WorldWideScience

Sample records for plate chambers mrpc

  1. Performance test of the Multi-gap Resistive Plate Chamber (MRPC) with cosmic ray

    Science.gov (United States)

    Ikeda, Michihiko; Akieda, Tomomi; Tomita, Shoko; Ninomiya, Aki

    2014-09-01

    MRPC is a gaseous ionization detector, which a good timing resolution has been used practically in the nuclear and particle physics experiment. A mixed gas of SF6 and Fleon 134a was flowed through the gaps between high resistive plates (500 μm thickness glass). A high electric field of ~2 ×106 [V/m] was applied between the plates. A charged particle passes through the MRPC and causes avalanche amplification. We constructed a relatively small MRPC with a readout pad (20 mm × 50 mm). The development is motivated by feasibility study of the MRPC as a photon tagger at the Research Center for Electron Photon Science (ELPH), Tohoku University. The photon tagger needs a good timing resolution (<100 ps), therefore we studied the small size MRPC, while a large sized MRPCs are widely used in nuclear and particle experiments. The MRPC can operate under the strong magnetic field and thus it can be a good candidate as an electron detector placed in the magnet. We tested the HV dependence of time resolution of the MRPC with cosmic rays. The MRPC will be demonstrated at the open campus of the Tohoku University as an example of nuclear experimental detectors. We will measure the zenith angle and velocity distributions of cosmic ray.

  2. Space-charge limitation of avalanche growth in narrow-gap resistive plate chambers

    CERN Document Server

    Williams, M C S

    2004-01-01

    A big advance in resistive plate chamber technology happened in 1996 with the advent of the multigap resistive plate chamber (MRPC). The MRPC allows us to easily construct detectors with many small gas gaps and thus we obtain good timing together with high detection efficiency. Using this technology, it is now common to build detectors with gas gaps of 200-300 mum in width. This paper examines space-charge limited avalanche growth; this becomes a dominant effect for narrow gap resistive plate chambers. This effect controls gas gain and explains the reason for the excellent behaviour of MRPCs built with this gas gap.

  3. Effect of temperature on the multi-gap resistive plate chamber operation

    International Nuclear Information System (INIS)

    Zhao, Y.E.; Wang, X.L.; Liu, H.D.; Chen, H.F.; Li, C.; Wu, J.; Xu, Z.Z.; Shao, M.; Zeng, H.; Zhou, Y.

    2005-01-01

    In order to obtain a quantitative understanding of the influence of temperature on the multi-gap resistive plate chamber (MRPC) operation, we tested the performance of a 6-gap, 6.1x20 cm 2 active area MRPC with cosmic rays at different temperatures. Results of measurements of noise rate, dark current and detection efficiency are presented

  4. Recombination: An important effect in multigap resistive plate chambers

    International Nuclear Information System (INIS)

    Doroud, K.; Afarideh, H.; Hatzifotiadou, D.; Rahighi, J.; Williams, M.C.S.; Zichichi, A.

    2009-01-01

    We have simulated the gas avalanche in a multigap resistive plate chamber (MRPC). The results were then compared with our data from the MRPC . Up to now, the total amount of charge produced in a gas gap is considered to be given by the total number of positive ions generated by the gas avalanches. However, the total charge generated by the simulation program is much too large and is in conflict with our data. Our data indicate that nearly 100% of the negative ions recombine with the positive ions. The recombination effect dramatically reduces the amount of charge in the gas gap: a very important feature for MRPC technology especially for the rate capability.

  5. A very large multigap resistive plate chamber

    CERN Document Server

    Cerron-Zeballos, E; Hatzifotiadou, D; Kim, D W; Lamas-Valverde, J; Lee, S C; Platner, E D; Roberts, J; Williams, M C S; Zichichi, A

    1999-01-01

    We have built and tested a very large multigap resistive plate chamber (MRPC). We discuss the suitability of the multigap RPC for the construction of large area modules. We give details of the construction technique and results from a scan across the surface of the chamber. We also report on the implementation of `half-strip resolution', where we improve the spatial resolution by a factor 2 without increasing the number of read-out channels. (9 refs).

  6. Operation of the multigap resistive plate chamber using a gas mixture free of flammable components

    CERN Document Server

    Akindinov, A; Antonioli, P; Arcelli, S; Basile, M; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; De Caro, A; De Pasquale, S; Di Bartolomeo, A; Fusco-Girard, M; Golovine, V; Guida, M; Hatzifotiadou, D; Kaidalov, A B; Kim, D H; Kim, D W; Kisselev, S M; Laurenti, G; Lee, K; Lee, S C; Lioublev, E; Luvisetto, M L; Margotti, A; Martemyanov, A N; Nania, R; Noferini, F; Otiougova, P; Pesci, A; Pinazza, O; Polozov, P A; Scapparone, E; Scioli, G; Sellitto, S B; Semeria, F; Smirnitsky, A V; Tchoumakov, M M; Usenko, E; Valenti, G; Voloshin, K G; Williams, M C S; Zagreev, B V; Zampolli, C; Zichichi, A

    2004-01-01

    We have investigated the operation of the multigap resistive plate chamber (MRPC) for the ALICE-TOF system with a gas mixture free of flammable components. Two different gas mixtures, with and without iso-C//4H//1//0 have been used to measure the performance of the MRPC. The efficiency, time resolution, total charge, and the fast to total charge ratio have been found to be comparable.

  7. Effect of temperature on MRPC with pad read-outs

    International Nuclear Information System (INIS)

    Ding Weicheng; Wang Yi; Chen Huangshan; Wang Jingbo; Tuo Xianguo; Wang Min

    2013-01-01

    To obtain a quantitative understanding of the influence of temperature on the performance of multi-gap resistive plate chambers (MRPCs), we have tested the performance of a 10-gap, 12-pad, 2×2×12 cm 2 active area MRPC at different temperatures with cosmic rays. Presented are results from measurements of high-voltage scans, noise rate, dark current, streamer, time resolution, count rate, charge spectrum, and detection efficiency. The test results show that the MRPC performance is significantly affected by temperature arising from the temperature-dependence of the glass resistivity. (authors)

  8. Quality control and batch testing of MRPC modules for BESIII ETOF upgrade

    Science.gov (United States)

    Liu, Z.; Li, X.; Sun, Y. J.; Li, C.; Heng, Y. K.; Chen, T. X.; Dai, H. L.; Shao, M.; Sun, S. S.; Tang, Z. B.; Yang, R. X.; Wu, Z.; Wang, X. Z.

    2017-12-01

    The end-cap time-of-flight (ETOF) system for the Beijing Spectrometer III (BESIII) has been upgraded using the Multi-gap Resistive Plate Chamber (MRPC) technology (Williams et al., 1999; Li et al., 2001; Blanco et al., 2003; Fonte et al., 2013, [1-4]). A set of quality-assurance procedures has been developed to guarantee the performances of the 72 mass-produced MRPC modules installed. The cosmic ray batch testing show that the average detection efficiency of the MRPC modules is about 95%. Two different calibration methods indicate that MRPCs' time resolution can reach 60 ps in the cosmic ray test.

  9. Test of high time resolution MRPC with different readout modes for the BESIII upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Sun, Y.J., E-mail: sunday@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Li, C., E-mail: licheng@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Heng, Y.K.; Qian, S. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Chen, H.F.; Chen, T.X. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Dai, H.L. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Fan, H.H.; Liu, S.B. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Liu, S.D.; Jiang, X.S. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Shao, M.; Tang, Z.B.; Zhang, H.; Zhao, Z.G. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China)

    2014-11-01

    In order to further enhance the particle identification capability of the Beijing Spectrometer (BESIII), it is proposed to upgrade the current end-cap time-of-flight (eTOF) detector with multi-gap resistive plate chamber (MRPC). The prototypes, together with the front end electronics (FEE) and time digitizer (TDIG) module have been tested at the E3 line of Beijing Electron Positron Collider (BEPCII) to study the difference between the single and double-end readout MRPC designs. The time resolutions (sigma) of the single-end readout MRPC are 47/53 ps obtained by 600 MeV/c proton/pion beam, while that of the double-end readout MRPC is 40 ps (proton beam). The efficiencies of three MRPC modules tested by both proton and pion beam are better than 98%. For the double-end readout MRPC, no incident position dependence is observed.

  10. Performance simulation of a MRPC-based PET imaging system

    Science.gov (United States)

    Roy, A.; Banerjee, A.; Biswas, S.; Chattopadhyay, S.; Das, G.; Saha, S.

    2014-10-01

    The less expensive and high resolution Multi-gap Resistive Plate Chamber (MRPC) opens up a new possibility to find an efficient alternative detector for the Time of Flight (TOF) based Positron Emission Tomography, where the sensitivity of the system depends largely on the time resolution of the detector. In a layered structure, suitable converters can be used to increase the photon detection efficiency. In this work, we perform a detailed GEANT4 simulation to optimize the converter thickness towards improving the efficiency of photon conversion. A Monte Carlo based procedure has been developed to simulate the time resolution of the MRPC-based system, making it possible to simulate its response for PET imaging application. The results of the test of a six-gap MRPC, operating in avalanche mode, with 22Na source have been discussed.

  11. Performance study of large area encoding readout MRPC

    Science.gov (United States)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  12. Avalanche fluctuations within the multigap resistive plate chamber

    International Nuclear Information System (INIS)

    Cerron Zeballos, E.; Crotty, I.; Lamas Valverde, J.; Veenhof, R.J.; Williams, M.C.S.; Zichichi, A.

    1996-01-01

    The multigap resistive plate chamber (MRPC) was originally designed to have improved time resolution (compared to the wide gap RPC), but also to keep the good high rate behaviour and ease of construction associated with the wide gap RPC. However in addition we observed a very long efficiency plateau, even at high rates. Here we consider fluctuations in avalanche growth, and show that the inherent ''averaging'' of these fluctuations can account for the enhanced performance of the multigap RPC. (orig.)

  13. Design, development and performance study of six-gap glass MRPC detectors

    Energy Technology Data Exchange (ETDEWEB)

    Devi, M.M. [Tata Institute of Fundamental Research, Mumbai (India); Weizmann Institute of Science, Rehovot (Israel); Mondal, N.K.; Satyanarayana, B.; Shinde, R.R. [Tata Institute of Fundamental Research, Mumbai (India)

    2016-12-15

    The multigap resistive plate chambers (MRPCs) are gas ionization detectors with multiple gas sub-gaps made of resistive electrodes. The high voltage (HV) is applied on the outer surfaces of outermost resistive plates only, while the interior plates are left electrically floating. The presence of multiple narrow sub-gaps with high electric field results in faster signals on the outer electrodes, thus improving the detector's time resolution. Due to their excellent performance and relatively low cost, the MRPC detector has found potential application in time-of-flight (TOF) systems. Here we present the design, fabrication, optimization of the operating parameters such as the HV, the gas mixture composition, and, performance of six-gap glass MRPC detectors of area 27 cm x 27 cm, which are developed in order to find application as trigger detectors, in TOF measurement etc. The design has been optimized with unique spacers and blockers to ensure a proper gas flow through the narrow sub-gaps, which are 250 μm wide. The gas mixture consisting of R134A, Isobutane and SF{sub 6}, and the fraction of each constituting gases has been optimized after studying the MRPC performance for a set of different concentrations. The counting efficiency of the MRPC is about 95% at 17.9 kV. At the same operating voltage, the time resolution, after correcting for the walk effect, is found to be about 219 ps. (orig.)

  14. Towards the final MRPC design. Performance test with heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Deppner, Ingo; Herrmann, Norbert [Physikalisches Institut Uni. Heidelberg, Heidelberg (Germany)

    2015-07-01

    The Compressed Baryonic Matter spectrometer (CBM) is a future heavy ion experiment located at the Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany. The key element in CBM providing hadron identification at incident energies between 2 and 35 AGeV will be a 120 m{sup 2} large Time-of-Flight (ToF) wall composed of Multi-gap Resistive Plate Chambers (MRPC) with a system time resolution better than 80 ps. Aiming for an interaction rate of 10 MHz for Au+Au collisions the MRPCs have to cope with an incident particle flux between 0.1 kHz/cm{sup 2} and 25 kHz/cm{sup 2} depending on their location. Characterized by granularity and rate capability the actual conceptual design of the ToF-wall foresees 4 different counter types called MRPC1 - MRPC4. In order to elaborate the final MRPC design of these counters a heavy ion test beam time was performed at GSI. In this contribution we present performance test results of 2 different MRPC3 full size prototypes developed at Heidelberg University and Tsinghua University, Beijing.

  15. A high time and spatial resolution MRPC designed for muon tomography

    Science.gov (United States)

    Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.

    2014-12-01

    A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.

  16. Study on the performance of large area MRPC with high position resolution

    Energy Technology Data Exchange (ETDEWEB)

    Yue Qian, E-mail: yueq@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education (China); Wu Yucheng; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education (China)

    2012-01-01

    Multi-gap resistive plate chamber (MRPC), which is mostly developed in high energy physics domain with excellent time resolution, is also highlighted in imaging applications. A set of 50 cm Multiplication-Sign 50 cm large area MRPC with high position resolution was successfully developed by our group and different experiments have been done to test its performances. Cosmic ray muons were used to do the test and proper high voltage and working gas were chosen. Data analysis indicates its good detection efficiency and good position resolution, which encourages further study of its application in RPC-PET and muon tomography.

  17. Study of gas mixtures and ageing of the multigap resistive plate chamber used for the ALICE TOF

    CERN Document Server

    Akindinov, A; Anselmo, F; Antonioli, P; Basile, M; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; Cosenza, F; D'Antone, I; De Caro, A; De Pasquale, S; Di Bartolomeo, A; Fusco-Girard, M; Golovine, V; Guerzoni, M; Guida, M; Hatzifotiadou, D; Kaidalov, A B; Kim, D H; Kim, D W; Kisselev, S M; Laurenti, G; Lioublev, E; Lee, K; Lee, S C; Luvisetto, M L; Margotti, A; Martemyanov, A N; Massera, F; Meneghini, S; Michinelli, R; Nania, R; Otiougova, P; Pancaldi, G; Pesci, A; Pilastrini, R; Pinazza, O; Polozov, P A; Rizzi, M; Scapparone, E; Scioli, G; Sellitto, S B; Semeria, F; Serra, S; Smirnitsky, A V; Tchoumakov, M M; Ugolini, E; Usenko, E; Valenti, G; Voloshin, K G; Williams, M C S; Zagreev, B V; Zampolli, C; Zichichi, A; Zucchini, A; Zuffa, M

    2004-01-01

    We present in this paper a study of the ALICE-TOF Multigap Resistive Plate Chamber (MRPC) performance by using several gas mixtures. We also present a search for possible ageing effects, by studying two MRPCs irradiated at the CERN Gamma Irradiation Facility.

  18. Timing measurements at ELBE on multigap resistive plate chamber prototypes for NeuLAND

    Energy Technology Data Exchange (ETDEWEB)

    Yakorev, Dmitry; Bemmerer, Daniel; Cowan, Tom; Stach, Daniel; Wagner, Andreas [Forschungszentrum Dresden-Rossendorf (FZD), Dresden (Germany); Aumann, Tom; Boretzky, Konstanze; Hehner, Joerg; Heil, Michael; Prokopowicz, Wawrczek; Reifarth, Rene; Schrieder, Gerhard [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Elvers, Michael; Zilges, Andreas [Universitaet Koeln (Germany); Kratz, Jens Volker; Rossi, Dominic [Johannes-Gutenberg-Universitaet, Mainz (Germany)

    2009-07-01

    The NeuLAND detector for fast neutrons (0.2-1 GeV) at the R3B experiment at FAIR aims for high time and spatial resolutions ({sigma}{sub t}<100 ps, {sigma}{sub x,y,z}<1 cm). The detector will consist of about 60 sequences of a stacked structure from iron converter material and multigap resistive plate chambers (MRPC's). The secondary charged particles stemming from hadronic interactions of the high energetic neutrons in the converter will be detected in the MRPC's, with excellent timing properties. As part of the ongoing development of the NeuLAND detector, MRPC prototypes designed for this application have been studied at the superconducting electron linac ELBE in Dresden with its picosecond time structure. The ELBE experiments show that the prototypes studied so far have efficiency {>=}90% for minimum ionizing particles in a 2 x 2 gap structure and fulfill the called for time resolution.

  19. Comparing Novel Multi-Gap Resistive Plate Chamber Models

    Science.gov (United States)

    Stien, Haley; EIC PID Consortium Collaboration

    2016-09-01

    Investigating nuclear structure has led to the fundamental theory of Quantum Chromodynamics. An Electron Ion Collider (EIC) is a proposed accelerator that would further these investigations. In order to prepare for the EIC, there is an active detector research and development effort. One specific goal is to achieve better particle identification via improved Time of Flight (TOF) detectors. A promising option is the Multi-Gap Resistive Plate Chamber (mRPC). These detectors are similar to the more traditional RPCs, but their active gas gaps have dividers to form several thinner gas gaps. These very thin and accurately defined gas gaps improve the timing resolution of the chamber, so the goal is to build an mRPC with the thinnest gaps to achieve the best possible timing resolution. Two different construction techniques have been employed to make two mRPCs. The first technique is to physically separate the gas gaps with sheets of glass that are .2mm thick. The second technique is to 3D print the layered gas gaps. A comparison of these mRPCs and their performances will be discussed and the latest data presented. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  20. MRPC-PET: A new technique for high precision time and position measurements

    International Nuclear Information System (INIS)

    Doroud, K.; Hatzifotiadou, D.; Li, S.; Williams, M.C.S.; Zichichi, A.; Zuyeuski, R.

    2011-01-01

    The purpose of this paper is to consider a new technology for medical diagnosis: the MRPC-PET. This technology allows excellent time resolution together with 2-D position information thus providing a fundamental step in this field. The principle of this method is based on the Multigap Resistive Plate Chamber (MRPC) capable of high precision time measurements. We have previously found that the route to precise timing is differential readout (this requires matching anode and cathode strips); thus crossed strip readout schemes traditionally used for 2-D readout cannot be exploited. In this paper we consider the time difference from the two ends of the strip to provide a high precision measurement along the strip; the average time gives precise timing. The MRPC-PET thus provides a basic step in the field of medical technology: excellent time resolution together with 2-D position measurement.

  1. The multigap resistive plate chamber as time-of-flight detector for the STAR experiment at RHIC

    International Nuclear Information System (INIS)

    Lamas V, J.

    2002-01-01

    The multigap resistive plate chamber (MRPC) is a suitable candidate for the time-of-flight system for the STAR experiment at RHIC at the BNL. A time resolution of 50 ps with an efficiency of 98% has been measured with MRPCs composed of 6 gas gaps of 220 μm. Results obtained during the year 2000 are reported here

  2. Preliminary test of 5-gap glass multi-gap resistive plate chamber for photon detection for time of flight positron emission tomography (TOF-PET) imaging

    International Nuclear Information System (INIS)

    Ganai, R.; Mondal, M.; Mehta, S.; Chattopadhyay, S.

    2016-01-01

    Multi-gap Resistive Plate Chamber (MRPC) is a type of gas detector which uses constant and uniform electric field in between several high resistive electrodes and works on the principle of gas ionisation. In MRPC a particular gas gap is divided into several parts with the help of thin high resistive electrodes. Division of the gas gap helps to improve the time resolution of the detector significantly. MRPCs with time resolution of ∼15 ps have been reported

  3. NINO An ultra-fast and low-power front-end amplifier/discriminator ASIC designed for the multigap resistive plate chamber

    CERN Document Server

    Anghinolfi, F; Martemyanov, A N; Usenko, E; Wenninger, Horst; Williams, M C S; Zichichi, A

    2004-01-01

    For the full exploitation of the excellent timing properties of the Multigap Resistive Plate Chamber (MRPC), front-end electronics with special characteristics are needed. These are (a) differential input, to profit from the differential signal from the MRPC (b) a fast amplifier with less than 1 ns peaking time and (c) input charge measurement by Time-Over-Threshold for slewing correction. An 8- channel amplifier and discriminator chip has been developed to match these requirements. This is the NINO ASIC, fabricated with 0.25 omegam CMOS technology. The power requirement at 40mW/channel is low. Results on the performance of the MRPCs using the NINO ASIC are presented. Typical time resolution a of the MRPC system is in the 50 ps range, with an efficiency of 99.9%.

  4. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    Science.gov (United States)

    Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.

    2014-09-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.

  5. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    International Nuclear Information System (INIS)

    Yue, X; Zeng, M; Wang, Y; Wang, X; Zeng, Z; Zhao, Z; Cheng, J

    2014-01-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given

  6. A solution for the inner area of CBM-TOF with pad-MRPC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Huang, X.J., E-mail: huangxj12@mails.tsinghua.edu.cn [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Lyu, P.F.; Han, D.; Xie, B.; Li, Y.J. [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Herrmann, N.; Deppner, I.; Loizeau, P.; Simon, C. [Physikalisches Institute, University Heidelberg, Heidelberg (Germany); Frühauf, J.; Kiš, M. [GSI Helmholtzzentrum fr Schwerionenforschung, GSI, Damstadt (Germany)

    2017-02-11

    The Compressed Baryonic Matter (CBM) experiment has decided to use the Multi-gap Resistive Plate Chambers(MRPC) technology to build its Time-Of-Flight (TOF) wall. CBM-TOF requires a rate capability over 20 kHz/cm{sup 2} for inner region. A 10-gap pad-MRPC assembled with low resistive glass is designed to construct this area. The prototypes, which consist of 10×0.22 mm gas gaps and 2×8 20 mm×20 mm readout pads, require fewer electronic channels compared to the strip design. A timing resolution of around 60 ps and an efficiency above 98% were obtained in a cosmic test and a beam test taken in 2014 October GSI beam time. The results show that the real-size prototypes fulfill the requirements of the CBM-TOF.

  7. Latest results on the performance of the multigap resistive plate chamber used for the ALICE TOF

    CERN Document Server

    Akindinov, A; Anselmo, F; Antonioli, P; Basile, M; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; Cosenza, F; D'Antone, I; De Caro, A; De Pasquale, S; Di Bartolomeo, A; Fusco-Girard, M; Golovine, V; Guerzoni, M; Guida, M; Hatzifotiadou, D; Kaidalov, A B; Kim, D H; Kim, D W; Kisselev, S M; Laurenti, G; Lioublev, E; Lee, K; Lee, S C; Luvisetto, M L; Margotti, A; Martemyanov, A N; Massera, F; Meneghini, S; Michinelli, R; Nania, R; Otiougova, P; Pancaldi, G; Pesci, A; Pilastrini, R; Pinazza, O; Polozov, P A; Rizzi, M; Scapparone, E; Scioli, G; Sellitto, S B; Semeria, F; Serra, S; Smirnitsky, A V; Tchoumakov, M M; Ugolini, E; Usenko, E; Valenti, G; Voloshin, K G; Williams, M C S; Zagreev, B V; Zampolli, C; Zichichi, A; Zucchini, A; Zuffa, M

    2004-01-01

    For the identification of particles in the momentum range 0.5-2.5 GeV /c, the ALICE experiment uses a Time Of Flight array consisting of Multigap Resistive Plate Chambers (MRPC) in the form of long strips. The design of the detector elements is as follows: double stack MRPCs with glass resistive plates and 5 gas gaps of 250 mum per stack. The latest results on the performance of these MRPCs are presented. Typical values of time resolution sigma are better than 50 ps, with an efficiency of 99.9% and a long, more than 1.5kV, streamer-free plateau.

  8. Testing of multigap Resistive Plate Chambers for Electron Ion Collider Detector Development

    Science.gov (United States)

    Hamilton, Hannah; Phenix Collaboration

    2015-10-01

    Despite decades of research on the subject, some details of the spin structure of the nucleon continues to be unknown. To improve our knowledge of the nucleon spin structure, the construction of a new collider is needed. This is one of the primary goals of the proposed Electron Ion Collider (EIC). Planned EIC spectrometers will require good particle identification. This can be provided by time of flight (TOF) detectors with excellent timing resolutions of 10 ps. A potential TOF detector that could meet this requirement is a glass multigap resistive plate chamber (mRPC). These mRPCs can provide excellent timing resolution at a low cost. The current glass mRPC prototypes have a total of twenty 0.1 mm thick gas gaps. In order to test the feasibility of this design, a cosmic test stand was assembled. This stand used the coincidence of scintillators as a trigger, and contains fast electronics. The construction, the method of testing, and the test results of the mRPCs will be presented.

  9. Latest results on the performance of the multigap resistive plate chamber used for the ALICE TOF

    International Nuclear Information System (INIS)

    Akindinov, A.N.; Alici, A.; Anselmo, F.

    2004-01-01

    For the identification of particles in the momentum range 0.5-2.5GeV/c, the ALICE experiment uses a Time Of Flight array consisting of Multigap Resistive Plate Chambers (MRPC) in the form of long strips. The design of the detector elements is as follows : double stack MRPCs with glass resistive plates and 5 gas gaps of 250μm per stack. The latest results on the performance of these MRPCs are presented. Typical values of time resolution σ are better than 50ps, with an efficiency of 99.9% and a long, more than 1.5kV, streamer-free plateau

  10. A precise clock distribution network for MRPC-based experiments

    International Nuclear Information System (INIS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-01-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  11. Prototyping and tests for an MRPC-based time-of-flight detector for 1 GeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Aumann, T. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Bemmerer, D., E-mail: d.bemmerer@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Boretzky, K. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Caesar, C. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Ciobanu, M. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Cowan, T.; Elekes, Z. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Elvers, M. [Universitaet zu Koeln (Germany); Gonzalez Diaz, D. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Tsinghua University, Beijing (China); Hannaske, R. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Hehner, J.; Heil, M. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Maroussov, V. [Universitaet zu Koeln (Germany); Nusair, O. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Al Balqa' Applied University, Salt (Jordan); Simon, H. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Sobiella, M.; Stach, D.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); and others

    2011-10-21

    The NeuLAND detector at the R{sup 3}B experiment at the future FAIR facility in Darmstadt aims to detect fast neutrons (0.2-1.0 GeV) with high time and spatial resolutions ({sigma}{sub t}<100ps,{sigma}{sub x,y,z}<1cm). This task can be performed either with a scintillator or based on the multigap resistive plate chamber (MRPC) technology. Here, prototyping and test for an MRPC-based solution are discussed. In order to reach 90% detection efficiency, the final detector must consist of 50 consecutive MRPC stacks. Each stack contains a 4 mm thick anode made of iron converter material, with an additional 4 mm of converter material between two stacks. The secondary charged particles stemming from hadronic interactions of the high energetic neutrons in the converter will be detected in the MRPCs. As part of the ongoing development effort, a number of prototypes for this detector have been developed and built. They have been tested in experiments with a single-electron beam with picosecond resolution at the superconducting linac ELBE (Dresden, Germany). The results of the tests are presented here, and an outlook is given.

  12. Space charge limited avalanche growth in multigap resistive plate chambers

    International Nuclear Information System (INIS)

    Akindinov, A.N.; Kaidalov, A.B.; Kisselev, S.M.; Alici, A.; Basile, M.; Cifarelli, L.; Anselmo, F.; Antonioli, P.; Romeo, G. Cara; Cindolo, F.; Baek, Y.; Kim, D.H.; Cosenza, F.; Caro, A. De; Pasquale, S. De; Bartolomeo, A. Di; Girard, M. Fusco; Guida, M.; Hatzifotiadou, D.; Kim, D.W.; Laurenti, G.; Lee, K.; Lee, S.C.; Lioublev, E.; Luvisetto, M.L.; Margotti, A.; Martemiyanov, A.N.; Nania, R.; Noferini, F.; Otiougova, P.; Pierella, F.; Polozov, P.A.; Scapparone, E.; Scioli, G.; Sellitto, S.B.; Smirnitski, A.V.; Tchoumakov, M.M.; Valenti, G.; Vicinanza, D.; Voloshin, K.G.; Williams, M.C.S.; Zagreev, B.V.; Zampolli, C.; Zichichi, A.

    2004-01-01

    Abstract The ALICE TOF array will be built using the Multigap Resistive Plate Chamber(MRPC) configured as a double stack. Each stack contains 5 gas gaps with width of 250 μm. There has been an intense R and D effort to optimise this new detector to withstand the problems connected with the high level of radiation at the LHC. One clear outcome of the R and D is that the growth of the gas avalanche is strongly affected by space charge. The effect of the space charge is a decrease in the rate of change in gain with electric field; this allows more stable operation of this detector. We have measured the gain as a function of the electric field and also measured the ratio of the fast charge to the total charge produced in the gas gap. It is well established that RPCs built with 250 μm gas gap have a much superior performance than 2 mm gaps; we discuss and compare the performance of 250 μm gap MRPCs with 2 mm gap RPCs to show the importance of space-charge limitation of avalanche growth. (orig.)

  13. Cosmic-ray test and temperature effects of MRPC

    International Nuclear Information System (INIS)

    Yue Qian; Li Yuanjing; Cheng Jianping; Wang Yi; Li Jin; Lai Yongfang; Li Qinghua; Tang Le

    2004-01-01

    A comic-ray test system has been built for testing the performance of MRPC modules. Some methods have been studied to improve the time resolution of the cosmic-ray test based on this testing system. The time resolutions of about 84 ps and 75 ps can be achieved for MRPC and its reference time, respectively. The temperature effects of MRPC have also been researched and some useful results are obtained. (author)

  14. Study on two-dimensional induced signal readout of MRPC

    International Nuclear Information System (INIS)

    Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin

    2012-01-01

    A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.

  15. Time-based MRPC detector response simulations for the CBM time-of-flight system

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Christian; Herrmann, Norbert [Physikalisches Institut und Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet Heidelberg (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The design goal of the future Compressed Baryonic Matter (CBM) experiment is to measure rare probes of dense strongly interacting matter with an unprecedented accuracy. Target interaction rates of up to 10 MHz need to be processed by the detector. The time-of-flight (TOF) wall of CBM which should provide hadron identification at particle fluxes of up to a few tens of kHz/cm{sup 2} is composed of high-resolution timing multi-gap resistive plate chambers (MRPCs). Due to the self-triggered digitization and readout scheme of CBM comprising online event reconstruction preparatory Monte Carlo (MC) transport and response simulations including the MRPC array need to be carried out in a time-based fashion. While in an event-based simulation mode interference between MC tracks in a detector volume owing to rate effects or electronics dead time is confined to a single event, time-based response simulations need to take into account track pile-up and interference across events. A proposed time-based digitizer class for CBM-TOF within the CbmRoot software framework is presented.

  16. Studies on multigap resistive plate chamber prototypes for the new NeuLAND detector at the R3B experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Elvers, Michael; Endres, Janis; Zilges, Andreas [IKP, Universitaet Koeln (Germany); Aumann, Tom; Boretzky, Konstanze; Hehner, Joerg; Heil, Michael; Prokopowicz, Wawrczek; Reifarth, Rene; Schrieder, Gerhard [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Bemmerer, Daniel; Stach, Daniel; Wagner, Andreas; Yakorev, Dmitry [Forschungszentrum Dresden-Rossendorf (FZD), Dresden (Germany); Kratz, Jens Volker; Rossi, Dominic [Johannes-Gutenberg-Universitaet, Mainz (Germany)

    2009-07-01

    The NeuLAND detector is part of the R3B experiment at FAIR and will detect neutrons between 0.2 and 1 GeV. The high energy neutrons are converted to charged particles, mainly protons, which are detected by Multigap Resistive Plate Chambers (MRPC). For the detector, a time resolution of {sigma}{sub t} < 100 ps and a position resolution of {sigma}{sub x,y,z} {approx}1 cm is required for given flight paths in the range from 10 to 35 m. An active area of 2 x 2 m{sup 2} of the neutron detector at a distance of 12.5 m to the target will match the angular acceptance of {+-}80 mrad for the neutrons defined by the gap of the superconducting dipole magnet. The salient features of the prototypes are described, as well as electrical measurements and studies with cosmic rays.

  17. Recent results and performance of the multi-gap resistive plate chambers network for the EEE Project

    Science.gov (United States)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D`Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Licciulli, F.; Maggiora, A.; Maragoto Rodriguez, O.; Maron, G.; Martelli, B.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Stori, L.; Taiuti, M.; Terreni, G.; Visnyei, O. B.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeusky, R.

    2016-11-01

    The Extreme Energy Events (EEE) Project is devoted to the study of Extensive Atmospheric Showers through a network of muon telescopes, installed in High Schools, with the further aim of introducing young students to particle and astroparticle physics. Each telescope is a tracking detector composed of three Multi-gap Resistive Plate Chambers (MRPC) with an active area of 1.60 × 0.80 m2. Their characteristics are similar to the ones built for the Time Of Flight array of the ALICE Experimentat LHC . The EEE Project started with a few pilot towns, where the telescopes have been taking data since 2008, and it has been constantly extended, reaching at present more than 50 MRPCs telescopes. They are spread across Italy with two additional stations at CERN, covering an area of around 3 × 105 km2, with a total surface area for all the MRPCs of 190 m2. A comprehensive description of the MRPCs network is reported here: efficiency, time and spatial resolution measured using cosmic rays hitting the telescopes. The most recent results on the detector and physics performance from a series of coordinated data acquisition periods are also presented.

  18. Micro plate fission chamber development

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Jiang Li; Liu Rong; Wang Dalun

    2014-01-01

    To conduct the measurement of neutron flux and the fission rate distribution at several position in assemblies, the micro plate fission chamber was designed and fabricated. Since the requirement of smaller volume and less structure material was taken into consideration, it is convinient, commercial and practical to use fission chamber to measure neutron flux in specific condition. In this paper, the structure of fission chamber and process of fabrication were introduced and performance test result was presented. The detection efficiency is 91.7%. (authors)

  19. The wide gap resistive plate chamber

    International Nuclear Information System (INIS)

    Crotty, I.; Lamas Valverde, J.; Hatzifotiadou, D.; Williams, M.C.S.; Zichichi, A.

    1995-01-01

    The resistive plate chamber (RPC) has good time and position resolution; these factors (coupled to its simple construction) make it an attractive candidate for muon trigger systems at future colliders. However, operated in spark mode, the RPC has severe rate problems that make it unusable above 10 Hz/cm 2 . We have previously published our results concerning the operation of the RPC in spark and in avalanche mode; we have shown that the rate limit can be increased to 150 Hz/cm 2 if the RPC is operated in avalanche mode. Here, we discuss the performance of chambers with 6 and 8 mm gas gaps (compared to the more usual 2 mm gap). We outline the reasons for this choice, and also discuss anode versus cathode strip readout. We have measured the efficiency versus flux, and also show that an enhanced rate limit can be obtained if only a small region of the chamber is exposed to the beam (spot illumination). Finally we have tested the performance of chambers constructed with other materials for the resistiv e plate and compare it to chambers constructed with our preferred plastic, melamine laminate. (orig.)

  20. The resistive plate chambers for CMS and their simulation

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M. E-mail: marcello.abbrescia@ba.infn.it; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Guida, R.; Merlo, M.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P

    2001-09-21

    In this paper some results obtained by the CMS Resistive Plate Chamber collaboration during its five years long period of research and development are reported. The importance of the simulation in the design of the Resistive Plate Chambers for CMS is stressed.

  1. Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography

    Science.gov (United States)

    Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.

    2016-11-01

    We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.

  2. NINO ASIC electronics used in MRPC/TOF experiment

    International Nuclear Information System (INIS)

    Sun Yongjie; Li Cheng

    2008-01-01

    In order to meet the excellent properties of MRPC, an front-end amplifier/discriminator chip-NINO ASIC, was developed in ALICE TOF group at CERN. This ASIC was fabricated with the 0.25 μm CMOS technology. It is highly integrated and can deal with 8 channels per chip. It has differential input and is differential signal shaping and throughout transition. The peaking time of the amplifier is less than 1 ns. It has LVDS outputs and the width of the output signal depended on the charge of input. This allows the TOT measurement of HPTDC system. A position sensitive MRPC was tested with beam facility using the front-end electronics based on NINO and good results were obtained. (authors)

  3. Angular dependence of the parallel plate ionization chambers of Ipen

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Caldas, L.

    1989-08-01

    The ionization chambers with parallel plates designed and constructed at IPEN for the dosimetry of soft X-radiation fields were studied in relation to thein angular dependence between O and +- 90 0 . The objective of this study is to verify the chambers response variation for small positioning errors during the field dosimetry used in Radiotherapy. The results were compared with those of commercial parallel plate ionization chambers used as secondary and testiary standards. (author) [pt

  4. Aging and rate effects of the Multigap RPC studied at the Gamma Irradiation Facility at CERN

    CERN Document Server

    Alici, A; Kim, J; Hatzifotiadou, D; Sun, Y; Valenti, G; Williams, M C S; Yakorev, D; Zichichi, A

    2007-01-01

    The selected device for the ALICE Time-of-Flight array is the Multigap Resistive Plate Chamber (MRPC). Previously we have tested this device at the Gamma Irradiation Facility (GIF) at CERN to evaluate the rate dependence; we have now performed additional tests using the final design of the MRPC and with a gas mixture free of hydrocarbons. We have measured the performance of the MRPC up to an equivalent flux of minimum ionizing muons of 2.5 kHz/cm2. We also present results from an aging test obtained by exposing two MRPC strips to the GIF source for a period of six months.

  5. ALICE Time of Flight Module

    CERN Multimedia

    The Time-Of-Flight system of ALICE consists of 90 such modules, each containing 15 or 19 Multigap Resistive Plate Chamber (MRPC) strips. This detector is used for identification of charged particles. It measures with high precision (50 ps) the time of flight of charged particles and therefore their velocity. The curvature of the particle trajectory inside the magnetic field gives the momentum, thus the particle mass is calculated and the particle is identified The MRPC is a stack of resistive glass plates, separated from each other by nylon fishing line. The mass production of the chambers (~1600, covering a surface of 150 m2) was done at INFN Bologna, while the first prototypes were bult at CERN.

  6. High counting rate resistive-plate chamber

    International Nuclear Information System (INIS)

    Peskov, V.; Anderson, D.F.; Kwan, S.

    1993-05-01

    Parallel-plate avalanche chambers (PPAC) are widely used in physics experiments because they are fast ( 5 counts/mm 2 . A resistive-plate chamber (RPC) is similar to the PPAC in construction except that one or both of the electrodes are made from high resistivity (≥10 10 Ω·cm) materials. In practice RPCs are usually used in the spark mode. Resistive electrodes are charged by sparks, locally reducing the actual electric field in the gap. The size of the charged surface is about 10 mm 2 , leaving the rest of the detector unaffected. Therefore, the rate capability of such detectors in the spark mode is considerably higher than conventional spark counters. Among the different glasses tested the best results were obtained with electron type conductive glasses, which obey Ohm's law. Most of the work with such glasses was done with high pressure parallel-plate chambers (10 atm) for time-of-flight measurements. Resistive glasses have been expensive and produced only in small quantities. Now resistive glasses are commercially available, although they are still expensive in small scale production. From the positive experience of different groups working with the resistive glasses, it was decided to review the old idea to use this glass for the RPC. This work has investigated the possibility of using the RPC at 1 atm and in the avalanche mode. This has several advantages: simplicity of construction, high rate capability, low voltage operation, and the ability to work with non-flammable gases

  7. Evaluation of dose distributions in gamma chamber using glass plate detector

    Directory of Open Access Journals (Sweden)

    Narayan Pradeep

    2008-01-01

    Full Text Available A commercial glass plate of thickness 1.75 mm has been utilized for evaluation of dose distributions inside the irradiation volume of gamma chamber using optical densitometry technique. The glass plate showed linear response in the dose range 0.10 Kilo Gray (kGy to 10 kGy of cobalt-60 gamma radiation with optical sensitivity 0.04 Optical Density (OD /kGy. The change in the optical density at each identified spatial dose matrix on the glass plate in relation to the position in the irradiation volume has been presented as dose distributions inside the gamma chamber. The optical density changes have been graphically plotted in the form of surface diagram of color washes for different percentage dose rate levels as isodose distributions in gamma chamber. The variation in dose distribution inside the gamma chamber unit, GC 900, BRIT India make, using this technique has been observed within ± 15%. This technique can be used for routine quality assurances and dose distribution validation of any gamma chamber during commissioning and source replacement. The application of commercial glass plate for dose mapping in gamma chambers has been found very promising due to its wider dose linearity, quick measurement, and lesser expertise requirement in application of the technique.

  8. Absorbed dose calibration factors for parallel-plate chambers in high energy photon beams

    International Nuclear Information System (INIS)

    McEwen, M.R.; Duane, S.; Thomas, R.A.S.

    2002-01-01

    An investigation was carried out into the performance of parallel-plate chambers in 60 Co and MV photon beams. The aim was to derive calibration factors, investigate chamber-to-chamber variability and provide much-needed information on the use of parallel-plate chambers in high-energy X-ray beams. A set of NE2561/NE2611 reference chambers, calibrated against the primary standard graphite calorimeter is used for the dissemination of absorbed dose to water. The parallel-plate chambers were calibrated by comparison with the NPL reference chambers in a water phantom. Two types of parallel-plate chamber were investigated - the NACP -02 and Roos and measurements were made at 60 C0 and 6 linac photon energies (6-19 MV). Calibration factors were derived together with polarity corrections. The standard uncertainty in the calibration of a chamber in terms of absorbed dose to water is estimated to be ±0.75%. The results of the polarity measurements were somewhat confusing. One would expect the correction to be small and previous measurements in electron beams have indicated that there is little variation between chambers of these types. However, some chambers gave unexpectedly large polarity corrections, up to 0.8%. By contrast the measured polarity correction for a NE2611 chamber was less than 0.13% at all energies. The reason for these large polarity corrections is not clear, but experimental error and linac variations have been ruled out. By combining the calibration data for the different chambers it was possible to obtain experimental k Q factors for the two chamber types. It would appear from the data that the variations between chambers of the same type are random and one can therefore define a generic curve for each chamber type. These are presented in Figure 1, together with equivalent data for two cylindrical chamber types - NE2561/NE2611 and NE2571. As can be seen, there is a clear difference between the curves for the cylindrical chambers and those for the

  9. HF production in CMS-Resistive Plate Chambers

    International Nuclear Information System (INIS)

    Abbrescia, M.; Colaleo, A.; Guida, R.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Trentadue, R.; Cavallo, N.; Fabozzi, F.; Paolucci, P.; Piccolo, D.; Polese, G.; Sciacca, C.; Belli, G.; Necchi, M.; Ratti, S.; Riccardi, C.; Torre, P.; Vitulo, P.; Anguelov, T.; Genchev, V.; Panev, B.; Piperov, S.; Sultanov, G.; Vankov, P.; Litov, L.; Pavlov, B.; Petkov, P.

    2006-01-01

    The formation of highly reactive compounds in the gas mixture during Resistive Plate Chambers (RPCs) operation at the CERN Gamma Irradiation Facility (GIF) is studied. Results from two different types of chambers are discussed: 50 x 50 cm 2 RPC prototypes and two final CMS-RB1 chambers. The RB1 detectors were also connected to a closed loop gas system. Gas composition, possible additional impurities as well as fluoride ions have been monitored in different gamma irradiation conditions both in open and closed loop mode. The chemical composition of the RPC electrode surface has also been analyzed using an electron microscope equipped with an EDS/X-ray

  10. Resistive Plate Chambers commissioning and performance results for 2015

    CERN Document Server

    CMS Collaboration

    2016-01-01

    The Resistive Plate Chamber (RPC) detector system at the Compact Muon Solenoid experiment at the LHC confers robustness and redundancy to the muon trigger. During the first long shutdown of the LHC (2013-2014) the CMS muon RPC system has been upgraded with 144 double-gap chambers on the forth forward stations. A total of 1056 double-gap chambers cover the pseudo-rapidity region up to 1.6. The main detector parameters are constantly and closely monitored to achieve operational stability and high quality data in the harsh conditions of the second run period of the LHC (13 TeV and 25 ns bunch spacing). Resistive Plate Chambers (RPC) performance results for 2015 with pp collisions at 13 TeV are presented. These results include the occupancy, efficiency of newly installed detectors after applying new working point, history plots for the RPC relevant variables such as: Cluster Size, Efficiency, percentage of inactive detector during operation and Rates and overall system noise. RPC variables are studied as funct...

  11. Fabrication of resistive plate chamber using bakelite

    International Nuclear Information System (INIS)

    Neog, Himangshu; Bhuyan, M.R.; Biswas, S.; Mohanty, B.; Mohanty, Rudranarayan; Rudra, Sharmili; Sahu, P.K.; Sahu, S.

    2014-01-01

    Now a days Resistive Plate Chamber (RPC) is one of the most important detectors in the High Energy Physics (HEP) experiments. RPC is a gas filled detector utilizing a constant and uniform electric field produced between two parallel electrode plates made of a material with high bulk resistivity e.g. glass or bakelite. RPC has good time resolution (1-2 ns) and spatial resolution (∼ cm). The high resistance of RPC plate limits the spark size produced after the ionization of gas due to the passing charged particle. This contribution discusses building of a RPC using bakelite (local sources) and the measurement of the surface resistivity of the detector

  12. Monitoring the Resistive Plate Chambers in the Muon Spectrometer of ATLAS.

    CERN Document Server

    Al-Qahtani, Shaikha

    2017-01-01

    A software was developed to monitor the resistive plate chambers. The purpose of the program is to detect any weak or dead chambers and locate them for repair. The first use of the program was able to spot several chambers with problems to be investigated.

  13. Improvements to parallel plate flow chambers to reduce reagent and cellular requirements

    Directory of Open Access Journals (Sweden)

    Larson Richard S

    2001-09-01

    Full Text Available Abstract Background The parallel plate flow chamber has become a mainstay for examination of leukocytes under physiologic flow conditions. Several design modifications have occurred over the years, yet a comparison of these different designs has not been performed. In addition, the reagent requirements of many designs prohibit the study of rare leukocyte populations and require large amounts of reagents. Results In this study, we evaluate modifications to a newer parallel plate flow chamber design in comparison to the original parallel plate flow chamber described by Lawrence et al. We show that modifications in the chamber size, internal tubing diameters, injection valves, and a recirculation design may dramatically reduce the cellular and reagent requirements without altering measurements. Conclusions These modifications are simple and easily implemented so that study of rare leukocyte subsets using scarce or expensive reagents can occur.

  14. The micro-gap resistive plate chamber

    CERN Document Server

    Cerron-Zeballos, E; Lamas-Valverde, J; Platner, E D; Roberts, J; Williams, M C S; Zichichi, A

    1999-01-01

    Previously we have found that the freon C/sub 2/F/sub 5/H has very good properties when used in a resistive plate chamber (RPC) with a single gap of 2 mm. In this paper we report on the performance of a multigap RPC consisting of 4 gaps of 0.8 mm filled with a gas mixture containing this freon. (7 refs).

  15. Construction and performance of a prototype multigap resistive plate chamber

    International Nuclear Information System (INIS)

    Ahn, S. H.; Hong, B.; Hong, S. J.

    2002-01-01

    We present the design, construction, and performance of a prototype multigap resistive plate chamber made of glass plates. A time resolution of 580 ps with a detection efficiency above 95 % was achieved at the working high-voltage plateau with cosmic ray muons

  16. Resistive Plate Chamber Performance During the CMS Magnet Test Cosmic Challenge

    CERN Document Server

    Trentadue, R

    2008-01-01

    The CMS detector at the CERN Large Hadron Collider (LHC) is equipped with a redundant muon system based on Drift Tubes Chambers (barrel region) and Cathode Strip Chamber (endcap region), and Resistive Plate Chamber (RPC). During the summer and fall 2006 a first integrated test of an entire CMS slice was performed at the SX5 experimental surface hall. The RPC chambers were operated with cosmic rays. The results on the RPC performance are reported.

  17. Resistive Plate Chambers for hadron calorimetry: Tests with analog readout

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Gary [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Repond, Jose [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: repond@hep.anl.gov; Underwood, David [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Xia, Lei [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2007-07-21

    Resistive Plate Chambers (RPCs) are being developed for use in a hadron calorimeter with very fine segmentation of the readout. The design of the chambers and various tests with cosmic rays are described. This paper reports on the measurements with multi-bit (or analog) readout of either a single larger or multiple smaller readout pads.

  18. Resistive plate chambers performances at cosmic rays fluxes

    International Nuclear Information System (INIS)

    Abbrescia, M.; Iaselli, G.

    1995-01-01

    In this paper detailed curves showing the behaviour of resistive plate chambers efficiency and time resolution as a function of temperature and operating voltage are presented. The results show that the operating voltage scales well according to the rule: operating voltage/gas density=constant. (orig.)

