat plate solar collector (static)

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, A; Cadafalch, J; Perez-Segarra, C.D. [Universitat Politecnica de Catalunya, Barcelona (Spain)] (and others)

    2000-07-01

    The STATIC (STAgnation proof Transparently Insulated flat plate Solar Collector) project is a Craft-Joule Project within the framework of the Non Nuclear Energy Programme Joule III coordinated by the Centre Technologic de Transferencia de Calor (CTTC). The core group of SMEs involved in the project has its main economical activity in the field of solar thermal systems at low temperature level (domestic hot water, solar heating, etc.). Beyond this, a large application potential exists for solar heating at medium temperature level (from 80 to 160 Celsius degrees) : industrial process heat, solar cooling and air conditioning, solar drying , distillation and desalination. Three of the four SME proposers are located in Southern Europe and in the Caribean, where a continuos increase of the demand for air conditioning and cooling has been demonstrated in the last years. The recent development of flat plate solar collectors with honeycomb-type transparent insulation cover has shown that this type of collectors can become a low cost alternative to evacuated tube and high concentrating CPC collectors in the medium temperature range from 80 to 160 Celsius degrees. With the expected reduction of collector cost, that forms 30%-50% of total system cost, a decisive break-through of solar thermal systems using heat in the medium temperature range can be achieved. The feasibility and good performance of these solar collectors has been proved in several prototypes. Nevertheless, up to now no commercial products are available. In order to reach this, the following developments of new concepts are necessary and are being carried out within this project: solution of the problem of overheating: development of collector versions for different working temperatures: optimization of the design with the support of high level numerical simulation. Several prototypes of the new solar collectors are being tested. System tests will also be carried or for two test arrays of optimized collector

  18. Heat transfer in a low latitude flat-plate solar collector

    Directory of Open Access Journals (Sweden)

    Oko C.O.C.

    2012-01-01

    Full Text Available Study of rate of heat transfer in a flat-plate solar collector is the main subject of this paper. Measurements of collector and working fluid temperatures were carried out for one year covering the harmattan and rainy seasons in Port Harcourt, Nigeria, which is situated at the latitude of 4.858oN and longitude of 8.372oE. Energy balance equations for heat exchanger were employed to develop a mathematical model which relates the working fluid temperature with the vital collector geometric and physical design parameters. The exit fluid temperature was used to compute the rate of heat transfer to the working fluid and the efficiency of the transfer. The optimum fluid temperatures obtained for the harmattan, rainy and yearly (or combined seasons were: 317.4, 314.9 and 316.2 [K], respectively. The corresponding insolation utilized were: 83.23, 76.61 and 79.92 [W/m2], respectively, with the corresponding mean collector efficiency of 0.190, 0.205 and 0.197 [-], respectively. The working fluid flowrate, the collector length and the range of time that gave rise to maximum results were: 0.0093 [kg/s], 2.0 [m] and 12PM - 13.00PM, respectively. There was good agreement between the computed and the measured working fluid temperatures. The results obtained are useful for the optimal design of the solar collector and its operations.

  19. A simulation modeling for optimization of flat plate collector design in Riyadh, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al Ajlan, S.A.; Al Faris, H.; Khonkar, H. [King Abdulaziz City for Science and Technology, Riyadh (Saudi Arabia). Energy Research Inst.

    2003-07-01

    A simulation of forced convection solar heated water system is presented. A computer program is developed consisting of independent subroutines, capable of handling the variation of the collector tube diameter, tube spacing, ambient conditions, material thermal properties, collector and system design optimization. The meteorological data of Riyadh were used as the input in the program to simulate the performance of the collector system. The output of the program is analyzed to optimize the system design in the Riyadh region. The results of the simulations are compared with experimental data. There is a good agreement between the predicted and measured values.(author)

  20. Evaluation of All-Day-Efficiency for selected flat plate and evacuated tube collectors

    Science.gov (United States)

    1981-01-01

    An evaluation of all day efficiency for selected flat plate and evacuated tube collectors is presented. Computations are based on a modified version of the NBSIR 78-1305A procedure for all day efficiency. The ASHMET and NOAA data bases for solar insolation are discussed. Details of the algorithm used to convert total (global) horizontal radiation to the collector tilt plane of the selected sites are given along with tables and graphs which show the results of the tests performed during this evaluation.

  1. Operational demonstration of a field of high performance flat plate collectors with isothermal heat transport

    Science.gov (United States)

    Merges, V.; Klippel, E.

    1983-12-01

    A solar plant with 21 sq m of highly efficient flat plate collectors and which requires no electricity is described. Heat transport is provided by saturated steam that condenses in a four cubic meter storage tank. The operation temperature is set by the buffer gas pressure between 100 and 140 C, and an absorption chiller is simulated as a heat consumer. The solar collectors were observed to exhibit high performance. Heat transport and temperature control offered high reliability and the thermal stratification in the tank was satisfactory. The positive result permits the design and construction of larger solar plants following the same technical principles.

  2. Investigation of one-dimensional heat flow in a solarflat plate collector with sun tracing system

    Directory of Open Access Journals (Sweden)

    H Samimi Akhijahani

    2016-09-01

    Full Text Available Introduction Drying is one of the most common methods for storing food and agricultural products. During drying process, free water that causes the growth of microorganisms and spoilage of products is removed from the product. There are several methods for drying of agricultural products. one of the most important methods of investment is drying by using sunlight. Iran is situated at 25- 43oE longitude and mean solar radiation is about 4.9 kwh.m-2.d-1. Because of the proper solar radiations in 95% of the agricultural areas in Iran, solar drying is widely used for drying of fruits and vegetables. The use of solar dryer causes saving in energy consumption and processing costs for drying of products in farms and gardens. Several researchers investigated heat transfer and heat flow in dryers. Selection of appropriate method was carried out for drying of agricultural products using heat pump. Experiments were done and mathematical relationships were estimated to obtain correlation parameters between Reynolds number and Nusselt number for the three cases of solar dryer (cabinet, indirect and combination.The best working conditions were determined for three types of solar collectors (flat, finned and corrugated. In this study, the process of heat transfer and heat transfer coefficient of a solar dryer with and without rotation of absorber plate was compared. Materials and Methods The experiments were conducted in Azarshahr, East Azarbayjan province, Iran in September 2014. Newton's law of thermodynamic was used to analyze the working condition of solar absorber. For this purpose the absorber plate was divided into four equal parts. According to the thermal equations and related boundary conditions as well as the relationship between heat transfer coefficient and the temperature gradient, equation 1 for the Nusselet number obtained: 1 Beside the relationship between Nusselt number and heat transfer coefficient is defined as equation 2: 2 Finally

  3. Fixed flat plate collector with a reversible vee-trough concentrator

    Science.gov (United States)

    Selcuk, M. K.

    1976-01-01

    An asymmetrical-reversible vee-trough concentrator for use both with nonevacuated and evacuated receivers is proposed in order to improve the performance of a fixed flat plate collector. The device is capable of maintaining a year-round concentration factor of about 2 while eliminating the complications of the tilt adjustments of the collector box assembly. Efficiency improvements and cost reductions for temperatures of about 100 and 200 C are offered for the nonvacuum and vacuum tube versions, respectively. A major advantage of the vee-trough is the enhancement of the incident flux, thus extending the collection period. The vacuum collector is suitable for supplying heat to solar Rankine systems, while the nonvacuum version can be used for air conditioning purposes via an absorption air conditioner.

  4. A Dynamic Multinode Model for Component-Oriented Thermal Analysis of Flat-Plate Solar Collectors

    Directory of Open Access Journals (Sweden)

    Christoph N. Reiter

    2015-01-01

    Full Text Available A mathematical model of a flat-plate solar collector was developed on the basis of the physical principles of optics and heat transfer in order to determine collector’s component temperatures as well as collector efficiency. In contrast to many available models, the targeted use of this dynamic model is the detailed, theoretical investigation of the thermal behaviour of newly developed or adjusted collector designs on component level, for example, absorber, casing, or transparent cover. The defined model is based on a multinode network (absorber, fluid, glazing, and backside insulation containing the relevant physical equations to transfer the energy. The heat transfer network covers heat conduction, convection, and radiation. Furthermore, the collector optics is defined for the plane glazing and the absorber surface and also considers interactions between them. The model enables the variation of physical properties considering the geometric parameters and materials. Finally, the model was validated using measurement data and existing efficiency curve models. Both comparisons proved high accuracy of the developed model with deviation of up to 3% in collector efficiency and 1 K in component temperatures.

  5. Design and Development of Prototype Cylindrical Parabolic Solar Collector for Water Heating Application

    Directory of Open Access Journals (Sweden)

    Hrushikesh Bhujangrao Kulkarni

    2016-02-01

    Full Text Available Concentrating collectors absorbs solar energy and convert it into heat for generating hot water, steam at required temperature, which can be further used for solar thermal applications. The developing countries like India where solar energy is abundantly available; there is need to develop technology for harnessing solar energy for power production, but the main problem associated with concentrating solar power technology is the high cost of installation and low output efficiency. To solve this problem, a prototype cylindrical parabolic solar collector having aperture area of 1.89 m2 is designed and developed using low cost highly reflecting and absorbing material to reduce initial cost of project and improve thermal efficiency. ASHRAE Standard 93, 1986 was used to evaluate the thermal performance and it was observed that this system can generate hot water at an average temperature of 500C per day with an average efficiency of 49% which is considerable higher than flat plate solar collectors. Hot water produced by this system can be useful for domestic, agricultural, industrial process heat applications.Article History: Received Sept 19, 2015; Received in revised form Dec 23, 2015; Accepted February 2, 2016; Available online How to Cite This Article: Bhujangrao, K.H. (2016. Design and Development of Prototype Cylindrical Parabolic Solar Collector for Water Heating Application. International Journal of Renewable Energy Development, 5(1, 49-55 http://dx.doi.org/10.14710/ijred.5.1.49-55 

  6. Experimental analysis of distinct design of a batch solar water heater with integrated collector storage system

    Directory of Open Access Journals (Sweden)

    Varghese Jaji

    2007-01-01

    Full Text Available The performance of a new design of batch solar water heater has been studied. In this system, the collector and storage were installed in one unit. Unlike the conventional design consisting of small diameter water tubes, it has a single large diameter drum which serves the dual purpose of absorber tube and storage tank. In principle it is a compound parabolic collector. The drum is sized to have a storage capacity of 100 liter to serve a family of four persons. The tests were carried out with a single glass cover and two glass covers. The tests were repeated for several days. Performance analysis of the collector has revealed that it has maximum mean daily efficiency with two glass covers as high as 37.2%. The maximum water temperature in the storage tank of 60°C has been achieved for a clear day operation at an average solar beam radiation level of 680 W/m2 and ambient temperature of 32°C. To judge the operating characteristics and to synchronize utility pattern of the collector, the different parameters such as efficiency, mean plate temperature and mass flow rate has been investigated.

  7. Standard performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 3-7/8 inches

    Science.gov (United States)

    1976-01-01

    Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  8. Standardized performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 5 5/8 inches

    Science.gov (United States)

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  9. A Flat Solar Collector Built from Galvanized Steel Plate, Working by Thermosyphonic Flow, Optimized for Mexican Conditions

    Directory of Open Access Journals (Sweden)

    Á. Marroquín de Jesús

    2009-07-01

    Full Text Available Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198–L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m2, about 20% smaller than comparable copper–tube–based collectors offered in the market. Temperature measurements conducted over a 30–day period gave values which were a few degrees lower than the theoretically calculated water temperatures. Momentary thermal efficiency values between 35% and 77% were observed. The water temperature achieved in the tank at the end of the day aver ages 65°C in winter weather conditions in the central Mexican highland. This design of solar water heater is well suited to Mexican conditions, as it makes use of the high local intensity of the solar radiation, and as the channel shape of the ducts minimizes bursting during the rare occurrences of freezing temperatures in the region; it also has the advantage of being manufacturable at low cost from simple materials.

  10. Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector.

    Science.gov (United States)

    Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

    2014-10-20

    We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with NiCrOx cermet and SnO(2) anti-reflection conformal coatings. Optimal geometrical parameters are determined in order to (i) maximize the solar absorptance α and (ii) minimize the thermal emittance ε. The multi-objective genetic algorithm eventually provides a whole set of Pareto-optimal solutions for the optimization of α and ε, which turn out to be competitive with record values found in the literature. In particular, a solution that enables α = 97.8% and ε = 4.8% was found.

  11. Conclusions and recommendations for the testing of flat-plate solar collector thermal performance and durability

    Science.gov (United States)

    Waksman, D.; Thomas, W. C.

    1984-12-01

    The results of studies, by the National Bureau of Standards, of the reliability and durability of eight different types of flat plate solar collectors representative of equipment available in 1977 are reported. The installations were made in four sites believed to typify various U.S. climates. The stability of the thermal performance and material properties was tracked, and measured again after moving the units inside for exposure to artificial sunlight. The stagnation measurement techniques employed to evaluate the collectors were judged adequate, provided the tests are made on-site and out of doors. It is noted that the instrumentation used to gather sufficient data for valid analyses may experience performance decrements due to the necessarily long monitoring intervals, i.e., several years.

  12. Theoretical investigation on thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger

    Science.gov (United States)

    Xiao, Lan; Wu, Shuang-Ying; Zhang, Qiao-Ling; Li, You-Rong

    2012-07-01

    Based on the heat transfer characteristics of absorber plate and the heat transfer effectiveness-number of heat transfer unit method of heat exchanger, a new theoretical method of analyzing the thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger has been put forward and validated by comparisons with the experimental and numerical results in pre-existing literature. The proposed theoretical method can be used to analyze and discuss the influence of relevant parameters on the thermal performance of heat pipe flat plate solar collector.

  13. Flat plate collector with external reflectors (RefleC). Experiences withthe development; Flachkollektor mit externen Reflektoren (RefleC). Entwicklungserfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Hess, S.; Oliva, A.; Di Lauro, P.; Klemke, M.; Hermann, M.; Stryi-Hipp, G. [Fraunhofer-Institut fuer Solare Energiesysteme ISE, Freiburg (Germany); Kallwellis, V.; Kramp, G.; Eisenmann, W. [Wagner und Co. Solartechnik GmbH, Coelbe (Germany); Hanby, V. [DMU Leicester (United Kingdom). Inst. of Energy and Sustainable Development

    2010-07-01

    In cooperation with the Fraunhofer Institute for Solar Energy Systems (Freiburg, Federal Republic of Germany), the company Wagner and Co. Solar Technology (Coelbe, Federal Republic of Germany) developed a stationary concentrated, double-covered flat plate collector with an external reflector for generating process heat up to a temperature of 150 C. This prototype has a half-CPC reflector which is approximated by three flat segments. The reflectors use the distance between the collectors and serves simultaneously as a supporting structure. The collector is designed so that the aperture is not shaded. The authors of the contribution under consideration present the WKI curves and the IAM curves as a test pattern as well as a simulation of the annual energy yield. According to the simulation, the Reflec-collector has an annual energy yield which is greater by 64 % than that of the double-covered base-collector.

  14. Investigation of Thermal Performance of Flat Plate and Evacuated Tubular Solar Collectors According to a New Dynamic Test Method

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Wang, Zhifeng; Fan, Jianhua;

    2012-01-01

    obtain fluid thermal capacitance in data processing. Then theoretical analysis and experimental verification are carried out to investigate influencing factors of obtaining accurate and stable second order term. A flat plate and ETC solar collector are compared using both the new dynamic method......A new dynamic test method is introduced. This so called improved transfer function method features on two new collector parameters. One is time term which can indicate solar collector's inner heat transfer ability and the other is a second order term of collector mean fluid temperature which can...... and a standard method. The results show that the improved function method can accurately and robustly estimate these two kinds of solar collectors....

  15. Flat-plate solar-collector performance evaluation with a solar simulator as a basis for collector selection and performance prediction

    Science.gov (United States)

    Simon, F. F.

    1975-01-01

    This paper reports the measured thermal efficiency and evaluation of 23 collectors which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, anti-reflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors are given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance is made possible by tests at different incident angles. The solar performance rankings are made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.

  16. Heat Transfer Analysis of a Flat-plate Solar Collector Running a Solid Adsorption Refrigerator

    Directory of Open Access Journals (Sweden)

    S. Thiao

    2014-05-01

    Full Text Available Adsorption solar cooling appears to have prospect in the tropical countries. The present study is a theoretical investigation of the performance of a solar adsorption refrigerator using a flat-plate solar collector. The values of glass cover and absorber plate temperatures obtained from numerical solutions of heat balance equations are used to predict the solar coefficient of performance of the solar refrigerator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. The effects of optical parameters of the glass cover such as absorption and transmission coefficients on glass cover and absorber plate temperatures and consequently on the coefficient of performance are analyzed. As a result, it is found that the absorber plate temperature is less to the absorption coefficient than the cover glass temperature. Also the thermal radiation exchange has more effect on the cover glass temperature. The higher values of COP are obtained between 11 and 13 h during the morning when the temperatures of the absorber plate and the ambient temperatures increase. Moreover the COP increases with the coefficient of transmission of the glass cover but the main parameter acting on the variations of the COP remains the temperature of the evaporator.

  17. The effect of contact spacing on the efficiency of flat plate solar collector plates

    Science.gov (United States)

    Schneider, G. E.; Crha, S.

    1984-01-01

    Rather than use a continuous weld or solder for thermal contact in the attachment of an extended surface to an energy removal tube, attention is given to the use of discontinuous attachment through the uniform distribution of finite regions of contact. This scheme is applied to a solar energy collection system in which it was thought capable of yielding fabrication and reliability improvements. A nondimensional formulation and numerical solution of FEM modeling yields the sensitivity of collector thermal performance to weld-solder joint dimensions. The discontinuous weld is found to significantly degrade system performance in proportion to the fin surface Biot modulus, with the controlling parameter (with respect to weld dimensions) being the perimeter length at the weld location of contact.

  18. The Experimental Study of Plastic Plate Solar Collector%塑料太阳能平板集热器试验研究

    Institute of Scientific and Technical Information of China (English)

    李久锋; 陈观生; 张国庆

    2015-01-01

    According to the undemanding heating rate of heat-storage solar water heater, a new type of plastic plate solar collector was designed.Under the condition of intermittent forced circulation, test on the performance of this collector was carried out and instantaneous efficiency curves were obtained.As a result, the average daily collector efficiency is 51%~55% and the temperature of tank is 45.8~50.2 ℃, which serve as a reference for the application of plastic plate solar collector.%针对蓄热型太阳能热水器对升温速率要求不高的特点,提出并研制了一种新型塑料太阳能平板集热器.在间歇性强制循环条件下,对该集热器进行性能测试,获得了瞬时效率曲线.在试验条件下,该集热器的日平均效率为51%~55%,水箱温度为45.8~50.2℃,可以为塑料平板集热器的实际应用提供依据.

  19. An effective simulation model to predict and optimize the performance of single and double glaze flat-plate solar collector designs

    OpenAIRE

    Kaplanis, S.; Kaplani, E.

    2012-01-01

    This paper outlines and formulates a compact and effective simulation model, which predicts the performance of single and double glaze flat-plate collector. The model uses an elaborated iterative simulation algorithm and provides the collector top losses, the glass covers temperatures, the collector absorber temperature, the collector fluid outlet temperature, the system efficiency, and the thermal gain for any operational and environmental conditions. It is a numerical approach based on simu...

  20. The sizes of Flat Plate and Evacuated Tube Collectors with Heat Pipe area as a function of the share of solar system in the heat demand

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2016-01-01

    Full Text Available The popularity of solar collectors in Poland is still increasing. The correct location of the collectors and a relatively high density of solar radiation allow delivering heat even in spite of relatively low ambient temperature. Moreover, solar systems used for heating domestic heat water (DHW in summer allow nearly complete elimination of conventional energy sources (e.g. gas, coal. That is why more and more house owners in Poland decide to install solar system installations. In Poland the most common types of solar collectors are flat plate collectors (FPC and evacuated tube collectors with heat pipe (ETCHP; both were selected for the analysis. The heat demand related to the preparation of hot water, connected with the size of solar collectors’ area, has been determined. The analysis includes FPC and ETCHP and heat demand of less than 10 000 kWh/year. Simulations were performed with the Matlab software and using data from a typical meteorological year (TMY. In addition, a 126–year period of measurements of insolation for Krakow has been taken into account. The HDKR model (Hay, Davis, Klucher, Reindl was used for the calculation of solar radiation on the absorber surface. The monthly medium temperature of the absorber depends on the amount of solar system heat and on the heat demand. All the previously mentioned data were used to determine solar efficiency. Due to the fact that solar efficiency and solar system heat are connected, the calculations were made with the use of an iterative method. Additionally, the upper limit for monthly useful solar system heat is resulted from the heat demand and thus the authors prepared a model of statistical solar system heat deviations based on the Monte Carlo method. It has been found that an increase in the useful solar system heat in reference to the heat demand is associated with more than proportional increase in the sizes of the analyzed surfaces of solar collector types.

  1. Solar combisystems. A comparison between vacuum tube- and flat plate collectors using measurements and simulations; Solvaermda kombisystem. En jaemfoerelse mellan vakuumroer och plan solfaangare genom maetning och simulering

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, Peter; Pettersson, Ulrik

    2002-10-01

    Two solar combisystems were mounted side by side in an outdoor test facility and continuously operated during one year. The whole year, all relevant temperatures, flow rates and environment variables were thoroughly measured. The systems were identical apart from the collectors which were a 9 m{sup 2} vacuum tube and a 12.2 m{sup 2} selective flat plate collector. A simulated space heating and tap water load of approx. 25 MWh/a was applied to each system and auxiliary heat was charged to the stores from emulated pellet boilers. Additionally, the two collectors and the store was tested separately and the systems simulated according to the CTSS principle described in ENV 12977. The aim of the project was to determine solar fractions in a solar combisystem from real measurements and to compare the two different collector types from different points of view. On the basis of the validated simulation model, the results from the long term measurements could be generalized and eight different loads were simulated. The results showed that the vacuum tubes performed 45-60% better than the flat plate per m{sup 2} depending on the load applied. The solar fractions (assuming no losses from the boiler) varied from 11% for the measured systems to approx. 30 % in a house with 25 % of the original space heating load. During the heating season, the vacuum tubes occasionally performed much worse than the flat plate due to the fact that snow and frost melted away much quicker from the flat plate. For the use of vacuum tubes in snowy regions, vertical mounting should therefore be strongly recommended.

  2. Water disinfection by solar photocatalysis using compound parabolic collectors

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Blanco, J.; Sichel, C.; Malato, S. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Plataforma Solar de Almeria (PSA), P.O. Box 22, 04200 Tabernas, Almeria (Spain)

    2005-04-15

    TiO{sub 2} solar photocatalysis has been proven to be a degradation process for aqueous organic contaminant leading to total mineralisation of a large number of compounds. Furthermore, the interest in using this technique for water disinfection has grown in the last decade. Recent publications have reported photokilling of bacteria and viruses by TiO{sub 2} photocatalysis. Therefore, solar photocatalysis disinfection seems to be a very promising process, which could help to improve public health in rural areas of developing countries. The objective of this work was to assess the feasibility of using TiO{sub 2} solar photocatalysis to disinfect water supplies for future applications in developing countries. This article reviews the viability of solar photocatalysis for disinfection in low cost compound parabolic collectors, using sunlight and titanium dioxide semiconductor, both applied as slurry and supported. We report on the bactericidal action of TiO{sub 2} on a pure culture of Escherichia coli with a low cost photoreactor based on compound parabolic collectors. The influence of different experimental set-ups and parameters are also analysed. The results and potential application of the solar photocatalysis technology to water disinfection are studied within the frame of two research EU projects whose objective consist on the development of a fully autonomous solar reactor system to purify drinking water in remote locations of developing countries.

  3. Numerical analysis of flow and heat transfer behavior in fin-tube flat-plate solar collector

    Institute of Scientific and Technical Information of China (English)

    Namory Camara; LU Hui-lin

    2007-01-01

    Temperature distribution over the absorber plate of a parallel flow flat-plate solar collector is numerically analyzed. The governing differential equations with boundary conditions are solved numerically using fluent software. Effects of the inlet mass flux, inlet temperature and tube spacing on velocity and temperature distributions are discussed. Numerical results show that the distributions of velocity and temperature of fluid is unsymmetrical inside pipe.

  4. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    Science.gov (United States)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  5. Air bubble-induced detachment of polystyrene particles with different sizes from collector surfaces in a parallel plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; van der Mei, HC; Busscher, HJ

    2001-01-01

    Particle size was found to be an important factor in air bubble-induced detachment of colloidal particles from collector surfaces in a parallel plate flow chamber and generally polystyrene particles with a diameter of 806 nm detached less than particles with a diameter of 1400 nm. Particle

  6. Evaluation of flat-plate collector efficiency under controlled conditions in a solar simulator

    Science.gov (United States)

    Johnson, S. M.; Simon, F. F.

    1976-01-01

    The measured thermal efficiencies of 35 collectors tested with a solar simulator, along with the correlation equations used to generalize the data, are presented in this report. The single correlation used is shown to apply to all the different types of collectors tested, including one with black paint and one cover, one with a selective surface coating and two covers, and an evacuated-tube collector. The test and correlation technique is also modified by using a shield so that collectors larger than the simulator test area can also be tested. This technique was verified experimentally for a shielded collector for which the collector shielded area was 31% of the solar simulator radiation area. A table lists all the collectors tested, the collector areas, and the experimental constants used to correlate the data for each collector.

  7. A Comparison of the Thermodynamic Efficiency of Vacuum Tube and Flat Plate Solar Collector Systems

    Directory of Open Access Journals (Sweden)

    Juozas Bielskus

    2013-12-01

    Full Text Available The article presents simulation based exergy analysis used for comparing solar thermal systems applied for preparing domestic hot water. The simulation of flat and vacuum tube solar collector systems was performed in TRNSYS simulation environment. A period of one year under Lithuanian climate conditions was chosen. Simulation was performed on 6 min time step resolution by calculating energy and exergy flows and creating balance calculation. Assessment results at system and element levels have been presented as monthly variation in efficiency. The conducted analysis has revealed that the systems designed to cover equal heat energy demand operates in different exergetic efficiencies.Article in Lithuanian

  8. Atmospheric Ionic Deposition in Tropical Sites of Central Sulawesi Determined by Ion Exchange Resin Collectors and Bulk Water Collector.

    Science.gov (United States)

    Köhler, S; Jungkunst, H F; Gutzler, C; Herrera, R; Gerold, G

    2012-09-01

    In the light of global change, the necessity to monitor atmospheric depositions that have relevant effects on ecosystems is ever increasing particularly for tropical sites. For this study, atmospheric ionic depositions were measured on tropical Central Sulawesi at remote sites with both a conventional bulk water collector system (BWS collector) and with a passive ion exchange resin collector system (IER collector). The principle of IER collector to fix all ionic depositions, i.e. anions and cations, has certain advantages referring to (1) post-deposition transformation processes, (2) low ionic concentrations and (3) low rainfall and associated particulate inputs, e.g. dust or sand. The ionic concentrations to be measured for BWS collectors may easily fall below detection limits under low deposition conditions which are common for tropical sites of low land use intensity. Additionally, BWS collections are not as independent from the amount of rain fallen as are IER collections. For this study, the significant differences between both collectors found for nearly all measured elements were partly correlated to the rainfall pattern, i.e. for calcium, magnesium, potassium and sodium. However, the significant differences were, in most cases, not highly relevant. More relevant differences between the systems were found for aluminium and nitrate (434-484 %). Almost five times higher values for nitrate clarified the advantage of the IER system particularly for low deposition rate which is one particularity of atmospheric ionic deposition in tropical sites of extensive land use. The monthly resolution of the IER data offers new insights into the temporal distribution of annual ionic depositions. Here, it did not follow the tropical rain pattern of a drier season within generally wet conditions.

  9. Thermal analysis of a solar collector consisting of V cavities for water heating; Analise termica de um coletor solar composto de cavidades V para aquecimento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Michel Fabio de Souza

    2009-03-15

    The solar water heating is carried through, in Brazil, by means of solar heaters compound for collectors flat plate of the type plate-and-pipes, devices that operate in stationary position and they do not require tracking of the sun. A compound collector for some formed V-trough concentrators can be an alternative to the conventional solar collectors flat plate. This compound collector for V-trough is considered, each one, for side-walls which are specularly reflecting surfaces associates in V (equivalent to a triangular gutter). Next to the vertex to each V-trough concentrators an absorber tube is fixed, for flow of the fluid to be heated. Interconnection of the absorbers tubes forms a similar tubular network existing in solar collectors of the type the plate and pipe. V-trough concentrators with the absorbers tubes are made use in series in the interior a prismatic box, which have one of its faces consisting by a glass covering and directed toward incidence of the solar radiation. An analysis of thermal performance of these devices operating stationary and without tracking of the sun is researched. A mathematical model for the computational simulation of the optical and thermal performance of these concentrative devices is elaborated, whose implementation was carried through software EES (Engineering Equation Solver). The efficiency optics of V-trough concentrators with cylindrical absorbers is calculated from the adaptation of the methodology used for Fraidenraich (1994), proposal for Hollands (1971) for V-trough cavities with plain absorbers. The thermal analysis of the considered collector was based on the applied methodology the CPC for Hsieh (1981) and Leao (1989). Relative results to the thermal performance of V-trough concentrators suggest that these configurations are not competitive, technique and economically, with the conventional plain collectors. Although some geometric configurations presented next thermal efficiencies to the conventional plain

  10. Experimental investigation of forced-convection in a finned rhombic tube of the flat-plate solar collectors

    DEFF Research Database (Denmark)

    Taherian, Hessam; Yazdanshenas, Eshagh

    2006-01-01

    Due to scarcity of literature on forced-convection heat transfer in a solar collector with rhombic cross-section absorbing tubes, a series of experiments was arranged and conducted to determine heat transfer coefficient. In this study, a typical rhombic cross-section finned tube of flat......-plate collectors used as the test section. Two correlations were proposed for the Nusselt number as a function of the Reynolds number and the Prandtl number based on hydraulic diameter for various heat fluxes. The temperature distribution along the finned tube for the fluid and the wall were also illustrated....

  11. Development and life cycle analysis of double slope active solar still with flat plate collector

    Directory of Open Access Journals (Sweden)

    A.K. Sethi

    2014-02-01

    Full Text Available Potable water is an essential ingredient of socio-economic development and economic growth. Often water sources are brackish (i.e. contain dissolved salts and/or contain harmful bacteria and therefore cannot be used for drinking. In addition, there are many coastal locations where seawater is abundant but potable water is not available. This study is focused on a development of solar still with flat plat collector for water desalination considered for small scale applications at remote locations where only saline water is available. In this paper the cost of distilled water per kg has been calculated by using the concept of life cycle cost analysis. The pay back periods for different conditions of the distribution of distilled water, namely at the cost it is produced and at the selling price on market rate have been evaluated. The cost of water per kg is minimum Rs. 0.59, when the interest rate and the lifetime of solar still are taken as 4% and 50 years respectively. The lowest payback time 1.23 years is obtained when the selling price of water Rs. 10 per kg.

  12. Simulating Single-Effect Absorption Cooling Lithium Bromide A Solar System With Flat Plate Collector And Contribute To An Office Building

    OpenAIRE

    MIRI, Mohadaseh

    2015-01-01

    Use solar energy to provide hot water consumption, space heating and cooling in recent decades is considered. In this article a model varies with time, a solar adsorption cooling system consists of a single effect lithium bromide absorption system, a flat plate collector and a storage tank or linear or parabolic simulated separately. The system for cooling an office building for hours of operation from 7 am to 18 pm is considered.About 7 kW peak cooling load occurs in July. Results obtained s...

  13. Solar Collectors

    Science.gov (United States)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  14. Use of mirrors with plate collectors; Uso de espejos con colectores planos

    Energy Technology Data Exchange (ETDEWEB)

    Follari, J. A.; Odicino, L. a.; Perello, A. D.; Fasulo, A. J.

    2004-07-01

    We analyze the solar radiative contribution that a fixed flat mirror cam perform on a collector, also fixed in its position , if that mirror is put above the collector. Various angles, be they for the mirror or for the collector are investigated, in order to determine their practical usefulness as a function of the real effective contribution they provide. First the theoretical contribution is calculated using approximative formulae, then the effective contribution to a solar collector connected to a thermal reservoir mow forming a solar heater, is measured. The field of applicability of this device is analyzed considering the cost of collector and the mirror, the usefulness depending on the angle between the collector and the horizontal plain. (Author)

  15. Solar tests of aperture plate materials for solar thermal dish collectors

    Science.gov (United States)

    Jaffe, L. D.

    1984-11-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fail apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  16. Solar tests of aperture plate materials for solar thermal dish collectors

    Science.gov (United States)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fail apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  17. Optimization of Thin-Film Transparent Plastic Honeycomb Covered Flat-Plate Solar Collectors. Phase 2.

    Science.gov (United States)

    2007-11-02

    the former preferred for high-temperature collectors since it is opaque in the longer wavelength region and hence improves the efficiency by reducing re...different temperature regions . The analyses show that collectors equipped with Lexan honeycomb are more cost ef- fective than comparable nonhoneycomb...Contract E(04-3)- 1081. " REFERENCES 1. Francia , G., "A New Collector of Solar Energy -- Theory and Experimental Verification -- Calculation of the

  18. Effect of Position of Upper Connecting Pipe on the Tank on Thermal Performance of Domestic Solar Water Heaters with a Vertical Storage Tank and Flat-plate Collectors%上循环管位置对平板型家用太阳能热水器性能的影响

    Institute of Scientific and Technical Information of China (English)

    朱海威; 高文峰; 林文贤; 刘滔; 李泽东

    2014-01-01

    In this paper,the domestic solar water heater with a vertical storage tank and a flat-plat collector,which is commercially available and popular in the market,was experimentally in-vestigated.Firstly, natural circulation experiment platform of flat plate domestic solar water heater was set up.The effect of two different positions of upper connecting pipe on temperature variation in the water tank during the heating stage in the daytime and thermal performances was measured.Through the analysis of test data,The difference of temperature stratification in the water tank with upper connecting pipe at high position and at low position were studied re-spectively.Also the instantaneous efficiency in 10 minutes was defined and compared.The results showed that there was better temperature stratification in the water tank when it’s upper con-necting pipe at high position during heating stage.In addition,the instantaneous efficiency of so-lar water heater,which water tank with upper connecting pipe at high location under the natural circulation condition was superior to the water tank with upper circulation pipe at low position.%对一种常见的平板型立式储热水箱家用太阳能热水器进行试验分析。搭建了自然循环平板型家用太阳能热水器的实验平台。测量了两种不同位置的上循环管对白天加热阶段储热水箱温度变化及对热性能的影响,通过测试数据分析对比了高、低位上循环管循环时,水箱内温度变化、分层状况,定义了十分钟内的平均效率,并进行了比较。结果表明:储热水箱升温阶段采用高位上循环管的水箱内部出现较好的水温分层;高位上循环管热水器的自然循环瞬时效率比低位上循环管热水器的瞬时效率高。

  19. Weathering of a liquid solar collector

    Science.gov (United States)

    1980-01-01

    Commercially available flate plate hot water solar collector is characterized in report that presents 10 month weathering study of system. Collector efficiency was calculated and plotted from measurements of fluid temperature and flow rate, ambient temperature and solar flux. Windspeed and wind direction were also measured during tests.

  20. 温和地区阳台壁挂式平板型太阳能热水器水量配比优化%Optimization of tank-volume-to-collector-area ratio for balcony wall-mounted flat-plate solar water heater in mild region of China

    Institute of Scientific and Technical Information of China (English)

    魏生贤; 胡粉娥; 晏翠琼

    2016-01-01

    thermal performance of the flat-plate type solar energy water heater has been studied globally. In order to ensure the efficient operation of the solar water heater and user's demand to the terminal temperature of a tank, the countries all over the world with different climate have given different recommended value for water-mass-to-collector-area ratio (the ratio is abbreviated as MAR) of the flat-plate solar water heater. However, China has a vast territory and its climate is complex. The value range of recommended value from literatures is too large to be used to practical application. The main residential buildings in large and medium-sized cities are mostly high-rise buildings. The solar water heater installed on roof can only meet hot water use for the top six to eight floors. The application of the balcony wall-mounted solar water heater is one of the effective ways to solve hot water needs for the rest of users in high-rise buildings. Based on the typical meteorological data of nine cities in mild region of China, the values of MAR of the balcony wall-mounted flat-plate solar water heater have been calculated by using the established mathematical model. The water tank terminal temperature of 60℃, the collector angle of 60°-90° and the azimuth angle of 0-90° were used in model analysis. Calculation results for south-facing balcony wall-mounted solar water heater in mild region showed that the appropriate MAR of spring, summer, autumn, winter and the whole year was 28-51, 21-41, 31-53, 37-57 and 31-47 kg/m2, respectively. For convenience of practical application, the linear regression relation between seasonal and annual average MAR and the tilt angle for south-facing balcony wall-mounted solar water heater. The correlation coefficients between them were greater than 0.99. In this paper, we introduced a new concept “azimuth factor of MAR” which was easy to calculate MAR for the collector with different azimuth angle. For the non-south-facing balcony wall

  1. Photocatalytic disinfection of water using low cost compound parabolic collectors

    Energy Technology Data Exchange (ETDEWEB)

    McLoughlin, O.A.; Gill, L.W. [Dublin Univ. (Ireland). Dept. of Civil, Structural and Environmental Engineering; Ibanez, F.; Gernjak, W.; Malato Rodriguez, S. [Plataforma Solar de Almeria (CIEMAT), Tabemas (Spain)

    2004-11-01

    The objective of this work was to assess the effectiveness of using near UV light to disinfect water supplies for potential applications in developing countries. A pilot scale photoreactor comprised of non-tracking compound parabolic collectors installed at Plataforma Solar de Almeria was examined and a comparison of disinfection efficiency using E. coli K-12 was carried out with a reactor configuration of 3 and 1 m{sup 2} illuminated area. Tests were also carried out using suspensions of titanium dioxide (TiO{sub 2}) at concentrations ranging from 0 to 9 mg/l. The removal of E. coli K-12 from initial concentrations of 1 x 10{sup 5} CFU/ml to below the limit of detection was achieved both with and without the use of TiO{sub 2}. Levels of inactivation in 35 l of inoculated water of up to 4-log removal were achieved in under 30 min. The addition of TiO{sub 2} created an enhancement to the process only at the 3 mg/l dose. However, the results have also suggested the possibility that another disinfection mechanism, possibly governed by the frequency of intermittent UV light exposure, was regulating the overall inactivation kinetics of the trials. (Author)

  2. Coaxial extrusion conversion concept for polymeric flat plate solar collectors. Final technical report, September 30, 1978-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, R.O.; Chapman, N.J.; Chao, K.C.; Sorenson, K.F.

    1980-01-01

    This study investigated materials and processes for fundamental improvements in flat-plate solar collector cost and performance. The goal was to develop a process for direct conversion of inexpensive raw materials into a completed solar collector unit, without labor intensive assembly operations. It was thought that materials carefully matched to the process and end-use environment would substantially reduce collector costs, as compared to conventional industry practice. The project studied the feasibility of a cost-effective, glazed solar collector, with low labor input, utilizing a coaxial extrusion of compatible polymeric materials. This study evaluated all considered materials for the desired application. In addition, there was a trial extrusion of the leading candidate glazing and absorber materials, which resulted in successfully performing a coaxial extrusion of one cell. At the time the study was conducted, there were no materials available that met the necessary requirements for the specified utilization. It was recommended that, if potentially compatible materials become available, further investigation into the suitability of those materials be researched. Then, if a suitable material was found, proceeding into Phase II would be recommended.

  3. Parametric studies of an active solar water heating system with various types of PVT collectors

    Indian Academy of Sciences (India)

    Roonak Daghigh; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

    2015-10-01

    This study simulated active photovoltaic thermal solar collectors (PV/T) for hot water production using TRNSYS. The PV/T collectors consist of the amorphous, monocrystalline and polycrystalline. The long-term performances for the glazed and unglazed PV/T collectors were also evaluated. In this simulation, the design parameters used were collector area of 4 m2, collector slope angle of 15 degree and mass flow rate to the collector area ratio of 8–20 kg/hm2. In addition the tank height between 0.9 m to 1.1 m for unglazed PV/T collectors and 0.9 m to 1 m for glazed collectors, as well as the storage tank volume between 200 and 300 L has been used. The climate parameters used were solar radiation levels range of 4–4.9 kWh/m2, the mean ambient temperature in the range of 25–28°C. The results of the simulation indicated that there was an increase in solar fraction and electrical power output of the active PV/T hot water system.

  4. A figure of merit for selective absorbers in flat plate solar water heaters

    CSIR Research Space (South Africa)

    Roberts, DE

    2013-12-01

    Full Text Available We derive from first principles an analytical expression for a figure of merit (FM) for a selective solar absorber in a single glazed flat plate water heater. We first show that the efficiency of a collector with an absorber with absorptance α...

  5. Glycol/water evacuated-tube solar collector

    Science.gov (United States)

    1980-01-01

    Report describes performance of 8 tube and 10 tube commercially produced solar collectors. Tests include thermal efficiency, time constant for temperature drop after solar flux is cut, change in efficiency with Sun angle, and temperature rise if circulation is stopped.

  6. Reduction of Fire Hazard in Materials for Irrigators and Water Collectors in Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, N. V.; Konstantinova, N. I., E-mail: konstantinova-n@inbox.ru [FGBU VNIIPO of EMERCOM of Russia (All-Russian Scientific-research Institute of Fire Protection) (Russian Federation); Gordon, E. P. [Research and Production Center “Kaustik” (Russian Federation); Poedintsev, E. A. [FGBU VNIIPO of EMERCOM of Russia (All-Russian Scientific-research Institute of Fire Protection) (Russian Federation)

    2016-09-15

    A way of reducing the fire hazard of PVC film used to make cooling-tower irrigators and water collectors is examined. A new generation of fire retardant, nanostructured magnesium hydroxide, is used to impart fire retardant properties. The fabrication technology is optimized with a roller-calendering manufacturing technique, and the permissible ranges of fire hazard indicators for materials in irrigators and water collectors are determined.

  7. Heat loss coefficients and effective tau-alpha products for flat-plate collectors with diathermanous covers

    Science.gov (United States)

    Hollands, K. G. T.; Wright, J. L.

