WorldWideScience

Sample records for plate buckling induced

  1. Linear and nonlinear buckling analysis of a locally stretched plate

    Energy Technology Data Exchange (ETDEWEB)

    Kilardj, Madina; Ikhenzzen, Ghania [University of Sciences and Technology Houari Boumediene (U.S.T.H.B), Bab Ezzouar, Algiers (Algeria); Merssager, Tanguy; Kanit, Toufik [Laboratoire de Mecanique de Lille Universite Lille 1, Cite ScientifiqueVilleneuve d' Ascq cedex (France)

    2016-08-15

    Uniformly stretched thin plates do not buckle unless they are in special boundary conditions. However, buckling commonly occurs around discontinuities, such as cracks, cuts, narrow slits, holes, and different openings, of such plates. This study aims to show that buckling can also occur in thin plates that contain no defect or singularity when the stretching is local. This specific stability problem is analyzed with the finite element method. A brief literature review on stretched plates is presented. Linear and nonlinear buckling stress analyses are conducted for a partially stretched rectangular plate, and various load cases are considered to investigate the influence of the partial loading expanse on the critical tensile buckling load. Results are summarized in iso-stress areas, tables and graphs. Local stretching on one end of the plate induces buckling in the thin plate even without geometrical imperfection.

  2. Buckling analysis of a laminate plate

    Directory of Open Access Journals (Sweden)

    Mamuzić, I.

    2008-04-01

    Full Text Available The paper deals with a modeling of laminate plates and with their buckling analysis. To predict the inception of buckling for plates in plane resultant forces must be included. The buckling analysis is made by the help of finite element method in program COSMOS/M. For rectangular laminate plate consisting of 4 layers with symmetric and antisymmetric stacking sequence a buckling analysis is carried out. In the illustrative example there are depicted buckling modes for symmetric laminates [30/-30]s, [45/-45]s, [60/-60]s, [90/-90]s and results of the buckling analysis for the symmetric and antisymmetric laminates.

  3. Vibration and Buckling of Web Plate of the Plate Girder

    OpenAIRE

    高橋, 和雄; 呉, 明強; 中澤, 聡志; 筑紫, 宏之

    1998-01-01

    The vibration and buckling of the web of the plate girder are studied in this paper. The small deflection theory of the thin plate is used. The finite strip method is employed to solve vibration and buckling of the plate girder. Natural frequenies of buckling properties are shown for various plate girder bridges.

  4. Elastic buckling strength of corroded steel plates

    Indian Academy of Sciences (India)

    Ahmad Rahbar-Ranji

    2013-02-01

    Corrosion makes structures more vulnerable to buckling and yielding failures. It is common practice to assume a uniform thickness reduction for general corrosion. To estimate the remaining strength of corroded structures, typically a much higher level of accuracy is required, since the actual corroded structures have irregular surfaces. Elastic buckling of simply supported rectangular corroded plates are studied with one- and both-sided irregular surfaces. Eigenvalue analysis by using finite element method (FEM) is employed for computing Euler stress. The influence of various geometric and corrosion characteristics are investigated and it is found that the aspect ratio of the plate, the average thickness diminution, the standard deviation of thickness diminution and the amount of corrosion loss have influence on the reduction of buckling strength of the corroded plates. Buckling strength of one- and both-sided corroded plates are the same. In plates with low value of aspect ratio, reduction of buckling strength is negligible. Reduction of buckling strength is more prominent in plates with higher aspect ratio. Reduction of buckling strength is very sensitive to the amount of corrosion loss; the higher the amount of corrosion loss, the more reduction of buckling strength. Reduction of buckling strength is less sensitive to the standard deviation of thickness diminution.

  5. Studies on the Dynamic Buckling of Circular Plate Irradiated by Laser Beam

    Institute of Scientific and Technical Information of China (English)

    黄晨光; 段祝平

    2002-01-01

    The dynamic buckling of thin copper plate induced by laser beam, was analyzed with the numerical integration and disturbance methods of controlling equation. The buckling and post-buckling of thin plate were shown, with the consideration of the temperature distribution, inertia effect and initial deflection. At last, the buckling criterion about the circular plate was obtained and used to investigate the relation between the critical laser intensity and the ratio of thickness and diameter of the plate. The results fit the experimental observation and the FEM simulation very well, and benefit to the understanding of failure phenomenon of structures irradiated by laser beam.

  6. Dynamic buckling of stiffened plates subjected to explosion impact loads

    Science.gov (United States)

    Wang, J.; Guo, J.; Yao, X. L.; Zhang, A. M.

    2017-01-01

    The dynamic buckling characteristics and criteria of a ship's structural stiffened plate subjected to underwater explosion impact loads are investigated in this study. Using the structural deformations observed in the experiments of underwater explosions against a plated grillage model, the mode shapes of the dynamic buckling were obtained. Through the construction of a computational model of stiffened plates subjected to an underwater explosion shock wave, the impact load was theoretically calculated and transformed into a rectangular pulse. According to the different response patterns of stiffened plates under different impact loads, a dynamic buckling criterion for the stiffened plates subjected to an explosion shock wave was proposed. Additionally, the static buckling phenomenon in the stiffened plates was analysed based on the minimum excess principle. In combination with the dynamic buckling criterion, the effects of various stiffening configurations on the dynamic and static buckling loads are discussed. The calculation results show that when the equivalent rectangular pulse is 2-3 times that of the static buckling load, the responses of the stiffened plates under the original shock load and the equivalent rectangular pulse are virtually identical. The impact load amplitude is the primary influencing factor in the dynamic buckling of stiffened plates subjected to underwater explosive impact loads. The stiffened plate aspect ratio has a substantial influence on the dynamic load factor. The analytical method and results are presented, which can be used to design stiffened optimum hull structures to enhance the dynamic load carrying capacity to withstand underwater shock damage.