  19. A study of the multigap RPC at the gamma irradiation facility at CERN

    International Nuclear Information System (INIS)

    Akindinov, A.; Alici, A.; Anselmo, F.; Antonioli, P.; Baek, Y.; Basile, M.; Romeo, G.C.G. Cara; Cerron-Zeballos, E.; Cifarelli, L.; Cindolo, F.; Caro, A. De; Pasquale, S. De; Bartolomeo, A. Di; Girard, M.F.M. Fusco; Guida, M.; Hatzifotiadou, D.; Kisselev, S.M.; Laurenti, G.; Luvisetto, M.L.; Margotti, A.; Martemiyanov, A.N.; Morozov, S.; Nania, R.; Pesci, A.; Pierella, F.; Scioli, G.; Sellitto, S.; Smirnitski, A.V.; Valenti, G.; Vicinanza, D.; Williams, M.C.S.; Witoszynskyj, S.; Zagreev, B.V.; Zichichi, A.

    2002-01-01

    The selected device for the ALICE Time-of-Flight array is the Multigap Resistive Plate Chamber (MRPC). We have tested this device at the Gamma Irradiation Facility at CERN to evaluate the rate dependence. We find that the rate capability of the MRPC easily exceeds the 50 Hz/cm 2 maximum expected rate at the ALICE experiment. In addition, we have measured the power dissipated for an equivalent flux of 1.6 kHz/cm 2 of through-going muons to be 650 mW/m 2

  20. Plate-out rates of radon progeny and particles in a spherical chamber

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Chen, B.T.

    1990-01-01

    In indoor and mining environments, deposition or ''plate-out'' of radon progeny onto walls occurs simultaneously with attachment of the radon progeny to airborne particles. Attachment and plate-out processes affect the atmosphere in which radon exposures takes place by reducing concentrations and shifting activity size distributions. Both processes have important consequences in determining the deposition pattern and initial dose of inhaled radon progeny. Theoretical deposition models show that turbulence and natural convection in a room are the major factors that influence plate-out rates. Here we describe plate-out measurements for radon progeny and aerosol particles in a spherical chamber under controlled laboratory conditions. The temperature and velocity profiles in still and turbulent air were monitored. A 161-liter spherical aluminum chamber was used to study the mixing. During mixing, air velocity was detected when rotational speeds were higher than 500 rpm. Monodisperse silver aerosols and polystyrene latex particles in the size range of 5 nm to 2 μm were used in the deposition study. Radon-220 progeny were generated by passing Rn-220 gas into the chamber and letting the gas decay into 212 Pb. The deposition rates of the particles and radon progeny ( 212 Pb) in the chamber were determined by monitoring the concentration decay of the aerosol as a function of time

  1. A study of the multigap RPC at the $\\gamma$ irradiation facility at CERN

    CERN Document Server

    Akindinov, A; Anselmo, F; Antonioli, P; Baek, Y W; Basile, M; Cara Romeo, G; Cerron-Zeballos, E; Cifarelli, Luisa; Cindolo, F; Caro, A D; Pasquale, S D; Bartolomeo, A D; Fusco-Girard, M; Guida, M; Hatzifotiadou, D; Kisselev, S M; Laurenti, G; Luvisetto, M L; Margotti, A; Martemyanov, A N; Morozov, S; Nania, R; Pesci, A; Pierella, F; Scioli, G; Sellitto, S B; Smirnitsky, A V; Valenti, G; Vicinanza, D; Williams, M C S; Witoszynskyj, S; Zagreev, B V; Zichichi, A

    2002-01-01

    The selected device for the ALICE Time-of-Flight array is the Multigap Resistive Plate Chamber (MRPC). We have tested this device at the Gamma Irradiation Facility at CERN to evaluate the rate dependence. We find that the rate capability of the MRPC easily exceeds the 50 Hz/cm sup 2 maximum expected rate at the ALICE experiment. In addition, we have measured the power dissipated for an equivalent flux of 1.6 kHz/cm sup 2 of through-going muons to be 650 mW/m sup 2.

  2. Multi-peak pattern in Multi-gap RPC time-over-threshold distributions and an offline calibration method

    International Nuclear Information System (INIS)

    Yang, R.X.; Li, C.; Sun, Y.J.; Liu, Z.; Wang, X.Z.; Heng, Y.K.; Sun, S.S.; Dai, H.L.; Wu, Z.; An, F.F.

    2017-01-01

    The Beijing Spectrometer (BESIII) has just updated its end-cap Time-of-Flight (ETOF) system, using the Multi-gap Resistive Plate Chamber (MRPC) to replace the current scintillator detectors. These MRPCs shows multi-peak phenomena in their time-over-threshold (TOT) distribution, which was also observed in the Long-strip MRPC built for the RHIC-STAR Muon Telescope Detector (MTD). After carefully investigated the correlation between the multi-peak distribution and incident hit positions along the strips, we find out that it can be semi-quantitatively explained by the signal reflections on the ends of the readout strips. Therefore a new offline calibration method was implemented on the MRPC ETOF data in BESIII, making T-TOT correlation significantly improved to evaluate the time resolution.

  3. The multigap RPC detector and the ALICE time-of-flight

    CERN Document Server

    Zichichi, A

    2003-01-01

    One of the new detectors invented within the LAA project is the Multigap Resistive Plate Chamber (MRPC). The MRPC has been selected as the Time-of-Flight detector of choice for the ALICE experiment. The R and D program to optimise the MRPC for this application has now been completed, resulting in a device with 10 gas gaps of 250 mu m in width; a summary is given in this paper. Concerning the front-end electronics, there is an on-going development of an ASIC using 0.25 micron CMOS; the excellent performance of the ASIC is evident from the initial tests; some results will be shown here. Finally the timing properties of this detector open up other applications such as for Positron Electron Tomography. (author)

  4. Beam test results of a resistive plate chamber made of Chinese bakelites

    CERN Document Server

    Ying, J; Ban, Y; Liu Hong Tao; Zhu, Z M; Zhu, Z Y; Chen, T; Ma Jing Guo; Qian, S J

    2001-01-01

    The detailed beam test results of the first Chinese made avalanche mode resistive plate chamber are reported. The experimental set-ups at CERN GIF area are introduced. The detection efficiency, position resolution and time resolution of the chamber fulfil requirements as muon trigger for the future LHC experiments, while the rate capability is not good enough if the chamber is used at forward region. The applicability and the further possible improvements of the chamber are discussed. (12 refs).

  5. Flow Characteristics of Multi-circular Jet Plate in Premix Chamber of Air-Assist Atomizer for Burner System

    Directory of Open Access Journals (Sweden)

    Amirnordin Shahrin Hisham

    2016-01-01

    Full Text Available The flow characteristics of multi-circular jet (MCJ plate in the premix chamber of an atomizer were investigated using Computational Fluid Dynamics. Multiphase volume of fluid behavior inside the chamber was determined via steady simulations. The Eulerian–Eulerian two-fluid approach was used for execution mixing of diesel fuel and air. Spray simulation using the discrete phase with injection was generated from the nozzle hole into the ambient atmosphere. The behavior of three MCJ plates in the premix chamber was studied numerically. Results illustrated that plate open area, Ae, influenced the turbulence inside the chamber. MCJ 3, which had the lowest open area, generated the highest flow velocity and turbulence kinetic energy compared with MCJ 1 and 2. The MCJ plates could increase the turbulence in the premix chamber and contribute to the combustion efficiency.

  6. Resistive Plate Chambers for Imaging Calorimetry - the DHCAL

    CERN Document Server

    Repond, Jose

    2014-01-01

    The DHCAL, the Digital Hadron Calorimeter, is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Flow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 x 1 cm2 pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams.

  7. The physics of Resistive Plate Chambers

    CERN Document Server

    Riegler, Werner

    2004-01-01

    Over the last 3 years we investigated theoretical aspects of Resistive Plate Chambers (RPC) in order to clarify some of the outstanding questions on space charge effects, high efficiency of small gap RPCs, charge spectra, signal shape and time resolution. In a series of reports we analyzed RPC performance including all detector aspects covering primary ionization, avalanche multiplication, space charge effects, signal induction in presence of resistive materials, crosstalk along detectors with long strips and front-end electronics. Using detector gas parameters entirely based on theoretical predictions and physical models for avalanche development and space charge effects we are able to reproduce measurements for 2 and 0.3 mm RPCs to very high accuracy without any additional assumptions. This fact gives a profound insight into the workings of RPCs and also underlines the striking difference in operation regime when compared to wire chambers. A summary of this work as well as recent results on three-dimensiona...

  8. Parallel Plate Chambers and their possible use in LHC experiments

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Bizzeti, A.; Choumilov, E.; Civinini, C.; D'Alessandro, R.; Dajko, G.; Fenyvesi, A.; Ferrando, A.; Fouz, M.C.; Iglesias, A.; Ivochkin, V.; Maggi, F.; Malinin, A.; Martinez-Laso, L.; Meschini, M.; Molnar, J.; Pojidaev, V.; Szoncso, F.; Wulz, C.E.

    1995-01-01

    Present status of Parallel Plate Chambers (PPC) is reviewed. After a description of this detector, results from tests concerning PPC efficiency uniformity, radiation hardness, and behaviour in electromagnetic calorimetry are presented. Some possible utilizations in LHC experiments are mentioned. (orig.)

  9. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    International Nuclear Information System (INIS)

    Antonio, Patricia L.; Caldas, Linda V.E.

    2011-01-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  10. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Patricia L.; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  11. Progresses in the simulation of Resistive Plate Chambers in avalanche mode

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Bruno, G.; Gianini, G.; Ratti, S.P.; Viola, L.; Vitulo, P

    1999-08-01

    New results about the simulation of Resistive Plate Chambers are reported; particular emphasis is put in the understanding of charge spectra in regions where deviations from the pure avalanche mode of operation can be present.

  12. First results on irradiation of ceramic parallel plate chambers with gammas and neutrons

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Bizzeti, A.; Choumilov, E.; Civinini, C.; Dajko, G.; D'Alessandro, R.; Fenyvesi, A.; Ferrando, A.; Fouz, M.C.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Malinin, A.; Meschini, M.; Molnar, J.; Pojidaev, V.; Salicio, J.M.; Tanko, L.; Vesztergombi, G.

    1996-01-01

    Ceramic parallel plate chambers were irradiated with gamma rays and neutrons. Results on radiation resistance are presented after 60 Mrad gamma and 0.5.10 16 neutrons per cm 2 irradiation of the detector surface. Results of activation analysis of chambers made of two different ceramic materials are also presented. (orig.)

  13. Simulation and Evaluation of ECT Signals From MRPC Probe in Combo Calibration Standard Tube Using Electromagnetic Numerical Analysis

    International Nuclear Information System (INIS)

    Yoo, Joo Young; Song, Sung Jin; Jung, Hee Jun; Kong, Young Bae

    2006-01-01

    Signals captured from a Combo calibration standard tube play a crucial role in the evaluation of motorized rotating pancake coil (MRPC) probe signals from steam generator (SG) tubes in nuclear power plants (NPPs). Therefore, the Combo tube signals should be consistent and accurate. However, MRPC probe signals are very easily affected by various factors around the tubes so that they can be distorted in their amplitudes and phase angles which are the values specifically used in the evaluation. To overcome this problem, in this study, we explored possibility of simulation to be used as a practical calibration tool far the evaluation of real field signals. For this purpose, we investigated the characteristics of a MRPC probe and a Combo tube. And then using commercial software (VIC-3D) we simulated a set of calibration signals and compared to the experimental signals. From this comparison, we verified the accuracy of the simulated signals. Finally, we evaluated two defects using the simulated Combo tube signals, and the results were compared with those obtained using the actual field calibration signals

  14. Study of an avalanche-mode resistive plate chamber

    International Nuclear Information System (INIS)

    Ying, J.; Ban, Y.; Liu, H.T.; Zhu, Z.M.; Zhu, Z.Y.; Chen, T.; Ma, J.G.; Ye, Y.L.

    2000-01-01

    Resistive plate chambers (RPCs) are widely used to detect high-energy charged particles, especially muons, due to the high gain, moderate time and spatial resolution, simple design and low cost of these detectors. While the simple streamer mode is adequate for cosmic-ray and low-rate accelerator experiments, the avalanche mode is required for high-rate experiments such as CMS at LHC. In this paper construction of a medium-sized double-gap RPC made of Chinese materials is reported. The experimental set-up of cosmic-ray and muon beam tests are introduced. The avalanche mode was clearly observed. Good efficiency and time resolution were obtained from the beam test at CERN under normal irradiation conditions. At very high radiation background the chamber efficiency decreases, indicating the necessity to change the resistivity value of the Chinese bakelites. (author)

  15. Detector Physics of Resistive Plate Chambers

    CERN Document Server

    Lippmann, Christian; Riegler, W

    2003-01-01

    Resistive Plate Chambers (RPCs) are gaseous parallel plate avalanche detectors that implement electrodes made from a material with a high volume resistivity between 10^7 and 10^12 Ohm cm. Large area RPCs with 2mm single gaps operated in avalanche mode provide above 98% efficiency and a time resolution of around 1ns up to a flux of several kHz/cm2. These Trigger RPCs will, as an example, equip the muon detector system of the ATLAS experiment at CERN on an area of 3650m2 and with 355.000 independent read out channels. Timing RPCs with a gas gap of 0.2 to 0.3mm are widely used in multi gap configurations and provide 99% efficiency and time resolution down to 50ps. While their performance is comparable to existing scintillator-based Time-Of-Flight (TOF) technology, Timing RPCs feature a significantly, up to an order of magnitude, lower price per channel. They will for example equip the 176m2 TOF barrel of the ALICE experiment at CERN with 160.000 independent read out cells. RPCs were originally operated in stream...

  16. A new type of resistive plate chamber: The multigap RPC

    International Nuclear Information System (INIS)

    Cerron Zeballos, E.; Crotty, I.; Hatzifotiadou, D.; Lamas Valverde, J.; Neupane, S.; Williams, M.C.S.; Zichichi, A.

    1996-01-01

    This Letter describes the multigap resistive plate chamber (RPC). The goal is to obtain a much improved time resolution, keeping the advantages of the wide gap RPC in comparison with the conventional narrow gap RPC (smaller dynamic range and thus lower charge per avalanche which gives higher rate capability and lower power dissipation in the gas gap). (orig.)

  17. A new type of resistive plate chamber the multigap RPC

    CERN Document Server

    Cerron-Zeballos, E; Hatzifotiadou, D; Lamas-Valverde, J; Neupane, S; Williams, M C S; Zichichi, Antonino

    1996-01-01

    This paper describes the multigap resistive plate chamber (RPC). The goal is to obtain a much improved time resolution, keeping the advantages of the wide gap RPC in comparison with the conventional narrow gap RPC (smaller dynamic range and thus lower charge per avalanche which gives higher rate capability and lower power dissipation in the gas gap).

  18. New gas mixtures for Resistive Plate Chambers operated in avalanche mode

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M [Dipartimento Interateneo di Fisica, Universita di Bari and sezione INFN, via Amendola 173, I-70126 Bari (Italy); Cassano, V; Nuzzo, S; Piscitelli, G; Vadruccio, D; Zaza, S [Dipartimento Interateneo di Fisica, Universita di Bari and sezione INFN, via Amendola 173, I-70126 Bari (Italy)

    2012-01-01

    The possibility of using gas mixtures containing Helium, to overcome some of the problems encountered with standard gas mixture employed up to now for Resistive Plate Chambers, is studied here. New and interesting experimental results are reported, opening a possible original path of investigation in this field.

  19. Simulation of the CMS Resistive Plate Chambers

    CERN Document Server

    Hadjiiska, R; Pavlov, B; Petkov, P; Dimitrov, A; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Lellouch, J; Marinov, A; Ocampo, A; Strobbe, N; Thyssen, F; Tytgat, M; Verwilligen, P; Yazgan, E; Zaganidis, N; Aleksandrov, A; Genchev, V; Iaydjiev, P; Rodozov, M; Shopova, M; Sultanov, G; Ban, Y; Cai, J; Xue, Z; Ge, Y; Li, Q; Qian, S; Avila, C; Chaparro, L F; Gomez, J P; Moreno, B Gomez; Oliveros, A F Osorio; Sanabria, J C; Assran, Y; Sharma, A; Abbrescia, M; Colaleo, A; Pugliese, G; Loddo, F; Calabria, C; Maggi, M; Benussi, L; Bianco, S; Colafranceschi, S; Piccolo, D; Carrillo, C; Iorio, O; Buontempo, S; Paolucci, P; Vitulo, P; Berzano, U; Gabusi, M; Kang, M; Lee, K S; Park, S K; Shin, S; Kim, M S; Seo, H; Goh, J; Choi, Y; Shoaib, M

    2013-01-01

    The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to the formation of the trigger decision and reconstruction of the muon trajectory parameters. Simulation of the RPC response is a crucial part of the entire CMS Monte Carlo software and directly influences the final physical results. An algorithm based on the parametrization of RPC efficiency, noise, cluster size and timing for every strip has been developed. Experimental data obtained from cosmic and proton-proton collisions at $\\sqrt{s}=7$ TeV have been used for determination of the parameters. A dedicated validation procedure has been developed. A good agreement between the simulated and experimental data has been achieved.

  20. Test and characterization of multigap resistive plate chambers for the EEE project

    CERN Document Server

    Bossini, E

    2016-01-01

    The Extreme Energy Events project is based on the deployment of cosmic-ray telescopes in Italian high schools with the active contribution of students and teachers. Each telescope is made by three Multigap Resistive Plate Chambers readout by strips. With around 50 telescopes already built and others under construction, specific systems to test and characterize the chambers are needed. In this article I will present a flexible and software-configurable solution to perform chamber efficiency studies with a set of scintillators and hardware to automatically scan detector strips to identify electrical issues. Both systems can provide accurate information but at the same time they can be easily operated by students.

  1. The HARP resistive plate chambers: Characteristics and physics performance

    International Nuclear Information System (INIS)

    Ammosov, V.; Boyko, I.; Chelkov, G.; Dedovitch, D.; Dumps, R.; Dydak, F.; Elagin, A.; Gapienko, V.; Gostkin, M.; Guskov, A.; Kroumchtein, Z.; Koreshev, V.; Linssen, L.; Nefedov, Yu.; Nikolaev, K.; Semak, A.; Sviridov, Yu.; Usenko, E.; Wotschack, J.; Zaets, V.; Zhemchugov, A.

    2007-01-01

    The HARP Resistive Plate Chamber (RPC) system was designed for time-of-flight measurement in the large-angle acceptance region of the HARP spectrometer. It comprised 46 four-gap glass RPCs covering an area of ∼8m 2 . The design of the RPCs, their operation, intrinsic properties, and system performance are described. The intrinsic time resolution of the RPCs is better than 130ps leading to a system time resolution of ∼175ps

  2. Avalanche and streamer mode operation of resistive plate chambers

    International Nuclear Information System (INIS)

    Cardarelli, R.; Makeev, V.; Santonico, R.

    1996-01-01

    A resistive plate chamber was operated at voltages increasing in steps of 200 V over a 3 kV interval and the transition between the avalanche and streamer modes was studied. The avalanche amplitude was observed to be exponentially dependent on the operating voltage up to a value, characteristic of the gas, where the avalanche saturation occurs and delayed streamer signals start to appear. Signal waveforms, charge and timing distributions are reported. (orig.)

  3. Characterization of reticulated vitreous carbon foam using a frisch-grid parallel-plate ionization chamber

    Science.gov (United States)

    Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.

    2018-06-01

    The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.

  4. On aging problem of glass Resistive Plate Chambers

    International Nuclear Information System (INIS)

    Bhide, S.S.; Datar, V.M.; Kalmani, S.D.; Mondal, N.K.; Pant, L.M.; Satyanarayana, B.; Shinde, R.R.

    2006-01-01

    Resistive Plate Chambers (RPCs) were chosen to be the active elements for a 50kton neutrino detector, which is proposed to be built by the India-based Neutrino Observatory (INO) collaboration. As part of the detector R and D programme, we have built a large number of prototype RPCs and studied their characteristics. While, the results obtained by us are in agreement with those reported in the literature, the RPCs were observed to suffer severe damage when operated continuously for a few months. We summarise here our studies on this problem

  5. Measurement of the spark probability in single gap parallel plate chambers

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Choumilov, E.; Civinini, C.; Dalla Santa, F.; D'Alessandro, R.; Ferrando, A.; Fouz, M.C.; Golovkin, V.; Kholodenko, A.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Malinin, A.; Meschini, M.; Misyura, S.; Pojidaev, V.; Salicio, J.M.

    1996-01-01

    We present results on the measurements of the spark probability with CO 2 and CF 4 /CO 2 (80/20) mixture, at atmospheric pressure, using 1.5 mm gas gap parallel plate chambers, working at a gas gain ranging from 4.5 x 10 2 to 3.3 x 10 4 . (orig.)

  6. Long-term performance of double gap resistive plate chambers under gamma irradiation

    International Nuclear Information System (INIS)

    Abbrescia, M.; Colaleo, A.; Guarrasi, L.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Gianini, G.; Ratti, S.P.; Riccardi, C.; Torre, P.; Viola, L.; Vitulo, P.

    2002-01-01

    In this paper, we describe a dedicated test to study possible long-term aging effects on Resistive Plate Chambers (RPCs). A double gap detector was operated under gamma irradiation for a period approximately equal to 10 years of LHC in the CMS-barrel region: an integrated dose of about 1.6 Gy and a total charge of about 0.05 C/cm 2 gap were accumulated on the chamber. The results show no relevant aging effect. Also the RPC sensitivity to 60 Co gamma energies is measured

  7. High-Rate Glass Resistive Plate Chambers For LHC Muon Detectors Upgrade

    CERN Document Server

    Laktineh, I; Cauwenbergh, S; Combret, C; Crotty, I; Haddad, Y; Grenier, G; Guida, R; Kieffer, R; Lumb, N; Mirabito, L; Schirra, F; Seguin, N; Tytgat, M; Van der Donckt, M; Wang, Y; Zaganidis, N

    2012-01-01

    The limitation of the detection rate of standard bakelite resistive plate chambers (RPC) used as muon detector in LHC experiments is behind the absence of such detectors in the high TJ regions in both CMS and ATLAS detectors. RPCs made with low resistivity glass plates (10ID O.cm) could be an adequate solution to equip the high TJ regions extending thus both the trigger efficiency and the physics performance. Different beam tests with single and multi-gap configurations using the new glass have shown that such detectors can operate at few thousands Hzlcm2 with high efficiency( > 90%).

  8. Properties of a six-gap timing resistive plate chamber with strip readout

    International Nuclear Information System (INIS)

    Ammosov, V.V.; Gapienko, V.A.; Semak, A.A.; Sviridov, Yu.M.; Zaets, V.G.; Gavrishchuk, O.P.; Kuz'min, N.A.; Sychkov, S.Ya.; Usenko, E.A.; Yukaev, A.I.

    2009-01-01

    Six-gap glass timing resistive plate chamber with strip readout was tested using IHEP U-70 PS test beam. The time resolution of ∼ 45 ps at efficiency larger than 98% was achieved. Position resolution along strip was estimated to be ∼1 cm

  9. Simulation of Resistive Plate Chamber sensitivity to neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S. E-mail: saverio.altieri@pv.infn.it; Belli, G.; Bruno, G.; Merlo, M.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P.; Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F

    2001-04-01

    The Resistive Plate Chambers (RPCs) sensitivity to neutrons has been simulated using GEANT code with MICAP and FLUKA interfaces. The calculations have been performed as a function of the neutrons energy in the range 0.02 eV-1 GeV. To evaluate the response of the detector in the LHC background environment, the neutron energy spectrum expected in the CMS muon barrel has been taken into account; a hit rate due to neutrons of about 0.6 Hz cm{sup -2} has been estimated for a 250x250 cm{sup 2} RPC in the RB1 station.

  10. Long-term performance of double gap resistive plate chambers under gamma irradiation

    CERN Document Server

    Abbrescia, M; Guarrasi, L; Iaselli, Giuseppe; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F; Altieri, S; Belli, G; Bruno, G; Gianini, G; Ratti, S P; Riccardi, C; Torre, P; Viola, L; Vitulo, P

    2002-01-01

    In this paper, we describe a dedicated test to study possible long- term aging effects on Resistive Plate Chambers (RPCs). A double gap detector was operated under gamma irradiation for a period approximately equal to 10 years of LHC in the CMS-barrel region: an integrated dose of about 1.6 Gy and a total charge of about 0.05 C/cm /sup 2/ gap were accumulated on the chamber. The results show no relevant aging effect. Also the RPC sensitivity to /sup 60/Co gamma energies is measured. (9 refs).

  11. Long-term performance of double gap resistive plate chambers under gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Guarrasi, L.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G. E-mail: gabriella.pugliese@ba.infn.it; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Gianini, G.; Ratti, S.P.; Riccardi, C.; Torre, P.; Viola, L.; Vitulo, P

    2002-01-21

    In this paper, we describe a dedicated test to study possible long-term aging effects on Resistive Plate Chambers (RPCs). A double gap detector was operated under gamma irradiation for a period approximately equal to 10 years of LHC in the CMS-barrel region: an integrated dose of about 1.6 Gy and a total charge of about 0.05 C/cm{sup 2} gap were accumulated on the chamber. The results show no relevant aging effect. Also the RPC sensitivity to {sup 60}Co gamma energies is measured.

  12. Development of a parallel plate ion chamber for radiation protection level

    International Nuclear Information System (INIS)

    Bottaro, Marcio; Landi, Mauricio; Moralles, Mauricio

    2011-01-01

    A new parallel plate vented ion chamber is proposed in this paper. The application of this chamber was primarily intended to the measurement of stray radiation in interventional procedures, but the energy response of about 2.6%, which was obtained in the first prototype, on the range from 40 to 150 kV using ISO 4037-1 narrow qualities, provided the possibility of a wide modality application on radiation protection. Primary studies with Maxwell 2D electromagnetic field simulator revealed an optimized model regarding effective volume and saturation voltage levels, which conferred to the ion chamber a dual entrance window feature. The development of this ion chamber has the main contribution of Monte Carlo calculations as a support tool to the establishment of the effective volume of the chamber and determination of the best materials for housing mounting and conductive elements, such as guard rings, electrode, and windows. Even the composition of the conductive layers, which would be neglected due to their very small thicknesses (about 35 μm), had important influence on the results and could be better understood with Monte Carlo N-Particle Transport Code System (MCNP) simulations. (author)

  13. Electron equilibrium for parallel plate ionization chambers in gamma radiation fields

    International Nuclear Information System (INIS)

    Caldas, L.; Albuquerque, M. da P.P.

    1989-08-01

    Parallel plate ionization chambers, designed and constructed for use in low energy X-radiation fields, were tested in gamma radiation beams ( 6 Co and 137 Cs) of two different Calibration Laboratories, in order to study the electron equilibrium occurrence and to verify the possibility of their use for the detection of the kind of radiation too. (author) [pt

  14. The simulation of resistive plate chambers in avalanche mode: charge spectra and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M. E-mail: Marcello.abbrescia@ba.infn.it; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Bruno, G.; Gianini, G.; Ratti, S.P.; Viola, L.; Vitulo, P

    1999-07-21

    A model to simulate the avalanche formation process and the induced signal in a Resistive Plate Chamber is presented. A first investigation of the effects of various parameters on the performance of this detector is reported. (author)

  15. Project, construction and calibration of parallel plate ionization chambers for x-radiation

    International Nuclear Information System (INIS)

    Albuquerque, M.P.P.

    1989-01-01

    Two pairs of parallel-plate ionization chambers were projected and constructed. In each pair one of the chambers has a collecting electrode and a guard ring made of graphite and the other, of aluminium. The difference between both pairs is that in only one case screws were used to fix the chamber components. The chambers are made of Lucite with aluminized Mylar entrance windows; they have circular form and are unsealed. All chamber components are easily available. The main chamber characteristics were determined, applying the tests of current leakage, repetitively and long term stability. The energy and angular dependence, and the polarity effect were also studied, obtaining the saturation curves and determining the build-up effect for gamma radiation detection. The chambers were calibrated with low and intermediate energy X-radiation, gamma radiation of sup(60)Co an sup(137)Cs, and beta radiation of sup(90)Sr + sup(90)Y. The obtained results show the viability of utilization of these chambers in radiation dosimetry and the results were compared with those of imported commercial ionization chambers of the secondary standard type. The great difference between the energy dependence of the chambers according to the collecting electrode material, allowed the formation of a Tandem system (constituted by a chamber pair A, C), for the determination of the effective energy and the exposure rate in air of unknown X-radiation fields, in the case of low intermediate energy ranges. (author)

  16. Determination of absorbed dose to water from a miniature kilovoltage x-ray source using a parallel-plate ionization chamber

    Science.gov (United States)

    Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan

    2018-01-01

    Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.

  17. Local and global performance of double-gap resistive plate chambers operated in avalanche mode

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Gianini, G.; Ratti, S.P.; Viola, L.; Vitulo, P.; Sergueev, S

    1999-09-21

    Two large double-gap resistive plate chambers, with 2 and 3 mm gap widths, were tested to study their response uniformity when operated in avalanche mode. The effects of mechanical tolerances and the presence of the spacers is thoroughly examined. Results on efficiency and time resolution are presented. We find that average performance and response uniformity over the whole chamber surface are fully adequate to the requirements of future collider experiments. (author)

  18. CMS Resistive Plate Chambers performance at $\\sqrt{s}=$13 TeV

    CERN Document Server

    Cabrera Mora, Andres Leonardo

    2016-01-01

    During 2015, the Large Hadron Collider (LHC) at CERN has reached the record-breaking center-of-mass energy of 13 TeV for proton-proton collisions. The LHC restarted operations successfully after a two-year technical stop, known as Long Shutdown 1 (LS1), needed for servicing and consolidating the CERN accelerator complex. The Compact Muon Solenoid detector, a general-purpose detector at LHC, benefited from LS1 by performing crucial tasks necessary to operate the detector at higher energies. In particular, the Resistive Plate Chamber (RPC) system, one of the three muon detector technologies in CMS, was serviced, re-commissioned, and upgraded with 144 new chambers to enhance muon trigger efficiency. The CMS RPC system confers robustness and redundancy to the muon trigger. A total of 1056 double-gap chambers cover the pseudo-rapidity region $ \\lvert\\eta\\rvert \\leq$1.6. The CMS RPC collaboration has exploited early data samples at 13 TeV for detector performance studies. These data allowed for a first characte...

  19. Detachment of polystyrene particles from collector surfaces by surface tension forces induced by air-bubble passage through a parallel plate flow chamber

    NARCIS (Netherlands)

    Wit, PJ; vanderMei, HC; Busscher, HJ

    1997-01-01

    By allowing an air-bubble to pass through a parallel plate flow chamber with negatively charged, colloidal polystyrene particles adhering to the bottom collector plate of the chamber, the detachment of adhering particles stimulated by surface tension forces induced by the passage of a liquid-air

  20. Development of linseed oil-free bakelite resistive plate chambers

    International Nuclear Information System (INIS)

    Biswas, S.; Bhattacharya, S.; Bose, S.; Chattopadhyay, S.; Saha, S.; Viyogi, Y.P.

    2009-01-01

    In this paper we would like to present a few characteristics of the Resistive Plate Chambers (RPCs) made of a particular grade of bakelite paper laminates (P-120, NEMA LI-1989 Grade XXX), produced and commercially available in India. This particular grade is used for high voltage insulation in humid conditions. The chambers are tested with cosmic rays in the streamer mode using argon, tetrafluroethane and isobutane in 34:59:7 mixing ratio. In the first set of detectors made with such grade, a thin coating of silicone fluid on the inner surfaces of the bakelite was found to be necessary for operation of the detector. Those silicone coated RPCs were found to give satisfactory performance with stable efficiency of >90% continuously for a long period as reported earlier. Results of the crosstalk measurement of these silicone coated RPC will be presented in this paper. Very recently RPCs made with the same grade of bakelite but having better surface finish are found to give equivalent performance even without any coating inside. Preliminary results of this type of RPCs are also being presented.

  1. α spectrometer of parallel plate grid ionization chamber of high energy resolution

    International Nuclear Information System (INIS)

    Tong Boting; Wang Jianqing; Dong Mingli; Tang Peijia; Wang Xiaorong; Lin Cansheng

    2000-01-01

    Parallel plate grid ionization chamber with cathode area of 300 cm 2 was developed and applied to detect minimum α-emitters. It consist of a vacuum system, a gas cycle system of the parallel plate grid ionization chamber, electronics (a high voltage supply, a pre-amplifier and a main amplifier) and a computer-multichannel analyzer. The energy resolution is 23 keV FWHM for the 244 Cm electrostatic precipitated source. The integral background is typically 10 counts/h between 4 and 6 MeV. The detector efficiency is 50%. The minimum detecting activity is 3 x 10 -4 Bq (3σ, 30 hours). This spectrometer is suitable for detecting various samples, such as samples of the soil, water, air, bion, food, structural material, geology, archaeology, α-emitters of after processing and measuring α activity of accounting for and control of nuclear material and monitoring the artificial radioactivity nuclides of environment samples around nuclear facilities. The spectrometer is equipped with apparatus for preparing large area α source by using vacuum deposition or ultrasonic pulverization. The operating program of preparing source is simple. The source thickness can be kept in 40-60 μm/cm 2

  2. Application of PSpice circuit simulator in development of resistive plate chamber detector

    International Nuclear Information System (INIS)

    Wang Yaping; Cai Xu

    2008-01-01

    An electrical model was presented for resistive plate chamber (RPC) detector. The readout signals of RPC detector were studied with PSpice simulation based on the model. The simulation results show a good agreement with real data and authoritative data. Physical performance of RPC detector can be predicted by the PSpice simulation, so this is an efficient means to optimize RPC detector's research and development. (authors)

  3. γ-converting plate system for neutrino-deuterium exposures in the FNAL 15-foot bubble chamber

    International Nuclear Information System (INIS)

    Hanlon, J.; Mann, W.A.; Sommars, S.; Wald, H.

    1978-01-01

    During May 18-20 of this year the hydrogen-filled 15-foot bubble chamber at Fermilab was operated with an array of four half-inch thick stainless steel plates mounted in downstream portions of the fiducial volume. Notes from the test run, and results from a Monte Carlo study of efficiencies of the plate array for detection of photons and positrons in final states produced in a wide-band neutrino--deuterium exposure, are presented

  4. Efficiency determination of resistive plate chambers for fast quasi-monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, M.; Cowan, T.E.; Kempe, M.; Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden, Dresden (Germany); Elekes, Z. [MTA ATOMKI, Debrecen (Hungary); Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Aumann, T.; Caesar, C. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt, Darmstadt (Germany); Bemmerer, D.; Sobiella, M.; Stach, D.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K.; Hehner, J.; Heil, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Maroussov, V. [Universitaet zu Koeln, Koeln (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Nusair, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Al-Balqa Applied University, Salt (Jordan); Prokofiev, A.V. [Uppsala University, The Svedberg Laboratory, Uppsala (Sweden); Reifarth, R. [Johann Wolfgang Goethe - Universitaet, Frankfurt am Main (Germany); Zilges, A. [Universitaet zu Koeln, Koeln (Germany); Zuber, K. [Technische Universitaet Dresden, Dresden (Germany); Collaboration: R3B Collaboration

    2014-07-15

    Composite detectors made of stainless-steel converters and multigap resistive plate chambers have been irradiated with quasi-monoenergetic neutrons with a peak energy of 175 MeV. The neutron detection efficiency has been determined using two different methods. The data are in agreement with the output of Monte Carlo simulations. The simulations are then extended to study the response of a hypothetical array made of these detectors to energetic neutrons from a radioactive ion beam experiment. (orig.)

  5. Single-electron pulse-height spectra in thin-gap parallel-plate chambers

    CERN Document Server

    Fonte, Paulo J R; Peskov, Vladimir; Policarpo, Armando

    1999-01-01

    Single-electron pulse-height spectra were measured in 0.6 and 1.2 mm parallel-plate chambers developed for the TOF system of the ALICE /LHC-HI experiment. Mixtures of Ar with ethane, isobutane, and SF/sub 6/ were studied. The observed spectrum shows a clear peak for all gases, suggesting efficient single-electron detection in thin parallel-plate structures. The pulse-height spectrum can be described by the weighted sum of an exponential and a Polya distribution, the Polya contribution becoming more important at higher gains. Additionally, it was found that the maximum gain, above 10/sup 6/, is limited by the appearance of streamers and depends weakly on the gas composition. The suitability of each mixture for single-electron detection is also quantitatively assessed. (8 refs).

  6. Performance of Resistive Plate Chambers installed during the first long shutdown of the CMS experiment

    CERN Document Server

    Shopova, M.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Sultanov, G.; Rodozov, M.; Stoykova, S.; Assran, Y.; Sayed, A.; Radi, A.; Aly, S.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; Van Doninck, W.; Colafranceschi, S.; Sharma, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Cimmino, A.; Crucy, S.; Rios, A.A.O.; Tytgat, M.; Zaganidis, N.; Gul, M.; Fagot, A.; Bhatnagar, V.; Singh, J.; Kumari, R.; Mehta, A.; Ahmad, A.; Awan, I.M.; Shahzad, H.; Hoorani, H.; Asghar, M.I.; Muhammad, S.; Ahmed, W.; Shah, M.A.; Cho, S.W.; Choi, S.Y.; Hong, B.; Kang, M.H.; Lee, K.S.; Lim, J.H.; Park, S.K.; Kim, M.S.; Laktineh, I.B.; Lagarde, F.; Gouzevitch, M.; Grenier, G.; Pedraza, I.; Bernardino, S. Carpinteyro; Estrada, C. Uribe; Carrillo Moreno, S.; Valencia, F. Vazquez; Pant, L.M.; Buontempo, S.; Cavallo, N.; Fabozzi, F.; Orso, I.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Thyssen, F.; Lanza, G.; Esposito, M.; Braghieri, A.; Magnani, A.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Montagna, P.; Ban, Y.; Qian, S.J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Dimitrov, A.; Litov, L.; Petkov, P.; Pavlov, B.; Bagaturia, I.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J.C.; Crotty, I.; Vaitkus, J.

    2016-01-01

    The CMS experiment, located at the CERN Large Hadron Collider, has a redundant muon system composed by three different detector technologies: Cathode Strip Chambers (in the forward regions), Drift Tubes (in the central region) and Resistive Plate Chambers (both its central and forward regions). All three are used for muon reconstruction and triggering. During the first long shutdown (LS1) of the LHC (2013-2014) the CMS muon system has been upgraded with 144 newly installed RPCs on the forth forward stations. The new chambers ensure and enhance the muon trigger efficiency in the high luminosity conditions of the LHC Run2. The chambers have been successfully installed and commissioned. The system has been run successfully and experimental data has been collected and analyzed. The performance results of the newly installed RPCs will be presented.

  7. Comparison of CMS Resistive Plate Chambers performance during LHC RUN-1 and RUN-2

    CERN Document Server

    INSPIRE-00207984

    2016-01-01

    The Resistive Plate Chambers detector system at the CMS experiment at the LHC provides robustness and redundancy to the muon trigger. A total of 1056 double-gap chambers cover the pseudo-rapidity region < 1.6. The main detector parameters and environmental conditions are constantly and closely monitored to achieve operational stability and high quality data in the harsh conditions of the second run period of the LHC with center-of-mass energy of 13 TeV. First results of overall detector stability with 2015 data and comparisons with data from the LHC RUN-1 period at 8 TeV are presented.

  8. Comparison of CMS Resistive Plate Chambers performance during LHC RUN-1 and RUN-2

    CERN Document Server

    Shah, Mehar Ali

    2016-01-01

    The Resistive Plate Chambers detector system at the CMS experiment at the LHC provides robustness and redundancy to the muon trigger. A total of 1056 double-gap chambers cover the pseudo-rapidity region lt 1.6. The main detector parameters and environmental conditions are constantly and closely monitored to achieve operational stability and high quality data in the harsh conditions of the second run period of the LHC with center-of-mass energy of 13 TeV. First results of overall detector stability with 2015 data and comparisons with data from the LHC RUN-1 period at 8 TeV are presented.

  9. Performance of Resistive Plate Chambers for the muon detection at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G., E-mail: Giuseppe.Iaselli@ba.infn.it; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Bruno, G.; Gianini, G.; Ratti, S. P.; Viola, L.; Vitulo, P

    1999-08-01

    The latest results, still preliminary, of tests dedicated to study the performance of Resistive Plate Chamber for the CMS experiment are presented. Full efficiency with a 2 ns time resolution in conditions of incident flux up to 2 kHz/cm{sup 2} has been obtained. Detector uniformity has been studied and found to be well within the constraints due to the large surfaces used in the experiment. An aging test is currently being carried out and shows no significant performance variation with time.

  10. Performance Study of the CMS Barrel Resistive Plate Chambers with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    In October and November 2008, the CMS collaboration conducted a programme of cosmic ray data taking, which has recorded about 270 million events. The Resistive Plate Chamber system, which is part of the CMS muon detection system, was successfully operated in the full barrel. More than 98% of the channels were operational during the exercise with typical detection efficiency of 90%. In this paper, the performance of the detector during these dedicated runs is reported.

  11. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber

    NARCIS (Netherlands)

    Li, Jiuyi; Busscher, Henk J.; Norde, Willem; Sjollema, Jelmer

    2011-01-01

    In order to investigate bacterium-substratum interactions, understanding of bacterial mass transport is necessary. Comparisons of experimentally observed initial deposition rates with mass transport rates in parallel-plate-flow-chambers (PPFC) predicted by convective-diffusion yielded deposition

  12. Mechanisms Affecting Performance of the BaBar Resistive Plate Chambers and Searches for Remediation

    International Nuclear Information System (INIS)

    Lu, Changguo

    2003-01-01

    The BaBar experiment at PEPII relies on the Instrumentation of the Flux Return (IFR) for both muon identification and KL detection. The active detector is composed of Resistive Plate Chambers (RPC's) operated in streamer mode. Since the start of operation the RPC's have suffered persistent efficiency deterioration and dark current increase problems. The ''autopsy'' of bad BaBar RPC's revealed that in many cases uncured Linseed oil droplets had formed on the inner surface of the Bakelite plates, leading to current paths from oil ''stalagmites'' bridging the 2 mm gap. In this paper a possible model of this ''stalagmite'' formation and its effect on the dark current and efficiency of RPC chambers is presented. Laboratory test results strongly support this model. Based upon this model we are searching for solutions to eliminate the unfavorable effect of the oil stalagmites. The lab tests show that the stalagmite resistivity increases dramatically if exposed to the air, an observation that points to a possible way to remedy the damage and increase the efficiency. We have seen that flowing an oxygen gas mixture into the chamber helps to polymerize the uncured linseed oil. Consequently the resistivity of the bridged oil stalagmites increases, as does that of the oil coating on the frame edges and spacers, significantly reducing the RPC dark currents and low-efficiency regions. We have tested this idea on two chambers removed from BaBar because of their low efficiency and high dark current. These test results are reported in the paper, and two other remediation methods also mentioned. We continue to study this problem, and try to find new treatments with permanent improvement

  13. Energy dependence of an ionization chamber with parallel plates in standard gamma and x-radiation fields

    International Nuclear Information System (INIS)

    Batistella, M.A.; Caldas, L.V.E.

    1988-09-01

    The characteristics of low energy X-radiation standard fields were determined and the energy dependence of a ionization chamber of the superficial type, with parallel plates and fixed volume, normally utilized in the dosimetry at the Radiotherapy level was studied. The possibility of adaptation of this chamber type for use in gamma radiation dosimetry was verified. Different thickness Lucite build-up caps, from 2.0 up to 5.5 mm, were produced and tested in 60 Co and 137 Cs gamma radiation fields. This type of detector, with the adequate build-up cap, presented a performance comparable to that of the thimble type ionization chamber. It was concluded that it is not necessary to use different kinds of chambers for each high and mean energy interval. The superficial chamber, specially produced to detect low energy X-radiation, may be adapted to detect gamma radiation. (author) [pt

  14. Calorimeter detector consisting of a KMgF3 scintillator and parallel-plate avalanche chamber

    International Nuclear Information System (INIS)

    Buzulutskov, A.F.; Turchanovich, L.K.; Vasil'chenko, V.G.

    1989-01-01

    Scintillations of a KMgF 3 crystal have been detected in the parallel-plate avalanche chamber with a TEA gaseous photocathode, the scintillation signal is shown to be much higher than the direct ionization one. The characteristic properties of the calorimeters on the basis of such structure with electrical and optical readout are discussed. 10 refs.; 4 figs

  15. A large-area glass-resistive plate chamber with multistrip readout

    CERN Document Server

    Petrovici, M; Hildenbrand, K D; Augustinski, G; Ciobanu, M; Cruceru, I; Duma, M; Hartmann, O; Koczón, P; Kress, T; Marquardt, M; Moisa, D; Petris, M; Schröder, C; Simion, V; Stoicea, G; Weinert, J

    2002-01-01

    A completely new configuration of a glass resistive-plate chamber (GRPC) was built and tested. It consists of a double two-gap structure of electrodes with an active area of about 400 cm sup 2 and is read out via a central multistrip printed circuit board. In measurements with a sup 6 sup 0 Co source and p, d particles of 1.5 A GeV time resolutions better than 80 ps, position resolution along the strips of 5-6 mm and efficiencies larger than 95% were obtained using available fast standard electronics. These results open the possibility of constructing compact TOF detectors of high resolution and high granularity.

  16. Effects of SF$_{6}$ on the avalanche mode operation of a real-sized double-gap resistive plate chamber for the Compact Muon Solenoid experiment

    CERN Document Server

    Ahn Sung Hwan; Hong, B; Hong, S J; Ito, M; Kim, B I; Kim, J H; Kim, Y J; Kim, Y U; Koo, D G; Lee, H W; Lee, K B; Lee, K S; Lee, S J; Lim, J K; Moon, D H; Nam, S K; Park, S; Park, W J; Rhee, J T; Ryu, M S; Shim, H H; Sim, K S; Kang, T I

    2005-01-01

    We present the design and the test, results for a real-sized prototype resistive plate chamber by using cosmic-ray muons for the forward region of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). In particular, we investigate the effects of adding SF/sub 6/ to the gas mixture for the avalanche mode operation of a resistive plate chamber. A small fraction of SF/sub 6/ is very effective in suppressing streamer signals in a resistive plate chamber. The shapes of the muon detection efficiency and the muon cluster size remain similar, but are shifted to higher operating voltage by SF/sub 6/. The noise cluster rate and size are not influenced by SF/sub 6/.

  17. Observation of Cherenkov rings using a low-pressure parallel-plate chamber and a solid cesium-iodide photocathode

    International Nuclear Information System (INIS)

    Lockyer, N.S.; Millan, J.E.; Lu, C.; McDonald, K.T.; Lopez, A.

    1993-01-01

    We have observed Cherenkov rings from minimum-ionizing particles using a low-pressure, parallel-plate pad-chamber with a cesium-iodide solid photocathode. This detector is blind to minimum-ionizing particles, and sensitive to Cherenkov photons of wavelengths 170-210 nm. An average of 5 photoelectrons per Cherenkov ring were detected using a 2-cm-thick radiator of liquid C 6 F 14 . This paper reports on the chamber construction, photocathode preparation and testbeam results. (orig.)

  18. Radiation-hard ceramic Resistive Plate Chambers for forward TOF and T0 systems

    Energy Technology Data Exchange (ETDEWEB)

    Akindinov, A., E-mail: Alexander.Akindinov@cern.ch [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Dreyer, J.; Fan, X.; Kämpfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kiselev, S. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Kotte, R.; Garcia, A. Laso [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Malkevich, D. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Naumann, L. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Nedosekin, A.; Plotnikov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Stach, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Sultanov, R.; Voloshin, K. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2017-02-11

    Resistive Plate Chambers with ceramic electrodes are the main candidates for a use in precise multi-channel timing systems operating in high-radiation conditions. We report the latest R&D results on these detectors aimed to meet the requirements of the forward T0 counter at the CBM experiment. RPC design, gas mixture, limits on the bulk resistivity of ceramic electrodes, efficiency, time resolution, counting rate capabilities and ageing test results are presented.