    1983-01-01

    This paper presents an efficient algorithm for solving the set of nonlinear equations governing the total heat transfer across an arbitrary number of parallel flat plate solar collector covers, each of which can be partly transparent to longwave thermal radiation. The governing equations are sufficiently general to permit each cover to have asymmetric radiative properties and to account for absorption of solar energy on the individual covers. This theory is shown to be in good agreement with the approximate equations of Whillier (provided certain interpretations are placed on his quantities) and with experiments using a plastic inner cover and bounding plates of various emissivities. Using this theory, it is demonstrated that if the absorber plate has a selective surface, an inner cover transparent to long wave radiation is to be preferred over one which is opaque.

  8. Enhancing the Heat Transfer of Flat-plate Solar Collector%平板太阳能集热器强化传热应用研究进展∗

    Institute of Scientific and Technical Information of China (English)

    吉佳文; 王文志; 李金凯; 段广彬; 刘宗明

    2016-01-01

    As the key part of the flat-plate solar water heater,the heat transfer performance of the collector is determined by the heat collector efficiency.The flat-plate solar collector with typical structure and heat transfer mode are described.Meanwhile the present technologies for enhancing heat transfer of flat-plate solar collector and the fu-ture development trend are reviewed and discussed.%集热器作为平板太阳能热水器的关键部分,其传热性能决定着热水器集热效率的高低。介绍了平板太阳能集热器的典型结构以及传热方式,综述了平板太阳能集热器目前所采用的强化传热方式及今后强化传热技术的发展趋势。

  9. Performance Evaluation of a Solar Dryer with Finny, Perforated Absorber Plate Collector Equipped with an Air Temperature Control System for Dill Drying

    Directory of Open Access Journals (Sweden)

    M Razmipour

    2015-03-01

    Full Text Available Dill is one of the most important plants in the world because of its medicinal properties and it is widely used as a vegetable in the most parts of Iran. In the present study a new solar dryer with finny, perforated absorber plate collector was utilized to dry fresh dill. The dryer was comprised of a solar collector, a product container, a fan and a drying air temperature controller. The temperature controller was used as a control system to regulate the drying air temperature. Thermal performance of the dryer with finny, perforated solar collector was compared with that of a simple flat plate solar collector at different airflow rates. The effect of drying air temperature at three levels (45, 55 and 65 °C, the product size at three lengths (3, 5 and 7 cm and two different modes of drying (mixed and indirect on the dryer performance was investigated. The results showed that the finny, perforated absorber plate solar collector could improve the thermal efficiency about 11% in comparison with the flat plate collector and the highest thermal efficiency was achieved at the maximum airflow rate. Meanwhile, increasing the air temperature and decreasing the product size caused a significant reduction in energy consumption. Solar fraction reduced by increasing the air temperature. Finally a maximum dryer efficiency of 70% was observed at air temperature of 65 oC, product size of 3 cm with mixed mode drying.

  10. Studies of flat-plate solar air collectors with absorber plates made of amorphous silicon photovoltaic modules; Amorphous taiyo denchi module wo shunetsuban to shita heibangata kukishiki shunetsuki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Ito, S.; Miura, N. [Kanagawa Institute of Technology, Kanagawa (Japan)

    1996-10-27

    A light/heat hybrid air type heat collector has been developed in which heat is collected by solar cell panels. In Type 1 heat collector provided with a glass cover, two modules are connected in series and placed under a glass cover to serve as a heat collecting plate, each module built of a steel plate and two thin-film amorphous solar cells bonded to the steel plate. Air runs under the heat collecting plate. Type 2 heat collector is a Type 1 heat collector minus the glass cover. Air is taken in by a fan, runs in a vinyl chloride tube, and then through the heat collector where it is heated by the sun, and goes out at the exit. Heat collecting performance was subjected to theoretical analysis. This heat collector approximated in point of heat collection a model using a board painted black, which means that the new type functions effectively as an air-type heat collector. Operating as a photovoltaic power generator, the covered type generated approximately 20% less than the uncovered type under 800W/m{sup 2} insolation conditions. Type 1 has been in service for five months, and Type 2 for 2 months. At present, both are free of troubles such as deformation and the amorphous solar cell modules have deteriorated but a little. 4 refs., 9 figs.

  11. Buoyancy effects on thermal behavior of a flat-plate solar collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2008-01-01

    Theoretical and experimental investigations of the flow and temperature distribution in a 12.53 m(2) solar collector panel with an absorber consisting of two vertical manifolds interconnected by 16 parallel horizontal fins have been carried out. The investigations are focused on overheating and b...

  12. Comparing between predicted output temperature of flat-plate solar collector and experimental results: computational fluid dynamics and artificial neural network

    Directory of Open Access Journals (Sweden)

    F Nadi

    2017-05-01

    Full Text Available Introduction The significant of solar energy as a renewable energy source, clean and without damage to the environment, for the production of electricity and heat is of great importance. Furthermore, due to the oil crisis as well as reducing the cost of home heating by 70%, solar energy in the past two decades has been a favorite of many researchers. Solar collectors are devices for collecting solar radiant energy through which this energy is converted into heat and then heat is transferred to a fluid (usually air or water. Therefore, a key component in performance improvement of solar heating system is a solar collector optimization under different testing conditions. However, estimation of output parameters under different testing conditions is costly, time consuming and mostly impossible. As a result, smart use of neural networks as well as CFD (computational fluid dynamics to predict the properties with which desired output would have been acquired is valuable. To the best of our knowledge, there are no any studies that compare experimental results with CFD and ANN. Materials and Methods A corrugated galvanized iron sheet of 2 m length, 1 m wide and 0.5 mm in thickness was used as an absorber plate for absorbing the incident solar radiation (Fig. 1 and 2. Corrugations in absorber were caused turbulent air and improved heat transfer coefficient. Computational fluid dynamics K-ε turbulence model was used for simulation. The following assumptions are made in the analysis. (1 Air is a continuous medium and incompressible. (2 The flow is steady and possesses have turbulent flow characteristics, due to the high velocity of flow. (3 The thermal-physical properties of the absorber sheet and the absorber tube are constant with respect to the operating temperature. (4 The bottom side of the absorber tube and the absorber plate are assumed to be adiabatic. Artificial neural network In this research a one-hidden-layer feed-forward network based on the

  13. Numerical Simulation Study on Flat Plate Solar Collectors in Series - connected System%直流式系统中平板型太阳能集热器数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    倪贝; 丁昀; 杨庆

    2011-01-01

    As it is difficult to solve the problem of unsteady - state heat transfer in theory, study of flat plate solar collectors in series -connected system with intermittent output is conducted by numerical simulation.Under the unsteady - state heat transfer condition, the impact of the diameter and center distance of solar collectors on the instantaneous collector efficiency and water production rate per square meter are discussed respectively.The results show that flat cartridge collector performed high effeciency.And under the same conditions, the larger the diameter of collector is, the higher efficiency will be.These can be used for optimizing design parameters of flat plate solar collectors.%由于非稳态传热问题通过理论计算得到解析解较困难,本文运用数值模拟方法研究定温放水型直流式系统中平板型太阳能集热器的工作状况,讨论了集热器的管径和管中心距在非稳态传热条件下对集热器的效率和每平方米产水量的影响.可得到结论扁盒式集热器具有较高效率;相同条件下,管径越大集热器效率越高.该结果有利于优化直流式平板集热器的设计参数.

  14. Open fibre reinforced plastic (FRP) flat plate collector (FPC) and spray network systems for augmenting the evaporation rate of tannery effluent (soak liquor)

    Energy Technology Data Exchange (ETDEWEB)

    Srithar, K. [Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai 625 015 (India); Mani, A. [Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai 600 036 (India)

    2007-12-15

    Presently, tanneries in Tamilnadu, India are required to segregate the effluent of soaking and pickling sections from other wastewater streams and send it to shallow solar pans for evaporation to avoid land pollution. A large area of solar pans is required for evaporating the water in the effluent at salt concentration in the range of 4-5%. An experimental study has been made by using fibre reinforced plastic flat plate collector (FRP-FPC) and spray system in a pilot plant with a capacity to handle 5000 l per day, which increases the evaporation rate. After increasing the salt concentration level to near saturation limit, the concentrated liquid was sent to conventional solar pans for its continued evaporation and recovery of salt. In this improved system, the rate of evaporation was found to be 30-40% more than that in the conventional solar pans. The performance is compared with the theoretically simulated performance. (author)

  15. THEORETICAL STUDY OF SOLAR COLLECTOR WITH MINI PARABOLIC CONCENTRATOR

    Directory of Open Access Journals (Sweden)

    I TABET

    2013-12-01

    Full Text Available In this paper, numerical modeling and simulation of the thermal behavior of a solar collector vacuum tube with a concentration has been done, the value of adding a system of concentration at the back of the collector and try to increase the amount of solar radiation incident on the collector  in order to obtain high temperatures compared to traditional flat plate collector  and improved their energy performance, this type of collector  being integrated into buildings for domestic hot water, air conditioning and for cooling.

  16. COMBINED UNCOVERED SHEET-AND-TUBE PVT-COLLECTOR SYSTEM WITH BUILT-IN STORAGE WATER HEATER

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2012-02-01

    Full Text Available This work describes the design and investigation of a simple combined uncovered sheet-and-tube photo-voltaic-thermal (PVT collector system. The PVT-collector system consists of a support, standard PV module (1.22x0.305m, area=0.37m2, fill factor=0.75, sheet-and-tube water collector and storage tank-heater. The collector was fixed under PV module. Inclination angle of the PVT-collector to the horizontal plane was 45 degree. The storage tank-heater played double role i.e. for storage of hot water and for water heating. The PVT-collector system could work in the fixed and tracking modes of operation. During investigations of PVT-collector in natural conditions, solar irradiance, voltage and current of PV module, ambient temperature and water temperature in storage tank were measured. Average thermal and electrical powers of the PVT-collector system at the tracking mode of operation observed were 39W and 21W, with efficiencies of 15% and 8% respectively at the input power of 260W. The maximum temperature of the water obtained was 42oC. The system was observed efficient for low-temperature applications. The PVT-collector system may be used as a prototype for design of PVT-collector system for domestic application, teaching aid and for demonstration purposes.

  17. Development of flat-plate solar thermal collectors equipped with aerogel sandwiched absorber

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Yusuke; Izumi, Hiroaki; Aizawa, Mamoru [Dynax Corp. (Japan); Yugami, Hiroo [Graduate School of Engineering, Tohoku Univ. (Japan)

    2004-07-01

    It is important to utilize the solar energy efficiently. However, conventional solar thermal collectors have some drawbacks of high cost, heavy weight and low temperature output. These drawbacks prevent from spreading of the market of solar thermal collectors, especially in Japan. To find a solution to the problems, we propose an absorber / aerogel one-piece structure for high temperature solar thermal collectors. TiOxNy and silica aerogel were employed as a selectively solar-absorbing coating of absorber and as an optically transparent thermal insulator, respectively. Selectively solar-absorbing coatings must show lower reflectance and lower emittance. We have developed selectively solar-absorbing coatings of which optical property was {alpha} = 98.5, {epsilon} = 3 %. Wet coating of newly designed TiOxNy precursor enabled fabricating selectively solar-absorbing coatings, easily. Shrinkage of silica aerogel had to be minimized to produce an absorber / aerogel one-piece structure. Selectively solar-absorbing coatings and silica aerogel were prepared via sol-gel processing. (orig.)

  18. High performance collectors

    Science.gov (United States)

    Ogawa, H.; Hozumi, S.; Mitsumata, T.; Yoshino, K.; Aso, S.; Ebisu, K.

    1983-04-01

    Materials and structures used for flat plate solar collectors and evacuated tubular collectors were examined relative to their overall performance to project effectiveness for building heating and cooling and the feasibility of use for generating industrial process heat. Thermal efficiencies were calculated for black paint single glazed, selective surface single glazed, and selective surface double glazed flat plate collectors. The efficiencies of a single tube and central tube accompanied by two side tube collectors were also studied. Techniques for extending the lifetimes of the collectors were defined. The selective surface collectors proved to have a performance superior to other collectors in terms of the average annual energy delivered. Addition of a black chrome-coated fin system to the evacuated collectors produced significant collection efficiency increases.

  19. Outdoor thermal efficiency evaluation of the Ying solar collector

    Science.gov (United States)

    1978-01-01

    The test procedure used and the test results obtained during an evaluation test program to obtain thermal efficiency performance data are presented. The flat plate collector used water/prestone antifreeze solution as the working fluid.

  20. EVALUATION OF EVACUATED TUBULAR SOLAR COLLECTORS FOR LARGE SDHW SYSTEMS AND COMBINED SPACE HEATING SYSTEMS

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1999-01-01

    . Based on thesemodels, the thermal performance of large solar domestic hot water (DHW) systems and combined domestichot water and space heating systems with the four evacuated tubular collectors was determined. To make acomparison with traditional flat-plate collectors, similar simulations were also...... carried out for systems with atypical flat-plate collector. The results show that the thermal advantage of evacuated tubular collectors variesgreatly from system to system, and increases with the solar fraction. Furthermore, the higher the operationtemperature of the collector in the system is......In the present study, detailed investigations on evacuated tubular solar collectors for large solarheating systems have been carried out. Four types of evacuated tubular solar collectors were used in theinvestigation. Based on laboratory tests, simulation models for the collectors were determined...

  1. The Effect of the Angle of Inclination on the Efficiency in a Medium-Temperature Flat Plate Solar Collector

    Directory of Open Access Journals (Sweden)

    Orlando Montoya-Marquez

    2017-01-01

    Full Text Available In this experimental work, the effects of the inclination angle β and the (Ti − Ta/G on the efficiency and the UL-value were investigated on a medium-temperature flat plate solar collector. The experiments were based on steady-state energy balance, by heat flow calorimetry at indoor conditions and considering the standard American National Standard Institute/American Society of Heating Refrigerating and Air Conditioning Engineers (ANSI/ASHRAE 93-2010. The solar radiation was emulated by the Joule effect using a proportional integral derivative (PID control considering two conditions of the absorber temperature, Case 1: (To − Ti > 0, and Case 2: (To − Ti = 0. The inclination angles were 0°–90° and the (Ti − Ta/G were 0.044–0.083 m2·°C/W and 0.124–0.235 for Case 1 and Case 2, respectively. The variations of β and (Ti − Ta/G cause efficiency changes up to 0.37–0.45 (21.6% and 0.31–0.45 (45.0%, respectively, for Case 1. Also, the UL(β reached changes up to 10.1–12.0 W/m2·°C (19.2% and 8.4–12.0 W/m2·°C (41.7%, respectively, for Case 1. The most significant changes of UL(β/UL(90° vs. β were 8.0% at the horizontal position for Case 1, while for Case 2, the maximum change was 1.8% only. Therefore, the changes of the inclination angle cause significant variations of the convective flow patterns within the collector, which leads to considerable variation of the collector efficiency and its UL value.

  2. Diseño de un colector solar de placa plana; Design of a Solar Flat Plate Collector

    Directory of Open Access Journals (Sweden)

    Jeovany Rafael Rodríguez Mejía

    2015-12-01

    Full Text Available En el presente artículo se integra el uso de un software de diseño mecánico y un algoritmo de simulación de la operación de un colector solar de placa plana, con el objetivo de simplificar el proceso de diseño y manufactura de este último. Se exponen los resultados de la simulación de la operación del colector solar considerando diferentes combinaciones en los parámetros de los materiales utilizados, tales como sus propiedades y características físico químicas, además de la variación de las dimensiones del sistema adiseñar. Finalmente en el artículo se evalúa la operación de un colector solar para las condiciones climatológicas típicas de la irradiancia, velocidad de viento y temperatura ambiente a partir de una serie de curvas sinusoidales, típicas de Cuba, validándose la viabilidad del algoritmo como apoyo en la etapa de diseño y selección de materiales.In this article the use of mechanical design software and an algorithm for simulating the operation of a flat plate solar collector, with the objective of simplifying the process of design and manufacture of the latter isintegrated. The simulation results of the operation of the solar collector considering different combinations in the parameters of the materials used, such as its physicochemical properties and features in addition to thevariation of the dimensions of the system design are set. The article finally evaluates the operation of a solar collector for typical climatic conditions of irradiance, wind speed and ambient temperature from a series ofsinusoidal, typical Cuba curves is evaluated, validating the feasibility of the algorithm as support in step design and material selection.

  3. Ceramic Plate Solar Collector and Column Pile Structure Ceramic Solar Roof%陶瓷太阳板与锚桩结构陶瓷太阳能房顶的应用

    Institute of Scientific and Technical Information of China (English)

    孙启正; 许建华

    2012-01-01

    陶瓷太阳板以普通瓷土、工业废弃物为原料,具有制造工艺简单、生产耗能少、成本低、寿命长、效率高的优点;锚桩陶瓷太阳能房顶与原房顶共用结构层、保温层、防水层,结构简单、与建筑一体化、与建筑同寿命,为建筑物提供热水、取暖、空调的功能。%Ceramic plate solar collector, manufactured by common porcelain clay and industrial waste,has a lot of advantages such as simple process,low energy consumption,low cost,long life, high efficiency etc. Ceramic plate solar collector roof share the structure layer,insulation layer and waterproof layer with the origin roof. The roof has a simple structure, integration and same life with the building. Ceramic plate solar collector roof can supply hot water, heating and air condition to the building.

  4. Experimental comparison of alternative convection suppression arrangements for concentrating integral collector storage solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, M.; McGarrigle, P.; Eames, P.C. [Ulster Univ., School of the Built Environment, Newtownabbey, Northern Ireland (United Kingdom); Norton, B. [Dublin Inst. of Technology, Dublin (Ireland)

    2005-02-01

    An experimental investigation of an inverted absorber integrated collector storage solar water heater mounted in the tertiary cavity of a compound parabolic concentrator with a secondary cylindrical reflector has been performed under simulated solar conditions. The solar water heaters performance was determined with the aperture parallel to the simulator for a range of transparent baffles positioned at different locations within the collector cavity. Results indicate that glass baffles located at the upper portion of the exit aperture of the CPC can reduce thermal losses through convection suppression without significantly increasing optical losses. (Author)

  5. Nitrite/nitrate detection in serum based on dual-plate generator-collector currents in a microtrench.

    Science.gov (United States)

    Gross, Andrew J; Holmes, Stephanie; Dale, Sara E C; Smallwood, Miranda J; Green, Stephen J; Winlove, C Peter; Benjamin, Nigel; Winyard, Paul G; Marken, Frank

    2015-01-01

    A dual-electrode sensor is developed for rapid detection of nitrite/nitrate at micromolar levels in phosphate buffer media and in dilute horse serum without additional sample pre-treatment. A generator-collector configuration is employed so that on one electrode nitrate is reduced to nitrite and on the second electrode nitrite is oxidised back to nitrate. The resulting redox cycle gives rise to a specific and enhanced current signal which is exploited for sensitive and reliable measurement of nitrite/nitrate in the presence of oxygen. The electrode design is based on a dual-plate microtrench (approximately 15 µm inter-electrode gap) fabricated from gold-coated glass and with a nano-silver catalyst for the reduction of nitrate. Fine tuning of the phosphate buffer pH is crucial for maximising collector current signals whilst minimising unwanted gold surface oxidation. A limit of detection of 24 μM nitrate and a linear concentration range of 200-1400 μM is reported for the microtrench sensor in phosphate buffer and dilute horse serum. Relative standard deviations for repeat measurements were in the range 1.8-6.9% (n=3) indicating good repeatability in both aqueous and biological media. Preliminary method validation against the standard chemiluminescence method used in medical laboratories is reported for nitrate analysis in serum.

  6. Nongray-radiative and convective-conductive thermal coupling in Teflon-glazed, selective-black, flat-plate solar collectors

    Science.gov (United States)

    Edwards, D. K.; Rhee, S. J.

    1984-05-01

    An analysis is presented comparing Teflon film with glass for the inner glazing of a double-glazed selective-black, flat-plate solar collector. The effect of spacing between glazings and between the inner glazing and absorber plate is examined. It is shown that a 12.5-micron Teflon film is superior to glass for the inner glazing of a selective-black collector, because the advantage of its high solar transparency overwhelms the disadvantage of its infrared transparency. A too-small spacing between a selective-black absorber and its inner cover short-circuits the desirable thermal radiation resistance offered by a selective-black absorber plate. Account is taken of spectral variations in the radiation properties of glass, Teflon, and the absorber plate. Allowance is made for the fact that critical Rayleigh number is lower for a plastic film inner glazing than for a glass one.

  7. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    OpenAIRE

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector...

  8. Air bubble-induced detachment of positively and negatively charged polystyrene particles from collector surfaces in a parallel-plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; Van der Mei, HC; Busscher, HJ

    2000-01-01

    Electrostatic interactions between colloidal particles and collector surfaces were found tcr be important in particle detachment as induced by the passage of air bubbles in a parallel-plate Row chamber. Electrostatic interactions between adhering particles and passing air bubbles, however, a-ere

  9. Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber

    NARCIS (Netherlands)

    Suarez, CG; van der Mei, HC; Busscher, HJ

    1999-01-01

    The detachment of polystyrene particles adhering to collector surfaces with different electrostatic charge and hydrophobicity by attachment to a passing air bubble has been studied in a parallel plate flow chamber. Particle detachment decreased linearly with increasing air bubble velocity and

  10. Air bubble-induced detachment of positively and negatively charged polystyrene particles from collector surfaces in a parallel-plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; Van der Mei, HC; Busscher, HJ

    2000-01-01

    Electrostatic interactions between colloidal particles and collector surfaces were found tcr be important in particle detachment as induced by the passage of air bubbles in a parallel-plate Row chamber. Electrostatic interactions between adhering particles and passing air bubbles, however, a-ere fou

  11. Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber

    NARCIS (Netherlands)

    Suarez, CG; van der Mei, HC; Busscher, HJ

    1999-01-01

    The detachment of polystyrene particles adhering to collector surfaces with different electrostatic charge and hydrophobicity by attachment to a passing air bubble has been studied in a parallel plate flow chamber. Particle detachment decreased linearly with increasing air bubble velocity and decrea

  12. Thermal Aspects Related to the Operation of Photovoltaic Collectors with Water Film Cleaning System

    Directory of Open Access Journals (Sweden)

    Andrei BUTUZA

    2014-02-01

    Full Text Available This study presents an explorative experimental investigation of solar photovoltaic collector's behavior, when equipped with a water film based cleaning system. The study was focused mainly on thermal aspects and demonstrated the thermal potential of the water film, to be used in preheating domestic water. The results obtained in temperate continental climate and in autumn conditions, are in good agreement with similar studies. The electric effects of the water film were also investigated. This category of results was affected by limited precision of the data acquisition but the trend of water film electric effects could be still revealed. The general practical conclusion of the study is that water film cleaning system of the solar photovoltaic collectors can be recommended only with reserves, because of reduced and uncertain global performances.

  13. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J.; Simo, T. [Energovyzkum Ltd., Brno (Switzerland)

    1995-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  14. A point focusing collector for an integrated water/power complex

    Science.gov (United States)

    Zewen, H.; Schmidt, G.; Moustafa, S.

    1982-01-01

    The utilization potential of the point focusing parabolic dish is identified. Its main design parameters are summarized. Performance tests and the utilization of the collector as primary energy source in a food-water-power complex are described. Process heat, heat storage, heat transfer, and cogeneration are discussed.

  15. PERFORMANCE CHARACTERISTICS OF PARABOLIC SOLAR COLLECTOR WATER HEATER SYSTEM FITTED WITH NAIL TWISTED TAPES ABSORBER

    Directory of Open Access Journals (Sweden)

    K. SYED JAFAR

    2017-03-01

    Full Text Available In this paper, the experimental heat transfer, friction loss and thermal performance data for water flowing through the absorber tube fitted with two different twisted tape configurations in parabolic trough collector (PTC are presented. In the present work, a relative experimental study is carried out to investigate the performance of a PTC influenced by heat transfer through fluidabsorber wall mixing mechanism. The major findings of this experiment show that heat transport enhancement in the nail twisted tape collector perform significantly better than plain twisted tapes and also show that the smallest twisted tape ratio enhances the system performance remarkably maximizing the collector efficiency. The results suggest that the twisted tape and nail twisted tape would be a better option for high thermal energy collection in laminar region of the PTC system.

  16. Theoretical and experimental investigations of Chinese evacuated tubular solar collectors

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1999-01-01

    Four different marketed Chinese evacuated tubular solar collectors have been investigated both theoretically and experimentally. The advantages of the investigated solar collectors compared to normal flat plate collectors were elucidated.......Four different marketed Chinese evacuated tubular solar collectors have been investigated both theoretically and experimentally. The advantages of the investigated solar collectors compared to normal flat plate collectors were elucidated....

  17. 混合工质太阳能平板热管集热器的传热性能%Heat Transfer Performance ofthe Flat Plate Heat Pipe Solar Collector with Mixture Working Fluid

    Institute of Scientific and Technical Information of China (English)

    杜胜华; 苏海鹏

    2014-01-01

    介绍了平板热管的基本结构与原理,在分析乙二醇及其混合工质的热物理学特性的基础上,建立平板热管的物理与数学模型。采用数值计算模拟方法,分析了混合工质平板热管集热器的传热性能,研究了集热器的效率、温升和启动性能随工作时间的变化规律。研究表明,乙二醇水混合工质平板热管集热器适宜于低温寒冷地区,具有较高的集热性能。%The basic structure and principle of flat plate heat pipe were introduced based on thermal physics characteristics analysis of ethylene glycol and mixtures , physical and mathematical models of flat plate heat pipe were established.By the numerical simulation method , the heat transfer performance of the flat heat pipe heat collector with mixture working fluid was analyzed , and the efficiency , temperature collector up and starting performance by time were studied.It showed that flat heat pipe heat collector with ethylene glycol water mixture was suitable for cold area , and the heat collecting performance was high.

  18. A mobile apparatus for solar collector testing

    Science.gov (United States)

    Hotchkiss, G. B.; Simon, F. F.; Burmeister, L. C.

    1979-01-01

    The design, construction, and operation of a mobile apparatus for solar collector testing (MASCOT) is described. The MASCOT is a self-contained test unit costing about $10,000 whose only external requirement for operation is electrical power and which is capable of testing two water-cooled flat-plate solar collectors simultaneously. The MASCOT is small enough and light enough to be transported to any geographical site for outdoor tests at the location of collector usage. It has been used in both indoor solar simulator tests and outdoor tests.

  19. Energetic Performances Study of an Integrated Collector Storage Solar Water Heater

    Directory of Open Access Journals (Sweden)

    O. Helal

    2010-01-01

    Full Text Available Problem statement: Although that the interest attributed to the solar energy remains relatively limited, we attend today to the conception of several installations using the sun as energy source among which we quote the solar water heater. Approach: A study of energetic performances was taken on an integrated collector/storage solar water heater made in the National School of Engineers of Gabes. This water heater is equipped with a concentration system containing a reflector composed of three parabolic branches favorating a better absorption of solar radiance. Results: The comparison between this system and two other systems of solar water heater, composed of a storage ball with asymmetrical CPC and symmetrical CPC, showed important energetic performances despite the simplicity and the little cost of the collector. Conclusion: Several improvements are necessary to increase the direct flow whilst decrease the thermal losses and therefore make the system simpler to be installed on the building roof.

  20. Diseño de un colector solar de placa plana; Design of a solar fl at plate collector

    Directory of Open Access Journals (Sweden)

    Jeovany Rafael Rodríguez Mejía

    2016-02-01

    Full Text Available En el presente artículo se integra el uso de un software de dis eño mecánico y un algoritmo de simulación de la operación de un colector solar de placa plana, con el objeti vo de simplificar el proceso de diseño y manufactura de este último. Se exponen los resultados de la sim ulación de la operación del colector solar considerando diferentes combinaciones en los parámetros de los materiales utilizados, tales como sus propiedades y características físico químicas, además de la var iación de las dimensiones del sistema a diseñar. Finalmente en el artículo se evalúa la operación de un colector solar para las condiciones climatológicas típicas de la irradiancia, velocidad de viento y temperatura ambiente a partir de una serie de curvas sinusoidales, típicas de Cuba, validándose la viabilidad del algoritmo como apoyo en la etapa de diseño y selección de materiales. In this article the use of mechanical design software and an al gorithm for simulating the operation of a flat plate solar collector, with the objective of simplifying the pr ocess of design and manufacture of the latter is integrated. The simulation results of the operation of the sola r collector considering different combinations in the parameters of the materials used, such as its physicochemic al properties and features in addition to the variation of the dimensions of the system design are set. The a rticle finally evaluates the operation of a solar collector for typical climatic conditions of irradiance, wind s peed and ambient temperature from a series of sinusoidal, typical Cuba curves is evaluated, validating the fe asibility of the algorithm as support in step design and material selection.

  1. Tårs 10000 m2 CSP + Flat Plate Solar Collector Plant - Cost-Performance Optimization of the Design

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Tian, Zhiyong

    2016-01-01

    , was established. The optimization showed that there was a synergy in combining CSP and FP collectors. Even though the present cost per m² of the CSP collectors is high, the total energy cost is minimized by installing a combination of collectors in such solar heating plant. It was also found that the CSP...... collectors could raise flexibility in the control strategy of the plant. The TRNSYS-Genopt model is based on individually validated component models and collector parameters from experiments. Optimization of the cost performance of the plant has been conducted in this paper. The simulation model remains...... to be validated with annual measured data from the plant....

  2. Solar thermal collectors

    Science.gov (United States)

    Aranovitch, E.

    Thermal processes in solar flat plate collectors are described and evaluated analytically, and numerical models are presented for evaluating the performance of various designs. A flat plate collector consists of a black absorber plate which transfers absorbed heat to a fluid, a cover which limits thermal losses, and insulation to prevent backlosses. Calculated efficiencies for the collectors depend on the radiation absorbed, as well as IR losses due to natural convection, conduction, and radiation out of the collector. Formulations for the global emittance and heat transfer, as well as losses and their dependence on the Nusselt number and Grashof number are defined. Consideration is given to radiation transmission through transparent covers and Fresnel reflections at interfaces in the cover material. Finally, the performance coefficients for double-glazed and selective surface flat plate collectors are examined.

  3. Numerical Investigation of Nanofluid-based Solar Collectors

    Science.gov (United States)

    Karami, M.; Raisee, M.; Delfani, S.

    2014-08-01

    Solar thermal collectors are applicable in the water heating or space conditioning systems. Due to the low efficiency of the conventional collectors, some suggestions have been presented for improvement in the collector efficiency. Adding nanoparticles to the working fluid in direct absorption solar collector, which has been recently proposed, leads to improvement in the working fluid thermal and optical properties such as thermal conductivity and absorption coefficient. This results certainly in collector efficiency enhancement. In this paper, the radiative transfer and energy equations are numerically solved. Due to laminar and fully developed flow in the collector, the velocity profile is assumed to be parabolic. As can be observed from the results, outlet temperature of collector is lower than that obtained using uniform velocity profile. Furthermore, a suspension of carbon nanohorns in the water is used as the working fluid in the model and its effect on the collector efficiency is investigated. It was found that the presence of carbon nanohorns increases the collector efficiency by about 17% compared to a conventional flat-plate collector. In comparison with the mixture of water and aluminium nanoparticles, a quite similar efficiency is obtained using very lower concentration of carbon nanohorns in the water.

  4. PERFORMANCE OF EVACUATED TUBE SOLAR COLLECTOR USING WATER-BASED TITANIUM OXIDE NANOFLUID

    Directory of Open Access Journals (Sweden)

    M. Mahendran

    2012-12-01

    Full Text Available Experiments are undertaken to determine the efficiency of an evacuated tube solar collector using water-based Titanium Oxide (TiO2 nanofluid at the Pekan Campus (3˚32’ N, 103˚25’ E, Faculty of Mechanical Engineering, University Malaysia Pahang, for the conversion of solar thermal energy. Malaysia lies in the equatorial zone with an average daily solar insolation of more than 900 W/m², which can reach a maximum of 1200 W/m² for most of the year. Traditionally water is pumped through the collector at an optimum flow rate, for the extraction of solar thermal energy. If the outlet temperature of the water is high, further circulation of the water through the collector is useless. This is due to the low thermal conductivity of water of 0.6 W/m.K compared to metals which is many orders higher. Hence it is necessary to reduce the surface temperature either by pumping water at a higher flow rate or by enhancing the fluid’s properties by the dispersion of nanoparticles. Pumping water at higher flow rates is not advantageous as the overall efficiency of the system is lowered. Liquids in which nanosized particles of metal or their oxides are dispersed in a base liquid such as water are known as 'Nanofluids'. This results in higher values of thermal conductivity compared to the base liquid. The thermal conductivity increases with the concentration and temperature of the nanofluid. The increase in thermal conductivity with temperature is advantageous for application in collectors as the solar insolation varies throughout the day, with a minimum in the morning reaching a maximum at 2.00p.m and reducing thereafter. The efficiency of the collector estimated using a TiO2 nanofluid of 0.3% concentration is about 0.73, compared to water which is about 0.58. The efficiency is enhanced by 16.7% maximum with 30–50nm sized TiO2 nanoparticles dispersed in the water, compared to the system working solely with water. The flow rate is fixed at 2.7 liters per

  5. Performance test procedures for thermal collectors - Outdoor testing

    Science.gov (United States)

    Gillett, W. B.

    A review of outdoor solar collector test methods is presented, based largely on the CEC Recommendations for European Solar Collector Test Methods. Test facility design and instrumentation are discussed, with reference to their influence on measured collector efficiencies. Steady state outdoor testing, mixed indoor/outdoor testing and transient testing are reviewed, and it is concluded that although the testing of simple flat plate water heaters is fairly well understood, more work is now required to develop test methods for the new high performance collectors which are coming onto the market.

  6. Experimental Verification and Analysis of Solar Parabolic Collector for Water Distillation

    Directory of Open Access Journals (Sweden)

    Mr. Mohd. Rizwan

    2014-01-01

    Full Text Available The paper is concerned with an experimental study of parabolic trough collector with its sun tracking system designed and manufactured to facilitate rapid diffusion and widespread use of solar energy. The paper focuses on use of alternative source of energy (through suns radiation which is easy to install, operate and maintain. Also, to improve the performance of solar concentrator, different geometries were evaluated with respect to their optical and energy conversion efficiency. To assure good performance and long technical lifetime of a concentrating system, the solar reflectance of the reflectors must be high and long term stable. During the research carried out, focus had been shifted from evaluation of the performance of concentrating solar collector to analysis of the optical properties of reflector and absorbing materials. The shift of focus was motivated by the need to assess long term system performance and possibilities of optimizing the optical efficiency or reducing costs by using new types of reflector materials and absorbing materials. The Solar Parabolic Trough Collector (SPTC was fabricated in local workshops and the sun tracking system was assembled using electric and electronic components in the market, while the mechanical components making up the driving system were procured from the local market. The objective of the research is to obtain distilled water by heating it to a higher temperature by solar parabolic trough collector. Solar distillation is used to produce potable water or to produce water for lead acid batteries or in chemical laboratories as in this case. The level of dissolved solids in solar distilled water is less than 3 ppm and bacteria free. The requirements for this specific design are a target for distilling water regularly with low maintenance.

  7. Effect of Installation of Solar Collector on Performance of Balcony Split Type Solar Water Heaters

    OpenAIRE

    Xu Ji; Ming Li; Weidong Lin; Tufeng Zheng; Yunfeng Wang

    2015-01-01

    The influences of surface orientation and slope of solar collectors on solar radiation collection of balcony split type solar water heaters for six cities in China were analyzed by employing software TRNSYS. The surface azimuth had greater effect on solar radiation collection in high latitude regions. For deviation of the surface slope angle within ±20° around the optimized angle, the variation of the total annual collecting solar radiation was less than 5%. However, with deviation of 70° to ...

  8. Effect of the Dust on the Performance of Solar Water Collectors in Iraq

    Directory of Open Access Journals (Sweden)

    Omer Khalil Ahmed

    2016-02-01

    Full Text Available There is little research about it in present literatures in Iraq. So the effect of dust accumulation on the performance of conventional of solar collectors is analyzed. The experimental study was carried out mainly on a flat solar collector, which comprised the major part of this work. According to the experimental results obtained, there is a limited decrease in the instantaneous efficiency which was 1.6 % for the dirty collector. At load condition, the outlet temperature reaches a maximum value of 43.85oC at 12 noon without dust on the front glass and 33.7 oC in the presence of the dust. The instantaneous efficiency reaches its maximum value of 49.74 % at 12 noon without dust and 48.94% with dust after that the efficiency was decreased. The variation of useful transferred energy closely follows the variation of solar intensity and reaches its maximum value of 690 W/m2 at 12 noon in the presence of the dust for this particular day. It is also observed that, at the second half of the day, there is a large decrease in the instantaneous efficiency resulting from a large reduction in the useful energy transferred. Therefore, for Iraqi places, daily cleaning of the glass covers is strictly recommended as part of the maintenance works but the equipment should be cleaned immediately after a dust storm to keep the collector efficient. Article History: Received August 16, 2015; Received in revised form Nov 17, 2015; Accepted Dec 19, 2015; Available onlineHow to Cite This Article: Ahmed, O.K (2016. Effect of the Dust on the Performance of Solar Water Collectors in Iraq. Int. Journal of Renewable Energy Development, 5(1, 65-72.http://dx.doi.org/10.14710/ijred.5.1.65-72 

  9. Application of sintered plate dust collector in gold mines%烧结板除尘器在黄金矿山的应用

    Institute of Scientific and Technical Information of China (English)

    郑民; 轩慎英; 刘刚

    2016-01-01

    It is always difficult for gold mine to collect dust .Inner Mongolia Pacific Mining Corporation Limited first applies sintered plate dust collectors in the crashing stage during the second phase of expansion project .The sin-tered plate dust collector occupies less space and is reliable with good dust collection effect and lower vent gas concen -tration.The paper based on technical characteristics of dust collection process and performance test results focused on the technical and economical analysis of the application of sintered plate dust collector ,expecting to provide reference of the dust collection process for gold mines .%黄金生产中的除尘问题一直受到黄金矿山企业的关注.内蒙古太平矿业有限公司二期扩建项目首次在选矿厂破碎工段采用了烧结板除尘器,其设备占地面积小、运行可靠、除尘效果好、尾气质量浓度低于排放标准.该文结合除尘工艺技术特点以及设备性能测试结果,重点对烧结板除尘器的应用进行了技术与经济分析,以期为类似黄金矿山企业除尘工艺提供参考.

  10. Decosol Project : development of solar plate collectors of high efficiency and low cost for medium temperature application; Proyecto Decosol: Desarrollo de colectores solares planos de alta eficiencia ybajo coste para aplicaciones a mediana temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Cadafalch, J.; Oliva, A.; Lavandeira, J. C.; Maestre, F.; Martinez, J. C.; Martin, J. R.; Hermo, R.

    2004-07-01

    Work that is currently being carried out by the authors in the framework of the project DECOSOL (Development of high efficiency and low cost flat plate collectors for medium temperature applications) is described in this paper. The goal of DECOSOL is to consolidate the results of previous R AND D projects conducted by the authors on the development of stagnation proof transparently insulated flat plate solar collectors prototypes, in order to end up with commercial products. (Author)

  11. Cleaning Genesis Solar Wind Collectors with Ultrapure Water: Residual Contaminant Particle Analysis

    Science.gov (United States)

    Allton, J. H.; Wentworth, S. J.; Rodriquez, M. C.; Calaway, M. J.

    2008-01-01

    Additional experience has been gained in removing contaminant particles from the surface of Genesis solar wind collectors fragments by using megasonically activated ultrapure water (UPW)[1]. The curatorial facility has cleaned six of the eight array collector material types to date: silicon (Si), sapphire (SAP), silicon-on-sapphire (SOS), diamond-like carbon-on-silicon (DOS), gold-on-sapphire (AuOS), and germanium (Ge). Here we make estimates of cleaning effectiveness using image analysis of particle size distributions and an SEM/EDS reconnaissance of particle chemistry on the surface of UPW-cleaned silicon fragments (Fig. 1). Other particle removal techniques are reported by [2] and initial assessment of molecular film removal is reported by [3].

  12. Performance evaluation of a liquid solar collector

    Science.gov (United States)

    1979-01-01

    Report describes thermal performance and structural-load tests on commercial single glazed flat-plate solar collector with gross area of 63.5 sq ft that uses water as heat-transfer medium. Report documents test instrumentation and procedures and presents data as tables and graphs. Results are analyzed by standard data-reduction methods.

  13. EXPERIMENTAL RESEARCH ON A HIGH EFFICIENT FLAT PLATE SOLAR COLLECTOR%一种高效平板太阳能集热器试验研究

    Institute of Scientific and Technical Information of China (English)

    李戬洪; 江晴

    2001-01-01

    性能良好的太阳能集热器是太阳能空调的关键设备之一。广东省江门市太阳能空调系统采用了一种高效的平板集热器,其主要技术特征是增加了一块聚碳酸脂(PC)透明隔热板。本研究通过对比试验,确定了一种高效平板太阳能集热器的技术方案,并测定了瞬时效率曲线,其热损系数仅为2.90W/(m2*℃)。%Good performance of the solar collectors is one of the important elements for solar air-conditioning system.A novel type of high efficient flat plate solar collector was applied to the solar air-condition system in Jiangmen,Guangdong Province.Tests show that adding a transparent polycarbonate sheet in gap between glazing and absorber of the collector. The coefficient of the thermal loss is reduced to 2.90W/(m2℃) and the performance of the collector is improved.

  14. PERFORMANCE OF EVACUATED TUBE SOLAR COLLECTOR USING WATER-BASED TITANIUM OXIDE NANOFLUID

    OpenAIRE

    M. Mahendran; Lee, G C; Sharma, K. V.; A. Shahrani; R. A. Bakar

    2012-01-01

    Experiments are undertaken to determine the efficiency of an evacuated tube solar collector using water-based Titanium Oxide (TiO2) nanofluid at the Pekan Campus (3˚32’ N, 103˚25’ E), Faculty of Mechanical Engineering, University Malaysia Pahang, for the conversion of solar thermal energy. Malaysia lies in the equatorial zone with an average daily solar insolation of more than 900 W/m², which can reach a maximum of 1200 W/m² for most of the year. Traditionally water is pumped through the coll...