  7. Elastic buckling analysis of corroded stiffened plates with irregular surfaces

    Indian Academy of Sciences (India)

    Ahmad Rahbar-Ranji

    2015-02-01

    Numerical simulation is used to study the influence of corrosion damage in stiffened plates focusing on elastic buckling strength. Three-dimensional specta are used to simulate geometries of corroded surfaces and finite element method is employed for computing Euler stress of stiffened plates. The influence of corrosion patterns, amount of corrosion loss and roughness of surface are investigated. Ratio of Euler stress of corroded stiffened plate over Euler stress of un-corroded stiffened plate is used to characterize the effects of corrosion on reduction of buckling strength. Results show that reduction of buckling strength is very sensitive to the amount of corrosion loss and roughness of surface, but less sensitive to the location of corroded region. The potential for decrease in buckling strength as a consequence of corrosion is found to depend on the dominant buckling mode. Residual buckling strength is reduced by as much as 12% for the interaction of plate-web-torsional buckling mode, and by 2% for column buckling.

  8. Static and dynamic buckling of thin-walled plate structures

    CERN Document Server

    Kubiak, Tomasz

    2013-01-01

    This monograph deals with buckling and postbuckling behavior of thin plates and thin-walled structures with flat wall subjected to static and dynamic load. The investigations are carried out in elastic range. The basic assumption here is the  thin plate theory. This method is used to determination the buckling load and postbuckling analysis of thin-walled structures subjected to static and dynamic load. The book introduces two methods for static and dynamic buckling investigation which allow for a wider understanding of the phenomenon. Two different methods also can allow uncoupling of the phenomena occurring at the same time and attempt to estimate their impact on the final result. A general mathematical model, adopted in proposed analytical-numerical method, enables the consideration of all types of stability loss i.e.local, global and interactive forms of buckling. The applied numerical-numerical method includes adjacent of walls, shear-lag phenomenon and a deplanation of cross-sections.

  9. Buckling analysis of sandwich plate using layer wise theory

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbaran, Arash; Khoshravan, Mohammad Reza [University of Tabriz, Tabriz (Iran, Islamic Republic of); Kharazi, Mahsa [Sahand University of Technology, Sahand (Iran, Islamic Republic of)

    2014-07-15

    Buckling analysis of sandwich plate was investigated using layer wise method. The formulation was based on the first-order shear deformation theory, and the Rayleigh-Ritz method was used for approximating and determining the displacement field. The results obtained from layer wise theory was compared with finite element results and showed good agreement. This study demonstrated that layer wise theory could describe buckling behavior of sandwich plates with high accuracy and represents a more realistic and acceptable description of behavior of the plates with much less computational cost.

  10. A unified theory of plastic buckling of columns and plates

    Science.gov (United States)

    Stowell, Elbridge Z

    1948-01-01

    On the basis of modern plasticity considerations, a unified theory of plastic buckling applicable to both columns and plates has been developed. For uniform compression, the theory shows that long columns which bend without appreciable twisting require the tangent modulus and that long flanges which twist without appreciable bending require the secant modulus. Structures that both bend and twist when they buckle require a modulus which is a combination of the secant modulus and the tangent modulus. (author)

  11. Buckling Analysis of Functionally Graded Plates with Simply Supported Edges

    Directory of Open Access Journals (Sweden)

    Megueni ABDELKADER

    2009-12-01

    Full Text Available Thermal buckling analyses of S-FGM are investigated by using first order shear deformation theory. Material properties are varied continuously in the thickness direction according to a sigmoid distribution. The thermal buckling behaviours under uniform, linear and sinusoidal temperature rise across the thickness are analyzed. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the classic plate theory (CPT.

  12. Buckling analysis of partially corroded steel plates with irregular surfaces

    Indian Academy of Sciences (India)

    Ahmad Rahbar-Ranji

    2014-04-01

    Corrosion is a long-term, inevitable process, lessens the thickness and load carrying capacity of structures. Old steel structures are more vulnerable to buckling, yielding and fracture due to corrosion. In lieu of a detailed analysis, average thickness assumption is employed for general type of corrosion. However, the estimation of load carrying capacity reduction of corroded structures typically need a much higher level of accuracy, since the actual corroded plates would have irregular surfaces. The objective of this article is to determine the effect of general corrosion on reduction of elastic buckling strength of both-sided partially corroded plates with irregular surfaces. Eigenvalue analysis using finite element method is employed for Euler stress calculation of corroded plates. The effects of different influential parameters are investigated and it is found that, aspect ratio of plate, location of corroded area, standard deviation of thickness diminution and concentration of corrosion have influence on reduction of elastic buckling strength. Reduction of elastic buckling strength is very sensitive to the amount of corrosion loss. The higher the amount of corrosion loss, the more reduction of elastic buckling strength.

  13. Studies of the buckling of composite plates in compression

    DEFF Research Database (Denmark)

    Hayman, B.; Berggreen, Christian; Lundsgaard-Larsen, Christian

    2009-01-01

    As part of the MARSTRUCT Network of Excellence on Marine Structures, a series of studies has been carried out into the buckling of glass fibre reinforced polymer plates with in-plane compression loading. The studies have included fabrication and testing of square, laminated panels with various...

  14. Studies of the Buckling of Composite Plates in Compression

    DEFF Research Database (Denmark)

    Hayman, B.; Berggreen, Christian; Lundsgaard-Larsen, Christian

    2011-01-01

    As part of the Network of Excellence on Marine Structures (MARSTRUCT), a series of studies has been carried out into the buckling of glass-fibre-reinforced polymer plates with in-plane compression loading. The studies have included fabrication and testing of square, laminated panels with various...