  19. NeuLAND MRPC-based detector prototypes tested with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Caesar, C., E-mail: c.caesar@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Aumann, T. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Bemmerer, D. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Elekes, Z. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); ATOMKI, Debrecen (Hungary); Gonzalez-Diaz, D.; Hehner, J.; Heil, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Maroussov, V. [Universitaet zu Koeln, Koeln (Germany); Nusair, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Al-Balqa Applied University, Salt (Jordan); Reifarth, R.; Rossi, D.; Simon, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Stach, D.; Wagner, A.; Yakorev, D. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Zilges, A. [ATOMKI, Debrecen (Hungary)

    2012-01-01

    Recent results from a first irradiation of multi-gap resistive plate chambers with fast neutrons are presented. The counters have been built at GSI and FZD. The experiment was performed at the 'The Svedberg Laboratory' (TSL) in Uppsala, Sweden, utilizing a quasi-monoenergetic neutron beam with an energy E{sub n}=175 MeV. For a 2 Multiplication-Sign 4 gap prototype operated at E=100 kV/cm, an efficiency of (0.77 {+-}0.33)% was measured.

  20. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, B., E-mail: babak_sharifi88@yahoo.com [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Zamani Zeinali, H. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of); Soltani, J.; Negarestani, A. [Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Shahvar, A. [Application of Radiation Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of)

    2015-01-11

    Medical diagnostic equipment, like diagnostic radiology and mammography require a dosimeter with high accuracy for dosimetry of the diagnostic X-ray beam. Ionization chambers are suitable instruments for dosimetry of diagnostic-range X-ray beams because of their appropriate response and high reliability. This work introduces the design and fabrication of a new parallel plate ionization chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick) and a graphite-foil central electrode (0.1 mm thick, 0.7 g/cm{sup 3} dense). This design improves upon the response characteristics of existing designs through the specific choice of materials as well as the appropriate size and arrangement of the ionization chamber components. The results of performance tests conducted at the Secondary Standard Dosimetry laboratory in Karaj-Iran demonstrated the short and long-term stability, the low leakage current, the low directional dependence, and the high ion collection efficiency of the design. Furthermore, the FLUKA Monte Carlo simulations confirmed the low effect of central electrode on this new ionization chamber response. The response characteristics of the parallel plate ionization chamber presented in this work makes the instrument suitable for use as a standard dosimeter in laboratories.

  1. Degradation in the efficiency of glass Resistive Plate Chambers operated without external gas supply

    Science.gov (United States)

    Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.; Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.

    2015-06-01

    Resistive plate chambers (RPC) are particle detectors commonly used by the high energy physics community. Their normal operation requires a constant flow of gas mixture to prevent self-poisoning which reduces the chamber's capability to detect particles. We studied how quickly the efficiency of two RPCs drops when operated in sealed mode, i.e. without refreshing the gas mixture. The test aim is to determine how RPCs could be used as particle detectors in non-laboratory applications, such as those exploiting muon tomography for geological imaging or homeland security. The two sealed RPCs were operated in proportional mode for a period of more than three months, and their efficiencies were recorded continuously and analysed in 8-hours intervals. The results show that the efficiency drops on average by 0.79 ± 0.01 % every 24 hours of operation and returns close to the initial value after purging the old gas mixture and flushing the chambers with fresh gas.

  2. Perspectives of a mid-rapidity dimuon program at the RHIC: a novel and compact muon telescope detector

    International Nuclear Information System (INIS)

    Ruan, L.; Lin, G.; Xu, Z.; Asselta, K.; Chen, H.F.; Christie, W.; Crawford, H.K.; Engelage, J.; Eppley, G.; Hallman, T.J.; Li, C.; Liu, J.; Llope, W.J.; Majka, R.; Nussbaum, T.; Scheblein, J.; Shao, M.; Soja, R.; Sun, Y.; Tang, Z.; Wang, X.; Wang, Y.; STAR Collaboration

    2009-01-01

    We propose a large-area, cost-effective Muon Telescope Detector (MTD) at mid-rapidity for the Solenoidal Tracker at RHIC (STAR) and for the next generation of detectors at a possible electron-ion collider. We utilize large Multi-gap Resistive Plate Chambers with long readout strips (long-MRPC) in the detector design. The results from cosmic ray and beam tests show the intrinsic timing and spatial resolution for a long-MRPC are 60-70 ps and ∼ 1 cm, respectively. The performance of the prototype muon telescope detector at STAR indicates that muon identification at a transverse momentum of a few GeV/c can be achieved by combining information from track matching with the MTD, ionization energy loss in the Time Projection Chamber, and time-of-flight measurements. A primary muon over secondary muon ratio of better than 1/3 can be achieved. This provides a promising device for future quarkonium programs and primordial dilepton measurements at RHIC. Simulations of the muon efficiency, the signal-to-background ratio of J/ψ, the separation of Υ 1S from 2S+3S states, and the electron-muon correlation from charm pair production in the RHIC environment are presented.

  3. Study of the effect of water vapor on a resistive plate chamber with glass electrodes

    CERN Document Server

    Sakai, H H; Teramoto, Y; Nakano, E E; Takahashi, T T

    2002-01-01

    We studied the effects of water vapor on the efficiencies of resistive plate chambers with glass electrodes, operated in the streamer mode. With moisture in the chamber gas that has freon as a component (water vapor approx 1000 ppm), a decrease in the efficiency (approx 20%) has been observed after operating for a period of several weeks to a few months. From our study, the cause of the efficiency decrease was identified as a change on the cathode surface. In addition, a recovery method was found: flushing for 1 day with argon bubbled through water containing >=3% ammonia, followed by a few weeks of training with dry gas.

  4. Aging study for resistive plate chambers of the CMS muon trigger detector

    CERN Document Server

    Abbrescia, M; Iaselli, G; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F; Altieri, S; Belli, G; Bruno, G; Guida, R; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P

    2003-01-01

    A long-term aging test of a Resistive Plate Chamber (RPC) was carried out with an intense gamma **1**3**7Cs source. The detector was operated in avalanche mode and had the bakelite surface treated with linseed oil. After the irradiation the estimated dose, charge and fluence were approximately equal to the expected values after 10 years of operation in the CMS barrel region. During and after the irradiation, the RPC performance was monitored with cosmic muons and showed no relevant aging effects. Moreover, no variation of the bakelite resistance was observed.

  5. Aging study for resistive plate chambers of the CMS muon trigger detector

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G. E-mail: gabriella.pugliese@ba.infn.it; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Guida, R.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P

    2003-12-01

    A long-term aging test of a Resistive Plate Chamber (RPC) was carried out with an intense gamma {sup 137}Cs source. The detector was operated in avalanche mode and had the bakelite surface treated with linseed oil. After the irradiation the estimated dose, charge and fluence were approximately equal to the expected values after 10 years of operation in the CMS barrel region. During and after the irradiation, the RPC performance was monitored with cosmic muons and showed no relevant aging effects. Moreover, no variation of the bakelite resistance was observed.

  6. Towards the installation and use of an extended array for cosmic ray detection The EEE Project

    CERN Document Server

    Abbrescia, M; An, S; Antolini, R; Badala, A; Baek, Y W; Baldini Ferroli, R; Bencivenni, G; Blanco, F; Bressan, E; Chiavassa, A; Chiri,C; Cicalò, C; Cifarelli, L; Coccia, E; Coccetti, F; De Caro, A; De Gruttola, D; De Pasquale, S; D'Incecco, M; Fabbri, F L; Frolov, V; Garbini, M; Garnaccia, C; Gustavino, C; Hatzifotiadou, D; Imponente, G; Kim, J S; Kim, M M; La Rocca, P; Librizzi, F; Maggiora, A; Menghetti, H; Miozzi, S; Moro, R; Noferini, F; Pagano, P; Panareo, M; Pappalardo, G S; Petta, C; Piragino, G; Preghenella, R; Riggi, F; Romano, F; Russo, G; Sartorelli, G; Sbarra, C; Scioli, G; Selvi, M; Serci, S; Siddi, E; Wenninger, H; Williams, M C S; Zampolli, C; Zichichi, A; Zuyeuski, R

    2009-01-01

    The Extreme Energy Events (EEE) project started to use an array of cosmic ray telescopes for muon detection, distributed over the italian territory. The use of such telescopes, based on Multigap Resistive Plate Chambers (MRPC) allows the study of the local muon flux, the detection of cosmic ray showers and the search for correlations between distant showers. The project is also intended to involve high school teams in an advanced research work. The present status of the installation and the first physics results are discussed here.

  7. Towards the installation and use of an extended array for cosmic ray detection: The EEE Project

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M. [INFN and Department of Physics, University of Bari (Italy); Alici, A. [INFN and Department of Physics, University of Bologna (Italy); An, S. [World Laboratory, Geneva (Switzerland); Antolini, R. [INFN, Laboratori Nazionali del Gran Sasso (Italy); Badala, A. [INFN and Department of Physics and Astronomy, University of Catania (Italy); Baek, Y.W. [Department of Physics, Kangnung National University (Korea, Republic of); CERN, Geneva (Switzerland); Baldini Ferroli, R. [Museo Storico della Fisica, Centro Studi e Ricerche E.Fermi, Roma (Italy); INFN, Laboratori Nazionali di Frascati (Italy); Bencivenni, G. [INFN, Laboratori Nazionali di Frascati (Italy); Museo Storico della Fisica, Centro Studi e Ricerche E.Fermi, Roma (Italy); Blanco, F. [INFN and Department of Physics and Astronomy, University of Catania (Italy); Bressan, E. [INFN and Department of Physics, University of Bologna (Italy); Chiavassa, A. [INFN and Department of Physics, University of Torino (Italy); Chiri, C. [INFN and Department of Physics, University of Lecce (Italy); Museo Storico della Fisica, Centro Studi e Ricerche E.Fermi, Roma (Italy); Cicalo, C. [INFN and Department of Physics, University of Cagliari (Italy); Cifarelli, L. [INFN and Department of Physics, University of Bologna (Italy); Coccia, E. [INFN, Laboratori Nazionali del Gran Sasso (Italy); Coccetti, F. [Museo Storico della Fisica, Centro Studi e Ricerche E.Fermi, Roma (Italy); De Caro, A.; De Gruttola, D.; De Pasquale, S. [INFN and Department of Physics, University of Salerno (Italy); D' Incecco, M. [INFN, Laboratori Nazionali del Gran Sasso (Italy)

    2009-05-15

    The Extreme Energy Events (EEE) project started to use an array of cosmic ray telescopes for muon detection, distributed over the italian territory. The use of such telescopes, based on Multigap Resistive Plate Chambers (MRPC) allows the study of the local muon flux, the detection of cosmic ray showers and the search for correlations between distant showers. The project is also intended to involve high school teams in an advanced research work. The present status of the installation and the first physics results are discussed here.

  8. The cosmic ray muon tomography facility based on large scale MRPC detectors

    Science.gov (United States)

    Wang, Xuewu; Zeng, Ming; Zeng, Zhi; Wang, Yi; Zhao, Ziran; Yue, Xiaoguang; Luo, Zhifei; Yi, Hengguan; Yu, Baihui; Cheng, Jianping

    2015-06-01

    Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm×73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.

  9. DEVELOPMENT AND USE OF A PARALLEL-PLATE FLOW CHAMBER FOR STUDYING CELLULAR ADHESION TO SOLID-SURFACES

    NARCIS (Netherlands)

    VANKOOTEN, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    A parallel-plate flow chamber is developed in order to study cellular adhesion phenomena. An image analysis system is used to observe individual cells exposed to flow in situ and to determine area, perimeter, and shape of these cells as a function of time and shear stress. With this flow system the

  10. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    Science.gov (United States)

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition

  11. Performance and simulation of a double-gap resistive plate chamber in the avalanche mode

    CERN Document Server

    Ahn Sung Hwan; Hong Byung Sik; Hong Seong Jong; Ito, M; Kang, T I; Kim, B I; Kim, J H; Kim, Y J; Kim, Y U; Koo, D G; Lee Hyup Woo; Lee, K B; Lee Kyong Sei; Lee Seok Jae; Lim, J K; Moon, D H; Nam, S K; Park, S; Park, W J; Rhee June Tak; Ryu, M S; Sim Kwang Souk

    2004-01-01

    We present a detailed analysis of the time and the charge signals of a prototype double-gap resistive plate chamber for the endcap region of the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). The chamber was built with relatively low-resistivity bakelite. The time and the charge results demonstrate that the high- voltage plateau, which satisfies various CMS requirements for the efficiency, the noise cluster rate, the fraction of the large signal, and the streamer probability, can be extended at least up to 400 V with the present design. In addition, a simple avalanche multiplication model is studied in detail. The model can reproduce the experimental charge spectra reasonably well. The charge information enables us to estimate the effective Townsend coefficient in avalanche-mode operation.

  12. The Time-Of-Flight detector of ALICE at LHC: construction, test and commissioning with cosmic rays

    CERN Document Server

    Preghenella, Roberto

    2009-01-01

    After several years of research and development the Time-Of-Flight detector of ALICE (A Large Ion Collider Experiment) has been constructed and is presently fully installed and operative in the experimental area located at the interaction point n.2 of the LHC (Large Hadron Collider) at CERN. Particle identification in ALICE is essential, as many observables are either mass or flavour dependent, therefore many different techniques are used to cover the largest possible momentum range. As said, the TOF (Time- Of-Flight) detector, of which a comprehensive review is given in Chapter 2, is dedicated to hadron identification at medium momenta. The detector exploits the novel technology based on the Multigap Resistive Plate Chamber (MRPC) which guarantees the excellent performance required for a very large time-of-flight array. The construction of the ALICE TOF detector has required the assembly of a large number of MRPC detectors which has been successfully carried out thanks to a careful mass production controlled...

  13. Prototype Performance of Novel Muon Telescope Detector at STAR

    International Nuclear Information System (INIS)

    Ruan, L.

    2008-01-01

    Research on a large-area, cost-effective Muon Telescope Detector (MTD) has been carried out for RHIC and for next generation detectors at future QCD Lab. We utilize state-of-the-art multi-gap resistive plate chambers with large modules and long readout strips in detector design. The results from cosmic ray and beam test will be presented to address intrinsic timing and spatial resolution for a Long-MRPC. The prototype performance of a novel muon telescope detector at STAR will be reported, including muon identification capability, timing and spatial resolution

  14. The Time-of-Flight Detector for the ALICE experiment

    CERN Document Server

    Williams, M C S

    2002-01-01

    The Multigap Resistive Plate Chamber (MRPC) will be used to build a large Time-of-Flight detector for the ALICEexperiment. It will cover an area of 150 m2 consisting of 160,000 channels of 3.5 x 2.5 cm2 read-out pads. We present the results of the last 2 years of R&D during which we investigated problems associated with scaling up from single cells of 3 x 3 cm2 to strips with active area of 7 × 120 cm2 read out with 96 pads.

  15. Prototype performance of novel muon telescope detector at STAR

    International Nuclear Information System (INIS)

    Ruan, L.; Ames, V.

    2011-01-01

    Research on a large-area, cost-effective Muon Telescope Detector has been carried out for RHIC and for next generation detectors at future QCD Lab. We utilize state-of-the-art multi-gap resistive plate chambers with large modules and long readout strips in detector design. The results from cosmic ray and beam test will be presented to address intrinsic timing and spatial resolution for a Long-MRPC. The prototype performance of a novel muon telescope detector at STAR will be reported, including muon identification capability, timing and spatial resolution. (author)

  16. The EEE Project status and perspectives

    CERN Document Server

    Antolini, R; Baldini Ferroli, R; Bencivenni, G; Blanco, F; Bressan, E; Chiavassa, A; Cifarelli, L; Cindolo, F; Coccia, E; De Pasquale, S; Di Giovanni, A; D'Incecco, M; Fabbri, F L; Garbini, M; Gustavino, C; Hatzifotiadou, D; Imponente, G; La Rocca, P; Librizzi, F; Menghetti, H; Miozzi, S; Pappalardo,G S; Piragino, G; Riggi, F; Sartorelli, G; Sbarra, C; Selvi, M; Williams, C; Zichichi, A

    2007-01-01

    The Extreme Energy Events (EEE) project plans to build and use an array of cosmic ray telescopes for muon detection, distributed over the italian territory. The use of such telescopes, based on Multigap Resistive Plate Chambers (MRPC) will allow the study of cosmic ray showers and the correlation between multiple primaries producing distant showers. The project is also intended to involve high school teams in an advanced research work. The physics items which can be addressed by such array, and the present status and perspectives of the project are here discussed.

  17. The EEE Project: Cosmic rays, multigap resistive plate chambers and high school students

    CERN Document Server

    Abbrescia, M.; Antolini, R; Avanzini, C; Baldini Ferroli, R; Bencivenni, G; Bossini, E; Bressan, E; Chiavassa, A; Cicalo, C; Cifarelli, L; Coccia, E; De Gruttula, D; De Pasquale, S; Di Giovanni, A; D'Incecco, M; Doroud, K; Dreucci, M; Fabbri, FL; Frolov, V; Garbini, M; Gemme, G; Gnesi, I; Gustavino, C; Hatzifotiadu, D; La Rocca, P; Li, S; Moro, R; Miozzi, S; Massai, M; Maggiora, A; Librizzi, F; Piragino, G; Pilo, F; Perasso, L; Paoletti, R; Righini, GC; Scapparone, E; Sartorelli, G; Romano, F; Serci, S; Selvi, M; Scribano, A; Riggi, F; Regano, A; Squarcia, S; Spandre, G; Toselli, F; Taiuti, M; Zichichi, A; Zouyevski, R; Williams, MCS; Votano, L; Siddi, E; Panareo, M

    2012-01-01

    The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC) muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and accurate determination of the stability in the working point conditions due to gas mixture changes in the closed loop recirculation system. In 2011 the GGM began to operate using a feedback algorithm to control the applied voltage, in order to keep the GGM response insensitive to environmental temperature and atmospheric pressure variations. Recent results are presented on the feedback method used and on alternative algorithms.

  18. Response of multi-strip multi-gap resistive plate chamber using pulsed electron beam

    International Nuclear Information System (INIS)

    Datta Pramanik, U.; Chakraborty, S.; Rahaman, A.; Ray, J.; Chatterjee, S.; Bemmerer, D.; Elekes, Z.; Kempe, M.; Sobiella, M.; Stach, D.; Wagner, A.; Yakorev, D.; Leifels, Y.; Simon, H.

    2011-01-01

    A prototype of Multi-strip Multi-gap Resistive Plate Chamber (MMRPC) with active area 40 cm x 20 cm has been developed at SINP, Kolkata. Electron response of the developed detector was studied using the electron linac ELBE at Forschungszentrum Dresden-Rossendorf. The development of this detector started with the aim of developing a neutron detector but this ultrafast timing detector can be used efficiently for the purpose of medical imaging, security purpose and detection of minimum ionising particle. In this article detailed analysis of electron response to our developed MMRPC will be presented

  19. Resistive Plate Chamber Digitization in a Hadronic Shower Environment

    CERN Document Server

    Deng, Z.

    2016-06-28

    The CALICE Semi-Digital Hadron Calorimeter (SDHCAL) technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collider. The prototype was exposed to beams of muons, electrons and pions of different energies at the CERN Super Proton Synchrotron. To be able to study the performance of such a calorimeter in future experiments it is important to ensure reliable simulation of its response. In this paper we present our prototype simulation performed with GEANT4 and the digitization procedure achieved with an algorithm called SimDigital. A detailed description of this algorithm is given and the methods to determinate its parameters using muon tracks and electromagnetic showers are explained. The comparison with hadronic shower data shows a good agreement up to 50 GeV. Discrepancies are ...

  20. Performance of CMS Resistive Plate Chambers in CRAFT and early 2015 collisions at 13 TeV

    CERN Document Server

    CMS Collaboration

    2015-01-01

    Resistive Plate Chambers (RPC) performance results with cosmics data at 3.8 T and p-p collision data at 13 TeV for 2015 are presented. These results include plots of relevant RPC variables such as occupancy, cluster size, efficiency and residuals. RPC cluster size, measured with cosmic rays at 3.8 T during 2015, is presented and compared with 2012 results. During the first long shutdown of the LHC (2013-2014) the CMS muon system has been upgraded with 144 double-gap chambers on the forth forward stations. During the commissioning period, the system has been successfully run and experimental data has been collected and analyzed in details. Occupancy and efficiency results of newly installed chambers using 13 TeV p-p data are reported. The results of the 2015 HV Scan, performed at 0 T magnetic field, are presented and compared with the 2012 HV scan results at 3.8 T. These results are comparable since RPC efficiency is independent of the magnetic field surrounding the chambers.

  1. Performance, operation and detector studies with the ATLAS Resistive Plate Chambers

    International Nuclear Information System (INIS)

    Aielli, G; Bindi, M; Polini, A

    2013-01-01

    Resistive Plate Chambers provide the barrel region of the ATLAS detector with an independent muon trigger and a two-coordinate measurement. The chambers, arranged in three concentric double layers, are operated in a strong magnetic toroidal field and cover a surface area of about 4000 m 2 . During 2011 the LHC has provided proton-proton collisions at 7 TeV in the center-of-mass frame with a steady increase in instantaneous luminosity, summing up to about 5 fb −1 . The operational experience for this running period is presented along with studies of the detector performance as a function of luminosity, environmental conditions and working point settings. Non-event based information including in particular the large number of gas gap currents, individually monitored with nA accuracy, have been used to study the detector behavior with growing luminosity and beam currents. These data are shown to provide, when calibrated, an independent luminosity measurement and a crucial handle for understanding the ATLAS backgrounds well beyond the scope of muon triggering and detection. The measurements presented here allow to plan a strategy for the data taking in the next years and make some predictions about the detector performance at higher luminosities. They also improve the knowledge on RPC detector physics.

  2. Characterization and Simulation of a New Design Parallel-Plate Ionization Chamber for CT Dosimetry at Calibration Laboratories

    Science.gov (United States)

    Perini, Ana P.; Neves, Lucio P.; Maia, Ana F.; Caldas, Linda V. E.

    2013-12-01

    In this work, a new extended-length parallel-plate ionization chamber was tested in the standard radiation qualities for computed tomography established according to the half-value layers defined at the IEC 61267 standard, at the Calibration Laboratory of the Instituto de Pesquisas Energéticas e Nucleares (IPEN). The experimental characterization was made following the IEC 61674 standard recommendations. The experimental results obtained with the ionization chamber studied in this work were compared to those obtained with a commercial pencil ionization chamber, showing a good agreement. With the use of the PENELOPE Monte Carlo code, simulations were undertaken to evaluate the influence of the cables, insulator, PMMA body, collecting electrode, guard ring, screws, as well as different materials and geometrical arrangements, on the energy deposited on the ionization chamber sensitive volume. The maximum influence observed was 13.3% for the collecting electrode, and regarding the use of different materials and design, the substitutions showed that the original project presented the most suitable configuration. The experimental and simulated results obtained in this work show that this ionization chamber has appropriate characteristics to be used at calibration laboratories, for dosimetry in standard computed tomography and diagnostic radiology quality beams.

  3. Early biofilm formation and the effects of antimicrobial agents on orthodontic bonding materials in a parallel plate flow chamber

    NARCIS (Netherlands)

    Chin, Yeen; Busscher, HJ; Evans, R; Noar, J; Pratten, J

    Decalcification is a commonly recognized complication of orthodontic treatment with fixed appliances. A technology, based on a parallel plate flow chamber, was developed to investigate early biofilm formation of a strain of Streptococcus sanguis on the surface of four orthodontic bonding materials:

  4. Multigap resistive plate chambers for EAS study in the EEE Project

    CERN Document Server

    An, S; Badalà, A; Zichichi, A

    2007-01-01

    The EEE (Extreme Energy Events) Project, conceived by its leader Antonino Zichichi, is an experiment to study very high-energetic air showers (EAS) through the detection of the shower's muon component using a network of tracking detectors, installed in Italian high schools. The single tracking telescope is composed of three large area () Multi-gap Resistive Plate Chambers (MRPCs). The data collected by the telescopes will be used for studies of air showers and also for the search of time correlations between sites which are far apart. The first telescope, recently installed in the Liceo B. Touschek in Grottaferrata (Rome), is successfully running, and other telescopes are going to be installed in a short time in other towns, opening up the way for the first search of long-distance coincidences over a total area of .

  5. Effect of the linseed oil surface treatment on the performance of resistive plate chambers

    International Nuclear Information System (INIS)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Ranieri, A.; Romano, F.; Arena, V.; Bonomi, G.; Braj, A.; Gianini, G.; Liguori, G.; Ratti, S.P.; Riccardi, C.; Viola, L.; Vitulo, P.

    1997-01-01

    Results on the behaviour of several bakelite resistive plate chambers (RPCs) without the linseed oil treatment of the internal electrodes will be presented. Efficiency, collected charge and cluster size distributions will be compared to the ones of a standard oiled RPC. Currents and single rate are the quantities most affected by the surface treatment of the electrodes beyond the optical/mechanical properties. A factor 4 less in currents and at least a factor 10 less in single rate is achieved using standard oiled RPCs operated in streamer mode. (orig.)

  6. Air bubble-induced detachment of polystyrene particles with different sizes from collector surfaces in a parallel plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; van der Mei, HC; Busscher, HJ

    2001-01-01

    Particle size was found to be an important factor in air bubble-induced detachment of colloidal particles from collector surfaces in a parallel plate flow chamber and generally polystyrene particles with a diameter of 806 nm detached less than particles with a diameter of 1400 nm. Particle

  7. Air bubble-induced detachment of positively and negatively charged polystyrene particles from collector surfaces in a parallel-plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; Van der Mei, HC; Busscher, HJ

    2000-01-01

    Electrostatic interactions between colloidal particles and collector surfaces were found tcr be important in particle detachment as induced by the passage of air bubbles in a parallel-plate Row chamber. Electrostatic interactions between adhering particles and passing air bubbles, however, a-ere

  8. Some studies on the pulse-height loss due to capacitive decay in the detector-circuit of parallel plate ionization chambers

    International Nuclear Information System (INIS)

    Sharma, S.L.; Anil Kumar, G.; Choudhury, R.K.

    2006-01-01

    Pulse-type ionization chambers are invariably operated in the electron-sensitive mode where the capacitive decay in the detector-circuit during the electron collection produces loss in the pulse-height. In order to understand and appreciate the effect of this capacitive decay on the detector response, we have carried out Monte Carlo simulations of the response of two-electrode parallel plate ionization chambers with and without the capacitive decay keeping shaping time so large that the ballistic deficit is negligibly small. These simulations have been carried out incorporating the physical processes, namely, emission of charged particles from a point radioactive source, the generation of charge carriers in the active volume, separation and acceleration of the charge carriers, transport of the charge carriers, induction of charges on the electrodes, pulse processing by preamplifier-amplifier network, etc. These simulations have shown that the concerned capacitive decay produces appreciable loss in the pulse-height, if the detector-circuit time constant is of the order of maximum electron collection time. We have also carried out measurements on the pulse-height loss due to the capacitive decay in the detector-circuit during the electron collection for a two-electrode parallel plate ionization chamber. The experimental data on the pulse-height loss match reasonably well with the theoretical predictions

  9. Studies of gaseous multiplication coefficient in isobutane using a resistive plate chamber

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pontificia Univ. Catolica de Sao Paulo (PUC/SP), SP (Brazil); Lima, Iara B.; Vivaldini, Tulio C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept. de fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2009-07-01

    Full text: Due to the increasing demands concerning High Energy Physics, Nuclear Medicine and other Nuclear Applications about gaseous detectors operating in high electric fields, many efforts have been done about the choice of filling gases that fulfill these requirements. In this context, the electron transport parameters in gases, as the gaseous multiplication coefficient, play an important role not only for detector design but also for simulation and modeling of discharges, allowing the validation of electron impact cross-sections. In the present work the preliminary measurements of gaseous multiplication coefficient, as function of the reduced electric field (from 36V/cm.Torr until 93V/cm.Torr), for isobutane are presented. Among several filling gases, isobutane is widely used in resistive plate chambers RPCs, and other gaseous detectors, due to its timing properties. Although its characteristics, there is a lack of swarm parameters data in literature for this gas, mainly at high electric fields. The experimental method used is based on the Pulsed Townsend technique, which follows from Townsend equation solution for a uniform electric field. Considering the ratio between the current (I), measured in avalanche mode, and the primary ionization current (I{sub 0}), the effective multiplication coefficient can be determined, since alpha = d{sup -1}ln(I/I{sub 0}), where d is the gap between the electrodes. In our configuration, the experimental setup consists of two parallel plates enclosure in a stainless steel chamber at gas flow regime. The anode, is made of a high resistivity (2.10{sup 12}{omega}.cm) glass (3mm thick and 14mm diameter), while the cathode is of aluminium (40mm diameter). Primary electrons are produced by irradiating the cathode with a nitrogen laser (LTB MNL200-LD) and are accelerated toward the anode by means of a high voltage power supply (Bertan 225-30). In order to validate the technique and to analyze effects of non-uniformity, results for

  10. Streamer free operation of a 2 mm gap resistive plate chamber with $C_{2}F_{5}H$

    CERN Document Server

    Cerron-Zeballos, E; Hatzifotiadou, D; Lamas-Valverde, J; Williams, M C S; Zichichi, A

    1999-01-01

    It is necessary to operate the resistive plate chamber (RPC) in avalanche mode to obtain high efficiency at elevated particle fluxes. We examine this mode of operation with a 2 mm gap RPC using gas mixtures containing C/sub 2/F/sub 4/H/sub 2/ and C/sub 2/F/sub 5/H. In order to explain the data we propose that the avalanche growth is strongly limited by space charge effects. (10 refs).

  11. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  12. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    CERN Document Server

    Abbrescia, Marcello; Benussi, Luigi; Bianco, Stefano; Cauwenbergh, Simon Marc D; Ferrini, Mauro; Muhammad, Saleh; Passamontic, L; Pierluigi, Daniele; Piccolo, Davide; Primavera, Federica; Russo, Alessandro; Savianoc, G; Tytgat, Michael

    2016-01-01

    The operations of Resistive Plate Chambers in LHC experiments require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade several tests are ongoing to measure the performance of the detector in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard cms electronic setup are under test. In this talk preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze and with CO2 based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  13. A T0/Trigger detector for the External Target Experiment at CSR

    Science.gov (United States)

    Hu, D.; Shao, M.; Sun, Y.; Li, C.; Chen, H.; Tang, Z.; Zhang, Y.; Zhou, J.; Zeng, H.; Zhao, X.; You, W.; Song, G.; Deng, P.; Lu, J.; Zhao, L.

    2017-06-01

    A new T0/Trigger detector based on multi-gap resistive plate chamber (MRPC) technology has been constructed and tested for the external target experiment (ETE) at HIRFL-CSR. It measures the multiplicity and timing information of particles produced in heavy-ion collisions at the target region, providing necessary event collision time (T0) and collision centrality with high precision. Monte-Carlo simulation shows a time resolution of several tens of picosecond can be achieved at central collisions. The experimental tests have been performed for this prototype detector at the CSR-ETE. The preliminary results are shown to demonstrate the performance of the T0/Trigger detector.

  14. Electron beam test of an iron/gas calorimeter based on ceramic parallel plate chambers

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Bizzeti, A.; Choumilov, E.; Civinini, C; Dalla Santa, F.; D'Alessandro, R.; Ferrando, A.; Fouz, M.C.; Herve, A.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Maggi, F.; Malinin, A.; Meschini, M.; Pojidaev, V.; Radermacher, E.; Salicio, J.M.

    1995-01-01

    The baseline option for the very forward calorimetry in the CMS experiment is an iron/gas calorimeter based on parallel plate chambers. A small prototype module of such a calorimeter, has been tested using electrons of 5 to 100 GeV/c momentum with various high voltages and two gases: CO2 (100%) and CF4/CO2 (80/20), at atmospheric pressure. The collected charge has been measured as a function of the high voltage and of the electron energy. The energy resolution has also been measured. Comparisons have been made with Monte-Carlo predictions. Agreement between data an simulation allows to make and estimation of the expected performance of a full size calorimeter. (Author) 23 refs

  15. Electron beam test of an iron/gas calorimeter based on ceramic parallel plate chambers

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, G.L.; Bizzeti, A.; choumilov, E.; Civinini, C.; Dalla Santa, F.; D'Alessandro, R.; Ferrando, A.; Fouz, M.C.; Herve, A.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Maggi, F.; Malininin, A.; Meschini, M.; Pojidaev, V.; Radermacher, E.; Salicio, J.M.

    1995-12-01

    The baseline option for the very forward calorimetry in the CMS experiment is an iron/gas calorimeter based on parallel plate chambers. A small prototype module of such a calorimeter, has been tested using electrons of 5 to 100 GeV/c momentum with various high voltages and two gases: CO 2 (100%) and CF 4 /CO 2 (80/20), at atmospheric pressure. The collected charge has been measured as a function of the high voltage and of the electron energy. The energy resolution has also been measured. Comparisons have been made with Monte-Carlo predictions. Agreement between data an simulation allows to make and estimation of the expected performance of a full size calorimeter. (Author)

  16. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    International Nuclear Information System (INIS)

    Mohammadi, S.M.; Tavakoli-Anbaran, H.; Zeinali, H.Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  17. Response of resistive plate chamber to e+/e- at E < 100 MeV

    International Nuclear Information System (INIS)

    Rhee, J T; Jamil, M; Chun, Christopher; Yin, Bingzhu; Jeon, Y J

    2006-01-01

    Resistive plate chambers (RPCs) will be installed as one of the important tracking detectors both in the endcap and barrel area CMS muon stations. These stations will be exposed to high gamma, neutron and positron/electron background radiation environment during the LHC machine operation. For the safe operation of these detectors, it is necessary to monitor these kinds of radiation. A simulation test has been carried out with the RPC at e + /e - fluxes using the dose and fluence equivalent to LHC 10 years operation. The simulation studies of RPC to e + /e - of energy 0.1 < E < 100 MeV have been performed using the GEANT 3.21 and GEANT4 Monte Carlo packages. By employing these two packages, good agreement of the simulation results is attained

  18. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    International Nuclear Information System (INIS)

    Abbrescia, M.; Muhammad, S.; Saviano, G.; Auwegem, P. Van; Cauwenbergh, S.; Tytgat, M.; Benussi, L.; Bianco, S.; Passamonti, L.; Pierluigi, D.; Piccolo, D.; Primavera, F.; Russo, A.; Ferrini, M.

    2016-01-01

    The operations of Resistive Plate Chambers in LHC experiments require Fluorine based (F-based) gases for optimal performance. Recent European regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade, several tests are ongoing to measure the performance of the detector with these new ecological gas mixtures, in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard CMS electronic setup are under test. In this paper preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze, with CO 2 and CF 3 I based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  19. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    CERN Document Server

    Abbrescia, M.

    2016-01-01

    The operations of Resistive Plate Chambers in LHC experiments require Fluorine based (F-based) gases for optimal performance. Recent European regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade, several tests are ongoing to measure the performance of the detector with these new ecological gas mixtures, in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard CMS electronic setup are under test. In this paper preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze, with CO2 and CF3I based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  20. Curing pasted plates for lead/acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Napoleon, E.S.

    1987-02-15

    This paper covers various aspects of the hydroset process and final drying of battery plates in a controlled chamber. Through the use of such chambers, battery makers are obtaining finished plates of consistent quality in 48 h or less, including final drying. Added benefits include: (i) reduced free-lead in plates; (ii) reduced floor space requirements; (iii) better knitting of paste to grid; (iv) reduced inventories; (v) reduced battery rejects.

  1. Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber

    NARCIS (Netherlands)

    Roosjen, A; Boks, NP; van der Mei, HC; Busscher, HJ; Norde, W

    2005-01-01

    Microbial adhesion to surfaces often occurs despite high wall shear rates acting on the adhering microorganisms. In this paper, we compare the wall shear rates needed to prevent microbial adhesion to bare glass and poly(ethylene oxide) (PEO)-brush coated glass in a parallel plate flow chamber.

  2. Improvements in ionization chambers

    International Nuclear Information System (INIS)

    Whetten, N.R.; Zubal, C.

    1980-01-01

    A method of reducing mechanical vibrations transmitted to the parallel plate electrodes of ionization chamber x-ray detectors, commonly used in computerized x-ray axial tomography systems, is described. The metal plate cathodes and anodes are mounted in the ionizable gas on dielectric sheet insulators consisting of a composite of silicone resin and glass fibres. (UK)

  3. Signal enhancement due to high-Z nanofilm electrodes in parallel plate ionization chambers with variable microgaps.

    Science.gov (United States)

    Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2017-12-01

    We developed a method for measuring signal enhancement produced by high-Z nanofilm electrodes in parallel plate ionization chambers with variable thickness microgaps. We used a laboratory-made variable gap parallel plate ionization chamber with nanofilm electrodes made of aluminum-aluminum (Al-Al) and aluminum-tantalum (Al-Ta). The electrodes were evaporated on 1 mm thick glass substrates. The interelectrode air gap was varied from 3 μm to 1 cm. The gap size was measured using a digital micrometer and it was confirmed by capacitance measurements. The electric field in the chamber was kept between 0.1 kV/cm and 1 kV/cm for all the gap sizes by applying appropriate compensating voltages. The chamber was exposed to 120 kVp X-rays. The current was measured using a commercial data acquisition system with temporal resolution of 600 Hz. In addition, radiation transport simulations were carried out to characterize the dose, D(x), high-energy electron current, J(x), and deposited charge, Q(x), as a function of distance, x, from the electrodes. A deterministic method was selected over Monte Carlo due to its ability to produce results with 10 nm spatial resolution without stochastic uncertainties. Experimental signal enhancement ratio, SER(G) which we defined as the ratio of signal for Al-air-Ta to signal for Al-air-Al for each gap size, was compared to computations. The individual contributions of dose, electron current, and charge deposition to the signal enhancement were determined. Experimental signals matched computed data for all gap sizes after accounting for several contributions to the signal: (a) charge carrier generated via ionization due to the energy deposited in the air gap, D(x); (b) high-energy electron current, J(x), leaking from high-Z electrode (Ta) toward low-Z electrode (Al); (c) deposited charge in the air gap, Q(x); and (d) the decreased collection efficiency for large gaps (>~500 μm). Q(x) accounts for the electrons below 100 eV, which are

  4. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber Part II : Use of fluorescence imaging

    NARCIS (Netherlands)

    Li, Jiuyi; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem; Krom, Bastiaan P.; Sjollema, Jelmer

    2011-01-01

    Using a new phase-contrast microscopy-based method of analysis, sedimentation has recently been demonstrated to be the major mass transport mechanism of bacteria towards substratum surfaces in a parallel plate flow chamber (J. Li, H.J. Busscher, W. Norde, J. Sjollema, Colloid Surf. B. 84 (2011)76).

  5. A parallel plate avalanche chamber for relativistic heavy ions

    International Nuclear Information System (INIS)

    Burgei, R.

    1989-01-01

    In order to determine the interaction point of relativistic heavy ions in the Diogene target, we have built and tested an X-Y low pressure parallel plate avalanche chamber. It uses three thin metallized foils and is filled with isobutane. A preliminary study shows that it is the only detector with the required specifications: efficiency, accurate position determination and a small uniform amount of material for the particle beam to go through. The electronics system is designed for reliability, easy adjustments and high stability. The interaction point is given on delay-line read-out. This represents the optimum compromise between low price and good performance. Laboratory measurements of gain, efficiency and position accuracy are done with an alpha-particle source. Two of these detectors are working at the Saturne National Laboratory. They allow the trajectory of several tens of particles (among a million per second) to be reconstructed. With an argon beam at 400 MeV per nucleon, the position uncertainty in the target has been measured to be 0.5 mm (standard deviation). This uncertainty is 0.3 mm for each detector, with an efficiency of 94 per cent. Our set-up, which is now operational, improves the accuracy of the results and speed of analysis of Diogene experiments devoted to the study of central collisions between heavy ions [fr

  6. Going to the school of muons

    CERN Multimedia

    2005-01-01

    Italian secondary school pupils will be given the opportunity to take part in a large-scale experiment looking at cosmic muons thanks to the EEE Project. Two Italian pupils building an MRPC muon chamber in CERN's Building 29. For several months, Italian secondary school pupils have been coming to CERN each week and heading for Building 29. They are not just visiting. They are participating in the EEE (Extreme Energy Events) Project, the aim of which is to carry out a real-life experiment in search of large atmospheric showers using muon detectors located in their schools. In this hall at CERN they are helping to build and test muon chambers - MRPCs (Multigap Resistive Plate Chambers). These chambers, which were invented several years ago by Crispin Williams as part of the LAA Project led by Professor Antonino Zichichi, are similar to those that will be used for ALICE's TOF (Time of Flight) detector at the LHC. In this way, the pupils are receiving a direct, practical and effective initiation to particle phy...

  7. Web-based monitoring tools for Resistive Plate Chambers in the CMS experiment at CERN

    International Nuclear Information System (INIS)

    Kim, M.S.; Ban, Y.; Cai, J.; Li, Q.; Liu, S.; Qian, S.; Wang, D.; Xu, Z.; Zhang, F.; Choi, Y.; Kim, D.; Goh, J.; Choi, S.; Hong, B.; Kang, J.W.; Kang, M.; Kwon, J.H.; Lee, K.S.; Lee, S.K.; Park, S.K.

    2014-01-01

    The Resistive Plate Chambers (RPC) are used in the CMS experiment at the trigger level and also in the standard offline muon reconstruction. In order to guarantee the quality of the data collected and to monitor online the detector performance, a set of tools has been developed in CMS which is heavily used in the RPC system. The Web-based monitoring (WBM) is a set of java servlets that allows users to check the performance of the hardware during data taking, providing distributions and history plots of all the parameters. The functionalities of the RPC WBM monitoring tools are presented along with studies of the detector performance as a function of growing luminosity and environmental conditions that are tracked over time

  8. Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber

    NARCIS (Netherlands)

    Suarez, CG; van der Mei, HC; Busscher, HJ

    1999-01-01

    The detachment of polystyrene particles adhering to collector surfaces with different electrostatic charge and hydrophobicity by attachment to a passing air bubble has been studied in a parallel plate flow chamber. Particle detachment decreased linearly with increasing air bubble velocity and

  9. Irradiation chamber for photoactivation patient treatment system

    International Nuclear Information System (INIS)

    Lee, K.H.; Troutner, V.H.; Goss, J.; King, M.J.

    1988-01-01

    A flat plate irradiation chamber is described for use in a patient treatment system for altering cells, including treating the cells with a photoactivatable agent and passing the cells and the agent through a field of photoactivating radiation whereby the agent is caused to be activated and to affect the cells. The agent and the cells are contained in the irradiation chamber during irradiation. The flat plate irradiation chamber comprises: a rigid top sheet matably joined with a rigid bottom sheet, forming therebetween a rigid serpentine pathway for conducting the cells through the field of radiation; and pump block means for holding tubing means in fluid communication with the serpentine pathway and adapted for engaging a peristaltic pump whereby rotation of the pump causes the cells to flow through the serpentine pathway, and wherein the chamber is removable from the system and disposable

  10. National Ignition Facility Target Chamber

    International Nuclear Information System (INIS)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-01-01

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  11. Rate effects in resistive plate chambers

    International Nuclear Information System (INIS)

    Lippmann, C.; Riegler, W.; Kalweit, A.

    2006-01-01

    The resistive plates in RPCs cause a drop of the electric field in the gas gap at high particle rates or large gas gain, which affects efficiency and time resolution. This effect is typically estimated by assuming the particle flux to be a DC current that causes a voltage drop when it passes through the resistive plate. In an improved model by Abbrescia (Nucl. Instr. Meth. A 533 (2004) 7), the fluctuation of the field in the gas gap is modelled by assuming that the avalanche partially discharges a small capacitor which gets recharged with a time constant characteristic for the given RPC. In our approach, the effect is calculated by using the exact analytic solution for the time dependent electric field of a point charge sitting on the surface of a resistive plate in an RPC. This is, by definition, the best possible approximation to reality. The solution is obtained using the quasi-static approximation of Maxwell's equations. The formulas are presented as integral representations with 'cured' integrands, which allow easy numerical evaluation for Monte Carlo simulations. The solutions show that the charges in RPCs are 'destroyed' with a continuous distribution of time constants which are related in a very intuitive way to some limiting cases. Using these formulas we present a Monte Carlo simulation of rate effects, proving the applicability of this approach. Finally, we compare the Monte Carlo results to analytical calculations, similar to the ones proposed by Gonzalez-Diaz et al. (see proceedings of this conference)

  12. Testing of a resistive plate chamber using NINO-ASIC based front end electronics

    International Nuclear Information System (INIS)

    Mondal, M.; Saini, J.; Ahammed, Z.; Chattopadhyay, S.; Ganai, R.; Barai, C.

    2017-01-01

    The Resistive Plate Chamber (RPC) has shown promising results while testing with the NINO FEE board. It has shown ∼ 80% efficiency in detecting cosmic muons with a noise rate of ∼ 40 Hz/cm 2 . The low threshold in the NINO board may be a possible reason for high noise rate. We plan to test the RPC for different gas mixtures to achieve an efficiency above 95%. The calibration of the NINO onboard threshold with input pulse amplitude need to be done. The time resolution of RPC is ∼ 2.66 ns at 12 kV for avalanche mode gas mixture. The minimum time resolution of the RPC has to determined by measuring the time spectra over the full plateau region of voltages. The signal charge has to be measured by time over- threshold for slewing correction. As J7 input of the board was not working properly, efficiency and noise rate data for the particular input has not been measured

  13. Picture chamber for radiographic system

    International Nuclear Information System (INIS)

    1977-01-01

    The picture chamber for a radiographic system is characterised by a base, a first electrode carried in the base, an X-ray irradiation window provided with an outer plate and an inner plate and a conducting surface which serves as a second electrode, which has a plate gripping it at each adjacent edge and which has at the sides a space which is occupied by a filling material, maintained at a steady pressure, by means of the mounting against the base and wherein the inner plate lies against the first electrode and which is provided with a split, and with means for the separation of the split in the area of the inner plate so that a fluid may be retained in the split. (G.C.)

  14. Design of the free-air ionization chamber, FAC-IR-150, for X-ray dosimetry

    Science.gov (United States)

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-03-01

    The primary standard for X-ray dosimetry is based on the free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) designed the free-air ionization chamber, FAC-IR-150, for low and medium energy X-ray dosimetry. The purpose of this work is the study of the free-air ionization chamber characteristics and the design of the FAC-IR-150. The FAC-IR-150 dosimeter has two parallel plates, a high voltage plate and a collector plate. A guard electrode surrounds the collector and is separated by an air gap. A group of guard strips is used between up and down electrodes to produce a uniform electric field in all the ion chamber volume. This design involves introducing the correction factors and determining the exact dimensions of the ionization chamber by using Monte Carlo simulation.

  15. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    Science.gov (United States)

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, αγ)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Resistive plate chamber neutron and gamma sensitivity measurement with a {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Altieri, S.; Baratti, V.; Barnaba, O.; Belli, G.; Bruno, G.; Colaleo, A.; DeVecchi, C.; Guida, R. E-mail: roberto.guida@pv.infn.it; Iaselli, G.; Imbres, E.; Loddo, F.; Maggi, M.; Marangelli, B.; Musitelli, G.; Nardo, R.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Ratti, S.; Riccardi, C.; Romano, F.; Torre, P.; Vicini, A.; Vitulo, P.; Volpe, F

    2003-06-21

    A bakelite double gap Resistive Plate Chamber (RPC), operating in avalanche mode, has been exposed to the radiation emitted from a {sup 252}Cf source to measure its neutron and gamma sensitivity. One of the two gaps underwent the traditional electrodes surface coating with linseed oil. RPC signals were triggered by fission events detected using BaF{sub 2} scintillators. A Monte Carlo code, inside the GEANT 3.21 framework with MICAP interface, has been used to identify the gamma and neutron contributions to the total number of collected RPC signals. A neutron sensitivity of (0.63{+-}0.02)x10{sup -3} (average energy 2 MeV) and a gamma sensitivity of (14.0{+-}0.5)x10{sup -3} (average energy 1.5 MeV) have been measured in double gap mode. Measurements done in single gap mode have shown that both neutron and gamma sensitivity are independent of the oiling treatment.

  17. Scale testing of a partially confined blast chamber

    CSIR Research Space (South Africa)

    Grundling, W

    2012-10-01

    Full Text Available in pressure readings. A scale model of the blast chamber, Emily, was constructed with the addition of a pendulum plate hanging concentrically covering 65% of the open area. PURPOSE OF SCALED BLAST CHAMBER The purpose of this particular test is to evaluate... PHASE Illustrated in Figure 3 and 4 are the results obtained during testing of the scaled blast chamber. In both cases the pressure dissipates over time, showing pulsating behaviour as the shockwaves reflect off the chamber walls. By looking...