  15. 微热管阵列平板太阳能集热器中空保温层厚度优化%Optimization of hollow insulation layer for flat plate solar collector based on micro heat pipe array

    Institute of Scientific and Technical Information of China (English)

    邓月超; 赵耀华; 全贞花; 刘中良

    2015-01-01

    In this paper, a three-dimensional CFD numerical model of heat transfer and fluid flow was developed to simulate the thermal performance of the novel flat plate solar collector based on a micro heat pipe array to provide a theoretical basis for the structure improvement and optimization of the collector. The simulation of the novel collector with water flow included the CFD modeling of solar irradiation and the modes of mixed convection and radiation heat transfer between the absorber plate and glass cover, as well as the heat transfer in the circulating water inside the heat exchanger and conduction of the insulation. The fluid flow and heat transfer in the computational domain satisfied the continuity equation, the momentum equation, and the energy equation. The standardk-ε two-equation turbulence model was used in this paper. In order to predict the direct illumination energy source that results from incident solar radiation and the radiation field inside the collector, the discrete ordinate radiation model with a solar ray-tracing model was used. A commercial computational fluid dynamics program (Fluent 6.3 CFD software) was used to solve the coupled fluid flow, heat transfer, and the radiation equation. The solver used is the segregated solver. Body Force Weighted was selected as the discretization method for pressure, and the SIMPLE algorithm was used to resolve the coupling between pressure and velocity. The discretization methods for the solving of momentum, energy, radiation, and turbulence were second order upwind. The thermal performance could be achieved by simulation results under different conditions. Then, the experimental and numerical results were compared to validate the prediction of the CFD model. The results showed that the numerical results of the thermal efficiency of the novel collector were in reasonable agreement with the experimental data. The validated CFD model was used to analyze the properties of the insulation layer. First, the

  16. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...... this kind of collectors. The modified simulation program has been used for the determination of the surplus in performance which solar heating systems with this type of solar collectors for combined preheating of ventilation air and domestic hot water will have. The simulation program and the efficiency...

  17. Heat pump applications and water heating by means of solar collectors. Waermepumpenanwendungen und Wasserwaermung mit Sonnenkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Szokody, G.

    1990-01-15

    About 25 to 30% of all newly constructed single-family houses in Switzerland are equipped with heat pump systems. This increasing attractivity is partly due to new techniques, e.g. microprocessor control, as well as to higher component efficiencies, a more efficient heat exchange technology, and to the compactness of systems. Active solar energy conversion, i.e. by means of solar collectors, is another technique which is predominantly applied for water heating in single-family buildings. Public investments in this field are scarce. (BWI).

  18. High-performance, low-cost solar collectors for disinfection of contaminated water.

    Science.gov (United States)

    Vidal, A; Diaz, A I

    2000-01-01

    Although the germicidal action of sunlight has long been recognized, its potential for practical applications has to be researched more thoroughly. This paper summarizes the progress made toward a commercially practical collector for solar disinfection applications. Nontracking compound parabolic collectors (CPCs), developed originally for capturing solar photons for thermal energy applications, were examined as potential solar photoreactors. A field demonstration of solar disinfection treatment using commercially manufactured solar reactors was conducted. Field tests showed successful destruction of Escherichia coli and Enterococcus faecalis and have provided data for full-scale design of water treatment systems. From above observations, a throughput value of 50 L/m2 h for the low-cost CPC reactor tested was estimated. For a 190 m3/d (0.05 MGD) facility, the estimated total costs for disinfection using UV-A is U.S. $0.19/m3 ($0.70/1000 gal). The use of near-UV sunlight to disinfect water supplies seems promising in rural communities of developing countries where treated water is unavailable.

  19. Life cycle cost analysis of new FRP based solar parabolic trough collector hot water generation system

    Institute of Scientific and Technical Information of China (English)

    A. VALAN ARASU; T. SORNAKUMAR

    2008-01-01

    Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fibre reinforced plastic (FRP) based solar PTC with an embedded electronic controlled tracking system designed and developed for hot water generation in a restaurant in Madurai, India. The new collector performance has been tested according to ASHRAE Standard 93 (1986). The performance of a new PTC hot water generation system with a well mixed hot water storage tank is investigated by a series of extensive tests over ten months period. The average maximum storage tank water temperature observed was 74.91 ℃, when no energy is withdrawn from the tank to the load during the collection period. The total cost of the new economic FRP based solar PTC for hot water generation with an embedded electronic controlled tracking system is Rs. 25000 (US$ 573) only. In the present work, life cycle savings (LCS) method is employed for a detailed economic analysis of the PTC system. A computer program is used as a tool for the economic analysis. The present worth of life cycle solar savings is evaluated for the new solar PTC hot water generation system that replaces an existing electric water heating system in the restaurant and attains a value of Rs. 23171.66 after 15 years, which is a significant saving. The LCS method and the MATLAB computer simulation program presented in this paper can be used to estimate the LCS of other renewable energy systems.

  20. Thermal performance evaluation of the Semco (liquid) solar collector

    Science.gov (United States)

    1979-01-01

    Procedures used and results obtained during the evaluation test program on a flat plate collector which uses water as the working fluid are discussed. The absorber plate is copper tube soldered to copper fin coated with flat black paint. The glazing consists of two plates of Lo-Iron glass; the insulation is polyurethane foam. The collector weight is 242.5 pounds with overall external dimensions of approximately 48.8 in. x 120.8 in. x 4.1 in. The test program was conducted to obtain thermal performance data before and after 34 days of weather exposure test.

  1. Indoor test for thermal performance evaluation of Sunworks (liquid) solar collector

    Science.gov (United States)

    Shih, K.

    1977-01-01

    Test procedures used and test results obtained from an evaluation test program conducted on a single covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using water as the heat transfer medium. The absorber plate was copper with copper tubes bonded by soft solder. The plate was coated with Enthone selective black with an absorptivity factor of .87 approximately .92 and an emissivity factor of .10 approximately .20. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.

  2. A facile route for controlled alignment of carbon nanotube-reinforced, electrospun nanofibers using slotted collector plates

    Directory of Open Access Journals (Sweden)

    G. R. Rakesh

    2015-02-01

    Full Text Available A facile route for controlled alignment of electrospun multiwalled carbon nanotube (MWCNT-reinforced Polyvinyl Alcohol (PVA nanofibers using slotted collector geometries has been realized. The process is based on analytical predictions using electrostatic field analysis for envisaging the extent of alignment of the electrospun fibers on varied collector geometries. Both the experimental and theoretical studies clearly indicate that the introduction of an insulating region into a conductive collector significantly influences the electrostatic forces acting on a charged fiber. Among various collector geometries, rectangular slotted collectors with circular ends showed good fiber alignment over a large collecting area. The electrospun fibers produced by this process were characterized by Atomic Force Microscopy (AFM, High Resolution Transmission Electron Microscopy (HRTEM, Scanning Electron Microscopy (SEM and Optical Microscopy. Effects of electrospinning time and slot widths on the fiber alignment have been analyzed. PVA-MWCNT nanofibers were found to be conducting in nature owing to the presence of reinforced MWCNTs in PVA matrix. The method can enable the direct integration of aligned nanofibers with controllable configurations, and significantly simplify the production of nanofibersbased devices.

  3. Multiregional evaluation of the SimPlate heterotrophic plate count method compared to the standard plate count agar pour plate method in water.

    Science.gov (United States)

    Jackson, R W; Osborne, K; Barnes, G; Jolliff, C; Zamani, D; Roll, B; Stillings, A; Herzog, D; Cannon, S; Loveland, S

    2000-01-01

    A new SimPlate heterotrophic plate count (HPC) method (IDEXX Laboratories, Westbrook, Maine) was compared with the pour plate method at 35 degrees C for 48 h. Six laboratories tested a total of 632 water samples. The SimPlate HPC method was found to be equivalent to the pour plate method by regression analysis (r = 0. 95; y = 0.99X + 0.06).

  4. Multiregional Evaluation of the SimPlate Heterotrophic Plate Count Method Compared to the Standard Plate Count Agar Pour Plate Method in Water

    OpenAIRE

    Jackson, R. Wayne; Osborne, Karen; Barnes, Gary; Jolliff, Carol; Zamani, Dianna; Roll, Bruce; Stillings, Amy; Herzog, David; Cannon, Shelly; Loveland, Scott

    2000-01-01

    A new SimPlate heterotrophic plate count (HPC) method (IDEXX Laboratories, Westbrook, Maine) was compared with the pour plate method at 35°C for 48 h. Six laboratories tested a total of 632 water samples. The SimPlate HPC method was found to be equivalent to the pour plate method by regression analysis (r = 0.95; y = 0.99X + 0.06).

  5. Numerical simulation of a parabolic trough solar collector for hot water and steam generation

    Science.gov (United States)

    Hachicha, Ahmed Amine

    2016-05-01

    Parabolic trough solar collectors (PTCs) are currently one of the most mature and prominent solar technology for the production of electricity. In order to reduce the electricity cost and improve the overall efficiency, Direct Steam generation (DSG) technology can be used for industrial heat process as well as in the solar fields for electricity production. In the last decades, this technology is experiencing an important development last decades and it is considered as one of the most feasible process for the next generation of power plants using PTCs. A numerical model based on Finite Volume Method (FVM) balance is presented to predict the thermal behavior of a parabolic trough solar collector used for hot water and steam generation. The realistic non-uniform solar flux is calculated in a pre-processing task and inserted to the general model. A numerical-geometrical method based on ray trace and FVM techniques is used to determine the solar flux distribution around the absorber tube with high accuracy.

  6. Investigation of Valve Plate in Water Hydraulic Axial Piston Motor

    Institute of Scientific and Technical Information of China (English)

    聂松林; 李壮云; 等

    2002-01-01

    This paper has introduced the developments of water hydraulic axial piston equipments.According to the effects of physicochemical properties of water on water hydraulic components,a novel valve plate for water hydraulic axial motor has been put forward,whose moment exerted by the fluid field between valve plate and bearing plate is balanced entirely.The material screening experiment of valve plate is done on the test rig.Through numerical simulation the effects of some geometry parameters on the performance of water hydraulic motor have been studied.The silencing grooves on the valve plate in water hydraulic motor can reduce the pressure shock and the occurrence of cavitation effectively.It is evident that the appropriate structure should change the wear status between matching paris and reduces the wear and specific pressure of the matching pairs.The specimen with the new type valve plate is used in a tool system.

  7. A 2-dimensional heat transfer analysis of a sheet-and-tube flat plate PV/thermal collector

    Energy Technology Data Exchange (ETDEWEB)

    Carriere, J.; Harrison, S. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab

    2008-08-15

    Temperature gradients in photovoltaic/thermal (PV/T) systems can have a significant impact on the reliability and life-span of system components. However, many simple PV/T models do not consider temperature gradients. In this study, a detailed heat transfer model was used to quantify temperature gradients within a PV/T panel in order to predict thermal and electrical performance as a function of fluid and atmospheric temperatures. The PV/T system consisted of a PV laminate bonded to a thermal collector. A glass cover was used as a secondary glazing system. The effect of increasing the thermal resistance between the various layers in the construction was evaluated in order to measure the temperature gradient through the absorber thickness. A 2-D finite difference model of heat flow in the collector was conducted in order to study the magnitude of the temperature gradient. Steady-state heat flow was calculated along the width of the system as well as between the layers. Heat flux was calculated to the centre of each element. Total absorptivity in each layer was determined by adding the absorption of each portion of the spectrum. Heat losses through the top of the collector were estimated using a 1-D analysis. The study showed that current methods of calculating fin efficiency are not valid when temperature gradients are not considered. Future studies will examine the effect of thermal expansion and shear stresses. 9 refs., 8 figs.

  8. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  9. Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Tavakolpour, Ali Reza; Zomorodian, Ali [Department of Mechanics of Farm Machinery Engineering, Shiraz University, Shiraz (Iran); Akbar Golneshan, Ali [Department of Mechanical Engineering, Shiraz University, Shiraz (Iran)

    2008-01-15

    In this research, a gamma-type, low-temperature differential (LTD) solar Stirling engine with two cylinders was modeled, constructed and primarily tested. A flat-plate solar collector was employed as an in-built heat source, thus the system design was based on a temperature difference of 80{sup o}C. The principles of thermodynamics as well as Schmidt theory were adapted to use for modeling the engine. To simulate the system some computer programs were written to analyze the models and the optimized parameters of the engine design were determined. The optimized compression ratio was computed to be 12.5 for solar application according to the mean collector temperature of 100{sup o}C and sink temperature of 20{sup o}C. The corresponding theoretical efficiency of the engine for the mentioned designed parameters was calculated to be 0.012 for zero regenerator efficiency. Proposed engine dimensions are as follows: power piston stroke 0.044 m, power piston diameter 0.13 m, displacer stroke 0.055 m and the displacer diameter 0.41 m. Finally, the engine was tested. The results indicated that at mean collector temperature of 110{sup o}C and sink temperature of 25{sup o}C, the engine produced a maximum brake power of 0.27 W at 14 rpm. The mean engine speed was about 30 rpm at solar radiation intensity of 900 W/m{sup 2} and without load. The indicated power was computed to be 1.2 W at 30 rpm. (author)

  10. Application of the Heat Pipe in Flat-Plate Solar Collectors%热管在平板式太阳能集热器中的应用研究

    Institute of Scientific and Technical Information of China (English)

    黄婷婷; 杜娜; 卿湛媛; 陈新; 牛宝联

    2014-01-01

    从集热器结构、传热效率、工艺、优缺点等方面详细介绍了3种常见的热管平板式太阳能集热器,它们包括蜂窝热管平板式、真空玻璃盖板热管平板式、CPC热管平板式太阳能集热器。与普通热管平板式集热器相比,3种改良方式均可降低集热器热损失,有效提高集热效率。通过对不同种类热管平板式太阳能集热器的热管种类、工作温度、结构参数等分析,发现随着温度升高,集热器集热效率下降,以及热管蒸发段长度普遍大于冷凝段长度等现象。%Three common heat pipe flat-plate solar collectors are introduced in details from the con-figuration of the collector such as heat transfer efficiency, crafts, merits, and so on, including the flat plate solar collector of honeycomb and heat pipe(HHCHP), flat plate solar collector of vacuum glass-cover board and heat pipe(HVGHP) and a compound parabolic concentrator heat pipe type solar collector(CPC). Com-pared with common heat pipe flat-plate solar collectors, these three improved programs can reduce heat loss, and effectively improve efficiency of the collector. From the analysis of different heat pipe types, oper-ating temperature, structure parameters, a phenomenon is discovered that whatever which type of heat pipe flat-plate solar collector is, as temperature goes up, the efficiency of the collectors drops and the length of evaporation is longer than the length of condensation.

  11. ANALYSIS AND MODELING OF SOLAR EVAPORATOR-COLLECTOR

    Directory of Open Access Journals (Sweden)

    Zakaria Mohd. Amin

    2015-11-01

    Full Text Available Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector.   At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i water heating, (ii drying and (iii desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.

  12. Thermal performance of integration of solar collectors and building envelopes

    Institute of Scientific and Technical Information of China (English)

    于国清; 龚小辉; 曹双华

    2009-01-01

    The integration of building with solar collector was studied. The theoretical model of integration of building envelopes and flat plate solar collectors was set up and the thermal performance of integration was studied in winter and summer,and compared to envelopes without solar collectors. The results show that the solar collection efficiency is raised in the integration of building envelopes and solar collectors with the air layer doors closed. This is true whether in winter or summer. The increment is higher as the inlet water temperature increases or the ambient temperature is low. In winter,the heat loss is significantly reduced through integration of the building envelopes and solar collectors with the closed air layer doors. The integration with the open air layer door is worse than that without collectors. In summer,the heat gains of the integration of envelopes and solar collectors are more obviously reduced than envelopes without collectors,the integration with the open air layer door is a little better than the closed one,but the difference is very small.

  13. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    Science.gov (United States)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  14. Ferrocene-Boronic Acid-Fructose Binding Based on Dual-Plate Generator-Collector Voltammetry and Square-Wave Voltammetry.

    Science.gov (United States)

    Li, Meng; Xu, Su-Ying; Gross, Andrew J; Hammond, Jules L; Estrela, Pedro; Weber, James; Lacina, Karel; James, Tony D; Marken, Frank

    2015-06-10

    The interaction of ferrocene-boronic acid with fructose is investigated in aqueous 0.1 m phosphate buffer at pH 7, 8 and 9. Two voltammetric methods, based on 1) a dual-plate generator-collector micro-trench electrode (steady state) and 2) a square-wave voltammetry (transient) method, are applied and compared in terms of mechanistic resolution. A combination of experimental data is employed to obtain new insights into the binding rates and the cumulative binding constants for both the reduced ferrocene-boronic acid (pH dependent and weakly binding) and for the oxidised ferrocene-boronic acid (pH independent and strongly binding).

  15. Fin-tube solar collectors

    Science.gov (United States)

    1980-01-01

    Report presents test procedures and results of thermal-performance evaluation of seven commercial fin tube (liquid) solar collector-absorber plates. Tests were conducted indoors at Marshall Space Flight Center Solar simulator. Results are graphically shown along with supporting test data and summary, indicating efficiency as function of collector inlet temperature.

  16. Determination of iron in drinking water after its flotation concentration by two new dithiocarbamate collectors.

    Science.gov (United States)

    Pavlovska, Gorica; Stafilov, Trajče; Čundeva, Katarina

    2015-01-01

    Two new methods for the determination of iron by atomic absorption spectrometry (AAS) are proposed for drinking water. The determination was made after flotation concentration of Fe by using of two new flotation collectors: lead(II) heptyldithiocarbamate, Pb(HpDTC)2 and cobalt(III) heptyldithiocarbamate Co(HpDTC)3. All important parameters for the two proposed procedures were optimised (pH, mass of Pb, mass of Co, amount of HpDTC(-), type of surfactant, induction time, etc.). Flotation recovery (R) of Fe was very high (from 94.4 to 104.4%) for the two proposed procedures. The detection limit of the methods was 2.17 μg L(-1) for Pb(HpDTC)2 and 2.39 μg L(-1) for Co(HpDTC)3, respectively. The proposed methods have been applied for the analysis of five samples of drinking water. The acquired AAS results for Fe by both new methods were compared with those obtained by inductively coupled plasma-atomic emission spectrometry (AES-ICP). It is shown that they are in good agreement. The results are also confirmed by the method of standard additions.

  17. Thermal-hydraulics of PGV-4 water volume during damage of the feedwater collector nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Logvinov, S.A.; Titov, V.F. [OKB Gidropress (Russian Federation); Notaros, U.; Lenkei, I. [NPP Paks (Hungary)

    1995-12-31

    A number of VVER-440 plants has experienced the distributing nozzles of feedwater collector being damaged due to corrosion-erosion wearing. Such phenomenon could result in feedwater redistribution within the SG inventory with undesirable consequences. The collector with damaged nozzles has to be replaced but a certain time is needed for the preparatory works. The main objective of the investigation conducted is to assess if the safe operation of SG is possible before collector replacement. It was shown that the nozzle damage as observed did not result in the dangerous disturbances of thermobydraulics as compared with the conditions existing at the initial period of operation. (orig.).

  18. Study on a Flat Plate Solar Air Collector with Baffles%扰流板型太阳能平板空气集热器集热性能

    Institute of Scientific and Technical Information of China (English)

    夏佰林; 赵东亮; 代彦军; 李勇

    2011-01-01

    对一种扰流板型太阳能平板空气集热器的集热性能进行了研究,并对各种影响集热器热性能的因素进行了分析,揭示了总热损失系数、扰流板肋片效率、流道内空气流速和扰流板的间距对效率因子和热迁移因子的影响机理.获得了扰流板型太阳能平板空气集热器的集热效率理论表达式,为此类太阳能空气集热器的设计及应用提供了参考.%A flat plate solar air collector with baffles was studied. Several factors that have influence on the thermal performance of the solar collectors were analyzed. The paper investigated the relations between the efficiency factor, the heat-removal factor of the solar air collector and the total heat loss coefficient, baffles fin efficiency, air velocity inside the flow channel, the space between baffles, and the height of baffles. Also, the time constant of the collectors was studied. The theoretical formula of the collector's thermal efficiency was obtained, which can be used for design and application of such kind of collectors.

  19. 太阳能集热器容水量对热系统性能影响的研究%THE EFFECTIVENESS OF WATER INERTIA ON THE THERMAL PERFORMANCE OF SOLAR COLLECTOR

    Institute of Scientific and Technical Information of China (English)

    高岩; 陈艳红; 范蕊; 张昕宇; 安玉娇

    2012-01-01

    Different from the traditional model, the thesis developed a new model for solar collector, considering the effect of inertia of water on the thermal performance of solar collector and compares the differences between the traditional models. This paper concludes the effectiveness of inertia of water on the outlet temperature, the control of pump in the solar energy system and the useful energy gain. Compared with the model without water inertia, the effect of water inertia is important; for all-glass evacuated tube collector the effect can be ignored owing to its less water inertia for flat plate collector. Less water inertia leads to more pump run-on time, and more effective energy will be collected.%所建立的太阳集热器动态模型不同于传统模型是因为其考虑了集热器容水量的热容对集热器热特性的影响.研究了该模型与传统模型的区别,分析了不同类型容水量对集热器出水水温、集热系统水泵的启停控制、有效集热量的影响.结果显示:水热容对全玻璃真空管集热器的出水温度影响明显;对于容水量较小的平板式集热器,水热容的影响相对较小;减少容水量会增加水泵开启时间,增加有效集热量.

  20. Analysis of Homogeneous Water Oxidation Catalysis with Collector-Generator Cells.

    Science.gov (United States)

    Sherman, Benjamin D; Sheridan, Matthew V; Wee, Kyung-Ryang; Song, Na; Dares, Christopher J; Fang, Zhen; Tamaki, Yusuke; Nayak, Animesh; Meyer, Thomas J

    2016-01-19

    A collector-generator (C-G) technique has been applied to determine the Faradaic efficiencies for electrocatalytic O2 production by the homogeneous water oxidation catalysts Ru(bda)(isoq)2 (1; bda = 2,2'-bipyridine and isoq = isoquinoline) and [Ru(tpy)(bpz)(OH2)](2+) (2; tpy = 2,2':6',2″-terpyridine and bpz = 2,2'-bipyrazine). This technique uses a custom-fabricated cell consisting of two fluorine-doped tin oxide (FTO) working electrodes separated by 1 mm with the conductive sides facing each other. With a catalyst in solution, water oxidation occurs at one FTO electrode under a sufficient bias to drive O2 formation by the catalyst; the O2 formed then diffuses to the second FTO electrode poised at a potential sufficiently negative to drive O2 reduction. A comparison of the current versus time response at each electrode enables determination of the Faradaic efficiency for O2 production with high concentrations of supporting electrolyte important for avoiding capacitance effects between the electrodes. The C-G technique was applied to electrocatalytic water oxidation by 1 in the presence of the electron-transfer mediator Ru(bpy)3(2+) in both unbuffered aqueous solutions and with the added buffer bases HCO3(-), HPO4(2-), imidazole, 1-methylimidazole, and 4-methoxypyridine. HCO3(-) and HPO4(2-) facilitate water oxidation by atom-proton transfer (APT), which gave Faradaic yields of 100%. With imidazole as the buffer base, coordination to the catalyst inhibited water oxidation. 1-Methylimidazole and 4-methoxypyridine gave O2 yields of 55% and 76%, respectively, with the lower Faradaic efficiencies possibly due to competitive C-H oxidation of the bases. O2 evolution by catalyst 2 was evaluated at pH 12 with 0.1 M PO4(3-) and at pH 7 in a 0.1 M H2PO4(-)/HPO4(2-) buffer. At pH 12, at an applied potential of 0.8 V vs SCE, water oxidation by the Ru(IV)(O)(2+) form of the catalyst gave O2 in 73% yield. In a pH 7 solution, water oxidation at 1.4 V vs SCE, which is dominated

  1. A Stochastic Integer Programming Model for Minimizing Cost in the Use of Rain Water Collectors for Firefighting

    Directory of Open Access Journals (Sweden)

    Luis A. Rivera-Morales

    2014-01-01

    Full Text Available In this paper we propose a stochastic integer programming optimization model to determine the optimal location and number of rain water collectors (RWCs for forest firefighting. The objective is to minimize expected total cost to control forest fires. The model is tested using a real case and several additional realistic scenarios. The impact on the solution of varying the limit on the number of RWCs, the RWC water capacity, the aircraft capacity, the water demands, and the aircraft operating cost is explored. Some observations are that the objective value improves with larger RWCs and with the use of aircraft with greater capacity.

  2. Therminol VP-1导热油平板太阳能集热器的热工性能测试实验%Therminol VP-1 Heat Transfer Fluid Plate Solar Collector Thermal Performance Test

    Institute of Scientific and Technical Information of China (English)

    唐千喻; 王华; 王辉涛; 卿山

    2011-01-01

    Due to the advantages and disadvantages ofstructure of solar collectors, developed a new type of heat transfer fluid plate solar collectors, and test its performance. Measured results, it can achieve the thermal efficiency of 0.45, higher than the conventional flat solar collector Shows that the heat transfer fluid superior performance, have a good prospect.%针对市场上的平板太阳能集热器结构的优缺点,研制了新型的导热油平板太阳能集热器,并测试其性能.实测结果为,热效率能达到0.45,比普通平板集热器高.表明该导热油平板太阳能集热器性能优越,有很好的应用前景.

  3. MATHEMATICAL MODELLING AND PERFORMANCE ANALYSIS OF DIFFERENT SOLAR AIR COLLECTORS

    Directory of Open Access Journals (Sweden)

    M. A. Karim

    2015-11-01

    Full Text Available The purpose of using solar air collectors is to raise the atmospheric air temperature to a temperature which can be used for various low and medium temperature applications. Collector, absorber and airflow arrangement are the most important components in the solar air collector. The performance of the collector depends on its heat loss and the absorber area that is in contact with the airflow. This study involves the theoretical simulation of the effect of mass flow rate on the performance, for flat plate and v-groove collectors that are in single and double pass configurations. Results show that the v-groove double pass air collector has the highest efficiency value of 56% at . The performance is greater than flat plate double pass collector, which has an efficiency of 54% under the same operating conditions. KEYWORDS: solar air collector; flat plate collector (fpc; v-groove collector; efficiency; single pass; double pass

  4. Thermal performance evaluation of the Calmac (liquid) solar collector

    Science.gov (United States)

    Usher, H.

    1978-01-01

    The procedures used and the results obtained during the evaluation test program on the S. N. 1, (liquid) solar collector are presented. The flat plate collector uses water as the working fluid. The absorber plate is aluminum with plastic tubes coated with urethane black. The glazing consists of .040 in fiberglass reinforced polyester. The collector weight is 78.5 pounds with overall external dimensions of approximately 50.3in. x 98.3in. x 3.8in. The following information is given: thermal performance data under simulated conditions, structural behavior under static loading, and the effects of long term exposure to natural weathering. These tests were conducted using the MSFC Solar Simulator.

  5. Cysteine-cystine redox cycling in a gold-gold dual-plate generator-collector microtrench sensor.

    Science.gov (United States)

    Hammond, Jules L; Gross, Andrew J; Estrela, Pedro; Iniesta, Jesus; Green, Stephen J; Winlove, C Peter; Winyard, Paul G; Benjamin, Nigel; Marken, Frank

    2014-07-15

    Thiols and disulfides are ubiquitous and important analytical targets. However, their redox properties, in particular on gold sensor electrodes, are complex and obscured by strong adsorption. Here, a gold-gold dual-plate microtrench dual-electrode sensor with feedback signal amplification is demonstrated to give well-defined (but kinetically limited) steady-state voltammetric current responses for the cysteine-cystine redox cycle in nondegassed aqueous buffer media at pH 7 down to micromolar concentration levels.

  6. Design package for concentrating solar collector panels

    Science.gov (United States)

    1978-01-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.

  7. Experimental Analysis of Serpentine-flow Flat-plate Solar Collector%蛇形管平板式太阳能集热器的试验研究

    Institute of Scientific and Technical Information of China (English)

    李俊贤; 王辉涛; 王华; 包桂蓉

    2011-01-01

    A serpentine-flow flat-plate solar collector of small volume and large temperature difference is designed and developed in order to explore the fiat-plate solar collector used in high temperature situation. And experiment of stagnation and instantaneous efficiency is carried out. The results shown that stagnation temperature can reach 170.2 ℃ and heat loss coefficient is 5. 239 W/( m2 · ℃ ). Efficiency of solar collector between 52% —55% when inlet temperature of working fluid is 70 ℃. By comparison the temperature trend of various parts of the collector the corrective measure is proposed to improve performance of serpentine-flow fiat-plate solar collector in high temperature conditions.%为了探寻一种在中高温场合使用的平板式太阳能集热器,设计和开发了小流量、大温差的蛇形管平板式太阳能集热器,并进行了空晒试验和瞬时效率试验.试验结果表明:集热器的空晒温度可达170.2℃,热损系数为5.239 W/(m2·℃),载热工质进口温度70℃时效率52%-55%.通过对集热器各部分温度变化趋势的比较,提出改进措施,以提高蛇形管平板式集热器在中高温工况下的集热性能.

  8. Experimental study on depth of paraffin wax over floating absorber plate in built-in storage solar water heater

    Directory of Open Access Journals (Sweden)

    R Sivakumar

    2015-11-01

    Full Text Available The aim of this article is to study the effect of depth of phase change material over the absorber surface of an integrated collector-storage type flat plate solar water heater. Flat plate solar water heaters are extensively used all over the world to utilize the natural source of solar energy. In order to utilize the solar energy during off-sunshine hours, it is inevitable to store and retain solar thermal energy as long as possible. Here, phase change material is not used for heat storage, but to minimize losses during day and night time only. The depth of phase change material over a fixed depth of water in a solar thermal collector is an important geometric parameter that influences the maximum temperature rise during peak solar irradiation and hence the losses. From the results of the studies for different masses of paraffin wax phase change material layers, the optimum depth corresponding to the maximum heat gain till evening is found to be 2 mm, and the heat retention till the next day morning is found to be 4 mm.

  9. A flat solar collector built from galvanized steel plate, working by thermosyphonic flow, optimized for Mexican conditions; Un colector solar plano construido de lamina de acero galvanizada, operando por flujo termosifonico, optimizado para las condiciones mexicanas

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin de Jesus, A; Olivares Ramirez, J.M.; Ramos Lopez, G.A.; Pless, R.C. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, Unidad Queretaro (Mexico)]. E-mail: amarroquind@utsjr.edu.mx

    2009-07-15

    Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled types, the other one flat, which are joined by electric welding. The absorber is connected to a 198-L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m{sup 2}, about 20% smaller than comparable copper-tube-based collectors offered in the market. Temperature measurements conducted over a 30-day period gave values which were a few degrees lower than the theoretically calculated water temperatures. Momentary thermal efficiency values between 35% and 77% were observed. The water temperature achieved the tank at the end of the day averages 65 degrees Celsius in winter weather conditions in the central Mexican highland. This design of solar water heater is well suited to Mexican conditions, as it makes use of the high local intensity of the solar radiation, and as the channel shape of the ducts minimizes bursting during the rare occurrences of freezing temperatures in the region; it also has the advantage of being manufacturable at low cost from simple materials. [Spanish] Se describe el diseno, construccion y pruebas del desempeno termico de un colector solar plano para calentamiento de agua para uso domestico. La placa absorbedora se construyo de materiales facilmente asequibles: dos placas de acero galvanizado, una del tipo acanalado y la otra plana, unidas mediante soldadura de acero electrico. La placa absorbedora esta conectada a un termotanque con capacidad de 198 L, aislado con espuma de poliuretano. La superficie receptora de este prototipo es de 1.35 m{sup 2}, aproximadamente 20% mas pequena comparado con los colectores, basados en tubos de cobre, ofertados en el mercado. Mediciones de temperatura por un periodo de 30 dias, arrojaron valores

  10. Experimental anaerobic digestion generator coupled at a plan plates solar collector; Biodigestor experimental acoplado a coletor solar de placas planas

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Tsuneharu [Brasilia Univ., DF (Brazil); Venanzi, D. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia; Medeiros, J.T.N. de [Rio Grande do Norte Univ., Natal, RN (Brazil)

    1987-12-31

    Analysis of results of research in course in solar energy used as heat source to anaerobic degradation in organic matter are presented; water is circulated around the generator to rise and maintain a constant process. (author). 16 refs., 2 figs

  11. Coupled thermal fluid modelling of a low embedded energy solar thermal collector

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, M.; Gibbons, C. [Cork Institute of Technology (Ireland). Energy Engineering Group

    2004-07-01

    A mathematical model was developed for a forced convection solar hot water system. The solar collector in this study incorporates a honeycombed extruded polycarbonate structure, for both the cover and water channels. The initial section of the program predicts solar radiation (hourly, monthly and yearly) as an input section to the solar collector calculations. As well as determining the collector performance, the model also facilitates changes to the collector physical properties such as dimensions of the channels, selective and non-selective absorbers, material thermal properties, as well as ambient temperature and flow rate, in order to optimise the system design. The results from the program will allow a full parametric study of different collector design criteria, with this polycarbonate structure. The results will be compared to a standard flat plate collector design, to see if this polycarbonate flat plate collector is a more effective design. ISO 9806-2 standards are being used to validate the results, for the parametric study in the lab, under steady state conditions. The final optimum design will then be tested outdoors using the quasi-dynamic conditions set out by the European Standard EN 12975-2. Weather data, obtained from the weather station set up at CIT, will be used as the input for the weather conditions for out door testing. (orig.)

  12. Design and testing of large fog collectors for water harvesting in Asir region, Kingdom of Saudi Arabia

    Science.gov (United States)

    Abualhamayel, H. I.; Gandhidasan, P.

    2010-07-01

    The region of Asir is located in the southwestern part of the Kingdom of Saudi Arabia between longitudes 41 - 45 E and latitudes 17 - 21 N. Known for its natural beauty and cool climate delight the visitors and the region has become a destination for tourists. One of the main problems in the Asir region is the high demand for water during tourism seasons especially in view of the rapidly growing tourism sector. Flourishing tourism in the region is challenged by the scarcity of water resources and there is urgent need to identify alternative sources of potable water. It is found that fog water collection is a viable resource and Asir region is the most suitable location for fog water harvesting. An operational fog water collection project was initiated in 2007 to provide fresh water supply. Al-Sooda, situated at an altitude of about 3,000 m, was identified as the most suitable experimental site and two large fog collectors measuring 20 m by 2 m each were erected in 2009. The distance between the two sites is about 2 km. This paper gives the methods used to select the experimental site and the design of the large fog collection system. The fog collectors are flat rectangular nets supported by a post at both ends and arranged perpendicular to the direction of the prevailing wind. The collection surface, comprising two layers of black polypropylene mesh net, is fastened laterally to the posts with a set of fastening bars. The aluminum trough located below the mesh net catches the water that runs down the net and carries it to a pipe connected to the storage tank. Because the fog collectors are long and require space for guy wires for the posts, the basic site consideration is that at least 25 m of horizontal land available for the erection. Meteorological instruments and the portable weather station are used to measure the climatic data which are recorded three times a day, namely at 7:00, 14:00 and 19:00 h. On average, yields of about 5 to 6 L/m2 per day are collected

  13. Investigation on Installation height of Storage Tank for Natural Circulation Flat Plate Solar Collector%自然循环平板式太阳能热水器水箱放置高度的研究

    Institute of Scientific and Technical Information of China (English)

    郑土逢; 李明; 魏生贤; 罗熙; 王炳灿

    2011-01-01

    The device of natural circulation flat plate solar water heater has been built.In accordance with the national testing standard methods, the efficiency of the system was tested.The transient model of NFSWH has been developed by using the TRNSYS simulation program.The effect of installation height between the bottom of the tank and the outlet of the collector on efficiency of the solar collector has been investigated both theoretically and experimentally.The data show the theoretical results are highly consistent with the experimental ones.Results indicate that the optimum value of installation height is 0.74m with the maximum efficiency of 67.5% for the system with a total area of 1.5m2 and a storage water tank capacity of 120L.When the installation height is between 0.44 and 1.04 m, the change of thermal efficiency of the solar system is at a range of 3%.%搭建了自然循环平板式太阳能热水器(NFSWH)的实验平台,根据太阳能热水器国家测试标准方法对系统的热效率进行测试.用TRNSYS软件建立了NFSWH的瞬态模型.模拟和实际测量了水箱放置高度对热水器热效率的影响.结果显示,实验与模拟吻合较好.对于集热面积为1.5m2水箱容积为120L的系统,水箱底到集热器出口的高度(Hr)为0.74m时,系统的热效率最大(67.7%).放置高度为0.44-1.04m时,系统集热效率变化不大,在3%以内.

  14. Short-Term Solar Collector Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt

    2011-01-01

    This paper describes a new approach to online forecasting of power output from solar thermal collectors. The method is suited for online forecasting in many applications and in this paper it is applied to predict hourly values of power from a standard single glazed large area flat plate collector....... The method is applied for horizons of up to 42 hours. Solar heating systems naturally come with a hot water tank, which can be utilized for energy storage also for other energy sources. Thereby such systems can become an important part of energy systems with a large share of uncontrollable energy sources......, such as wind power. In such a scenario online forecasting is a vital tool for optimal control and utilization of solar heating systems. The method is a two-step scheme, where first a non-linear model is applied to transform the solar power into a stationary process, which then is forecasted with robust time...

  15. Desiccant cooling using unglazed transpired solar collectors

    Science.gov (United States)

    Pesaran, A. A.; Wipke, K.

    1992-05-01

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69 percent more than that required for the glazed collector, the cost of the unglazed collector array was 44 percent less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration.

  16. Water wave scattering by an elastic thin vertical plate submerged in finite depth water

    Science.gov (United States)

    Chakraborty, Rumpa; Mandal, B. N.

    2013-12-01

    The problem of water wave scattering by a thin vertical elastic plate submerged in uniform finite depth water is investigated here. The boundary condition on the elastic plate is derived from the Bernoulli-Euler equation of motion satisfied by the plate. Using the Green's function technique, from this boundary condition, the normal velocity of the plate is expressed in terms of the difference between the velocity potentials (unknown) across the plate. The two ends of the plate are either clamped or free. The reflection and transmission coefficients are obtained in terms of the integrals' involving combinations of the unknown velocity potential on the two sides of the plate, which satisfy three simultaneous integral equations and are solved numerically. These coefficients are computed numerically for various values of different parameters and depicted graphically against the wave number in a number of figures.

  17. Effects of Key Parameters on Thermal Performance of Solar Flat-Plate Collector%太阳能平板集热器关键参数对其热性能的影响

    Institute of Scientific and Technical Information of China (English)

    车永毅; 厚彩琴

    2016-01-01

    为了提升太阳能在建筑能源供给体系中的比重,形式多样的太阳能集热设备及其系统在建筑领域得到了广泛应用。基于机理分析法,建立了具有单层玻璃盖板的管板式太阳能平板集热器的稳态传热模型。并且针对集热管间距、集热管内径、工质入口温度和工质质量流量等关键参数对集热器集热效率的影响特性进行了数值模拟与分析。结果表明,建立的该稳态传热模型是可行的;此外,在其余参数值保持不变的情况下,减小集热管间距或增加集热管内径均可使集热器瞬时效率增大;增大工质入口温度会导致集热器瞬时效率下降;而增大工质质量流量会提升集热器瞬时效率。这些结论对于太阳能平板集热器在太阳能建筑一体化的实际应用中,具有一定的参考作用。%In order to improve the proportion of solar energy in building energy supply system, various forms of solar heat collection equipment and systems in the construction field has been widely used. Based on the mechanism analysis method, one steady-state heat transfer model of the single glass cover flat-plate collector is built. The numerical simulation and analysis of the effect of the key parameters including col-lector tube spacing, collector tube diameter, and inlet temperature and inlet mass flow rate of the working fluid on heat collection efficiency of the collector is carried out. The results show that the steady-state heat transfer model is feasible;and in the case of the same parameters, either reducing the collector tube spacing or increasing the collector tube diameter can increase the instantaneous efficiency of the collector; the instantaneous efficiency of the collector decline with the increase of inlet temperature of the working fluid. However, increasing the mass flow rate at the entrance can improve the instantaneous efficiency of the collector. These conclusions have a certain

  18. Performance Simulation of Microchannel Collector/Evaporator for Solar Heat Pump Water Heater%太阳能热泵热水系统微细通道集热板/蒸发器性能模拟

    Institute of Scientific and Technical Information of China (English)

    周伟; 张小松

    2016-01-01

    本文提出了一种采用微细通道的平板式集热板/蒸发器,它可以从太阳和环境空气二方面获取热量。其主要特点是采用树形分支模型,由两块铝板冷轧吹胀而成,减小了接触热阻,提高了集热板的换热系数。本文建立了该集热板/蒸发器的数学模型并进行了热性能分析,深入研究了不同环境工况条件下该热泵热水系统的性能,包括系统性能系数(COP)、集热板集热效率、加热时间等运行参数的变化特性。结果显示,将150 L水从15 oC加热到50 oC时,系统全年各月的平均COP为4.76,平均加热时间为314 min,环境温度的升高和太阳辐射强度的降低会使集热效率显著增加。%In this paper a new flat-plate collector/evaporator was presented by using microchannel to gain heat from both solar radiation and ambient air. Its main characteristic was using the model of tree branch. The collector/evaporator was made of two pieces of aluminium plates by using the method of cold-rolled huff, which could reduce the contact thermal resistance and improve the heat transfer efficiency of the collector. A simulation model of the collector/evaporator was developed and its thermal performance was analyzed. The performances of heat pump hot water system were evaluated experimentally under different ambients, including heat pump coefficient of performance (COP), heat collecting efficiency and heating time of hot water, etc. The results showed that heating 150 L water with the heat pump from 15 oC to 50 oC, the COP of the whole year was 4.76, and the heating time was 314 min all year around. Meanwhile the heat collecting efficiency increased evidently with the ambient temperature increasing and solar radiation intensity decreasing.

  19. Reduction of water consumption in dust collectors; Verminderung des Wasserverbrauchs bei der Entstaubung

    Energy Technology Data Exchange (ETDEWEB)

    Dylag, M.; Krawczyk, J.; Rosinski, J. [Politechnika Krakowska, Cracow (Poland). Inst. fuer Apparatebau und Energietechnik

    1998-01-01

    In the paper a method of establishing a maximum recirculation factor for the washing fluid in wet dust collectors has been worked out. The method is based on measurements of the dust content in the slurry. A critical concentration of dust is defined as the one, at which the slurry is changing its rheological properties from Newtonian to non-Newtonian. This concentration value must not be exceeded in order to maintain a constant collection efficiency. Based on this critical dust concentration a maximum recirculation factor may be established for this type of dust collectors. (orig.) [Deutsch] Eine Methode zur Bestimmung des maximalen Grenzwertes der Stoffkonzentration von Zirkulationsfluessigkeit in Nassabscheidern wird vorgestellt. Die Methode basiert auf der Bestimmung der Staubkonzentration in der Fluessigkeit, nach deren Ueberschreitung die Suspension ihre Newtonschen Eigenschaften verliert. Die Konzentration entspricht der maximalen Stoffkonzentration (Feststoffe) in der abscheidenden Fluessigkeit, die nicht ueberschritten werden darf, wenn ein stabiler Wert des Abscheidegrades beibehalten werden soll. Aufgrund eines bestimmten Wertes der Grenzkonzentration kann der maximale Grenzwert fuer die Stoffkonzentration in der Zirkulationsfluessigkeit in den Nassabscheidern bestimmt werden. (orig.)