  15. Thermal buckling analysis of truss-core sandwich plates

    Institute of Scientific and Technical Information of China (English)

    陈继伟; 刘咏泉; 刘伟; 苏先樾

    2013-01-01

    Truss-core sandwich plates have received much attention in virtue of the high values of strength-to-weight and stiffness-to-weight as well as the great ability of impulse-resistance recently. It is necessary to study the stability of sandwich panels under the influence of the thermal load. However, the sandwich plates are such complex three-dimensional (3D) systems that direct analytical solutions do not exist, and the finite element method (FEM) cannot represent the relationship between structural parameters and mechanical properties well. In this paper, an equivalent homogeneous continuous plate is idealized by obtaining the effective bending and transverse shear stiffness based on the characteristics of periodically distributed unit cells. The first order shear deformation theory for plates is used to derive the stability equation. The buckling temperature of a simply supported sandwich plate is given and verified by the FEM. The effect of related parameters on mechanical properties is investigated. The geometric parameters of the unit cell are optimized to attain the maximum buckling temperature. It is shown that the optimized sandwich plate can improve the resistance to thermal buckling significantly.

  16. Bending and buckling behavior analysis of foamed metal circular plate.

    Science.gov (United States)

    Fan, Jian Ling; Ma, Lian Sheng; Zhang, Lu; De Su, Hou

    2016-07-04

    This paper establishes a density gradient model along the thickness direction of a circular plate made of foamed material. Based on the first shear deformation plate theory, the result is deduced that the foamed metal circular plate with graded density along thickness direction yields axisymmetric bending problem under the action of uniformly distributed load, and the analytical solution is obtained by solving the governing equation directly. The analyses on two constraint conditions of edge radial clamping and simply supported show that the density gradient index and external load may affect the axisymmetric bending behavior of the plate. Then, based on the classical plate theory, the paper analyzes the behavior of axisymmetric buckling under radial pressure applied on the circular plate. Shooting method is used to obtain the critical load, and the effects of gradient nature of material properties and boundary conditions on the critical load of the plate are analyzed.

  17. Advances and Trends in Plate Buckling Research.

    Science.gov (United States)

    1982-12-01

    Hydrostatic State of In- Plane Stress. Instituto de Mecanica Aplicada No. 79-21 (Puerto Belgrano, Argentina), June 1979, 10 pp. (to be published). 38. Leissa...and Elastic Stability of Circular Plates With Thickness Varying in a Bilinear Fashion. Instituto de Mecanica Aplicada No. 81-23 (Puerto Belgrano

  18. Estimation of Local Delamination Buckling in Orthotropic Composite Plates Using Kirchhoff Plate Finite Elements

    Directory of Open Access Journals (Sweden)

    Zoltán Juhász

    2015-01-01

    Full Text Available We analyse the buckling process of composite plates with through-the-width delamination and straight crack front applying uniaxial compression. We are focusing on the mixed mode buckling case, where the non-uniform distribution of the in-plane forces controls the occurence of the buckling of the delaminated layers. For the analysis, semi-discrete finite elements will be derived based on the Lèvy-type method. The method of harmonic balance is used for taking into account the force distribution that is generally non uniform in-plane.

  19. Buckling and Multiple Equilibrium States of Viscoelastic Rectangular Plates

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    On the basis of Karman's theory of thin plates with large deflection, the Boltzmann law on linear viscoelastic materials and the mathematical model of dynamic analysis on viscoelastic thin plates, a set of nonlinear integro-partial-differential equations is first presented by means of a structural function introduced in this paper. Then,by using the Galerkin technique in spatial field and a backward difference scheme in temporal field, the set of nonlinear integro-partial-differential equations reduces to a system of nonlinear algebraic equations. After solving the algebraic equations, the buckling behavior and multiple equilibrium states can be obtained.

  20. Flexural-torsional buckling analysis of angle-bar stiffened plates

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rahbar Ranji [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-09-15

    The interaction of flexural-torsional buckling modes is critical for stiffened plates with asymmetric stiffeners. However, this interaction is ignored in all design rules because it is complex to characterize. In the literature, the presence of an attached plate is ignored, and stiffened plate is treated as an ordinary asymmetric beam. In the flexural buckling mode, stiffener and the attached plate buckle together; in the torsional buckling mode, the attached plate cannot freely rotate with stiffener. Basic equations of the flexural-torsional buckling modes are deduced based on hybrid beam concept and a new strain distribution assumption for sideway bending of stiffeners. Elastic buckling stresses of different angle-bar stiffened plates are calculated and compared with those generated by the Finite element method (FEM) and those available in the literature. The present method has better agreements with FEM.

  1. LOCALIZED BUCKLING OF THE SEMI-INFINITE ISOTROPIC PLATE NEAR ELASTICALLY FASTENED EDGE

    Directory of Open Access Journals (Sweden)

    Sharifian R.

    2012-06-01

    Full Text Available Localized buckling of a semi-infinite isotropic plate near elastically fastened edge has been investigated. Mathematical model is of structure is provided and characteristic equation of the problem is derived. The existence conditions of localized buckling are derived analytically. For the cases when localized buckling exists numerical solutions and plots for the critical loads are provided.