  18. The effect of discharge chamber geometry on the characteristics of low-pressure RF capacitive discharges

    Energy Technology Data Exchange (ETDEWEB)

    Lisovskiy, V.A. [Ecole Polytech, Lab Phys and Technol Plasmas, F-91128 Palaiseau, (France); Booth, J.P. [Lam Res Corp, Fremont, CA 94538 (United States); Landry, K. [Unaxis, F-38100 Grenoble, (France); Douai, D. [CEA Cadarache, Dept Rech Fus Controlee, EURATOM Assoc, F-13108 St Paul Les Durance, (France); Cassagne, V. [Riber, F-95873 Bezons, (France); Yegorenkov, V.D. [Kharkov Natl Univ, Dept Phys, UA-61077 Kharkov, (Ukraine)

    2007-07-01

    We report the measured extinction curves and current voltage characteristics (CVCs) in several gases of RF capacitive discharges excited at 13.56 MHz in chambers of three different geometries: 1) parallel plates surrounded by a dielectric cylinder ('symmetric parallel plate'); 2) parallel plates surrounded by a metallic cylinder ('asymmetric confined'); and 3) parallel plates inside a much larger metallic chamber ('asymmetric unconfined'), similar to the gaseous electronics conference reference cell. The extinction curves and the CVCs show differences between the symmetric, asymmetric confined, and asymmetric unconfined chamber configurations. In particular, the discharges exist over a much broader range of RF voltages and gas pressures for the asymmetric unconfined chamber. For symmetric and asymmetric confined discharges, the extinction curves are close to each other in the regions near the minima and at lower pressure, but at higher pressure, the extinction curve of the asymmetric confined discharge runs at a lower voltage than the one for the discharge in a symmetric chamber. In the particular cases of an 'asymmetric unconfined chamber' discharge or 'asymmetric confined' one, the RF discharge experiences the transition from a 'weak-current' mode to a 'strong-current' one at lower RF voltages than is the case for a 'symmetric parallel-plate' discharge. (authors)

  19. Study of uranium plating measurement

    International Nuclear Information System (INIS)

    Lin Jufang; Wen Zhongwei; Wang Mei; Wang Dalun; Liu Rong; Jiang Li; Lu Xinxin

    2007-06-01

    In neutron physics experiments, the measurement for plate-thickness of uranium can directly affect uncertainties of experiment results. To measure the plate-thickness of transform target (enriched uranium plating and depleted uranium plating), the back to back ionization chamber, small solid angle device and Au-Si surface barrier semi-conductor, were used in the experiment study. Also, the uncertainties in the experiment were analyzed. Because the inhomo-geneous of uranium lay of plate can quantitively affect the result, the homogeneity of uranium lay is checked, the experiment result reflects the homogeneity of uranium lay is good. (authors)

  20. Measurement of profile and intensity of proton beam by an integrating current transformer and a segmented parallel-plate ion chamber for the AGS-spallation target experiment (ASTE)

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Nakashima, Hiroshi; Takada, Hiroshi

    2001-03-01

    Profile and intensity of proton beams incident to a mercury target were measured for the experiments under AGS-spallation Target Experiment (ASTE) collaboration. Protons of 1.94, 12 and 24 GeV energy were measured for a temperature, pressure wave and neutronics in the mercury target. For the beam profile measurement, segmented parallel-plate ion chamber (CHIDORI) was used as the online detector. Imaging plates (IP) were also used for the profile measurement with aluminum activation foils as the image converter. An integrating current transformer (ICT) and activation method by Cu foil were used for the measurement of beam intensity. The beam profile obtained by CHIDORI gives a good agreement with the results with the IP. The beam intensity obtained by ICT agrees with the data obtained by the activation technique within ±3% for 12 and 24 GeV cases. Furthermore, these results show in good agreement with those obtained by the monitor of segmented wire ionization chamber (SWIC) and secondary emission chamber (SEC) installed by the AGS team. Therefore, a reliable beam monitor technique was established, so that the analysis of the experiment such as temperature and pressure wave can be normalized by the number of incident protons. (author)

  1. Test of freonless operation of resistive plate chambers with glass electrodes--1 mm gas gap vs 2 mm gas gap

    CERN Document Server

    Sakaue, H; Takahashi, T; Teramoto, Y

    2002-01-01

    Non-freon gas mixtures (Ar/iso-C sub 4 H sub 1 sub 0) were tested as the chamber gas for 1 and 2 mm gas gap Resistive Plate Chambers (RPCs) with float glass as the resistive electrodes, operated in the streamer mode. With the narrower (1 mm) gas gap, streamer charge is reduced (approx 1/3), which reduces the dead time (and dead area), associated with each streamer, improving the detection efficiency. The best performance was obtained for two cases: Ar/iso-C sub 4 H sub 1 sub 0 =50/50 and 60/40. For the 50/50 mixture, a detection efficiency of better than 98% was obtained for the 1 mm gap RPC, while the efficiency was 95% for the 2 mm gap RPC, each operated as a double-gap RPC. The measured time resolution (rms) was 1.45+-0.05 (2.52+-0.09) ns for the 1 (2) mm gap RPC for the 50/50 mixture.

  2. A liquid ionization chamber using tetramethylsilane

    International Nuclear Information System (INIS)

    Engler, J.; Keim, H.

    1983-12-01

    First results with a liquid ionization chamber using tetramethylsilane (TMS) are presented. A stack of iron plates was tested with cosmic ray muons and the charge output for minimum ionizing particles was measured. (orig.) [de

  3. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    International Nuclear Information System (INIS)

    Abbrescia, M.; An, S.; Antolini, R.; Badala, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Chiri, C.; Cifarelli, L.; Cindolo, F.; Coccia, E.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Fabbri, F.L.; Frolov, V.; Garbini, M.; Gustavino, C.

    2008-01-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented

  4. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    CERN Document Server

    Abbrescia, M; An, S; Antolini, R; Badalà, A; Baldini Ferroli, R; Bencivenni, G; Blanco, F; Bressan, E; Chiavassa, A; Chiri, C; Cifarelli, L; Cindolo, F; Coccia, E; De Pasquale, S; Di Giovanni, A; D’Incecco, M; Fabbri, F L; Frolov, V; Garbini, M; Gustavino, C; Hatzifotiadou, D; Imponente, G; Kim, J; La Rocca, P; Librizzi, F; Maggiora, A; Menghetti, H; Miozzi, S; Moro, R; Panareo, M; Pappalardo, G S; Piragino, G; Riggi, F; Romano, F; Sartorelli, G; Sbarra, C; Selvi, M; Serci, S; Williams, C; Zuyeuski, R

    2008-01-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented.

  5. Beam test results of the first full-scale prototype of CMS RE 1/2 resistive plate chamber

    International Nuclear Information System (INIS)

    Ying Jun; Ban Yong; Ye Yanlin; Cai Jianxin; Qian Sijin; Wang Quanjin; Liu Hongtao

    2005-01-01

    The authors reported the muon beam test results of the first full-scale prototype of CMS RE 1/2 Resistive Plate Chamber (RPC). The bakelite surface is treated using a special technology without oil to make it smooth enough. The full scale RE 1/2 RPC with honeycomb supporting frame is strong and thin enough to be fitted to the limited space of CMS design for the inner Forward RPC. The muon beam test was performed at CERN Gamma Irradiation Facility (GIF). The detection efficiency of this full scale RPC prototype is >95% even at very high irradiation background. The time resolution (less than 1.2 ns) and spatial resolution are satisfactory for the muon trigger device in future CMS experiments. The noise rate is also calculated and discussed

  6. Conceptual design study of the hylife lithium waterfall laser fusion chamber. FY 1978 annual report to Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    1978-01-01

    Conceptual design studies of the target chamber defined the general configuration and dimensions of the chamber and the inlet plenum, orifice plate, and nozzle plate concepts required to generate the desired lithium jet fall. Preliminary studies were performed of the target chamber interfaces with the liquid lithium supply system, the laser system, the pellet injection system, and the target chamber mounting and support system. Target chamber environmental effects resulting from typical thermonuclear burns were evaluated. The outlet region of the target chamber was outlined conceptually, and preliminary design considerations were given to the annular graphite reflector regions of the target chamber and the associated liquid lithium coolant passages

  7. Investigation of thermal and temporal responses of ionization chambers in radiation dosimetry.

    Science.gov (United States)

    AlMasri, Hussein; Funyu, Akira; Kakinohana, Yasumasa; Murayama, Sadayuki

    2012-07-01

    The ionization chamber is a primary dosimeter that is used in radiation dosimetry. Generally, the ion chamber response requires temperature/pressure correction according to the ideal gas law. However, this correction does not consider the thermal volume effect of chambers. The temporal and thermal volume effects of various chambers (CC01, CC13, NACP parallel-plate, PTW) with different wall and electrode materials have been studied in a water phantom. Measurements were done after heating the water with a suitable heating system, and chambers were submerged for a sufficient time to allow for temperature equilibrium. Temporal results show that all chambers equilibrate quickly in water. The equilibration time was between 3 and 5 min for all chambers. Thermal results show that all chambers expanded in response to heating except for the PTW, which contracted. This might be explained by the differences in the volumes of all chambers and also by the difference in wall material composition of PTW from the other chambers. It was found that the smallest chamber, CC01, showed the greatest expansion. The magnitude of the expansion was ~1, 0.8, and 0.9% for CC01, CC13, and parallel-plate chambers, respectively, in the temperature range of 295-320 K. The magnitude of the detected contraction was <0.3% for PTW in the same temperature range. For absolute dosimetry, it is necessary to make corrections for the ion chamber response, especially for small ion chambers like the CC01. Otherwise, room and water phantom temperatures should remain within a close range.

  8. Chamber for Aerosol Deposition of Bioparticles

    Science.gov (United States)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    Laboratory apparatus is depicted that is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles. The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column. To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced Po-210 antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent

  9. The influence of air humidity on an unsealed ionization chamber in a linear accelerator

    International Nuclear Information System (INIS)

    Blad, B.; Nilsson, P.; Knoeoes, T.

    1996-01-01

    The safe and accurate delivery of the prescribed absorbed dose is the central function of the dose monitoring and beam stabilization system in a medical linear accelerator. The absorbed dose delivered to the patient during radiotherapy is often monitored by a transmission ionization chamber. Therefore it is of utmost importance that the chamber behaves correctly. We have noticed that the sensitivity of an unsealed chamber in a Philips SL linear accelerator changes significantly, especially during and after the summer season. The reason for this is probably a corrosion effect of the conductive plates in the chamber due to the increased relative humidity during hot periods. We have found that the responses of the different ion chamber plates change with variations in air humidity and that they do not return to their original values when the air humidity is returned to ambient conditions. (author)

  10. Analysis and interpretation of the performance degradation of glass Resistive Plate Chambers operated in streamer mode

    CERN Document Server

    Calcaterra, A; Patteri, P; Piccolo, M; Della Mea, G; Restello, S; Ferri, F; Musella, P; Redaelli, N; Tabarelli de Fatis, T; Tinti, G; Mannocchi, G; Trinchero, G

    2007-01-01

    The long-term stability of Resistive Plate Chambers (RPCs) with glass electrodes was studied for one year with a dedicated test station hosting about 10 m2 of detectors. RPCs were operated in streamer mode with a ternary gas mixture containing argon (27%), isobutane (9%) and tetrafluoroethane (64%). Environmental conditions were kept under control and, in particular, the water pollution in the gas, deemed responsible for the degradation of glass RPC performance, was monitored never to exceed 30 ppm in the exhaust line. Evidence for a substantial aging of the detectors was observed, resulting in a loss of efficiency correlated to an increased rate of spurious streamers. This can be ascribed to the chemical attack of the glass surface by hydrofluoric acid formed in the streamer process, as confirmed by detailed morphological and chemical analyses of the electrode surface. Our results strengthen the indication that the instability of glass RPCs in the long term is related to the use of fluorocarbons as quenching...

  11. Design and construction of an interface system for the extrapolation chamber from the beta secondary standard

    International Nuclear Information System (INIS)

    Jimenez C, L.F.

    1995-01-01

    The Interface System for the Extrapolation Chamber (SICE) contains several devices handled by a personal computer (PC), it is able to get the required data to calculate the absorbed dose due to Beta radiation. The main functions of the system are: a) Measures the ionization current or charge stored in the extrapolation chamber. b) Adjusts the distance between the plates of the extrapolation chamber automatically. c) Adjust the bias voltage of the extrapolation chamber automatically. d) Acquires the data of the temperature, atmospheric pressure, relative humidity of the environment and the voltage applied between the plates of the extrapolation chamber. e) Calculates the effective area of the plates of the extrapolation chamber and the real distance between them. f) Stores all the obtained information in hard disk or diskette. A comparison between the desired distance and the distance in the dial of the extrapolation chamber, show us that the resolution of the system is of 20 μm. The voltage can be changed between -399.9 V and +399.9 V with an error of less the 3 % with a resolution of 0.1 V. These uncertainties are between the accepted limits to be used in the determination of the absolute absorbed dose due to beta radiation. (Author)

  12. Effusion plate using additive manufacturing methods

    Science.gov (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Ostebee, Heath Michael; Wegerif, Daniel Gerritt

    2016-04-12

    Additive manufacturing techniques may be utilized to construct effusion plates. Such additive manufacturing techniques may include defining a configuration for an effusion plate having one or more internal cooling channels. The manufacturing techniques may further include depositing a powder into a chamber, applying an energy source to the deposited powder, and consolidating the powder into a cross-sectional shape corresponding to the defined configuration. Such methods may be implemented to construct an effusion plate having one or more channels with a curved cross-sectional geometry.

  13. Development of Cloud Chamber by Using Peltier Device

    International Nuclear Information System (INIS)

    Woo, Jong Kwan; Kwon, Jin Young; Park, Sang Tae

    2011-01-01

    In this research, we developed the newly cloud chamber apparatus by using Peltier device to apply nuclear physics experiment in high school or university. We observed the cosmic rays track by using the developed apparatus and a camcorder. And we compared and analyzed the acquired data. From the results, we acquired the following conclusions and suggestions : First, it is very difficult to observe the cosmic rays track in the typical cloud chamber because of the low frequency of it. But in the newly developed cloud chamber we can observe easily the cosmic rays track owing to the high frequency of it. Second, when we do the experiment with the newly developed apparatus, we found that the cosmic rays track happens well under the condition that the temperature of the upper place of cooling plate must be below 5 degree Celsius with more than isopropanol 1.04X10 -5 ml.mm -3 . Third, the newly developed apparatus will be improved to have better precision by controlling the temperature of cooling plate in the cloud chamber by current intensity. Therefore we think that it is very useful to use the newly developed apparatus in the nuclear physics experiment in high school or university.

  14. Development of Cloud Chamber by Using Peltier Device

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong Kwan [Jae Hyun High School, Seoul (Korea, Republic of); Kwon, Jin Young [Jeon Min High School, Daejeon (Korea, Republic of); Park, Sang Tae [Dept. of Physics Education, Kongju National University, Kongju (Korea, Republic of)

    2011-09-15

    In this research, we developed the newly cloud chamber apparatus by using Peltier device to apply nuclear physics experiment in high school or university. We observed the cosmic rays track by using the developed apparatus and a camcorder. And we compared and analyzed the acquired data. From the results, we acquired the following conclusions and suggestions : First, it is very difficult to observe the cosmic rays track in the typical cloud chamber because of the low frequency of it. But in the newly developed cloud chamber we can observe easily the cosmic rays track owing to the high frequency of it. Second, when we do the experiment with the newly developed apparatus, we found that the cosmic rays track happens well under the condition that the temperature of the upper place of cooling plate must be below 5 degree Celsius with more than isopropanol 1.04X10{sup -5}ml.mm{sup -3}. Third, the newly developed apparatus will be improved to have better precision by controlling the temperature of cooling plate in the cloud chamber by current intensity. Therefore we think that it is very useful to use the newly developed apparatus in the nuclear physics experiment in high school or university.

  15. Semi-automated high-efficiency reflectivity chamber for vacuum UV measurements

    Science.gov (United States)

    Wiley, James; Fleming, Brian; Renninger, Nicholas; Egan, Arika

    2017-08-01

    This paper presents the design and theory of operation for a semi-automated reflectivity chamber for ultraviolet optimized optics. A graphical user interface designed in LabVIEW controls the stages, interfaces with the detector system, takes semi-autonomous measurements, and monitors the system in case of error. Samples and an optical photodiode sit on an optics plate mounted to a rotation stage in the middle of the vacuum chamber. The optics plate rotates the samples and diode between an incident and reflected position to measure the absolute reflectivity of the samples at wavelengths limited by the monochromator operational bandpass of 70 nm to 550 nm. A collimating parabolic mirror on a fine steering tip-tilt motor enables beam steering for detector peak-ups. This chamber is designed to take measurements rapidly and with minimal oversight, increasing lab efficiency for high cadence and high accuracy vacuum UV reflectivity measurements.

  16. The performance of a hybrid spark chamber beta-ray camera

    International Nuclear Information System (INIS)

    Aoyama, Takahiko; Watanabe, Tamaki

    1978-01-01

    This paper describes the performance of a hybrid spark chamber for measuring β-ray emitting radionuclide distribution on a plane source, which was developed to improve the instability of usual self-triggering spark chambers. The chamber consists of a parallel plate spark chamber gap and a parallel plate proportional chamber gap composed of mesh electrodes in the same gas space, and is operated by flowing gas, a mixture of argon and ethanol saturated vapor at 0 0 C, continuously through it. Instability is due to the occurrence of spurious sparks not caused by incident particles and it became conspicuous in the small intensity of incident particles. The hybrid spark chamber enabled us to obtain good counting plateau, that is, good stability for especially small intensity of β-rays and even for the background by setting up gas multiplication in the proportional chamber gap moderately high. Good spatial resolution less than 1 mm was obtained for 3 H and 14 C by keeping the distance between the chamber cathode and the source less than 1 mm. In order to obtain good spatial resolution, it is desirable to keep the overvoltage as small as possible while small overvoltage results in the deterioration of the uniformity of sensitivity. It was found by theoretical estimation and experiment that for a given large overvoltage the spatial resolution was improved by increasing the gas multiplication in the proportional chamber gap. The hybrid spark chamber has a relatively long dead time. When there being a number of active spots having different activities in a detection area, the sparking efficiency of a weak active spot also decreases by large counting loss due to the total strong activity. (auth.)

  17. Test beam analysis of the first CMS drift tube muon chamber

    CERN Document Server

    Albajar, C; Arce, P; Autermann, C; Bellato, M; Benettoni, M; Benvenuti, Alberto C; Bontenackels, M; Caballero, J; Cavallo, F R; Cerrada, M; Cirio, R; Colino, N; Conti, E; de la Cruz, B; Dal Corso, F; Dallavalle, G M; Fernández, C; Fernández de Troconiz, J; Fouz-Iglesias, M C; García-Abia, P; García-Raboso, A; Gasparini, F; Gasparini, U; Giacomelli, P; Gonella, F; Gulmini, M; Hebbeker, T; Hermann, S; Höpfner, K; Jiménez, I; Josa-Mutuberria, I; Lacaprara, S; Marcellini, S; Mariotti, C; Maron, G; Maselli, S; Meneguzzo, Anna Teresa; Monaco, V; Montanari, A; Montanari, C; Montecassiano, F; Navarria, Francesco Luigi; Odorici, F; Passaseo, M; Pegoraro, M; Peroni, C; Perrotta, A; Puerta, J; Reithler, H; Romero, A; Romero, L; Ronchese, P; Rossi, A; Rovelli, T; Sacchi, R; Sowa, M; Staiano, A; Toniolo, N; Torassa, E; Vaniev, V; Vanini, S; Ventura, Sandro; Villanueva, C; Willmott, C; Zotto, P L; Zumerle, G

    2004-01-01

    In October 2001 the first produced CMS Barrel Drift Tube (DT) Muon Chamber was tested at the CERN Gamma Irradiation Facility (GIF) using a muon beam. A Resistive Plate Chamber (RPC) was attached to the top of the DT chamber, and, for the first time, both detectors were operated coupled together. The performance of the DT chamber was studied for several operating conditions, and for gamma rates similar to the ones expected at LHC. In this paper we present the data analysis; the results are considered fully satisfactory.

  18. Test beam analysis of the first CMS drift tube muon chamber

    International Nuclear Information System (INIS)

    Albajar, C.; Amapane, N.; Arce, P.; Autermann, C.; Bellato, M.; Benettoni, M.; Benvenuti, A.; Bontenackels, M.; Caballero, J.; Cavallo, F.R.; Cerrada, M.; Cirio, R.; Colino, N.; Conti, E.; Cruz, B. de la; Corso, F. dal; Dallavalle, G.M.; Fernandez, C.; Troconiz, J.F. de; Fouz, M.C.; Garcia-Abia, P.; Garcia-Raboso, A.; Gasparini, F.; Gasparini, U.; Giacomelli, P.; Gonella, F.; Gulmini, M.; Hebbeker, T.; Hermann, S.; Hoepfner, K.; Jimenez, I.; Josa, I.; Lacaprara, S.; Marcellini, S.; Mariotti, C.; Maron, G.; Maselli, S.; Meneguzzo, A.T.; Monaco, V.; Montanari, A.; Montanari, C.; Montecassiano, F.; Navarria, F.L.; Odorici, F.; Passaseo, M.; Pegoraro, M.; Peroni, C.; Perrotta, A.; Puerta, J.; Reithler, H.; Romero, A.; Romero, L.; Ronchese, P.; Rossi, A.; Rovelli, T.; Sacchi, R.; Sowa, M.; Staiano, A.; Toniolo, N.; Torassa, E.; Vaniev, V.; Vanini, S.; Ventura, S.; Villanueva, C.; Willmott, C.; Zotto, P.; Zumerle, G.

    2004-01-01

    In October 2001 the first produced CMS Barrel Drift Tube (DT) Muon Chamber was tested at the CERN Gamma Irradiation Facility (GIF) using a muon beam. A Resistive Plate Chamber (RPC) was attached to the top of the DT chamber, and, for the first time, both detectors were operated coupled together. The performance of the DT chamber was studied for several operating conditions, and for gamma rates similar to the ones expected at LHC. In this paper we present the data analysis; the results are considered fully satisfactory

  19. Test beam analysis of the first CMS drift tube muon chamber

    Energy Technology Data Exchange (ETDEWEB)

    Albajar, C.; Amapane, N.; Arce, P.; Autermann, C.; Bellato, M.; Benettoni, M.; Benvenuti, A.; Bontenackels, M.; Caballero, J.; Cavallo, F.R.; Cerrada, M.; Cirio, R.; Colino, N.; Conti, E.; Cruz, B. de la; Corso, F. dal; Dallavalle, G.M.; Fernandez, C.; Troconiz, J.F. de E-mail: jorge.troconiz@uam.es; Fouz, M.C.; Garcia-Abia, P.; Garcia-Raboso, A.; Gasparini, F.; Gasparini, U.; Giacomelli, P.; Gonella, F.; Gulmini, M.; Hebbeker, T.; Hermann, S.; Hoepfner, K.; Jimenez, I.; Josa, I.; Lacaprara, S.; Marcellini, S.; Mariotti, C.; Maron, G.; Maselli, S.; Meneguzzo, A.T.; Monaco, V.; Montanari, A.; Montanari, C.; Montecassiano, F.; Navarria, F.L.; Odorici, F.; Passaseo, M.; Pegoraro, M.; Peroni, C.; Perrotta, A.; Puerta, J.; Reithler, H.; Romero, A.; Romero, L.; Ronchese, P.; Rossi, A.; Rovelli, T.; Sacchi, R.; Sowa, M.; Staiano, A.; Toniolo, N.; Torassa, E.; Vaniev, V.; Vanini, S.; Ventura, S.; Villanueva, C.; Willmott, C.; Zotto, P.; Zumerle, G

    2004-06-11

    In October 2001 the first produced CMS Barrel Drift Tube (DT) Muon Chamber was tested at the CERN Gamma Irradiation Facility (GIF) using a muon beam. A Resistive Plate Chamber (RPC) was attached to the top of the DT chamber, and, for the first time, both detectors were operated coupled together. The performance of the DT chamber was studied for several operating conditions, and for gamma rates similar to the ones expected at LHC. In this paper we present the data analysis; the results are considered fully satisfactory.

  20. A model of breakdown in parallel-plate detectors

    International Nuclear Information System (INIS)

    Fonte, P.

    1996-01-01

    Parallel-plate avalanche chambers (PPAC's) have many desirable properties, such as a fast, large area particle detector. However, the maximum gain is limited by a form of violent breakdown that limits the usefulness of this detector, despite its other evident qualities. The exact nature of this phenomenon is not yet sufficiently clear to sustain possible improvements. A previous experimental study is complemented in the present work by a quantitative model of the breakdown phenomenon in PPAC's, based on the streamer theory. The model reproduces well the peculiar behavior of the external current observed in PPAC's and resistive-plate chambers. Other breakdown properties measured in PPAC's are also well reproduced

  1. Resistive plate chambers for 2013-2014 muon upgrade in CMS at LHC

    International Nuclear Information System (INIS)

    Colafranceschi, S.; Sharma, A.; Chudasama, R.; Pant, L.M.; Mohanty, A.K.; Sehgal, R.; Sehgal, S.T.; Thomas, R.G.; Bhandari, V.; Chand, S.; Kumar, A.; Kumar, S.; Singh, A.; Singh, V.; Aly, S.; Aly, R.; Elkafrawy, T.; Ibrahim, A.; Radi, A.; Sayed, A.

    2014-01-01

    During 2013 and 2014 (Long Shutdown LS1) the CMS experiment is upgrading the forward region installing a fourth layer of RPC detectors in order to complete and improve the muon system performances in the view of the foreseen high luminosity run of LHC. The new two endcap disks consists of 144 double-gap RPC chambers assembled at three different production sites: CERN, Ghent (Belgium) and BARC (India). The chamber components as well as the final detectors are subjected to full series of tests established in parallel at all the production sites. All assembly and test operations have been engineered in order to standardize and improve detector production. In this work the complete chamber construction, quality control procedures and preliminary results will be detailed

  2. Development and Evaluation of the Muon Trigger Detector Using a Resistive Plate Chamber

    International Nuclear Information System (INIS)

    Park, Byeong Hyeon; Kim, Yong Kyun; Kang, Jeong Soo; Kim, Young Jin; Choi, Ihn Jea; Kim, Chong; Hong, Byung Sik

    2011-01-01

    The PHENIX Experiment is the largest of the four experiments that have taken data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. Among many particles, muons coming from W-boson decay gives us key information to analyze the spin of proton. Resistive plate chambers are proposed as a suitable solution as a muon trigger because of their fast response and good time resolution, flexibility in signal readout, robustness and the relatively low cost of production. The RPC detectors for upgrade were assembled and their performances were evaluated. The procedure to make the detectors better was optimized and described in detail in this thesis. The code based on ROOT was written and by using this the performance of the detectors made was evaluated, and all of the modules for north muon arm met the criteria and installation at PHENIX completed in November 2009. As RPC detectors that we made showed fast response, capacity of covering wide area with a resonable price and good spatial resolution, this will give the opportunity for applications, such as diagnosis and customs inspection system

  3. Long term performance studies of large oil-free bakelite resistive plate chamber

    International Nuclear Information System (INIS)

    Ganai, R.; Roy, A.; Ahammed, Z.; Choudhury, S.; Chattopadhyay, S.; Shiroya, M.K.; Agarwal, K.

    2016-01-01

    Several high energy physics and neutrino physics experiments worldwide require large-size RPCs to cover wide acceptances. The muon tracking systems in the Iron calorimeter (ICAL) experiment in the India based Neutrino Observatory (INO), India and the near detector in Deep Underground Neutrino Experiment (DUNE) at Fermilab are two such examples. A single gap bakelite RPC of dimension 240 cm × 120 cm, with gas gap of 0.2 cm, has been built and tested at Variable Energy Cyclotron Centre, Kolkata, using indigenous materials procured from the local market. No additional lubricant, like oil has been used on the electrode surfaces for smoothening. The chamber is in operation for > 365 days. We have tested the chamber for its long term operation. The leakage current, bulk resistivity, efficiency, noise rate and time resolution of the chamber have been found to be quite stable during the testing peroid. It has shown an efficiency > 95% with an average time resolution of ∼ 0.83 ns at the point of measurement at ∼ 8700 V throughout the testing period. Details of the long term performance of the chamber have been discussed.

  4. Long term performance studies of large oil-free bakelite resistive plate chamber

    Science.gov (United States)

    Ganai, R.; Roy, A.; Shiroya, M. K.; Agarwal, K.; Ahammed, Z.; Choudhury, S.; Chattopadhyay, S.

    2016-09-01

    Several high energy physics and neutrino physics experiments worldwide require large-size RPCs to cover wide acceptances. The muon tracking systems in the Iron calorimeter (ICAL) experiment in the India based Neutrino Observatory (INO), India and the near detector in Deep Underground Neutrino Experiment (DUNE) at Fermilab are two such examples. A single gap bakelite RPC of dimension 240 cm × 120 cm, with gas gap of 0.2 cm, has been built and tested at Variable Energy Cyclotron Centre, Kolkata, using indigenous materials procured from the local market. No additional lubricant, like oil has been used on the electrode surfaces for smoothening. The chamber is in operation for > 365 days. We have tested the chamber for its long term operation. The leakage current, bulk resistivity, efficiency, noise rate and time resolution of the chamber have been found to be quite stable during the testing peroid. It has shown an efficiency > 95% with an average time resolution of ~ 0.83 ns at the point of measurement at ~ 8700 V throughout the testing period. Details of the long term performance of the chamber have been discussed.

  5. In-beam test of the RPC architecture foreseen to be used for the CBM-TOF inner wall

    Science.gov (United States)

    Petriş, M.; Bartoş, D.; Petrovici, M.; Rădulescu, L.; Simion, V.; Deppner, I.; Herrmann, N.; Simon, C.; Frühauf, J.; Kiš, M.; Loizeau, P.-A.

    2018-05-01

    The Time Of Flight (TOF) subsystem is one of the main detectors of the CBM experiment. The TOF wall in conjunction with Silicon Tracking System (STS) is foreseen to identify charged hadrons, i.e. pions, kaons and protons, with a full azimuthal coverage at 2.50 - 250 polar angles. A system time resolution of at least 80 ps, including all contributions, such as electronics jitter and the resolution of the time reference system, is required. Such a performance should be maintained up to a counting rate larger than 30 kHz/cm2 at the most inner region of TOF wall. Our R&D activity has been focused on the development of two-dimensional position sensitive Multi-gap Resistive Plate Counter (MRPC) prototypes for the forward region of the CBM-TOF subdetector, the most demanding zone in terms of granularity and counting rate. The in-beam tests using secondary particles produced in 30 GeV/u Pb ion collisions on a Pb target at SPS - CERN aimed to test the performance of these prototypes in conditions similar to the ones expected at SIS100 at FAIR. The performance of the prototypes is studied in conditions of exposure of the whole active area of the chamber to high multiplicity of reaction products. The results show that this type of MRPC fulfill the challenging requirements of the CBM-TOF wall. Therefore, such an architecture is recommended as basic solution for CBM-TOF inner zone.

  6. A test and calibration setup for mass-produced proportional chambers

    International Nuclear Information System (INIS)

    Burov, S.; Galaktionov, Yu.; Kamyshkov, Yu.

    1987-01-01

    The L3 experiment, presently being installed at (CERN) will use a 300 Hadron Calorimeter made of depleted uranium plates interleaved with about 8.000 proportional chambers. The review of experience in the use of gamma radioactivity of depleted uranium for the test of the chambers which are now being built at ITEP is given. The depleted uranium radioactivity and the response of a proportional chamber are discussed. A description of the test setup is given and a method to test the uniformity of the chamber response is discussed. Finally, a procedure for the L3 hadron calorimeter calibration in situ using uranium radioactivity is proposed

  7. Assembly of Drift Tubes (DT) Chambers at CIEMAT (Madrid)

    CERN Multimedia

    Jesus Puerta-Pelayo

    2003-01-01

    The construction of muon drift tube chambers (DT) has been carried out in four different european institutes: Aachen (Germany), CIEMAT-Madrid (Spain), Legnaro and Turin (Italy), all of them following similar procedures and quality tests. Each chamber is composed by three or two independent units called superlayers, with four layers of staggered drift cells each. The assembly of a superlayer is a succesive glueing of aluminium plates and I-beams with electrodes previously attached, forming a rectangular and gas-tight volume. These pictures illustrate the various processes of material preparation, construction, equipment and assembly of full chambers at CIEMAT (Madrid).

  8. Performance of a resistive plate chamber equipped with a new prototype of amplified front-end electronics

    CERN Document Server

    Marchisone, Massimiliano

    2016-01-01

    ALICE is the LHC experiment dedicated to the study of heavy-ion collisions. At forward rapidity a muon spectrometer detects muons from low mass mesons, quarkonia, open heavy-flavor hadrons as well as weak bosons. A muon selection based on transverse momentum is made by a trigger system composed of 72 resistive plate chambers (RPCs). For the LHC Run 1 and the ongoing Run 2 the RPCs have been equipped with a non-amplified FEE called ADULT. However, in view of an increase in luminosity expected for Run 3 (2021-2023) the possibility to use an amplified FEE has been explored in order to improve the counting rate limitation and to prevent the aging of the detector, by reducing the charge per hit. A prototype of this new electronics (FEERIC) has been developed and tested first with cosmic rays before equipping one RPC in the ALICE cavern with it. In this talk the most important performance indicators - efficiency, dark current, dark rate, cluster size and total charge - of an RPC equipped with this new FEE will be r...

  9. A Preliminary Study on Time Projection Chamber Simulation for Fission Cross Section Measurements with Geant4

    International Nuclear Information System (INIS)

    Kim, Jong Woon; Lee, Youngouk; Kim, Jae Cheon

    2014-01-01

    We present the details of the TPC simulation with Geant4 and show the results. TPC can provide more information than a fission chamber in that it is possible to distinguish different particle types. Simulations are conducted for uranium and plutonium targets with 20MeV neutrons. The simulation results are compared with the reference and show reasonable results. This is the first phase of study for realizing a TPC in the NFS at RAON, and we have more work to do, such as applying an electric field, signal processing in the simulation, and manufacturing of a TPC. The standard in fission cross section measurement is a fission chamber. It is basically just two parallel plates separated by a few centimeters of gas. A power supply connected to the plates sets up a moderate electric field. The target is deposited onto one of the plates. When fission occurs, the fragments ionize the gas, and the electric field causes the produced electrons to drift to the opposite plate, which records the total energy deposited in the chamber. A Time Projection Chamber (TPC) is a gas ionization detector similar to a fission chamber. However, it can measure the charged particle trajectories in the active volume in three dimensions by adding several readouts on the pad plane (fission chamber has only one readout one a pad plane). The specific ionization for each particle track enables the TPC to distinguish different particle types. A TPC will be used for fission cross section measurements in the Neutron Science Facility (NSF) at RAON. As a preliminary study, we present details of TPC simulation with Geant4 and discuss the results

  10. Operation and performance of the EEE network array for the detection of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN and Dipartimento di Fisica, Università di Bari, Bari (Italy); Avanzini, C.; Baldini, L. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN and Dipartimento di Fisica, Università di Pisa, Pisa (Italy); Baldini Ferroli, R. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN Laboratori Nazionali di Frascati, Frascati (RM) (Italy); Batignani, G. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN and Dipartimento di Fisica, Università di Pisa, Pisa (Italy); Bencivenni, G. [INFN Laboratori Nazionali di Frascati, Frascati (RM) (Italy); Bossini, E. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN Gruppo Collegato di Siena and Dipartimento di Fisica, Università di Siena, Siena (Italy); Chiavassa, A. [INFN and Dipartimento di Fisica, Università di Torino, Torino (Italy); Cicalò, C. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN and Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cifarelli, L. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN and Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); and others

    2017-02-11

    The EEE (Extreme Energy Events) Project is an experiment for the detection of cosmic ray muons by means of a sparse array of telescopes, each made of three Multigap Resistive Plate Chambers (MRPC), distributed over all the Italian territory and at CERN. The main scientific goals of the Project are the investigation of the properties of the local muon flux, the detection of Extensive Air Showers (EAS) and the search for long-distance correlations between far telescopes. The Project is also characterized by a strong educational and outreach aspect since the telescopes are managed by teams of students and teachers who had previously constructed them at CERN. In this paper an overall description of the experiment is given, including the design, construction and performance of the telescopes. The operation of the whole array, which currently consists of more than 50 telescopes, is also presented by showing the most recent physics results.

  11. Operation and performance of the EEE network array for the detection of cosmic rays

    International Nuclear Information System (INIS)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.

    2017-01-01

    The EEE (Extreme Energy Events) Project is an experiment for the detection of cosmic ray muons by means of a sparse array of telescopes, each made of three Multigap Resistive Plate Chambers (MRPC), distributed over all the Italian territory and at CERN. The main scientific goals of the Project are the investigation of the properties of the local muon flux, the detection of Extensive Air Showers (EAS) and the search for long-distance correlations between far telescopes. The Project is also characterized by a strong educational and outreach aspect since the telescopes are managed by teams of students and teachers who had previously constructed them at CERN. In this paper an overall description of the experiment is given, including the design, construction and performance of the telescopes. The operation of the whole array, which currently consists of more than 50 telescopes, is also presented by showing the most recent physics results.

  12. Development and evaluation of the muon trigger detector using a resistive plate chamber

    International Nuclear Information System (INIS)

    Park, Byeong Hyeon

    2010-08-01

    The PHENIX Experiment is the largest of the four experiments that have taken data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction experiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. Among many particles, muons coming from W-boson decay gives us key information to analyze the spin of proton. Resistive plate chambers are proposed as a suitable solution as a muon trigger because of their fast response and good time resolution, flexibility in signal readout, robustness and the relatively low cost of production. The RPC detectors for upgrade were assembled and their performances were evaluated. The procedure to make the detectors better was optimized and described in detail in this thesis. The code based on ROOT was written and by using this the performance of the detectors made was evaluated, and all of the modules for north muon arm met the criteria and installation at PHENIX completed in November 2009. As RPC detectors that we made showed fast response, capacity of covering wide area with a resonable price and good spatial resolution, this will give the opportunity for applications,such as diagnosis and customs inspection system

  13. Construction of the Cleo III drift chamber

    International Nuclear Information System (INIS)

    Csorna, S.; Marka, S.; Dickson, M.; Dombrowski, S. von; Peterson, D.; Thies, P.; Glenn, S.; Thorndike, E.H.; Kravchenko, I.

    1998-01-01

    The CLEO III group is constructing a new chamber to be installed as part of the staged luminosity upgrade program at the Cornell electron storage ring and compatible with the interaction region optics. Although having less radial extent than the current CLEO II tracking system, CLEO III will have equivalent momentum resolution because of material reduction in the drift chamber inner skin and gas. The thin inner skin requires special attention to the end-plate motion due to wire creep. During stringing, use of a robot will fully automate the wire handling on the upper end. (author)

  14. Status of the construction of the KLOE Drift Chamber

    International Nuclear Information System (INIS)

    Dell'Agnello, S.

    1997-01-01

    A status report on the construction of the drift chamber for the KLOE experiment at the LNF DAΦNE Φ-factory is given. Physics requirements, detector design performance and its key mechanical features and components are briefly reviewed. The program currently consists of (i) the preparation of final detector components, complemented by (ii) extensive tests of prototypes of critical mechanical parts (like the end plates) and the ''test construction'' of a 1:1 chamber prototype. These two sub-programs are pursued in parallel. Single-component prototype checks include surveys of their shape and size, of accuracy of wire-hole drilling, measurements of their displacement or buckling under nominal load. The ''test construction'' is the debugging of mechanical assembly, survey and alignment of mechanics and of wire-stringing robotics, the actual stringing of a sample 2000 holes drilled on the prototype end plates, the measurement of electrical properties of strung wires, as well as of their mechanical tension. These extensive tests have been successfully completed; they represent an effective hands-on training of the construction group, and will allow a prompt and steady start of the drift chamber wire stringing as all necessary components became available at LNF. (orig.)

  15. A pixel chamber to monitor the beam performances in hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, R.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Marchetto, F. E-mail: marchetto@to.infn.it; Peroni, C.; Sanz Freire, C.J.; Simonetti, L

    2004-03-01

    In this paper we describe the design, construction, and tests of a parallel plate ionization chamber with the anode segmented in (32x32) square pixels. The performance of the read out and data acquisition systems is also discussed. The design of the chamber has been finalized to be used as a beam monitor for therapeutical treatments. Position and flux resolution obtained with a carbon ion beam are presented.

  16. Investigation of the applicability of a special parallel-plate ionization chamber for x-ray beam dosimetry

    International Nuclear Information System (INIS)

    Perini, Ana P.; Neves, Lucio P.; Caldas, Linda V.E.

    2014-01-01

    Diagnostic x-rays are the greatest source of exposition to ionizing radiation of the population worldwide. In order to obtain accurate and lower-cost dosimeters for quality control assurance of medical x-ray facilities, a special ionization chamber was designed at the Calibration Laboratory of the IPEN, for dosimetry in diagnostic radiology beams. For the chamber characterization some tests were undertaken. Monte Carlo simulations were proposed to evaluate the distribution of the deposited energy in the sensitive volume of the ionization chamber and the collecting electrode effect on the chamber response. According to the obtained results, this special ionization chamber presents potential use for dosimetry of conventional diagnostic radiology beams. - Highlights: • An ionization chamber with a novel design was characterized for x-ray beam dosimetry. • This ionization chamber was evaluated in diagnostic radiology qualities. • The characterization tests results were within the recommended limits. • Monte Carlo simulations were employed to evaluate the design of the dosimeter. • The developed prototype is a good alternative for calibration laboratories and clinics

  17. Microchannel plate assembly parameters with micron gaps

    International Nuclear Information System (INIS)

    Demchenkova, A.A.

    1987-01-01

    Performance of chevron microchannel plate assembly with 5 and 15 μm gaps between them has been investigated. The assembly is placed into a vacuum chamber under pressure -6 Torr and irradiated by neutral He and Ar atom beams with 1.5 and 3 keV energies as well as by ultraviolet photons with 147 nm wave length. Dependence of the gain and amplitude resolution on power voltage in plates are measured. The results obtained have shown that microchannel plates permit to obtain the gain up to 3x10 7 and amplitude resolution up to 30% when detecting both atomic particles and ultraviolet photons. The assembly can be effectively used in those cases when it is necessary to use microchannel plates with curved channels

  18. Friction Stir Welding of GR-Cop 84 for Combustion Chamber Liners

    Science.gov (United States)

    Russell, Carolyn K.; Carter, Robert; Ellis, David L.; Goudy, Richard

    2004-01-01

    GRCop-84 is a copper-chromium-niobium alloy developed by the Glenn Research Center for liquid rocket engine combustion chamber liners. GRCop-84 exhibits superior properties over conventional copper-base alloys in a liquid hydrogen-oxygen operating environment. The Next Generation Launch Technology program has funded a program to demonstrate scale-up production capabilities of GR-Cop 84 to levels suitable for main combustion chamber production for the prototype rocket engine. This paper describes a novel method of manufacturing the main combustion chamber liner. The process consists of several steps: extrude the GR-Cop 84 powder into billets, roll the billets into plates, bump form the plates into cylinder halves and friction stir weld the halves into a cylinder. The cylinder is then metal spun formed to near net liner dimensions followed by finish machining to the final configuration. This paper describes the friction stir weld process development including tooling and non-destructive inspection techniques, culminating in the successful production of a liner preform completed through spin forming.

  19. One-dimensional curved wire chamber for powder x-ray crystallography

    International Nuclear Information System (INIS)

    Ortendahl, D.; Perez-Mendez, V.; Stoker, J.; Beyermann, W.

    1978-01-01

    A xenon filled single anode wire chamber with delay line readout has been constructed for use in powder x-ray crystallography using 8 to 20 keV x-rays. The entire chamber including the anode wire and the delay line which forms part of the cathode plane is a section of a circular arc whose center is the powder specimen. The anode wire--38 μm gold-plated tungsten--is suspended in a circular arc by the interaction of a current flowing through it and magnetic field provided by two permanent magnets, above and below the wire, extending along the active length of the chamber. When filled with xenon to 3 atmospheres the chamber has uniform sensitivity in excess of 80% at 8 keV and a spatial resolution better than 0.3 mm

  20. Effects of ionization chamber construction on dose measurements in a heterogeneity

    International Nuclear Information System (INIS)

    Mauceri, T.; Kase, K.

    1987-01-01

    Traditionally, measurements have been made in heterogeneous phantoms to determine the factors which should be applied to dose calculations, when calculating a dose to a heterogeneous medium. Almost all measurements have relied on relatively thin-walled ion chambers, with no attempt to match ion chamber wall material to the measuring medium. The recent AAPM dosimetry protocol has established that a mismatch between ion chamber wall and phantom material can have an effect on dose measurement. To investigate the affect of this mismatch of ion chamber wall material to phantom material, two parallel-plate ion chambers were constructed. One ion chamber from solid water, for measurements in a solid water phantom and the other from plastic lung material, for measurements in a plastic lung material phantom. Correction factors measured by matching ion chamber to media were compared to correction factors measured by using a thin-walled cavity ion chamber with no regard for matching wall and media for cobalt-60, 6-, 10- and 20-MV photon beams. The results demonstrated that the matching of ion chamber to measuring media can be ignored, provided that a small, approximately tissue-equivalent, thin-walled ion chamber is used for measuring the correction factors

  1. Large-scale performance studies of the Resistive Plate Chamber fast tracker for the ATLAS 1st-level muon trigger

    CERN Document Server

    Cattani, G; The ATLAS collaboration

    2009-01-01

    In the ATLAS experiment, Resistive Plate Chambers provide the first-level muon trigger and bunch crossing identification over large area of the barrel region, as well as being used as a very fast 2D tracker. To achieve these goals a system of about ~4000 gas gaps operating in avalanche mode was built (resulting in a total readout surface of about 16000 m2 segmented into 350000 strips) and is now fully operational in the ATLAS pit, where its functionality has been widely tested up to now using cosmic rays. Such a large scale system allows to study the performance of RPCs (both from the point of view of gas gaps and readout electronics) with unprecedented sensitivity to rare effects, as well as providing the means to correlate (in a statistically significant way) characteristics at production sites with performance during operation. Calibrating such a system means fine tuning thousands of parameters (involving both front-end electronics and gap voltage), as well as constantly monitoring performance and environm...

  2. Signal coupling and signal integrity in multi-strip resistive plate chambers used for timing applications

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Diego, E-mail: D.Gonzalez-Diaz@gsi.de [GSI Helmholtzcenter for Heavy Ion Research, Darmstadt (Germany); Technical University, Darmstadt (Germany); Department of Engineering Physics, Tsinghua University, Beijing (China); Chen Huangshan; Wang Yi [Technical University, Darmstadt (Germany)

    2011-08-21

    We have systematically studied the transmission of electrical signals along several 2-strip Resistive Plate Chambers (RPCs) in the frequency range f=0.1-3.5GHz. Such a range was chosen to fully cover the bandwidth associated to the very short rise-times of signals originated in RPCs used for sub-100 ps timing applications. This work conveys experimental evidence of the dominant role of modal dispersion in counters built at the 1 m scale, a fact that results in large cross-talk levels and strong signal shaping. It is shown that modal dispersion appears in RPCs due to their inherent unbalance between capacitive and inductive coupling. A practical way to restore this symmetry has been introduced (hereafter 'electrostatic compensation'), allowing for a cross-talk suppression factor up to x12 and a rise-time reduction by 200 ps. Under conditions of compensation the signal transmission is only limited by dielectric losses, yielding a length-dependent cutoff frequency of around 1 GHz for propagation along 2 m in typical float glass-based RPCs. It is further shown that 'electrostatic compensation' can be achieved for an arbitrary number of strips as long as the nature of the coupling is 'short-range', that is an almost exact assumption for typical strip-line RPCs. This work extends the bandwidth of previous studies by a factor ofx20.

  3. α spectrometry grid ionization chamber: improvement of the characteristics

    International Nuclear Information System (INIS)

    Le Du, R.; Miltenberger, B.