  20. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    , as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat......-plate collectors. For solar heating plants, the yearly energy output from these evacuated tubular collectors is about 40%-90% higher than the output from typical flat-plate collectors at an operation temperature of about 50°C.......Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...

  1. Indoor thermal performance evaluation of Daystar solar collector

    Science.gov (United States)

    Shih, K., Sr.

    1977-01-01

    The test procedures used and results obtained from a test program to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions are described. The test article is a flat plate solar collector using liquid as a heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The following tests were conducted: (1) collector thermal efficiency; (2) collector time constant; (3) collector incident angle modifier; (4) collector heat loss coefficient; and (5) collector stagnation.

  2. OUT Success Stories: Solar Hot Water Technology

    Science.gov (United States)

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  3. Pure and aerated water entry of a flat plate

    Science.gov (United States)

    Ma, Z. H.; Causon, D. M.; Qian, L.; Mingham, C. G.; Mai, T.; Greaves, D.; Raby, A.

    2016-01-01

    This paper presents an experimental and numerical investigation of the entry of a rigid square flat plate into pure and aerated water. Attention is focused on the measurement and calculation of the slamming loads on the plate. The experimental study was carried out in the ocean basin at Plymouth University's COAST laboratory. The present numerical approach extends a two-dimensional hydro-code to compute three-dimensional hydrodynamic impact problems. The impact loads on the structure computed by the numerical model compare well with laboratory measurements. It is revealed that the impact loading consists of distinctive features including (1) shock loading with a high pressure peak, (2) fluid expansion loading associated with very low sub-atmospheric pressure close to the saturated vapour pressure, and (3) less severe secondary reloading with super-atmospheric pressure. It is also disclosed that aeration introduced into water can effectively reduce local pressures and total forces on the flat plate. The peak impact loading on the plate can be reduced by half or even more with 1.6% aeration in water. At the same time, the lifespan of shock loading is prolonged by aeration, and the variation of impulse is less sensitive to the change of aeration than the peak loading.

  4. Thermal performance evaluation of the Suncatcher SH-11 (liquid) solar collector

    Science.gov (United States)

    1980-01-01

    The procedures used and the results obtained during the evaluation test program on the Solar Unlimited, Inc., Suncatcher SH-11 (liquid) solar collector are presented. The flat-plate collector case assembly is made of .08 inch aluminum 3003 H14 riveted with fiberglass board insulation. The absorber consists of collared aluminum fins mechanically bonded to 3/8 inch copper tubing and coated with 3M Nextel black. Water is used as the working fluid. The glazing is made of a single glass, 1/8 inch water white, tempered and antireflective. The collector weight is 85 pounds with overall external dimensions of about 35.4 in x 82.0 in x 4.0 in. Thermal performance data on the Solar Unlimited Suncatcher SH-11 solar collector under simulated conditions were conducted using the MSFC Solar Simulator.

  5. Modelling of Microclimate in collectors

    DEFF Research Database (Denmark)

    Holck, Ole

    1996-01-01

    Abstract It is important to avoid condensation in solar collectors, most of all because wetness of the absorber can damage the selective surface and cause corrosion on the absorber plate. During night time the cover of collectors will cool below ambient temperature due to thermal radiation...... to the cold sky. In climates where the air during night time becomes saturated with humidity (the relative humidity is 100%), condensation will form on the outside and inside of the collector glazing. If too much condensation takes place on the inside of the glazing, it will start to fall off...... on to the absorber surface. It is important to characterize microclimatic conditions in the collector, and at the Department of Buildings and Energy work is carried out with the improvement of a computer model. As a tool the computer model will be useful in developing guidelines to achieve the most favourable...

  6. Hollow microsphere with mesoporous shell by Pickering emulsion polymerization as a potential colloidal collector for organic contaminants in water.

    Science.gov (United States)

    Guan, Yinyan; Meng, Xiaohui; Qiu, Dong

    2014-04-08

    Submicrometer hollow microspheres with mesoporous shells were prepared by a simple one-pot strategy. Colloidal silica particles were used as a particle stabilizer to emulsify the oil phase, which was composed of a polymerizable silicon monomer (TPM) and an inert organic solvent (PEA). The low interfacial tension between colloidal silica particles and TPM helped to form a Pickering emulsion with small droplet sizes. After the polymerization of TPM, the more hydrophobic PEA formed a liquid core, leading to a hollow structure after its removal by evaporation. BET results indicated that the shell of a hollow particle was mesoporous with a specific surface area over 400 m(2)·g(-1). With PEA as the core and silica as the shell, each resultant hollow particle had a hydrophobic cavity and an amphiphilic surface, thus serving as a good colloidal collector for hydrophobic contaminants in water.

  7. Profitability Variations of a Solar System with an Evacuated Tube Collector According to Schedules and Frequency of Hot Water Demand

    Directory of Open Access Journals (Sweden)

    Carlos J. Porras-Prieto

    2016-12-01

    Full Text Available The use of solar water heating systems with evacuated tube collectors has been experiencing a rapid growth in recent years. Times when there is demand for hot water, the days of use and the volumes demanded may determine the profitability of these systems, even within the same city. Therefore, this paper characterizes the behavior of a solar system with active circulation with the objective of determining the profitability variations according to the timing and schedule of demand. Through a simplified methodology based on regression equations, calculated for each hour of the day based on data from an experimental facility, the useful energy is estimated from the time and frequency of the demand for hot water at 60 °C. The analysis of the potential profitability of the system in more than 1000 scenarios analyzed shows huge differences depending on the number of days when the water is demanded, the time when demand occurs, the irradiation and the average price of energy. In cities with high irradiation and high energy prices, the system could be profitable even in homes where it is used only on weekends. The study of profitability in a building of 10 homes shows that by applying an average European household’s profile for hot water demand, levels close to full potential would be reached; for this, it is necessary to optimize the collection surface.

  8. The multiple layer solar collector

    Science.gov (United States)

    Kenna, J. P.

    1983-01-01

    An analytical model is developed for obtaining numerical solutions for differential equations describing the performance of separate layers in a multiple layer solar collector. The configurations comprises heat transfer fluid entering at the top of the collector and travelling down through several layers. A black absorber plate prevents reemission of thermal radiation. The overall performance is shown to depend on the number of layers, the heat transfer coefficient across each layer, and the absorption properties of the working fluid. It is found that the multiple layer system has a performance inferior to that of flat plate selective surface collectors. Air gaps insulating adjacent layers do not raise the efficiency enough to overcome the relative deficiency.

  9. 平板太阳能集热器热性能数学建模及模拟%Mathematical Modeling and Simulation of Thermal Properties of Flat-Plate Solar Collector

    Institute of Scientific and Technical Information of China (English)

    卢郁; 于洪文; 丁海成; 张艳丽; 刘宗明

    2013-01-01

    以平板太阳能集热器作为研究对象,通过对平板太阳能集热器热性能进行理论推导,引入效率因子,构建更为准确、便捷的平板集热器的数学模型,进行计算机程序模拟.根据模拟数据得出吸热体板芯几何结构、板芯用材对平板太阳能集热器性能的影响.在不降低集热器效率因子的情况下,使翅片的单位面积质量降低45.8%;在材料消耗相同的情况下,集热器效率因子提高了0.03.%Taking a flat-plate solar collector as research object and introducing an efficiency factor, we establish a mathematical model for the collector after theoretically deriving out the thermal properties of it, and numerically simulate it according to this model. Simulation results show that the mass per unit area of the collector drops 45. 8% with the same efficiency factor and the efficiency factor increasesby 0.03 with the same material consumption.

  10. Solar thermal collectors using planar reflector

    Science.gov (United States)

    Espy, P. N.

    1978-01-01

    Specular reflectors have been used successfully with flat-plate collectors to achieve exceptionally high operating temperatures and high delivered energy per unit collector area. Optimal orientation of collectors and reflectors can result in even higher performance with an improved relationship between energy demand and supply. This paper reports on a study providing first order optimization of collector-reflector arrays in which single- and multiple-faceted reflectors in fixed or singly adjustable configurations provide delivered energy maxima in either summer or winter.

  11. MINICHANNEL-TUBE SOLAR THERMAL COLLECTORS FOR LOW TO MEDIUM TEMPERATURE APPLICATIONS

    OpenAIRE

    Duong, Thuc

    2015-01-01

    Novel minichannel-tube solar thermal collectors for low to medium temperature applications are introduced. Two types of minichannel solar thermal collectors are analyzed experimentally: aluminum minichannel solar collector for low temperature applications, and copper minichannel solar collector for low to medium temperature applications.The aluminum minichannel solar collector has been tested for over a year alongside a conventional copper flat-plate solar collector of similar dimensions as t...

  12. Standardized performance tests of collectors of solar thermal energy: A selectively coated, steel collector with one transparent cover

    Science.gov (United States)

    1976-01-01

    Basic test results are presented of a flat-plate solar collector whose performance was determined in solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency was correlated in terms of inlet temperature and flux level.

  13. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  14. Experiments and simulations on a thermosyphon solar collector with integrated storage

    Science.gov (United States)

    Toninelli, P.; Mariani, A.; Del, D., Col

    2015-11-01

    This paper deals with the thermal behaviour of a new type of flat solar collector that integrates the fluid storage tank. Often the main limitation of the solar thermosyphon installations is the prohibition to adopt external storage tanks due to their impact, especially for historical centres of particular architectural significance. To avoid this issue, a new system, that includes the collector and the storage, has been developed. This new apparatus works as a thermosyphon: it is possible to take advantage of the natural convection to avoid using a pump. Experimental tests have been conducted in such a collector with and without the absorbing plate. Furthermore, CFD simulations are reported to analyze in detail the dynamic thermal performance of the innovative solar collector and a good-agreement with the experimental tests has been found. Finally, both in numerical simulations and in experimental data the thermosyphon effect has been verified, obtaining the desired water temperature for domestic applications.

  15. Validation of a simple dynamic thermal performance characterization model based on the piston flow concept for flat-plate solar collectors

    DEFF Research Database (Denmark)

    Deng, Jie; Yang, Ming; Ma, Rongjiang

    2016-01-01

    dynamic model based on the first-order difference method is compared to that of the numerical solution of the collector ordinary differential equation (ODE) model using the fourth-order Runge-Kutta method. The improved thermal inertia model (TIM) on the basis of closed-form solution presented by Deng et...

  16. Study On the Performance of Solar Air Collectors with Cross V-Shaped Absorbing Plate and V-Shaped Bottom Plate%交叉V形吸热板V形底板空气集热器性能特性研究

    Institute of Scientific and Technical Information of China (English)

    闫崇强; 李明; 季旭; 罗熙

    2013-01-01

    以两种不同的交叉V形吸热板V形底板空气集热器(垂直型集热器:V形吸热板的方向与流道方向垂直,V形底板的方向与流道方向平行;平行型集热器:V形吸热板的方向与流道方向平行,V形底板的方向与流道方向垂直)为研究对象,对不同倾角、不同空气流速下两种空气集热器的性能进行了比较实验研究,同时对正向和反向通气时垂直型空气集热器的性能进行了测试分析.结果表明:垂直型空气集热器的性能优于平行型空气集热器,45°倾角时两台集热器的温升最高;垂直型和平行型空气集热器的最大效率分别为71%,68%;垂直型空气集热器反向流动时比正向流动时性能更好.%Two different types of solar air collectors with cross V-shaped absorbing plate and V-shaped bottom plate (for the vertical type collector,the direction of the V-shaped bottom plate is parallel to the flow direction while the direction of the V-shaped absorbing plate is perpendicular to it; for the parallel type collector,the direction of the V-shaped absorbing plate is parallel to the flow direction while the direction of the V-shaped bottom plate is perpendicular to it) are used as the research object in this paper,and their performances are studied and compared under different dip angle and different air flow velocity; meanwhile,the performance of the vertical type air collector is tested and analysed under forward and reverse entilation.The results show that the performance of the vertical type air collector is better than that of the parallel type air collector,and the rise of temperature of both collectors is the highest with an angle of 45°.The maximum efficiency of the vertical and the parallel type is 71% and 68%,respectively.With a reverse flow,the performance of the vertical type air collector is better than with a forward flow.

  17. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator.

    Science.gov (United States)

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-12-04

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors' tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid's temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  18. Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water

    Science.gov (United States)

    Li, Hua; Fujigaya, Tsuyohiko; Nakajima, Hironori; Inada, Akiko; Ito, Kohei

    2016-11-01

    This study attempts to optimize the properties of the anode current collector of a polymer electrolyte membrane water electrolyzer at high temperatures, particularly at the boiling point of water. Different titanium meshes (4 commercial ones and 4 modified ones) with various properties are experimentally examined by operating a cell with each mesh under different conditions. The average pore diameter, thickness, and contact angle of the anode current collector are controlled in the ranges of 10-35 μm, 0.2-0.3 mm, and 0-120°, respectively. These results showed that increasing the temperature from the conventional temperature of 80 °C to the boiling point could reduce both the open circuit voltage and the overvoltages to a large extent without notable dehydration of the membrane. These results also showed that decreasing the contact angle and the thickness suppresses the electrolysis overvoltage largely by decreasing the concentration overvoltage. The effect of the average pore diameter was not evident until the temperature reached the boiling point. Using operating conditions of 100 °C and 2 A/cm2, the electrolysis voltage is minimized to 1.69 V with a hydrophilic titanium mesh with an average pore diameter of 21 μm and a thickness of 0.2 mm.

  19. 一种新型双效太阳能平板集热器的光热性能研究%STUDY OF THERMAL PERFORMANCE OF A NOVEL DUAL-FUNCTION FLAT PLATE SOLAR COLLECTOR

    Institute of Scientific and Technical Information of China (English)

    季杰; 马进伟; 孙炜; 张杨; 范雯; 何伟; 张爱凤

    2011-01-01

    A novel flat-plane solar collector with L-shaped fins was proposed in this paper, which worked as air heater or water heater according to the season and applications. Experimental investigation was carried out to study the performance of the collector under different operating conditions. The experimental results indicate that the thermal efficiency reaches 40% as air heater that is higher than conventional flat plane air heater, the thermal efficiency of the collector is 49.7% as water heater. Therefore the novel collector can be applied as both air heater and water heater with high efficiency.%提出一种新型太阳能平板集热器,可实现加热空气与加热水两种工作模式,并设计了一种新型的“L”型翅片结构将两种功能有效结合.对这种新型集热器的不同工况分别进行了实验测试,得到两种工作状态下的太阳能光热转换效率.实验表明,空气集热日平均光热转换效率可达到40%以上,高于传统的空气集热器;水集热的效率达到49.7%.两种集热功能均能以高效率实现.

  20. A self-tractable solar collector

    Science.gov (United States)

    Abdulhadi, M.; Ghorayeb, F.

    2006-06-01

    An analytical experimental investigation into the thermal performance of a tubeless hemispherical (a spherical cap) solar collector for use in heating and cooling purposes is presented. The receiver plate surface temperature was estimated at the prevailing steady-state conditions from the energy balance equation on the absorber plate. From the experimental analytical investigation, the present collector was found to be much more efficient than a flat-plate collector. Fluid outlet temperatures over 95°C could be provided on mid clear shining sunny days. Remembering the easiness of building a complex of such a collector, it follows that plenty of residential and industrial implementations, mostly in heating and cooling refrigeration absorption cycles, could be undertaken.

  1. Aid To Solar Collector Development

    Science.gov (United States)

    1979-01-01

    Solar heating and cooling systems employ coatings to increase efficiency. Designers want a coating which absorbs solar heat to the maximum extent possible with minimal emittance of infrared radiation, which occurs when the collector plate gets hot. The coating is important because too much coating causes energy loss by emittance, too little reduces the collector's ability to absorb heat. NASA's Lewis Research Center, which conducts solar energy research, saw a need for a simple means of testing coating samples for emittance. Such equipment is available to research laboratories, but it is complex and expensive

  2. Evaluation of high performance evacuated tubular collectors in a residential heating and cooling system: Colorado State University Solar House I. Report for October 1, 1976--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Duff, W.S.; Conway, T.M.; Loef, G.O.G.; Meredith, D.B.; Pratt, R.B.

    1978-03-01

    CSU Solar House I is configured with a prototype Corning evacuated tubular collector and a new Arkla lithium bromide water chiller designed for solar operation. Data have been collected for this configuration since January 1977. Prior to that time and since mid-1974, Solar House I has operated with a flat-plate collector and a previous Arkla LiBr air conditioner modified to operate in the lower solar temperature ranges. Project objectives were to develop an operating and control system for the new configuration and to compare the performance of the new residential solar heating, cooling, and hot water system with performance of the previous system. Many problems were encountered in the evolution of the operating and control systems due to the different operating characteristics of evacuated tubular collectors, such as their rapid thermal response and the possibility of much higher temperatures as compared to a flat-plate collector.

  3. 平板式热管太阳能空气集热器热性能研究%Experimental Investigation on Thermal Performance of Flat Plate Heat Pipe Solar Air Collector

    Institute of Scientific and Technical Information of China (English)

    李世平; 向开根; 李雯; 罗会龙; 王霜

    2015-01-01

    Heat pipe has many advantages, such as higher heat transfer coefficient, lower transfer temperature-difference and a one-way heat transfer. A new flat plate heat pipe solar air collector was designed and built based on a reasonable construction. The test results indicated that the instantaneous efficiency of collector is 15.3%~74.5% under the climatic conditions of daily solar radiation being about 14.4 to19.8MJ/m2·day. Its daily average thermal efficiency is about 32.6%~53.5%with heat loss coefficient being 3.6~8.4W/(m2·K). The maximum outlet air temperature can reach 79.1℃. Compared with conventional air collectors, the new flat plate heat pipe solar air collector has higher thermal efficiency and outlet air.%热管具有传热系数高、传热温差小及单向传热等诸多优良特性。以热管为集热部件,试制了一种平板式热管太阳能空气集热器。测试结果表明,在日总太阳辐射为14.4MJ/m2~19.8MJ/m2的气候条件下,平板式热管太阳能空气集热器的瞬时集热效率在15.3%~74.5%之间,集热器出口空气温度可达79.1℃,其日平均集热效率约为32.6%~53.5%,其热损失系数约为3.6~8.4W/(m2·K)。与常规的太阳能空气集热器相比,平板式热管太阳能空气集热器具有较高的集热效率和较低的热损失系数,并且供热温度较高。

  4. Method of forming oxide coatings. [for solar collector heating panels

    Science.gov (United States)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  5. The use of collector efficiency test results in long term performance calculations. Revisions and clarifications in view of proper collector characterization and inter comparison

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Maria Joao; Horta, Pedro; Mendes, Joao Farinha [INETI - Inst. Nacional de Engenharia Tecnologia e Inovacao, IP, Lisboa (Portugal); Collares Pereira, Manuel; Carbajal, Wildor Maldonado [AO SOL, Energias Renovaveis, S.A., Samora Correia (Portugal)

    2008-07-01

    There are a growing number of solar thermal collector types: flat plates, evacuated tubes with and without backing reflectors and different tubular spacing, low concentration collectors, using different types of concentrating optics. These different concepts and designs all compete to be more efficient or simply cheaper, easier to operate, etc. at ever higher temperatures, and even to extend the use of solar thermal energy in other applications beyond the most common water heating for domestic purposes. This means that there is a growing need for the existing and future simulation tools to be as accurate as possible in the treatment of these different collector types, to allow for the proper dimensioning of solar thermal systems as well as the proper comparison of different collector technologies for a given application. This paper develops a systematic approach to the problem of the proper handling of solar radiation available to each collector type. The proposed methodology subdivides radiation in its different components, folding that with the information available from efficiency curve tests (steady state) for each collector type and the way the optics of each particular case transforms and uses the incident solar radiation. The suggestions made will hopefully be taken at the level of the testing standards themselves, rendering them more complete and general. (orig.)

  6. COSTEAU - preheating and cooling by means of underground collectors with water circulation - case study (Perret building at Satigny, Geneva) and generalisation; COSTEAU. Prechauffage et rafraichissement par collecteurs souterrains a eau. Etude de cas (batiment Perret a Satigny, Geneve) et generalisation

    Energy Technology Data Exchange (ETDEWEB)

    Hollmuller, P.; Lachal, B.

    2003-07-01

    Since a couple of years, underground collectors with air circulation have been becoming increasingly popular as a simple means for preheating (at winter time) and cooling (at summer time) of outdoor air ahead of a ventilation system for well insulated buildings. This report considers underground collectors with water circulation used for similar purposes. They are connected to the ventilation system via an air/water heat exchanger. Starting from a case study - one-year detailed in-situ measurements and data analysis from an air-heated office building near Geneva, Switzerland - computerised simulations have been performed as a sensitivity analysis tool as well as to establish recommendations and sizing rules for planners, including cost considerations. In the case study it turned out that the water-circulated underground collector, which is installed right under the basement of this well insulated building, is in thermal contact with the basement. Its main function is to damp the daily temperature oscillation of the inlet ventilation air, bringing the expected thermal comfort improvement in the summer time. However, this underground collector is unable to collect seasonally stored heat from the ground. Hence, in the winter time the main preheating contribution arises from the series-connected heat-recovery unit from the exit air. Numerical simulations show that optimal sizing of underground collectors is essential, and that both the underground collector and the well insulated building as a physical system with thermal inertia have to be simultaneously considered in the optimization process. Optimization also has to include parasitic energy (electricity) needed by fans and pumps. As outdoor air inlet can never be flooded in the case of underground collectors with water circulation the sanitary risk encountered with air-circulated underground collectors does not exist for them. Initial investment cost for water-circulated underground collectors is higher than for a

  7. Irreversibility analysis of non isothermal flat plate solar collectors for air heating with a dimensionless model; Analisis de las irreversibilidades en colectores solares de placas planas no isotermicos para calentamiento de aire utilizando un modelo adimensional

    Energy Technology Data Exchange (ETDEWEB)

    Bracamonte-Baran, Johane Hans; Baritto-Loreto, Miguel Leonardo [Universidad Central de Venezuela (Venezuela)]. E-mails: johanehb@gmail.com; johane.bracamonte@ucv.ve; miguel.baritto@ucv.ve

    2013-04-15

    The dimensionless model developed and validated by Baritto and Bracamonte (2012) for the thermal behavior of flat plate solar collector without glass cover is improved by adding the entropy balance equation in a dimensionless form. The model is solved for a wide range of aspect ratios and mass flow numbers. A parametric study is developed and the distribution of internal irreversibilities along the collector is analyzed. The influence of the design parameters on the entropy generation by fluid friction and heat transfer is analyzed and it is found that for certain combinations of these parameters optimal thermodynamic operation can be achieved. [Spanish] En el presente trabajo, el modelo adimensional desarrollado y validado por Baritto y Bracamonte (2012) para describir el comportamiento termico de colectores solares de placas planas sin cubierta transparente, se complementa con la ecuacion adimensional de balance de entropia para un elemento diferencial de colector solar. El modelo se resuelve para un amplio rango de valores de relaciones de aspecto y numero de flujo de masa. A partir de los resultados del modelo se desarrolla un analisis detallado de la influencia de estos parametros sobre la distribucion de irreversibilidades internas a lo largo del colector. Adicionalmente se estudia la influencia de estos parametros sobre los numeros de generacion de entropia por friccion viscosa, por transferencia de calor y total. Se encuentra que existen combinaciones de los parametros antes mencionados, para los cuales, la operacion del colector es termodinamicamente optima para numeros de flujo de masa elevados.

  8. General solution of collector performance with axial conduction and end effects

    Science.gov (United States)

    Shouman, A. R.; Tag, I. A.

    The Phillips solution of the flat-plate solar collector is extended and utilized to examine the influence of the end losses on collector performance. The results of this study show that the influence of the end temperatures of the absorber plate is more significant than the losses due to the axial conductivity of an insulated end collector plate. It will be shown that for an insulated end collector, the loss in the heat removal factor due to axial conductivity is negligible in the region of interest for flat-plate collectors. However, the end temperatures of the collector plate have more significant influence on the same factor, showing losses in some regions and improvements in other regions. This study emphasizes the necessity of measuring the temperature of the absorber plate at both the fluid inlet and exit locations in order to determine accurately the collector performance parameters.

  9. Recommendations for European solar collector test methods (Liquid heating collectors)

    Science.gov (United States)

    Derrick, A.; Gillett, W. B.

    Standardized testing formats, equipment, conditions, and tests defined as part of the solar flat plate collector testing program performed by the Commission of the European Communities are detailed. The work is a product of efforts at 20 laboratories, and alternative methods have been characterized for tailoring tests to particular locations and climatic conditions. The testing methods are intended for collectors using a liquid as the heat transfer medium. Procedures have been defined for examining steady state and transient performance, heat loss, thermal capacity, pressure drop, and anemometry. Instrumentation types and accuracies have been defined, and a standardized format for presentation of results has been developed. The tests are tailored for determining the durability of the flat plate systems under simulated solar radiation conditions.

  10. To the Problem of Designing Water Heating Solar Systems with Flat Collectors for Individual Dwellings

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2011-01-01

    Full Text Available The variant of efficient combination of two renewable energy sources as a biogas system and a water heating solar system has been considered for power supply of individual dwellings. Criteria dependence has been suggested for determination of solar system power efficiency. Its legitimacy has been proved by an experiment. Power efficient solar system has been proposed with peculiar features of its designing and due account of energy flow distribution in technology of biogas production.

  11. Simple, economical solar collector

    Science.gov (United States)

    Anthony, K.

    1979-01-01

    Hot air solar collector designed for economy and simplicity is assembled from only three parts: (1) molded urethane foam body, (2) flat sheet metal collector panel and (3) transparent cover. Large arrays may be assembled by inserting male fittings of each collector into female fitting of adjacent collector.

  12. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  13. Outdoor performance results for NBS Round Robin collector no. 1

    Science.gov (United States)

    Miller, D. R.

    1976-01-01

    The efficiency of a PPG flat-plate solar collector was evaluated utilizing an outdoor solar collector test facility at the NASA-Lewis Research Center, as part of the National Bureau of Standards 'round robin' collector test program. The correlation equation for collector thermal efficiency Eta curve fit of the data was: Eta = 0.666 - 1.003(Btu/hr-sq ft-F) Theta, where the parameter Theta is the difference between the average fluid temperature and the ambient temperature, all divided by the total flux impinging on the collector.

  14. Performance correlations of five solar collectors tested simultaneously outdoors

    Science.gov (United States)

    Miller, D. R.

    1976-01-01

    Collector thermal efficiency, and efficiency degradation with time were measured for 5 flat-plate solar collectors tested simultaneously in an outdoor solar collector test facility. Results indicate that by using collector performance parameters which account for diffuse insolation, outdoor data recorded on 'cloudy' days can be used as a measure of performance, as long as the ratio of direct to total insolation exceeds approximately 0.6. These outdoor results also show good agreement with thermal efficiency data obtained indoors in a solar simulator. Significant efficiency degradation occurred on only one of the five collectors exposed to outdoor conditions for a period of one to two years.

  15. A new concept of hybrid photovoltaic thermal (PVT) collector with natural circulation

    Science.gov (United States)

    Lu, Longsheng; Wang, Xiaowu; Wang, Shuai; Liu, Xiaokang

    2017-07-01

    Hybrid photovoltaic thermal (PVT) technology refers to the integration of a photovoltaic module into a conventional solar thermal collector. Generally, the traditional design of a PVT collector has solar cells fixed on the top surface of an absorber in a flat-plate solar thermal collector. In this work, we presented a new concept of water-based PVT collector in which solar cells were directly placed on the bottom surface of its glass cover. A dynamic numerical model of this new PVT is developed and validated by experimental tests. With numerical analysis, it is found that at same covering factor, the electricity conversion efficiency of solar cells of the new PVT exceed that of the traditional PVT by nearly 10% while its thermal efficiency is approximately 30% lower than that of the traditional PVT. When the covering factor changes from 0.05 to 1, the thermal efficiency of the new PVT drops nearly 70%. The thermal efficiency of both the new PVT and the traditional PVT rise up as the water mass in tank increases. Meanwhile, the final water temperature in tank of the traditional PVT collector declines more than 17 °C, whereas that of the new PVT declines less than 6 °C, when the water mass increases from 100 to 300 kg.

  16. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Directory of Open Access Journals (Sweden)

    Guoying Xu

    2015-12-01

    Full Text Available Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC. The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  17. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Science.gov (United States)

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112

  18. A water-like model under confinement for hydrophobic and hydrophilic particle-plate interaction potentials

    OpenAIRE

    Krott, Leandro B.; BARBOSA, Marcia C.

    2013-01-01

    Molecular dynamic simulations were employed to study a water-like model confined between hydrophobic and hydrophilic plates. The phase behavior of this system is obtained for different distances between the plates and particle-plate potentials. For both hydrophobic and hydrophilic walls there are the formation of layers. Crystallization occurs at lower temperature at the contact layer than at the middle layer. In addition, the melting temperature decreases as the plates become more hydrophobi...

  19. Comparison between a simple solar collector accumulator and a conventional accumulator

    Energy Technology Data Exchange (ETDEWEB)

    Fasulo, AmIlcar [University National of San Luis, San Luis (Argentina); University National of Rio IV, Rio Cuarto (Argentina); Follari, Jorge [University National of San Luis, San Luis (Argentina); Barral, Jorge [University National of Rio IV, Rio Cuarto (Argentina)

    2001-07-01

    In dry regions with abundant solar radiation at Southern latitudes between 30 and 40deg, such as the central-western part of Argentina, it is possible to obtain domestic hot water by means of simple integral collector accumulator systems, which are less expensive than the classical flat plate active systems. The experimental assessment of two solar accumulator collector systems yielding 300 1 of hot water daily is reported in this work. Daily diurnal global efficiency and nocturnal thermal losses have been systematically determined over a 5-month period, from austral summer to austral winter. The results of these systems were compared with the results obtained from a high quality thermosyphon solar system composed of a flat plate collector and its corresponding insulated storage tank, tested at the same time. The experiments were carried out by measuring the climatic variables, temperatures in different parts of the collectors, and mass flow rates of water, during the test days. Based on these measurements, the behaviour of the systems was analysed by comparing exit temperatures, heat losses, and delivered useful energy. An economic evaluation was made considering the investment time recovery through the savings the system could provide working with different conventional sources of energy. The systems proved to work efficiently, although some improvements should be made on the semitransparent thermal insulation in order to enhance its winter performance. (Author)

  20. Performance of solar collectors under low temperature conditions

    DEFF Research Database (Denmark)

    Bunea, Mircea; Eicher, Sara; Hildbrand, Catherine

    The performance of four solar thermal collectors (flat plate, evacuated tube, unglazed with rear insulation and unglazed without rear insulation) was experimentally measured and simulated for temperatures below ambient. The influence of several parameters (e.g. collector inlet temperature, air...... temperature, condensation) is investigated under different operating conditions (day and night). Under some conditions condensation might occur and heat gains could represent up to 55% of the total unglazed collector energy by night. Two TRNSYS collector models including condensation heat gains are also...... to be around 2%, frost heat gains were measured to be up to 40% per day, under specific conditions. Overall, results have shown that unglazed collectors are more efficient than flat plate or evacuated tube collectors at low operation temperatures or for night conditions, making them more suitable for heat pump...

  1. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through......Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  2. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  3. Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates.

    Science.gov (United States)

    Mosaddeghi, Hamid; Alavi, Saman; Kowsari, M H; Najafi, Bijan

    2012-11-14

    We use molecular dynamics simulations to study the structure, dynamics, and transport properties of nano-confined water between parallel graphite plates with separation distances (H) from 7 to 20 Å at different water densities with an emphasis on anisotropies generated by confinement. The behavior of the confined water phase is compared to non-confined bulk water under similar pressure and temperature conditions. Our simulations show anisotropic structure and dynamics of the confined water phase in directions parallel and perpendicular to the graphite plate. The magnitude of these anisotropies depends on the slit width H. Confined water shows "solid-like" structure and slow dynamics for the water layers near the plates. The mean square displacements (MSDs) and velocity autocorrelation functions (VACFs) for directions parallel and perpendicular to the graphite plates are calculated. By increasing the confinement distance from H = 7 Å to H = 20 Å, the MSD increases and the behavior of the VACF indicates that the confined water changes from solid-like to liquid-like dynamics. If the initial density of the water phase is set up using geometric criteria (i.e., distance between the graphite plates), large pressures (in the order of ~10 katm), and large pressure anisotropies are established within the water. By decreasing the density of the water between the confined plates to about 0.9 g cm(-3), bubble formation and restructuring of the water layers are observed.

  4. Wave Damping over a Perforated Plate with Water Chambers

    Institute of Scientific and Technical Information of China (English)

    ZHU Shutang

    2006-01-01

    The movement of waves propagating over a horizontally submerged perforated plate with waterfilled chambers bellow the plate was investigated by using linear potential theory. The analytical solution was compared with laboratory experiments on wave blocking. The analysis of the wave energy dissipation on the perforated bottom surface shows that the effects of the perforated plate on thewave motion depend mainly on the plate porosity, the wave height, and the wave period. The wave number is a complex number when the wave energy dissipation on the perforated plate is considered. The real part of the wave number refers to the spatial periodicity while the imaginary part represents the damping modulus. The characteristics of the wave motion were explored for several possible conditions.

  5. Soil Water Thermodynamic to Unify Water Retention Curve by Pressure Plates and Tensiometer

    Directory of Open Access Journals (Sweden)

    Erik eBraudeau

    2014-10-01

    Full Text Available The pressure plate method is a standard method for measuring the pF curves, also called soil water retention curves, in a large soil moisture range from saturation to a dry state corresponding to a tension pressure of near 1500 kPa. However, the pressure plate can only provide discrete water retention curves represented by a dozen measured points. In contrast, the measurement of the soil water retention curves by tensiometer is direct and continuous, but limited to the range of the tensiometer reading: from saturation to near 70-80 kPa. The two methods stem from two very different concepts of measurement and the compatibility of both methods has never been demonstrated. The recently established thermodynamic formulation of the pedostructure water retention curve, will allow the compatibility of the two curves to be studied, both theoretically and experimentally. This constitutes the object of the present article. We found that the pressure plate method provides accurate measurement points of the pedostructure water retention curve h(W, conceptually the same as that accurately measured by the tensiometer. However, contrarily to what is usually thought, h is not equal to the applied air pressure on the sample, but rather, is proportional to its logarithm, in agreement with the thermodynamic theory developed in the article. The pF curve and soil water retention curve, as well as their methods of measurement are unified in a same physical theory. It is the theory of the soil medium organization (pedostructure and its interaction with water. We show also how the hydrostructural parameters of the theoretical curve equation can be estimated from any measured curve, whatever the method of measurement. An application example using published pF curves is given.

  6. Experimental investigation of efficiency of a novel conical solar collector

    OpenAIRE

    MORAVEJ, M

    2015-01-01

    One of the methods to improvement of solar-to-thermal energy conversion is the design of geometry in solar collectors. In this paper, the new solar collector which is called solar conical collector has been designed and tested. The efficiency of solar conical collector was experimentally investigated by use of ASHRAE standard. Experiments were performed with water as a working fluid in the outdoor condition of Ahvaz city in the south of Iran. The results show that the average efficiency of a ...

  7. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  8. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  9. Flow structures generated by elongated plates settling in a water column

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Jensen, Anna Lyhne; Hærvig, Jakob

    angle of 15° in a 0.60 m x 0.30 m  0.35 m (LBH) glass container filled with water. Continuous Particle Image Velocimetry is used to analyse both the velocity field of the continuous phase and the motion of the plates. The experiments show a well-defined oscillating motion of the plate. A stall occurs...... of the dimensionless moment of inertia and Reynolds number was investigated. The objective of the present work is to collect and present experimental data about the flow structures generated by the settling of elongated plates in a water column. The experiments are carried out by releasing the plates at an initial...... each time the plate changes horizontal direction of motion. The results show a flow building up when the plate accelerates and a vortex rolling off in each turn....

  10. Rapid Screen for Bacteria Degrading Water-Insoluble, Solid Hydrocarbons on Agar Plates

    OpenAIRE

    1982-01-01

    A rapid procedure was devised for detecting on solid media bacteria able to degrade water-insoluble, solid hydrocarbons such as the polycyclic aromatic hydrocarbons phenanthrene, anthracene, and biphenyl. After Alcaligenes faecalis AFK2 was inoculated on a plate containing mineral salts agar, an ethereal solution of phenanthrene (about 10%, wt/vol) was sprayed on the surface of the plate, and the plate was incubated at 30°C for 2 to 3 days. Colonies showing degradation were surrounded with cl...

  11. Collector sealants and breathing. Final Report, 25 September 1978-31 December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M A; Luck, R M; Yeoman, F A; Navish, Jr, F W

    1980-02-20

    The objectives of this program were: (1) to investigate the pertinent properties of a variety of possible sealants for solar collectors and identify the most promising candidates, and (2) to study the effect of breathing in flat-plate, thermal solar collector units. The study involved two types of sealants, Class PS which includes preformed seals or gaskets and Class SC which includes sealing compounds or caulks. It was the intent of the study to obtain data regarding initial properties of candidate elastomers from manufacturers and from the technical literature and to use those sources to provide data pertaining to endurance of these materials under environmental service conditions. Where necessary, these data were augmented by experimental measurements. Environmental stresses evaluated by these measurements included elevated temperatures, moisture, ultraviolet light, ozone and oxygen, and fungus. The second major area of the work involved a study of the effects of materials used and design on the durability of solar collectors. Factors such as design, fabrication, materials of construction, seals and sealing techniques and absorber plate coatings were observed on actual field units removed from service. Such phenomena as leakage, corrosion and formation of deposits on glazing and absorber plate were noted. An evaluation of the properties of several desiccants was made in order to providemeans to mitigate the deleterious effects of water on collector life. Adsorbents for organic degradation products of sealants were also investigated in order to protect the glazing and absorber plate from deposited coatings. Since adsorbents and desiccants in general tend to take up both water and organic decomposition products, relative affinities of a number of these agents for water and for organic compounds were determined . Results are presented in detail.

  12. Interaction of surface water waves with a vertical elastic plate: a hypersingular integral equation approach

    Science.gov (United States)

    Chakraborty, Rumpa; Mondal, Arpita; Gayen, R.

    2016-10-01

    In this paper, we present an alternative method to investigate scattering of water waves by a submerged thin vertical elastic plate in the context of linear theory. The plate is submerged either in deep water or in the water of uniform finite depth. Using the condition on the plate, together with the end conditions, the derivative of the velocity potential in the direction of normal to the plate is expressed in terms of a Green's function. This expression is compared with that obtained by employing Green's integral theorem to the scattered velocity potential and the Green's function for the fluid region. This produces a hypersingular integral equation of the first kind in the difference in potential across the plate. The reflection coefficients are computed using the solution of the hypersingular integral equation. We find good agreement when the results for these quantities are compared with those for a vertical elastic plate and submerged and partially immersed rigid plates. New results for the hydrodynamic force on the plate, the shear stress and the shear strain of the vertical elastic plate are also evaluated and represented graphically.

  13. Weathering of a liquid-filled solar collector

    Science.gov (United States)

    1979-01-01

    Report describes procedures and results of tests for effects of weathering on flat-plate liquid solar collector. Thermal performance was measured before and after natural weathering for 15-1/2 months by using Marshall Space Flight solar simulator.

  14. Indoor test and long-term weathering effects on the thermal performance of the solar energy system (liquid) solar collector. [Marshall Space Flight Center solar test facility and solar simulator

    Science.gov (United States)

    1979-01-01

    The procedures used and the results obtained during the evaluation test program on a liquid solar collector are presented. The narrow flat plate collector with reflective concentrating mirrors uses water as the working fluid. The double-covered collector weighs 137 pounds and has overall dimensions of about 35" by 77" by 6.75". The test program was conducted to obtain the following information: thermal performance data under simulated conditions, structural behavior under static load, and the effects of long term exposure to natural weathering.

  15. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    Science.gov (United States)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal experimentation reveals that while the collector efficiency

  16. HETEROTROPHIC PLATE COUNT BACTERIA - WHAT IS THEIR SIGNIFICANCE IN DRINKING WATER?

    Science.gov (United States)

    The possible health significance of heterotrophic plate count (HPC) bacteria, also know in earlier terminology as standard plate count (SPC) bacteria, in drinking water has been debated for decades. While the literature documents the universal occurrence of HPC bacteria in soil, ...

  17. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    OpenAIRE

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon; Perers, Bengt; Karlsson, Björn

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the e...

  18. Performance evaluation of an air solar collector

    Science.gov (United States)

    1979-01-01

    Indoor tests on signal-glazed flat-plate collector are described in report. Marhsall Space Flight Center solar simulator is used to make tests. Test included evaluations on thermal performance under various combinations of flow rate, incident flux, inlet temperature, and wind speed. Results are presented in graph/table form.

  19. NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Vukman V Bakić

    2011-01-01

    Full Text Available This paper deals with the numerical simulation of air around the arrays of flat plate collectors and determination of the flow field, which should provide a basis for estimating a convective heat losses, a parameter which influences their working characteristics. Heat losses are the result of the reflection on the glass, conductive losses at the collector's absorber plate, radiation of the absorber plate and convective losses on the glass. Wind velocity in the vicinity of the absorber plate depends on its position in the arrays of collectors. Results obtained in the numerical simulation of flow around collectors were used as boundary conditions in modeling of thermal-hydraulic processes inside the solar collector. A method for coupling thermal-hydraulic processes inside the collector with heat transfer from plate to tube bundle was developed, in order to find out the distribution of the temperature of the absorber plate and the efficiency of the flat plate collectors. Analyses of flow around arrays of collectors are preformed with RNG k - ε model. Three values for free-stream velocity were analysed, i.e. 1 m/s, 5 m/s and 10 m/s, as well as two values for the angle between the ground and the collector (20° and 40°. Heat transfer coefficient was determined from the theory of boundary layer. Heat transfer inside the plate cavity was analyzed assuming constant intensity of radiation.