  2. ON THE ORIENTATION OF BUCKLING DIRECTION OF ANISOTROPIC ELASTIC PLATE UNDER UNIAXIAL COMPRESSION

    Institute of Scientific and Technical Information of China (English)

    Zhang Yitong

    2001-01-01

    The theory of small deformation superimposed on a large deformation of an elastic solid is used to investigate the buckling of anisotropic elastic plate under uniaxial compression. The buckling direction (the direction of buckling wave) is generally not aligned with the compression direction. The equation for determining the buckling direction is obtained. It is found that the out-of-plane buckling of anisotropic elastic plate is possible and both buckling conditions for flexural and extensional modes are presented. As a specific case of buckling of anisotropic elastic plate, the buckling of an orthotropic elastic plate subjected to a compression in a direction that forms an arbitrary angle with an elastic principal axis of the materials is analyzed. It is found that the buckling direction depends on the angle between the compression direction and the principal axis of the materials, the critical compressive force and plate-thickness parameters.In the case that the compression direction is aligned with the principal axis of the materials, the buckling direction will be aligned with the compression one irrespective of critical compressive force and plate-thickness.

  3. On the durable critic load in creep buckling of viscoelastic laminated plates and circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the first order shear deformation theory and classic buckling theory, the paper investigates the creep buckling behavior of viscoelastic laminated plates and laminated circular cylindrical shells. The analysis and elaboration of both instantaneous elastic critic load and durable critic load are emphasized. The buckling load in phase domain is obtained from governing equations by applying Laplace transform, and the instantaneous elastic critic load and durable critic load are determined according to the extreme value theorem for inverse Laplace transform. It is shown that viscoelastic approach and quasi-elastic approach yield identical solutions for these two types of critic load respectively. A transverse disturbance model is developed to give the same mechanics significance of durable critic load as that of elastic critic load. Two types of critic loads of boron/epoxy composite laminated plates and circular cylindrical shells are discussed in detail individually, and the influencing factors to induce creep buckling are revealed by examining the viscoelasticity incorporated in transverse shear deformation and in-plane flexibility.

  4. Post-buckling behaviour of carbon-nanotube-reinforced nanocomposite plate

    Indian Academy of Sciences (India)

    ASHISH SRIVASTAVA; DINESH KUMAR

    2017-01-01

    The aim of the present paper is to investigate the buckling and post-buckling behaviour ofnanocomposite plate having randomly oriented carbon nanotubes (CNTs) reinforced in magnesium (Mg) under uni-axial compression. The effect of non-bonded interaction at the interface between CNT and matrix is considered through a cohesive zone model, used to predict the elastic property of the interphase, while evaluating the elastic properties of the nanocomposite using a representative volume element. A special purpose program based on finite-element formulation is developed to study the buckling and post-buckling behaviour of nanocomposite plate. The formulation is based on first-order shear deformation theory in conjunction with geometrical non-linearity as per von Karman’s assumptions. A parametric study is conducted to investigate theeffects of interphase between CNT and matrix, short-CNT and long-CNT reinforcements and boundary conditions on buckling and post-buckling response of nanocomposite plate. It is found that imperfect bonding between CNT and Mg results in the loss of buckling and post-buckling strength, as compared with perfect bonding, of CNT–Mg nanocomposite plate. It is also concluded that buckling and post-buckling strength ishigher for long-CNT-reinforced nanocomposite plate than that of short-CNT einforcement, irrespective of bonding between CNT and matrix material.

  5. Locally Corroded Stiffener Effect on Shear Buckling Behaviors of Web Panel in the Plate Girder

    Directory of Open Access Journals (Sweden)

    Jungwon Huh

    2015-01-01

    Full Text Available The shear buckling failure and strength of a web panel stiffened by stiffeners with corrosion damage were examined according to the degree of corrosion of the stiffeners, using the finite element analysis method. For this purpose, a plate girder with a four-panel web girder stiffened by vertical and longitudinal stiffeners was selected, and its deformable behaviors and the principal stress distribution of the web panel at the shear buckling strength of the web were compared after their post-shear buckling behaviors, as well as their out-of-plane displacement, to evaluate the effect of the stiffener in the web panel on the shear buckling failure. Their critical shear buckling load and shear buckling strength were also examined. The FE analyses showed that their typical shear buckling failures were affected by the structural relationship between the web panel and each stiffener in the plate girder, to resist shear buckling of the web panel. Their critical shear buckling loads decreased from 82% to 59%, and their shear buckling strength decreased from 88% to 76%, due to the effect of corrosion of the stiffeners on their shear buckling behavior. Thus, especially in cases with over 40% corrosion damage of the vertical stiffener, they can have lower shear buckling strength than their design level.

  6. Buckling Analysis of Unidirectional PolymerMatrix Composite Plates

    Directory of Open Access Journals (Sweden)

    Jawad Kadhim Uleiwi

    2006-01-01

    Full Text Available This study deals with the estimation of critical load of unidirectional polymer matrix composite plates by using experimental and finite element techniques at different fiber angles and fiber volume fraction of the composite plate.Buckling analysis illustrated that the critical load decreases in nonlinear relationship with the increase of the fiber angle and that it increases with the increase of the fiber volume fraction.The results show that the maximum value of the critical load is (629.54 N/m at (? = 0? and (Vf = 40 % for the finite element method, while the minimum value of the critical load is (49 N/m at (? = 90? and (Vf = 10 % for the experimental results. The results also indicated that the maximum difference between the finite element analysis and experimental work is about (11 % at ( ? = 0? and (Vf = 40 %

  7. Buckling of Flat Thin Plates under Combined Loading

    Directory of Open Access Journals (Sweden)

    Ion DIMA

    2015-03-01

    Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces applied to the central plane of a flat isotropic plate at which a change to the stable configuration of equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations, the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative, there will be presented only the most used configurations such as: rectangular flat thin plates, boundary conditions with simply supported (hinged or clamped (fixed edges, combined loadings with single compression or single shear or combination between them, compression and shear, with or without transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and elevator. The reserve factor and the critical stresses will be calculated using comparatively two methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – AIRBUS France software, a dedicated software to local calculations, for a simply supported plate under combined loading, compression on the both sides and shear.