    1968-01-01

    The rise time of the signals obtained with a grid ionization chamber depends on the orientation in the chamber and on the mobility of the ionization components. Our grid chambers are fitted with an electronic system which analyses the signals due to the electronic ionization components which are collected on the plate and on the source holder. By obtaining coincidence between these two signals, it is possible to select paths of any given orientation. Using this principle we have built an electronic collimator which does not have the disadvantages of a mechanical collimator for alpha spectra studies, and which, further, considerably reduces the background of the chamber. Simultaneously with the study of the improvement of a spectra with our device, we have been able to dissociate the contributions of back-diffusion and of self-absorption phenomena to the activity of an alpha source; some results will be presented. (authors) [fr

  4. Simulation and prototyping of 2 m long resistive plate chambers for detection of fast neutrons and multi-neutron event identification

    Energy Technology Data Exchange (ETDEWEB)

    Elekes, Z., E-mail: z.elekes@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Aumann, T. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Technische Universität Darmstadt, Darmstadt (Germany); Bemmerer, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Caesar, C. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Technische Universität Darmstadt, Darmstadt (Germany); Cowan, T.C. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Hehner, J.; Heil, M. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Rossi, D. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Röder, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Simon, H. [GSI Helmholtzzentrumfür Schwerionenforschung, Darmstadt (Germany); Sobiella, M.; Stach, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Reinhardt, T. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universität Dresden, Dresden (Germany); Wagner, A.; Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Zilges, A. [Universität zu Köln, Köln (Germany); Zuber, K. [Technische Universität Dresden, Dresden (Germany)

    2013-02-11

    Resistive plate chamber (RPC) prototypes of 2 m length were simulated and built. The experimental tests using a 31 MeV electron beam, discussed in details, showed an efficiency higher than 90% and an excellent time resolution of around σ=100ps. Furthermore, comprehensive simulations were performed by GEANT4 toolkit in order to study the possible use of these RPCs for fast neutron (200 MeV–1 GeV) detection and multi-neutron event identification. The validation of simulation parameters was carried out via a comparison to experimental data. A possible setup for invariant mass spectroscopy of multi-neutron emission is presented and the characteristics are discussed. The results show that the setup has a high detection efficiency. Its capability of determining the momentum of the outgoing neutrons and reconstructing the relative energy between the fragments from nuclear reactions is demonstrated for different scenarios.

  5. Plated nickel wire mesh makes superior catalyst bed

    Science.gov (United States)

    Sill, M.

    1965-01-01

    Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.

  6. Design of ITER neutron monitor using micro fission chambers

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Ebisawa, Katsuyuki; Ando, Toshiro; Kasai, Satoshi; Johnson, L.C.; Walker, C.

    1998-08-01

    We are designing micro fission chambers, which are pencil size gas counters with fissile material inside, to be installed in the vacuum vessel as neutron flux monitors for ITER. We found that the 238 U micro fission chambers are not suitable because the detection efficiency will increase up to 50% in the ITER life time by breading 239 Pu. We propose to install 235 U micro fission chambers on the front side of the back plate in the gap between adjacent blanket modules and behind the blankets at 10 poloidal locations. One chamber will be installed in the divertor cassette just under the dome. Employing both pulse counting mode and Campbelling mode in the electronics, we can accomplish the ITER requirement of 10 7 dynamic range with 1 ms temporal resolution, and eliminate the effect of gamma-rays. We demonstrate by neutron Monte Carlo calculation with three-dimensional modeling that we avoid those detection efficiency changes by installing micro fission chambers at several poloidal locations inside the vacuum vessel. (author)

  7. Automatic scanning of Cerenkov light photograms from a multistep avalanche chamber using a television digitizer

    International Nuclear Information System (INIS)

    Vascon, M.; Zanella, G.

    1980-01-01

    A television digitizer and its application to automatic scanning of Cerenkov imaging using the multistep avalanche chamber in front of optical spark chamber are described. The results are of interest in the adoption of the automatic scanning of photographic plates of these events or for the on-line application of the television digitizer itself. (orig.)

  8. Molecular beam sampling from a rocket-motor combustion chamber

    International Nuclear Information System (INIS)

    Houseman, John; Young, W.S.

    1974-01-01

    A molecular-beam mass-spectrometer sampling apparatus has been developed to study the reactive species concentrations as a function of position in a rocket-motor combustion chamber. Unique design features of the sampling system include (a) the use of a multiple-nozzle end plate for preserving the nonuniform properties of the flow field inside the combustion chamber, (b) the use of a water-injection heat shield, and (c) the use of a 300 CFM mechanical pump for the first vacuum stage (eliminating the use of a huge conventional oil booster pump). Preliminary rocket-motor tests have been performed using the highly reactive propellants nitrogen tetroxide/hydrazine (N 2 O 4 /N 2 H 4 ) at an oxidizer/fuel ratio of 1.2 by weight. The combustion-chamber pressure is approximately 60psig. Qualitative results on unreacted oxidizer/fuel ratio, relative abundance of oxidizer and fuel fragments, and HN 3 distribution across the chamber are presented

  9. Completion of installation of DT and RPC chambers before Cosmic Challenge

    CERN Multimedia

    Mimmo Dattola

    2006-01-01

    All the drift tube ("DT") and resistive plate chambers ("RPC") packages foreseen to be installed in the central barrel ring ("YB0") before the magnet test have been installed (some are missing in the photograph but have since been installed). These silver-coloured rectangular boxes in the gaps between the steel of the rings (red in the image) detect muons. Chambers for Sectors 4 and 5 (sector 1 is at the 9 o'clock position and the counting is clockwise) as well as a couple of chambers in the support "feet" (sectors 9 and 11) will be installed after the magnet test. Chambers for sectors 1 and 7 will be installed in the underground cavern ("UXC") - the latter will be in the places used for the lifting and lowering of the ring.

  10. TH-AB-201-08: Ion Chamber Dose Measurements - Problems with the Temperature-Pressure Correction Factor

    Energy Technology Data Exchange (ETDEWEB)

    Bourgouin, A [Carleton University, Ottawa, Ontario (Canada); McEwen, M [National Research Council, Ottawa, ON (Canada)

    2016-06-15

    Purpose: To investigate the behavior of ionization chambers over a wide pressure range. Methods: Three cylindrical and two parallel-plate designs of ion chamber were investigated. The ion chambers were placed in vessel where the pressure was varied from atmospheric (101 kPa) down to 5 kPa. Measurements were made using 60Co and high-energy electron beams. The pressure was measured to better than 0.1% and multiple data sets were obtained for each chamber at both polarities to investigate pressure cycling and dependency on the sign of the charge collected. Results: For all types of chamber, the ionization current, corrected using the standard PTP, showed a similar behaviour. Deviations from the standard theory were generally small for Co-60 but very significant for electron beams, up to 20 % below P = 10 kPa. The effect was found to be always larger when collecting negative charge, suggesting a dependence on free-electron collection. The most likely source of such electrons is low-energy electrons emitted from the electrodes. This signal would be independent of air pressure within the chamber cavity. The data was analyzed to extract this signal and it was found to be a non-negligible component of the ionization current at atmospheric pressure. In the case of the parallel plate chambers, the effect was approximately 0.25 %. For the cylindrical chambers the effect was larger - up to 1.2 % - and dependent on the chamber type, which would be consistent with electron emission from different wall materials. For the electron beams, the correction factor was dependent on the electron energy and approximately double that observed in 60Co. Conclusion: Measurements have indicated significant deviations of the standard pressure correction that are consistent with electron emission from chamber electrodes. This has implications for both primary standard and reference ion chamber-based dosimetry.

  11. SU-F-T-64: An Alternative Approach to Determining the Reference Air-Kerma Rate from Extrapolation Chamber Measurements

    International Nuclear Information System (INIS)

    Schneider, T

    2016-01-01

    Purpose: Since 2008 the Physikalisch-Technische Bundesanstalt (PTB) has been offering the calibration of "1"2"5I-brachytherapy sources in terms of the reference air-kerma rate (RAKR). The primary standard is a large air-filled parallel-plate extrapolation chamber. The measurement principle is based on the fact that the air-kerma rate is proportional to the increment of ionization per increment of chamber volume at chamber depths greater than the range of secondary electrons originating from the electrode x_0. Methods: Two methods for deriving the RAKR from the measured ionization charges are: (1) to determine the RAKR from the slope of the linear fit to the so-called ’extrapolation curve’, the measured ionization charges Q vs. plate separations x or (2) to differentiate Q(x) and to derive the RAKR by a linear extrapolation towards zero plate separation. For both methods, correcting the measured data for all known influencing effects before the evaluation method is applied is a precondition. However, the discrepancy of their results is larger than the uncertainty given for the determination of the RAKR with both methods. Results: A new approach to derive the RAKR from the measurements is investigated as an alternative. The method was developed from the ground up, based on radiation transport theory. A conversion factor C(x_1, x_2) is applied to the difference of charges measured at the two plate separations x_1 and x_2. This factor is composed of quotients of three air-kerma values calculated for different plate separations in the chamber: the air kerma Ka(0) for plate separation zero, and the mean air kermas at the plate separations x_1 and x_2, respectively. The RAKR determined with method (1) yields 4.877 µGy/h, and with method (2) 4.596 µGy/h. The application of the alternative approach results in 4.810 µGy/h. Conclusion: The alternative method shall be established in the future.

  12. Air filled ionization chambers and their response to high LET radiation

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Background Air filled ionization chambers (ICs) are widely used for absolute dosimetry, not only in photon beams but also in beams of heavy charged particles. Within the IC, electron hole pairs are generated by the energy deposition originating from incoming radiation. High-LET particles create......-plate ionization chamber exposed to heavy ions Phys. Med. Biol. 43 3549–58, 1998. ELSAESSER, T. et al.: Impact of track structure on biological treatment planning ion ion radiotherapy. New Journal pf Physics 10. 075005, 2008...

  13. Fluid and structural dynamic design considerations of the HYLIFE nozzle plate

    International Nuclear Information System (INIS)

    Pitts, J.H.; Ojalvo, I.U.

    1981-02-01

    The basic concept of the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber involves a falling liquid-metal (lithium) jet array that absorbs 90% of the energy released from inertial confinement fusion reactions. The key element of the chamber that produces the jet array is the nozzle plate. This paper describes the design and analysis of a nozzle plate which can withstand the structural loads and permit the fluid jet array to be reestablished for a 1-Hz fusion reaction frequency. The shape of the nozzle plate and jet array is dictated by considerations of fluid dynamics and neutron-shielding. A vertical jet array, rather than a single annulus, is used because this design enhances fluid momentum interchange and dissipation of the kinetic energy that occurs when the jets disassemble. Less net outward-directed momentum results than with a single liquid annular flow configuration, thus producing lower stresses in the structural components

  14. Study on the ionization chamber for thickness measurement

    International Nuclear Information System (INIS)

    Xue Shili; Miao Qiangwen

    1988-01-01

    The principle, construction and performances of ionization chambers for measuring the thickness of metal and nonmetal materials are introduced. With them the thickness of thin materials (thickness ranging from 10 to 6000 g/m 2 ), the surface layer thickness of composed materials and the thickness of steel plate (thickness ranging from 0 to 32 kg/m 2 ) are measured effectively

  15. Saturation curves of Tandem ionization chambers for Hp(10) measurement

    International Nuclear Information System (INIS)

    Vivolo, Vitor; Caldas, Linda V.E.

    2005-01-01

    It is very important that the radiation detectors measure doses with high precision and accuracy. The verification of the standard dosemeters such as ionization chambers is a very important step in quality control programs of calibration laboratories and in radioprotection procedures. In this work the polarity effect and ionic recombination of two ionization chambers were studied. Saturation curves were obtained using two identical in shape, parallel-plate ionization chambers developed at IPEN (radioprotection level), with collecting electrodes made of different materials (to obtain different energy dependences of their responses) in standard X radiation beams of low and medium energies. The tests were performed following international standard recommendations (IEC 60731). The results show that both ionization chambers were approved in the tests; the variation on the readings were lower than 1%, for bias voltage between - 400V and + 400V. The results of the polarity tests of the ionization chambers show that the response variation is within the standard IEC 60731 limits. The determined ionic recombination agrees with the recommendation of IAEA (TRS 398). Therefore, the ionization chambers tested in this work were approved. (author)

  16. Crustal deformation and volcanism at active plate boundaries

    Science.gov (United States)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  17. Indication chamber of liquid metal fired steam generators with double wall for heat transfer

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1982-01-01

    The double wall of the steam generator consists of inner and outer tubes anchored in a tube plate. Between the tubes are indication spaces which end in recesses formed at least in one of the tube plates and coaxial with the outer tubes. The recesses interconnected with channels form the indication chamber to which is connected at least one sensor of the alarm signal equipment. (B.S.)

  18. PPC's (parallel plate chambers) y su aplicación en calorimetría a bajo angulo en experimentos en el LHC

    CERN Document Server

    Fouz-Iglesias, M C

    1997-01-01

    In the LHC working conditions especific detector requirements are fast response, high rate capability and radiation resistance. This is particularly important for detectors in the low angle regions such as the Very Forward Hadron Calorimeter ( VF ) of CMS , located at 11 m from the interaction point and covering the pseudorapidity region between 3 and 5. The major goals of this calorimeters are to improve the measured of the transverse energy ( Et) and the missing transverse energy ( Etmiss) ( important for Higgs searches, Top-quark physics, SUSY searches, etc) and the detection and reconstruction of forward jets characteristics of some importants process (such the TeV jets coming from the WW(ZZ) fusion Higgs production mechanism ). The requirements for this calorimeter are a moderate energy resolution and an adequate segmentation for forward jet tagging and reconstruction are needed. The purpose of this thesis is to show that calorimeters based on the Parallel Plate Chambers ( PPC. - Gaseous detector with pl...

  19. High rate resistive plate chambers: An inexpensive, fast, large area detector of energetic charged particles for accelerator and non-accelerator applications

    International Nuclear Information System (INIS)

    Wuest, C.R.; Ables, E.; Bionta, R.M.; Clamp, O.; Haro, M.; Mauger, G.J.; Miller, K.; Olson, H.; Ramsey, P.

    1993-05-01

    Resistive Plate Chambers, or RPCs, have been used until recently as large detectors of cosmic ray muons. They are now finding use as fast large-area trigger and muon detection systems for different high energy physics detectors such the L3 Detector at LEP and future detectors to be built at the Superconducting Super Collider (SSC) and at the Large Hadron Collider (LHC) at CERN. RPC systems at these accelerators must operate with high efficiency, providing nanosecond timing resolution in particle fluences up to a few tens of kHz/cm 2 -- with thousands of square meters of active area. RPCs are simple and cheap to construct. The authors report here recent work on RPCs using new materials that exhibit a combination of desirable RPC features such as low bulk resistivity, high dielectric strength, low mass, and low cost. These new materials were originally developed for use in electronics assembly areas and other applications, where static electric charge buildup can damage sensitive electrical systems

  20. Theory and design of heat exchanger : air cooled plate, spiral heat exchanger

    International Nuclear Information System (INIS)

    Min, Ui Dong

    1960-02-01

    This book deals with air cooled heat exchanger, which introduces heat rejection system, wet surface cooler in new from, explanation of structure and design, materials, basic design like plenums chambers and fan ring, finned tube fouling factor, airflow in forced draft and fan design. It also tells of plate heat exchanger and spiral heat exchanger giving descriptions of summary, selection, basic design, device and safety function, maintenance, structure of plate heat exchanger, frames and connector plate and, basic things of spiral tube heat exchanger.

  1. Stability of special ionizing chambers for using in programs of quality control in radiotherapy and radiodiagnostic

    International Nuclear Information System (INIS)

    Afonso, Luciana C.; Caldas, Linda V.E.; Costa, Alessandro M. da

    2004-01-01

    In this work the response stability of two special parallel-plate ionization chambers, developed at the Calibration Laboratory of IPEN, were tested. The chambers are face doubled, with internal collecting electrodes of different materials (graphite and aluminium), in tandem system, and with air volumes of 0.6 cm 3 and 2.5 cm 3 , for radiotherapy and diagnostic radiology levels, respectively. The results showed that the chambers kept constant their metrological characteristics presenting their usefulness for quality control programs in radiotherapy and diagnostic radiology. (author)

  2. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-01-01

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I FC by the mobile plate tuner. The I FC is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I FC and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I FC when we change the position of the mobile plate tuner.

  3. Quality Assurance procedures for the construction of ALICE TOF detector

    Science.gov (United States)

    Akindinov, A.; Alessandrini, S.; Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Cara Romeo, G.; Cavazza, D.; Cifarelli, L.; Cindolo, F.; D'Antone, I.; De Caro, A.; De Pasquale, S.; Di Bartolomeo, A.; Furini, M.; Fusco Girard, M.; Golovin, V.; Grishuk, Yu.; Guerzoni, M.; Guida, M.; Hatzifotiadou, D.; Jung, W. W.; Kim, H. N.; Kim, D. H.; Kim, D. W.; Kiselev, S.; Laurenti, G.; Luvisetto, M. L.; Mal'kevich, D.; Margotti, A.; Massera, F.; Meneghini, S.; Michinelli, R.; Nania, R.; Noferini, F.; Pancaldi, G.; Pesci, A.; Pilastrini, R.; Pinazza, O.; Preghenella, R.; Rizzi, M.; Ryabinin, M.; Scapparone, E.; Scioli, G.; Sellitto, S.; Semeria, F.; Serra, S.; Silvestri, R.; Smirnitski, A.; Ugolini, E.; Usenko, E.; Voloshin, K.; Williams, M. C. S.; Zagreev, B.; Zampolli, C.; Zichichi, A.; Zinine, A.; Zucchini, A.; Zuffa, M.

    2006-08-01

    The goal of the MRPC-detector production for the ALICE TOF is to guarantee the same excellent performances obtained so far with all the prototypes. A set of quality assurance tests has been developed for this purpose; these tests are applied both to the single chamber components and to the assembled detectors. In this paper the results of these tests over a few hundreds MRPCs of the mass production will be presented.

  4. Quality Assurance procedures for the construction of ALICE TOF detector

    International Nuclear Information System (INIS)

    Akindinov, A.; Alessandrini, S.; Alici, A.

    2006-01-01

    The goal of the MRPC-detector production for the ALICE TOF is to guarantee the same excellent performances obtained so far with all the prototypes. A set of quality assurance tests has been developed for this purpose; these tests are applied both to the single chamber components and to the assembled detectors. In this paper the results of these tests over a few hundreds MRPCs of the mass production will be presented

  5. Characterization of ionization chambers in double face for X-ray detection systems

    International Nuclear Information System (INIS)

    Costa, Alessandro M. da; Caldas, Linda V.O.

    2000-01-01

    Two identical parallel-plate ionization chambers with collecting electrodes of different materials (in order to obtain different energy dependences), developed at Instituto de Pesquisas Energeticas e Nucleares, were tested in low energy X-radiation beams, simulating a special ionization chamber, of double face, in a Tandem system. The purpose of this work is to justify a project of a double face detection system utilizing ionization chambers in Tandem. In relation to conventional methods, this kind of system will provide more efficient and precise absorbed dose in air measurements and radiation effective energy determinations. The results obtained in relation to characteristics of short- and long-term stabilities and angular and energy dependence show that the project is feasible and very appropriate. (author)

  6. Performance of a parallel plate volume cell prototype for a fast iron/gas calorimeter

    International Nuclear Information System (INIS)

    Bizzeti, A.; Civinini, C.; D'alessandro, R.; Ferrando, A.

    1993-01-01

    We present the first test of the application of the parallel plate chamber principles for the design of a very fast and radiation-hard iron/gas sampling calorimeter, suitable for very forward regions in detectors for LBC; based on the use of thick iron plates as electrodes. We have built a one cell prototype consisting of three parallel thick iron plates (117 mn each). Results on efficiencies and mean collected charge for minimum ionizing particles with different gases are presented. (Author)

  7. Performance of a parallel plate volume cell prototype for a fast iron/gas calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Bizzeti, A.; Civinini, C.; D' Alessandro, R.; Ferrando, A.; Malinin, A.; Martinez-Laso, L.; Pojidaev, V.

    1993-07-01

    We present the first test of the application of the parallel plate chamber principles for the design of a very fast and radiation-hard iron/gas sampling calorimeter, suitable for very forward regions in detectors for LHC, based on the use of thick iron plates as electrodes. We have built a one cell prototype consisting of three parallel thick iron plates (17 mm each). Results on efficiencies and mean collected charge for minimum ionizing particles with different gases are presented. (Author) 7 refs.

  8. Performance of a parallel plate volume cell prototype for a fast iron/gas calorimeter

    International Nuclear Information System (INIS)

    Bizzeti, A.; Civinini, C.; D'Alessandro, R.; Ferrando, A.; Malinin, A.; Martinez-Laso, L.; Pojidaev, V.

    1993-01-01

    We present the first test of the application of the parallel plate chamber principles for the design of a very fast and radiation-hard iron/gas sampling calorimeter, suitable for very forward regions in detectors for LHC, based on the use of thick iron plates as electrodes. We have built a one cell prototype consisting of three parallel thick iron plates (17 mm each). Results on efficiencies and mean collected charge for minimum ionizing particles with different gases are presented. (Author) 7 refs

  9. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    International Nuclear Information System (INIS)

    Bergstrom, P

    2016-01-01

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  10. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, P [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States)

    2016-06-15

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  11. RPCs in biomedical applications

    Science.gov (United States)

    Belli, G.; De Vecchi, C.; Giroletti, E.; Guida, R.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Sani, G.; Vicini, A.; Vitulo, P.; Viviani, C.

    2006-08-01

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 μm and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi 2O 3 and Tl 2O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C 2H 2F 4 92.5%, SF 6 2.5%, C 4H 10 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  12. Surface Aggregation of Candida albicans on Glass in the Absence and Presence of Adhering Streptococcus gordonii in a Parallel-Plate Flow Chamber: A Surface Thermodynamical Analysis Based on Acid-Base Interactions.

    Science.gov (United States)

    Millsap; Bos; Busscher; van der Mei HC

    1999-04-15

    Adhesive interactions between yeasts and bacteria are important in the maintenance of infectious mixed biofilms on natural and biomaterial surfaces in the human body. In this study, the extended DLVO (Derjaguin-Landau-Verwey-Overbeek) approach has been applied to explain adhesive interactions between C. albicans ATCC 10261 and S. gordonii NCTC 7869 adhering on glass. Contact angles with different liquids and the zeta potentials of both the yeasts and bacteria were determined and their adhesive interactions were measured in a parallel-plate flow chamber.Streptococci were first allowed to adhere to the bottom glass plate of the flow chamber to different seeding densities, and subsequently deposition of yeasts was monitored with an image analysis system, yielding the degree of initial surface aggregation of the adhering yeasts and their spatial arrangement in a stationary end point. Irrespective of growth temperature, the yeast cells appeared uncharged in TNMC buffer, but yeasts grown at 37 degrees C were intrinsically more hydrophilic and had an increased electron-donating character than cells grown at 30 degrees C. All yeasts showed surface aggregation due to attractive Lifshitz-van der Waals forces. In addition, acid-base interactions between yeasts, yeasts and the glass substratum, and yeasts and the streptococci were attractive for yeasts grown at 30 degrees C, but yeasts grown at 37 degrees C only had favorable acid-base interactions with the bacteria, explaining the positive relationship between the surface coverage of the glass by streptococci and the surface aggregation of the yeasts. Copyright 1999 Academic Press.

  13. Design and construction of an interface system for the extrapolation chamber from the beta secondary standard.; Diseno y construccion del sistema de interfaz para la camara de extrapolacion del patron secundario beta.

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez C, L F

    1995-10-01

    The Interface System for the Extrapolation Chamber (SICE) contains several devices handled by a personal computer (PC), it is able to get the required data to calculate the absorbed dose due to Beta radiation. The main functions of the system are: (a) Measures the ionization current or charge stored in the extrapolation chamber. (b) Adjusts the distance between the plates of the extrapolation chamber automatically. (c) Adjust the bias voltage of the extrapolation chamber automatically. (d) Acquires the data of the temperature, atmospheric pressure, relative humidity of the environment and the voltage applied between the plates of the extrapolation chamber. (e) Calculates the effective area of the plates of the extrapolation chamber and the real distance between them. (f) Stores all the obtained information in hard disk or diskette. A comparison between the desired distance and the distance in the dial of the extrapolation chamber, show us that the resolution of the system is of 20 {mu}m. The voltage can be changed between -399.9 V and +399.9 V with an error of less the 3% with a resolution of 0.1 V. These uncertainties are between the accepted limits to be used in the determination of the absolute absorbed dose due to beta radiation. (Author).

  14. Calibration of PKA meters against ion chambers of two geometries

    International Nuclear Information System (INIS)

    Almeida Junior, Jose N.; Terini, Ricardo A.; Pereira, Marco A.G.; Herdade, Silvio B.

    2011-01-01

    Kerma-area product (KAP or PKA) is a quantity that is independent of the distance to the X-ray tube focal spot and that can be used in radiological exams to assess the effective dose in patients. Clinical KAP meters are generally fixed in tube output and they are usually calibrated on-site by measuring the air kerma with an ion chamber and by evaluating the irradiated area by means of a radiographic image. Recently, a device was marketed (PDC, Patient Dose Calibrator, Radcal Co.), which was designed for calibrating clinical KAP meters with traceability to a standard laboratory. This paper presents a metrological evaluation of two methods that can be used in standard laboratories for the calibration of this device, namely, against a reference 30 cc ionization chamber or a reference parallel plates monitor chamber. Lower energy dependence was also obtained when the PDC calibration was made with the monitor chamber. Results are also shown of applying the PDC in hospital environment to the cross calibration of a clinical KAP meter from a radiology equipment. Results confirm lower energy dependence of the PDC relatively to the tested clinical meter. (author)

  15. Multiwire proportional chamber with a supporting line on anode wires

    International Nuclear Information System (INIS)

    Viktorov, V.A.; Golovkin, S.V.

    1980-01-01

    Results are presented of experimental investigations on a supporting line (wire) used in large-sized proportional chambers to compensate for electrostatic forces. The length of anode wires (gilded tungsten of 0.02 mm in diameter) in the chamber constituted 600 mm, the pitch 2 mm, the total number of channels 192. High-voltage electrodes are made of Cu-Be wire of 0.1 mm in diameter, the pitch is 2 mm. The gap between anode and cathode plates is 6 mm. The supporting line is an enamelled nichrome wire of 0.2 mm in diameter enclosed in an additional fluoroplastic insulation. The outside diameter was equal to 0.4 mm. The supporting line was placed through the centre of the chamber at right angles and immediately adjacent to anode wires with the tension of 2000 g. A negative compensating potential was applied to it. The controllable parameter was the chamber efficiency at variable paAameters: (1) an operating voltage in the chamber; (2) Vsub(c) - a compensating potential of the supporting line, and (3) a beam axis relative coordinate. The performed investigations showed that the supporting line of this type is simple and reliable in operation (electric breakdown occurs at Vsub(c) > 3.5 kV). The noneffective zone in the supporting region can be reduced to approximately 2.4 mm which constitutes approximately 0.3% of the chamber total sensitive region

  16. Characterization of an extrapolation chamber for low-energy X-rays: Experimental and Monte Carlo preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P., E-mail: lpneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Silva, Eric A.B., E-mail: ebrito@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Perini, Ana P., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Maidana, Nora L., E-mail: nmaidana@if.usp.br [Universidade de Sao Paulo, Instituto de Fisica, Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2012-07-15

    The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IPEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. - Highlights: Black-Right-Pointing-Pointer A homemade extrapolation chamber was studied experimentally and with Monte Carlo. Black-Right-Pointing-Pointer It was characterized as a secondary dosimetry standard, for low energy X-rays. Black-Right-Pointing-Pointer Several characterization tests were performed and the results were satisfactory. Black-Right-Pointing-Pointer Simulation showed that its components may influence the response up to 11.0%. Black-Right-Pointing-Pointer This chamber may be used as a secondary standard at our laboratory.

  17. Evaluation of functioning of an extrapolation chamber using Monte Carlo method

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Alfonso Laguardia, R.

    2015-01-01

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Braff-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents a simulation for evaluating the functioning of an extrapolation chamber type 23392 of PTW, using the MCNPX Monte Carlo method. In the simulation, the fluence in the air collector cavity of the chamber was obtained. The influence of the materials that compose the camera on its response against beta radiation beam was also analysed. A comparison of the contribution of primary and secondary radiation was performed. The energy deposition in the air collector cavity for different depths was calculated. The component with the higher energy deposition is the Polymethyl methacrylate block. The energy deposition in the air collector cavity for chamber depth 2500 μm is greater with a value of 9.708E-07 MeV. The fluence in the air collector cavity decreases with depth. It's value is 1.758E-04 1/cm 2 for chamber depth 500 μm. The values reported are for individual electron and photon histories. The graphics of simulated parameters are presented in the paper. (Author)

  18. Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber

    International Nuclear Information System (INIS)

    Naidu, M C A; Nolakha, Dinesh; Saharkar, B S; Kavani, K M; Patel, D R

    2012-01-01

    In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of 'Open loop, auto reversing liquid nitrogen based thermal system'. System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.

  19. Two-dimensional readout in a liquid xenon ionisation chamber

    CERN Document Server

    Solovov, V; Ferreira-Marques, R; Lopes, M I; Pereira, A; Policarpo, Armando

    2002-01-01

    A two-dimensional readout with metal strips deposited on both sides of a glass plate is investigated aiming to assess the possibility of its use in a liquid xenon ionisation chamber for positron emission tomography. Here, we present results obtained with an alpha-source. It is shown that position resolution of <=1 mm, fwhm, can be achieved for free charge depositions equivalent to those due to gamma-rays with energy from 220 down to 110 keV.

  20. Track resolution in the RPC chamber

    International Nuclear Information System (INIS)

    Cardarelli, R.; Aielli, G.; Camarri, P.; Di Ciaccio, A.; Liberti, B.; Santonico, R.

    2007-01-01

    A new very promising read out, in addition to the well-known charge centroid method, is proposed for improving the space resolution in the Resistive Plate Chamber (RPC) in the sub-millimeter range. The method is based on the read out of the signal propagating in the graphite electrode which was simulated using a distributed resistance-capacitance model in SPICE. The results show that a good space-time correlation in the diffusion process is only possible by suitable signal processing. Three RPC detectors with the new layout and dedicated electronics were tested. The measured space resolution was in the order of a few 100μm

  1. Experiences with large-area frisch grid chambers in low-level alpha spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H.; Winkler, R. (Gesellschaft fuer Strahlen- und Umweltforschung m.b.H. Muenchen, Neuherberg (Germany, F.R.). Inst. fuer Strahlenschutz)

    1984-06-15

    The properties of parallel-plate gridded ionization chambers with areas of 300 cm/sup 2/, developed by us for alpha spectrometry of samples with low specific alpha activity are reported. Several practical hints for optimum operating conditions are presented. The chambers can be operated routinely at atmospheric pressure for several days, without the need for purification of the gas filling (P10). The minimum detectable activity at 5 MeV is 0.01 pCi, based on 4.65 standard deviations of background and 1000 min counting time. At the GSF Research Center ionization chambers of this type are used for the analysis of natural alpha emitters, as well as of transuranium nuclides in environmental samples by: a) direct alpha spectrometry without any previous treatment of the sample, b) semi-direct spectrometry after removal of organic matter by low-temperature ashing and c) spectrometry after chemical separation. Some typical example of application are given. Furthermore the range of application of the chambers in comparison to semiconductor detectors in the field of low-level alpha spectrometry is discussed.

  2. Experiences with large-area frisch grid chambers in low-level alpha spectrometry

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1984-01-01

    The properties of parallel-plate gridded ionization chambers with areas of 300 cm 2 , developed by us for alpha spectrometry of samples with low specific alpha activity are reported. Several practical hints for optimum operating conditions are presented. The chambers can be operated routinely at atmospheric pressure for several days, without the need for purification of the gas filling (P10). The minimum detectable activity at 5 MeV is 0.01 pCi, based on 4.65 standard deviations of background and 1000 min counting time. At the GSF Research Center ionization chambers of this type are used for the analysis of natural alpha emitters, as well as of transuranium nuclides in environmental samples by: a) direct alpha spectrometry without any previous treatment of the sample, b) semi-direct spectrometry after removal of organic matter by low-temperature ashing and c) spectrometry after chemical separation. Some typical example of application are given. Furthermore the range of application of the chambers in comparison to semiconductor detectors in the field of low-level alpha spectrometry is discussed. (orig.)

  3. A special ionisation chamber for quality control of diagnostic and mammography X ray equipment

    International Nuclear Information System (INIS)

    Costa, A.M.; Caldas, L.V.E.

    2003-01-01

    A quality control program for X ray equipment used for conventional radiography and mammography requires the constancy check of the beam qualities in terms of the half-value layers. In this work, a special double-faced parallel-plate ionisation chamber was developed with inner electrodes of different materials, in a tandem system. Its application will be in quality control programs of diagnostic and mammography X ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the chamber also may be utilised for measurements of air kerma values (and air kerma rates) in X radiation fields used for conventional radiography and mammography. The chamber was studied in relation to the characteristics of saturation, ion collection efficiency, polarity effects, leakage current, and short-term stability. The energy dependence in response of each of the two faces of the chamber was determined over the conventional radiography and mammography X ray ranges (unattenuated beams). The different energy responses of the two faces of the chamber allowed the formation of a tandem system useful for the constancy check of beam qualities. (author)

  4. A special ionisation chamber for quality control of diagnostic and mammography X ray equipment.

    Science.gov (United States)

    Costa, A M; Caldas, L V E

    2003-01-01

    A quality control program for X ray equipment used for conventional radiography and mammography requires the constancy check of the beam qualities in terms of the half-value layers. In this work, a special double-faced parallel-plate ionisation chamber was developed with inner electrodes of different materials, in a tandem system. Its application will be in quality control programs of diagnostic and mammography X ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the chamber also may be utilised for measurements of air kerma values (and air kerma rates) in X radiation fields used for conventional radiography and mammography. The chamber was studied in relation to the characteristics of saturation, ion collection efficiency, polarity effects, leakage current, and short-term stability. The energy dependence in response of each of the two faces of the chamber was determined over the conventional radiography and mammography X ray ranges (unattenuated beams). The different energy response of the two faces of the chamber allowed the formation of a tandem system useful for the constancy check of beam qualities.

  5. Carbon wire chamber at sub-atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Charles, G., E-mail: charlesg@ipno.in2p3.fr; Audouin, L., E-mail: audouin@ipno.in2p3.fr; Bettane, J.; Dupre, R.; Genolini, B.; Hammoudi, N.; Imre, M.; Le Ven, V.; Maroni, A.; Mathon, B.; Nguyen Trung, T.; Rauly, E.

    2017-05-21

    Present in many experiments, wire and drift chambers have been used in a large variety of shapes and configurations during the last decades. Nevertheless, their readout elements has not evolved much: tungsten, sometimes gold-plated or aluminum, wires. By taking advantage of the developments in the manufacture of conducting carbon fiber, we could obtain interesting improvements for wire detectors. In this article, we present recent tests and simulations using carbon fibers to readout signal in place of traditional tungsten wires. Unlike metallic wires, their low weight guaranties a reduced quantity of material in the active area.

  6. Large area window on vacuum chamber surface for neutron scattering instruments

    International Nuclear Information System (INIS)

    Itoh, Shinichi; Yokoo, Tetsuya; Ueno, Kenji; Suzuki, Junichi; Teraoku, Takuji; Tsuchiya, Masao

    2012-01-01

    The feasibility of a large area window using a thin aluminum plate on the surface of the vacuum chamber for neutron scattering instruments at a pulsed neutron source was investigated. In the prototype investigation for a window with an area of 1m×1.4m and a thickness of 1 mm, the measured pressure dependence of the displacement agreed well with a calculation using a nonlinear strain–stress curve up to the plastic deformation region. In addition, we confirmed the repetition test up to 2000 pressurization-and-release cycles, which is sufficient for the lifetime of the vacuum chamber for neutron scattering instruments. Based on these investigations, an actual model of the window to be mounted on the vacuum chamber of the High Resolution Chopper Spectrometer (HRC) at J-PARC was designed. By using a calculated stress distribution on the window, the clamping structure capable of balancing the tension in the window was determined. In a model with a structure identical to the actual window, we confirmed the repetition test over more than 7000 pressurization-and-release cycles, which shows a lifetime long enough for the actual usage of the vacuum chamber on the HRC.

  7. Characterization of an extrapolation chamber in a 90Sr/90Y beta radiation field

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Tamayo Garcia, J. A.

    2015-01-01

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Bragg-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents the characterization of an extrapolation chamber in a 90 Sr/ 90 Y beta radiation field. The absorbed dose rate to tissue at a depth of 0.07 mm was calculated and is (0.13206±0.0028) μGy. The extrapolation chamber null depth was determined and its value is 60 μm. The influence of temperature, pressure and humidity on the value of the corrected current was also evaluated. Temperature is the parameter that has more influence on this value and the influence of pressure and the humidity is not very significant. Extrapolation curves were obtained. (Author)

  8. Effect of Modified Red Pottery Clay on the Moisture Absorption Behavior and Weatherability of Polyethylene-Based Wood-Plastic Composites

    Directory of Open Access Journals (Sweden)

    Qingde Li

    2017-01-01

    Full Text Available Red pottery clay (RPC was modified using a silane coupling agent, and the modified RPC (mRPC was then used to enhance the performance of high-density polyethylene-based wood-plastic composites. The effect of the mRPC content on the performances of the composites was investigated through Fourier transform infrared spectrometry, differential mechanical analysis (DMA and ultraviolet (UV-accelerated aging tests. After adding the mRPC, a moisture adsorption hysteresis was observed. The DMA results indicated that the mRPC effectively enhanced the rigidity and elasticity of the composites. The mRPC affected the thermal gravimetric, leading to a reduction of the thermal degradation rate and a right-shift of the thermal degradation peak; the initial thermal degradation temperature was increased. After 3000 h of UV-accelerated aging, the flexural strength and impact strength both declined. For aging time between 0 and 1000 h, the increase in amplitude of ΔL* (luminescence and ΔE* (color reached a maximum; the surface fading did not became obvious. ΔL* and ΔE* increased more significantly between 1000 and 2000 h. These characterization results indicate that the chromophores of the mRPC became briefly active. However, when the aging times were higher than 2000 h, the photo-degradation reaction was effectively prevented by adding the mRPC. The best overall enhancement was observed for an mRPC mass percentage of 5%, with a storage modulus of 3264 MPa and an increase in loss modulus by 16.8%, the best anti-aging performance and the lowest degree of color fading.

  9. Optimal design of sandwich ribbed flat baffle plates of a circular cylindrical tank

    International Nuclear Information System (INIS)

    Malinowski, Marek; Magnucki, Krzysztof

    2005-01-01

    The subject of this paper is a sandwich ribbed flat baffle plate of a circular cylindrical tank. The paper deals with a problem of optimal thickness of this construction with a soft core. The construction is distinguished by a local axisymmetric pre-springing. The mathematical description is based on the theory of shells with analysis of disturbance of the stress membrane state. The sandwich ribbed flat baffle plate divides the tank into two chambers. One of them is loaded by uniform pressure, while the other is empty and unloaded. Dimensions of ribs, faces and the entire baffle plate have been determined with a view to minimize the mass under strength constraints. The effect of optimal thickness of this sandwich plate has been examined by means of the finite element method

  10. Prototype drift chamber for high energy heavy ions with a large dynamic range

    International Nuclear Information System (INIS)

    Kobayashi, T.; Bieser, F.; Crawford, H.; Lindstrom, P.; Baumgartner, M.; Greiner, D.

    1985-01-01

    The authors have constructed and tested a small prototype drift chamber designed for high energy heavy ions. When a drift chamber is used as a tracking detector for heavy projectile fragments from high energy nucleus-nucleus reactions, the major problem comes from the many spurious hits due to delta-rays. Three methods have been developed to solve this problem. The first one is to use a constant fraction discriminator to pick up the timing signal from the core ionization under the large background of delta-rays. The second one is to use pulse height information from the drift chamber to find the cell hit by the heavy ion. The last one is the idea of distributed planes. Modular planes (12 in this case) are distributed 10 cm apart on a rigid base plate to provide accurate relative positioning of the wires. The performance of the prototype chamber has been measured as a function of the high voltage bias and of the charge of the heavy ion from protons up to uranium at around 1 GeV/nucleon

  11. A Preliminary Design of a Calibration Chamber for Evaluating the Stability of Unsaturated Soil Slope

    Science.gov (United States)

    Hsu, H.-H.

    2012-04-01

    The unsaturated soil slopes, which have ground water tables and are easily failure caused by heavy rainfalls, are widely distributed in the arid and semi-arid areas. For analyzing the stability of slope, in situ tests are the direct methods to obtain the test site characteristics. The cone penetration test (CPT) is a popular in situ test method. Some of the CPT empirical equations established from calibration chamber tests. The CPT performed in calibration chamber was commonly used clean quartz sand as testing material in the past. The silty sand is observed in many actual slopes. Because silty sand is relatively compressible than quartz sand, it is not suitable to apply the correlations between soil properties and CPT results built from quartz sand to silty sand. The experience on CPT calibration in silty sand has been limited. CPT calibration tests were mostly performed in dry or saturated soils. The condition around cone tip during penetration is assumed to be fully drained or fully undrained, yet it was observed to be partially drained for unsaturated soils. Because of the suction matrix has a great effect on the characteristics of unsaturated soils, they are much sensitive to the water content than saturated soils. The design of an unsaturated calibration chamber is in progress. The air pressure is supplied from the top plate and the pore water pressure is provided through the high air entry value ceramic disks located at the bottom plate of chamber cell. To boost and uniform distribute the unsaturated effect, four perforated burettes are installed onto the ceramic disks and stretch upwards to the midheight of specimen. This paper describes design concepts, illustrates this unsaturated calibration chamber, and presents the preliminary test results.

  12. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    Science.gov (United States)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  13. Tasks related to increase of RA reactor exploitation and experimental potential, 01. Designing the protection chamber in the RA reactor hall for handling the radioactive experimental equipment (I-II) Part II, Vol. II

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    This second volume of the project for construction of the protection chamber in the RA reactor hall for handling the radioactive devices includes the technical description of the chamber, calculation of the shielding wall thickness, bottom lead plate, horizontal stability of the chamber, cost estimation, and the engineering drawings

  14. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    Science.gov (United States)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-02-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  15. Neutron beam test of multi-grid-type microstrip gas chamber

    International Nuclear Information System (INIS)

    Fujita, K.; Takahashi, H.; Siritiprussamee, P.; Niko, H.; Kai, M.; Nakazawa, M.; Ino, T.; Sato, S.; Yokoo, T.; Furusaka, M.; Kanazawa, M.

    2006-01-01

    Multi-grid-type microstrip gas chambers (M-MSGCs) are being developed for the next-generation pulsed neutron source. Two new concepts, a global-local-grouping (GLG) method and a graded cathode pattern readout method, were applied to the M-MSGC design for realizing higher counting rate than traditional 3 He proportional counters. One-dimensional detectors with 700 mm-long test plates were fabricated and tested with X-ray and neutron beams, which demonstrated position detection capability based on these concepts

  16. Four Channel Mini Wire Chamber to Study Cosmic Rays

    Science.gov (United States)

    Felix, J.; Rodriguez, G. J.

    2018-01-01

    Multiwire proportional chamber is a conventional technique to study radiation in general, and cosmic rays in particular. To study cosmic rays, it was planned, designed, constructed, characterized, and tested a four channel mini wire chamber, based on two 3 cm × 3 cm × 0.6 cm Aluminum frames, two 3 cm × 3 cm × 0.6 cm plastic frames, two 3 cm × 3 cm × 0.3 cm Aluminum frames, two electronic planes each with two Tungsten Gold plated 1 mil diameter wires, parallel and 1 cm apart each other at 25 g stretched-each plane was 90° rotated each other in the final assemble- and two Aluminum foil window to define the gas volume; it was operated with Argon 90%-CH4 10% gas mixture at 1 atmosphere and ambient temperature (20°C in the average). It is presented technical details, results on characterization, and preliminary results on cosmic rays detection.

  17. Methodology for calibration of ionization chambers for X-ray of low energy in absorbed dose to water

    International Nuclear Information System (INIS)

    Oliveira, C.T.; Vivolo, V.; Potiens, M.P.A.

    2015-01-01

    The beams of low energy X-ray (10 to 150 kV) are used in several places in the world to treat a wide variety of surface disorders, and between these malignancies. As in Brazil, at this moment, there is no calibration laboratory providing the control service or calibration of parallel plate ionization chambers, the aim of this project was to establish a methodology for calibration of this kind of ionization chambers at low energy X-ray beams in terms of absorbed dose to water using simulators in the LCI. (author)

  18. Investigation into the Effects of the Variable Displacement Mechanism on Swash Plate Oscillation in High-Speed Piston Pumps

    Directory of Open Access Journals (Sweden)

    Xu Fang

    2018-04-01

    Full Text Available High-speed, pressure-compensated variable displacement piston pumps are widely used in aircraft hydraulic systems for their high power density. The swash plate is controlled by the pressure-compensated valve, which uses pressure feedback so that the instantaneous output flow of the pump is exactly enough to maintain a presetting pressure. The oscillation of the swash plate is one of the major excitation sources in the high-speed piston pump, which may cause lower efficiency, shorter service life, and even serious damage. This paper presents an improved model to investigate the influence of the variable displacement mechanism on the swash plate oscillation and introduces some feasible ways to reduce oscillation of the swash plate. Most of the variable structural parameters of the variable displacement mechanism are taken into consideration, and their influences on swash plate oscillation are discussed in detail. The influence of the load pipe on the oscillation of the swash plate is considered in the improved model. A test rig is built and similarities between the experiments and simulated results prove that the simulation model can effectively predict the variable displacement mechanism state. The simulation results show that increasing the volume of the outlet chamber, the spring stiffness of the control valve, the action area of the actuator piston, and offset distance of the actuator piston can significantly reduce the oscillation amplitude of the swash plate. Furthermore, reducing the diameter of the control valve spool and the dead volume of the actuator piston chamber can also have a positive effect on oscillation amplitude reduction.

  19. Ionization chamber

    International Nuclear Information System (INIS)

    Jilbert, P.H.

    1975-01-01

    The invention concerns ionization chambers with particular reference to air-equivalent ionization chambers. In order to ensure that similar chambers have similar sensitivities and responses the surface of the chamber bounding the active volume carries a conducting material, which may be a colloidal graphite, arranged in the form of lines so that the area of the conducting material occupies only a small proportion of the area of said surface. (U.S.)

  20. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    International Nuclear Information System (INIS)

    Mohammadi, S.M.; Tavakoli-Anbaran, H.; Zeinali, H.Z.

    2017-01-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (k e ) and photon scattering correction factor (k sc ) are needed. k e factor corrects the charge loss from the collecting volume and k sc factor corrects the scattering of photons into collecting volume. In this work k e and k sc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the k e and k sc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  1. A simplified transient three-dimensional model for estimating the thermal performance of the vapor chambers

    International Nuclear Information System (INIS)

    Chen, Y.-S.; Chien, K.-H.; Wang, C.-C.; Hung, T.-C.; Pei, B.-S.

    2006-01-01

    The vapor chambers (flat plate heat pipes) have been applied on the electronic cooling recently. To satisfy the quick-response requirement of the industries, a simplified transient three-dimensional linear model has been developed and tested in this study. In the proposed model, the vapor is assumed as a single interface between the evaporator and condenser wicks, and this assumption enables the vapor chamber to be analyzed by being split into small control volumes. Comparing with the previous available results, the calculated transient responses have shown good agreements with the existing results. For further validation of the proposed model, a water-cooling experiment was conducted. In addition to the vapor chamber, the heating block is also taken into account in the simulation. It is found that the inclusion of the capacitance of heating block shows a better agreement with the measurements

  2. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams

    International Nuclear Information System (INIS)

    Perini, Ana Paula

    2013-01-01

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  3. Glove box chamber

    International Nuclear Information System (INIS)

    Cox, M.E.; Cox, M.E.

    1975-01-01

    An environmental chamber is described which enables an operator's hands to have direct access within the chamber without compromising a special atmosphere within such chamber. A pair of sleeves of a flexible material are sealed to the chamber around associated access apertures and project outwardly from such chamber. Each aperture is closed by a door which is openable from within the sleeve associated therewith so that upon an operator inserting his hand and arm through the sleeve, the operator can open the door to have access to the interior of the chamber. A container which is selectively separable from the remainder of the chamber is also provided to allow objects to be transferred from the chamber without such objects having to pass through the ambient atmosphere. An antechamber permitting objects to be passed directly into the chamber from the ambient atmosphere is included. (auth)

  4. Poster - 19: Investigation of Electron Reference Dosimetry Based on Optimal Chamber Shift

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Lixin; Jiang, Runqing; Liu, Baochang; Osei, Ernest [Grand River Regional Cancer Centre (Canada)

    2016-08-15

    An addendum/revision to AAPM TG-51 electron reference dosimetry is highly expected to meet the clinical requirement with the increasing usage of new ion chambers not covered in TG-51. A recent study, Med. Phys. 41, 111701, proposed a new fitting equation for the beam quality conversion factor k’{sub Q} to a wide spectrum of chambers. In the study, an optimal Effective Point of Measurement (EPOM) from Monte Carlo calculations was recommended and the fitting parameters to k’{sub Q} was based on it. We investigated the absolute dose obtained based on the optimal EPOM method and the original TG-51 method with k’{sub R50} determined differently. The results showed that using the Markus curve is a better choice than the well-guarded chamber fitting for an IBA PPC-05 parallel plate chamber if we need to strictly follow the AAPM TG-51 protocol. We also examined the usage of the new fitting equation with measurement performed at the physical EPOM, instead of the optimal EPOM. The former is more readily determined and more practical in clinics. Our study indicated that the k’{sub Q} fitting based on the optimal EPOM can be used to measurement at the physical EPOM with no significant clinical impact. The inclusion of Farmer chamber gradient correction P{sub gr} in k’{sub Q}, as in the mentioned study, asks for the precise positioning of chamber center at dref. It is not recommended in clinics to avoid over-correction for low electron energies, especially for an institute having matching Linacs implemented.