  20. 平板式太阳能空气集热器流道改进的试验研究和数值模拟%Experimental investigation and numerical simulation on improvement of flat-plate solar air collector flow channels

    Institute of Scientific and Technical Information of China (English)

    丁刚; 左然; 张旭鹏; 王坤

    2011-01-01

    对传统平板式太阳能空气集热器的流道进行了改进,把对角型进出口流道改为多进出口式流道.对改进的集热器的性能进行了试验测试.新的进出口流道消除了吸热板和空气换热不均的现象,出口温度提升明显.在相同条件下,集热器的瞬时效率增加约20%.用CFD方法对集热器内部的流场结构和传热进行的数值模拟对比表明,传统集热器内部存在流动死区,中心截面温度分布不均匀,吸热板上有局部的高温区域,改进后的集热器流场和温度场分布得较均匀.%The flow channels of traditional flat-plate solar air collector were changed from diagonal inlet/outlet to multi-inlet/outlet. Experimental investigation on characteristics of solar air collectors after the improvement of flow channels was reported. The inlet and outlet channels of the conventional air collector were improved. The new flow channel eliminates the ununiformity of heat transfer between air and absorber plate, so there is a distinct temperature increasing at the outlet. The instantaneous efficiency is improved by about 20% at the same condition. An analysis of flow characteristics and heat transfer in the collectors had been carried out by using Computation Fluid Dynamic (CFD). There is the dead zone in flow field of traditional collector. The temperature distribution of center section is different and there is local high-temperature region on the heat-absorbing plate in the traditional collector, while the flow field and temperature distribution are uniform in the improved collector.

  1. Design and evaluation of a computer controlled solar collector simulator

    Science.gov (United States)

    Kotas, J. F.; Wood, B. D.

    1980-11-01

    A computer-controlled system has been developed to simulate the thermal processes of a flat-plate solar collector. The simulator is based on four water heaters of capacities of 1.5, 2.5, 5.0 and 5.0 kW providing a maximum design output of 14.0 kW which are controlled by a Nova 3 minicomputer, which also monitors temperatures in the fluid stream. Measurements have been obtained of the steady-state operating values and time constants of the individual heaters at different flow rates in order to utilize effectively their thermal outputs. Software was designed to control the heater system so the total thermal output closely approximates that of an actual heater array, utilizing steady-state or dynamic control modes. Simulation of the heat output of a previously tested collector has resulted in simulated values differing from actual output by a maximum of 3% under identical operating conditions, thus indicating that the simulator represents a viable alternative to the testing of a large field of collectors.

  2. Simultaneous separation of copper, cadmium and cobalt from sea-water by co-flotation with octadecylamine and ferric hydroxide as collectors.

    Science.gov (United States)

    Cabezon, L M; Caballero, M; Cela, R; Perez-Bustamante, J A

    1984-08-01

    A method is proposed for the simultaneous quantitative separation of traces ofCu(II), Cd(II) and Co(II) from sea-water samples by means of the co-flotation (adsorbing colloid flotation) technique with ferric hydroxide as co-precipitant and octadecylamine as collector. The experimental parameters have been studied and optimized. The drawbacks arising from the low solubility of octadecylamine and the corresponding sublates in water have been avoided by use of a 6M hydrochloric acid-MIBK-ethanol (1:2:2 v v ) mixture. The results obtained by means of the proposed method have been compared with those given by the usual ammonium pyrrolidine dithiocarbamate/MIBK extraction method.

  3. Development of 12.5 m² Solar Collector Panel for Solar Heating Plants

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    Theoretical and experimental investigations have elucidated how different changes in the design of the 12.5 m(2) HT flat-plate solar collector from the Danish company ARCON Solvarme A/S influence the solar collector efficiency and the yearly thermal performance. The collector is designed for medium...... and large solar heating systems. Based on the theoretical findings a prototype of an improved HT solar collector was built and tested side-by-side with the original HT solar collector. The improved HT collector makes use of a changed insulation material, an absorber with improved absorptance and emittance...

  4. Collector sealants and breathing. Mid-term report, September 25, 1978-May 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M. A.; Yeoman, F. A.; Luck, R. M.; Navish, Jr, F. W.; Meier, J. F.

    1978-01-01

    The objectives of this program are: (1) to investigate the pertinent properties of a variety of possible sealants for solar collectors and identify the most promising candidates and to study the effect of breathing in flat-plate, thermal solar collector units. The study involves two types of sealants, Class PS which includes performed seals or gaskets and Class SC which includes sealing compounds or caulks. It is the intent of the study to obtain data regarding initial properties of candidate elastomers from manufacturers and from the technical literature and to use those sources to provide data pertaining to endurance of these materials under environmental service conditions. Where necessary, these data are being augmented by experimental measurements. Environmental stresses to be evaluated by these measuremets include elevated temperatures, moisture, ultraviolet light, ozone and oxygen, and fungus. The second major area of the work involves a study of the effects of materials used and design on the durability of solar collectors. Factors such as design, fabrication, materials of construction, seals and sealing techniques and absorber plate coatings were observed on actual field units removed from service. Such phenomena as leakage, corrosion and formation of deposits on glazing and absorber plate were noted. An evaluation of the properties of several desiccants is being made in order to provide means to mitigate the deleterious effects of water on collector life.Absorbents for organic degradation products of sealants are also being investigated in order to protect the glazing and absorber plate from deposited coatings. Since adsorbents and desiccants in general tend to take up both waer and organic decomposition products, relative affinities of a number of these agents for water and for organic compounds are being determined.

  5. Sound scattering from partially water-filled elastic spherical shell with an internal elastic plate

    Institute of Scientific and Technical Information of China (English)

    SUN Yang; XU Haiting

    2008-01-01

    According to the equation of motion in the elastic medium and integral equation of target scattering, the sound scattering from the partially water-filled elastic spherical shells with and without an inner plate is studied using the finite element and boundary element method,and the scattering normalized form functions of the shell filled with different volume of water are computed and the mechanism of resonance scattering is analyzed. The results show that the resonance of the shell with partially water-filled and without the plate is mainly related to the volume of water, and the resonance is produced by inner water and the spherical shell. The resonance characteristics of partially water-filled elastic shell with the plate are similar to that of empty structured elastic spherical shell, and the sound field in inner water is weaker which indicates the main resonance characteristics are decided by spherical shell and the plate. In addition, the scattering characteristics of spherical shell with plate and one side full water-filled are greatly different from the partially water-filled ones.

  6. The Simulation of the Influence of Water Remnants on a Hot Rolled Plate after Cooling

    Directory of Open Access Journals (Sweden)

    Radek Zahradník

    2012-01-01

    Full Text Available In situations when a sheet metal plate of large dimensions is rolled, water remnants from cooling can be observed on the upper side of the plate. This paper focuses on deformations of a hot rolled sheet metal plate that are caused by water remnants after cooling. A transient finite element simulation was used to describe shape deformations of the cross profile of a metal sheet. The finite element model is fully parametric for easy simulation of multiple cases. The results from previous work were used for the boundary conditions.

  7. 基于微热管阵列的平板太阳能热水器的性能试验%Performance experiments for flat plate solar water heater based on micro heat pipe array

    Institute of Scientific and Technical Information of China (English)

    邓月超; 全贞花; 赵耀华; 王林成; 叶三宝

    2013-01-01

      为了检验一种新型平板太阳能热水器的性能,该文对其核心部件—基于微热管阵列的集热器及其组成的热水器进行了热性能试验.集热器热性能测试结果表明,微热管阵列平板太阳能集热器瞬时效率的斜率为4.7,截距为0.80,分别优于国家标准要求值11.0%和22.3%.在满足测试要求的天气情况下,对微热管阵列平板太阳能热水器进行的多次热性能测试结果表明,热水器的日有效得热量均高于国家标准要求值,日平均集热效率均高于60%.同时,该热水器具有承压能力强、无炸裂、轻巧、成本低、无需焊接、抗冻性能好、易于建筑一体化等优势.基于微热管阵列的平板太阳能热水器由于性能优异,并能克服现有太阳能热水器的缺点,具有广阔的应用前景.%A novel flat plate solar water heater based on the micro heat pipe array (MHPA) was invented, and the experiments were carried out on the MHPA heat collector and water heater to test their thermal performance. Owing to its distinctive structure, the MHPA has good heat transfer ability, high reliability, high compressive strength and low cost. The structure and character of the novel collector with MHPA as the high-efficiency heat transfer element are as follows. First, the contact surface between the absorber and the MHPA is so large that the heat resistance is smaller than the traditional one, thus its thermal transfer capability is greatly improved. Second, the condenser section of the MHPA is connected closely to the heat exchanger with dry type. The heat pipes do not contact with water, which precludes scaling and leakage in the collector. Third, the MHPA uses low freezing points of the refrigerants, which makes the collector more suitable for extremely cold areas. Fourth, the MHPA is made of aluminum instead of copper, which could reduce the fabrication cost significantly. Fifth, the unique heat exchanger could exclude water easily

  8. A novel capillary electrophoresis method with pressure assisted field amplified sample injection in determination of thiol collectors in flotation process waters.

    Science.gov (United States)

    Sihvonen, T; Aaltonen, A; Leppinen, J; Hiltunen, S; Sirén, H

    2014-01-17

    A new capillary electrophoresis method was developed for the quantification of diisobutyldithiophosphate (DTP), diisobutyldithiophosphinate (DTPI) and ethyl and isobutyl xanthates (EX, IBX) all of which are used as thiol collectors in froth flotation. This method uses pressure assisted field amplified sample injection (PA-FASI) to concentrate the analytes at the capillary inlet. The background electrolyte in electrophoretic separation was 60millimolar (mM) from 3-(cyclohexylamino)propane-1-sulfonic acid (CAPS) in 40mM NaOH solution. The similar CAPS electrolyte solution has earlier been used for screening for diuretics that contained sulphonamide and/or carboxylic groups. In this study, the functional groups are xanthate, phosphate and phosphinate. The method was developed using actual flotation process waters. The results showed that the water delivered from the plant did not contain significant amount of collectors; therefore, method development was accomplished by spiking analytes in these waters. Separation of analytes was achieved in 15min. The range of quantification was 0.27-66.6mg/L (R(2) 0.9991-0.9999) for all analytes other than ethyl xanthate, for which the range was 0.09-66.6mg/L (R(2) 0.9999). LOD (S/N=3) and LOQ (S/N=10) values for DTP, DTPI, IBX and EX were 0.05, 0.07, 0.06 and 0.01mg/L and 0.16, 0.25, 0.21 and 0.04mg/L, respectively. No interference from the matrices was observed, when the method was tested at a gold concentrator plant.

  9. Experimental studies on PCM filled Flat Plate Solar Water Heater without and with Fresnel lens glazing

    Directory of Open Access Journals (Sweden)

    R. Sivakumar

    2016-07-01

    Full Text Available Flat Plate Solar Water Heater (FPSWH is commonly used to harvest solar energy. Solar concentration techniques help to achieve higher temperatures of energy. The aim of this article is to compare the performance of a Fresnel lens glazed Flat Plate Solar Water Heater with Phase Change Material (PCM with that provided with an ordinary glazing. The effect of solar concentration using Fresnel lens on energy storage in PCM and heat gained by water are studied and compared with that having an ordinary glazing. Experiments showed 47% improvements in the heat gained by water.

  10. Solitary and cnoidal wave scattering by a submerged horizontal plate in shallow water

    Science.gov (United States)

    Hayatdavoodi, Masoud; Ertekin, R. Cengiz; Valentine, Benjamin D.

    2017-06-01

    Solitary and cnoidal wave transformation over a submerged, fixed, horizontal rigid plate is studied by use of the nonlinear, shallow-water Level I Green-Naghdi (GN) equations. Reflection and transmission coefficients are defined for cnoidal and solitary waves to quantify the nonlinear wave scattering. Results of the GN equations are compared with the laboratory experiments and other theoretical solutions for linear and nonlinear waves in intermediate and deep waters. The GN equations are then used to study the nonlinear wave scattering by a plate in shallow water. It is shown that in deep and intermediate depths, the wave-scattering varies nonlinearly by both the wavelength over the plate length ratio, and the submergence depth. In shallow water, however, and for long-waves, only the submergence depth appear to play a significant role on wave scattering. It is possible to define the plate submergence depth and length such that certain wave conditions are optimized above, below, or downwave of the plate for different applications. A submerged plate in shallow water can be used as a means to attenuate energy, such as in wave breakers, or used for energy focusing, and in wave energy devices.

  11. Experimental study on the performance of a prism-shaped integrated collector-storage solar water heater

    Directory of Open Access Journals (Sweden)

    Ahmad M. Hamood, Abdul Jabbar N. Khalifa

    2012-01-01

    Full Text Available This paper presents an experimental investigation on the thermal performance of a 500-liter integrated collector storage system in the shape of a prism with a right angle. A grid of 45 thermocouples was assembled inside the storage tank to monitor the temperature distribution, which was utilized to estimate the mass-weighted average temperature inside the tank and the heat gain. The total stored energy for a day in August was found to be 105.92 MJ/m3 with a temperature increase of 25.2˚C. In November, the total stored energy was 65.86 MJ/m3 with a temperature increase of 15.5˚C while it was 56.92 MJ/m3 for January with a temperature increase of 13.6˚C. A comparison between the present experimental results and published theoretical results for a similar shape showed good agreement.

  12. Flat Plate Reduction in a Water Tunnel Using Riblets

    Science.gov (United States)

    1987-05-01

    II ~Ci +c SE- 2 8 0Lg 𔃺 E (D so (wwI) 10 DRAG CALCULATIONS The drag on the flat plate was calculated using D = bpU 20 The drag reduction over the...described in the previous section, are used so that bpU 2. is a constant, and that the drag upstream of the leading edge of the test surface is the same

  13. Development and validation of a single collector ICPMS procedure to determine boron isotopeic compositions of water and food samples

    Science.gov (United States)

    Vogl, Jochen; Rosner, Martin; Pritzkow, Wolfgang

    2010-05-01

    Authenticity and provenance studies as well as issues in environmental- and geo-sciences are hot topics in nowadays isotope research. Elements being known for their natural isotopic variation, such as lead and strontium, are being used to assign the provenance of artefacts, food and other products. A recent study revealed the potential of boron (B) isotopes for delivering information on the provenance of crop plants. To offer alternative analytical instrumentations beside the classical TIMS procedures a single collector ICPMS procedure for B isotope analyses has been developed and validated. This procedure should enable more B isotope studies, as single collector ICPMS intruments are more widepread in the relevant laboratories compared to TIMS. The developed procedures for the determination of B isotopic compositions use a magnetic sector ICPMS and consist of one low resolution (LR) and one medium resolution (MR) procedure. The absolute standard deviation for the δ11B determination in three independently measured samples lies between 0.2 and 0.8 ‰ for the LR and between 0.3 and 1.5 ‰ for the MR. The expanded uncertainties with a coverage factor of k=2 range between 1.4 and 1.6 ‰ for the LR and between 2.9 and 3.2 ‰ for the MR. The trueness, expressed as average deviation from the reference values, is less than 1.1 ‰ for LR and 0.8 ‰ for MR. To test the practicability of the procedure the matrix tolerance has been investigated. Using a measurement solution containing 100 µg/kg boron a matrix of 2 mg/kg of alkaline and earth alkaline elements was found as a limit for stable instrumental mass discrimination. Thus a highly efficient matrix separation is required, similar to TIMS. The developed procedure is well suited for the for B isotope studies of various matrices and especially the LR procedure offers relatively small uncertainties combined with high sample throughput.

  14. Solar hot water system installed at Day's Inn Motel, Savannah, Georgia

    Science.gov (United States)

    1980-09-01

    The Solar System was designed to provide 50 percent of the total Domestic Hot Water (DHW) demand. Liquid Flat Plate Collectors (900 square feet) are used for the collector subsystem. The collector subsystem is closed loop, using 50 percent Ethylene Glycol solution antifreeze for freeze protection. The 1,000 gallon fiber glass storage tank contains two heat exchangers. One of the heat exchangers heats the storage tank with the collector solar energy. The other heat exchanger preheats the cold supply water as it passes through on the way to the Domestic Hot Water (DHW) tank heaters. Electrical energy supplements the solar energy for the DHW. The Collector Mounting System utilizes guy wires to structurally tie the collector array to the building.

  15. Investigations for effect of Al2O3–H2O nanofluid flow rate on the efficiency of direct absorption solar collector

    Directory of Open Access Journals (Sweden)

    Hemant Kumar Gupta

    2015-03-01

    Full Text Available The efficiency of conventional tube‐ in plate type solar collectors is limited due to higher heat losses for surface based solar energy absorption and indirect transfer of heat from hot absorber surface to working fluid having poor heat transfer properties flowing through tubes. In this paper, a prototype direct absorption solar collector having gross area 1.4 m2 working on volumetric absorption principle is developed to investigate the effect of using Al2O3–H2O nanofluid as heat transfer fluid at different flow rates. Experimentation was carried using distilled water and 0.005% volume fractions of 20 nm size Al2O3 nanoparticles at three flow rates of 1.5, 2 and 2.5 lpm. ASHRAE standard 93-86 was followed for calculation of instantaneous efficiency of solar collector. Use of nanofluid improves the optical and thermo physical properties that result into an increase in the efficiency of the collector in all cases of using nanofluids in place of water. Collector efficiency enhancement of 8.1% and 4.2% has been observed for 1.5 and 2 lpm flow rate of nanofluid respectively. Optimum flow rate of 2.5 and 2 lpm towards maximum collector efficiency have also been observed for water and nanofluid respectively.

  16. Evaluation of the Solar Water Disinfection Process (SODIS) Against Cryptosporidium parvum Using a 25-L Static Solar Reactor Fitted with a Compound Parabolic Collector (CPC)

    Science.gov (United States)

    Fontán-Sainz, María; Gómez-Couso, Hipólito; Fernández-Ibáñez, Pilar; Ares-Mazás, Elvira

    2012-01-01

    Water samples of 0, 5, and 30 nephelometric turbidity units (NTU) spiked with Cryptosporidium parvum oocysts were exposed to natural sunlight using a 25-L static solar reactor fitted with a compound parabolic collector (CPC). The global oocyst viability was calculated by the evaluation of the inclusion/exclusion of the fluorogenic vital dye propidium iodide and the spontaneous excystation. After an exposure time of 8 hours, the global oocyst viabilities were 21.8 ± 3.1%, 31.3 ± 12.9%, and 45.0 ± 10.0% for turbidity levels of 0, 5, and 30 NTU, respectively, and these values were significantly lower (P 10 times). PMID:22302852

  17. Qualification test and analysis report: Solar collectors

    Science.gov (United States)

    1978-01-01

    Test results show that the Owens-Illinois Sunpak TM Model SEC 601 air-cooled collector meets the national standards and codes as defined in the Subsystem Peformance Specification and Verification Plan of NASA/MSFC, dated October 28, 1976. The program calls for the development, fabrication, qualification and delivery of an air-cooled solar collector for solar heating, combined heating and cooling, and/or hot water systems.

  18. Developments of solar collectors in China

    Institute of Scientific and Technical Information of China (English)

    Yin Zhiqiang

    2009-01-01

    China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly for 15 years. There are various solar thermal systems, with an operation area of around 108 million m2 in 2007. These systems mainly provide domestic hot water, but some other applications are under extensive study and development as well.

  19. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  20. Yearly average performance of the principal solar collector types

    Energy Technology Data Exchange (ETDEWEB)

    Rabl, A.

    1981-01-01

    The results of hour-by-hour simulations for 26 meteorological stations are used to derive universal correlations for the yearly total energy that can be delivered by the principal solar collector types: flat plate, evacuated tubes, CPC, single- and dual-axis tracking collectors, and central receiver. The correlations are first- and second-order polynomials in yearly average insolation, latitude, and threshold (= heat loss/optical efficiency). With these correlations, the yearly collectible energy can be found by multiplying the coordinates of a single graph by the collector parameters, which reproduces the results of hour-by-hour simulations with an accuracy (rms error) of 2% for flat plates and 2% to 4% for concentrators. This method can be applied to collectors that operate year-around in such a way that no collected energy is discarded, including photovoltaic systems, solar-augmented industrial process heat systems, and solar thermal power systems. The method is also recommended for rating collectors of different type or manufacturer by yearly average performance, evaluating the effects of collector degradation, the benefits of collector cleaning, and the gains from collector improvements (due to enhanced optical efficiency or decreased heat loss per absorber surface). For most of these applications, the method is accurate enough to replace a system simulation.

  1. Recovery of Caprolactam from Waste Water in Caprolactam Production Using Pulsed—sieve—plate Extraction column

    Institute of Scientific and Technical Information of China (English)

    LIUJiangqing; XIEFangyou; 等

    2002-01-01

    Recovery of caprolactam from waste water of caprolactam production factory was investigated using benzence as solvent in a small-scale pulsed-sieve-plate column.First,liquid-liquid equilibrium (LLE) deta were measured,including water-caprolactam-benzene system at low caprolactam concentrations,and waste water-benzene system.Then,the operating regions and mass transfer of the pulsed-sieve-plate column were measured.Finally,the overall apparent heights of a transfer unit based on continuous phase are correlated in terms of the column operation variables.

  2. Comparison of Electrical and Thermal Performances of Glazed and Unglazed PVT Collectors

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2012-01-01

    Full Text Available Photovoltaic-thermal (PVT collectors combine photovoltaic modules and solar thermal collectors, forming a single device that receives solar radiation and produces electricity and heat simultaneously. PVT collectors can produce more energy per unit surface area than side-by-side PV modules and solar thermal collectors. There are two types of liquid-type flat-plate PVT collectors, depending on the existence of glass cover over PV module: glass-covered (glazed PVT collectors, which produce relatively more thermal energy but have lower electrical yield, and uncovered (unglazed PVT collectors, which have relatively lower thermal energy with somewhat higher electrical performance. In this paper, the experimental performance of two types of liquid-type PVT collectors, glazed and unglazed, was analyzed. The electrical and thermal performances of the PVT collectors were measured in outdoor conditions, and the results were compared. The results show that the thermal efficiency of the glazed PVT collector is higher than that of the unglazed PVT collector, but the unglazed collector had higher electrical efficiency than the glazed collector. The overall energy performance of the collectors was compared by combining the values of the average thermal and electrical efficiency.

  3. Financial viability study using a heat pump as an alternative to support solar collector for water heating in Southeastern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Roberts Vinicius de Melo; Oliveira, Raphael Nunes; Machado, Luiz; Koury, Ricardo Nassau N. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. of Mechanical Engineering], E-mails: robertsreis@ufmg.br, luizm@demec.ufmg.br, koury@ufmg.br

    2010-07-01

    Along with related greenhouse effect environmental issues, constant problems changes in oil prices,make the use of solar energy an important renewable energy source. Brazil is a country which is privilege, considering the high rates of solar irradiation present throughout most of the entire national territory. Nevertheless, during certain times of the year, a solar energy deficit, leads solar systems to require electrical resistance support. The use of electrical resistance represents 23.5% of electric energy consumption and it presents a low residential energy efficiency. The purpose of this work is conducting a study of Brazilian States in the Southeastern region regarding the financial viability of replacing a resistive system combined with the use of solar collector and a heat pump. One such heat pump has been designed, constructed and tested experimentally. The average performance coefficient is equal to 2.10, a low value due to the use of a hermetic reciprocating compressor. Despite this low-moderate price coefficient of acquisition and installation of a heat pump, a return on investment in from 2.1 to 2.7 years can be expected. Whereas the equipment has a useful life of about 20 years, this period of return on investment is interesting. (author)

  4. Step tracking program for concentrator solar collectors

    Science.gov (United States)

    Ciobanu, D.; Jaliu, C.

    2016-08-01

    The increasing living standards in developed countries lead to increased energy consumption. The fossil fuel consumption and greenhouse gas effect that accompany the energy production can be reduced by using renewable energy. For instance, the solar thermal systems can be used in temperate climates to provide heating during the transient period or cooling during the warmer months. Most used solar thermal systems contain flat plate solar collectors. In order to provide the necessary energy for the house cooling system, the cooling machine uses a working fluid with a high temperature, which can be supplied by dish concentrator collectors. These collectors are continuously rotated towards sun by biaxial tracking systems, process that increases the consumed power. An algorithm for a step tracking program to be used in the orientation of parabolic dish concentrator collectors is proposed in the paper to reduce the consumed power due to actuation. The algorithm is exemplified on a case study: a dish concentrator collector to be implemented in Brasov, Romania, a location with the turbidity factor TR equal to 3. The size of the system is imposed by the environment, the diameter of the dish reflector being of 3 meters. By applying the proposed algorithm, 60 sub-programs are obtained for the step orientation of the parabolic dish collector over the year. Based on the results of the numerical simulations for the step orientation, the efficiency of the direct solar radiation capture on the receptor is up to 99%, while the energy consumption is reduced by almost 80% compared to the continuous actuation of the concentrator solar collector.

  5. Calculation in Orifice Plate of CEFR Condensate Water Recycling System

    Institute of Scientific and Technical Information of China (English)

    TANG; Yi-min

    2012-01-01

    <正>In order to avoid condensation water pump occurring cavitation due to the flow is too small and affect the normal operation of pump when the startup or shutdown in the unit, low load or accident under empty load operation, recirculation loop should maintain a certain flow, to ensure that the shaft seal heater has enough cooling water, recirculation flow is not less than 20 t/h.

  6. Hybrid thermoelectric solar collector design and analysis

    Science.gov (United States)

    Roberts, A. S., Jr.; Shaheen, K. E.

    1982-01-01

    A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.

  7. Hybrid thermoelectric solar collector design and analysis

    Science.gov (United States)

    Roberts, A. S., Jr.; Shaheen, K. E.

    1982-01-01

    A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.

  8. Enumeration and characterization of standard plate count bacteria in chlorinated and raw water supplies.

    Science.gov (United States)

    LeChevallier, M W; Seidler, R J; Evans, T M

    1980-11-01

    Nearly 700 standard plate count (SPC) bacteria were isolated from drinking water and untreated surface water and identified according to a scheme developed to permit the rapid, simple classification of microorganisms to genus, species, or group. Actinomycetes and Aeromonas species were the two most common groups of SPC bacteria in chlorinated distribution water. Aeromonas spp. and Enterobacter agglomerans were the two most common groups of SPC bacteria in raw water. Identification of bacterial populations before and after contact with chlorine (1 to 2 mg/liter) for 1 h revealed that chlorination selected for gram-positive bacteria. Water that contained high densities of bacteria known to be antagonistic to coliforms had low coliform isolation rates. The membrane filtration technique for enumerating SPC bacteria recovered significantly higher numbers (P standard pour plate technique.

  9. City sewer collectors biocorrosion

    Science.gov (United States)

    Ksiażek, Mariusz

    2014-12-01

    This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.

  10. Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study

    Science.gov (United States)

    Fu, Ting; Mao, Yijin; Tang, Yong; Zhang, Yuwen; Yuan, Wei

    2016-08-01

    Molecular dynamic simulations are performed to study the effects of nanostructure on rapid boiling of water that is suddenly heated by a hot copper plate. The results show that the nanostructure has significant effects on energy transfer from solid copper plate to liquid water and phase change process from liquid water to vapor. The liquid water on the solid surface rapidly boil after contacting with an extremely hot copper plate and consequently a cluster of liquid water moves upward during phase change. The temperature of the water film when it separates from solid surface and its final temperature when the system is at equilibrium strongly depend on the size of the nanostructure. These temperatures increase with increasing size of nanostructure. Furthermore, a non-vaporized molecular layer is formed on the surface of the copper plate even continuous heat flux is passing into water domain through the plate.

  11. Horizontally mounted solar collector

    Science.gov (United States)

    Black, D. H. (Inventor)

    1979-01-01

    Solar energy is collected by using a vertical deflector assembly, a stationary reflector and a horizontally mounted solar collector. The deflector assembly contains a plurality of vanes which change the direction of the solar energy to the vertical, while constantly keeping the same side of the deflector facing the sun. The vertical rays are then reflected off the stationary reflector and are then absorbed by the collector.

  12. Fog collectors and collection techniques

    Science.gov (United States)

    Höhler, I.; Suau, C.

    2010-07-01

    The earth sciences taught that due to the occurrence of water in three phases: gas, liquid and solid, solar energy keeps the hydrological cycle going, shaping the earth surface while regulating the climate and thus allowing smart technologies to interfere in the natural process by rerouting water and employing its yield for natural and human environments’ subsistence. This is the case of traditional fog collectors implemented by several researchers along the Atacama Desert since late ’50s such as vertical tensile mesh or macro-diamonds structures. Nevertheless, these basic prototypes require to be upgraded, mainly through new shapes, fabrics and frameworks’ types by following the principles of lightness, transformability, portability and polyvalence. The vertical canvas of conventional fog collectors contain too much stressed at each joints and as result it became vulnerable. Our study constitutes a research by design of two fog-trap devices along the Atacama Desert. Different climatic factors influence the efficiency of fog harvesting. In order to increase yield of collected fog water, we need to establish suitable placements that contain high rates of fog’s accumulation. As important as the location is also the building reliability of these collectors that will be installed. Their frames and skins have to be adjustable to the wind direction and resistant against strong winds and rust. Its fabric need to be more hydrophobic, elastic and with light colours to ease dripping/drainage and avoid ultra-violet deterioration. In addition, meshes should be well-tensed and frames well-embraced too. In doing so we have conceived two fog collectors: DropNet© (Höhler) and FogHive© (Suau). These designs explore climatic design parameters combined with the agile structural principles of Tensegrity and Geodesic widely developed by Bucky Fuller and Frei Otto. The research methods mainly consisted of literature review; fieldwork; comparative analysis of existing fog

  13. The fate of water within Earth and super-Earths and implications for plate tectonics.

    Science.gov (United States)

    Tikoo, Sonia M; Elkins-Tanton, Linda T

    2017-05-28

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Authors.

  14. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  15. Dynamically slow processes in supercooled water confined between hydrophobic plates

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, Giancarlo [Departamento de Fisica Fundamental, Universidad de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Santos, Francisco de los, E-mail: gfranzese@ub.ed, E-mail: fdlsant@ugr.e [Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2009-12-16

    We study the dynamics of water confined between hydrophobic flat surfaces at low temperature. At different pressures, we observe different behaviors that we understand in terms of the hydrogen bond dynamics. At high pressure, the formation of the open structure of the hydrogen bond network is inhibited and the surfaces can be rapidly dried (dewetted) by formation of a large cavity with decreasing temperature. At lower pressure we observe strong non-exponential behavior of the correlation function, but with no strong increase of the correlation time. This behavior can be associated, on the one hand, to the rapid ordering of the hydrogen bonds that generates heterogeneities and, on the other hand, to the lack of a single timescale as a consequence of the cooperativity in the vicinity of the liquid-liquid critical point that characterizes the phase diagram at low temperature of the water model considered here. At very low pressures, the gradual formation of the hydrogen bond network is responsible for the large increase of the correlation time and, eventually, the dynamical arrest of the system, with a strikingly different dewetting process, characterized by the formation of many small cavities.

  16. Multiple-effect diffusion solar still coupled with a vacuum-tube collector and heat pipe

    KAUST Repository

    Chong, Tze-Ling

    2014-08-01

    The present study develops a multiple-effect diffusion solar still (MEDS) with a bended-plate design in multiple-effect diffusion unit (MDU) to solve the peel-off problem of wick material. The MDU is coupled with a vacuum-tube solar collector to produce a high temperature gradient for high productivity. A heat pipe is used to transfer the solar heat to the MDU. A prototype MEDS-1L was built and tested outdoors. Four performance indexes are proposed for the performance evaluation of MEDS, including daily pure water production per unit area of glass cover, solar absorber, and evaporating surface (Mcov, Msol, Mevp, respectively), and solar distillation efficiency Rcov. The outdoor test results of MEDS-1L show that the solar collector supply temperature Th reaches 100°C at solar radiation 800Wm-2. The highest Mcov is 23.9kgm-2d-1 which is about 29% higher than the basin-type MEDS [11]. The highest value is 25.9kgm-2d-1 for Msol and 2.79kgm-2d-1 for Mevp. The measured Rcov is 1.5-2.44, higher than the basin-type MEDS (1.45-1.88). The Mcov, Msol, Mevp and Rcov of MEDS-1L are all higher than the theoretical calculation of a MEDS with a flat-plate solar collector coupled with a heat pipe (MEDS-FHP) [17].© 2014 Elsevier B.V.

  17. Design and performance of multi-purpose vacuum solar collector

    Science.gov (United States)

    Balotaki, H. Kavoosi; Saidi, M. H.

    2017-09-01

    Design and fabrication of solar collectors with high performance of energy efficiency to convert solar energy to utility energy is vitally important. This article reports the results obtained from design, construction and investigation of the performance of a Combined Multi-Purpose Vacuum Solar Collector (CMPVSC). This collector consists of three sections: the vacuum section, the liquid section and the air section. In the present collector, it is capable of transferring heat to two flows (liquid and air) simultaneously and separate with the possibility of multipurpose applications. The CMPVSC is compared with the existing individual collectors and the effects of different parameters on the efficiency of this collector are examined. Experimental data indicate that high temperature and high performance with a 43% reduction in cost can be obtained using CMPVSC compared to two individual collectors. To increase the efficiency of the collector, triangular and rectangular channels in the air section have been used. The vacuum part is implemented to reduce heat losses. The effect of water inlet temperature, air flow rate, shape of air channel and vacuum part on the heat delivery by air and water have been investigated. Furthermore, as a matter of comparison of CMPVSC with the individual collector, there is a chance of obtaining highest temperature and efficiency with minimum cost and space requirements.

  18. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    Science.gov (United States)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  19. An intercomparison of NEL and DHL water flow facilities using a twin orifice plate flowmeter assembly

    Science.gov (United States)

    Dejong, J.; Spencer, E. A.

    1983-01-01

    A 205 mm transfer standard orifice plate meter assembly, consisting of two orifice plates in series separated by a length of pipe containing a flow straightener, was calibrated in two water flow facilities. Results show that the agreement in the characteristics of such a differential pressure transfer standard package is within 0.17% over a 10:1 range from flow rates of approximately 8 to 80 l/sec. When the range over which the comparison was made was limited to that for which the calibration graphs gave straight lines, the agreement is 0.1% in 3 of the 4 calibrations (0.17% in the fourth).

  20. Advances in design of air-heating collectors

    CSIR Research Space (South Africa)

    Johannsen, A

    1982-11-01

    Full Text Available Principles of the operation of air-heating collectors are discussed. The fundamental differences between the design principles of air-heating as opposed to water-heating collectors are highlighted. The main requirement is the transfer of heat from...

  1. Long-term weathering effects on the thermal performance of the Lennox/Honeywell (liquid) solar collector

    Science.gov (United States)

    1978-01-01

    The test procedures used and the results obtained during the evaluation test program of the Lennox/Honeywell double covered liquid solar collector. The tests were performed under simulated conditions, following long-term exposure to natural weathering conditions. The Lennox/Honeywell collector is a flat-plate solar collector. The absorber plate is steel with copper tubes bonded on the upper surface, and is coated with black chrome. Visual inspection of the collector indicated slight discoloration of the absorber plate. Results indicate that performance degradation had occurred. Absorptivity and/or transmissivity decreased as a result of the weathering.

  2. Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid

    Science.gov (United States)

    Gangadevi, R.; Vinayagam, B. K.; Senthilraja, S.

    2017-05-01

    In this paper, the PV/T (Photovoltaic thermal unit) system is investigated experimentally to examine the thermal, electrical and overall efficiency by circulating Al2O3/water nanofluid of 1wt% and 2wt% with an optimum flow rate of 40L/H. The overall efficiency of PVT system is largely influenced by various factors such as heat due to photovoltaic action; energy radiated at the infrared wavelength of the solar spectrum, solar irradiance, mounting structure, tilt angle, wind speed direction, Ambient temperature and panel material composition. However, the major factor is considered in this study to extract the heat generated in the PV panel by using nanofluid as a coolant to increase the overall system efficiency. Therefore, the result shows that by using 2 wt% Al2O3/water nanofluid the electrical efficiency, thermal efficiency and overall efficiency of the PVT system enhanced by 13%, 45%, and 58% respectively compared with water.

  3. Experimental studies of a matrix-tubular solar air collector

    Energy Technology Data Exchange (ETDEWEB)

    Plesca, M.; Varlan, P. [Moldova Technical Univ., Chisinau (Moldova, Republic of). Dept. of Heat and Gas Supply and Ventilation

    2009-06-15

    The most common types of solar air collectors (SAC) are contact-type and matrix-type collectors, with the latter being more efficient. This paper described the design and testing of a matrix-tubular flat solar air collector in the city of Chisinau, Moldova, where the outdoor climatic radiation, heat, and humidity characteristics are favorable for the efficient use of solar energy for building heating and drying applications. The amount of solar energy absorbed by a solar energy air collector depends on the level of insulation and orientation of the solar collector; the absorbance of the absorber surface; and the transmittance of the cover material. This study examined the heat transfer, efficiency, and pressure drop using copper tubes inserted perpendicular to the plane of the absorber plate. The SAC consists of a glazed insulated case, an absorber, and ducting for cold air delivery and hot air discharge. Copper tubes are inserted perpendicular to the plane of the absorber. The absorber is installed in the body of the SAC in such a way that it divides it into an upper channel and lower channel. The channel bottom is lined with aluminium foil that reflects solar radiation coming through the tubes and decreases heat loss in the solar collector. Copper tubes increase the heat exchange surface, create air turbulence and intensify heat transfer. This increases the efficiency of the solar collector. The pressure drop of the matrix-tubular solar air collector is 40 per cent lower than that of the matrix-plate collectors. 11 refs., 2 tabs., 6 figs.

  4. Characteristic of Local Boiling Heat Transfer of Ammonia / Water Binary Mixture on the Plate Type Evaporator

    Science.gov (United States)

    Okamoto, Akio; Arima, Hirofumi; Kim, Jeong-Hun; Akiyama, Hirokuni; Ikegami, Yasuyuki; Monde, Masanori

    Ocean thermal energy conversion (OTEC) and discharged thermal energy conversion (DTEC) are expected to be the next generation energy production systems. Both systems use a plate type evaporator, and ammonia or ammonia/water mixture as a working fluid. It is important to clarify heat transfer characteristic for designing efficient power generation systems. Measurements of local boiling heat transfer coefficients and visualization were performed for ammonia /water mixture (z = 0.9) on a vertical flat plate heat exchanger in a range of mass flux (7.5 - 15 kg/m2s), heat flux (15 - 23 kW/m2), and pressure (0.7 - 0.9 MPa). The result shows that in the case of ammonia /water mixture, the local heat transfer coefficients increase with an increase of vapor quality and mass flux, and decrease with an increase of heat flux, and the influence of the flow pattern on the local heat transfer coefficient is observed.

  5. PREDICTION OF OPTIMUM ANGLE OF SOLAR WATER HEATER FOR COIMBATORE LOCATION

    OpenAIRE

    M. Sekar; DR M. SAKTHIVEL; O. MANIYARASU; N.ALAGU MURUGAN

    2013-01-01

    The objective of this work was to investigate ways to enhance the performance of solar water heater system to encourage many households using it. The integrated collector storage is the type of solar water heater that has retained its existence for well over a century. The flat absorber plate integrated collector storage type is a relatively recent addition. Being effective, low cost and simple to manufacture, their importance has been further enhanced by the recent upsurge in efforts to effe...

  6. A solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' yev, L.L.; Avakyan, Yu.V.; Bogdanov, V.M.; Gagiyan, L.A.; Grakovich, L.P.; Karapetyan, G.S.; Morgun, V.A.

    1984-01-01

    A collector whose primary component is a heating pipe is proposed. The evaporation zone located in the lower half of the heating pipe has an external absorption coating. Chambers that open upward and contain the evaporating fluid are mounted within this region along the top. In order to improve operational reliability of the collector, these chambers are mounted on one coated wall; the area of projection of each of the chambers onto the horizontal plane is greater than the area of the projection of each of the chambers placed above it. The coating may be in the form of photocells; a filter is mounted on the chamber side inside the evaporation zone. The evaporation zone may take the form of a cylinder with a segmented base; the photocells are mounted on a flat section of the lateral surface. The collector may be used to cool the photocells.

  7. Miniature, ruggedized data collector

    Science.gov (United States)

    Jackson, Scott; Calcutt, Wade; Knobler, Ron; Jones, Barry; Klug, Robert

    2009-05-01

    McQ has developed a miniaturized, programmable, ruggedized data collector intended for use in weapon testing or data collection exercises that impose severe stresses on devices under test. The recorder is designed to survive these stresses which include acceleration and shock levels up to 100,000 G. The collector acquires and stores up to four channels of signal data to nonvolatile memory for later retrieval by a user. It is small (< 7 in3), light weight (< 1 lb), and can operate from various battery chemistries. A built-in menuing system, accessible via a USB interface, allows the user to configure parameters of the recorder operation, such as channel gain, filtering, and signal offsets, and also to retrieve recorded data for analysis. An overview of the collector, its features, performance, and potential uses, is presented.

  8. Thermal performance evaluation of Solar Energy Products Company (SEPCO) 'Soloron' collector tested outdoors

    Science.gov (United States)

    Chiou, J., Sr.

    1977-01-01

    The test article, Model EF-212, Serial Nr. 002, is a single glazed collector with a nonselective absorber plate, using flowing air as the heat transfer medium. The absorber plate and box frame are aluminum and the insulation is one inch isocyanurate foam board with thermal conductivity of 0.11 (BTU/sq ft Hr0/ft.) The tests included the following. (1) time constant test, (2) collector efficiency test, (3) collector stagnation test, (4) incident angle modifier test, (5) load test, (6) weathering test, and (7) absorber plate optical properties test. The results of these tests are tabulated, graphed, or otherwise recorded.

  9. Characterization of a direct methanol fuel cell using Hilbert curve fractal current collectors

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Yean-Der [Department of Refrigeration, Air-Conditioning and Energy Engineering, National Chun-Yi University of Technology, NO 35, Lane 215, Section 1, Chung-Shan Road, Taiping City, 411 Taichung County (China); Chang, Jing-Yi [Department of Mechanical and Electro-Mechanical Engineering, Tamkang University, Tamsui, 251 Taipei County (China); Lee, Shi-Min [Department of Aerospace Engineering, Tamkang University, Tamsui, 251 Taipei County (China); Lee, Shah-Rong [Department of Mechanical Engineering, Technology and Science Institute of Northern Taiwan, Peitou, 112 Taipei (China)

    2009-02-01

    The current collector or bi-polar plate is a key component in direct methanol fuel cells (DMFCs). Current collector geometric designs have significant influence on cell performance. This paper presents a continuous type fractal geometry using the Hilbert curve applied to current collector design in a direct methanol fuel cell. The Hilbert curve fractal geometry current collector is named HFCC (Hilbert curve fractal current collector). This research designs the current collector using a first, second and third order open carved HFCC shape. The cell performances of the different current collector geometries were measured and compared. Two important factors, the free open ratio and total perimeter length of the open carved design are discussed. The results show that both the larger free open ratio and longer carved open perimeter length present higher performance. (author)

  10. Characterization of a direct methanol fuel cell using Hilbert curve fractal current collectors

    Science.gov (United States)

    Kuan, Yean-Der; Chang, Jing-Yi; Lee, Shi-Min; Lee, Shah-Rong

    The current collector or bi-polar plate is a key component in direct methanol fuel cells (DMFCs). Current collector geometric designs have significant influence on cell performance. This paper presents a continuous type fractal geometry using the Hilbert curve applied to current collector design in a direct methanol fuel cell. The Hilbert curve fractal geometry current collector is named HFCC (Hilbert curve fractal current collector). This research designs the current collector using a first, second and third order open carved HFCC shape. The cell performances of the different current collector geometries were measured and compared. Two important factors, the free open ratio and total perimeter length of the open carved design are discussed. The results show that both the larger free open ratio and longer carved open perimeter length present higher performance.