  8. ANALYSIS ON THE MAGNETO-ELASTIC-PLASTIC BUCKLING/SNAPPING OF CANTILEVER RECTANGULAR FERROMAGNETIC PLATES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping,and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.

  9. Nonlinear dynamic buckling of stiffened plates under in-plane impact load

    Institute of Scientific and Technical Information of China (English)

    张涛; 刘土光; 赵耀; 罗家智

    2004-01-01

    This paper presents a simple solution of the dynamic buckling of stiffened plates under in-plane impact loading. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stresses of stiffeners and in-plane displacement are neglected. Appling the Hamilton's principle, the motion equations of stiffened plates are obtained. The deflection of the plate is taken as Fourier series, and using Galerkin method the discrete equations can be deduced, which can be solved easily by Runge-Kutta method. The dynamic buckling loads of the stiffened plates are obtained form Budiansky-Roth criterion.

  10. DYNAMIC BUCKLING OF STIFFENED PLATES UNDER FLUID-SOLID IMPACT LOAD

    Institute of Scientific and Technical Information of China (English)

    张涛; 刘土光; 熊有伦; 张维衡

    2004-01-01

    A simple solution of the dynamic buckling of stiffened plates under fluid-solid impact loading is presented. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stresses of stiffeners and in-plane displacement are neglected. Applying the Hamilton' s principle, the motion equations of stiffened plates are obtained. The deflection of the plate is taken as Fourier series, and using Galerkin method,the discrete equations can be deduced, which can be solved easily by Runge-Kutta method.The dynamic buckling loads of the stiffened plates are obtained from Budiansky-Roth ( B-R )curves.

  11. Post-buckling capacity of bi-axially loaded rectangular steel plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, T. H.

    2012-01-01

    Results from a detailed numerical investigation of the post-buckling behaviour of rectangular simply supported steel plates subjected to biaxial in-plane loading are presented. The Steel plates are loaded through forced edge displacements. The effects of initial imperfections, aspect ratio, plate...

  12. Semi-Analytical Finite Strip Transfer Matrix Method for Buckling Analysis of Rectangular Thin Plates

    Directory of Open Access Journals (Sweden)

    Li-Ke Yao

    2015-01-01

    Full Text Available Plates and shells are main components of modern engineering structures, whose buckling analysis has been focused by researchers. In this investigation, rectangular thin plates with loaded edges simply supported can be discretized by semi-analytical finite strip technology. Then the control equations of the strip elements of the buckling plate will be rewritten as the transfer equations by transfer matrix method. A new approach, namely semi-analytical Finite Strip Transfer Matrix Method, is developed for the buckling analysis of plates. This method requires no global stiffness matrix of the system, reduces the system matrix order, and improves the computational efficiency. Comparing with some theoretical results and FEM’s results of two illustrations (the plates and the ribbed plates under six boundary conditions, the method is proved to be reliable and effective.

  13. Nonlinear morphoelastic plates II: Exodus to buckled states

    KAUST Repository

    McMahon, J.

    2011-05-11

    Morphoelasticity is the theory of growing elastic materials. The theory is based on the multiplicative decomposition of the deformation gradient and provides a formulation of the deformation and stresses induced by growth. Following a companion paper, a general theory of growing non-linear elastic Kirchhoff plate is described. First, a complete geometric description of incompatibility with simple examples is given. Second, the stability of growing Kirchhoff plates is analyzed. © SAGE Publications 2011.

  14. Voltage-Induced Buckling of Dielectric Films using Fluid Electrodes

    CERN Document Server

    Tavakol, Behrouz

    2016-01-01

    Accurate and integrable control of different flows within microfluidic channels is crucial to further development of lab-on-a-chip and fully integrated adaptable structures. Here we introduce a flexible microactuator that buckles at a high deformation rate and alters the downstream fluid flow. The microactuator consists of a confined, thin, dielectric film that buckles into the microfluidic channel when exposed to voltage supplied through conductive fluid electrodes. We estimate the critical buckling voltage, and characterize the buckled shape of the actuator. Finally, we investigate the effects of frequency, flow rate, and the pressure differences on the behavior of the buckling structure and the resulting fluid flow. These results demonstrate that the voltage--induced buckling of embedded microstructures using fluid electrodes provides a means for high speed attenuation of microfluidic flow.

  15. Buckling analysis of thick isotropic plates by using exponential shear deformation theory

    Directory of Open Access Journals (Sweden)

    Sayyad A. S.

    2012-12-01

    Full Text Available In this paper, an exponential shear deformation theory is presented for the buckling analysis of thick isotropic plates subjected to uniaxial and biaxial in-plane forces. The theory accounts for a parabolic distribution of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Governing equations and associated boundary conditions of the theory are obtained using the principle of virtual work. The simply supported thick isotropic square plates are considered for the detailed numerical studies. A closed form solutions for buckling analysis of square plates are obtained. Comparison studies are performed to verify the validity of the present results. The effects of aspect ratio on the critical buckling load of isotropic plates is investigated and discussed.

  16. Influence of weld stiffness on buckling strength of laser-welded web-core sandwich plates

    OpenAIRE

    Jelovica, Jasmin; Romanoff, Jani; Ehlers, Sören; Varsta, Petri

    2012-01-01

    This paper investigates the influence of weld rotation stiffness on the global bifurcation buckling strength of laser-welded web-core sandwich plates. The study is carried out using two methods, the first is the equivalent single-layer theory approach solved analytically for simply supported plates and numerically for clamped plates. First-order shear deformation theory is used. The second method is the three-dimensional model of a sandwich plate solved with finite element method. Both approa...