  5. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  6. Casting of Hearth Plates from High-chromium Steel

    Directory of Open Access Journals (Sweden)

    Drotlew A.

    2014-12-01

    Full Text Available The paper presents the results of studies on the development of manufacturing technologies to cast hearth plates operating in chamber furnaces for heat treatment. Castings made from the heat-resistant G-X40CrNiSi27-4 steel were poured in hand-made green sand molds. The following operations were performed: computer simulation to predict the distribution of internal defects in castings produced by the above mentioned technology with risers bare and coated with exothermic and insulating sleeves, analysis of each variant of the technology, and manufacture of experimental castings. As a result of the conducted studies and analysis it was found that the use of risers with exothermic sleeves does not affect to a significant degree the quality of the produced castings of hearth plates, but it significantly improves the metal yield.

  7. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  8. Development of Tandem ionization chambers for use in quality control programs in radiotherapy and diagnostic radiology

    International Nuclear Information System (INIS)

    Costa, Alessandro Martins da

    2003-01-01

    A quality control program of X-ray equipment used in diagnostic radiology and radiotherapy requires the check of the beam qualities constancy in terms of the half-value layers. In this work, two special double-faced parallel-plate ionization chambers were developed with inner electrodes of different materials, in tandem system. The different energy response of the two faces of each chamber allowed the development of tandem systems useful for the check of beam qualities constancy. The main application of these ionization chambers will be in quality control programs of diagnostic and therapeutic X-ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the tandem chambers may also be utilized for measurements of air kerma values (and air kerma rates) in kilo voltage X-radiation fields used for diagnostic and therapeutic procedures. The chambers were studied in relation to their operational characteristics, and they were calibrated in X-ray beams in accordance to international recommendations. They presented a very good level of performance. In this developed system no absorbers or special set-ups are necessary. A methodology of use of the chambers in the quality control of diagnostic and therapeutic X-ray systems was established, with the elaboration of the respective procedures. (author)

  9. First joint test beam of CMS Drift Tubes (DT) and Resistive Plate Chambers (RPC)

    CERN Multimedia

    Paolo Giacomelli

    2001-01-01

    The first full size muon drift tube chamber ever built for the CMS barrel with the final cell design (constructed at CIEMAT, Madrid) was succesfully tested with a muon beam in September 2001 at the Gamma Irradiation Facility (GIF) at CERN. For the first time also both muon detectors for the CMS barrel (DT + RPC) were coupled together. The results of this test were fully succesful and confirmed the excellent performance of both detectors together in a radiation environment.

  10. Radiotherapy high energy surface dose measurements: effects of chamber polarity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: The effects of chamber polarity have been investigated for the measurement of 6MV and 18MV x-ray surface dose using a parallel plate ionization chamber. Results have shown that a significant difference in measured ionization is recorded between to polarities at 6MV and 18MV at the phantom surface. A polarity ratio ranging from 1 062 to 1 005 is seen for 6MV x-rays at the phantom surface for field sizes 5cm x 5cm to 40cm x 40cm when comparing positive to negative polarity. These ratios range from 1.024 to 1.004 for 18MV x-rays with the same field sizes. When these charge reading are compared to the D max readings of the same polarity it is found that these polarity effects are minimal for the calculation of percentage dose results with variations being less than 1% of maximum. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  11. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  12. Characterization of low energy X-rays beams with an extrapolation chamber

    International Nuclear Information System (INIS)

    Bastos, Fernanda Martins

    2015-01-01

    In laboratories involving Radiological Protection practices, it is usual to use reference radiations for calibrating dosimeters and to study their response in terms of energy dependence. The International Organization for Standardization (ISO) established four series of reference X-rays beams in the ISO- 4037 standard: the L and H series, as low and high air Kerma rates, respectively, the N series of narrow spectrum and W series of wide spectrum. The X-rays beams with tube potential below 30 kV, called 'low energy beams' are, in most cases, critical as far as the determination of their parameters for characterization purpose, such as half-value layer. Extrapolation chambers are parallel plate ionization chambers that have one mobile electrode that allows variation of the air volume in its interior. These detectors are commonly used to measure the quantity Absorbed Dose, mostly in the medium surface, based on the extrapolation of the linear ionization current as a function of the distance between the electrodes. In this work, a characterization of a model 23392 PTW extrapolation chamber was done in low energy X-rays beams of the ISO- 4037 standard, by determining the polarization voltage range through the saturation curves and the value of the true null electrode spacing. In addition, the metrological reliability of the extrapolation chamber was studied with measurements of the value of leakage current and repeatability tests; limit values were established for the proper use of the chamber. The PTW23392 extrapolation chamber was calibrated in terms of air Kerma in some of the ISO radiation series of low energy; the traceability of the chamber to the National Standard Dosimeter was established. The study of energy dependency of the extrapolation chamber and the assessment of the uncertainties related to the calibration coefficient were also done; it was shown that the energy dependence was reduced to 4% when the extrapolation technique was used. Finally, the first

  13. Depth dose distribution in the water for clinical applicators of 90Sr + 90Y, with a extrapolation mini chamber

    International Nuclear Information System (INIS)

    Antonio, Patricia de Lara; Caldas, Linda V.E.; Oliveira, Mercia L.

    2009-01-01

    This work determines the depth dose in the water for clinical applicators of 90 Sr + 90 Y, using a extrapolation mini chamber developed at the IPEN, Sao Paulo, Brazil, and different thickness acrylic plates. The obtained results were compared with the international recommendations and were considered satisfactory

  14. The Mobile Chamber

    Science.gov (United States)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  15. High resolution multiple sampling ionization chamber (MUSIC) sensitive to position coordinates

    International Nuclear Information System (INIS)

    Petrascu, H.; Kumagai, H.; Tanihata, I.; Petrascu, M.

    1999-01-01

    A new type of MUSIC sensitive to position coordinates is reported. The development of the first version of this type of chamber is based on the principles presented by Badhwar in 1973. The present detector will be used in experiments on fusion by using radioactive beams. This chamber due to the high resolution is suitable to identification and tracking of low Z particles. One of our goals, when we started this work, was to reduce as much as possible the Z value of particles that can be 'seen' by an ionization chamber. The resolution of the chamber was significantly improved by connecting the preamplifiers directly to the MUSIC's pads. These preamplifiers are able to work in vacuum and very low gas pressure. In this way the value of signal to noise ratio was increased by a factor of ∼10. The detector is of Frisch grid type, with the anode split into 10 active pads. It is the first model of a MUSIC with the field shared between the position grid and the anode pads. The Frisch grid was necessary because the detector is originally designed for very accurate energy measurements and particle identification. A drawing of this detector is shown. The detector itself consists of four main parts. The first one is the constant field-gradient cage, sandwiched in between the cathode and the Frisch grid. The second is the Frisch grid. The third is the position grid located under the Frisch grid. The last one is the plate with the anode pads. The cage is made of 100 μm Cu-Be wires. Every wire was tensioned with a weight representing half of its breaking limit. The Frisch grid was done on an aluminium frame, on which 20 μm W wires spaced 0.3 mm, were wound. For the position grid, 10 groups of 20 μm gold plated W wires have been used. Each group consisted of 5 wires spaced 0.9 mm and connected in parallel. The anode pads 7.8 x 60 mm 2 were perpendicular to the beam direction. Each pad and each of the position wire groups were connected to a preamplifier. The energy resolution

  16. Drift chamber

    International Nuclear Information System (INIS)

    Inagaki, Yosuke

    1977-01-01

    Drift chamber is becoming an important detector in high energy physics as a precision and fast position detector because of its high spatial resolution and count-rate. The basic principle is that it utilizes the drift at constant speed of electrons ionized along the tracks of charged particles towards the anode wire in the nearly uniform electric field. The method of measuring drift time includes the analog and digital ones. This report describes about the construction of and the application of electric field to the drift chamber, mathematical analysis on the electric field and equipotential curve, derivation of spatial resolution and the factor for its determination, and selection of gas to be used. The performance test of the chamber was carried out using a small test chamber, the collimated β source of Sr-90, and 500 MeV/C electron beam from the 1.3 GeV electron synchrotron in the Institute of Nuclear Study, University of Tokyo. Most chambers to date adopted one dimensional read-out, but it is very advantageous if the two dimensional read-out is feasible with one chamber when the resolution in that direction is low. The typical methods of delay line and charge division for two dimensional read-out are described. The development of digital read-out system is underway, which can process the signal of a large scale drift chamber at high speed. (Wakatsuki, Y.)

  17. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A multi-chambered ionisation detector enables the amount of radiation entering each chamber from a single radioactive, eg β, source to be varied by altering the proportion of the source protruding into each chamber. Electrodes define chambers and an extended radioactive source is movable to alter the source length in each chamber. Alternatively, the source is fixed relative to outer electrodes but the central electrode may be adjusted by an attached support altering the chamber dimensions and hence the length of source in each. Also disclosed are a centrally mounted source tiltable towards one or other chamber and a central electrode tiltable to alter chamber dimensions. (U.K.)

  18. Characteristics of ionization chambers for intense pulsed x-rays and Co-60 #betta#-rays, (2)

    International Nuclear Information System (INIS)

    Kanazawa, Tamotsu; Okabe, Shigeru; Fukuda, Kyue; Furuta, Junichiro; Fujino, Takahiro

    1981-01-01

    Mean ionization currents and pulse figures of parallel plate ionization chambers enclosed with various gases were measured when they were exposed to intense pulsed X-rays and continuous #betta#-rays. Relation between the measured ionization current and the intensity of X-rays was obtained at the applied voltage of 1000 V. In the case of intense pulsed X-rays, ionization current was smaller in comparison with the case of continuous #betta#-rays, under the X-rays of equal intensity. Pulse figures were observed with chambers which were filled with the gases of air and O 2 and they are considered to be caused by the free electrons of these gases. In these cases, polarity effects of the electric field on the pulse figures were not recognized. Various figures and their changes were also observed from chambers filled with He, Ne, N 2 , Ar, kr, and Xe, respectively. Polarity effects were recognized on those pulse figures. (author)

  19. Doriot Climatic Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers are two, 60-feet long, 11-feet high, 15-feet wide chambers that are owned and operated by NSRDEC. The Doriot Climatic Chambers are among...

  20. Cultivable anaerobic and aerobic bacterial communities in the fermentation chambers of Holotrichia parallela (coleoptera: scarabaeidae) larvae.

    Science.gov (United States)

    Zhang, Zhen-Yu; Yuan, Yimin; Ali, Muhammad Waqar; Peng, Tao; Peng, Wei; Raza, Muhammad Fahim; Zhao, Yongshun; Zhang, Hongyu

    2018-01-01

    As important pests, scarab beetle larvae survive on plant biomass and the microbiota of the fermentation chamber play an important role in the digestion of lignocellulose-rich diets. However, the cultivable microbes, especially the anaerobic cultivable microbes, are still largely unknown. Here, both cultivable anaerobic and aerobic bacterial communities associated with the fermentation chamber of Holotrichia parallela larvae were investigated. In total bacteria cells directly enumerated by the 4', 6-diamidino-2-phenylindole (DAPI) staining method, the viable plate counts of cultivable bacteria in the fermentation chamber accounted for 0.92% of proportion. These cultivable bacteria were prone to attach to the fermentation chamber wall (88.41%) compared to the chamber contents. Anaerobic bacteria were dominant in the cultivable bacteria attaching to the fermentation chamber wall (70.20%), while the quantities of anaerobes and aerobes were similar in the chamber contents. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), fingerprinting and sequence analysis of isolated colonies revealed that the cultivable bacteria are affiliated with class γ-Proteobacteria, Bacteroidia, Actinobacteria, Clostridia and β-Proteobacteria. γ-Proteobacteria was the major type of anaerobic cultivable bacteria and even the only one type of aerobic cultivable bacteria. Taken together, our results suggest, for the first time, that anaerobic microbiota are dominant in cultivable bacteria in the special anoxia niche of the fermentation chamber from H. parallela larvae. These bacterial isolates could be a treasure trove for screening lignocellulytic microbes which are essential for the plant biomass digestion of this scarab species.

  1. Cultivable anaerobic and aerobic bacterial communities in the fermentation chambers of Holotrichia parallela (coleoptera: scarabaeidae) larvae

    Science.gov (United States)

    Ali, Muhammad Waqar; Peng, Tao; Peng, Wei; Raza, Muhammad Fahim; Zhao, Yongshun; Zhang, Hongyu

    2018-01-01

    As important pests, scarab beetle larvae survive on plant biomass and the microbiota of the fermentation chamber play an important role in the digestion of lignocellulose-rich diets. However, the cultivable microbes, especially the anaerobic cultivable microbes, are still largely unknown. Here, both cultivable anaerobic and aerobic bacterial communities associated with the fermentation chamber of Holotrichia parallela larvae were investigated. In total bacteria cells directly enumerated by the 4’, 6-diamidino-2-phenylindole (DAPI) staining method, the viable plate counts of cultivable bacteria in the fermentation chamber accounted for 0.92% of proportion. These cultivable bacteria were prone to attach to the fermentation chamber wall (88.41%) compared to the chamber contents. Anaerobic bacteria were dominant in the cultivable bacteria attaching to the fermentation chamber wall (70.20%), while the quantities of anaerobes and aerobes were similar in the chamber contents. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), fingerprinting and sequence analysis of isolated colonies revealed that the cultivable bacteria are affiliated with class γ-Proteobacteria, Bacteroidia, Actinobacteria, Clostridia and β-Proteobacteria. γ-Proteobacteria was the major type of anaerobic cultivable bacteria and even the only one type of aerobic cultivable bacteria. Taken together, our results suggest, for the first time, that anaerobic microbiota are dominant in cultivable bacteria in the special anoxia niche of the fermentation chamber from H. parallela larvae. These bacterial isolates could be a treasure trove for screening lignocellulytic microbes which are essential for the plant biomass digestion of this scarab species. PMID:29304141

  2. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  3. Thermal performance of plate-type loop thermosyphon at sub-atmospheric pressures

    International Nuclear Information System (INIS)

    Tsoi, Vadim; Chang, Shyy Woei; Chiang Kuei Feng; Huang, Chuan Chin

    2011-01-01

    This experimental study examines the thermal performance of a newly devised plate-type two-phase loop thermosyphon with cooling applications to electronic boards of telecommunication systems. The evaporation section is configured as the inter-connected multi channels to emulate the bridging boiling mechanism in pulsating thermosyphon. Two thermosyphon plates using water as the coolant with filling ratios (FR) of 0.22 and 0.32 are tested at sub-atmospheric pressures. The vapor-liquid flow images as well as the thermal resistances and effective spreading thermal conductivities are individually measured for each thermosyphon test plate at various heating powers. The high-speed digital images of the vapor-liquid flow structures reveal the characteristic boiling phenomena and the vapor-liquid circulation in the vertical thermosyphon plate, which assist to explore the thermal physics for this type of loop thermosyphon. The bubble agglomeration and pumping action in the inter-connected boiling channels take place at metastable non-equilibrium conditions, leading to the intermittent slug flows with a pulsation character. Such hybrid loop-pulsating thermosyphon permits the vapor-liquid circulation in the horizontal plate. Thermal resistances and spreading thermal conductivities detected from the present thermosyphon plates; the vapor chamber flat plate heat pipe and the copper plate at free and forced convective cooling conditions with both vertical and horizontal orientations are cross-examined. In most telecommunication systems and units, the electrical boards are vertical so that the thermal performance data on the vertical thermosyphon are most relevant to this particular application. - Highlights: → We examine thermal performances of plate-type loop thermosyphon. → Thermal resistances and spreading conductivities are examined. → Bubble agglomeration in inter-connected boiling channels generates intermittent slug flows with pulsations. → Boiling instability

  4. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    Science.gov (United States)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  5. Prototype of time digitizing system for BESⅢ endcap TOF upgrade

    International Nuclear Information System (INIS)

    Cao Ping; Sun Weijia; Fan Huanhuan; Wang Siyu; Liu Shubin; An Qi; Ji Xiaolu

    2014-01-01

    The prototype of a time digitizing system for the BESⅢ endcap TOF (ETOF) upgrade is introduced in this paper. The ETOF readout electronics has a distributed architecture. Hit signals from the multi-gap resistive plate chamber (MRPC) are signaled as LVDS by front-end electronics (FEE) and are then sent to the back-end time digitizing system via long shield differential twisted pair cables. The ETOF digitizing system consists of two VME crates, each of which contains modules for time digitization, clock, trigger, fast control, etc. The time digitizing module (TDIG) of this prototype can support up to 72 electrical channels for hit information measurement. The fast control (FCTL) module can operate in barrel or endcap mode. The barrel FCTL fans out fast control signals from the trigger system to the endcap FCTLs, merges data from the endcaps and then transfers to the trigger system. Without modifying the barrel TOF (BTOF) structure, this time digitizing architecture benefits from improved ETOF performance without degrading the BTOF performance. Lab experiments show that the time resolution of this digitizing system can be lower than 20 ps, and the data throughput to the DAQ can be about 92 Mbps. Beam experiments show that the total time resolution can be lower than 45 ps. (authors)

  6. Use of a two-dimensional ionization chamber array for proton therapy beam quality assurance

    International Nuclear Information System (INIS)

    Arjomandy, Bijan; Sahoo, Narayan; Ding Xiaoning; Gillin, Michael

    2008-01-01

    Two-dimensional ion chamber arrays are primarily used for conventional and intensity modulated radiotherapy quality assurance. There is no commercial device of such type available on the market that is offered for proton therapy quality assurance. We have investigated suitability of the MatriXX, a commercial two-dimensional ion chamber array detector for proton therapy QA. This device is designed to be used for photon and electron therapy QA. The device is equipped with 32x32 parallel plate ion chambers, each with 4.5 mm diam and 7.62 mm center-to-center separation. A 250 MeV proton beam was used to calibrate the dose measured by this device. The water equivalent thickness of the buildup material was determined to be 3.9 mm using a 160 MeV proton beam. Proton beams of different energies were used to measure the reproducibility of dose output and to evaluate the consistency in the beam flatness and symmetry measured by MatriXX. The output measurement results were compared with the clinical commissioning beam data that were obtained using a 0.6 cc Farmer chamber. The agreement was consistently found to be within 1%. The profiles were compared with film dosimetry and also with ion chamber data in water with an excellent agreement. The device is found to be well suited for quality assurance of proton therapy beams. It provides fast two-dimensional dose distribution information in real time with the accuracy comparable to that of ion chamber measurements and film dosimetry

  7. Conceptual design report for the SDC barrel and intermediate muon detectors based on a jet-type drift chamber

    International Nuclear Information System (INIS)

    Arai, Y.; Funahashi, Y.; Higashi, Y.

    1992-04-01

    We propose a jet-type drift chamber for the barrel and intermediate muon detectors of SDC. The chamber system consists of large multiwire drift chambers having a simple box-type frame structure: 2. 5 x 0.4 m 2 in cross section and maximum 9 m in length. A chamber module consists of double layers of small jet cells. The drift cell is composed of a wire plane, including 3 sense wires, and cathode plates parallel to the wire plane. The two layers in a chamber are staggered to each other by half a cell width. The jet cell is tilted such that its principle axis points to the interaction point. Such an arrangement, together with a constant drift velocity of the jet cell, allows us to design a simple and powerful trigger system for high momentum muons utilizing a drift time sum between a pair of staggered cells. The multi-hit capability will be helpful to distinguish high momentum muon tracks from associated electromagnetic debris as has been demonstrated by the Fermilab beam test T816. The maximum drift time fulfills the SDC requirement. A preliminary FEM analysis of the chamber module verified the excellent structural stiffness. It makes the support structure and the alignment system relatively simple. These features will reduce the total cost as well as ensure a good performance of the chamber system. (J.P.N.)

  8. Peltier-based cloud chamber

    Science.gov (United States)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  9. The suppression of destructive sparks in parallel plate proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Cockshott, R.A.; Mason, I.M.

    1984-02-01

    The authors find that high energy background events produce localised sparks in parallel plate counters when operated in the proportional mode. These sparks increase dead-time and lead to degradation ranging from electrode damage to spurious pulsing and continuous breakdown. The problem is particularly serious in low energy photon detectors for X-ray astronomy which are required to have lifetimes of several years in the high radiation environment of space. For the parallel plate imaging detector developed for the European X-ray Observatory Satellite (EXOSAT) they investigate quantitatively the spark thresholds, spark rates and degradation processes. They discuss the spark mechanism, pointing out differences from the situation in spark chambers and counters. They show that the time profile of the sparks allows them to devise a spark suppression system which reduces the degradation rate by a factor of ''200.

  10. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    International Nuclear Information System (INIS)

    Fauzi, N F I; Hasran, U A; Kamarudin, S K

    2015-01-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell. (paper)

  11. Ion chamber-electrometer measurement system for radiation protection tests in X-ray equipment for interventional procedures

    International Nuclear Information System (INIS)

    Bottaro, Marcio

    2012-01-01

    A new parallel plate ionization chamber with volume of 500 cc and an electrometer with digital interface for data acquisition, configuring an ion chamber electrometer measurement system, were developed to comply with specific requirements for compulsory radiation protection tests in interventional X-ray equipment. The ion chamber has as main characteristics: low cost, mechanical strength and response variation with beam energy of less than 5% in the 40 kV to 150 kV range. The electrometer has a high gain (5x10 8 V/A) transimpedance amplifier circuit and a data acquisition and control system developed in LabVIEW ® platform, including an integrated power supply for the ion chamber bias with adjustable DC voltage output from O to 1000 V and an air density correction system. Electric field calculations, laboratory measurements in standard beams and computational simulations of radiation interactions in chamber volume with Monte Carlo Method were employed in the elaborated methodology of the ion chamber development, which was tested and validated. It was also developed a simplified methodology for electrometer calibration that assures metrological trustworthiness of the measurement system. Tests for the system performance evaluation as environmental influence response, energy response, angular dependency, linearity and air kerma and air kerma rate dependency were performed according to international standards and requirements. Additionally, for a detailed evaluation of the developed ion chamber, simulations with various scattered radiation spectra were performed. The system was applied in leakage radiation, residual radiation and scattered radiation tests, being compared with other reference systems and validated for laboratorial test routine. (author)

  12. Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel-plate flow chamber.

    Science.gov (United States)

    McClaine, Jennifer W; Ford, Roseanne M

    2002-04-20

    A parallel-plate flow chamber was used to measure the attachment and detachment rates of Escherichia coli to a glass surface at various fluid velocities. The effect of flagella on adhesion was investigated by performing experiments with several E. coli strains: AW405 (motile); HCB136 (nonmotile mutant with paralyzed flagella); and HCB137 (nonmotile mutant without flagella). We compared the total attachment rates and the fraction of bacteria retained on the surface to determine how the presence and movement of the flagella influence transport to the surface and adhesion strength in this dynamic system. At the lower fluid velocities, there was no significant difference in the total attachment rates for the three bacterial strains; nonmotile strains settled at a rate that was of the same order of magnitude as the diffusion rate of the motile strain. At the highest fluid velocity, the effect of settling was minimized to better illustrate the importance of motility, and the attachment rates of both nonmotile strains were approximately five times slower than that of the motile bacteria. Thus, different processes controlled the attachment rate depending on the parameter regime in which the experiment was performed. The fractions of motile bacteria retained on the glass surface increased with increasing velocity, whereas the opposite trend was found for the nonmotile strains. This suggests that the rotation of the flagella enables cells to detach from the surface (at the lower fluid velocities) and strengthens adhesion (at higher fluid velocities), whereas nonmotile cells detach as a result of shear. There was no significant difference in the initial attachment rates of the two nonmotile species, which suggests that merely the presence of flagella was not important in this stage of biofilm development. Copyright 2002 Wiley Periodicals, Inc.

  13. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  14. Evaluating uncertainties in the cross-calibration of parallel ion chambers used in electron beam radiotherapy

    International Nuclear Information System (INIS)

    Anderson, Ernani; Travassos, Paulo; Ferreira, Max da Silva; Carvalho, Samira Marques de; Silva, Michele Maria da; Peixoto, Jose Guilherme Pereira; Salmon Junior, Helio Augusto

    2015-01-01

    This study aims to estimative the combined standard uncertainty for a detector parallel plate used for dosimetry of electron beams in linear accelerators for radiotherapy, which has been calibrated by the cross-calibration method. Keeping the combined standard uncertainty next of the uncertainty informed in the calibration certificate of the reference chamber, become possible establish the calibration factor of the detector. The combined standard uncertainty obtained in this study was 2.5 %. (author)

  15. Spark chamber used for the visualization of the 125I labeled thyroid

    International Nuclear Information System (INIS)

    Morucci, Jean-Pierre; Seigneur, Alain; Lansiart, Alain

    1971-03-01

    This spark chamber is a stationary detector used for the visualization of the 125 I labeled thyroid; it is sensitive to X and low energy gamma rays. This device is filled mainly with pressurized xenon (1.5 kg/cm 2 ) and behaves as an X-ray image intensifier: the incident radiation is detected and initiates a spark. The energy dissipated by the spark is reduced and controlled by a double coated anode, while an electronic circuit triggered by the initiation of the spark discharges the detector capacitance. The sparks are recorded on a photographic plate during the examination. X ray optics are used for collimation between the thyroid and the detector. A modulation transfer function was measured for 125 I. Communication theory was used to determine the best way of combining the collimator and spark chamber. This device is being used in the Service Hospitalier Frederic Joliot at Orsay. Its performance is superior to that of conventional scintigraphs. Further applications are envisaged [fr

  16. Modeling particulate removal in plate-plate and wire-plate electrostatic precipitators

    Directory of Open Access Journals (Sweden)

    S Ramechecandane

    2016-09-01

    Full Text Available The present study is concerned with the modeling of electrically charged particles in a model plate-plate and a single wire-plate electrostatic precipitator (ESP. The particle concentration distributions for both a plate-plate and a wire-plate ESP are calculated using a modified drift flux model. Numerical investigations are performed using the modified drift flux model for particle number concentration, in addition to the RNG k - ε model for the mean turbulent flow field and the Poisson equation for the electric field. The proposed model and the outlined methodology for coupling the flow field, electric field, charging kinetics and particle concentration is applied to two model precipitators that are truly representative of a wide class of commercialized ESPs. The present investigation is quite different from the earlier studies as it does not make assumptions like a homogeneous electric field or an infinite turbulent diffusivity. The electric field calculated is a strong function of position and controls the migration velocity of particles. Hence, the proposed model can be implemented in a flow solver to obtain a full-fledged solution for any kind of ESP with no limitations on the particle number concentration, as encountered in a Lagrangian approach. The effect of turbulent diffusivity on particle number concentration in a plate-plate ESP is investigated in detail and the results obtained are compared with available experimental data. Similarly, the effect of particle size/diameter and applied electric potential on the accumulative collection performance in the case of a wire-plate ESP is studied and the results obtained are compared with available numerical data. The numerical results obtained using the modified drift flux model for both the plate-plate and wire-plate ESP are in close agreement with available experimental and numerical data.

  17. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  19. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  20. X-ray microscopy with high resolution zone plates -- Recent developments

    International Nuclear Information System (INIS)

    Schneider, G.; Wilhein, T.; Niemann, B.; Guttmann, P.

    1995-01-01

    In order to expand the applications of X-ray microscopy, developments in the fields of zone plate technology, specimen preparation and imaging techniques have been made. A new cross-linked polymer chain electron beam resist allows to record zone plate pattern down to 19 nm outermost zone width. High resolution zone plates in germanium with outermost zone widths down to 19 nm have been developed. In addition, phase zone plates in nickel down to 30 nm zone width have been made by electroplating. In order to enhance the image contrast for weak absorbing objects, the phase contrast method for X-ray microscopy was developed and implemented on the Goettingen X-ray microscope at BESSY. The effects of X-ray absorption on the structure of biological specimen limits the maximum applicable radiation dose and therefore the achievable signal to noise ratio for an artifact-free X-ray image. To improve the stability especially of biological specimen, a cryogenic object chamber has been developed and tested. It turns out that at the operating temperature T ≤ 130 K unfixed biological specimen can be exposed to a radiation dose of 10 9 --10 10 Gy without any observable structural changes. A multiple-angle viewing stage allows to take stereoscopic images with the X-ray microscope, giving a 3D-impression of the object

  1. Gas microstrip chambers

    International Nuclear Information System (INIS)

    McIntyre, P.M.; Barasch, E.F.; Bowcock, T.J.V.; Demroff, H.P.; Elliott, S.M.; Howe, M.R.; Lee, B.; Mazumdar, T.K.; Pang, Y.; Smith, D.D.; Wahl, J.; Wu, Y.; Yue, W.K.; Gaedke, R.M.; Vanstraelen, G.

    1992-01-01

    The gas microstrip chamber has been developed from concept to experimental system during the past three years. A pattern of anode and grid lines are microfabricated onto a dielectric substrate and configured as a high-resolution MWPC. Four recent developments are described: Suitable plastic substrates and lithography techniques for large-area chambers; non-planar silicon-based chambers for 20 μm resolution; integrated on-board synchronous front-end electronics and data buffering; and a porous silicon active cathode for enhanced efficiency and time response. The microstrip chamber appears to be a promising technology for applications in microvertex, tracking spectrometer, muon spectrometer, and transition radiation detection. (orig.)

  2. Development of a multi-layer ion chamber for measurement of depth dose distributions of heavy-ion therapeutic beam for individual patients

    International Nuclear Information System (INIS)

    Shimbo, Munefumi; Futami, Yasuyuki; Yusa, Ken; Matsufuji, Naruhiro; Kanai, Tatsuaki; Urakabe, Eriko; Yamashita, Haruo; Akagi, Takashi; Higashi, Akio

    2000-01-01

    In heavy-ion radiotherapy, an accelerated beam is modified to realize a desired dose distribution in patients. The set-up of the beam-modifying devices in the irradiation system is changed according to the patient, and it is important to check the depth dose distributions in the patient. In order to measure dose distributions realized by an irradiation system for heavy-ion radiotherapy, a multi-layer ionization chamber (MLIC) was developed. The MLIC consists of 64 ionization chambers, which are stacked mutually. The interval between each ionization chamber is about 4.1 mm water. There are signal and high voltage plates in the MLIC, which are used as electrodes of the ionization chambers and phantom. Depth dose distribution from 5.09 mm to 261.92 mm water can be measured in about 30 seconds using this MLIC. Thus, it is possible to check beam quality in a short amount of time. (author)

  3. High Temperature Fission Chamber for He- and FLiBe-cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, Dominic R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lance, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warmack, Robert J. Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    We have evaluated candidate technologies for in-core fission chambers for high-temperature reactors to monitor power level via measurements of neutron flux from start-up through full power at up to 800°C. This research is important because there are no commercially available instruments capable of operating above 550 °C. Component materials and processes were investigated for fission chambers suitable for operation at 800 °C in reactors cooled by molten fluoride salt (FLiBe) or flowing He, with an emphasis placed on sensitivity (≥ 1 cps/nv), service lifetime (2 years at full power), and resistance to direct immersion in FLiBe. The latter gives the instrument the ability to survive accidents involving breach of a thimble. The device is envisioned to be a two-gap, three-electrode instrument constructed from concentric nickel-plated alumina cylinders and using a noble gas–nitrogen fill-gas. We report the results of measurements and calculations of the response of fill gasses, impurity migration in nickel alloy, brazing of the alumina insulator, and thermodynamic calculations.

  4. Double chamber ion source

    International Nuclear Information System (INIS)

    Uman, M.F.; Winnard, J.R.; Winters, H.F.

    1978-01-01

    The ion source is comprised of two discharge chambers one of which is provided with a filament and an aperture leading into the other chamber which in turn has an extraction orifice. A low voltage arc discharge is operated in an inert gas atmosphere in the filament chamber while an arc of higher voltage is operated in the second ionization chamber which contains a vapor which will give the desired dopant ion species. The entire source is immersed in an axial magnetic field parallel to a line connecting the filament, the aperture between the two chambers and the extraction orifice. (author)

  5. Ussing Chamber

    NARCIS (Netherlands)

    Westerhout, J.; Wortelboer, H.; Verhoeckx, K.

    2015-01-01

    The Ussing chamber system is named after the Danish zoologist Hans Ussing, who invented the device in the 1950s to measure the short-circuit current as an indicator of net ion transport taking place across frog skin (Ussing and Zerahn, Acta Physiol Scand 23:110-127, 1951). Ussing chambers are

  6. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux

    International Nuclear Information System (INIS)

    Lang, F.M.; Magnier, P.; Finck, C.

    1956-01-01

    Preparation of boron thin film deposits of around 1 mg per cm 2 on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  7. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  8. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  9. Algorithm for study on the stressed-strained state of thermonuclear device vacuum chambers under dynamic loads

    International Nuclear Information System (INIS)

    Zhuravleva, A.M.; Litvinov, V.B.

    1982-01-01

    The problem of dynamic analysis of stressed-strained state of vacuum chambers is vital for large thermonuclear devices during the stall of the plasma-filament apd other tpansitional operation regimes when loading for a chamber are nonstationary. To plot a mathematical model the design of the vacuum chamber is discreted on the basis of the method of final elements. To approximate vacuum shell, a plate triangular element with 3 joint points and 5 parameters in the joint is used. It is obtained due to the unity of the bemded element and the element for the flat problem. To investigate nonstationary oscillations of vacuum chambers discreted on the basis of the method of final elements, it is suggested to use the numeric conversion of the Japlace transformation. On the basis of the algorithm suggested a program of numerical function conversion is developed. Test calculations have shown a good stability of the algorithm when selecting the values of transformation parameter in the range of lower intrinsic system frequencies. The advantage of the above method is in the fact that the time-structure shift function is found instantly in the form of the series for the whole time interval and does not require temporary steps, which bring about large expenses of counting time and error accumulation

  10. Phosphate recovery as struvite within a single chamber microbial electrolysis cell.

    Science.gov (United States)

    Cusick, Roland D; Logan, Bruce E

    2012-03-01

    An energy efficient method of concurrent hydrogen gas and struvite (MgNH(4)PO(4)·6H(2)O) production was investigated based on bioelectrochemically driven struvite crystallization at the cathode of a single chamber microbial electrolysis struvite-precipitation cell (MESC). The MESC cathodes were either stainless steel 304 mesh or flat plates. Phosphate removal ranged from 20% to 40%, with higher removals obtained using mesh cathodes than with flat plates. Cathode accumulated crystals were verified as struvite using a scanning electron microscope capable of energy dispersive spectroscopy (SEM-EDS). Crystal accumulation did not affect the rate of hydrogen production in struvite reactors. The rate of struvite crystallization (g/m(2)-h) and hydrogen production (m(3)/m(3)-d) were shown to be dependent on applied voltage and cathode material. Overall energy efficiencies (substrate and electricity) were high (73 ± 4%) and not dependent on applied voltage. These results show that MESCs may be useful both as a method for hydrogen gas and struvite production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Phosphate recovery as struvite within a single chamber microbial electrolysis cell

    KAUST Repository

    Cusick, Roland D.

    2012-03-01

    An energy efficient method of concurrent hydrogen gas and struvite (MgNH 4PO 4·6H 2O) production was investigated based on bioelectrochemically driven struvite crystallization at the cathode of a single chamber microbial electrolysis struvite-precipitation cell (MESC). The MESC cathodes were either stainless steel 304 mesh or flat plates. Phosphate removal ranged from 20% to 40%, with higher removals obtained using mesh cathodes than with flat plates. Cathode accumulated crystals were verified as struvite using a scanning electron microscope capable of energy dispersive spectroscopy (SEM-EDS). Crystal accumulation did not affect the rate of hydrogen production in struvite reactors. The rate of struvite crystallization (g/m 2-h) and hydrogen production (m 3/m 3-d) were shown to be dependent on applied voltage and cathode material. Overall energy efficiencies (substrate and electricity) were high (73±4%) and not dependent on applied voltage. These results show that MESCs may be useful both as a method for hydrogen gas and struvite production. © 2011 Elsevier Ltd.

  12. Hydrodynamics of a flexible plate between pitching rigid plates

    Science.gov (United States)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  13. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  14. Dorsal skinfold chamber models in mice

    Directory of Open Access Journals (Sweden)

    Schreiter, Jeannine

    2017-07-01

    Full Text Available Background/purpose: The use of dorsal skinfold chamber models has substantially improved the understanding of micro-vascularisation in pathophysiology over the last eight decades. It allows pathophysiological studies of vascularisation over a continuous period of time. The dorsal skinfold chamber is an attractive technique for monitoring the vascularisation of autologous or allogenic transplants, wound healing, tumorigenesis and compatibility of biomaterial implants. To further reduce the animals’ discomfort while carrying the dorsal skinfold chamber, we developed a smaller chamber (the Leipzig Dorsal Skinfold Chamber and summarized the commercial available chamber models. In addition we compared our model to the common chamber. Methods: The Leipzig Dorsal Skinfold Chamber was applied to female mice with a mean weight of 22 g. Angiogenesis within the dorsal skinfold chamber was evaluated after injection of fluorescein isothiocyanate dextran with an Axio Scope microscope. The mean vessel density within the dorsal skinfold chamber was assessed over a period of 21 days at five different time points. The gained data were compared to previous results using a bigger and heavier dorsal skinfold model in mice. A PubMed and a patent search were performed and all papers related to “dorsal skinfold chamber” from 1 of January 2006 to 31 of December 2015 were evaluated regarding the dorsal skinfold chamber models and their technical improvements. The main models are described and compared to our titanium Leipzig Dorsal Skinfold Chamber model.Results: The Leipzig Dorsal Skinfold Chamber fulfils all requirements of continuous models known from previous chamber models while reducing irritation to the mice. Five different chamber models have been identified showing substantial regional diversity. The newly elaborated titanium dorsal skinfold chamber may replace the pre-existing titanium chamber model used in Germany so far, as it is smaller and lighter

  15. A combination drift chamber/pad chamber for very high readout rates

    International Nuclear Information System (INIS)

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W.; Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J.; Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P.; Arenton, M.; Conetti, S.; Cox, B.; Dukes, E.; Golovatyuk, V.; Hanlet, P.; McManus, A.; Nelson, K.; Recagni, M.; Segal, J.; Sun, J.; Ballagh, C.; Bingham, H.; Kaeding, T.; Lys, J.; Misawa, S.; Blankman, A.; Borodin, S.; Kononenko, W.; Newcomer, M.; Selove, W.; Trojak, T.; VanBerg, R.; Zhang, S.N.; Block, M.; Corti, G.; LeCompte, T.; Rosen, J.; Yao, T.; Boden, A.; Cline, D.; Ramachandran, S.; Rhoades, J.; Tokar, S.; Budagov, J.; Tsyganov, E.; Cao, Z.L.; He, M.; Wang, C.; Wei, C.; Zhang, N.; Chen, T.Y.; Yao, N.; Clark, K.; Jenkins, M.; Cooper, M.; Creti, P.; Gorini, E.; Grancagnolo, F.; Panareo, M.; Fortney, L.; Kowald, W.; Haire, M.; Judd, D.; Turnbull, L.; Wagoner, D.; Lau, K.; Mo, G.; Trischuk, J.

    1991-11-01

    Six medium-sized (∼1 x 2 m 2 ) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers

  16. A combination drift chamber/pad chamber for very high readout rates

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W. (Fermi National Accelerator Lab., Batavia, IL (United States)); Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J. (Wisconsin Univ., Madison, WI (United States)); Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P. (Pavia Univ. (Italy) Istituto Nazionale di Fisica Nucleare, Rome (Italy)); Arenton, M.; Conetti, S.

    1991-11-01

    Six medium-sized ({approx}1 {times} 2 m{sup 2}) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers.

  17. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  18. Experimental Studies on the Effects of Thermal Bumps in the Flow-Field around a Flat Plate using a Hypersonic Wind Tunnel

    Science.gov (United States)

    2012-07-01

    Bakelite Hylem F1361, which is a thermosetting plastic consisting of a medium weave fabric reinforced laminate with Melamine resin binder. This composite...can be used for high-speed flow control. The laser ablation was conducted on the aluminium alloy plate inside a pressure chamber, where the

  19. Change of Pressing Chamber Conicalness at Briquetting Process in Briquetting Machine Pressing Chamber

    Directory of Open Access Journals (Sweden)

    Peter Križan

    2012-01-01

    Full Text Available In this paper, we will present the impact of the conical shape of a pressing chamber, an important structural parameter. Besides the known impact of the technological parameters of pressing chambers, it is also very important to pay attention to their structural parameters. In the introduction, we present a theoretical analysis of pressing chamber conicalness. An experiment aimed at detecting this impact was performed at our institute, and it showed that increasing the conicalness of a pressing chamber improves the quality of the final briquettes. The conicalness of the pressing chamber has a significanteffect on the final briquette quality and on the construction of briquetting machines. The experimental findings presented here show the importance of this parameter in the briquetting process.

  20. Technical Capability Upgrades to the NASA Langley Research Center 6 ft. by 6 ft. Thermal Vacuum Chamber

    Science.gov (United States)

    Thornblom, Mark N.; Beverly, Joshua; O'Connell, Joseph J.; Mau, Johnny C.; Duncan, Dwight L.

    2014-01-01

    The 6 ft. by 6 ft. thermal vacuum chamber (TVAC), housed in Building 1250 at the NASA Langley Research Center (LaRC), and managed by the Systems Integration and Test Branch within the Engineering Directorate, has undergone several significant modifications to increase testing capability, safety, and quality of measurements of articles under environmental test. Significant modifications include: a new nitrogen thermal conditioning unit for controlling shroud temperatures from -150degC to +150degC; two horizontal auxiliary cold plates for independent temperature control from -150degC to +200degC; a suite of contamination monitoring sensors for outgassing measurements and species identification; signal and power feed-throughs; new pressure gauges; and a new data acquisition and control commanding system including safety interlocks. This presentation will provide a general overview of the LaRC 6 ft. by 6 ft. TVAC chamber, an overview of the new technical capabilities, and illustrate each upgrade in detail, in terms of mechanical design and predicted performance. Additionally, an overview of the scope of tests currently being performed in the chamber will be documented, and sensor plots from tests will be provided to show chamber temperature and pressure performance with actual flight hardware under test.

  1. Sleeve reaction chamber system

    Science.gov (United States)

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  2. Dual-chamber inflatable oil boom

    International Nuclear Information System (INIS)

    Blair, R.M.; Tedeschi, E.T.

    1993-01-01

    An elongated floating material containment boom section is described having a normally vertical ballasted skirt depending from flotation means, and convertible from a flattened collapsed condition to a deployable condition wherein buoyancy chamber means extending along the upper edge of said skirt are inflated to expanded buoyant configuration, including: a gas-impervious sleeve extending along the upper edge of said normally vertical skirt forming a first outer collapsible and inflatable flotation chamber, a first inflation valve connecting the interior of said sleeve with the ambient atmosphere, through which gas under pressure may be introduced into said sleeve to inflate said first buoyant outer flotation chamber, elongated gas-impervious tube means positioned inside said outer flotation chamber and forming second collapsible and inflatable internal flotation bladder chamber means, second inflation valve means connecting the interior of said bladder means through said outer flotation chamber to the ambient atmosphere through which gas under pressure may be introduced into said bladder means to inflate it forming said second flotation chamber means inside said outer flotation chamber

  3. BEBC bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  4. Climatic chamber ergometer

    CSIR Research Space (South Africa)

    Atkins, AR

    1968-01-01

    Full Text Available The design and calibration of an ergometer for exercising subjects during calorimetric studies in the climate chamber, are described. The ergometer is built into the climatic chamber and forms an integral part of the whole instrumentation system foe...

  5. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  6. Reference ionization chamber

    International Nuclear Information System (INIS)

    Golnik, N.; Zielczynski, M.

    1999-01-01

    The paper presents the design of ionization chamber devoted for the determination of the absolute value of the absorbed dose in tissue-equivalent material. The special attention was paid to ensure that the volume of the active gas cavity was constant and well known. A specific property of the chamber design is that the voltage insulators are 'invisible' from any point of the active volume. Such configuration ensures a very good time stability of the electrical field and defines the active volume. The active volume of the chamber was determined with accuracy of 0.3%. This resulted in accuracy of 0.8% in determination of the absorbed dose in the layer of material adherent to the gas cavity. The chamber was applied for calibration purposes at radiotherapy facility in Joint Institute for Nuclear Research in Dubna (Russia) and in the calibration laboratory of the Institute of Atomic Energy in Swierk. (author)

  7. Development and test of a free-streaming readout chain for the CBM time of flight wall

    International Nuclear Information System (INIS)

    Loizeau, Pierre-Alain

    2014-01-01

    This thesis presents the development and test of a free-streaming readout chain for the Time of Flight (TOF) Wall of the Compressed Baryonic Matter (CBM) experiment. In order to contribute to the exploration of the phase diagram of strongly interacting matter, CBM aims at the measurement of rare probes, whose yields and phase space distributions are significantly influenced by their environment. Many of the possible signals, of which the antiprotons was investigated within this thesis, require an excellent Particle Identification (PID) and a new readout paradigm called free-streaming. In CBM, the PID for charged particles is provided by a TOF wall based on Multi-gap Resistive Plate Chambers (MRPC). Within the thesis, a central component of the TOF readout chain, the free-streaming ASIC-TDC, was evaluated and pushed from the prototype level to a close to final design, for which it could be demonstrated that it fulfill all the CBM requirements: resolution, rate capability and stability. Additionally, the CBM TOF software in the CBMROOT software framework was reorganized to merge the processing and analysis of real and simulated data. A data unpacker and a realistic digitizer were implemented with a common output data format. The digitizer was used to estimate the data rates and number of components in a free-streaming readout chain for the full wall.

  8. Improvement of Nonlinearity Correction for BESIII ETOF Upgrade

    Science.gov (United States)

    Sun, Weijia; Cao, Ping; Ji, Xiaolu; Fan, Huanhuan; Dai, Hongliang; Zhang, Jie; Liu, Shubin; An, Qi

    2015-08-01

    An improved scheme to implement integral non-linearity (INL) correction of time measurements in the Beijing Spectrometer III Endcap Time-of-Flight (BESIII ETOF) upgrade system is presented in this paper. During upgrade, multi-gap resistive plate chambers (MRPC) are introduced as ETOF detectors which increases the total number of time measurement channels to 1728. The INL correction method adopted in BESIII TOF proved to be of limited use, because the sharply increased number of electronic channels required for reading out the detector strips degrade the system configuration efficiency severely. Furthermore, once installed into the spectrometer, BESIII TOF electronics do not support the TDCs' nonlinearity evaluation online. In this proposed method, INL data used for the correction algorithm are automatically imported from a non-volatile read-only memory (ROM) instead of from data acquisition software. This guarantees the real-time performance and system efficiency of the INL correction, especially for the ETOF upgrades with massive number of channels. Besides, a signal that is not synchronized to the system 41.65 MHz clock from BEPCII is sent to the frontend electronics (FEE) to simulate pseudo-random test pulses for the purpose of online nonlinearity evaluation. Test results show that the time measuring INL errors in one module with 72 channels can be corrected online and in real time.

  9. Plastic flashtube chambers

    International Nuclear Information System (INIS)

    Frisken, W.R.

    1977-01-01

    A brief discussion is given of the use and operation of plastic flashtube chambers. Gas leaks, electric pulsing, the glow discharge, and readout methods are considered. Three distinct problems with high rate applications deal with resolving time, dead time, and polarization/neutralization of the chamber

  10. General cavity theory in the dosimetry of X-rays. Experimental study with a high-pressure chamber

    International Nuclear Information System (INIS)

    Janssens, A.; Eggermont, G.; Jacobs, R.