  11. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region

    OpenAIRE

    Ndounla, J.; Pulgarin, C

    2015-01-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 +/- 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 ...

  12. Development of Hot Water Solar Oven for Low Temperature Thermal Processes

    Directory of Open Access Journals (Sweden)

    Segun R. BELLO

    2009-07-01

    Full Text Available The most useful form of the Hottel-Whiller-Bliss generalized performance equations for flat plate collector utilizing heat removal factor and loss coefficients is used to model a solar oven- water heating system for low thermal process application. The water heating system was designed, tested and evaluated with a daily collector efficiency of 51.82%, an average daily solar radiation of 689.23 (w/ºc per day and a useful gain by collector of 563.85 (w/ºc. Loss in collector is 116.39 (w/ºc and total average daily heat gain by water in collector is 292.26 (w/ºc. Average Daily storage heat capacity of 582.83 (KJ and the daily convected heat delivered to test chamber is 147.07 (KJ. The overall System efficiency of 25.24% was obtained.

  13. Study of the effect of water vapor on a resistive plate chamber with glass electrodes

    CERN Document Server

    Sakai, H H; Teramoto, Y; Nakano, E E; Takahashi, T T

    2002-01-01

    We studied the effects of water vapor on the efficiencies of resistive plate chambers with glass electrodes, operated in the streamer mode. With moisture in the chamber gas that has freon as a component (water vapor approx 1000 ppm), a decrease in the efficiency (approx 20%) has been observed after operating for a period of several weeks to a few months. From our study, the cause of the efficiency decrease was identified as a change on the cathode surface. In addition, a recovery method was found: flushing for 1 day with argon bubbled through water containing >=3% ammonia, followed by a few weeks of training with dry gas.

  14. Black Liquid Solar Collector Demonstrator.

    Science.gov (United States)

    Weichman, F. L.; Austen, D. J.

    1979-01-01

    Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)

  15. Studies efficiency solar air collector

    OpenAIRE

    YORKIN SODIKOVICH ABBASOV; MIRSOLI ODILJANOVICH UZBEKOV

    2016-01-01

    The article presents an analysis of the existing solar air collectors. A description of the design and the results of experimental studies on the effectiveness of the solar air collector with an absorber of from metal shavings.

  16. Aging and characterization of PVC compound used as flat-panel of a low cost solar collector; Envelhecimento e caracterizacao de compostos de PVC usado em placas de coletores solares de baixo custo

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Bruna R.; Pinto, Tatiana T.; Bartoli, Julio R. [Depto. de Tecnologia de Polimeros, Faculdade de Engenharia Quimica/Universidade Estadual de Campinas. FEQ/UNICAMP, SP (Brazil)], e-mail: bartoli@feq.unicamp.br; Fernandes, Elizabeth G. [Tezca P and D Celulas Solares (Brazil)

    2011-07-01

    Regardless the excellent amount of solar irradiation in Brazil, the development and production of solar water heating systems did not reach the low-income families yet. The relatively high cost of conventional solar water heaters is still the main reason to prevent it. The development of a low cost solar water heater (around US$ 200), easy technology, was the scope of previous work. All-plastic solar collector prototypes were developed using unplasticized Poly (vinyl chloride) ceiling panels and tubes, commodities from building engineering. Nevertheless, the main thermal and photo degradation mechanisms for PVC are well known; the unusual application of PVC as solar collector materials should need a specific investigation on environmental aging. This work presents a study on outdoor aging and characterization of PVC flat-plate absorber of solar collectors after 5 years on use. (author)

  17. CFD MODELING OF SOLAR COLLECTOR WITH NANO-FLUID DIRECT ABSORPTION FOR CIVIL APPLICATION

    OpenAIRE

    Simonetti, Marco; Chiavazzo, Eliodoro; Asinari, Pietro

    2013-01-01

    Direct solar absorption has been considered often in the past as a possible configuration of solar thermal collectors for residential and small commercial applications. Of course, a direct absorption could improve the performance of solar collectors by skipping one step of the heat transfer mechanism of standard devices and by modifying the temperature distribution inside the collector. In fact, classical solar thermal collectors have a metal sheet as absorber, designed such that water has th...

  18. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  19. Solar collector exergetic optimization for a multi effect humidification desalination prototype

    Directory of Open Access Journals (Sweden)

    R González-Acuña

    2016-09-01

    Full Text Available Venezuela is a country with a great deal of water resources. In spite of this, about 1.6 million inhabitants are dispersed in remote regions where water distribution is problematic due to the lack of this resource. A flat plate solar collector was built as a component of a single-stage Multi-Effect Humidification (MEH desalination plant prototype, and its characterization was done on a testing rig designed and constructed according to the ANSI/ASHRAE 93-2003 standards. In order to optimize the operation of this equipment, the exergetic change of the working fluid across the solar collector was maximized. This objective was accomplished through a numerical simulation of the solar collector performance using a predictive algorithm and available yearlong meteorological data. It was found that a mass flow rate equal to 0.006 kg/s (0.36 LPM should be maintain to ensure the maximum exergetic gain of the working fluid for an inlet temperature of 54°C.

  20. The Olympic Collectors

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Products bearing Beijing Olympics images are big business for China’s dedicated collectors As every December over last few years,retired teacher Li Mi in Beijing started to collect thick stacks of postcards sent by her former students from her mailbox in the weeks running up to the New Year.

  1. Leaves: Nature's Solar Collectors

    Science.gov (United States)

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  2. Health concerns of heterotrophic plate count (HPC) bacteria in dental equipment water lines.

    Science.gov (United States)

    Allen, Martin J; Edberg, Stephen C

    2016-06-01

    There is an unsubstantiated concern as to the health relevance of HPC (heterotrophic plate count) bacteria in dental equipment waterlines. The American Dental Association (ADA) web site includes guidelines for controlling HPC populations and implies that HPC populations >500 CFU/mL as a "health" benchmark. The world-wide published literature including the United Nations fully examined this situation and concluded that HPC bacteria are not a health risk, but merely a general water quality parameter for all waters including dental water lines. This review provides documentation that the standard measurement of HPC bacteria in waters alone do not pose a health risk and the ADA already provides appropriate practices to minimize HPC bacteria in dental equipment water.

  3. Characterization of gold and nickel coating on AISI 304 stainless steel for use in the fabrication of current collector plates for fuel cells; Caracterizacion de recubrimientos de oro y niquel realizados sobre acero inoxidable AISI 304 para su empleo en la fabricacion de placas colectoras de corriente para celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Aguilar Gama, M. Tulio [UNAM. Facultad de Quimica, Mexico D.F. (Mexico); Cano Castillo, Ulises; Albarran, Lorena [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Olvera, J. Carlos; Orozco, German [CIDETEQ, Pedro Escobedo, Queretaro (Mexico)

    2009-09-15

    Among the different components that compose fuel cell technology (MEA, bipolar plates, seals, etc.) current collector plates play an important role in the good performance of fuel cells, since they collect all of the current generated and distribute it to the external circuit. Therefore, the most important properties that the current collector plates should have are excellent conductivity and good resistance to the corrosive conditions present in the fuel cell. This document presents results obtained during the nickel and gold electrodeposition process on AISI 304 stainless steel and the morphology and thickness of each coating, their adhesion, hardness and conductivity values. Finally, results obtained during some of the electrochemical tests performed on the coatings are shown. [Spanish] De los diferentes componentes que integran la tecnologia de celdas de combustible (MEA's, placas bipolares, sellos, etc.), las placas colectoras de corriente tienen un importante rol en el buen desempeno de la celdas de combustibles, ya que en estas placas se colecta toda la corriente generada y se distribuye al circuito externo. Debido a esto, las propiedades mas importantes que deben tener las placas colectaras de corriente son: excelente conductividad y buena resistencia a las condiciones corrosivas presentes en la celda de combustible. En este documento se presentan los resultados obtenidos en el proceso de electrodeposicion de niquel y oro sobre acero inoxidable AISI 304, asi como la morfologia y el espesor de cada recubrimiento, sus valores de adherencia, dureza y conductividad. Finalmente se muestran tambien los resultados obtenidos de algunas pruebas electroquimicas a los que fueron sometidos los recubrimientos.

  4. Use of membrane collectors in electrostatic precipitators.

    Science.gov (United States)

    Bayless, D J; Pasic, H; Alam, M K; Shi, L; Haynes, B; Cochran, J; Khan, W

    2001-10-01

    Membrane collection surfaces, developed and patented by researchers at Ohio University, were used to replace steel plates in a dry electrostatic precipitator (ESP). Such replacement facilitates tension-based rapping, which shears the adhered particle layer from the collector surface more effectively than hammer-based rapping. Tests were performed to measure the collection efficiency of the membranes and to quantify the potential improvements of this novel cleaning technique with respect to re-entrainment. Results indicate that even semiconductor materials (e.g., carbon fibers) collect ash nearly as efficiently as steel plates, potentially indicating that collection surface resistivity is primarily dictated by the accumulated ash layer and not by the underlying plate conductivity. In addition, virtually all sheared particles separated from the collecting membranes fell within the boundary layer of the membrane, indicating extremely low potential for re-entrainment.

  5. Water structure near single and multi-layer nanoscopic hydrophobic plates of varying separation and interaction potentials

    Indian Academy of Sciences (India)

    Malay Rana; Amalendu Chandra

    2008-06-01

    We have performed a series of molecular dynamics simulations of water containing two nanoscopic hydrophobic plates to investigate the modifications of the density and hydrogen bond distributions of water in the vicinity of the surfaces. Our primary goal is to look at the effects of plate thickness, solute–solvent interaction and also interplate separation on the solvent structure in the confined region between two graphite-like plates and also near the outer surfaces of the plates. The thickness of the plates is varied by considering single and triple-layer graphite plates and the interaction potential is varied by tuning the attractive strength of the 12–6 pair interaction potential between a carbon atom of the graphite plates and a water molecule. The calculations are done for four different values of the tuning parameter ranging from fully Lennard–Jones to pure repulsive pair interactions. It is found that both the solvation characteristics and hydrogen bond distributions can depend rather strongly on the strength of the attractive part of the solute–water interaction potential. The thickness of the plates, however, is found to have only minor effects on the density profiles and hydrogen bond network. This indicates that the long range electrostatic interactions between water molecules on the two opposite sides of the same plate do not make any significant contribution to the overall solvation structure of these hydrophobic plates. The solvation characteristics are primarily determined by the balance between the loss of energy due to hydrogen bond network disruption, cavity repulsion potential and offset of the same by attractive component of the solute–water interactions. Our studies with different system sizes show that the essential features of solvation properties, e.g. wetting and dewetting characteristics for different interplate separations and interaction potentials, are also present in relatively smaller systems consisting of a few hundred

  6. Selection of antibiotic-resistant standard plate count bacteria during water treatment.

    Science.gov (United States)

    Armstrong, J L; Calomiris, J J; Seidler, R J

    1982-08-01

    Standard plate count (SPC) bacteria were isolated from a drinking-water treatment facility and from the river supplying the facility. All isolates were identified and tested for their resistance to six antibiotics to determine if drug-resistant bacteria were selected for as a consequence of water treatment. Among the isolates surviving our test procedures, there was a significant selection (P less than 0.05) of gram-negative SPC organisms resistant to two or more of the test antibiotics. These bacteria were isolated from the flash mix tank, where chlorine, alum, and lime are added to the water. Streptomycin resistance in particular was more frequent in this population as compared with bacteria in the untreated river water (P less than 0.01). SPC bacteria from the clear well, which is a tank holding the finished drinking water at the treatment facility, were also more frequently antibiotic resistant than were the respective river water populations. When 15.8 and 18.2% of the river water bacteria were multiply antibiotic resistant, 57.1 and 43.5%, respectively, of the SPC bacteria in the clear well were multiply antibiotic resistant. Selection for bacteria exhibiting resistance to streptomycin was achieved by chlorinating river water in the laboratory. We concluded that the selective factors operating in the aquatic environment of a water treatment facility can act to increase the proportion of antibiotic-resistant members of the SPC bacterial population in treated drinking water.

  7. Investigation of methods to transfer heat from solar liquid-heating collectors to heat storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    de Winter, F.

    1976-01-01

    A number of possible solutions to the problems of corrosion and freezing in flat-plate collectors are listed and discussed briefly. Specific considerations involved in the choice and definition of these solutions are discussed in greater detail. (MHR)

  8. 复合型空气-水太阳集热器热性能研究及影响因素分析%Collection Hot Performance and Influence Factor Analysis for Compound Air-water Solar Collector

    Institute of Scientific and Technical Information of China (English)

    肖菊; 孙寅聪; 邢乃豪; 谢毅; 高林朝

    2015-01-01

    对研制的一种复合型空气-水太阳集热器建立数学模型并进行冬季空气采暖集热效率模拟。对比分析了立面90°和坡屋面45°两种安装倾角在不同工况下集热器的热性能,研究了循环介质质量流量及太阳辐射强度等因素对集热器集热效率和出口温度的影响。%The mathematical model is established by programming to simulate winter air heating collection efficiency for a kind of compound air⁃water solar collectors. We make comparative analysis for the collection efficiency of the collectors under installation angles of elevation 90° and 45° slope roof and study the influence of air flow and solar radiation intensity on collector efficiency and the outlet temperature.

  9. In situ built-up air collector with glass cover

    DEFF Research Database (Denmark)

    Kristiansen, Finn Harken; Engelmark, Jesper

    1998-01-01

    as an absorber. Efficiency and aair pressure drop were measured. The efficiency of the two air solar collectors was almost similar and at the same level as other corresponding air solar collectors. The air pressure drop was somewhat larger in the case of the solar collector where the air flows behind...... with a cover of glass where the horizontal joints were made by means of different methods and materials. As a general principle a water-damming border at the horizontal glass joints was avoided. The test box was built as a solar collector with 14 different horizontal joints between the glasses. The box...... the absorber. This is due to the narrower air gap behind the absorber. Condensation has been observed in both the solar collectors, this has not been investigated more explicitly,...

  10. Thermal performance evaluation of the Solargenics solar collector at outdoor conditions

    Science.gov (United States)

    1978-01-01

    Test procedures used during the performance of an evaluation program are presented. The test program was conducted to obtain the following performance data and information on the solar collector. (1) thermal performance data under outdoor conditions; (2) structural behavior of collector under static conditions; (3) effects of long term exposure to material weathering elements. The solargenics is a liquid, single-glazed, flat plate collector. Approximate dimensions of each collector are 240 inches long, 36 inches wide, and 3.5 inches in depth.

  11. Design and fabrication considerations of EUVL collectors for HVM

    Science.gov (United States)

    Bianucci, G.; Cassol, G. L.; Kools, J.; Prea, M.; Salmaso, G.; Valsecchi, G.; Zocchi, F. E.; Bolshukhin, D.; Schürmann, M.; Schriever, G.; Mader, A.; Zink, P.

    2009-03-01

    The power roadmap for EUVL high volume manufacturing (HVM) exceeds the 200W EUV in-band power at intermediate focus, thus posing more demanding requirements on HVM sources, debris suppression systems and collectors. Starting from the lessons learned in the design and fabrication of the grazing incidence collectors for the Alpha EUVL scanners, Media Lario Technologies is developing HVM optical solutions that enable designed-in lifetime improvements, such as larger source-collector distances, optimized collection efficiency through larger collected solid angles, and customized EUV reflective layers. The optical design of an HVM collector is described together with the selection of the sacrificial ruthenium reflective layer. The water cooling layout of the collector is evolved from the integrated cooling technology developed at Alpha level into an innovative cooling layout that minimizes the thermal gradients across the mirrors and allows controlling the optical performance at the far-field plane. Finally, the evolution of the collector's manufacturing technologies for HVM is discussed. XTREME technologies and Philips Extreme UV support this work by integrating the collector in the complete source collector module (SoCoMo). At system level, each component of the SoCoMo is part of a development and improvement plan leading to a comprehensive system that will fulfill the 200+ W EUV in-band power at intermediate focus.

  12. Testing of a solar collector with concentrating mirrors

    Science.gov (United States)

    1980-01-01

    Commerical flat-plate solar collector with concentrating mirrors has been tested for thermal performance, structured behavior under static load, and effects of long-term natural weathering. Report documents results of testing and concludes that absorptivity was degraded by weathering.

  13. Shock Analysis of Water Backed Perforated Plate Subjected to Underwater Explosion

    Science.gov (United States)

    Nandagopan, Obla Ramanandam; Ranjithkumar, Santharam; Nandakumar, Chirayil Gopalakrishnannair

    2016-07-01

    Perforated plates are essential structural components of sonar acoustic domes of the submarines and underwater platforms. The sonar acoustic domes are considered as `water backed condition' for structural analysis. It is of utmost importance to study the structural response of sonar acoustic domes subjected to noncontact underwater explosion since it has wide scope in defence application. It is intended to investigate the free field pressure due to the underwater explosion and structural response of perforated plate using ANSYS LS-DYNA software for plastic explosive kirkee (PEK), Tri Nitro Toluene (TNT) and Composition 4 explosives. The free field pressure from TNT explosion is validated with the Cole's expression available for this explosive. The time history plots for free field pressure, displacement and principal stress are plotted for all the three explosives. The free field pressure is validated with Cole's formula and found 18 % variation for TNT and 14 % for PEK explosive.

  14. A solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, L.L.; Avakyan, Yu V.; Dabagyan, T.N.; Grakovich, L.P.; Khustalev, D.K.; Morgun, V.A.; Vartanyan, A.V.

    1984-01-01

    During collector operation, solar emission is absorbed by the evaporator section of the heating tube; the degree of blackness of the forward wall of the section is increased significantly by the use of corrugations in this section. Boiling of the working fluid in the longitudinal slotted channels is accompanied by outbursts of the steam fluid mixture in the direction of the forward wall, resulting in wetting of the longitudinal corrugation on this wall. In this solar collector, there is a continuous flow of the working fluid onto the internal surface of the leading wall of the evaporation section of the heat tube; the working fluid evaporation process is accelerated by the spraying resulting from the popping of vapor bubbles.

  15. Solar collector array

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  16. Experimental and Theoretical Study for Performance Enhancement of Air Solar Collectors by Using Different Absorbers

    Directory of Open Access Journals (Sweden)

    Ahmed A. Mohammad Saleh

    2016-09-01

    Full Text Available An experimental and theoretical study has been done to investigate the thermal performance of different types of air solar collectors, In this work air solar collector with a dimensions of (120 cm x90 cm x12 cm , was tested under climate condition of Baghdad city with a (43° tilt angel by using the absorber plate (1.45 mm thickness, 115 cm height x 84 cm width, which was manufactured from iron painted with a black matt. The experimental test deals with five types of absorber:- Conventional smooth flat plate absorber , Finned absorber , Corrugated absorber plate, Iron wire mesh on absorber And matrix of porous media on absorber . The hourly and average efficiency of the collectors were investigated for three values of mass flow rates (0.016 kg/s to 0.027 kg/s for each type of collector and then the porosity for the last collector type was tested by changing the porosity of porous media. A typical air solar collector has been studied Theoretically to build a standard software for testing any type of air solar collectors with local weather data . From the experimental study it can be seen by using some obstacle material to the air flow (fins, corrugated absorber plate, iron wire mesh porous media on the absorber could be enhanced the efficiencies not less than 4 % for finned type and 8 % for corrugated and 25 % for mesh and 30 % for porous media comparing with flat plate (smooth collector . Theoretically, the results showed that the collector with high convention heat transfer coefficient porous media has high hourly efficiency about (η = 56 % and iron wire mesh on absorber ( η = 52 % , on the other side the minimum performance occurred in the flat plate absorber (η = 28 %. Comparison of results reveals that the theoretical predictions agree reasonably well with experimental results. And the difference between the theoretical and experimental efficiency in general was between (1─ 15 %.

  17. 平板太阳能集热器与建筑物屋顶的一体化结构设计%Integrated Structural Design of Flat-plate Solar Collector and Building Roof

    Institute of Scientific and Technical Information of China (English)

    梁春华; 吴永明; 曾玲

    2015-01-01

    在建筑设计阶段考虑太阳能集热器与建筑物屋顶的一体化结构设计,可以满足太阳能利用、设施维护、屋顶空间利用和建筑美学等要求。在计算出接收太阳辐射的最佳屋顶坡度的基础上,对双坡对称屋顶、双坡不对称屋顶、单坡屋顶和平屋顶等几种屋顶结构形式进行太阳能集热器安装结构的设计比较,分别分析在不同纬度地区每种屋顶结构在可利用的屋面面积、有效集热器面积和屋顶空间利用等方面的优势和劣势。为了便于太阳能集热器及其水管的安装与维护,提出了一种有维护通道的坡屋顶结构形式。%Considering the integrated structural design of solar collectors and building roof in the building design stage, it is able to satisfy the requirements of solar energy utilization, equipment mainte-nance, roof-space utilization and architectural aesthetics. On the basis of calculating the roof obliquity for best receiving solar radiation, several forms of roof structure are presented, and their advantages and disad-vantages in areas of different latitude are analyzed in roof area, effective area of solar collector and roof space utilization. To be convenient for installation and maintenance of solar collectors and their pipes, a roof structure with maintenance alleyway is presented.

  18. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.

    Science.gov (United States)

    Van Nevel, S; Koetzsch, S; Proctor, C R; Besmer, M D; Prest, E I; Vrouwenvelder, J S; Knezev, A; Boon, N; Hammes, F

    2017-04-15

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.

  19. Performance of double -pass solar collector with CPC and fins for heat transfer enhancement

    Science.gov (United States)

    Alfegi, Ebrahim M. A.; Abosbaia, Alhadi A. S.; Mezughi, Khaled M. A.; Sopian, Kamaruzzaman

    2013-06-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  20. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  1. Experiment and simulation for convective heat transfer in all-glass evacuated tube solar collectors%全玻璃真空管太阳能集热器对流换热试验与模拟

    Institute of Scientific and Technical Information of China (English)

    张涛; 韩吉田; 田瑞; 于泽庭

    2016-01-01

    efficiency of experiment for high absorption is 1.17% higher than that of low absorption. The thermal efficiency of experiment for solar collectors increases by 2.17% after equipped with guide plate, because the mixed flow in the vacuumvacuum tube disappears and the guide plate strengthens the flow at the bottom of the vacuum tube. The reasonable plate thickness of guide plate for all-glass vacuum tube water heaters is 2 mm, the reasonable plate length of guide plate is 60-100 mm distance from the bottom of the vacuum tube, and the reasonable position of guide plate is 16-20 mm above the axial line of the vacuum tube. The forced convection results show that the Reynolds number and the Nusselt number decrease gradually after the fluent flow into manifold but the Reynolds number and the Nusselt number increase gradually at the exit of manifold. Although the fluent is extremely volatile along the vacuum tube, the Reynolds number and the Nusselt number of horizontal double collectors are higher than that of vertical single collector. The angle between speed vector and temperature gradient vector is 0° with downward fluid and 180° with upward flow, because the collector overall temperature is gradually reduced from vacuum tube bottom to manifold. It makes more fluid absorb the bottom heat, because the internal flow of vacuum tube is smooth and the mixed flow in vacuum tube disappears. Manifold velocity gradually decreases because there is backflow interiorly, but temperature increases because fluid absorbs solar radiation, and the field synergy in collector outlet is higher than others because temperature field is consistent with velocity field according to numerical simulation. Although the entransy increments of vertical single collector and horizontal double collectors are negative values in initial period, they gradually rise with the heat time increasing. There are 2 parts for entransy dissipation in the vacuum tube. The entransy dissipation of horizontal double collectors

  2. An analytical investigation of the performance of solar collectors as nighttime heat radiators in airconditioning cycles

    Science.gov (United States)

    Jones, C. B.; Smetana, F. O.

    1979-01-01

    It was found that if the upper and lower ends of a collector were opened, large free convention currents may be set up between the collector surface and the cover glass(es) which can result in appreciable heat rejection. If the collector is so designed that both plates surfaces are exposed to convection currents when the upper and lower ends of the collector enclosure are opened, the heat rejection rate is 300 watts sq m when the plate is 13 C above ambient. This is sufficient to permit a collector array designed to provide 100 percent of the heating needs of a home to reject the accumulated daily air conditioning load during the course of a summer night. This also permits the overall energy requirements for cooling to be reduced by at least 15 percent and shift the load on the utility entirely to the nighttime hours.

  3. Heterotrophic plate count and consumer's health under special consideration of water softeners.

    Science.gov (United States)

    Hambsch, Beate; Sacré, Clara; Wagner, Ivo

    2004-05-01

    The phenomenon of bacterial growth in water softeners is well known since years. To upgrade the hygienic safety of water softeners, the German DIN Standard 19636 was developed, to assure that the distribution system could not be contaminated by these devices and that the drinking water to be used in the household still meets the microbiological standards according to the German drinking water guidelines, i.e. among others heterotrophic plate count (HPC) below 100 CFU/ml. Moreover, the standard for the water softeners includes a test for contamination with Pseudomonas aeruginosa which has to be disinfected during the regeneration phase. This is possible by sanitizing the resin bed during regeneration by producing chlorine. The results of the last 10 years of tests of water softeners according to DIN 19636 showed that it is possible to produce water softeners that comply with that standard. Approximately 60% of the tested models were accepted. P. aeruginosa is used as an indicator for potentially pathogenic bacteria being able to grow also in low nutrient conditions which normally prevail in drinking water. Like other heterotrophs, the numbers of P. aeruginosa increase rapidly as stagnation occurs. Normally P. aeruginosa is not present in the distributed drinking water. However, under certain conditions, P. aeruginosa can be introduced into the drinking water distribution system, for instance, during construction work. The occurrence of P. aeruginosa is shown in different cases in treatment plants, public drinking water systems and in-house installations. The compliance with DIN 19636 provides assurance that a water softener will not be a constant source of contamination, even if it is once inoculated with a potentially pathogenic bacterium like P. aeruginosa.

  4. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, Arvind; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank, resp

  5. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank, resp

  6. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank,

  7. Analysis on strength and stiffness of double-deck plates filter system of mechanical water treatment plant

    Science.gov (United States)

    Feng, De-zhen; Yu, Qi-qi

    2017-01-01

    Domestic water treatment is a very important technology field. Now, mechanical water treatment technology is getting wide use in production. In the process of life water treatment, filter process is a very important step. In this paper, the strength and deformation of double-deck plates filter system which includes upper filter plate, lower filter plate and reinforced ribs were analyzed with ANSYS and useful results were got. Through the analysis on strength and deformation, the paper found the advantages and disadvantages of production and design of filter systems. After analyzing and comparing the stresses and deformations of several different design schemes, the paper provided the optimized design plan of filter system which can satisfy the strength need and decrease the creep deformation of plastic filter plates.

  8. Long-term weathering effects on the thermal performance of the solargenics (liquid) solar collector at outdoor conditions. [Marshall Space Flight Center Solar test facility

    Science.gov (United States)

    1979-01-01

    The test procedures and the results obtained during the evaluation of a single-covered liquid solar collector are presented. The tests were performed under outdoor natural conditions. The collector was under stagnation conditions for a total of approximately ten months. The solar collector is a liquid, single-glazed, flat plate collector, and is about 240 inches long, and 3.8 inches in depth.

  9. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  10. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  11. Sensitivity analysis of thermal performances of flat plate solar air heaters

    Science.gov (United States)

    Njomo, Donatien; Daguenet, Michel

    2006-10-01

    Sensitivity analysis is a mathematical tool, first developed for optimization methods, which aim is to characterize a system response through the variations of its output parameters following modifications imposed on the input parameters of the system. Such an analysis may quickly become laborious when the thermal model under consideration is complex or the number of input parameters is high. In this paper, we develop a mathematical model to analyse the heat exchanges in four different types of solar air collectors. When building this thermal model we show that for each collector, at quasi-steady state, the energy balance equations of the components of the collector cascade into a single first-order non-linear differential equation that is able to predict the thermal behaviour of the collector. Our heat transfer model clearly demonstrates the existence of an important dimensionless parameter, referred to as the thermal performance factor of the collector, that compares the useful thermal energy which can be extracted from the heater to the overall thermal losses of that collector for a given set of input parameters. A sensitivity analysis of our thermal model has been performed for the most significant input parameters such as the incident solar irradiation, the inlet fluid temperature, the air mass flow rate, the depth of the fluid channel, the number and nature of the transparent covers in order to measure the impact of each of these parameters on our model. An important result which can be drawn from this study is that the heat transfer model developed is robust enough to be used for thermal design studies of most known flat plate solar air heaters, but also of flat plate solar water collectors and linear solar concentrators.

  12. 太阳能集热器研究进展%Research progress on solar energy collector

    Institute of Scientific and Technical Information of China (English)

    朱冬生; 徐婷; 蒋翔; 黄银盛; 漆小玲

    2012-01-01

    Solar energy water heating is one of the most mature, practical and economical solar utilization technology which can compete with conventional energy. Solar energy collector is the core component of solar water heater. The device is used to convert solar radiation to thermal which can be used to heat the working fluid. The advantages and disadvantages of flat plate solar collector and vacuum tube collector were compared. And the development trend of solar water heating technology were analyzed.%太阳能热水技术在太阳能利用技术中最为成熟、实际应用最多且在经济上能与常规能源竞争.太阳能集热器是太阳能热水器的核心部件,是用于吸收太阳辐射并使之转换为热能传递给热介质的装置.介绍了平板型太阳能集热器和真空管太阳能集热器,并对两者的优缺点进行对比,对其发展趋势进行了分析.

  13. Performance of a solar collector with antireflection treated glass cover

    DEFF Research Database (Denmark)

    Duer, Karsten

    1999-01-01

    The spectral transmittances of two different glass types have been measured in a spectrophotometer. Both glass types have been investigated with and without a Sunarc anti reflection surface (AR surface). The transmittance data for the AR treated samples have been used as input to the AR treatment...... process in order to improve the solar transmittance for the glass samples. A standard flat plate solar collector has been tested in the indoor solar simulator. The purpose of the tests was to evaluate the improvement in collector performance that can be expected by replacing the standard cover...

  14. Heat transfer studies in a spiral plate heat exchanger for water: palm oil two phase system

    Directory of Open Access Journals (Sweden)

    S. Ramachandran

    2008-09-01

    Full Text Available Experimental studies were conducted in a spiral plate heat exchanger with hot water as the service fluid and the two-phase system of water – palm oil in different mass fractions and flow rates as the cold process fluid. The two phase heat transfer coefficients were correlated with Reynolds numbers (Re in the form h = a Re m, adopting an approach available in literature for two phase fluid flow. The heat transfer coefficients were also related to the mass fraction of palm oil for identical Reynolds numbers. The two-phase multiplier (ratio of the heat transfer coefficient of the two phase fluid and that of the single phase fluid was correlated with the Lockhart Martinelli parameter in a polynomial form. This enables prediction of the two-phase coefficients using single-phase data. The predicted coefficients showed a spread of ± 10 % in the laminar range.

  15. Indoor test for thermal performance evaluation of Lenox-Honeywell solar collector. [conducted using Marshall Space Flight Center Solar Simulator

    Science.gov (United States)

    Shih, K.

    1977-01-01

    The test procedures used and the test results obtained from an evaluation test program conducted on a double-covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using liquid as the heat transfer medium. The absorber plate was steel with the copper tubes bonded on the upper surface. The plate was coated with black chrome with an absorptivity factor of .95 and emissivity factor of .12. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.

  16. An Experimental Study on Evacuated Tube Solar Collector using Therminol D-12 as Heat Transfer Fluid Coupled with Parabolic Trough

    Directory of Open Access Journals (Sweden)

    P.Selvakumar

    2014-03-01

    Full Text Available An evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough is studied in this paper. An experimental set-up was constructed to study the performance of evacuated tube collector with therminol D-12 as heat transfer fluid. The parabolic trough is coupled with evacuated tube collector for better performance. In the traditional solar collectors water is used as heat transfer fluid. The problems in using water as heat transfer fluid are addressed in detail in this paper. The temperature characteristics of heat transfer fluid and water in the storage tank and the heating efficiency are determined under various conditions. The efficiency of therminol based evacuated tube collector coupled with parabolic trough is 40% more than that of water based evacuated tube collector coupled with parabolic trough. This study projects the potential of therminol based evacuated tube solar collector coupled with parabolic trough in the instant hot water generation.

  17. An experimental investigation with artificial sunlight of a solar hot-water heater

    Science.gov (United States)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot water heater in a solar simulator to determine basic performance characteristics of a traditional type of flat plate collector, with and without side reflectors (to increase the solar flux). Information on each of the following was obtained; (1) the effect of flow and incidence angle on the efficiency of a flat plate collector (but only without side reflectors); (2) transient performance under flow and nonflow conditions; (3) the effectiveness of reflectors to increase collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning; and (4) the limits of applicability of a collector efficiency correlation based on the Hottel Whillier equation.

  18. Drilling and cutting of thin metal plates in water with radiation of a repetitively pulsed Nd : YAG laser

    Science.gov (United States)

    Glova, A. F.; Lysikov, A. Yu

    2011-10-01

    The conditions of drilling and cutting of 0.15-mm-thick titanium and stainless steel plates in water with the radiation of a repetitively pulsed Nd : YAG laser having the mean power up to 30 W are studied experimentally in the absence of water and gas jets. Dependences of the maximal cutting speed in water on the radiation power are obtained, the cutting efficiency is determined, and the comparison with the conditions of drilling and cutting of plates in air is carried out.

  19. One-year assessment of a solar space/water heater--Clinton, Mississippi

    Science.gov (United States)

    1981-01-01

    Unit called "System 4" integrated into space-heating and hot-water systems of dormitory satisfied 32 percent of building heat load. System 4 includes flat-plate air collectors, circulation blowers, rock storage bed with heat exchanger, two hot water tanks, and auxiliary heaters. Report describes performance of system and subsystems, operating-energy requirements and savings, and performance parameters.

  20. Combined solar collector

    OpenAIRE

    Voznyak, O.; Shapoval, S.; Pona, O.; Vengryn, I.

    2014-01-01

    In this article was analyzing the efficiency of the combined solar collector for heating buildings. This enhances the efficiency of solar system by increasing the area of the absorption of solar energy. There are describes the results of the research on solar radiation input on a combined solar collector. Проаналізовано ефективність використання комбінованого сонячного колектора для теплопостачання будівель. Він забезпечує підвищення ефективності геліосистеми за рахунок збільшення площі погли...

  1. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring

    KAUST Repository

    Van Nevel, S.

    2017-02-08

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.

  2. The influence of circuit inductance on the energy characteristics of electric discharge and deformation of plates in water

    Science.gov (United States)

    Kosenkov, V. M.; Bychkov, V. M.

    2017-08-01

    We have experimentally studied the influence of discharge-circuit inductance on the efficiency of conversion of energy stored in a capacitor bank, evolved in the electric-discharge channel in water, and spent for the resulting plastic deformation of plates. It is established for the first time that a growth in inductance of the discharge circuit produces a positive effect on the deformation of plates by increasing the amount of energy spent in this process.

  3. High-performance solar collector

    Science.gov (United States)

    Beekley, D. C.; Mather, G. R., Jr.

    1979-01-01

    Evacuated all-glass concentric tube collector using air or liquid transfer mediums is very efficient at high temperatures. Collector can directly drive existing heating systems that are presently driven by fossil fuel with relative ease of conversion and less expense than installation of complete solar heating systems.

  4. Collector-Output Analysis Program

    Science.gov (United States)

    Glandorf, D. R.; Phillips, Robert F., II

    1986-01-01

    Collector-Output Analysis Program (COAP) programmer's aid for analyzing output produced by UNIVAC collector (MAP processor). COAP developed to aid in design of segmentation structures for programs with large memory requirements and numerous elements but of value in understanding relationships among components of any program. Crossreference indexes and supplemental information produced. COAP written in FORTRAN 77.

  5. Quality and efficiency of solar collectors in Sweden

    Science.gov (United States)

    Wennerholm, H.

    Transparent or translucent insulation materials (TIM's) represent a new class of materials with a high potential for increasing the efficiency of solar thermal conversion systems. A large number of materials have been subjected to theoretical and experimental investigation. If materials that suppress heat losses are transparent to solar radiation, vacuum, certain gases, convection barriers, etc., then they can be regarded as TIM's. Exploratory field and laboratory studies of degraded FEP-film convection barriers in flat plate thermal solar collectors are described. The study related to collectors that had been operating in Sweden for periods of one year to ten years. Both physical, functional (thermal) and chemical aspects of degradation were considered. The report identifies the mistakes made so that they need not be repeated by the solar collector manufacturers in the future.

  6. Water, oceanic fracture zones and the lubrication of subducting plate boundaries—insights from seismicity

    Science.gov (United States)

    Schlaphorst, David; Kendall, J.-Michael; Collier, Jenny S.; Verdon, James P.; Blundy, Jon; Baptie, Brian; Latchman, Joan L.; Massin, Frederic; Bouin, Marie-Paule

    2016-03-01

    We investigate the relationship between subduction processes and related seismicity for the Lesser Antilles Arc using the Gutenberg-Richter law. This power law describes the earthquake-magnitude distribution, with the gradient of the cumulative magnitude distribution being commonly known as the b-value. The Lesser Antilles Arc was chosen because of its along-strike variability in sediment subduction and the transition from subduction to strike-slip movement towards its northern and southern ends. The data are derived from the seismicity catalogues from the Seismic Research Centre of The University of the West Indies and the Observatoires Volcanologiques et Sismologiques of the Institut de Physique du Globe de Paris and consist of subcrustal events primarily from the slab interface. The b-value is found using a Kolmogorov-Smirnov test for a maximum-likelihood straight line-fitting routine. We investigate spatial variations in b-values using a grid-search with circular cells as well as an along-arc projection. Tests with different algorithms and the two independent earthquake cataloges provide confidence in the robustness of our results. We observe a strong spatial variability of the b-value that cannot be explained by the uncertainties. Rather than obtaining a simple north-south b-value distribution suggestive of the dominant control on earthquake triggering being water released from the sedimentary cover on the incoming American Plates, or a b-value distribution that correlates with on the obliquity of subduction, we obtain a series of discrete, high b-value `bull's-eyes' along strike. These bull's-eyes, which indicate stress release through a higher fraction of small earthquakes, coincide with the locations of known incoming oceanic fracture zones on the American Plates. We interpret the results in terms of water being delivered to the Lesser Antilles subduction zone in the vicinity of fracture zones providing lubrication and thus changing the character of the

  7. Investigation of Valve Plate in Water Hydraulic Axial Piston Motor%水压轴向柱塞马达配流盘的研究

    Institute of Scientific and Technical Information of China (English)

    聂松林; 李壮云; 杨曙东

    2002-01-01

    This paper has introduced the developments of water hydraulic axial piston equipments. According to the effects of physicochemical properties of water on water hydraulic components, a novel valve plate for water hydraulic axial motor has been put forward, whose moment exerted by the fluid field between valve plate and bearing plate is balanced entirely. The material screening experiment of valve plate is done on the test rig. Through numerical simulation the effects of some geometry parameters on the performance of water hydraulic motor have been studied. The silencing grooves on the valve plate in water hydraulic motor can reduce the pressure shock and the occurrence of cavitation effectively. It is evident that the appropriate structure should change the wear status between matching pairs and reduces the wear and specific pressure of the matching pairs. The specimen with the new type valve plate is used in a tool system.

  8. Fresnel zone plate telescope for condenser alignment in water-window microscope

    Science.gov (United States)

    Wachulak, Przemyslaw W.; Torrisi, Alfio; Bartnik, Andrzej; Węgrzyński, Łukasz; Fok, Tomasz; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Miroslaw; Fiedorowicz, Henryk

    2015-05-01

    Microscopes operating at short wavelengths, in the extreme ultraviolet and soft x-ray spectral region, require careful condenser positioning to avoid possible artifacts related to enhancing or diminishing certain spatial frequencies in the image plane. Various methods are often used to visualize the condenser illumination pattern, including direct visualization on a CCD camera; however, these are not always straightforward to use. We present and discuss a novel and convenient method to image a condenser illumination pattern upstream the sample plane, using two zone plates with matched numerical apertures. This imaging system, operating herein in the water-window spectral range in telescope configuration, allows us to change the distance between the conjugated planes, thus overcoming limitations related to the geometry of the vacuum system. This geometry, which is optimized for the highest possible spatial resolution allowed by the zone-plate objective, is not necessarily particularly good for visualization of the condenser illumination pattern. The presented method was demonstrated with a compact, gas puff target source based soft x-ray microscope, which is capable of resolving 60 nm features (half-pitch resolution), requires a few seconds exposure time, and is debris-free due to the gaseous nature of the target for soft x-ray generation. The method, presented herein, may solve mentioned vacuum system geometry limitations. Also, it can easily be extended to other systems and other wavelengths, provided a proper optic is used. Modes of operation and the results are presented and discussed.

  9. Compilation of publication and results from project C2: Modelling of microclimates in collectors

    Energy Technology Data Exchange (ETDEWEB)

    Holck, O. [ed.

    1999-08-01

    It is important to avoid condensation in solar collectors, most of all because wetness of the absorber can damage the selective surface and cause corrosion on the absorber plate. During night time the cover of collectors will cool below ambient temperature due to thermal radiation to the cold sky. In climates where the air during night time becomes saturated with humidity (the relative humidity is 100%), condensation will form on the outside and inside of the collector glazing. If too much condensation takes place on the inside of the glazing, it will start to fall off on to the absorber surface. The intent of the present work is improvement of a existing computer model for calculation of microclimates data in collectors. Calculations with the model give insight in the humidity and temperature for artificial or realistic climatic data. This design tool makes it possible to calculate the effect of ventilation and insulation materials. Results from investigation of ventilation rates together with a model of the moisture inside the collector are built into the computer program. It has been found that modelling of the moisture transfer in backside insulation is essential to determine the humidity in the air gap of the collector. The objective is to develop guidelines for solar collector design to achieve the most favourable microclimates condition for materials. As a tool the computer model will be useful to fulfil this. Guidelines for collectors will be essential for manufactures to improve the long-term durability of solar collectors. (au)

  10. Heat transfer coefficient distribution over the inconel plate cooled from high temperature by the array of water jets

    Science.gov (United States)

    Malinowski, Z.; Telejko, T.; Cebo-Rudnicka, A.; Szajding, A.; Rywotycki, M.; Hadała, B.