  17. The buckling response of symmetrically laminated composite plates having a trapezoidal planform area

    Science.gov (United States)

    Radloff, H. D., II; Hyer, M. W.; Nemeth, M. P.

    1994-08-01

    The focus of this work is the buckling response of symmetrically laminated composite plates having a planform area in the shape of an isosceles trapezoid. The loading is assumed to be inplane and applied perpendicular to the parallel ends of the plate. The tapered edges of the plate are assumed to have simply supported boundary conditions, while the parallel ends are assumed to have either simply supported or clamped boundary conditions. A semi-analytic closed-form solution based on energy principles and the Trefftz stability criterion is derived and solutions are obtained using the Rayleigh-Ritz method. Intrinsic in this solution is a simplified prebuckling analysis which approximates the inplane force resultant distributions by the forms Nx=P/W(x) and Ny=Nxy=0, where P is the applied load and W(x) is the plate width which, for the trapezoidal planform, varies linearly with the lengthwise coordinate x. The out-of-plane displacement is approximated by a double trigonometric series. This analysis is posed in terms of four nondimensional parameters representing orthotropic and anisotropic material properties, and two nondimensional parameters representing geometric properties. For comparison purposes, a number of specific plate geometry, ply orientation, and stacking sequence combinations are investigated using the general purpose finite element code ABAQUS. Comparison of buckling coefficients calculated using the semi-analytical model and the finite element model show agreement within 5 percent, in general, and within 15 percent for the worst cases. In order to verify both the finite element and semi-analytical analyses, buckling loads are measured for graphite/epoxy plates having a wide range of plate geometries and stacking sequences. Test fixtures, instrumentation system, and experimental technique are described. Experimental results for the buckling load, the buckled mode shape, and the prebuckling plate stiffness are presented and show good agreement with the

  18. Elasto-plastic buckling analysis of laminated plates including interfacial damage

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yanping; Fu, Yiming [Hunan University, State Key Laboratory of Advanced Technology of Design and Manufacturing for Vehicle Body, College of Mechanics and Aerospace, Changsha (China)

    2010-06-15

    Elasto-plastic buckling of orthotropic laminated plates, which include interfacial damage, is analyzed in detail. Firstly, a novel mixed hardening yield criterion, as an improvement of Hill's counterpart, is proposed for the orthotropic materials on the basis of the plastic theory. And differing from Hill's theory, the present yield criterion is related to the spherical tensor of stress. Then, the incremental elasto-plastic constitutive relations of the mixed hardening orthotropic materials are presented. Secondly, the incremental static equilibrium equations for laminated plates including interfacial damage are established based on Von-Karman type theory and the principle of minimum potential energy. Finally, the elasto-plastic buckling of laminated plates are solved by adopting the Galerkin method and iteration scheme. The numerical results show that buckling of the plate occurs easier due to the existence of interfacial damage, and the critical load trends to constant when the interfacial damage approaches a certain degree. Also, the effect of anisotropy on buckling is obvious and the analysis of elasto-plastic buckling is necessary. (orig.)

  19. EXACT SOLUTION FOR TEMPERATURE-DEPENDENT BUCKLING ANALYSIS OF FG-CNT-REINFORCED MINDLIN PLATES

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Mousavi

    2016-03-01

    Full Text Available This research deals with the buckling analysis of nanocomposite polymeric temperature-dependent plates reinforced by single-walled carbon nanotubes (SWCNTs. For the carbon-nanotube reinforced composite (CNTRC plate, uniform distribution (UD and three types of functionally graded (FG distribution patterns of SWCNT reinforcements are assumed. The material properties of FG-CNTRC plate are graded in the thickness direction and estimated based on the rule of mixture. The CNTRC is located in a elastic medium which is simulated with temperature-dependent Pasternak medium. Based on orthotropic Mindlin plate theory, the governing equations are derived using Hamilton’s principle and solved by Navier method. The influences of the volume fractions of carbon nanotubes, elastic medium, temperature and distribution type of CNTs are considered on the buckling of the plate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the stiffness of plates.

  20. Buckling Behavior of Long Anisotropic Plates Subjected to Elastically Restrained Thermal Expansion and Contraction

    Science.gov (United States)

    Nemeth, Michael P.

    2004-01-01

    An approach for synthesizing buckling results for thin balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and elastically restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexural anisotropic plates that are subjected to combined mechanical loads. In addition, stiffness-weighted laminate thermal-expansion parameters and compliance coefficients are derived that are used to determine critical temperatures in terms of physically intuitive mechanical-buckling coefficients. Many results are presented for some common laminates that are intended to facilitate a structural designer s transition to the use of the generic buckling design curves. Several curves that illustrate the fundamental parameters used in the analysis are presented, for nine contemporary material systems, that provide physical insight into the buckling response in addition to providing useful design data. Examples are presented that demonstrate the use of the generic design curves.

  1. Predictive analysis of buckling distortion of thin-plate welded structures

    Institute of Scientific and Technical Information of China (English)

    杨新岐; 霍立兴; 张玉凤; 阎俊霞

    2002-01-01

    The welding buckling distortions of thin-plated structures were investigated based on finite element methods. An engineering treatment method for predicating the buckling distortion was proposed. The equivalent applied thermal-load was used to simulate the welding residual stress, thus the calculation of complex welding distortion can be transformed into 3D elastic structural applied-load analyses, which can reduce the quantities of calculating work effectively. The validation of the method was verified by comparison of the numerical calculation with experimental results. The prediction of buckling distortion for side-walled structures of passenger train was performed and the calculation was in agreement with measuring results in general. It is shown that the main factors for producing the buckling are the intermittent fillet and plug weld during welding the stiffened beams and columns to the panel.