    1978-01-01

    Consistent models have been constructed for the calculation of the stopping power ratio in the limiting cases of small and large cavity sizes. The direct application of this theory is inhibited by the lack of data on isotropic backscatter coefficients and the uncertainty in the appropriate interpolation procedure between the limiting cases. An experimental arrangement has been set up to yield confirmation of the theory and to provide the missing information. Measurements have been made of the ionization density in a parallel-plate chamber with gold walls, filled with air pressurized from 1 to 25 atm. The plate separation is 4 mm and the effective energy of the heavily filtered X-rays is 170 keV, such that quite a large of cavity sizes is covered, from about one tenth of the average electron range to about the maximum range. The collecting plate of the chamber consists of a 10 cm dia. collecting electrode surrounded by a 5 cm guard ring, such that no side wall effects occur. Through attenuation of the X-rays in the walls of the pressure vessel, the air mass and the gold foils, a large fluence of secondary photons is produced, which has been calculated with great accuracy. The experimental data and the calculated values of the stopping power ratio (air to gold) show good agreement, within the limits of confidence of the energy absorption coefficients. Further analysis of the data shows the need to use a 24% smaller value for the ratio of absorption coefficients (air to gold), and determines the energy backscatter coefficient of gold (bsub(en)=0.49) and the interpolation procedure. The consequences of applying cavity theory in dosimetry are discussed. (author)

  11. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  12. Prototype multiwire proportional chamber

    CERN Multimedia

    1975-01-01

    Chambers of this type were initially developed within the Alpha project (finally not approved). They were designed such to minimize the radiation length with a view to a mass spectrometer of high resolution meant to replace the Omega detector. The chambers were clearly forerunners for the (drift) chambers later built for R606 with the novel technique of crimping the wires. See also photo 7510039X.

  13. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  14. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  15. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    Science.gov (United States)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  16. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    Science.gov (United States)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  17. Directed Energy Anechoic Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The Directed Energy Anechoic Chamber comprises a power anechoic chamber and one transverse electromagnetic cell for characterizing radiofrequency (RF) responses of...

  18. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  19. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  20. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  1. Directional muon jet chamber for a muon collider (Groovy Chamber)

    International Nuclear Information System (INIS)

    Atac, M.

    1996-10-01

    A directional jet drift chamber with PAD readout is proposed here which can select vertex originated muons within a given time window and eliminate those muons which primarily originate upstream, using only a PAD readout. Drift time provides the Z-coordinate, and the center of gravity of charge distribution provides the r-ψ coordinates. Directionality at the trigger level is obtained by the timing measurement from the PAD hits within a given time window. Because of the long drift time between the bunch crossings, a muon collider enables one to choose a drift distance in the drift chamber as long as 50 cm. This is an important factor in reducing cost of drift chambers which have to cover relatively large areas

  2. Pencil-shaped radiation detection ionization chamber

    International Nuclear Information System (INIS)

    Suzuki, A.

    1979-01-01

    A radiation detection ionization chamber is described. It consists of an elongated cylindrical pencil-shaped tubing forming an outer wall of the chamber and a center electrode disposed along the major axis of the tubing. The length of the chamber is substantially greater than the diameter. A cable connecting portion at one end of the chamber is provided for connecting the chamber to a triaxial cable. An end support portion is connected at the other end of the chamber for supporting and tensioning the center electrode. 17 claims

  3. Improvement of Swirl Chamber Structure of Swirl-Chamber Diesel Engine Based on Flow Field Characteristics

    Directory of Open Access Journals (Sweden)

    Wenhua Yuan

    2014-10-01

    Full Text Available In order to improve combustion characteristic of swirl chamber diesel engine, a simulation model about a traditional cylindrical flat-bottom swirl chamber turbulent combustion diesel engine was established within the timeframe of the piston motion from the bottom dead centre (BDC to the top dead centre (TDC with the fluent dynamic mesh technique and flow field vector of gas in swirl chamber and cylinder; the pressure variation and temperature variation were obtained and a new type of swirl chamber structure was proposed. The results reveal that the piston will move from BDC; air in the cylinder is compressed into the swirl chamber by the piston to develop a swirl inside the chamber, with the ongoing of compression; the pressure and temperature are also rising gradually. Under this condition, the demand of diesel oil mixing and combusting will be better satisfied. Moreover, the new structure will no longer forma small fluid retention zone at the lower end outside the chamber and will be more beneficial to the mixing of fuel oil and air, which has presented a new idea and theoretical foundation for the design and optimization of swirl chamber structure and is thus of good significance of guiding in this regard.

  4. Tasks related to increase of RA reactor exploitation and experimental potential, 01. Designing the protection chamber in the RA reactor hall for handling the radioactive experimental equipment (I-II) Part II, Vol. II; Radovi na povecanju eksploatacionih i eksperimentalnih mogucnosti reaktora RA, 01. Projektovanje zastitne komore u hali reaktora RA za rad sa aktivnim eksperimentalnim uredjajima (I-II), II Deo, Album II

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-07-15

    This second volume of the project for construction of the protection chamber in the RA reactor hall for handling the radioactive devices includes the technical description of the chamber, calculation of the shielding wall thickness, bottom lead plate, horizontal stability of the chamber, cost estimation, and the engineering drawings.

  5. Differences between signal currents for both polarities of applied voltages on cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.

    2000-01-01

    It is necessary to obtain precise values of signal currents for the measurement of exposure rates for gamma rays with cavity ionization chambers. Signal currents are usually expected to have the same absolute values for both polarities of applied voltages. In the case of cylindrical cavity ionization chambers, volume recombination loss of ion pairs depends on the polarity of the applied voltage. This is because the values of mobility are different for positive and negative ions. It was found, however, that values of signal currents from a cylindrical ionization chamber change slightly more with a negative than with a positive applied voltage, even after being corrected for volume recombination loss. Moreover, absolute values of saturation currents, which are obtained by extrapolation of correction of initial recombination and diffusion loss, were larger for the negative than for the positive applied voltage. It is known from an experiment with parallel plate ionization chambers that when negative voltage is applied to the repeller electrode, the saturated signal current decreases with an increase in the applied voltage. This is because secondary electrons are accelerated and the stopping power of air for these electrons decreases. When positive voltage is applied, the reverse is true. The effects of acceleration and deceleration of secondary electrons by the electric field thus seem to cause a tendency opposite to the experimental results on the signal currents from cylindrical ionization chambers. The experimental results for the cylindrical ionization chamber can be explained as follows. When negative voltage is applied, secondary electrons are attracted to the central (collecting) electrode. Consequently, the path length of the trajectories of these secondary electrons in the ionization volume increases and signal current increases. The energy gain from the electric field by secondary electrons which stop in the ionization chamber also contributes to the

  6. Application of multiwire proportional chamber in BEPC test beam

    International Nuclear Information System (INIS)

    Shen Ji; Chen Ziyu; Ye Yunxiu; Cuiu Xiangzong; Li Jiacai

    2006-01-01

    This paper describes a Multiwire Proportional Chamber (MWPC) for the Test Beam on BEPC (Beijing Electron Positron Colider). The distance between the anode surface and the cathode surface of the MWPC is 6 mm. Both surfaces are made of gold-plated tungsten wires, the anode wires are 20 μm in diameter and 2 mm apart, and the cathode wires are 50 μm indiameter and 0.7 mm apart. Six adjacent wires are connected together to form a 4.2 mm wide cathode strip. The MWPC can localize the particles of e, π by cathode-induced charge centre-of-gravity read-out. For 5.9 keV γ photon, the positional resolution is less than 0.3 mm (FWHM) and for 1.1 GeV beam electron, 0.224 mm (FWHM) positional resolution is attained. (authors)

  7. Establishment of a radon test chamber

    International Nuclear Information System (INIS)

    Chen Chingjiang; Liu Chichang; Lin Yuming

    1993-01-01

    A walk-in type radon test chamber of 23 m 3 has been built for testing and calibration of radon measurement instruments. The environmental conditions of the test chamber can be varied within a wide range of values. The design objectives specification, monitoring instruments and testing results of this chamber are discussed. This test chamber is available for domestic radon researchers and its accuracy can be traced to the international standard. A routine intercomparison study will be held annually by using this chamber. Other tests like radon progeny and thoron standard may also be performed in this chamber. (1 fig.)

  8. Imaging plate, a new type of x-ray area detector

    International Nuclear Information System (INIS)

    Kamiya, Nobuo; Amemiya, Yoshiyuki; Miyahara, Junji.

    1986-01-01

    In respective fields of X-ray crystallography, for the purpose of the efficient collection of reciprocal space information, two-dimensional X-ray detectors such as multiwire proportional chambers and X-ray television sets have been used together with conventional X-ray films. X-ray films are characterized by uniform sensitivity and high positional resolution over a wide area, but the sensitivity is low, and the range of action and the linearity of the sensitivity is problematic. They require the development process, accordingly lack promptitude. The MWPCs and X-ray television sets are superior in the sensitivity, its linearity, the range of action and promptitude, but interior in the uniformity and resolution to the films. Imaging plate is a new X-ray area detector developed by Fuji Photo Film Co., Ltd., for digital X-ray medical image diagnosis. This detector is superior in all the above mentioned performances, and it seems very useful also for X-ray crystallography. In this paper, the system composed of an imaging plate and its reader is described, and the basic performance as an X-ray area detector and the results of having recorded the diffraction images of protein crystals as the example of applying it to X-ray crystallography are reported. The imaging plate is that the crystalline fluorescent powder of BaFBr doped with Eu 2+ ions is applied on plastic films. (Kako, I.)

  9. Strip Ionization Chamber as Beam Monitor in the Proton Therapy Eye Treatment

    Science.gov (United States)

    Marchetto, F.; Cirio, R.; Garella, M. A.; Giordanengo, S.; Boriano, A.; Givehchi, N.; La Rosa, A.; Peroni, C.; Donetti, M.; Bourhaleb, F.; Pitta', G.; Cirrone, G. A. P.; Cuttone, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-04-01

    Since spring 2002, ocular pathologies have been treated in Catania at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) within a collaboration between INFN Laboratori Nazionali del Sud (LNS), Physics Department, Ophthalmology Institute, Radiology Institute of the Catania University and CSFNSM Catania. A beam line from a 62 MeV Superconducting Cyclotron is used to treat shallow tumors. The beam is conformed to the tumor shape with a passive delivery system. A detector system has been developed in collaboration with INFN-Torino to be used as real time beam monitor. The detector, placed upstream of the patient collimator, consists of two parallel plate ionization chambers with the anode segmented in strips. Each anode is made of 0.5 mm-wide 256 strips corresponding to (12.8 × 12.8) cm2 sensitive area. With the two strip ionization chambers one can measure the relevant beam parameters during treatment to probe both asymmetry and flatness. In the test carried out at CATANA the detector has been used under different and extreme beam conditions. Preliminary results are given for profiles and skewness, together with a comparison with reference detectors.

  10. High rate operation of micro-strip gas chambers on diamond-coated glass

    CERN Document Server

    Bouclier, Roger; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Temmel, T; Cooke, R A; Donnel, S; Sastri, S A; Sonderer, N

    1996-01-01

    Very high rate operation of micro­strip gas chambers can be achieved using slightly conducting substrates. We describe preliminary measurements realized with detectors manufactured on boro-silicate glass coated, before the photo-lithographic processing, with a diamond layer having a surface resistivity of around 1014 ‡/o. Stable medium-term operation, and a rate capability largely exceeding the one obtained with identical plates manufactured on uncoated glass are demonstrated. If these results are confirmed by long-term measurements the diamond coating technology appears very attractive since it allows, with a moderate cost overhead, to use thin, commercially available glass with the required surface quality for the large-scale production of gas micro-strip detectors.

  11. Drying of fruits and vegetables using a flat plate solar collector with convective air flow

    International Nuclear Information System (INIS)

    Mansoor, K.K.; Hanif, M.

    2011-01-01

    This paper presents the analysis of drying of different fruits and vegetables dried by a flat plate solar collector developed at the Department of Agricultural Mechanization, Khyber PukhtunKhwa Agricultural University Peshawar, Pakistan. A small flat plate solar collector is designed and tested for its maximum performance in terms of efficiency with different convective flow rates. The collector assembly is divided into two parts. The flat plate solar collector and the drying chamber. The materials used for flat plate solar collector are wood, steel sheet, Insulation materials, and glass sheet as covering material. The insulation box (0.9 x 1.8 x 0.3 meter) is made up of wood of popular and deodar, to be fully isolated with the help of polystyrene. The absorber is black painted v-corrugated steel sheet. Collector has a tilt angle of 34 deg. (Equivalent to the latitude of Peshawar). The covering material is (0.9 x 1.8 meter) and 5 mm thick glass sheet placed at the top of the wooden box. The collector is supported and tilted with the help of a frame made up of iron angled arms. While the drying chamber is a (1 X 0.5 x 0.3 meter) wooden box connected to the outlet duct of the collector with the help of polyvinylchloride pipe. Experiments were conducted different fruits and vegetables and different parameters like moisture lost by the products in each hour, drying rate at each hour of drying, humidity and temperature of the drying chamber. It was observed that the products such as bitter guard and onion were dried in 10 to 2 hours up to moisture content less then 8%. These two product lost 8% to 10% moisture during each hour of drying. While grapes and Green chili are dried in 24 to 25 hours up to moisture content less then 8%. These two products lost 4% to 5% moisture in each hour of drying. The drying rate of all the products dried was very much consistent. It was observed that onion and bitter guard showed a good drying rate of 0.03[g(H/sub 2/O)/g(d.m).cm/ 2 hr] to

  12. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E-C Co., Seongnam (Korea, Republic of)

    2014-10-15

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  13. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    International Nuclear Information System (INIS)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Gun Hong

    2014-01-01

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  14. Cloud Chamber

    DEFF Research Database (Denmark)

    Gfader, Verina

    Cloud Chamber takes its roots in a performance project, titled The Guests 做东, devised by Verina Gfader for the 11th Shanghai Biennale, ‘Why Not Ask Again: Arguments, Counter-arguments, and Stories’. Departing from the inclusion of the biennale audience to write a future folk tale, Cloud Chamber......: fiction and translation and translation through time; post literacy; world picturing-world typing; and cartographic entanglements and expressions of subjectivity; through the lens a social imaginary of worlding or cosmological quest. Art at its core? Contributions by Nikos Papastergiadis, Rebecca Carson...

  15. Spray and Combustion Characteristics of a Novel Multi-circular Jet Plate in Air-assisted Atomizer

    Directory of Open Access Journals (Sweden)

    Hisham Amirnordin Shahrin

    2017-01-01

    Full Text Available Atomization of liquid fuel in air-assisted atomizer is highly dependent on air mixing, which can be enhanced using turbulent generators, such as multi-circular jet (MCJ plates and swirler. This study aims to determine the effects of novel MCJ plates on the spray and combustion characteristics of an air-assisted atomizer by evaluating spray and flame parameters, such as penetration length, cone angle, and cone area. MCJ 30 and MCJ 45, with inclined jets at 30° and 45°, respectively, were used in the experiment. A swirler was also used for comparison. The spray and flame images were recorded at different equivalence ratios through direct photography and analyzed using image J software. Flame temperature was determined using a thermal infrared camera, and burning chamber and flue gas temperatures were measured using thermocouples. The spray and flame characteristics of MCJ 30 exhibited performance comparable with those of the MCJ 45 and swirler. The integration of turbulence and swirling motion concept into the novel MCJ plates can enhance the mixing formation and thus improve the performance of burner combustion.

  16. A Highly Selective First-Level Muon Trigger With MDT Chamber Data for ATLAS at HL-LHC

    CERN Document Server

    INSPIRE-00390105

    2016-07-11

    Highly selective triggers are essential for the physics programme of the ATLAS experiment at HL-LHC where the instantaneous luminosity will be about an order of magnitude larger than the LHC instantaneous luminosity in Run 1. The first level muon trigger rate is dominated by low momentum muons below the nominal trigger threshold due to the moderate momentum resolution of the Resistive Plate and Thin Gap trigger chambers. The resulting high trigger rates at HL-LHC can be su?ciently reduced by using the data of the precision Muon Drift Tube chambers for the trigger decision. This requires the implementation of a fast MDT read-out chain and of a fast MDT track reconstruction algorithm with a latency of at most 6 microseconds. A hardware demonstrator of the fast read-out chain has been successfully tested at the HL-LHC operating conditions at the CERN Gamma Irradiation Facility. The fast track reconstruction algorithm has been implemented on a fast trigger processor.

  17. A Highly Selective First-Level Muon Trigger With MDT Chamber Data for ATLAS at HL-LHC

    CERN Document Server

    Nowak, Sebastian; The ATLAS collaboration

    2015-01-01

    Highly selective triggers are essential for the physics programme of the ATLAS experiment at HL-LHC where the instantaneous luminosity will be about an order of magnitude larger than the LHC design luminosity. The Level-1 muon trigger rate is dominated by low momentum muons below the nominal trigger threshold due to the limited momentum resolution of the Resistive Plate and Thin Gap trigger chambers. The resulting high trigger rates at HL-LHC can be sufficient reduced by using the data of the precision Muon Drift Tube chambers for the trigger decision. This requires the implementation of a fast MDT read-out chain and of a fast MDT track reconstruction algorithm with a latency of at most 6~$\\mu$s. A hardware demonstrator of the fast read-out chain has been successfully tested at the high HL-LHC background rates at the CERN Gamma Irradiation Facility. The fast track reconstruction algorithm has been implemented on a fas trigger processor.

  18. A new Highly Selective First Level ATLAS Muon Trigger With MDT Chamber Data for HL-LHC

    CERN Document Server

    Nowak, Sebastian; The ATLAS collaboration

    2015-01-01

    Highly selective first level triggers are essential for the physics programme of the ATLAS experiment at the HL-LHC where the instantaneous luminosity will exceed the LHC's instantaneous luminosity by almost an order of magnitude. The ATLAS first level muon trigger rate is dominated by low momentum sub-trigger threshold muons due to the poor momentum resolution at trigger level caused by the moderate spatial resolution of the resistive plate and thin gap trigger chambers. This limitation can be overcome by including the data of the precision muon drift tube chambers in the first level trigger decision. This requires the implementation of a fast MDT read-out chain and a fast MDT track reconstruction. A hardware demonstrator of the fast read-out chain was successfully tested under HL-LHC operating conditions at CERN's Gamma Irradiation Facility. It could be shown that the data provided by the demonstrator can be processed with a fast track reconstruction algorithm on an ARM CPU within the 6 microseconds latency...

  19. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  20. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  1. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  2. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. Radiation shielding plate

    International Nuclear Information System (INIS)

    Kobayashi, Torakichi; Sugawara, Takeo.

    1983-01-01

    Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)

  4. Plating on difficult-to-plate metals: what's new

    International Nuclear Information System (INIS)

    Wiesner, H.J.

    1980-01-01

    Some of the changes since 1970 in procedures for plating on such materials as titanium, molybdenum, silicon, aluminum, and gallium arsenide are summarized. While basic procedures for plating some of these materials were developed as many as 30 to 40 years ago, changes in the end uses of the plated products have necessitated new plating processes. In some cases, vacuum techniques - such as ion bombardment, ion implantation, and vacuum metallization - have been introduced to improve the adhesion of electrodeposits. In other cases, these techniques have been used to deposit materials upon which electrodeposits are required

  5. Criteria for controlled atmosphere chambers

    International Nuclear Information System (INIS)

    Robinson, J.N.

    1980-03-01

    The criteria for design, construction, and operation of controlled atmosphere chambers intended for service at ORNL are presented. Classification of chambers, materials for construction, design criteria, design, controlled atmosphere chamber systems, and operating procedures are presented. ORNL Safety Manual Procedure 2.1; ORNL Health Physics Procedure Manual Appendix A-7; and Design of Viewing Windows are included in 3 appendices

  6. Effect of plate shapes in orifice plate type flowmeters

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1984-01-01

    The study of unusual plate shapes in orifice plate type flowmeters is presented, with a view to providing data for the substitution of the plate with one centered circular orifice in those applications where its use is not possible. For this purpose, six pairs of plates with different forms, with and without chamfered edges, were made and tested in a closed water loop. Results show that, generally, the use of chamfers improves the results and, in the case of perforated and slotlike orificed plates, the narrow-ness of the fluid passage tends to make unnecessary its use. (Author) [pt

  7. Proceedings of workshop on streamer chamber

    International Nuclear Information System (INIS)

    Itoh, Hidihiko; Takahashi, Kaoru; Hirose, Tachishige; Masaike, Akira

    1978-08-01

    For high accuracy observation of multiple-body reactions, a vertex detector of high efficiency is essential. A bubble chamber, though excellent for tracks detection, is problematic in statistics accuracy. The vertex detector with a wire chamber, while better in this respect, difficult in multiple-particle detection etc. The workshop has had several meetings on a streamer chamber as a detector combining features of both bubble chamber and counter, with emphasis on tracks observation in avalanche mode and recordings not using films. Contents are on streamer chamber gas, analytical photography, data processing, simulation program, etc. (Mori, K.)

  8. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  9. Gridded Ionization Chamber

    International Nuclear Information System (INIS)

    Manero Amoros, F.

    1962-01-01

    In the present paper the working principles of a gridded ionization chamber are given, and all the different factors that determine its resolution power are analyzed in detail. One of these devices, built in the Physics Division of the JEN and designed specially for use in measurements of alpha spectroscopy, is described. finally the main applications, in which the chamber can be used, are shown. (Author) 17 refs

  10. The CLEO III drift chamber

    CERN Document Server

    Peterson, D; Briere, R A; Chen, G; Cronin-Hennessy, D; Csorna, S; Dickson, M; Dombrowski, S V; Ecklund, K M; Lyon, A; Marka, S; Meyer, T O; Patterson, J R; Sadoff, A; Thies, P; Thorndike, E H; Urner, D

    2002-01-01

    The CLEO group at the Cornell Electron Storage Ring has constructed and commissioned a new central drift chamber. With 9796 cells arranged in 47 layers ranging in radius from 13.2 to 79 cm, the new drift chamber has a smaller outer radius and fewer wires than the drift chamber it replaces, but allows the CLEO tracking system to have improved momentum resolution. Reduced scattering material in the chamber gas and in the inner skin separating the drift chamber from the silicon vertex detector provides a reduction of the multiple scattering component of the momentum resolution and an extension of the usable measurement length into the silicon. Momentum resolution is further improved through quality control in wire positioning and symmetry of the electric fields in the drift cells which have provided a reduction in the spatial resolution to 88 mu m (averaged over the full drift range).

  11. Exact and near backscattering measurements of the linear depolarisation ratio of various ice crystal habits generated in a laboratory cloud chamber

    Science.gov (United States)

    Smith, Helen R.; Connolly, Paul J.; Webb, Ann R.; Baran, Anthony J.

    2016-07-01

    Ice clouds were generated in the Manchester Ice Cloud Chamber (MICC), and the backscattering linear depolarisation ratio, δ, was measured for a variety of habits. To create an assortment of particle morphologies, the humidity in the chamber was varied throughout each experiment, resulting in a range of habits from the pristine to the complex. This technique was repeated at three temperatures: -7 °C, -15 °C and -30 °C, in order to produce both solid and hollow columns, plates, sectored plates and dendrites. A linearly polarised 532 nm continuous wave diode laser was directed through a section of the cloud using a non-polarising 50:50 beam splitter. Measurements of the scattered light were taken at 178°, 179° and 180°, using a Glan-Taylor prism to separate the co- and cross-polarised components. The intensities of these components were measured using two amplified photodetectors and the ratio of the cross- to co-polarised intensities was measured to find the linear depolarisation ratio. In general, it was found that Ray Tracing over-predicts the linear depolarisation ratio. However, by creating more accurate particle models which better represent the internal structure of ice particles, discrepancies between measured and modelled results (based on Ray Tracing) were reduced.

  12. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  13. Absorbed dose measurement by using tissue equivalent ionization chamber (pair ionization chamber) in the Yayoi reactor

    International Nuclear Information System (INIS)

    Sasuga, N.; Okamura, K.; Terakado, T.; Mabuchi, Y.; Nakagawa, T.; Sukegawa, Toshio; Aizawa, C.; Saito, I.; Oka, Yoshiaki

    1998-01-01

    Each dose rate of neutron and gamma ray in the thermal column of the Yayoi reactor, in which an epithermal neutron field will be used for the boron neutron capture therapy, was measured by using a tissue equivalent ionization chamber and a graphite chamber. The tissue equivalent ionization chamber has some response to both neutron and gamma ray, but the graphite chamber has a few response to the neutron, so called pair ionization chamber method. The epithermal neutron fluxes of the thermal column were calculated by ANISN (one dimensional neutron-gamma transport code). A measured value for gamma dose rate by the pair ionization chamber agrees relevantly with a calculated result. For neutron dose rate, however, the measured value was too much small in comparison with the calculated result. The discrepancy between the measured value and the calculated result for neutron dose rate is discussed in detail in the report. (M. Suetake)

  14. Development of secondary chamber for tar cracking-improvement of wood pyrolysis performance in pre-vacuum chamber

    Science.gov (United States)

    Siahaan, S.; Homma, H.; Homma, H.

    2018-02-01

    Energy crisis and global warming, in other words, climate change are critical topics discussed in various parts of the world. Global warming primarily result from too much emission of carbon dioxide (CO2) in the atmosphere. To mitigate global warming, or climate change and improve electrification in rural areas, wood pyrolysis technology is developed in a laboratory scale, of which gases are directly applicable to the gas engine generator. Our laboratory has developed a prototype of wood pyrolysis plant with a pre-vacuum chamber. However, tar yield was around 40 wt% of feedstock. This research aims to reduce tar yield by secondary tar cracking. For the secondary tar cracking, a secondary pre-vacuum chamber is installed after primary pre-vacuum chamber. Gases generated in the primary pre-vacuum chamber are lead into the secondary chamber that is heated up to 1000 K. This paper reports performance of the secondary chamber for secondary tar cracking in homogeneous mode and heterogeneous mode with char.

  15. TH-C-19A-09: Quantification of Transmission and Backscatter Factors as a function of Distance to Inhomogeneity Interface for Three Types of Surgical Implant Plates

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D; Mills, M; Wang, B [University of Louisville, Louisville, KY (United States)

    2014-06-15

    Purpose: Carbon fiber materials have been increasingly used clinically, mainly in orthopedics, as an alternative to metallic implants because of their minimal artifacts on CT and MRI images. This study characterizes the transmission and backscatter property of carbon fiber plates (CarboFix Orthopedics, Herzeliya, Israel) with measurements for radiation therapy applications, and compares them to traditional Stainless Steel (SS) and Titanium (Ti) metal materials. Methods: For the transmission measurements, 1-mm-thick test plate was placed upstream from a plane parallel Markus chamber, separated by various thicknesses of polystyrene plates in 0.5 cm increments between 0 and 5 cm. With this setup, we quantified the radiation transmission as a function of distance to the inhomogeneity interface. The LINAC source to detector distance was maintained at 100 cm and 200 MU was delivered for each measurement. Two 3-cm solid water phantoms were placed at the top and bottom to provide build up. All the measurements were performed for 6 MV and 18 MV photons. The backscatter measurements had the identical setup, except that the test plate was downstream of the chamber from radiation. Results: The carbon fiber plates did not introduce any measureable inhomogeneity effect on the transmission and backscatter factor because of its low atomic number. In contrast, traditional metal implant materials caused up to 15% dose difference at upstream and 25% backscatter at downstream from radiation. Such differences decrease as the distance to the inhomogeneity interface increases and become unmeasurable at distance of 3 cm and 1 cm for upstream and downstream, respectively. Conclusion: A new type of carbon fiber implant plate was evaluated and found to have minimal inhomogeneity effect in MV radiation beams. Patients would benefit from a carbon based implant over metal for radiation therapy due to their minimal backscatter and imaging artifacts.

  16. Proportional chamber with data analog output

    International Nuclear Information System (INIS)

    Popov, V.E.; Prokof'ev, A.N.

    1977-01-01

    A proportional multiwier chamber is described. The chamber makes it possible to determine angles at wich a pion strikes a polarized target. A delay line, made of 60-core flat cable is used for removing signals from the chamber. From the delay line, signals are amplified and successively injected into shapers and a time-to-amplitude converter. An amplitude of the time-to amplitude converter output signal unambiguously determines the coordinate of a point at which a particle strikes the chamber plane. There are also given circuits of amplifiers, which consist of a preamplifier with gain 30 and a main amplifier with adjustable gain. Data on testing the chamber with the 450 MeV pion beam is demonstrated. The chamber features an efficiency of about 98 per cent under load of 2x10 5 s -1

  17. A compact multi-plate fission chamber for the simultaneous measurement of 233U capture and fission cross-sections

    Directory of Open Access Journals (Sweden)

    Bacak M.

    2017-01-01

    Full Text Available 233U plays the essential role of fissile nucleus in the Th-U fuel cycle. A particularity of 233U is its small neutron capture cross-section which is about one order of magnitude lower than the fission cross-section on average. Therefore, the accuracy in the measurement of the 233U capture cross-section essentially relies on efficient capture-fission discrimination thus a combined setup of fission and γ-detectors is needed. At CERN n_TOF the Total Absorption Calorimeter (TAC coupled with compact fission detectors is used. Previously used MicroMegas (MGAS detectors showed significant γ-background issues above 100 eV coming from the copper mesh. A new measurement campaign of the 233U capture cross-section and alpha ratio is planned at the CERN n_TOF facility. For this measurement, a novel cylindrical multi ionization cell chamber was developed in order to provide a compact solution for 14 active targets read out by 8 anodes. Due to the high specific activity of 233U fast timing properties are required and achieved with the use of customized electronics and the very fast ionizing gas CF4 together with a high electric field strength. This paper describes the new fission chamber and the results of the first tests with neutrons at GELINA proving that it is suitable for the 233U measurement.

  18. Create Your Plate

    Medline Plus

    Full Text Available ... Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective ... foods within each food category. Try these seven steps to get started: Using your dinner plate, put ...

  19. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  20. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  1. Thermal and radiation loads on the first wall and divertor plates in the KTM tokamak

    International Nuclear Information System (INIS)

    Azizov, Eh.A.; Buzhinskij, O.I.; Gladush, G.G.; Darmagraj, V.V.; Priyampol'skij, I.R.; Dvorkin, N.Ya.; Lejkin, I.N.; Tazhibaeva, I.L.; Shestakov, V.P.

    2001-01-01

    The constructing of the KTM tokamak is intended for wide scale studies of behavior both inner-chamber element materials and structures (first wall, limiters, divertor, hf-antennas, etc.) under conditions approaching to the ITER-FEAT and a future thermonuclear reactors. The KTM tokamak is designed for maintain of interaction conditions of plasma-wall, plasma flows and divertor field, stimulating conditions of ITER-FEAT; and for examination of a future tokamaks' materials. In the work the thermal loads on the first wall, divertor plates are presented

  2. Pressure vessel rupture within a chamber: the pressure history on the chamber wall

    International Nuclear Information System (INIS)

    Baum, M.R.

    1989-04-01

    Generally there is a large number of pressure vessels containing high pressure gas on power stations and chemical plant. In many instances, particularly on power plant, these vessels are within the main building. If a pressure vessel were to fail, the surrounding structures would be exposed to blast loads and the forces resulting from jets of fluid issuing from the breached vessel. In the case where the vessel is in a relatively closed chamber there would also be a general overpressurisation of the chamber. At the design stage it is therefore essential to demonstrate that the plant could be safely shut down in the event of a pressure vessel failure, that is, it must be shown that the chamber will not collapse thus putting the building at risk or hazarding equipment essential for a safe shut down. Such an assessment requires the loads applied to the chamber walls, roof, etc. to be known. (author)

  3. Wet drift chambers for precise luminosity

    International Nuclear Information System (INIS)

    Anderson, B.E.; Kennedy, B.W.; Ahmet, K.; Attree, D.J.; Barraclough, G.A.; Cresswell, M.J.; Hayes, D.A.; Miller, D.J.; Selby, C.; Sherwood, P.

    1994-01-01

    A set of high-precision compact drift chambers has been a vital component of the OPAL luminosity monitor since the start of data-taking at LEP. They were augmented in 1992 by the addition of Small Angle Reference Chambers with a very similar design to the original chamber. The performance of the chambers is reviewed, highlighting both the importance of using polyalkylene glycol (Breox) to maintain a uniform and parallel electric field and the construction techniques used to sustain the required field strength. We describe some of the operating problems, with their solutions, and show how the chambers have been used in achieving a systematic error of 0.41% on the luminosity measurement. ((orig.))

  4. The Boycott effect in magma chambers

    Science.gov (United States)

    Blanchette, F.; Peacock, T.; Bush, J. W. M.

    2004-03-01

    We investigate the plausibility of the stratified Boycott effect as a source of layering in magma chambers. Crystal settling within the magma chamber will generate buoyant fluid near the sloping sidewalls whose vertical ascent may be limited by the ambient stratification associated with vertical gradients in SiO2. The resulting flow may be marked by a layered structure, each layer taking the form of a convection cell spanning the lateral extent of the magma chamber. Using parameters relevant to magma chambers, we estimate that such convection cells would be established over a timescale of a month and have a depth on the order of 4m, which is roughly consistent with field observations of strata within solidified chambers.

  5. The KEK 1 m hydrogen bubble chamber

    International Nuclear Information System (INIS)

    Doi, Yoshikuni; Araoka, Osamu; Hayashi, Kohei; Hayashi, Yoshio; Hirabayashi, Hiromi.

    1978-03-01

    A medium size hydrogen bubble chamber has been constructed at the National Laboratory for High Energy Physics, KEK. The bubble chamber has been designed to be operated with a maximum rate of three times per half a second in every two second repetition time of the accelerator, by utilizing a hydraulic expansion system. The bubble chamber has a one meter diameter and a visible volume of about 280 l. A three-view stereo camera system is used for taking photographic pictures of the chamber. A 2 MW bubble chamber magnet is constructed. The main part of the bubble chamber vessel is supported by the magnet yoke. The magnet gives a maximum field of 18.4 kG at the centre of the fiducial volume of the chamber. The overall system of the KEK 1 m hydrogen bubble chamber facility is described in some detail. Some operational characteristics of the facility are also reported. (auth.)

  6. Laser-filament-induced snow formation in a subsaturated zone in a cloud chamber: experimental and theoretical study.

    Science.gov (United States)

    Ju, Jingjing; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2013-12-01

    1 kHz, 2 mJ, 45 fs, 800 nm laser pulses were fired into a laboratory diffusion cloud chamber through a subsaturated zone (relative humidity ∼73%, T ∼ 4.3 °C). After 60 min of laser irradiation, an oval-shaped snow pile was observed right below the filament center and weighed ∼12.0 mg. The air current velocity at the edge of the vortices was estimated to be ∼16.5 cm/s. Scattering scenes recorded from the side show that filament-induced turbulence were formed inside the cloud chamber with two vortices below the filament. Two-dimensional simulations of the air flow motion in two cross sections of the cloud chamber confirm that the turbulent vortices exist below the filament. Based upon this simulation, we deduce that the vortices indeed have a three-dimensional elliptical shape. Hence, we propose that inside vortices where the humidity was supersaturated or saturated the condensation nuclei, namely, HNO(3), N(2)(+), O(2)(+) and other aerosols and impurities, were activated and grew in size. Large-sized particles would eventually be spun out along the fast moving direction towards the cold plate and formed an oval-shaped snow pile at the end.

  7. Loss of ions in cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.; Tran, N.T.; Kim, E.; Marsoem, P.; Kurosawa, T.; Koyama, Y.

    2005-01-01

    Ion losses due to initial recombination, volume recombination, and back diffusion were each determined by measurements and calculations for different size cylindrical ionization chambers and spherical ionization chambers. By measuring signal currents from these ionization chambers irradiated with 60 Co gamma rays, two groups of ion losses were obtained. (Group 1) Ion loss due to initial recombination and diffusion, which changes proportionally to the inverse of the voltage applied to the ionization chambers; (and group 2) ion loss due to volume recombination, which changes proportionally to the inverse of the square of the applied voltage. The diffusion loss was obtained separately by computing electric field distributions in the ionization chambers. It was found that diffusion loss is larger than initial recombination loss for the cylindrical ionization chambers and vise versa for the spherical ionization chambers

  8. Investigation of very long jet chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burckhart, H J; Va' vra, J; Zankel, K; Dudziak, U; Schaile, D; Schaile, O; Igo-Kemenes, P; Lennert, P

    1986-04-01

    The electrostatic properties and the performances of very long jet chambers have been investigated. Using 100 MHz FADC wave form digitisers, the tracking accuracy, the charge division and the dE/dx performance of two chambers, one with 4.5 m long tungsten wires and one with 4 m long highly resistive ''NiCoTi'' wires have been studied. The geometry of the chambers was chosen to define some of the design parameters of the jet chamber for the OPAL detector for LEP.

  9. IFE chamber technology testing program in NIF and chamber development test plan

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1995-01-01

    Issues concerning chamber technology testing program in NIF involving: criteria for evaluation/prioritization of experiments, engineering scaling requirements for test article design and material selection and R and D plan prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program in NIF, the testing in NIF should provide the experimental data relevant to DEMO design choice or to DEMO design predictive capability by utilizing engineering scaling test article designs. Test plans were developed for 2 promising chamber design concepts. Early testing in non-fusion/non-ignition prior to testing in ignition facility serves a critical role in chamber R and D test plans in order to reduce the risks and costs of the more complex experiments in NIF

  10. Impedances in lossy elliptical vacuum chambers

    International Nuclear Information System (INIS)

    Piwinski, A.

    1994-04-01

    The wake fields of a bunched beam caused by the resistivity of the chamber walls are investigated for a vacuum chamber with elliptical cross section. The longitudinal and transverse impedances are calculated for arbitrary energies and for an arbitrary position of the beam in the chamber. (orig.)

  11. Paper microzone plates.

    Science.gov (United States)

    Carrilho, Emanuel; Phillips, Scott T; Vella, Sarah J; Martinez, Andres W; Whitesides, George M

    2009-08-01

    This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (approximately 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was approximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.

  12. Methodical Specifics of Thermal Experiments with Thin Carbon Reinforced Plates

    Directory of Open Access Journals (Sweden)

    O. V. Denisov

    2015-01-01

    Full Text Available Polymer composite materials (CM are widely used in creation of large space constructions, especially reflectors of space antennas. Composite materials should provide high level of specific stiffness and strength for space structures. Thermal conductivity in reinforcement plane is a significant factor in case of irregular heating space antennas. Nowadays, data on CM reinforcement plane thermal conductivity are limited and existing methods of its defining are imperfect. Basically, traditional methods allow us to define thermal conductivity in perpendicular direction towards the reinforcement plane on the samples of round or rectangular plate. In addition, the thickness of standard samples is larger than space antenna thickness. Consequently, new methods are required. Method of contact heating, which was developed by BMSTU specialists with long hollow carbon beam, could be a perspective way. This article is devoted to the experimental method of contact heating on the thin carbon plates.Thermal tests were supposed to provide a non-stationary temperature field with a gradient being co-directional with the plane reinforcement in the material sample. Experiments were conducted in vacuum chamber to prevent unstructured convection. Experimental thermo-grams processing were calculated by 1-d thermal model for a thin plate. Influence of uncertainty of experimental parameters, such as (radiation emission coefficients of sample surface, glue, temperature sensors and uncertainty of sensors placement on the result of defined thermal conductivity has been estimated. New data on the thermal conductivity in reinforcement plane were obtained within 295 - 375 K temperature range, which can be used to design and develop reflectors of precision space antennas. In the future it is expedient to conduct tests of thin-wall plates from carbon fiber-reinforced plastic in wide temperature range, especially in the low-range temperatures.

  13. Investigation of very long jet chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burckhart, H J; Va' vra, J; Zankel, K; Dudziak, U; Schaile, D; Schaile, O; Igo-Kemenes, P; Lennert, P

    1986-04-01

    The electrostatic properties and the performances of very long jet chambers have been investigated. Using 100 MHz FADC wave form digitisers, the tracking accuracy, the charge division and the dE/dx performance of two chambers, one with 4.5 m long tungsten wires and one with 4 m long highly resistive ''NiCoTi'' wires have been studied. The geometry of the chambers was chosen to define some of the design parameters of the jet chamber for the OPAL detector for LEP. (orig.).

  14. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1995-01-01

    Chamber transport is an important area of study for heavy ion fusion. Final focus and chamber-transport are high leverage areas providing opportunities to significantly decrease the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (approx-lt 0.003 torr), ballistic or nearly-ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (approx-gt.1 torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber then transporting it at small radius (∼ 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity

  15. Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers

    International Nuclear Information System (INIS)

    Al-Adili, A.; Hambsch, F.-J.; Bencardino, R.; Oberstedt, S.; Pomp, S.

    2012-01-01

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252 Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235 U(n th , f).

  16. Multiwire proportional chamber and multistage avalanche chamber with low concentration photoionization gas

    International Nuclear Information System (INIS)

    Zhao Pingde; Xu Zhiqing; Tang Xiaowei

    1986-01-01

    The characteristics of multiwire proportional chamber and multistage avalanche chamber filled with argon and photoionization gas (C 2 H 5 ) 3 N were measured. The spatial resolution curves and output pulse height spectra were measured as well. Low concentration (C 2 H 5 ) 3 N can play an effective part in quenching. At very low concentration, the phenomena of avalanche transverse expansion was observed obviously

  17. PEP quark search proportional chambers

    Energy Technology Data Exchange (ETDEWEB)

    Parker, S I; Harris, F; Karliner, I; Yount, D [Hawaii Univ., Honolulu (USA); Ely, R; Hamilton, R; Pun, T [California Univ., Berkeley (USA). Lawrence Berkeley Lab.; Guryn, W; Miller, D; Fries, R [Northwestern Univ., Evanston, IL (USA)

    1981-04-01

    Proportional chambers are used in the PEP Free Quark Search to identify and remove possible background sources such as particles traversing the edges of counters, to permit geometric corrections to the dE/dx and TOF information from the scintillator and Cerenkov counters, and to look for possible high cross section quarks. The present beam pipe has a thickness of 0.007 interaction lengths (lambdasub(i)) and is followed in both arms each with 45/sup 0/ <= theta <= 135/sup 0/, ..delta..phi=90/sup 0/ by 5 proportional chambers, each 0.0008 lambdasub(i) thick with 32 channels of pulse height readout, and by 3 thin scintillator planes, each 0.003 lambdasub(i) thick. Following this thin front end, each arm of the detector has 8 layers of scintillator (one with scintillating light pipes) interspersed with 4 proportional chambers and a layer of lucite Cerenkov counters. Both the calculated ion statistics and measurements using He-CH/sub 4/ gas in a test chamber indicate that the chamber efficiencies should be >98% for q=1/3. The Landau spread measured in the test was equal to that observed for normal q=1 traversals. One scintillator plane and thin chamber in each arm will have an extra set of ADC's with a wide gate bracketing the normal one so timing errors and tails of earlier pulses should not produce fake quarks.

  18. Argus target chamber

    International Nuclear Information System (INIS)

    Rienecker, F. Jr.; Glaros, S.S.; Kobierecki, M.

    1975-01-01

    A target chamber for application in the laser fusion program must satisfy some very basic requirements. (1) Provide a vacuum on the order of 10 -6 torr. (2) Support a microscopically small target in a fixed point in space and verify its location within 5 micrometers. (3) Contain an adjustable beam focusing system capable of delivering a number of laser beams onto the target simultaneously, both in time and space. (4) Provide access for diagnostics to evaluate the results of target irradiation. (5) Have flexibility to allow changes in targets, focusing optics and number of beams. The ARGUS laser which is now under construction at LLL will have a target chamber which meets these requirements in a simple economic manner. The chamber and auxiliary equipment are described, with reference to two double beam focusing systems; namely, lenses and ellipsoidal mirrors. Provision is made for future operation with four beams, using ellipsoidal mirrors for two-sided illumination and lens systems for tetragonal and tetrahedral irradiation

  19. Cylindrical ionization chamber with compressed krypton

    International Nuclear Information System (INIS)

    Kuz'minov, V.V.; Novikov, V.M.; Pomanskii, A.A.; Pritychenko, B.V.; Viyar, J.; Garcia, E.; Morales, A.; Morales, J.; Nunes-Lagos, R.; Puimedon, J.; Saens, K.; Salinas, A.; Sarsa, M.

    1993-01-01

    A cylindrical ionization chamber with a grid is used to search for double positron decay and atomic electron conversion to a positron in 78 Kr. Krypton is the working gas material of the chamber. The spectrometric characteristics of the chamber filled with krypton and xenon are presented. The energy resolution is 2.1% for an energy of 1.84 MeV (the source of γ-quanta is 88 Y) when the chamber is filled with a mixture of Kr+0.2% H 2 under a pressure of 25 atm

  20. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  1. An electrodeless drift chamber

    International Nuclear Information System (INIS)

    Allison, J.; Barlow, R.J.; Bowdery, C.K.; Duerdoth, I.; Rowe, P.G.

    1982-01-01

    We describe a chamber in which the drift field is controlled by the deposition of electrostatic charge on an insulating surface. The chamber operates with good efficiency and precision for observed drift distances of up to 45 cm, promises to be extremely robust and adaptable and offers a very cheap way of making particle detectors. (orig.)

  2. DELPHI time projection chamber

    CERN Multimedia

    1989-01-01

    The time projection chamber is inserted inside the central detector of the DELPHI experiment. Gas is ionised in the chamber as a charged particle passes through, producing an electric signal from which the path of the particle can be found. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  3. Evaluation of Electron Beam Welding Performance of AA6061-T6 Plate-type Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Soo-Sung; Seo, Kyoung-Seok; Lee, Don-Bae; Park, Jong-Man; Lee, Yoon-Sang; Lee, Chong-Tak

    2014-01-01

    As one of the most commonly used heat-treatable aluminum alloys, AA6061-T6 aluminum alloy is available in a wide range of structural materials. Typically, it is used in structural members, auto-body sheet and many other applications. Generally, this alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW(Electron Beam Welding). However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the plate-type nuclear fuel fabrication and assembly, a fundamental electron beam welding experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the suitable welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the plate-type fuel assembly has been also studied by the weld penetrations of side plate to end fitting and fixing bar and weld inspections using computed tomography

  4. Automation and instrument control applied to an experimental study of electron transport dynamics in an avalanche mode resistive plater chamber

    International Nuclear Information System (INIS)

    Ridenti, Marco A.; Pascholati, Paulo R.

    2009-01-01

    In this work it is presented a computer based instrumentation system which was developed to perform data acquisition and integrate the control of different devices in an experimental study of electron transport dynamics in an avalanche mode resistive plate chamber detector in the Radiation Technology Center (CTR) at IPEN/CNEN-SP. System control and data acquisition was performed by a computer program called RPCLabOperator written in MatLab environment running on a LeCroy WavePro 7000 digital oscilloscope. (author)

  5. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1996-01-01

    Chamber transport is a key area of study for heavy ion fusion. Final focus and chamber transport are high leverage areas providing opportunities to decrease significantly the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (below about 0.003 Torr), ballistic or nearly ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (above about 0.1 Torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber and then transporting it at small radius (about 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity. (orig.)

  6. How to build a cloud chamber?

    International Nuclear Information System (INIS)

    Mariaud, C.

    2012-01-01

    The cloud chamber had its heyday in the first half of last century and allowed the discovery of new particles such as the anti-electron, the muon and the neutral and the charged kaon. The bubble chamber replaced it in the mid fifties. This article recalls the principle of the cloud chamber and shows, in a detailed way, how to proceed to build one with on-the-shelf materials. This design is based on the use of isopropanol whose liquefaction through the form of droplets materializes the track of the particle and on the use of combined Peltier cells (instead of CO 2 snow) to cool the chamber. This cloud chamber has been successfully used in schools to observe particles mainly electrons, alphas and muons generated by cosmic rays. (A.C.)

  7. Active Control of Fan Noise-Feasibility Study. Volume 2: Canceling Noise Source-Design of an Acoustic Plate Radiator Using Piezoceramic Actuators

    Science.gov (United States)

    Pla, F. G.; Rajiyah, H.