    2016-09-01

    The industrial rolling mills are equipped with systems for controlled water cooling of hot steel products. A cooling rate affects the final mechanical properties of steel which are strongly dependent on microstructure evolution processes. In case of water jets cooling the heat transfer boundary condition can be defined by the heat transfer coefficient. In the present study one and three dimensional heat conduction models have been employed in the inverse solution to heat transfer coefficient. The inconel plate has been heated to about 900oC and then cooled by one, two and six water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient distributions at plate surface have been determined in time of cooling.

  11. Investigation of a hybrid PVT air collector system

    Science.gov (United States)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  12. A Process Heat Application Using Parabolic Trough Collector

    Science.gov (United States)

    Yılmaz, İbrahim Halil; Söylemez, Mehmet Sait; Hayta, Hakan; Yumrutaş, Recep

    A pilot study has been performed based on a heat process application that is designed, installed and tested at Gaziantep University to establish the technical and economic feasibility of high temperature solar-assisted cooking process. The system has been designed to be satisfying the process conditions integrated with parabolic trough solar collector (PTSC). It is primarily consists of the PTSC array, auxiliary heater, plate type heat exchanger, cooking system and water heating tanks. In the operation of the process heat application, the energy required to cook wheat (used as cooking material) has been supplied from solar energy which is transferred to heat transfer fluid (HTF) by heat exchanging units and finally discharged to water in order to produce bulgur. The performance parameters of the sub-systems and the process compatibility have been accomplished depending on the system operation. In addition that the system performance of the high temperature solar heat process has been presented and the recommendations on its improvement have been evaluated by performing an experimental study. As a result that the use of solar energy in process heat application has been projected and its contribution to economics view with respect to conventional cooking systems has been conducted.

  13. LHCb Tag Collector

    CERN Document Server

    Fuente Fernàndez, P; Cousin, N

    2011-01-01

    The LHCb physics software consists of hundreds of packages, each of which is developed by one or more physicists. When the developers have some code changes that they would like released, they commit them to the version control system, and enter the revision number into a database. These changes have to be integrated into a new release of each of the physics analysis applications. Tests are then performed by a nightly build system, which rebuilds various configurations of the whole software stack and executes a suite of run-time functionality tests. A Tag Collector system has been developed using solid standard technologies to cover both the use cases of developers and integration managers. A simple Web interface, based on an AJAX-like technology, is available. Integration with software management and Nightly Build programs is possible via a Python API. Data are stored in a relational database with the help of an ORM (Object-Relational Mapping) library.

  14. Vortex shedding experiment with flat and curved bluff plates in water

    Science.gov (United States)

    Reed, D.; Nesman, T.; Howard, P.

    1988-01-01

    Vortex shedding experiments were conducted in a water flow facility in order to simulate the strong discrete 4000-Hz vibration detected in the Space Shuttle Main Engine (SSME) which is thought to be associated with the SSME LOX inlet tee splitter vanes on the Main Injector. For the case of a flat vane with a blunt trailing edge excited by flow induced vortex shedding, lock-in with the first bending mode of the plate was observed. A curved vane displayed similar behavior, with the lock-in being a more discrete higher amplitude response. Aluminum vanes were employed to decouple the first vane bending mode from the vortex shedding mode. The application of an asymmetric 30-deg trailing edge bevel to both the flat and curved vanes was found to greatly reduce the strength of the shed vortices.

  15. Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safaei

    2016-09-01

    Full Text Available In the present study, the heat transfer and flow of water/FMWCNT (functionalized multi-walled carbon nanotube nanofluids over a flat plate was investigated using a finite volume method. Simulations were performed for velocity ranging from 0.17 mm/s to 1.7 mm/s under laminar regime and nanotube concentrations up to 0.2%. The 2-D governing equations were solved using an in-house FORTRAN code. For a specific free stream velocity, the presented results showed that increasing the weight percentage of nanotubes increased the Nusselt number. However, an increase in the solid weight percentage had a negligible effect on the wall shear stress. The results also indicated that increasing the free stream velocity for all cases leads to thinner boundary layer thickness, while increasing the FMWCNT concentration causes an increase in the boundary layer thickness.

  16. Numerical investigation of coalescing plate system to understand the separation of water and oil in water treatment plant of petroleum industry

    Directory of Open Access Journals (Sweden)

    Sedat Yayla

    2017-01-01

    Full Text Available The most widely utilized process of produced water treatment is considered to be use of coalescing or corrugated plate systems in the oil industry because these systems have promising results in the acceleration of the separation process. Even use of corrugated plate systems seem to be effective in separation processes, the geometrical parameters of the plate system could greatly influence the performance of separation process. In this study, a two-dimensional computational fluid dynamics model for coalescing plates was developed to investigate Reynolds number and plate hole shape on separation efficiency. Spacing between plates was set to 12 mm while fluid mixture’s Reynolds number varied between 5 and 45 for the computational model. Hole profile and dimensions were determined to be cylindrical, rectangular and ellipse shapes as 10, 15 and 20 mm based on hydraulic diameter definition, respectively. Furthermore, when hole profiles of coalescing plates were chosen to be ellipse and rectangular shapes, separation efficiency nearly stayed constant regardless of hole dimension. The study also reported that change of oil fraction from 5% to 15% caused approximately 30% increase in the separation efficiency. The investigation also revealed Reynolds number of the mixture was inversely proportional to the separation efficiency. It was also found that the highest separation efficiency was obtained for a cylindrical shape with a hole diameter of 15 mm when distance between plates was 12 mm and Reynolds number was 18.

  17. Shenandoah parabolic dish solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, G.S.

    1985-01-01

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  18. Shenandoah parabolic dish solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, G.S.

    1985-01-01

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  19. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  20. Inline Array Jet Impingement Cooling Using Al2O3 / Water Nanofluid In A Plate Finned Electronic Heat Sink

    Directory of Open Access Journals (Sweden)

    R. Reji Kumar

    2016-07-01

    Full Text Available - Jet impingement cooling is a technique used for cooling the electronic systems. In this work, heat transfer and pressure drop characteristics of deionized water and Al2O3/water nanofluid in an electronic heat sink having aluminium plate fins and provision for jet impingement cooling have been studied. A novel heat sink contains two rows of plate fins of size 29mm x 24mm x 0.56mm. A thin plate having 110 holes of diameter 2.5 mm is used to produce number of jets. The plate is kept inside the heat sink in such a way that H/dn is 5.2 mm and adjacent jet spacing is 2mm. The overall dimension of the heat sink is 60x60x 65 mm. For this work we prepared a Al2O3/water nanofluid by dispersing specified quantity of nanoparticles in to deionized water by using a ultrasonic bath. Experiments were conducted under constant heat flux condition and the volume flow rate of the fluid was in the range of 1.315 to 2.778. It is found from the results that the nanofluid removes heat better than water in the jet impingement cooling with very low rise in pressure drop.

  1. Accelerated Testing of Solar Collector Durability

    DEFF Research Database (Denmark)

    Svendsen, Sv Aa Højgaard

    1996-01-01

    A climatic simulator has been build to test the reliability and durability of solar collectors. In the climatic simulator the collector is expåosed to extreme climatic conditions and temperature variations in an accelerated way and during this process the function of the collector is tested...... and the microclimate in the collector box is measured....

  2. Indoor test for thermal performance of the Sunmaster evacuated tube (liquid) solar collector

    Science.gov (United States)

    1979-01-01

    The test procedures used to obtain the thermal performance data for a solar collector under simulated conditions are presented. Tests included a stagnation test, a time constant test, a thermal efficiency test, an incident angle modifier test, and a hot fill test. All tests were performed at ambient conditions and the transient effect and the incident angle effect on the collector were determined. The solar collector is a water working fluid type.

  3. Experimental Investigation of a Direct Methanol Fuel Cell with Hilbert Fractal Current Collectors

    Directory of Open Access Journals (Sweden)

    Jing-Yi Chang

    2014-01-01

    Full Text Available The Hilbert curve is a continuous type of fractal space-filling curve. This fractal curve visits every point in a square grid with a size of 2×2, 4×4, or any other power of two. This paper presents Hilbert fractal curve application to direct methanol fuel cell (DMFC current collectors. The current collectors are carved following first, second, and third order Hilbert fractal curves. These curves give the current collectors different free open ratios and opening perimeters. We conducted an experimental investigation into DMFC performance as a function of the free open ratio and opening perimeter on the bipolar plates. Nyquist plots of the bipolar plates are made and compared using electrochemical impedance spectroscopy (EIS experiments to understand the phenomena in depth. The results obtained in this paper could be a good reference for future current collector design.

  4. Long term weathering effects on the thermal performance of the sunworks (liquid) solar collector

    Science.gov (United States)

    1979-01-01

    The test procedures used and the results obtained during the evaluation test program of the Sunworks single-covered liquid solar collector are presented. The tests were performed under simulated conditions, following long-term exposure to natural weathering conditions. The sunworks collector is a flat-plate solar collector. The absorber plate is copper with copper tubes bonded by soft solder, and is coated with Enthon selective black with an absorptivity factor of .87 similar to .92 and an emissivity factor of .10 similar to .20. It has a single glass cover of 3/16 inches tempered glass and weighs about 115 pounds. The overall dimensions of the collector are 36 x 84 x 4 inches.

  5. Solar collector manufacturing activity, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  6. Water and Electricity Do Mix: Studying Plates, Petroleum, and Permafrost using Marine Electromagnetism

    Science.gov (United States)

    Constable, S.

    2015-12-01

    Marine magnetotelluric (MT) and controlled-source electromagnetic (CSEM) sounding methods were developed in the early 1980's as deep-water academic tools to study the oceanic lithosphere and mantle. Electrical conductivity is a strong function of porosity, temperature, melting, and volatile content, and so marine MT and CSEM data can be used to address a variety of geological questions related to plate tectonics. These include the distribution of melt at mid-ocean ridges, the fate of fluids in subduction zones, and the nature of the lithosphere-asthenosphere boundary. With the advent of deepwater oil and gas drilling in the late 1990's, marine EM methods were embraced by the exploration community, and are now routinely used to assist in exploration and make drilling decisions for wells costing $100M or more. For countries without conventional hydrocarbon resources, gas hydrate offers the potential for energy production, and marine CSEM methods may be the only effective way to explore for and characterize this resource. The use of EM methods to map geothermal, groundwater, and mineral resources also has application in the marine environment. Water and electricity has proved to be a very successful mix!

  7. Flow Regimes of Air-Water Counterflow Through Cross Corrugated Parallel Plates

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, V.F.

    2000-06-07

    Heretofore unknown flow regimes of air-water counterflow through a pair of transparent vertical parallel cross corrugated plates were observed via high-speed video. Air flows upward driven by pressure gradient and water, downward driven by gravity. The crimp geometry of the corrugations was drawn from typical corrugated sheets used as filling material in modern structured packed towers. Four regimes were featured, namely, rivulet, bicontinuous, flooding fronts, and flooding waves. It is conceivable that the regimes observed might constitute the basis for understanding how gas and liquid phases contend for available space in the interstices of structured packings in packed towers. Flow regime transitions were expressed in terms of liquid load (liquid superficial velocity) and gas flow factor parameters commonly used in pressure drop and capacity curves. We have carefully examined the range of parameters equivalent to the ill-understood high-liquid-flow operation in packed towers. More importantly, our findings should prove valuable in validating improved first-principles modeling of gas-liquid flows in these industrially important devices.

  8. Roof-harvested rainwater for potable purposes: application of solar collector disinfection (SOCO-DIS).

    Science.gov (United States)

    Amin, M T; Han, M Y

    2009-12-01

    The efficiency of solar disinfection (SODIS), recommended by the World Health Organization, has been determined for rainwater disinfection, and potential benefits and limitations discussed. The limitations of SODIS have now been overcome by the use of solar collector disinfection (SOCO-DIS), for potential use of rainwater as a small-scale potable water supply, especially in developing countries. Rainwater samples collected from the underground storage tanks of a rooftop rainwater harvesting (RWH) system were exposed to different conditions of sunlight radiation in 2-L polyethylene terephthalate bottles in a solar collector with rectangular base and reflective open wings. Total and fecal coliforms were used, together with Escherichia coli and heterotrophic plate counts, as basic microbial and indicator organisms of water quality for disinfection efficiency evaluation. In the SOCO-DIS system, disinfection improved by 20-30% compared with the SODIS system, and rainwater was fully disinfected even under moderate weather conditions, due to the effects of concentrated sunlight radiation and the synergistic effects of thermal and optical inactivation. The SOCO-DIS system was optimized based on the collector configuration and the reflective base: an inclined position led to an increased disinfection efficiency of 10-15%. Microbial inactivation increased by 10-20% simply by reducing the initial pH value of the rainwater to 5. High turbidities also affected the SOCO-DIS system; the disinfection efficiency decreased by 10-15%, which indicated that rainwater needed to be filtered before treatment. The problem of microbial regrowth was significantly reduced in the SOCO-DIS system compared with the SODIS system because of residual sunlight effects. Only total coliform regrowth was detected at higher turbidities. The SOCO-DIS system was ineffective only under poor weather conditions, when longer exposure times or other practical means of reducing the pH were required for the

  9. Manifold Insulation for Solar Collectors

    Science.gov (United States)

    1982-01-01

    Results of computer analysis of effects of various manifold insulation detailed in 23-page report show that if fluid is distributed to and gathered from array of solar collectors by external rather than internal manifold, effectiveness of manifold insulation has major influence on efficiency. Report describes required input data and presents equations that govern computer model. Provides graphs comparing collector efficiencies for representative manifold sizes and insulations.

  10. Solar water heater for NASA's Space Station

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  11. Solar radiation on a catenary collector

    Science.gov (United States)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  12. Simple procedure for predicting long-term average performance of nonconcentration and of concentrating solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Collares-Pereira, M.; Rabl, A.

    1978-06-01

    The Liu and Jordan method of calculating long term average energy collection of flat plate collectors is simplified (by about a factor of 4), and generalized to all collectors, concentration and nonconcentrating. The only meteorological input needed are the long term average daily total hemispherical insolation H/sub h/ on a horizontal surface and, for thermal collectors the average ambient temperature. The collector is characterized by optical efficiency, heat loss (or U-value), heat extraction efficiency, concentration ratio and tracking mode. An average operating temperature is assumed. Interaction with storage can be included by combining the present model with the f-chart method of Beckman, Klein and Duffie. Formulas and examples are presented for five collector types: flat plate, compound parabolic concentrator, concentrator with E.-W. tracking axis, concentrator with polar tracking axis, and concentrator with two axis tracking. The examples show that even for relatively low temperature applications and cloudy climates (50/sup 0/C in New York in February), concentrating collectors can outperform the flat plate. The method has been validated against hourly weather data (with measurements of hemispherical and beam insolation), and has been found to have an average accuracy better than 3% for the long term average radiation available to solar collectors. The suitability of this method for comparison studies is illustrated by comparing in a location independent manner the radiation availability for several collector types or operating conditions: two axis tracking versus one axis tracking; polar tracking axis versus east-west tracking axis; fixed versus tracking flat plate; effect of ground reflectance; and acceptance for diffuse radiation as function of concentration ratio.

  13. Spreading of an Oil-in-Water Emulsion on a Glass Plate: Phase Inversion and Pattern Formation

    NARCIS (Netherlands)

    Deblais, A.; Harich, R.; Bonn, D.; Colin, A.; Kellay, H.

    2015-01-01

    Rigid blade coating of glass plates by oil-in-water emulsions stabilized by surfactants is studied. Complete surface coverage is obtained only for speeds exceeding a threshold velocity dependent on the height between the blade end and the surface. Below this threshold, the emulsion can be inverted

  14. Evacuated-tube solar collector--performance evaluation

    Science.gov (United States)

    1980-01-01

    Report gives thermal performance test procedures and results for commercially produced, water-filled, 8-tube collectors. Tests include efficiency, time constant for temperature drop after solar flux is cut, change in efficiency as function of sun angle, and test to see if tubes break when filled with hot water.

  15. Electrochemical Properties of Current Collector in the All-vanadium Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gan-Jin; Oh, Yong-Hwan; Ryu, Cheol-Hwi [Hoseo University, Asan (Korea, Republic of); Choi, Ho-Sang [Kyungil University, Gyeongsan, (Korea, Republic of)

    2014-04-15

    Two commercial carbon plates were evaluated as a current collector (bipolar plate) in the all vanadium redox-flow battery (V-RFB). The performance properties of V-RFB were test in the current density of 60 mA/cm{sup 2}. The electromotive forces (OCV at SOC 100%) of V-RFB using A and B current collector were 1.47 V and 1.54 V. The cell resistance of V-RFB using A current collector was 4.44-5.00 Ω·cm{sup 2} and 3.28-3.75 Ω·cm{sup 2} for charge and discharge, respectively. The cell resistance of V-RFB using B current collector was 4.19-4.42Ω·cm{sup 2} and 4.71-5.49Ω·cm{sup 2} for charge and discharge, respectively. The performance of V-RFB using each current collector was evaluated. The performance of V-RFB using A current collector was 93.1%, 76.8% and 71.4% for average current efficiency, average voltage efficiency and average energy efficiency, respectively. The performance of V-RFB using B current collector was 96.4%, 73.6% and 71.0% for average current efficiency, average voltage efficiency and average energy efficiency, respectively.

  16. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  17. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  18. Solar collector parameter identification from unsteady data by a discrete-gradient optimization algorithm

    Science.gov (United States)

    Hotchkiss, G. B.; Burmeister, L. C.; Bishop, K. A.

    1980-01-01

    A discrete-gradient optimization algorithm is used to identify the parameters in a one-node and a two-node capacitance model of a flat-plate collector. Collector parameters are first obtained by a linear-least-squares fit to steady state data. These parameters, together with the collector heat capacitances, are then determined from unsteady data by use of the discrete-gradient optimization algorithm with less than 10 percent deviation from the steady state determination. All data were obtained in the indoor solar simulator at the NASA Lewis Research Center.

  19. Standard Practice for Generating All-Day Thermal Performance Data for Solar Collectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This practice covers a means of generating all-day thermal performance data for flat-plate collectors, concentrating collectors, and tracking collectors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in the parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  20. Water Release from Cold Serpentinized Forearc Mantle During Subduction Associated with Changes in Incoming Oceanic Plate Thermal Structure and Plate Boundary Kinematics: New Insights

    Science.gov (United States)

    Kirby, S. H.

    2015-12-01

    Kirby, Wang, and Brocher (Earth Planets and Space, 2014) recently showed how the change in kinematics of the California margin from subduction motion to continental transform motion with the birth and growth of the San Andreas Fault System (SAFS) beginning at about 33 Ma BP likely led to a warming of the former forearc mantle and the release of water by serpentinite dehydration. Such discharges from serpentinized mantle increase fluid pressures along the SAFS under the Coast Ranges and this gives insights into both the low sliding resistance for the SAFS and the mobilization and ascent of some serpentinized mantle peridotites through the crust. Thermal modeling by others has also shown that changes in the incoming plate age and subduction rate can also lead to warming of the forearc mantle during subduction. This development gives insights into the Mesozoic and Paleogene ages of emplacement of some, but not all, California serpentinites. Recent mineralogical and geochemical observations of serpentinized blocks in serpentinize mélange bodies in the San Francisco Bay Area (Uno and Kirby, 2015; Lewis and Kirby, 2015, this session) suggest that these rocks sustained multiple stages of serpentinization that are broadly consistent with the model of Kirby et al. (2014). Previous studies of localized late-stage silica-carbonate-water alteration of serpentinite bodies in California by carbonated water suggest that this alteration occurred largely in Neogene time when the highest rate of water release from the former forearc mantle probably happened. I also suggest that the occurrence of serpentinite belts emplaced in Cenozoic time during changing plate-boundary kinematics, such as the Cenozoic closing of the Tethys Ocean bordering Eurasia and arc reversal and decreasing convergence rates under the Greater Antilles, may give insights into the serpentinite belts in those regions.

  1. Comparison of plate counts, Petrifilm, dipslides, and adenosine triphosphate bioluminescence for monitoring bacteria in cooling-tower waters.

    Science.gov (United States)

    Mueller, Sherry A; Anderson, James E; Kim, Byung R; Ball, James C

    2009-04-01

    Effective bacterial control in cooling-tower systems requires accurate and timely methods to count bacteria. Plate-count methods are difficult to implement on-site, because they are time- and labor-intensive and require sterile techniques. Several field-applicable methods (dipslides, Petrifilm, and adenosine triphosphate [ATP] bioluminescence) were compared with the plate count for two sample matrices--phosphate-buffered saline solution containing a pure culture of Pseudomonas fluorescens and cooling-tower water containing an undefined mixed bacterial culture. For the pure culture, (1) counts determined on nutrient agar and plate-count agar (PCA) media and expressed as colony-forming units (CFU) per milliliter were equivalent to those on R2A medium (p = 1.0 and p = 1.0, respectively); (2) Petrifilm counts were not significantly different from R2A plate counts (p = 0.99); (3) the dipslide counts were up to 2 log units higher than R2A plate counts, but this discrepancy was not statistically significant (p = 0.06); and (4) a discernable correlation (r2 = 0.67) existed between ATP readings and plate counts. For cooling-tower water samples (n = 62), (1) bacterial counts using R2A medium were higher (but not significant; p = 0.63) than nutrient agar and significantly higher than tryptone-glucose yeast extract (TGE; p = 0.03) and PCA (p ATP readings and plate counts varied from system to system, was poor (r2 values ranged from ATP method was not sufficiently sensitive to measure counts below approximately 10(4) CFU/mL.

  2. An analytical investigation of the performance of solar collectors as nighttime heat radiators in airconditioning cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.B.; Smetana, F.O.

    1979-03-01

    It was found that if the upper and lower ends of a collector were opened, large free convention currents may be set up between the collector surface and the cover glass(es) which can result in appreciable heat rejection. If the collector is so designed that both plates surfaces are exposed to convection currents when the upper and lower ends of the collector enclosure are opened, the heat rejection rate is 300 watts sq m when the plate is 13 C above ambient. This is sufficient to permit a collector array designed to provide 100 percent of the heating needs of a home to reject the accumulated daily air conditioning load during the course of a summer night. This also permits the overall energy requirements for cooling to be reduced by at least 15 percent and shift the load on the utility entirely to the nighttime hours.

  3. Energy and exergy analysis of PV/T air collectors connected in series

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Swapnil; Solanki, S.C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tiwari, Arvind [Department of Design, Production and Management, University of Twente (Netherlands)

    2009-08-15

    In this paper an attempt has been made to derive the analytical expressions for N hybrid photovoltaic/thermal (PV/T) air collectors connected in series. The performance of collectors is evaluated by considering the two different cases, namely, Case I (air collector is fully covered by PV module (glass to glass) and air flows above the absorber plate) and Case II (air collector is fully covered by PV module (glass to glass) and air flows below the absorber plate). This paper shows the detailed analysis of energy, exergy and electrical energy by varying the number of collectors and air velocity considering four weather conditions (a, b, c and d type) and five different cities (New Delhi, Bangalore, Mumbai, Srinagar, and Jodhpur) of India. It is found that the collectors fully covered by PV module and air flows below the absorber plate gives better results in terms of thermal energy, electrical energy and exergy gain. Physical implementation of BIPV system has also been evaluated. If this type of system is installed on roof of building or integrated with building envelope will simultaneously fulfill the electricity generation for lighting purpose and hot air can be used for space heating or drying. (author)

  4. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL ABSORBER STRIPS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... rate, properties of solar collector fluid, solar collector fluid inlet temperature and collector tilt angle are shown. The flow distribution through the absorber fins is uniform if high flow rates are used. By decreased flow rate and decreased content of glycol in the glycol/water mixture used as solar...

  5. Study of Cylindrical Honeycomb Solar Collector

    Directory of Open Access Journals (Sweden)

    Atish Mozumder

    2014-01-01

    Full Text Available We present the results of our investigation on cylindrical honeycomb solar collector. The honeycomb has been fabricated with transparent cellulose triacetate polymer sheets. Insulation characteristics of the honeycomb were studied by varying the separation between the honeycomb and the absorber plate. The optimal value of the separation was found to be 3.3 mm for which the heat transfer coefficient is 3.06 W m−2 K−1. This supports result of previous similar experiments. Further we test the honeycomb through a field experiment conducted in Delhi (28.6°N, 77°E and found that when the incident angle of the solar radiation is within 20° then the performance of the system with the honeycomb is better than the one without the honeycomb.

  6. Flow distribution in a solar collector panel with horizontally inclined absorber strips

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    dynamics (CFD) calculations. Further, experimental investigations of a 12.5 m(2) solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... rate, properties of solar collector fluid, solar collector fluid inlet temperature and collector tilt angle are shown. The flow distribution through the absorber fins is uniform if high flow rates are used. By decreased flow rate and decreased content of glycol in the glycol/water mixture used as solar...

  7. Solar-collector studies for solar-heating and -cooling applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liers, H. S.; Yenamandra, N.; Brittle, P. N.; Raymond, M.; Edelman, D. G.

    1979-01-01

    Mirror and lens solar concentrator collectors suitable for space heating, cooling, and hot water applications were surveyed. The scope of the survey includes identification, analysis and comparison for all concentrating collector types for which prototypes and/or market models are or have been built for less than 10X concentration. The survey includes greater than 10X concentration ratios for manufacturers marketing such collectors for space heating and/or cooling applications. Collectors in the conceptual stage are noted and their attributes and disadvantages identified.

  8. Higher Magnification Imaging of the Polished Aluminum Collector Returned from the Genesis Mission

    Science.gov (United States)

    Rodriquez, Melissa C.; Burkett, P. J.; Allton, J. H.

    2011-01-01

    The polished aluminum collector (previously referred to as the polished aluminum kidney) was intended for noble gas analysis for the Gene-sis mission. The aluminum collector, fabricated from alloy 6061T, was polished for flight with alumina, then diamond paste. Final cleaning was performed by soak-ing and rinsing with hexane, then isopropanol, and last-ly megasonically energized ultrapure water prior to installation. It was mounted inside the collector canister on the thermal shield at JSC in 2000. The polished aluminum collector was not surveyed microscopically prior to flight.

  9. Methods for determining the hydrodynamic parameters of oil and gas collectors

    Energy Technology Data Exchange (ETDEWEB)

    Megyeri, M.

    1984-01-01

    The Hungarian oil and gas extracting industry has had high resolution pressure meters at its disposal since 1976. Pulsed measurement of the interaction between wells has entered oil field practice which gives a basis for determining the throughput and the useful volume of the collector or the examined sector of a collector. The results are briefly presented of developments which took place between 1980 and 1982, aimed at developing methods for determining the volume of a water zone associated with oil and gas collectors, studying the relationships between the change in pressure and porosity caused by influxes and outflows and measuring the shift of the phase interfaces in collectors.

  10. Promising freeze protection alternatives in solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.E.

    1997-12-31

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  11. Promising freeze protection alternatives in solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, David E. [Univ. of Wisconsin, Madison, WI (United States)

    1997-01-01

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  12. Evaluation of heterotrophic plate and chromogenic agar colony counting in water quality laboratories.

    Science.gov (United States)

    Hallas, Gary; Monis, Paul

    2015-01-01

    The enumeration of bacteria using plate-based counts is a core technique used by food and water microbiology testing laboratories. However, manual counting of bacterial colonies is both time and labour intensive, can vary between operators and also requires manual entry of results into laboratory information management systems, which can be a source of data entry error. An alternative is to use automated digital colony counters, but there is a lack of peer-reviewed validation data to allow incorporation into standards. We compared the performance of digital counting technology (ProtoCOL3) against manual counting using criteria defined in internationally recognized standard methods. Digital colony counting provided a robust, standardized system suitable for adoption in a commercial testing environment. The digital technology has several advantages:•Improved measurement of uncertainty by using a standard and consistent counting methodology with less operator error.•Efficiency for labour and time (reduced cost).•Elimination of manual entry of data onto LIMS.•Faster result reporting to customers.

  13. Single-stage temperature-controllable water gas shift reactor with catalytic nickel plates

    Science.gov (United States)

    Park, Jin-Woo; Lee, Sung-Wook; Lee, Chun-Boo; Park, Jong-Soo; Lee, Dong-Wook; Kim, Sung-Hyun; Kim, Sung-Soo; Ryi, Shin-Kun

    2014-02-01

    In this study, a microstructured reactor with catalytic nickel plates is newly designed and developed for proper heat management in an exothermic water gas shift WGS reaction. The reactor is designed to increase the reactor capacity simply by numbering-up a set of a catalyst layers and heat exchanger layers. The WGS reactor is built up with two sets of a catalyst layers and heat exchanger layers. The performance of the reactor is verified by WGS testing with the variation of the furnace temperatures, gas hourly space velocity (GHSV) and coolant (N2) flow rate. At a GHSV of 10,000 h-1, CO conversion reaches the equilibrium value with a CH4 selectivity of ≤0.5% at the furnace temperature of ≥375 °C. At high GHSV (40,000 h-1), CO conversion decreases considerably because of the heat from the exothermic WGS reaction at a large reactants mass. By increasing the coolant flow rate, the heat from the WGS reaction is properly managed, leading an increase of the CO conversion to the equilibrium value at GHSV of 40,000 h-1.

  14. TECHNIQUE OF DEFINITION TRANSMITTANCE- ABSORPTION PRODUCT OF THE SOLAR COLLECTOR WITH POLYMERIC TUBES ABSORBER

    OpenAIRE

    Ermuratskii V.V.

    2009-01-01

    It is presented technique of determination of the reduced carrying and absorptance capacity of collector, which absorber represents the register made from polymeric pipes. This determination was made on the basis of experimental data received at zero collector flow rate of water and minimum difference of temperatures between the absorber and the environment.

  15. TECHNIQUE OF DEFINITION TRANSMITTANCE- ABSORPTION PRODUCT OF THE SOLAR COLLECTOR WITH POLYMERIC TUBES ABSORBER

    Directory of Open Access Journals (Sweden)

    Ermuratskii V.V.

    2009-12-01

    Full Text Available It is presented technique of determination of the reduced carrying and absorptance capacity of collector, which absorber represents the register made from polymeric pipes. This determination was made on the basis of experimental data received at zero collector flow rate of water and minimum difference of temperatures between the absorber and the environment.

  16. Natural convection heat transfer and fresh water yield in vertical plate cavity with film evaporation and raw water reservoir%竖壁自储水式蒸馏器空腔自然对流换热及产水特性

    Institute of Scientific and Technical Information of China (English)

    谢果; 郑宏飞; 熊建银

    2012-01-01

    A triple-effect regeneration solar distiller with raw water reservoir is designed and its operation principle is introduced. Experiments with different heating power were carried out with chrome steel strip heater for 6. 5 h. In each stage, the temperature and fresh water yield of distiller were measured. The total fresh water yield of each stage in one day and the relation between evaporation rate per unit area and temperature in the vertical distiller were obtained. The experimental results with constant heating power shows that the performance ratio of the evaporation can reach 1. 81 with 600 W heating power and its optimal heating energy per day is about 14 MJ. Therefore, it is suggested the area of matched solar collector is 1. 5 m2 when the equipment is operated in general weather. A theoretical model is proposed in this study, which can be used for natural convection heat and mass transfer with film evaporation and raw water reservoir inside the vertical cavity. An empirical formula between Nusselt number and Rayleigh number is obtained, which is suitable for calculation of vertical plate cavity with film evaporation and raw water reservoir.

  17. Effect of Surface Passivation on Photoelectrochemical Water Splitting Performance of WO3 Vertical Plate-Like Films

    Directory of Open Access Journals (Sweden)

    Yahui Yang

    2015-11-01

    Full Text Available WO3 vertical plate-like arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for photoelectrochemical (PEC water splitting. However, surface recombination due to surface defects hinders the performance improvement. In this work, WO3 vertical plate-like arrays films with HfO2 passivation layer were fabricated via a simple dip-coating method. In the images of transmission electron microscope, a fluffy layer and some small sphere particles existed on the surface of WO3 plate. X-ray photoelectron spectroscopy (XPS showed a higher concentration of Hf element than the result of energy-dispersive X-ray spectroscopy (EDX, which means that HfO2 is rich on the surface of WO3 plates. A higher photocurrent under visible light irradiation was gained with surface passivation. Meanwhile, the results of intensity modulated photocurrent spectrum (IMPS and incident photon to current conversion efficiency (IPCE indicate that HfO2 passivation layer, acting as a barrier for the interfacial recombination, is responsible for the improved photoelectrochemical performance of WO3 vertical plate-like arrays film.

  18. A computational investigation of the phase behavior and capillary sublimation of water confined between nanoscale hydrophobic plates.

    Science.gov (United States)

    Ferguson, Andrew L; Giovambattista, Nicolás; Rossky, Peter J; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2012-10-14

    Thin films of water under nanoscopic confinement are prevalent in natural and manufactured materials. To investigate the equilibrium and dynamic behavior of water in such environments, we perform molecular dynamics simulations of water confined between atomistically detailed hydrophobic plates at T = 298 K for pressures (-0.1) ≤ P ≤ 1.0 GPa and plate separations of 0.40 ≤ d ≤ 0.80 nm. From these simulations, we construct an expanded P-d phase diagram for confined water, and identify and characterize a previously unreported confined monolayer ice morphology. We also study the decompression-induced sublimation of bilayer ice in a d = 0.6 nm slit, employing principal component analysis to synthesize low-dimensional embeddings of the drying trajectories and develop insight into the sublimation mechanism. Drying is observed to proceed by the nucleation of a bridging vapor cavity at one corner of the crystalline slab, followed by expansion of the cavity along two edges of the plates, and the subsequent recession of the remaining promontory of bilayer crystal into the bulk fluid. Our findings have implications for the understanding of diverse phenomena in materials science, nanofluidics, and protein folding and aggregation.

  19. A Study on a Performance of Water-Spray-Type Ice Thermal Energy Storage Vessel with Vertical Heat Exchanger Plates

    Science.gov (United States)

    Yoshimura, Kenji; Sasaguchi, Kengo; Fukuda, Toshihito; Koyama, Shigeru

    A system with a water-embedded-trpe ice storage vessel is widely used because of its simple structure and compactness. However, the water-embedded-type ice storage vessel has a disadvantage, that is, the solidification rate is very small. The use of falling water film seems to be one of promising ways for solving this disadvantage. We have found in a previous study that the use of the falling water film is very effective, especially for high initial water temperatures. In the present study, we eexamined the performance of a faling-water-film-type ice thermal energy storage vessel with pratical size, having vertical heat exchanger plates. The ice making performance coefficient, η, increases with time, and it becomes am aximum value of 2.5, after that, it decreases gradually. In order to make ice efficiently, it is necessary to set a flow rate of refrigerant properly and to adjust a difference between the evaporating temperature of refrigerant and the freezing point of water so that the refrigerant evaporates in the heat exchanger plates overall.

  20. Indoor test for thermal performance evaluation of seven Elcam fin-tube solar collector configurations

    Science.gov (United States)

    1979-01-01

    The test procedure used and the results obtained from an evaluation test program conducted to obtain thermal performance data on seven Elcam fin-tube solar collector configurations under simulated conditions are described. These tests were made using the Marshall Space Flight Center solar facilities. The Elcam fin-tube (liquid) solar collectors each consist of an absorber plate 5.9 inches wide by 83 inches long and a type M copper tube of 0.569 inch nominal inside diameter. No cover plate was used with any of the specimens. The uniqueness of each of the seven configurations is described, and tests were performed on each separate configuration.

  1. Development and investigation of solar collectors for conversion of solar radiation into heat and/or electricity

    Directory of Open Access Journals (Sweden)

    Stefanović Velimir P.

    2006-01-01

    Full Text Available This article describes work on two projects of the National Energy Efficiency Program NEEP 709300036 and NPEE 271003 titled "The model of solar collector for middle temperature conversion of solar radiation in heat" and "Development and investigation on hybrid solar collector for heat and electricity generation", respectively. This first project deals with solar collector that transfers solar radiation in heat in area of middle temperature conversion (at temperatures above 100 ºC. During entire year it can realize significant saving of electric energy used for preparation of warm water and in central and district heating. During work on the second project, two hybrid solar collectors, their installation, mathematical model, software, and experimental set-up were designed and realized. The first collector had the photovoltaic panel located above the absorber and the second collector had the panel located on the absorber. For both collectors, the results show that efficiency of fossil fuel replacement is 85%. .

  2. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    Science.gov (United States)

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.

  3. Hydraulic analysis of a radial collector well for riverbank filtration near Nakdong River, South Korea

    Science.gov (United States)

    Lee, Eunhee; Hyun, Yunjung; Lee, Kang-Kun; Shin, Jiyoun

    2012-05-01

    A radial collector well is used for the extraction of a large amount of groundwater without causing a deep drawdown at the well's center, and it is appropriate for the supply of municipal water through riverbank filtration (RBF). Flow path changes caused by water extraction through a radial collector well were simulated to estimate the amount of river water induction at a RBF site associated with Nakdong River in South Korea. The structure of the screened horizontal arms of a radial collector well was examined with respect to effective riverbank filtration. The relative ratio of the river water induced to the radial collector well compared to the total groundwater extraction was estimated to be 27-52%. The amount of induced river water varies with the distance of a horizontal arm from the river, indicating that the location and structure of the collector well is significant for RBF. In all simulation cases, the maximum drawdown of the groundwater level near the collector well was 2.1 m, which is not significant considering the substantial pumping rate at the study site. It was concluded that RBF radial collector wells can be used at the study site for a sustainable water supply.

  4. Heat transfer characteristics in the channel of a finned absorber solar collector; Caracteristicas da transferencia de calor no canal de um coletor solar de absorvedor aletado

    Energy Technology Data Exchange (ETDEWEB)

    Saboya, Sergio Mourao [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica; Saboya, Francisco Eduardo Mourao [Universidade Federal Fluminense, Niteroi, RJ (Brazil)]. E-mails: saboya@mec.ita.cta.br; fsaboya@mec.uff.br

    2000-07-01

    Finned absorber solar collectors are devices in which plates (fins) are fixed perpendicularly to the absorber plate. The purpose of these fins is to cause the so called 'cavity effect', lowering the collector losses. This paper studies the heat transfer that occurs in the collector channel. This analysis is done using the efficiency of the collector, which is calculated solving the system of equations that govern the collector thermal behavior, and the computation of the convection heat transfer between the fluid flowing in the channel and the absorber plate. This analysis allows the calculation of design parameters such as mass flow rate and exit bulk temperature of the fluid. (author)

  5. Water Release from Cold Serpentinized Forearc Mantle During Subduction Associated with Changes in Incoming Oceanic Plate Thermal Structure and Plate Boundary Kinematics: New Insights into Serpentinite Belts and Plate-Boundary Rheology

    Science.gov (United States)

    Kirby, Stephen

    2016-04-01

    Kirby, Wang, and Brocher (Earth Planets and Space, 2014) recently showed how the change in kinematics of the California margin from subduction motion to continental transform motion with the birth and growth of the San Andreas Fault System (SAFS) beginning at about 33 Ma BP likely led to a warming of the former forearc mantle and the release of water from serpentinized mantle by dehydration and a likely increase in fluid pressures along the SAFS. Such a mantle source of pressurized water gives insights into both the low sliding resistance for the SAFS and the mobilization and ascent of some serpentinized mantle peridotites through the crust. Thermal modeling by others has also shown that changes in the incoming plate age and subduction rate can also lead to warming of the forearc mantle during subduction. This development gives insights into the Mesozoic and Paleogene ages of emplacement of some, but not all, California serpentinites. Recent mineralogical and geochemical observations of serpentinite blocks in serpentinize mélange bodies in the San Francisco Bay Area (Uno and Kirby, 2014 AGU Meeting and Lewis and Kirby, 2015 AGU Meeting) suggest that these rocks sustained multiple stages of serpentinization that are broadly consistent with the model of Kirby et al. (2014). A new development comes from interpretation of investigations in the literature of localized late-stage silica-carbonate-water alteration of serpentinite bodies in California that this alteration occurred largely in Neogene time when the highest rates of water release from the former forearc mantle probably occurred. This presentation also suggests that the occurrence of serpentinite belts emplaced in Cenozoic time during changing plate-boundary kinematics, such as the Cenozoic closing of the Tethys Ocean bordering Eurasia by subduction and collision and arc reversal and decreasing convergence rates under the Greater Antilles and Colombia and New Guinea, may give insights into the serpentinite

  6. Large-scale solar thermal collector concepts

    Science.gov (United States)

    Brantley, L. W., Jr.

    1975-01-01

    Thermal collector could be used ultimately to power steamplant to produce electricity. Collector would consist of two major subsystems: (1) series of segmented tracking mirrors with two axes of rotation and (2) absorber mounted on centrally located tower.

  7. Optimized concentrating/passive tracking solar collector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sterne, K E; Johnson, A L; Grotheer, R H

    1979-01-01

    A concentrating solar collector having about half the material cost of other collectors with similar performance is described. The selected design is a Compound Parabolic Concentrator (CPC) which concentrates solar energy throughout the year without requiring realignment. Output is a fluid heated to 100/sup 0/C with good efficiency. The optical design of the reflector surface was optimized, yielding a 2.0:1 concentration ratio with a 60/sup 0/C acceptance angle and a low profile. Double glazing was chosen consisting of a polyester film outer glazing and an inner glazing of glass tubes around the absorbers. The selectively coated steel absorber tubes are connected in series with flexible plastic tubing. Much development effort went into the materials for the reflector subassembly. A laminate of metalized plastic film over plaster was chosen for the reflective surface. The reflector is rigidized by attaching filled epoxy header plates at each end. Aluminum side rails and an insulating back complete the structure. The finished design resulted in a material cost of $21.40 per square meter in production quantities. Performance testing of a prototype produced a 50% initial efficiency rating. This is somewhat lower than expected, and is due to materials and processes used in the prototype for the outer glazing, reflective surface and absorber coating. However, the efficiency curve drops only slightly with increasing temperature differential, showing the inherent advantage of the concentrator over flat plate collectors.