  2. MAGNETIC-ELASTIC BUCKLING OF A THIN CURRENT CARRYING PLATE SIMPLY SUPPORTED AT THREE EDGES

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiren; WANG Ping; BAI Xiangzhong

    2008-01-01

    The magnetic-elasticity buckling problem of a current plate under the action of a mechanical load in a magnetic field was studied by using the Mathieu function. According to the magnetic-elasticity non-linear kinetic equation, physical equations, geometric equations, the expression for Lorenz force and the electrical dynamic equation, the magnetic-elasticity dynamic buckling equation is derived. The equation is changed into a standard form of the Mathieu equation using Galerkin's method. Thus, the buckling problem can be solved with a Mathieu equation. The criterion equation of the buckling problem also has been obtained by discussing the eigenvalue relation of the coefficients λ and η in the Mathieu equation. As an example, a thin plate simply supported at three edges is solved here. Its magnetic-elasticity dynamic buckling equation and the relation curves of the instability state with variations in some parameters are also shown in this paper. The conclusions show that the electrical magnetic forces may be controlled by changing the parameters of the current or the magnetic field so that the aim of controlling the deformation, stress, strain and stability of the current carrying plate is achieved.

  3. Rigid-Plastic Post-Buckling Analysis of Columns and Quadratic Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    2008-01-01

    The objective of this paper is to show the application of a novel approach to the rigid plastic hinge and yield line theory in post-buckling analysis of slender plates and columns. The upper bound theorem of plasticity theory and the associated flow law of plasticity are used to find...... of the post-buckling behaviour. The rigid plastic theory of plates, referred to as yield line theory, involves large rigid parts of the plate mutually rotating about yielding hinge lines, however in order to accommodate in plane plastic deformations area “collapse” yield lines have been introduced. The hinge...... yield lines accommodate differential rotations of rigid parts and the area “collapse” yield lines accommodate local area changes of the rigid parts thereby preserving compatibility of the rigid parts of a plate. The approach will be illustrated for rigid plastic column analysis and for a quadratic plate...

  4. Buckling of a single-layered graphene sheet on an initially strained InGaAs thin plate

    Energy Technology Data Exchange (ETDEWEB)

    Taziev, R M; Ya Prinz, V, E-mail: taziev@thermo.isp.nsc.ru [Institute of Semiconductor Physics, 630090, Novosibirsk (Russian Federation)

    2011-07-29

    The elastic buckling behavior of a defect-free single-layered graphene sheet deposited on a strained InGaAs substrate is investigated. Such a buckled sandwich structure can be formed by local etching of an initially strained InGaAs substrate. We numerically investigated the necessary buckling conditions for a single-layered graphene sheet of circular geometry on an initially strained InGaAs thin plate. A criterion for buckling for various axisymmetric buckling shapes was obtained. It is shown that for a thin circular InGaAs plate with a monolayer graphene sheet of radius 80 nm and thickness 4 nm three axisymmetric buckling shapes can be obtained. For an initial value of the elastic deformation of the plate of 3%, the in-plane strain in graphene can reach a value of 1%. This deformation is shown to be distributed inhomogeneously along the radius of the graphene monolayer.

  5. Buckling Analysis of Angle-ply Composite and Sandwich Plates by Combination of Geometric Stiffness Matrix

    Science.gov (United States)

    Zhen, Wu; Wanji, Chen

    2007-05-01

    Buckling response of angle-ply laminated composite and sandwich plates are analyzed using the global-local higher order theory with combination of geometric stiffness matrix in this paper. This global-local theory completely fulfills the free surface conditions and the displacement and stress continuity conditions at interfaces. Moreover, the number of unknowns in this theory is independent of the number of layers in the laminate. Based on this global-local theory, a three-noded triangular element satisfying C1 continuity conditions has also been proposed. The bending part of this element is constructed from the concept of DKT element. In order to improve the accuracy of the analysis, a method of modified geometric stiffness matrix has been introduced. Numerical results show that the present theory not only computes accurately the buckling response of general laminated composite plates but also predicts the critical buckling loads of soft-core sandwiches. However, the global higher-order theories as well as first order theories might encounter some difficulties and overestimate the critical buckling loads for soft-core sandwich plates.

  6. Cubic Spline Solutions of Nonlinear Bending and Buckling of Circular Plates with Arbitrarily Variable Thickness

    Institute of Scientific and Technical Information of China (English)

    侯朝胜; 李婧; 龙泉

    2003-01-01

    The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The support can be elastic. Loads imposed can be polynomial distributed loads, uniformly distributed radial forces or moments along the edge respectively or their combinations. Convergent solutions can still be obtained by this method under the load whose value is in great excess of normal one. Under the action of the uniformly distributed loads, linear solutions of circular plates with linearly or quadratically variable thickness are compared with those obtained by the parameter method. Buckling of a circular plate with identical thickness beyond critical thrust is compared with those obtained by the power series method.