    1995-01-01

    The feasibility of using acoustic plate radiators powered by piezoceramic thin sheets as canceling sources for active control of aircraft engine fan noise is demonstrated. Analytical and numerical models of actuated beams and plates are developed and validated. An optimization study is performed to identify the optimum combination of design parameters that maximizes the plate volume velocity for a given resonance frequency. Fifteen plates with various plate and actuator sizes, thicknesses, and bonding layers were fabricated and tested using results from the optimization study. A maximum equivalent piston displacement of 0.39 mm was achieved with the optimized plate samples tested with only one actuator powered, corresponding to a plate deflection at the center of over 1 millimeter. This is very close to the deflection required for a full size engine application and represents a 160-fold improvement over previous work. Experimental results further show that performance is limited by the critical stress of the piezoceramic actuator and bonding layer rather than by the maximum moment available from the actuator. Design enhancements are described in detail that will lead to a flight-worthy acoustic plate radiator by minimizing actuator tensile stresses and reducing nonlinear effects. Finally, several adaptive tuning methods designed to increase the bandwidth of acoustic plate radiators are analyzed including passive, active, and semi-active approaches. The back chamber pressurization and volume variation methods are investigated experimentally and shown to be simple and effective ways to obtain substantial control over the resonance frequency of a plate radiator. This study shows that piezoceramic-based plate radiators can be a viable acoustic source for active control of aircraft engine fan noise.

  8. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...

  9. Technical Note: Scanning of parallel-plate ionization chamber and diamond detector for measurements of water-dose profiles in the vicinity of a narrow x-ray microbeam.

    Science.gov (United States)

    Nariyama, Nobuteru

    2017-12-01

    Scanning of dosimeters facilitates dose distribution measurements with fine spatial resolutions. This paper presents a method of conversion of the scanning results to water-dose profiles and provides an experimental verification. An Advanced Markus chamber and a diamond detector were scanned at a resolution of 6 μm near the beam edges during irradiation with a 25-μm-wide white narrow x-ray beam from a synchrotron radiation source. For comparison, GafChromic films HD-810 and HD-V2 were also irradiated. The conversion procedure for the water dose values was simulated with Monte Carlo photon-electron transport code as a function of the x-ray incidence position. This method was deduced from nonstandard beam reference-dosimetry protocols used for high-energy x-rays. Among the calculated nonstandard beam correction factors, P wall , which is the ratio of the absorbed dose in the sensitive volume of the chamber with water wall to that with a polymethyl methacrylate wall, was found to be the most influential correction factor in most conditions. The total correction factor ranged from 1.7 to 2.7 for the Advanced Markus chamber and from 1.15 to 1.86 for the diamond detector as a function of the x-ray incidence position. The water dose values obtained with the Advanced Markus chamber and the HD-810 film were in agreement in the vicinity of the beam, within 35% and 18% for the upper and lower sides of the beam respectively. The beam width obtained from the diamond detector was greater, and the doses out of the beam were smaller than the doses of the others. The comparison between the Advanced Markus chamber and HD-810 revealed that the dose obtained with the scanned chamber could be converted to the water dose around the beam by applying nonstandard beam reference-dosimetry protocols. © 2017 American Association of Physicists in Medicine.

  10. Quality control of ATLAS muon chambers

    CERN Document Server

    Fabich, Adrian

    ATLAS is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN. Its Muon Spectrometer will require ∼ 5500m2 of precision tracking chambers to measure the muon tracks along a spectrometer arm of 5m to 15m length, embedded in a magnetic field of ∼ 0.5T. The precision tracking devices in the Muon System will be high pressure drift tubes (MDTs). Approximately 370,000 MDTs will be assembled into ∼ 1200 drift chambers. The performance of the MDT chambers is very much dependent on the mechanical quality of the chambers. The uniformity and stability of the performance can only be assured providing very high quality control during production. Gas tightness, high-voltage behaviour and dark currents are global parameters which are common to gas detectors. For all chambers, they will be tested immediately after the chamber assembly at every production site. Functional tests, for example radioactive source scans and cosmic-ray runs, will be performed in order to establish detailed performan...

  11. Hyperbaric and hypobaric chamber fires: a 73-year analysis.

    Science.gov (United States)

    Sheffield, P J; Desautels, D A

    1997-09-01

    Fire can be catastrophic in the confined space of a hyperbaric chamber. From 1923 to 1996, 77 human fatalities occurred in 35 hyperbaric chamber fires, three human fatalities in a pressurized Apollo Command Module, and two human fatalities in three hypobaric chamber fires reported in Asia, Europe, and North America. Two fires occurred in diving bells, eight occurred in recompression (or decompression) chambers, and 25 occurred in clinical hyperbaric chambers. No fire fatalities were reported in the clinical hyperbaric chambers of North America. Chamber fires before 1980 were principally caused by electrical ignition. Since 1980, chamber fires have been primarily caused by prohibited sources of ignition that an occupant carried inside the chamber. Each fatal chamber fire has occurred in an enriched oxygen atmosphere (> 28% oxygen) and in the presence of abundant burnable material. Chambers pressurized with air (Hyperbaric Medical Society's Chamber Experience and Mishap Database. This epidemiologic review focuses on information learned from critical analyses of chamber fires and how it can be applied to safe operation of hypobaric and hyperbaric chambers.

  12. HVAC&R Equipment Environmental Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — Description:Large "Truck" ChamberThe large "truck" chamber provides controlled air conditions from -7 °C (20 °F) to 65 °C (150 °F).Air-Conditioner and Heat Pump Test...

  13. Ionization chamber for smoke detector and the like

    International Nuclear Information System (INIS)

    Rork, G.D.; Thorp, E.J.; Zegarski, R.J.

    1985-01-01

    This invention relates to detectors of the ionization type for detecting airborne particulate matter and, in particular, to the construction of an ionization chamber for such a detector. This invention may be used for detecting a variety of materials, such as dust, fog and the like, but is particularly useful for detecting combustion products such as smoke. The smoke detector ionization chamber has two electrodes connected to a source of electric power; means defining access openings for enabling air flow into and out of the chamber; and means for causing ionization within the chamber. It has control structure means within the chamber in the path of the airflow cooperating with the electrodes to establish within the chamber an electric field having a higher intensity close to the access openings and a lower intensity in the remainder of the chamber without significantly impairing the flow of neutral particles into the chamber. The control structure reduces airflow velocity within the chamber without adversely affecting the access of airborne particles to the chamber

  14. Locking screw-plate interface stability in carbon-fibre reinforced polyetheretherketone proximal humerus plates.

    Science.gov (United States)

    Hak, David J; Fader, Ryan; Baldini, Todd; Chadayammuri, Vivek B S

    2017-09-01

    Carbon-fibre reinforced polyetheretherketone (CFR-PEEK) plates have recently been introduced for proximal humerus fracture treatment. The purpose of this study was to compare the locking screw-plate interface stability in CFR-PEEK versus stainless steel (SS) proximal humerus plates. Locking screw mechanical stability was evaluated independently in proximal and shaft plate holes. Stiffness and load to failure were tested for three conditions: (1) on-axis locking screw insertion in CFR-PEEK versus SS plates, (2) on-axis locking screw insertion, removal, and reinsertion in CFR-PEEK plates, and (3) 10-degree off-axis locking screw insertion in CFR-PEEK plates. Cantilever bending at a rate of 1 mm/minute was produced by an Instron machine and load-displacement data recorded. Shaft locking screw load to failure was significantly greater in CFR-PEEK plates compared to SS plates (746.4 ± 89.7 N versus 596.5 ± 32.6 N, p PEEK plates (p PEEK plates. The mechanical stability of locking screws in CFR-PEEK plates is comparable or superior to locking screws in SS plates.

  15. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  16. Voltage-current characteristics of a pin-plate system with different plate configurations

    International Nuclear Information System (INIS)

    Feng, Zhuangbo; Long, Zhengwei

    2013-01-01

    In this paper, the voltage-current (V-I) characteristics of a pin-plate system with four types of collection plate configurations are studied experimentally. The collection plates consider a single metal plate, a metal plate with a fly ash cake layer, a metal plate with a clean filter media and a metal plate with a dirty filter media. The results show that the clean filter media has no obvious effect on the V-I characteristics. But the dirty filter media reduces the current density because of its high resistance. The thick fly ash cake layer increase current density because of the anti-corona effect but the increment is not very obvious.

  17. The magic cube and the pixel ionization chamber: detectors for monitor and dosimetry of radiotherapy beams

    International Nuclear Information System (INIS)

    Amerio, S.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Sanz Freire, C.J.; Sardo, A.; Trevisiol, E.

    2003-01-01

    Tumor therapy takes advantage of the energy deposition of radiation to concentrate high doses in the target while sparing healthy tissue. Elective pathologies for highly conformal radiotherapies such as photon Intensity Modulated Radiotherapy (IMRT) and radiotherapy with hadrons are head and neck, eye, prostate and in general all tumors that are either deep or located close to critical organs. In the world there are several centers that are using such techniques and a common problem that is being experienced is the verification of treatment plans and monitoring of the beam. We have designed and built two detectors that allow 2D and 3D measurements of dose and fluence of such beams. The detectors allow measurements on big surfaces, up to 25*25 cm 2 . The active media are parallel plate, strip and pixel segmented ionization chambers with front-end Very Large Scale Integration (VLSI) readout and PC based data acquistion. The description of dosimeter, chamber and electronics will be given with results from beam tests and therapy plan verification

  18. High resolution drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs

  19. Preliminary study of the primary nozzle position of a supersonic air ejector with a constant-area mixing chamber

    Directory of Open Access Journals (Sweden)

    Kracik Jan

    2017-01-01

    Full Text Available This work aims at investigating the primary nozzle position in a proposed supersonic air ejector device. The ejector is primarily made up of a supersonic primary nozzle, which is located in the axis of the ejector, a suction chamber or secondary stream inlet, a mixing chamber and a diffuser. The ejector design allows to translate the primary nozzle in the axis direction and fix it in a chosen distance from the beginning of the mixing chamber and hence influence the secondary mass flow rate. In a limit case, it is possible to set the nozzle to such a position where no secondary flow occurs. If we ignore the case where no secondary flow occurs, five different nozzle distances have been investigated in this paper. Some cases seem to be alike and there are no significant dissimilarities between them. Courses of relative back-pressure ratio are carried out against the entrainment ratio and transition between on-design and off-design regimes is determined. Measurements of the mixed flow based on the standard ISO 5167 are performed by means of orifice plate method. In addition, a comparison between experiments and simulations performed by Ansys Fluent software is presented in order to indicate further improvements to the numerical model.

  20. The Mark II Vertex Drift Chamber

    International Nuclear Information System (INIS)

    Alexander, J.P.; Baggs, R.; Fujino, D.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 μm spatial resolution and 2 gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO 2 mixtures are presented. 10 refs., 12 figs., 1 tab

  1. Bicone vacuum chamber for ISR intersection

    CERN Multimedia

    1975-01-01

    This is one of the bicone chambers made of titanium for experiment R 702. The central corrugated part had a very thin titanium wall (0.28 mm). The first of these chambers collapsed in its central part when baked at 300 C (August 1975). After an intensive effort to develop better quality and reproducible welds for this special material, the ISR workshop was able to build two new chambers of this type. One of them was installed at I 7 for R 702 in 1976 and worked perfectly. It was at that time the most "transparent" intersection vacuum chamber. See also 7609219, 7609221.

  2. Theoretical study of flow ripple for an aviation axial-piston pump with damping holes in the valve plate

    OpenAIRE

    Guan, Changbin; Jiao, Zongxia; He, Shouzhan

    2014-01-01

    Based on the structure of a certain type of aviation axial-piston pump’s valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice) to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This single-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used ...

  3. Growing and analyzing biofilms in flow chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber-grown biofilms are addressed....

  4. Microstrip gas chamber on thin-film Pestov glass and micro gap chamber

    International Nuclear Information System (INIS)

    Gong, W.G.; Harris, J.W.; Wieman, H.

    1994-07-01

    The authors report developments of the Microstrip Gas Chamber on thin-film Pestov glass and the Micro Gap Chamber. By coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics), they built MSGCs of high gain stability and low leakage current. They were tested in Ar-CH 4 (10%) and He-C 2 H 6 (50%) gas mixtures. Energy resolutions of 17-20% were measured for 6keV x-rays. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material. Micro Gap Chamber was successfully tested in He-C 2 H 6 (50%) and Ar-C 2 H 6 (50%) gas mixtures. Energy resolutions of about 20% were obtained. Both detectors are expected to have high rate capability

  5. Comparison among different CT ionization chambers

    International Nuclear Information System (INIS)

    Castro, Maysa C. de; Xavier, Marcos; Caldas, Linda V.E.

    2015-01-01

    The dosimetry in computed tomography (CT) is carried out by the use of a pencil type ionization-chamber, because it has a uniform response at all angles relative to the incident beam of radiation, which is essential for CT equipment since the X-ray tube executes a circular movement around the table during irradiation. The commercial ionization chamber used to perform quality control procedures of this kind of equipment has a length of the sensitive volume of 10 cm. In the Calibration Laboratory of Instruments (LCI) of the IPEN there were already developed some prototypes with small differences in construction, when compared to commercially available ionization chambers. They have been used in previous studies and showed results within internationally acceptable limits. The ionization chambers tested in this study present the sensitive volume lengths of 1 cm, 3 cm and 10 cm. The objective of this study was to present results on the stability test of the three homemade ionization chambers and a commercial chamber, as well to obtain the calibration coefficients for each of them in CT standard X radiation beams. The obtained results for both characterization tests are within the recommended limits, except for the homemade ionization chambers with sensitive volume lengths of 3 cm and 1 cm in the case of the stability test. (author)

  6. Multi-stage low-pressure avalanche chamber

    International Nuclear Information System (INIS)

    Zanevskij, Yu.V.; Peshekhonov, V.D.; Smykov, L.P.

    1985-01-01

    A multi-stage avalanche-chamber filled with isobutane operating at the pressure of 6 torr is described. The chamber comprises an amplifying gap, drift gap and multiwire proportional chamber with interelectrode gaps equal to 4 mm. The anode plane of the proportional chamber is winded of wire 2 μm in diameter with 2 mm pitch. The cathode are winded orthogonally to anode wires of wire 50 μm in diameter with 1 mm pitch. Drift and preamplifier gaps are formed by grid electrodes made of wire 50 μm in diameter with dimension of the cell equal to 1x1 mm. Width of the drift gap is 5 mm, width of the preamplification gap is 3 or 9 mm. Coordinate data are removed from the cathodes of the proportional chamber by means of delay lines. Sensitive square of the chamber equals 240x180 mm. Gas gain coefficient is 3x10 6 at its square nonuniformity equal to approximately 3%. Spatial resolution by both coordinates equals 170 μm; spatial resolution for isotropic α-emitters located close to the preamplifier gap is equal to 500 μm

  7. Monitored Drift Chambers in the ATLAS Detector

    CERN Multimedia

    Herten, G

    Monitored Drift Chambers (MDT) are used in the ATLAS Detector to measure the momentum of high energy muons. They consist of drift tubes, which are filled with an Ar-CO2 gas mixture at 3 bar gas pressure. About 1200 drift chambers are required for ATLAS. They are up to 6 m long. Nevertheless the position of every wire needs to be known with a precision of 20 µm within a chamber. In addition, optical alignment sensors are required to measure the relative position of adjacent chambers with a precision of 30µm. This gigantic task seems impossible at first instance. Indeed it took many years of R&D to invent the right tools and methods before the first chamber could be built according to specifications. Today, at the time when 50% of the chambers have been produced, we are confident that the goal for ATLAS can be reached. The mechanical precision of the chambers could be verified with the x-ray tomograph at CERN. This ingenious device, developed for the MDT system, is able to measure the wire position insid...

  8. Industrial development of neutron detectors, fission chambers, self powered detectors, ionization chambers

    International Nuclear Information System (INIS)

    Constans, H.; Coville, P.; Guerre, J.

    1975-01-01

    Reactor control requires the determination of neutron flux at all times. The needed characteristics lead to use of several types of detectors: boron lined counters, boron lined ionization chambers, fission ionization chambers and self powered detectors. The principle of the reaction involved the fabrication requirements, the different modes of utilization and the characteristics obtained are examined for each detector. The problem of electric connections in the active area has been solved by developing ''integrated cables'' [fr

  9. Copper circuit patterning on polymer using selective surface modification and electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jin [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Ko, Tae-Jun [Institute for Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Yoon, Juil [Department of Mechanical Systems Engineering, Hansung University, Seoul 136-792 (Korea, Republic of); Moon, Myoung-Woon [Institute for Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Oh, Kyu Hwan [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Han, Jun Hyun, E-mail: jhhan@cnu.ac.kr [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2017-02-28

    Highlights: • A new simple two step method for the pattering of Cu circuits on PET substrate was proposed. • The simple patterning of the high adhesive Cu circuits was achieved by plasma treatment using a patterned mask coated with a catalyst material. • The high adhesive strength of Cu circuits was due to the nanostructure formed by oxygen plasma treatment. - Abstract: We have examined a potential new and simple method for patterning a copper circuit on PET substrate by copper electroless plating, without the pretreatment steps (i.e., sensitization and activation) for electroless plating as well as the etching processes of conventional circuit patterning. A patterned mask coated with a catalyst material, Ag, for the reduction of Cu ions, is placed on a PET substrate. Subsequent oxygen plasma treatment of the PET substrate covered with the mask promotes the selective generation of anisotropic pillar- or hair-like nanostructures coated with co-deposited nanoparticles of the catalyst material on PET. After oxygen plasma treatment, a Cu circuit is well formed just by dipping the plasma-treated PET into a Cu electroless plating solution. By increasing the oxygen gas pressure in the chamber, the height of the nanostructures increases and the Ag catalyst particles are coated on not only the top but also the side surfaces of the nanostructures. Strong mechanical interlocking between the Cu circuit and PET substrate is produced by the large surface area of the nanostructures, and enhances peel strength. Results indicate this new simple two step (plasma surface modification and pretreatment-free electroless plating) method can be used to produce a flexible Cu circuit with good adhesion.

  10. The little holographic bubble chambers

    International Nuclear Information System (INIS)

    Herve, A.

    1983-01-01

    The lifetime study of the charmed particles has readvanced the idea to use holography for the little fast-cycle bubble chambers. A pilot experiment has been realised in 1982 with a little bubble chamber filled up with freon-115. 40000 holograms have been recorded [fr

  11. Pelletron general purpose scattering chamber

    International Nuclear Information System (INIS)

    Chatterjee, A.; Kailas, S.; Kerekette, S.S.; Navin, A.; Kumar, Suresh

    1993-01-01

    A medium sized stainless steel scattering chamber has been constructed for nuclear scattering and reaction experiments at the 14UD pelletron accelerator facility. It has been so designed that several types of detectors, varying from small sized silicon surface barrier detectors to medium sized gas detectors and NaI detectors can be conveniently positioned inside the chamber for detection of charged particles. The chamber has been planned to perform the following types of experiments : angular distributions of elastically scattered particles, fission fragments and other charged particles, angular correlations for charged particles e.g. protons, alphas and fission fragments. (author). 2 figs

  12. Radon diffusion chamber

    International Nuclear Information System (INIS)

    Pretzsch, G.; Boerner, E.; Lehmann, R.; Sarenio, O.

    1986-01-01

    The invention relates to the detection of radioactive gases emitting alpha particles like radon, thoron and their alpha-decaying daughters by means of a diffusion chamber with a passive detector, preferably with a solid state track detector. In the chamber above and towards the detector there is a single metallized electret with negative polarity. The distance between electret and detector corresponds to the range of the alpha particles of radon daughters in air at the most. The electret collects the positively charged daughters and functions as surface source. The electret increases the sensitivity by the factor 4

  13. A Possible Differentially Shortened Strike-slip Plate Boundary: the Okhotsk Plate Example.

    Science.gov (United States)

    Hindle, D.; Egorov, V.; Mackey, K. G.; Fujita, K.

    2004-12-01

    The Okhotsk plate has been postulated based on a combination of GPS geodetic inversions (REVEL1), seimsicity, geologic and lineament data. Lying between the North American and Eurasian plates, its northwestern corner would appear to be undergoing compression in a scissors motion between the two bounding plates. Extrusion tectonics along multiple, large strike-slip faults within the Okhotsk plate itself have been suggested to allow the escape of material away from the apex of Eurasia-North America. The plate boundary between Okhotsk and North America has been suggested to be diffuse, based on widely scattered minor seismicity. However, the large, left lateral, Ulakhan fault has also been suggested as a candidate plate boundary. We present field geological and geomorphological evidence of the partitioning of deformation between the Ulakhan fault, and several parallel and oblique, linked faults. The Ulakhan fault strand appears to have a maximum displacement of 24 km based on river valley offsets and closing large pull apart basins. Some of the displacement from the Ulakhan fault appears relayed into the plate margin along oblique trending, thrust/oblique slip faults. Estimated shortening over these faults is equivalent to the amount of shortening relayed into the plate margin from the plate boundary. There may be several thrust/oblique slip faults along the Ulakhan fault, which leads to the interesting situation of a segmented, strike-slip plate boundary being actively shortened in a margin parallel direction. This may be the result of postulated extrusion of the Okhotsk plate due to North America/Eurasia convergence. Such a situation would have important consequences for the interpretation of GPS data in a plate tectonic context.

  14. Multispecimen dual-beam irradiation damage chamber

    International Nuclear Information System (INIS)

    Packan, N.H.; Buhl, R.A.

    1980-06-01

    An irradiation damage chamber that can be used to rapidly simulate fast neutron damage in fission or fusion materials has been designed and constructed. The chamber operates in conjunction with dual Van de Graaff accelerators at ORNL to simulate a wide range of irradiation conditions, including pulsed irradiation. Up to six experiments, each with up to nine 3-mm disk specimens, can be loaded into the ultrahigh vacuum chamber. Specimen holders are heated with individual electron guns, and the temperature of each specimen can be monitored during bombardment by an infrared pyrometer. Three different dose levels may be obtained during any single bombardment, and the heavy-ion flux on each of the nine specimens can be measured independently with only a brief interruption of the beam. The chamber has been in service for nearly three years, during which time approximately 250 bombardments have been successfully carried out. An appendix contains detailed procedures for operating the chamber

  15. Bi-cone vacuum chamber in the ISR

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The "bi-cone" vacuum chamber in ISR intersection I-7, for experiment R702. Made from 0.28 mm thick titanium, it was at its time the most transparent chamber ever built. Ian Wilson is standing next to the chamber. See also 7609219.

  16. Device for gamma-chamber transducer alignment

    International Nuclear Information System (INIS)

    Mirkhodzhaev, A.Kh.; Kuznetsov, N.K.; Ostryj, Yu.E.

    1987-01-01

    The device consists of the upper part of the gamma chamber pilar to which a rod is rigidly fastened with a disk of acrylic plastic moving freely on the opposite end. The disk is placed coaxially and is equal to the gamma chamber detector crystal. The device makes it possible to use ordinary medical couches covered with a porolone mattress when the gamma chamber detector is placed below

  17. Bubble chamber: Omega production and decay

    CERN Document Server

    1973-01-01

    This image is taken from one of CERN's bubble chambers and shows the decay of a positive kaon in flight. The decay products of this kaon can be seen spiraling in the magnetic field of the chamber. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that has been heated to boiling point.

  18. Venturi vacuum systems for hypobaric chamber operations.

    Science.gov (United States)

    Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D

    1997-11-01

    Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.

  19. Construction, test and operation in a high intensity beam of a small system of microstrip gas chambers

    CERN Document Server

    Barr, A J; Boimska, B; Bouclier, Roger; Braem, André; Camps, C; Capéans-Garrido, M; Commichau, V; Dominik, Wojciech; Flügge, G; Gómez, F; Hammarström, R; Hangarter, K; Hoch, M; Labbé, J C; Macke, D; Manzin, G; Meijers, F; Million, Gilbert; Mühlemann, K; Nagaslaev, V P; Peisert, Anna; Ropelewski, Leszek; Runólfsson, O; Sauli, Fabio; Schulte, R; Schulz, M; Sharma, A; Shekhtman, L I; Wolff, C

    1998-01-01

    We describe the construction, test and installation procedures, and the experience gained with the operation of a small but complete system of high rate Micro-Strip Gas Chambers, made on thin boro-silicate glass with a diamond-like coating with chromium or gold strips. A set of detectors, fully equipped with readout electronics and each with an active area of 100x100 mm2, was exposed during six months to a high intensity muon beam at CERN with a peak intensity of ~104 mm-2s-1. Continuous monitoring of the performance of the chambers during the beam runs allowed the evaluation of detection efficiency and the monitoring of accidental rates, as well as the study of ambient induced variations and aging in realistic beam conditions. No significant difference has been found in the operation of under- and over-coated plates. Efficiencies could reach ~98% in best operating conditions, although local lower values were often observed due to missing channels (open strips, broken bonds and dead electronic channels). The ...

  20. Apparatus for reading and recharging condenser ionization chambers

    International Nuclear Information System (INIS)

    McCall, R.C.

    1977-01-01

    A metering circuit for a condenser ionization chamber is disclosed for simultaneously recharging the ionization chamber and reading out the amount of charge required to recharge the chamber. During the recharging process, the amount of charge necessary to recharge the ionization chamber capacitor is placed on an integrating capacitor in the metering apparatus. The resultant voltage across the integrating capacitor is a measure of the radiation to which the ionization chamber was exposed. 9 claims, 1 figure

  1. Liquid-filled ionization chamber temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)]. E-mail: luciaff@usc.es; Gomez, F. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Iglesias, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pardo, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pazos, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pena, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Zapata, M. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)

    2006-05-10

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a {approx}20 deg. C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27x10{sup -2}K{sup -1} for an operation electric field of 1.67x10{sup 6}Vm{sup -1} has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  2. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  3. Fabrication of AA6061-T6 Plate Type Fuel Assembly Using Electron Beam Welding Process

    International Nuclear Information System (INIS)

    Kim, Soosung; Seo, Kyoungseok; Lee, Donbae; Park, Jongman; Lee, Yoonsang; Lee, Chongtak

    2014-01-01

    AA6061-T6 aluminum alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW. However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the shrinkage measurement and weld inspection using computed tomography. This study was carried out to determine the suitable welding parameters and to evaluate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory electron beam welding process of the full-sized sample was being developed. Based on this fundamental study, fabrication of the plate-type fuel assembly will be provided for the future Ki-Jang research reactor project

  4. Temperature Studies for ATLAS MDT BOS Chambers

    CERN Document Server

    Engl, A.; Biebel, O.; Mameghani, R.; Merkl, D.; Rauscher, F.; Schaile, D.; Ströhmer, R.

    Data sets with high statistics taken at the cosmic ray facility, equipped with 3 ATLAS BOS MDT chambers, in Garching (Munich) have been used to study temperature and pressure effects on gas gain and drifttime. The deformation of a thermally expanded chamber was reconstructed using the internal RasNik alignment monitoring system and the tracks from cosmic data. For these studies a heating system was designed to increase the temperature of the middle chamber by up to 20 Kelvins over room temperature. For comparison the temperature effects on gas properties have been simulated with Garfield. The maximum drifttime decreased under temperature raise by -2.21 +- 0.08 ns/K, in agreement with the results of pressure variations and the Garfield simulation. The increased temperatures led to a linear increase of the gas gain of about 2.1% 1/K. The chamber deformation has been analyzed with the help of reconstructed tracks. By the comparison of the tracks through the reference chambers with these through the test chamber ...

  5. Brookhaven National Laboratory's multiparticle spectrometer drift chamber system

    International Nuclear Information System (INIS)

    Etkin, A.; Kramer, M.A.

    1979-01-01

    A system of drift chambers is being built to replace the present spark chambers in the Brookhaven National Laboratory's Multiparticle Spectrometer. This system will handle a beam of approx. 3 million particles per second and have a resolution of 200 μm. A summary of the status of the chambers and the custom integrated circuits is presented. The data acquisition system is described. Prototype chambers have been built and tested with results that are consistent with the expected chamber properties

  6. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    Science.gov (United States)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  7. The Okhotsk Plate and the Eurasia-North America plate boundary zone.

    Science.gov (United States)

    Hindle, David; Mackey, Kevin

    2014-05-01

    The Eurasia-North America plate boundary zone transitions from spreading at rates of ~ 25mm/yr in the North Atlantic, to compression at rates of ~ 5mm/yr in the region of the Okhotsk plate. Because the pole of rotation between Eurasia and North America lies more or less on their mutual boundary, there is a linear change in rate along the boundary, and regions near the euler pole are subject to extremely low deformation rates. The Okhotsk - Eurasia - North America triple junction lies slightly south of the rotation pole, placing the Okhotsk plate entirely in a weakly contractional setting. Regions near the triple junction absorb 1mm/yr contraction. Further south, towards the shoreline of the Okhotsk sea, up to 5 mm/yr contraction may be absorbed within the plate. How shortening is accommodated across the boundary remains an open question. One possibility is wholesale extrusion of the entire Okhotsk plate (or possibly its northwestern corner) along two plate boundary strike slip faults (Eurasia-Okhostk and North America Okhotsk). The problem with this model is that the seismic record does not presently clearly support it, with the largest events distributed both within the plate interior and on its boundaries. This may suggest that instead, the Okhotsk plate, and particularly its north-western end, consists of a series of smaller blocks which shuffle against each other, partially accommodating extrusion, but also permitting some internal deformation and change of shape of the Okhotsk plate itself. We present analyses of the very sparse seismic record from the region, as well as geometric-kinematic, tectonic models of the possible deformation of northwest Okhotsk to try to better understand the different probabilities of how this slowly deforming plate boundary zone is behaving.

  8. LEP vacuum chamber, cross-section

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  9. Note: Small anaerobic chamber for optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, Adrien A. P., E-mail: adrien.chauvet@gmail.com; Chergui, Majed [Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, 1015 Lausanne (Switzerland); Agarwal, Rachna; Cramer, William A. [Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  10. Structural Analysis of Extended Plasma Focus Chamber

    International Nuclear Information System (INIS)

    Mohd Azhar Ahmad; Abdul Halim Baijan; Siti Aiasah Hashim

    2016-01-01

    Accelerator Development Centre (ADC) of Nuclear Malaysia intends to upgrade the plasma focus device. It involves the extension part placed on top of the existing plasma focus vacuum chamber. This extended vacuum chamber purposely to give an extra space in conducting experiments on the existing plasma focus chamber. The aim of upgrading the plasma focus device is to solve the limitation in research and analysis of sample due to its done in an open system that cause analysis of samples is limited and less optimal. This extended chamber was design in considering the ease of fabrication as well as durability of its structural. Thus, this paper discusses the structural analysis in term of pressure loading effect in extended chamber. (author)

  11. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  12. Wire chamber degradation at the Argonne ZGS

    International Nuclear Information System (INIS)

    Haberichter, W.; Spinka, H.

    1986-01-01

    Experience with multiwire proportional chambers at high rates at the Argonne Zero Gradient Synchrotron is described. A buildup of silicon on the sense wires was observed where the beam passed through the chamber. Analysis of the chamber gas indicated that the density of silicon was probably less than 10 ppM

  13. Drift chamber vertex detectors for SLC/LEP

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, K G

    1988-03-01

    Factors influencing the design of drift chamber vertex detectors for SLC and LEP are discussed including global strategy, chamber gas, cell design, and signal processing. The designs of the vertex chambers for the L3 and OPAL experiments at LEP and the Mark II experiment at the SLC are described.

  14. Radon-daughter chamber instrumentation system reference manual

    International Nuclear Information System (INIS)

    Showalter, R.; Johnson, L.

    1985-01-01

    The radon-daughter chamber instrumentation system collects environmental data from the radon-daughter chamber. These data are then recorded on a Tandberg system tape cartridge and transmitted to the HP-1000 computer for processing. Generators which inject radon and condensation nuclei into the chamber are also included with the instrumentation system

  15. Nuclear design considerations for Z-IFE chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W.R. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States)]. E-mail: meier5@llnl.gov; Schmitt, R.C. [Bettis Atomic Power Laboratory, Pittsburgh, PA 15203 (United States); Abbott, R.P. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States); Latkowski, J.F. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States); Reyes, S. [Lawrence Livermore National Laboratory, P.O. Box 808, L-641, Livermore, CA 94551 (United States)

    2006-02-15

    Z-pinch driven IFE (Z-IFE) requires the design of a repetitive target insertion system that allows coupling of the pulsed power to the target with adequate standoff, and a chamber that can withstand blast and radiation effects from large yield targets. The present strategy for Z-IFE is to use high yield targets ({approx}2-3 GJ/shot), low repetition rate per chamber ({approx}0.1 Hz), and 10 chambers per power plant. In this study, we propose an alternative power plant configuration that uses very high yield targets (20 GJ/shot) in a single chamber operating at 0.1 Hz. A thick-liquid-wall chamber is proposed to absorb the target emission (X-rays, debris and neutrons) and mitigate the blast effects on the chamber wall. The target is attached to the end of a conical shaped recyclable transmission line (RTL) made from a solid coolant (e.g., frozen flibe), or a material that is easily separable from the coolant (e.g., steel). The RTL/target assembly is inserted through a single opening at the top of the chamber for each shot. This study looks at the RTL material choice from a safety and environmental point of view. Materials were assessed according to waste disposal rating (WDR) and contact dose rate (CDR). Neutronics calculations, using the TART2002 Monte Carlo code from Lawrence Livermore National Laboratory (LLNL), were performed for the RTL and Z-IFE chamber, and key results reported here.

  16. Pressure atomizer having multiple orifices and turbulent generation feature

    Science.gov (United States)

    VanBrocklin, Paul G.; Geiger, Gail E.; Moran, Donald James; Fournier, Stephane

    2002-01-01

    A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.

  17. A High Position Resolution X-ray Detector: an Edge on Illuminated Capillary Plate Combined with a Gas Amplification Structure

    CERN Document Server

    Iacobaeus, C.; Lund-Jensen, B.; Ostling, J.; Pavlopoulos, P.; Peskov, V.; Tokanai, F.

    2006-01-01

    We have developed and successfully tested a prototype of a new type of high position resolution hybrid X-ray detector. It contains a thin wall lead glass capillary plate converter of X-rays combined with a microgap parallel-plate avalanche chamber filled with gas at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0-90 degree. The detection efficiency, depending on the geometry, photon energy, incident angle and the mode of operation, was between 5-30 percent in a single step mode and up to 50 percent in a multi-layered combination. Depending on the capillary geometry, the position resolution achieved was between 0.050-0.250 mm in digital form and was practically independent of the photon energy or gas mixture. The usual lead glass capillary plates operated without noticeable charging up effects at counting rates of 50 Hz/mm2, and hydrogen treated capillaries up to 10E5 Hz/mm2. The developed detector may open new possibil...

  18. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  19. PWCs and drift chambers at ISABELLE

    International Nuclear Information System (INIS)

    Okuno, H.; Teramoto, Y.; Wheeler, C.D.

    1978-01-01

    Rate effects in proportional chambers and drift chambers are addressed first. The widely used high-gas-gain chambers would have impaired performance at ISABELLE data rates. Improvement can be expected with lower gas gain, and this possibility is investigated with respect to position and time resolution. Results on chamber lifetime are summarized; space-charge effects, gain saturation, and radiation hardness of electronics are considered. The resolution of drift chambers is discussed in some detail; time resolution, double pulse resolution, and momentum resolution and multiple scattering are included. The expected high multiplicity of tracks from a single event, the high event rates, and the requirement for low gas gain necessitate revision of the methods for measuring the second coordinate. Known methods of two-dimensional point localization are summarized according to spatial accuracy, electronics requirements, and multihit capability. Delay lines, charge division, and cathode strips are considered. Particle identification by means of measurement of the relativistic rise of energy loss by conventional and unconventional means was investigated. 32 references, 3 figures, 4 tables

  20. Improved climatic chamber for desiccation simulation

    Directory of Open Access Journals (Sweden)

    Lozada Catalina

    2016-01-01

    Full Text Available The climatic chamber at the Universidad de Los Andes was improved for modeling desiccation in soil layers. This chamber allows the measurement of different environmental variables. In this research, evaporation tests were conducted in water imposing boundary conditions for drying, and then these tests were performed in a soil layer. The soil was prepared from a slurry state and was drying controlling the temperature, the infrared radiation, the wind velocity, and the relative humidity. In the first part of this paper, a description of the climatic chamber, operation ranges and theoretical work principles of the climatic chamber are presented. Then, the second part shows the results for desiccation in water and soil. The desiccation tests performed with the climatic chamber allow simulating all environmental conditions accurately during drying coupling the effect of all environmental variables. As a result, the evaporation rate increases with infrared radiation in soil and water. The rate at the beginning of the desiccation tests in clays is the same as in water. However, this evaporation rate decreases as the soil becomes desiccated.

  1. Finite element analysis of a solar collector plate using two plate geometries

    Directory of Open Access Journals (Sweden)

    Diego Manuel Medina Carril

    2016-09-01

    Full Text Available The thermal behavior of an absorber plate in a solar collector is investigated using finite element analysis. The thermal behavior and efficiency of two absorber plate geometries are studied, using a typical solar collector with a rectangular profile as reference, and a proposed absorber plate with curved geometry. An analysis of the most important parameters involved in the design of the absorber plate was carried out, indicating that the curved geometry of the absorber plate yields an average efficiency ~25% higher than the conventional rectangular geometry. The results suggest that a curved profile made of materials such as aluminum with thermal conductivity higher than 200W/m°C, plate thickness of the order of 2-3mm and with a large density of tubes per unit area of the collector´s plate greatly benefits the thermal efficiency of the solar collector.

  2. Mixed field dosimetry with the twin chamber technique

    International Nuclear Information System (INIS)

    Burger, G.; Maier, E.

    1974-04-01

    For the separate dosimetry of the neutron- and gamma-component in a mixed beam it is principally possible to use two ionization chambers with different ratios of neutron- to gamma sensitivity. Several authors proposed for this purpose the use of a homogenious TE-chamber filled with the TE-gas and of a carbon-chamber filled with CO 2 -gas. This chamber combination is also commercially available in several countries. The chambers are normally equipped with a continuous gas-flow provision and with a waterproof-housing for the use within liquid phantoms. The application of such chambers for mixed field dosimetry in the intercomparison project of the ICRU at the RARAF-facility in Brookhaven (International Neutron Dosimetry Intercomparison - INDI) is described. (orig./HP) [de

  3. Drift chamber tracking with neural networks

    International Nuclear Information System (INIS)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed

  4. Construction, test and operation in a high intensity beam of a small system of micro-strip gas chambers

    Science.gov (United States)

    Barr, A.; Bachmann, S.; Boimska, B.; Bouclier, R.; Braem, A.; Camps, C.; Capeáns, M.; Commichau, V.; Dominik, W.; Flügge, G.; Gómez, F.; Hammarstrom, R.; Hangarter, K.; Hoch, M.; Labbé, J. C.; Macke, D.; Manzin, G.; Meijers, F.; Million, G.; Muhlemann, K.; Nagaslaev, V.; Peisert, A.; Ropelewski, L.; Runolfsson, O.; Sauli, F.; Schulte, R.; Schulz, M.; Sharma, A.; Shekhtman, L.; Wolff, C.

    1998-02-01

    We describe the construction, test and installation procedures, and the experience gained with the operation of a small but complete system of high-rate Micro-Strip Gas Chambers, made on thin borosilicate glass with a diamond-like coating with chromium or gold strips. A set of detectors, fully equipped with read-out electronics and each with an active area of 100 × 100 mm 2, was exposed during six months to a high-intensity muon beam at CERN with a peak intensity of ˜ 10 4 mm -2s -1. Continuous monitoring of the performance of the chambers during the beam runs allowed the evaluation of detection efficiency and the monitoring of accidental rates, as well as the study of ambient induced variations and aging in realistic beam conditions. No significant difference has been found in the operation of under-and over-coated plates. Efficiencies could reach ˜ 98% in best operating conditions, although local lower values were often observed due to missing channels (open strips, broken bonds and dead electronic channels). The long-term operation of the chambers has been more difficult than expected, with the appearance of break-downs and loss of efficiency in some detectors, possibly induced by the presence of small gas leaks, to water permeation or to residual reactivity of the quencher gas (dimethylether).

  5. Making MUSIC: A multiple sampling ionization chamber

    International Nuclear Information System (INIS)

    Shumard, B.; Henderson, D.J.; Rehm, K.E.; Tang, X.D.

    2007-01-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction

  6. Making MUSIC: A multiple sampling ionization chamber

    Science.gov (United States)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  7. Making MUSIC: A multiple sampling ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shumard, B. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)]. E-mail: shumard@phy.anl.gov; Henderson, D.J. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Rehm, K.E. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Tang, X.D. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)

    2007-08-15

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the ({alpha}, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for ({alpha}, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only ({alpha}, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the ({alpha}, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the ({alpha}, p) reaction to reach the anode segment below the reaction.

  8. Simple Cloud Chambers Using Gel Ice Packs

    Science.gov (United States)

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  9. Large area gridded ionisation chamber and electrostatic precipitator. Application to low-level alphaspectrometry of environmental air samples

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1978-01-01

    A high-resolution, parallel plate Frisch grid ionisation chamber with an efficient area of 300 cm 2 and a large area electrostatic precipitator were developed and applied to direct alpha-particle spectrometry of air dust. The aerosols were deposited on circular tin-plate dishes of 300 cm 2 by the electrostatic precipitator, which was constructed for continuous operation at an air flow rate of 2 m 3 /h. Collection efficiency is found to be 0.78 for the natural Rn- and Tn-daughter products. Using an argon-methane mixture (P-10 gas) at atmospheric pressure, the resolution of the detector system is 22 keV fwhm at 5.15 MeV. The integral background is typically 15.7 counts/h between 4 and 6 MeV. After sampling for one week and decay of short-lived natural activity, the sensitivity of the procedure for long-lived alpha-emitters is about 0.1 fCi/m 3 based on 3s of background as detection limit and 1000 min counting time. (Auth.)

  10. Plate removal following orthognathic surgery.

    Science.gov (United States)

    Little, Mhairi; Langford, Richard Julian; Bhanji, Adam; Farr, David

    2015-11-01

    The objectives of this study are to determine the removal rates of orthognathic plates used during orthognathic surgery at James Cook University Hospital and describe the reasons for plate removal. 202 consecutive orthognathic cases were identified between July 2004 and July 2012. Demographics and procedure details were collected for these patients. Patients from this group who returned to theatre for plate removal between July 2004 and November 2012 were identified and their notes were analysed for data including reason for plate removal, age, smoking status, sex and time to plate removal. 3.2% of plates were removed with proportionally more plates removed from the mandible than the maxilla. 10.4% of patients required removal of one or more plate. Most plates were removed within the first post-operative year. The commonest reasons for plate removal were plate exposure and infection. The plate removal rates in our study are comparable to those seen in the literature. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. An experimental propane bubble chamber

    International Nuclear Information System (INIS)

    Rogozinski, A.

    1957-01-01

    Describes a propane bubble chamber 10 cm in diameter and 5 cm deep. The body of the chamber is in stainless steel, and it has two windows of polished hardened glass. The compression and decompression of the propane are performed either through a piston in direct contact with the liquid, or by the action on the liquid, through a triple-mylar-Perbunan membrane, of a compressed gas. The general and also optimum working conditions of the chamber are described, and a few results are given concerning, in particular, the tests of the breakage-resistance of the windows and the measurements of the thermal expansion of the compressibility isotherm for the propane employed. (author) [fr

  12. Very high intensity reaction chamber design

    International Nuclear Information System (INIS)

    Devaney, J.J.

    1975-09-01

    The problem of achieving very high intensity irradiation by light in minimal regions was studied. Three types of irradiation chamber are suggested: the common laser-reaction chamber, the folded concentric or near-concentric resonator, and the asymmetric confocal resonator. In all designs the ratio of high-intensity illuminated volume to other volume is highly dependent (to the 3 / 2 power) on the power and fluence tolerances of optical elements, primarily mirrors. Optimization of energy coupling is discussed for the common cavity. For the concentric cavities, optimization for both coherent and incoherent beams is treated. Formulae and numerical examples give the size of chambers, aspect ratios, maximum pass number, image sizes, fluences, and the like. Similarly for the asymmetric confocal chamber, formulae and numerical examples for fluences, dimensions, losses, and totally contained pass numbers are given

  13. Liquid ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Liquid ionization chambers [1] (LICs) have have been used in the last decades as background dosemeters. Since a few years LICs are also commercially available for dosimetry and are used for measurements of dose distributions where a high spatial distribution is necessary. Also in the last decades...... a differential equation applying several simplifications and approximations leading to discrepancies between theory and experiments [3]. The theory predicts the collection efficiency as a function of the electrical field and was applied for both air filled ionization chambers and liquid filled ionization...... chambers. For liquids the LET can be roughly deduced from the collection efficiency dependency on the electrical field inside a liquid ionization chambers [4] using an extrapolation method. We solved the fundamental differential equation again presented by Jaffe numerically, but now taking into account...

  14. DORIOT CLIMATIC CHAMBERS

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers reproduce environmental conditions occurring anywhere around the world. They provide an invaluable service by significantly reducing the...

  15. Practical electron dosimetry: a comparison of different types of ionization chambers

    International Nuclear Information System (INIS)

    Dohm, O.S.; Christ, G.

    2002-01-01

    Since Markus chambers are no longer recommended in the 1997 DIN 6800-2 version there are uncertainties as to the use of alternative chamber types for electron dosimetry. Therefore, we performed a comparison between different types of ionization chambers. In particular, the widespread Farmer and Roos chambers were compared with the Markus chamber for polarity effect, chamber-to-chamber variation, and deviations of the measured absorbed dose relative to the value obtained with the Roos chamber (which is regarded as an ideal Bragg-Gray-chamber). The perturbation correction factor at 60 Co radiation was determined experimentally as 1,029 ± 0,5% (Roos chamber) and 1,018 ± 0,5% (Markus chamber) for the investigated plane-parallel chambers. In addition, we could show that the Roos chambers do not have a larger chamber-to-chamber variation than the Farmer chambers. Likewise, our results suggest that Farmer chambers could be used for electron energies above 6 MeV. (orig.) [de

  16. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams; Projeto, construcao e caracterizacao de camaras de ionizacao para utilizacao como sistemas padroes em feixes de radiacao X e gama

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana Paula

    2013-07-01

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  17. Sensitivity of gaseous xenon ionisation chambers (1961)

    International Nuclear Information System (INIS)

    Schuhl, C.

    1960-01-01

    It seems advantageous to fill an ionization chamber with xenon gas when this chamber is used for measuring a low intensity and high energy electron or positron beam, or monitoring a gamma beam. In the study of 5 to 50 MeV electrons, xenon allows for the ionization chamber yield, an improvement of a factor 4,5. (author) [fr

  18. Ionization chamber correction factors for MR-linacs.

    Science.gov (United States)

    Pojtinger, Stefan; Dohm, Oliver Steffen; Kapsch, Ralf-Peter; Thorwarth, Daniela

    2018-06-07

    Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B . The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0-2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.

  19. Ionization chamber correction factors for MR-linacs

    Science.gov (United States)

    Pojtinger, Stefan; Steffen Dohm, Oliver; Kapsch, Ralf-Peter; Thorwarth, Daniela

    2018-06-01

    Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B. The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0–2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.

  20. Study of radon exhalation from phosphogypsum plates and blocks from different origins

    International Nuclear Information System (INIS)

    Costa, Lucas Jose Pereira da

    2011-01-01

    Phosphogypsum is a waste of the fertilizer industry that concentrates radionuclides. In this work, the 222 Rn exhalation rate from phosphogypsum plates and blocks from different origins used at dwellings construction was studied. The 222 Rn exhalation rate was determined through the accumulation chamber technique with solid state nuclear track detectors (SSNTD). The effective dose for an individual living in a residence built with phosphogypsum based materials was evaluated. It also was calculated the 222 Rn exhalation rate through the UNSCEAR model, from the 226 Ra concentration in the materials, in order to compare the experimental results. It was evaluated the contribution of building component (paint) to the reduction of 222 Rn exhalation rate. The plates and blocks were manufactured with phosphogypsum from Bunge Fertilizantes, Ultrafertil and Fosfertil. Blocks manufactured with ordinary gypsum was also evaluated. The average results obtained were 0.19 ± 0.06 Bq m-2 h-1, 1.3 ± 0.3 Bq m -2 h -1 and 0.41 ± 0.07 Bq m -2 h -1 for plates manufactured with phosphogypsum from Bunge Fertilizer, Ultrafertil and Fosfertil, respectively. For the phosphogypsum blocks the values were 0.11 ± 0.01 Bq m -2 h-1, 1.2 ± 0.6 Bq m -2 h -1 , 0.47 ± 0.15 Bq m -2 h -1 , for Bunge, Ultrafertil and Fosfertil. The blocks manufactured with ordinary gypsum presented average value of 0.18 ± 0.08 Bq m -2 h'- 1 . All phosphogypsum plates and blocks evaluated in this study presented effective dose for radon inhalation lower than the recommended value of 1mSv y -1 , the annual effective dose limit for public exposure by International Commission on Radiological Protection. (author)