  8. Solar Water Heating as a Potential Source for Inland Norway Energy Mix

    Directory of Open Access Journals (Sweden)

    Dejene Assefa Hagos

    2014-01-01

    Full Text Available The aim of this paper is to assess solar potential and investigate the possibility of using solar water heating for residential application in Inland Norway. Solar potential based on observation and satellite-derived data for four typical populous locations has been assessed and used to estimate energy yield using two types of solar collectors for a technoeconomic performance comparison. Based on the results, solar energy use for water heating is competitive and viable even in low solar potential areas. In this study it was shown that a typical tubular collector in Inland Norway could supply 62% of annual water heating energy demand for a single residential household, while glazed flat plates of the same size were able to supply 48%. For a given energy demand in Inland Norway, tubular collectors are preferred to flat plate collectors for performance and cost reasons. This was shown by break-even capital cost for a series of collector specifications. Deployment of solar water heating in all detached dwellings in Inland could have the potential to save 182 GWh of electrical energy, equivalent to a reduction of 15,690 tonnes of oil energy and 48.6 ktCO2 emissions, and contributes greatly to Norway 67.5% renewable share target by 2020.

  9. Solar-Collector Radiometer

    Science.gov (United States)

    Kendall, J. M., Jr

    1984-01-01

    Water-cooled Kendall radiometer measures output of solar energy concentrators. Unit measures irradiance up to 30,000 solar constants with 1 percent accuracy and responds to wavelengths from ultraviolet to far infrared.

  10. Modeling the Photocatalytic Mineralization in Water of Commercial Formulation of Estrogens 17-β Estradiol (E2 and Nomegestrol Acetate in Contraceptive Pills in a Solar Powered Compound Parabolic Collector

    Directory of Open Access Journals (Sweden)

    José Colina-Márquez

    2015-07-01

    Full Text Available Endocrine disruptors in water are contaminants of emerging concern due to the potential risks they pose to the environment and to the aquatic ecosystems. In this study, a solar photocatalytic treatment process in a pilot-scale compound parabolic collector (CPC was used to remove commercial estradiol formulations (17-β estradiol and nomegestrol acetate from water. Photolysis alone degraded up to 50% of estradiol and removed 11% of the total organic carbon (TOC. In contrast, solar photocatalysis degraded up to 57% of estrogens and the TOC removal was 31%, with 0.6 g/L of catalyst load (TiO2 Aeroxide P-25 and 213.6 ppm of TOC as initial concentration of the commercial estradiols formulation. The adsorption of estrogens over the catalyst was insignificant and was modeled by the Langmuir isotherm. The TOC removal via photocatalysis in the photoreactor was modeled considering the reactor fluid-dynamics, the radiation field, the estrogens mass balance, and a modified Langmuir–Hinshelwood rate law, that was expressed in terms of the rate of photon adsorption. The optimum removal of the estrogens and TOC was achieved at a catalyst concentration of 0.4 g/L in 29 mm diameter tubular CPC reactors which approached the optimum catalyst concentration and optical thickness determined from the modeling of the absorption of solar radiation in the CPC, by the six-flux absorption-scattering model (SFM.

  11. Modeling the photocatalytic mineralization in water of commercial formulation of estrogens 17-β estradiol (E2) and nomegestrol acetate in contraceptive pills in a solar powered compound parabolic collector.

    Science.gov (United States)

    Colina-Márquez, José; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2015-07-22

    Endocrine disruptors in water are contaminants of emerging concern due to the potential risks they pose to the environment and to the aquatic ecosystems. In this study, a solar photocatalytic treatment process in a pilot-scale compound parabolic collector (CPC) was used to remove commercial estradiol formulations (17-β estradiol and nomegestrol acetate) from water. Photolysis alone degraded up to 50% of estradiol and removed 11% of the total organic carbon (TOC). In contrast, solar photocatalysis degraded up to 57% of estrogens and the TOC removal was 31%, with 0.6 g/L of catalyst load (TiO2 Aeroxide P-25) and 213.6 ppm of TOC as initial concentration of the commercial estradiols formulation. The adsorption of estrogens over the catalyst was insignificant and was modeled by the Langmuir isotherm. The TOC removal via photocatalysis in the photoreactor was modeled considering the reactor fluid-dynamics, the radiation field, the estrogens mass balance, and a modified Langmuir-Hinshelwood rate law, that was expressed in terms of the rate of photon adsorption. The optimum removal of the estrogens and TOC was achieved at a catalyst concentration of 0.4 g/L in 29 mm diameter tubular CPC reactors which approached the optimum catalyst concentration and optical thickness determined from the modeling of the absorption of solar radiation in the CPC, by the six-flux absorption-scattering model (SFM).

  12. Exegetic evaluation of solar heating water thermosyphonic; Evaluacion exergetica de sistemas de calentamiento de agua solares termosifonicos

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J. R.; Andreani, R. J. L.; Lucchini, J. M.; Fasulo, A. J.

    2004-07-01

    A tool has been developed in order to analyse by means of the exegetic method the behaviour of a solar water heating thermosyphonic system composed by a flat plate collector and a tank, aided by a auxiliary conventional heater. A computational model run annual simulations, using data obtained from normalized test for commercial flat plate collectors. Taking into account the hot water demand and the climatic conditions, it is possible to determine the critical points of exergy destruction from de project design and the assembly of the system components, integrating the values for one typical year. Therefore, different combinations collector-tank can be tested in order to select the necessary auxiliary heater, looking for an economic optimized system. (Author)

  13. PERFORMANCE DETERIORATION OF THERMOSIPHON SOLAR FLAT PLATE WATER HEATER DUE TO SCALING

    Directory of Open Access Journals (Sweden)

    arunachala umesh chandavar

    2011-12-01

    Full Text Available 0 0 1 340 1943 International Islamic University 16 4 2279 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman";} The performance of Flat plate Solar Water Heater deteriorates within five to twelve years of their installation due to factors related to manufacturing, operating conditions, lack of maintenance etc. Especially, problem due to scaling is significant as it is based on quality of water used. The remaining factors are system dependent and could be overcome by quality production. Software is developed by incorporating Hottel Whillier Bliss (H-W-B equation to ascertain the effect of scaling on system efficiency in case of thermosiphon system. In case of clean thermosiphon system, the instantaneous efficiency calculated at 1000 W/m2 radiation is 72 % and it drops to 46 % for 3.7 mm scale thickness. The mass flow rate is reduced by 90 % for 3.7 mm scale thickness. Whereas, the average temperature drop of water in the tank is not critical due to considerable heat content in water under severe scaled condition.  But practically in case of major scale growth, some of the risers are likely to get blocked completely which leads to negligible temperature rise in the tank. ABSTRAK: Prestasi plat rata pemanas air suria merosot selepas lima hingga dua belas tahun  pemasangannya disebabkan faktor-faktor yang berkaitan dengan pembuatannya, cara kendaliannya, kurangnya penyelenggaraan dan sebagainya.  Terutama sekali, masalah disebabkan scaling (tembunan endapan mineral perlu diambil berat kerana ianya bergantung kepada kualiti air yang digunakan. Faktor-faktor selebihya bersandarkan sistem dan ia

  14. Development of a Solar Assisted Drying System Using Double-Pass Solar Collector with Finned Absorber

    Science.gov (United States)

    Azmi, M. S. M.; Othman, M. Y.; Sopian, K.; Ruslan, M. H.; Majid, Z. A. A.; Fudholi, A.; Yasin, J. M.

    2012-09-01

    The Solar Energy Research Group, Universiti Kebangsaan Malaysia, International Islamic University Malaysia and Yayasan FELDA has designed and constructed a solar assisted drying system at OPF FELDA Factory, Felda Bukit Sagu 2, Kuantan, Pahang. The drying system has a total of six double-pass solar collectors. Each collector has a length of 480 cm and a width of 120 cm. The first channel depth is 3.5 cm and the second channel depth is 7 cm. Longitudinal fins made of angle aluminium, 0.8 mm thickness were attached to the bottom surface of the absorber plate. The solar collectors are arranged as two banks of three collectors each in series. Internal manifold are used to connect the collectors. Air enters through the first channel and then through the second channel of the collector. An auxiliary heater source is installed to supply heat under unfavourable solar radiation condition. An on/off controller is used to control the startup and shutdown of the auxiliary heater. An outlet temperature of 70-75 °C can be achieved at solar radiation range of 800-900 W/m2 and flow rate of 0.12 kg/s. The average thermal efficiency of a solar collector is approximately 37%.

  15. Natural COnvective Heat and Mass Transfer on a Vertical Heated Plate for Water Flow Containing Metal Corrosion Particles

    Institute of Scientific and Technical Information of China (English)

    Pei-xueJiang; Ze-peiRen; 等

    1992-01-01

    Corrosion products of structural materials when contained in water usually are in two states:soluble state and colloidal particles with dimeter about 10-3-10-1um,Deposits of such corrosion products on tube surfaces under high pressure will jeopardize the operating economy of power plant equipment and even esult in accidents.A numerical study is reported in this paper of the natural convective heat and mass transfer on a vertical heated plate subject to the flrst or mixed kind of boundary conditions for high-pressure water(P=17MPa) containing metal corrosion products with consideration of varialbe thermophysical properties.

  16. Indoor test for thermal performance evaluation of the Solaron (air) solar collector

    Science.gov (United States)

    1978-01-01

    The test procedure used and the results obtained from an evaluation test program, conducted to obtain thermal performance data on a Solaron double glazed air solar collector under simulated conditions in a solar simulator are described. A time constant test and incident angle modifier test were also conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed. The Solaron collector absorber plate is made of 24-gage steel, the coating is baked-on black paint, the cover consists of two sheets of 1/8-inch low-iron tempered glass, and the insulation is one thickness of 3 5/8-inch fiberglass batting.

  17. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle....... The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show...

  18. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    . The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show......Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle...

  19. A reference heat source for solar collector thermal testing

    Science.gov (United States)

    Harrison, S. J.; Bernier, M. A.

    1984-12-01

    A direct-comparison reference heat source (RHS), used for testing liquid-based solar collectors, is described. A major advantage of the RHS is its capability to measure the product of mass flow and specific heat directly in the test loop. Calibration tests are performed on two reference heat sources over a range of flowrates and inlet temperatures normally encountered in flat-plate solar collector testing (10 C to 95 C). It is shown that at low flowrates (less than or equal to 0.008 kg/s), localized boiling may introduce errors if the heater power density is not reduced as well, whereas operation at flowrates greater than 0.05 kg/s reduces the temperature rise across the RHS, increasing temperature measurement uncertainty. To achieve satisfactory results with an RHS, a stable inlet temperature, good flowrate control, and regulation of the power supplied to the heater are required.

  20. Performance Study of Modified Savonius Water Turbine with Two Deflector Plates

    Directory of Open Access Journals (Sweden)

    Golecha Kailash

    2012-01-01

    Full Text Available Savonius rotor is a vertical axis rotor with simple in design and easy to fabricate at lower cost. The rotation of the rotor is due to the drag difference between the advancing blade and returning blade. Net driving force can be increased by reducing the reverse force on the returning blade or increasing the positive force on the advancing blade. Former can be realized by providing a flow obstacle to the returning blade and latter can be realized by concentrating the flow towards the advancing blade. The objective of the present work is to identify the optimal position of the deflector plate (on advancing blade side placed upstream to the flow which would result in increase in power generated by the rotor. Tests are conducted to identify the optimum position of the deflector plate on the advancing blade side in the presence of a deflector plate on the returning blade side at its optimum position. Results suggest that two deflector plates placed at their optimal positions upstream to the flow increase the coefficient of power to 0.35. This is significantly higher than the coefficient of power of 0.14 observed for the rotor without deflector plates.

  1. Solar space and water heating system installed at Charlottesville, Virginia

    Science.gov (United States)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  2. Solar space and water heating system installed at Charlottesville, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Greer, Charles R.

    1980-09-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  3. Analysis of WWER 1000 collector cracking mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matocha, K.; Wozniak, J. [Vitkovice J.S.C., Ostrava (Switzerland)

    1997-12-31

    The presentation reviews the large experimental program, started in 1993 in Vitkovice, where the main aim was: (1) a detailed study of strain and thermal ageing, dissolved oxygen content and temperature on subcritical crack growth in 10NiMo8.5 (10GN2MFA) steel, (2) a detailed study of the effect of high temperature water and tube expansion technology on fracture behaviour of ligaments between holes for heat exchange tubes, and (3) a detailed study of the effect of drilling, tube expansion technology and heat treatment on residual stresses on the surface of holes for heat exchange tubes. The aim of all these investigations was to find a dominant damage mechanism responsible for collector cracking to be able to judge the efficiency of implemented modifications and suggested countermeasures and to answer a very important question whether proper operation conditions (mainly water chemistry) make the operation of steam generators made in Vitcovice safe throughout the planned lifetime. 10 refs.

  4. Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Swapnil; Tiwari, G.N. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2008-07-15

    In this paper, an integrated combined system of a photovoltaic (glass-glass) thermal (PV/T) solar water heater of capacity 200 l has been designed and tested in outdoor condition for composite climate of New Delhi. An analytical expression for characteristic equation for photovoltaic thermal (PV/T) flat plate collector has been derived for different condition as a function of design and climatic parameters. The testing of collector and system were carried out during February-April, 2007. It is observed that the photovoltaic thermal (PV/T) flat plate collector partially covered with PV module gives better thermal and average cell efficiency which is in accordance with the results reported by earlier researchers. (author)

  5. Automated Verification of Practical Garbage Collectors

    CERN Document Server

    Hawblitzel, Chris

    2010-01-01

    Garbage collectors are notoriously hard to verify, due to their low-level interaction with the underlying system and the general difficulty in reasoning about reachability in graphs. Several papers have presented verified collectors, but either the proofs were hand-written or the collectors were too simplistic to use on practical applications. In this work, we present two mechanically verified garbage collectors, both practical enough to use for real-world C# benchmarks. The collectors and their associated allocators consist of x86 assembly language instructions and macro instructions, annotated with preconditions, postconditions, invariants, and assertions. We used the Boogie verification generator and the Z3 automated theorem prover to verify this assembly language code mechanically. We provide measurements comparing the performance of the verified collector with that of the standard Bartok collectors on off-the-shelf C# benchmarks, demonstrating their competitiveness.

  6. Boundary layer flow and heat transfer on a moving plate in a copper-water nanofluid using Buongiorno model

    Science.gov (United States)

    Bakar, Nor Ashikin Abu; Bachok, Norfifah; Arifin, Norihan Md.

    2016-06-01

    The study of the steady two dimensional boundary layer flow of a copper (Cu)-water nanofluid on a moving plate is investigated. The assumption is the plate moves in the same or opposite direction to the free stream. The nonlinear partial differential equations are transformed into nonlinear ordinary differential equations using a similarity variables,then a shooting technique is used to solved it numerically. The numerical results for skin friction coefficient, the local Nusselt number, the local Sherwood number as well as the velocity, temperature and concentration profiles are obtained. The effect of nanoparticle volume fraction, Brownian motion and thermophoresis parameters on heat transfer are examined. The results show that the local Nusselt number and the local Sherwood number increase with increasing in the Brownian motion parameter Nb and thermophoresis parameter Nt.

  7. Study of thermohydraulic characteristics of upgraded feedwater collector in PGV-440 steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Tarankov, G.A.; Trunov, N.B.; Titov, V.F. [OKB Gidropress (Russian Federation); Urbansky, V.V. [Rovno NPP (Ukraine); Lenkei, I.; Notarosh, M. [Paks NPP (Hungary)

    1995-12-31

    Reconstruction of feedwater distribution collector was performed at unit 1 of Rowno NPP. Main results of measurements of temperatures in water volume, reparation characteristics and impurities distribution are presented. Analysis of tests results and design criteria is given. (orig.).

  8. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    . When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity....... Heat from the collectors is transferred to a domestic hot water storage tank or to a cold storage tank, which is used as the source for the heat pump. When the heat pump charges the warm storage tank, heat is extracted from the cold storage tank, which then can be reheated by the PVT collectors...

  9. Energy and exergy efficiency of heat pipe evacuated tube solar collectors

    Directory of Open Access Journals (Sweden)

    Jafarkazemi Farzad

    2016-01-01

    Full Text Available In this paper, a heat pipe evacuated tube solar collector has been investigated both theoretically and experimentally. A detailed theoretical method for energy and exergy analysis of the collector is provided. The method is also evaluated by experiments. The results showed a good agreement between the experiment and theory. Using the theoretical model, the effect of different parameters on the collector’s energy and exergy efficiency has been investigated. It is concluded that inlet water temperature, inlet water mass flow rate, the transmittance of tubes and absorptance of the absorber surface have a direct effect on the energy and exergy efficiency of the heat pipe evacuated tube solar collector. Increasing water inlet temperature in heat pipe evacuated solar collectors leads to a decrease in heat transfer rate between the heat pipe’s condenser and water.

  10. Thermal-hydraulic analysis under partial loss of flow accident hypothesis of a plate-type fuel surrounded by two water channels using RELAP5 code

    Directory of Open Access Journals (Sweden)

    Itamar Iliuk

    2016-01-01

    Full Text Available Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was proposed. A partial loss of flow accident was simulated to show the behavior of the model under this type of accident. The results show that the critical heat flux was detected in the central region along the axial direction of the plate when the right water channel was blocked.

  11. A Study on a Perfaormance of Water-Spray-Type Ice Thermal Energy Storage Vessel with Vertical Heat Exchange Plates

    Science.gov (United States)

    Yoshimura, Kenji; Koyama, Shigeru; Fukuda, Toshihito; Ohba, Hideki

    A system with a water -embedded-type ice storage vessel is widely used because of its simple structure compactness. However, this ice storage vessel has a disadvantage, that is, the melting rate is very small. The use of falling water film seems to be one of promising ways for solving this disadvantage. We have found in our previous study that the use of the falling water film is very effective, especially for high initial water temperatures. In the present study, we examined the melting performance of a falling-water-film-type ice thermal energy storage vessel with practical size, having vertical heat exchange plates. The results obtained are as follows : the quantity of melting ice increases with increase of the water film flow rate, the melting rate decreases with time because ice surface are decreases with time gradually, the heat transfer coefficient of melting increases with increase of the water film flow rate, and the melting rate increases with increase of the water-spray temperature.

  12. Particle deposition to protruding local sinks adhering on a collector surface

    NARCIS (Netherlands)

    vanderMei, HC; Busscher, HJ; Bos, R.R.M.

    1996-01-01

    In this paper, we measured the local initial deposition rates of streptococci to adhering actinomyces, acting as protruding local sinks on a glass collector, as a function of the actinomyces density in a parallel plate flow chamber. The local initial deposition rates, i.e., deposition in the vicinit

  13. Water Input and Water Release from the Subducting Nazca Plate along Southern Central Chile (33°S-46°S)

    Science.gov (United States)

    Voelker, D.; Stipp, M.

    2015-12-01

    The fixation of water in the oceanic crust and upper mantle, the flux of stored water into subduction zones and the partial liberation of those fluids underneath the forearc and arc are mechanisms that impact on almost every aspect of subduction zone processes, e.g. intensity and type of arc volcanism, deposition of ores and seismicity of the subduction fault, but also on global geochemical budgets by recycling material back into the continental crust. Much of that water fixation happens at the outer rise of subduction zones in particular by deep percolation of fluids to the upper mantle along bend faults. Offshore Chile, the age of the subducting Nazca Plate varies between 0 Ma at the Chile Triple Junction (46°S) and ~38 Ma at the latitude of Valparaíso (32°S). Age-related variations in the thermal state of the subducting Nazca Plate impact on the water influx to the subduction zone, as well as the volumes of water that are released under the continental forearc or, alternatively, carried into the deeper mantle. Southern Central Chile is an ideal setting to study this effect, because other factors important for the subduction zone water budget appear constant. We determine the water influx by calculating the crustal water uptake and by modeling the upper mantle serpentinization at the outer rise of the Chile Trench. The water release under forearc and arc is determined by coupling FEM thermal models of the subducting plate with stability fields of water-releasing mineral reactions for upper and lower crust and hydrated mantle. Results show that both the influx and the release of water vary drastically over a length of 1500 km. In particular, the oldest and coldest segments carry roughly twice as much water into the subduction zone as the youngest and hottest segments, but their release flux to the forearc is only about one fourth of the latter. This high variability over a subduction zone of ~1500 km length shows that it is insufficient to consider subduction

  14. Characteristic of local boiling heat transfer of ammonia and ammonia / water binary mixture on the plate type evaporator

    Science.gov (United States)

    Okamoto, Akio; Arima, Hirofumi; Ikegami, Yasuyuki

    2011-08-01

    Power generation using small temperature difference such as ocean thermal energy conversion (OTEC) and discharged thermal energy conversion (DTEC) is expected to be the countermeasures against global warming problem. As ammonia and ammonia/water are used in evaporators for OTEC and DTEC as working fluids, the research of their local boiling heat transfer is important for improvement of the power generation efficiency. Measurements of local boiling heat transfer coefficients were performed for ammonia /water mixture ( z = 0.9-1) on a vertical flat plate heat exchanger in a range of mass flux (7.5-15 kg/m2 s), heat flux (15-23 kW/m2), and pressure (0.7-0.9 MPa). The result shows that in the case of ammonia /water mixture, the local heat transfer coefficients increase with an increase of mass flux and composition of ammonia, and decrease with an increase of heat flux.

  15. Indoor test for thermal performance evaluation of Libbey-Owens-Ford solar collector. [using a solar simulator

    Science.gov (United States)

    Shih, K.

    1977-01-01

    The thermal performance of a flat plate solar collector that uses liquid as the heat transfer medium was investigated under simulated conditions. The test conditions and thermal performance data obtained during the tests are presented in tabular form, as well as in graphs. Data obtained from a time constant test and incident angle modifier test, conducted to determine transient effect and the incident angle effect on the collector, are included.

  16. Investigations on efficiencies of HT solar collectors for different flow rates and collector tilts

    DEFF Research Database (Denmark)

    Chen, Ziqian; Perers, Bengt; Furbo, Simon;

    2013-01-01

    Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates and tilt. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rates are obtained. The calculated efficiencies are in good...... agreement with the measured efficiencies....

  17. Standard Practice for Exposure of Solar Collector Cover Materials to Natural Weathering Under Conditions Simulating Stagnation Mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This practice covers a procedure for the exposure of solar collector cover materials to the natural weather environment at elevated temperatures that approximate stagnation conditions in solar collectors having a combined back and edge loss coefficient of less than 1.5 W/(m2 · °C). 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors, photovoltaic cells, flat-plate collectors having a combined back and edge loss coefficient greater than 1.5 W/(m2 ·° C), or flat-plate collectors whose design incorporates means for limiting temperatures during stagnation. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard t...

  18. 一体化太阳能热泵热水器运行特性的实验研究%Experimental Study on the Operating Characteristics of Solar Heat Pump Water Heater Integrated With Collector, Storage and Evaporation

    Institute of Scientific and Technical Information of China (English)

    卫梁彦; 王玲珑; 吴薇

    2011-01-01

    A novel solar heat pump water heater integrated with collector, storage and evaporation (SHPWHICSE) is presented and analyzed. By adding phase-changing materials into the collector/storage/evaporator, the solar energy can be absorbed and storied as latent heat. Calculating the storied energy according to temperature variation of the phasechange material which is chosen as paraffin, the result is that the storied energy can meet the heat load of this system. Solar got efficiency of this system is defined and compared with the direct expansion solar heat pump water heater. Experimental studies of SHPWHICSE with 150L water heating capacity are done at typical weather conditions in spring. The results indicate the system's COP is 5.63 on sunny days. Although on overcast or rainy days, the system's COP can reach 4. 13. Moreover, solar radiation intensity's unstable change has little influerace on the solar got efficiency and COP. Therefore, SHPWHICSE can be operating highly efficiently and stably at various weather conditions for domestic hot water.%介绍并研究了一种新型集热/蓄能/蒸发一体化太阳能热泵热水器系统(SHPWHICSE).该装置将真空管集热器、蓄能容器和蒸发器集于一体,通过相变潜热吸收并储存大量太阳能.根据相变材料(石蜡)在吸、放热过程中温度的变化计算蓄热量,确定相变材料中储存的热量能够满足系统热负荷.定义了一体化太阳能热泵系统的得热效率,并和直膨式太阳能热泵热水器得热效率进行比较.在春季典型工况下对容量为150L的SHPWHICSE进行实验研究,结果表明:晴天工况下,系统COP可达5.63;即使阴雨天,COP也可达4.13;太阳辐射强度的不稳定变化对热泵系统得热效率和COP的影响不大.因此,该系统在各种天气条件下都可以高效稳定地制取生活热水.

  19. Long-term weathering effects on the thermal performance of the Libbey-Owens-Ford (liquid) solar collector

    Science.gov (United States)

    1979-01-01

    Thermal performance tests were conducted on the Libbey-Owens-Ford liquid collector, following long term exposure to natural weathering conditions. Visual inspection of the collector, prior to the retest, indicated noticeable clouding of the inner cover glass, probably resulting from outgassing of the insulation. The absorber plate also showed some discoloration. The test results indicated that performance degradation had occurred at inlet temperatures significantly above ambient. The change in the slope of the efficiency curve, from the original data, is a direct indicator of an increase in the collector heat loss coefficient.

  20. Evaluation of the potential of optical switching materials for overheating protection of thermal solar collectors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huot, G.; Roecker, Ch.; Schueler, A.

    2008-01-15

    Providing renewable energy for domestic hot water production and space heating, thermal solar collectors are more and more widespread, and users' expectations with respect to performance and service lifetime are rising continuously. The durability of solar collector materials is a critical point as the collector lifetime should be at least 25 years. Overheating and the resulting stagnation of the collector is a common problem with solar thermal systems. During stagnation high temperatures lead to water evaporation, glycol degradation, and stresses in the collector with increasing pressure. Special precautions are necessary to release this pressure; only mechanical solutions exist nowadays. Additionally, the occurring elevated temperatures lead to degradation of the materials that compose collectors: seals, insulation materials, and also the selective coating which is the most important part of the collector. A promising way to achieve active cooling of collectors without any mechanical device for pressure release or collector emptying is to produce a selective coating which is able to switch its optical properties at a critical temperature Tc. An optical switch allows changing the selective coating efficiency; the goal is to obtain a coating with a poor selectivity above Tc (decreasing of absorptance, increasing of emittance). Obtaining self-cooling collectors will allow increasing collector surfaces on facades and roofs in order to get high efficiency and hot water production during winter without inconvenient overheating during summer. Optical switching of materials can be obtained by many ways. Inorganic and organic thermochromic compounds, and organic thermotropic coatings are the main types of switching coatings that have been studied at EPFL-LESO-PB. Aging studies of organic thermochromic paints fabricated at EPFL suggest that the durability of organic compounds might not be sufficient for glazed metallic collectors. First samples of inorganic coatings

  1. Optical design for EUV lithography source collector

    Institute of Scientific and Technical Information of China (English)

    Shuqing Zhang; Qi Wang; Dongyuan Zhu; Runshun Li; Chang Liu

    2011-01-01

    @@ Wolter I collector is the best collector for extreme ultraviolet (EUV) lithography, which has a series of nested mirrors.It has high collection efficiency and can obtain more uniform intensity distribution at the intermediate focus (IF).A new design with the calculation sequence from the outer mirror to the inner one on the premise of satisfying the requirements of the collector is introduced.Based on this concept, a computer program is established and the optical parameters of the collector using the program is calculated.The design results indicate that the collector satisfies all the requirements.%Wolter I collector is the best collector for extreme ultraviolet (EUV) lithography, which has a series of nested mirrors. It has high collection efficiency and can obtain more uniform intensity distribution at the intermediate focus (IF). A new design with the calculation sequence from the outer mirror to the inner one on the premise of satisfying the requirements of the collector is introduced. Based on this concept, acomputer program is established and the optical parameters of the collector using the program is calculated.The design results indicate that the collector satisfies all the requirements.

  2. Thermal performance of evacuated tube heat pipe solar collector

    Science.gov (United States)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  3. Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater

    OpenAIRE

    B. Kalidasan; T. Srinivas

    2014-01-01

    Liquid flat plate collector (solar flat plate collector) is one of the important applications in solar thermal system. The development in solar photovoltaic is an emerging challenge for the solar thermal system. In the current work an attempt has been made to optimize the number of transparent covers and refractive index to improve the optical efficiency and thermal efficiency for the collector. Performance of the liquid flat plate collector at VIT University Vellore has been simulated numeri...

  4. DRYING WITH SOLAR COLLECTOR BY HEAT PIPE

    Directory of Open Access Journals (Sweden)

    Hikmet DOĞAN

    1999-01-01

    Full Text Available In this research, heating pipe was used in the solar collector in order to take better advantage of the solar energy. The energy obtained from the sun was transferred to the drying air by means of heating pipes and this hot air was blown on the material to be dried. The water on the material to be dried vaporised with the effect of the hot air and drying took place. Because drying took place in the shade, distant from the direct radiation effects of the sun, some of the disadvantages seen in drying outside, under the sun were eliminated. Additionally, it was observed that it took less time to dry in this method than it takes to dry under the open sun.

  5. An investigation into the effects of particle texture, water content and parallel plates' diameters on rheological behavior of fine sediment

    Institute of Scientific and Technical Information of China (English)

    Masoumeh Moayeri Kashani; Lai Sai Hin; Shaliza Binti Ibrahim; Nik Meriam Binti Nik Sulaiman; Fang Yenn Teo

    2016-01-01

    Siltation, a phenomenon resulted from the presence of fine particles in an aqueous environment, dominated by silt and clay, is a known and common environmental issue worldwide. The accumulation of fine sediments engenders murky water with low oxygen levels, which leads to the death of aquatic life. Thus, investigating the physical and mechanical properties of fine sediment by rheological methods has expanded. Rheology is the science of deformation and flow of matter in stress. This survey investigates the rheological behavior of six samples of soil as the fine particles structure (D<63μm) from different regions of Malaysia by using a rotational rheometer with a parallel-plate measuring (using two sizes:25 mm and 50 mm) device to explore the flow and viscoelastic properties of fine particles. The samples were examined in two rheological curve and amplitude sweep test methods to investigate the effect of water content ratio, texture, and structure of particles on rheological properties. It was found that the content of fine sand, clay, and silt had an effect on the stiffness, structural stability, and shear behavior. Thus, the pseudoplastic and viscoelastic behavior are respectively shown. Moreover, the amount of fine sediments present in water i.e. the concentration of these particles, has a direct effect on the rheological curve. A reduction in viscosity of samples with higher concentrations of water has been observed. As a consequence, a considerable quantity of fine sediments are distributed within the water body and remain suspended over the time. As a result, the sedimentation rate slows down. It needs to be asserted that the storage modulus G’ , loss modulus G″, and yield point can vary depending on particle type. The G’ and G″were instigated for samples (70%and 45%concentrations) that demonstrated viscoelastic characteristics using the same rotational rheometer with a parallel-plate measuring device.

  6. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors

    OpenAIRE

    Chen, M.; He, Y.; J. Zhu; Wen, D

    2016-01-01

    A one-dimensional transient heat transfer analysis was carried out to analyze the effects of the Nanoparticle (NP) volume fraction, collector height, irradiation time, solar flux, and NP material on the collector efficiency. The numerical results were compared with the experimental results obtained by silver nanofluids to validate the model, and good agreement was obtained. The numerical results show that the collector efficiency increases as the collector height and NP volume fraction increa...

  7. Combined photovoltaic and thermal hybrid collector systems

    Energy Technology Data Exchange (ETDEWEB)

    Kern, E.C. Jr.; Russell, M.C.

    1978-01-01

    Solar energy collectors that produce both electric and thermal energy are an attractive alternative to individual thermal and photovoltaic collectors for certain applications and climates. Economic results from a system analysis indicate that hybrid collector systems are attractive in small buildings that have substantial heating loads. Passively cooled photovoltaic panels are best suited for structures located in regions where year-round air conditioning and small, low-grade, thermal energy demands predominate. Hybrid collectors are to be tested according to ASHRAE standards and a full-system experiment incorporating a photovoltaic array installed at the Solar Energy Research Facility of the University of Texas will be conducted by Lincoln Laboratory.

  8. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.

    Science.gov (United States)

    Bai, Xiaohui; Zhi, Xinghua; Zhu, Huifeng; Meng, Mingqun; Zhang, Mingde

    2015-01-01

    This study investigates the effect of chloramine residual on bacteria growth and regrowth and the relationship between heterotrophic plate counts (HPCs) and the concentration of chloramine residual in the Shanghai drinking water distribution system (DWDS). In this study, models to control HPCs in the water distribution system and consumer taps are also developed. Real-time ArcGIS was applied to show the distribution and changed results of the chloramine residual concentration in the pipe system by using these models. Residual regression analysis was used to get a reasonable range of the threshold values that allows the chloramine residual to efficiently inhibit bacteria growth in the Shanghai DWDS; the threshold values should be between 0.45 and 0.5 mg/L in pipe water and 0.2 and 0.25 mg/L in tap water. The low residual chloramine value (0.05 mg/L) of the Chinese drinking water quality standard may pose a potential health risk for microorganisms that should be improved. Disinfection by-products (DBPs) were detected, but no health risk was identified.

  9. Automated solar collector installation design

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-08-26

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

  10. Performance Evaluation of a Nanofluid (CuO-H2O Based Low Flux Solar Collector

    Directory of Open Access Journals (Sweden)

    Lal Kundan

    2013-04-01

    Full Text Available As the fossil fuels are depleting continuously, we know that solar energy harvesting is a significant potential area for new research dimensions. Sun provides us about 1.9 x 108TWh/yr on the land, of which 1.3 x 105 TWh]/yr energy is used. In order to make much use of solar energy on the earth, solar energy harvesting into more usable form (e.g. heat or electricity by using solar energy collectors is important aspect. A solar collector [1] is a device which transfers the collected solar energy to a fluid passing in contact with it. The performance of collector does not only depends upon how effective the absorber is, but also on how effective are the heat transfer and thermal properties (e.g. thermal conductivity, heat capacity of the fluid which is being used. The absorption properties of the fluids generally used in solar collectors are very poor which in turn limits the efficiency of the solar collector. So, there is a need to use energy efficient heat transfer fluids for high efficiency and performance. A relatively new attempt has been made to increase the performance of the solar collector by using nanofluids. Recently developed a new class of working fluids called Nanofluids, found to be possessing better thermal properties over the hosting fluids, can be a good option in the solar collector [5]. In our research work the CuO-water based nanofluid has been tested in the solar collector and their performance is investigated. It has been found that efficiency if the solar collector is increased by 4-6% compared to water

  11. Long term weathering effects on the thermal performance of the solaron (air) solar collector

    Science.gov (United States)

    1979-01-01

    The test procedures and the results obtained during the evaluation test program on the Solaron Corporation air-type solar collector are presented. The tests were performed under simulated conditions, following long-term exposure to natural weathering conditions. The Solaron Model 2001, air-type solar collector has a gross area of 19 square feet and the weight is 160 pounds. The absorber plate is made of 24-gage steel, the coating is baked-on black paint, the cover consists of two sheets of 1/8-inch low-iron tempered glass, and the insulation is one thickness of 3 5/8-inch fiberglass batting.

  12. Solar water heating for residential buildings. With instructions for the construction of a thermosiphon system. 6. rev. ed. Solare Brauchwassererwaermung im Haushalt. Mit Hinweisen zum Selbstbau einer Schwerkraftanlage

    Energy Technology Data Exchange (ETDEWEB)

    Auer, F. (Ingenieurbuero NES Neue Energie-Systeme, Langenselbold (Germany))

    1991-01-01

    The use of solar energy for domestic water heating by flat plate collectors is today technically matured, such systems are easy to install and to operate as well as economic and competitive to other sources of energy. In this booklet the main components collector and storage system and the design as thermosiphon or pump system are described in detail. In the second part instructions for the self-construction of a thermosiphon system are given. Finally the economy of solar water heating systems is gone into. (BWI).

  13. Thermal study of a residential water solar heating system with two different absorbing surface configurations; Estudo termico de um sistema solar de aquecimento de agua residencial para duas configuracoes de superficie absorvedora

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Rivaldo Ferreira

    2009-10-15

    A solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly is presented. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, it is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint fiat black for better absorption of sunlight. The system worked on a thermosyphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. The most efficient configuration for the connect purpose was determined. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied. (author)

  14. ALL-SEASON ELECTRO HELIO WATER HEATER WITH A VERTICAL COLLECTOR Всесезонный электрогелиоводонагреватель с вертикальным коллектором

    Directory of Open Access Journals (Sweden)

    Abelentsev E. Y.

    2013-01-01

    Full Text Available The completed observations have confirmed the expediency of vertical installation of the all-season electro helio water heater’s collector under certain conditions. In summer, Kv is considerably more than unity. In winter and low season, Кv is nearly equal to unity, which is necessary

  15. Variations of weekly atmospheric deposition for multiple collectors at a site on the shore of Lake Okeechobee, Florida

    Science.gov (United States)

    Peters, N.E.; Reese, R.S.

    1995-01-01

    Eight wet/dry precipitation collectors were modified to house four additional dryfall collectors and one bulk precipitation collector to sample atmospheric deposition for 12 weeks in a small area on the southwestern shore of Lake Okeechobee; sample contamination, primarily by insects, reduced the comparison to the last nine weeks. The deposition was determined for Ca2+, Na+, Cl-, and SO42- and nutrients including total phosphorus, orthophosphate, total ammonia plus organic nitrogen, and nitrite plus nitrate. In general, deposition was lower and less variable in wet precipitation than in bulk precipitation. The higher variability of the bulk precipitation was attributed to local contamination, particularly by dust and insects. Each wet/dry precipitation collector was fitted with dryfall collectors that consisted of the dry-side bucket on a wet/dry collector, which was preloaded with distilled and deionized water, and four glass dish collectors; two of the glass dishes were preloaded with water and the other two remained dry. The deposition to the dry dish collectors was not comparable in adjacent collectors for any constituent; however, the deposition in the adjacent water-loaded dishes was comparable for most major constituents, except nutrients. A comparison of Ortho-P deposition with Total-P indicated that the P collected by the dryfall collectors was predominantly reactive, which also was reflected in the bulk deposition, whereas that in the wet deposition was mostly nonreactive. The large variability in deposition of P among the bulk and dryfall collectors suggests that alternative methods must be used to evaluate the P sources and processes of atmospheric transfer.

  16. Solar thermal collectors in polymeric materials: A novel approach towards higher operating temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Joao Farinha; Horta, Pedro; Carvalho, Maria Joao [INETI - Inst. Nacional de Engenharia Tecnologia e Inovacao, IP, Lisboa (Portugal); Silva, Paulo [PLASDAN - Maquinas para Plasticos, Marinha Grande (Portugal)

    2008-07-01

    The increasing demand for low temperature solar thermal collectors, especially for hot water production purposes in dwellings, swimming pools, hotels or industry, has lead to the possibility of high scale production, with leading manufacturers presenting yearly productions of hundreds of thousands of square meters. In such conditions, the use of polymeric materials in the manufacturing of solar collectors acquires particular interest, opening a full scope of opportunities for lower production costs, by means of cheaper materials or simpler manufacturing operations. Yet, the use of low cost materials limits the maximum operating temperatures estimated for the collectors (stagnation) to values around 120 C, easily attainable by any simple glazed solar collector. Higher performances, leading to higher stagnation temperatures as those observed for regular metal-based solar thermal collectors, would require high temperature polymers, at a much higher cost. The present paper addresses the manufacturing of a high performance solar thermal collector based in polymeric materials and includes a base thermal study, highlighting the different possibilities to be followed in the production of a polymeric collector, as well as a description of different temperature control strategies. (orig.)

  17. Visco-acoustic modelling of a vibrating plate interacting with water confined in a domain of micrometric size

    Science.gov (United States)

    Lebental, B.; Bourquin, F.

    2012-04-01

    It is well established that concrete durability strongly depends on the capillary porosity of the material. Hence, structural health monitoring of concrete structure could take advantage of concrete microporosity monitoring. To this end, a new method for the in situ non-destructive testing of capillary porosity in cementitious materials has been proposed. A sensing device that seems well suited to this application is a capacitive ultrasonic transducer with a characteristic size of 1 μm. It is to be embedded in the material. Its vibrating membrane is made of aligned carbon nanotubes forming a thin layer with a typical thickness of 1 nm. It generates acoustic waves of micrometric wavelength into water-filled micropores, aiming at measuring their properties. The present paper focuses on the numerical simulation of the embedded sensor. In order to properly account for viscous effects in fluids at the micrometric scale, we have developed a specific computational method for the visco-acoustic modelling of a microplate vibrating between 10 MHz and 2 GHz in a water-filled domain of micrometric size. Our approach is based on the condensation of the fluid part of the fluid-structure problem on the structure by a finite element method, and on a spectral approximation of the structural equations. The numerical results indicate that the fluid domain is resonant despite the viscous terms, which causes a frequency downshift of the resonances and a decrease of the quality factor. In the coupled system, the plate does not perturb the fluid resonances, whereas the plate resonances are strongly upshifted by the water load. The resonance frequencies of the system are shown to display a clear dependence on the pore width, which makes the device a good candidate as a porosity sensor.

  18. Optimization of dish solar collectors

    Science.gov (United States)

    Jaffe, L. D.

    1983-01-01

    Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high. Previously announced in STAR as N83-19224

  19. Electrochemical decomposition of fluorinated wetting agents in plating industry waste water.

    Science.gov (United States)

    Fath, Andreas; Sacher, Frank; McCaskie, John E

    2016-01-01

    Electrochemical decomposition of fluorinated surfactants (PFAS, perfluorinated alkyl substances) used in the plating industry was analyzed and the decomposition process parameters optimized at the laboratory scale and production scale of a 500-liter reactor using lead electrodes. The method and system was successfully demonstrated under production conditions to treat PFAS) with up to 99% efficiency in the concentration range of 1,000-20,000 μg/l (1 ppm-20 ppm). The treatment also reduced hexavalent chromium (Cr(6+)) ions to trivalent chromium (Cr(3+)) ions in the wastewater. If the PFAS-containing wastewater is mixed with other wastewater streams, specifically from nickel plating drag out solution or when pH values >5, the treatment process is ineffective. For the short chain PFAS, (perfluorobutylsulfonate) the process was less efficient than C6-C8 PFAS. The process is automated and has safety procedures and controls to prevent hazards. The PFAS were decomposed to hydrogen fluoride (HF) under the strong acid electrochemical operating conditions. Analytical tests showed no evidence of organic waste products remaining from the process. Conventional alternative PFAS removal systems were tested on the waste streams and compared with each other and with the-E-destruct (electrochemical oxidation) process. For example, ion exchange resin (IX resin) treatment of wastewater to complex and remove PFAS was found to be seven times more efficient when compared to the conventional activated carbon absorption (C-treat) process. However, the E-destruct process is higher in capacity, exhibits longer service life and lower operating costs than either IX or C-treat methods for elimination of PFAS from these electroplating waste streams.

  20. LARGO hot water system thermal performance test report

    Science.gov (United States)

    1978-01-01

    The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.