  7. Dynamic and buckling analysis of a thin elastic-plastic square plate in a uniform temperature field

    Institute of Scientific and Technical Information of China (English)

    Shifu Xiao; Bin Chen

    2005-01-01

    The nonlinear models of the elastic and elasticlinear strain-hardening square plates with four immovably simply-supported edges are established by employing Hamilton's Variational Principle in a uniform temperature field. The unilateral equilibrium equations satisfied by the plastically buckled equilibria are also established. Dynamics and stability of the elastic and plastic plates are investigated analytically and the buckled equilibria are investigated by employing Galerkin-Ritz's method. The vibration frequencies, the first critical temperature differences of instability or buckling, the elastically buckled equilibria and the extremes depending on the final loading temperature difference of the plastically buckled equillibria of the plate are obtained. The results indicate that the critical buckling value of the plastic plate is lower than its critical instability value and the critical value of its buckled equilibria turning back to the trivial equilibrium are higher than the value. However, three critical values of the elastic plate are equal. The unidirectional snap-through may occur both at the stress-strain boundary of elasticity and plasticity and at the initial stage of unloading of the plastic plate.

  8. Buckling Behavior of Long Anisotropic Plates Subjected to Fully Restrained Thermal Expansion

    Science.gov (United States)

    Nemeth, Michael P.

    2003-01-01

    An approach for synthesizing buckling results and behavior for thin, balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and which are fully-restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based on useful nondimensional parameters. In addition, stiffness-weighted laminate thermal-expansion parameters are derived and used to determine critical temperature changes in terms of physically intuitive mechanical buckling coefficients. The effects of membrane orthotropy and anisotropy are included. Many results are presented for some common laminates that are intended to facilitate a structural designer's transition to the use of the generic buckling design curves that are presented in the paper. Several generic buckling design curves are presented that provide physical insight into buckling response and provide useful design data. Examples are presented that demonstrate the use of generic design curves. The analysis approach and generic results indicate the effects and characteristics of laminate thermal expansion, membrane orthotropy and anisotropy, and flexural orthotropy and anisotropy in a very general, unifying manner.

  9. Buckling of Ship Structures

    CERN Document Server

    Shama, Mohamed

    2013-01-01

    Buckling of Ship Structures presents a comprehensive analysis of the buckling problem of ship structural members. A full analysis of the various types of loadings and stresses imposed on ship plating and primary and secondary structural members is given. The main causes and consequences of the buckling mode of failure of ship structure and the methods commonly used to control buckling failure are clarified. This book contains the main equations required to determine the critical buckling stresses for both ship plating and the primary and secondary stiffening structural members. The critical buckling stresses are given for ship plating subjected to the induced various types of loadings and having the most common boundary conditions encountered in ship structures.  The text bridges the gap existing in most books covering the subject of buckling of ship structures in the classical analytical format, by putting the emphasis on the practical methods required to ensure safety against buckling of ship structur...

  10. Enhancing buckling capacity of a rectangular plate under uniaxial compression by utilizing an auxetic material

    Institute of Scientific and Technical Information of China (English)

    Zhang Yongcun; Li Xiaobin; Liu Shutian

    2016-01-01

    Auxetic materials have previously been shown to enhance various performances due to its unusual property of becoming fatter when uniaxially stretched and thinner when uniaxially com-pressed (i.e., the materials exhibit a negative Poisson’s ratio). The current study focuses on assessing the potential of an auxetic material to enhance the buckling capacity of a rectangular plate under uniaxial compression. The in-plane translational restraint along the unloaded edges that was often neglected in open literature is taken into consideration in our buckling model proposed in this study. The closed-form expressions for the critical buckling coefficient of the rectangle are provided and the predicted results agree well with those determined by the finite element method. Further-more, the results indicate that the buckling performance of a rectangular plate under uniaxial com-pression can be significantly improved by replacing the traditional material that has a positive Poisson’s ratio with an auxetic material when there is in-plane translation restraint along the unloaded edges.

  11. Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    B. Sidda Reddy

    2013-01-01

    Full Text Available The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs using higher order shear deformation theory (HSDT without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.

  12. BUCKLING ANALYSIS UNDER COMBINED LOADING OF THIN-WALLED PLATE ASSEMBLIES USING BUBBLE FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    Gao Xuanneng; Zou Yinsheng; Zhou Xuhong

    2000-01-01

    Bubble functions are finite element modes that are zero on the boundary of the element but nonzero at the other point. The present paper adds bubble functions to the ordinary Complex Finite Strip Method(CFSM) to calculate the elastic local buckling stress of plates and plate assemblies. The results indi cate that the use of bubble functions greatly improves the convergence of the Finite Strip Method(FSM) in terms of strip subdivision, and leads to much smaller storage required for the structure stiffness and stability matrices. Numerical examples are given, including plates and plate structures subjected to a combination of longitudinal and transverse compression, bending and shear. This study illustrates the power of bubble func tions in solving stability problems of plates and plate structures.

  13. Axisymmetrical Nonlinear Bending and Buckling of a Circular Plate Under Large Load

    Institute of Scientific and Technical Information of China (English)

    HOU Chaosheng; YUE Yanling

    2005-01-01

    With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed for the calculation of a circular plate subjected to polynomial distributed loads, a concentrated load at the center, uniform radial forces and moments along the edge or their combinations. The support may be elastic. The buckling load was calculated. Under action of uniformly distributed load, central load or their compound load, solutions were compared with those obtained by other methods. Buckling beyond critical thrust was compared with that calculated by the power series method. The method presented in this paper has advantages of wide convergent range, high precision and short computing time. Moreover, the computing time is nearly independent of the complexity of the loads.

  14. Vibration and Buckling Analysis of Moderately Thick Plates using Natural Element Method

    Directory of Open Access Journals (Sweden)

    Mohammad Etemadi

    2015-07-01

    Full Text Available Using natural element method (NEM, the buckling and the free vibration behaviors of moderate thick plates is studied here. The basis of NEM is natural neighbors and Voronoi cells concepts. The shape functions of nodes located in the domain is equal to the proportion of common natural neighbors area divided by area that related by each Voronoi cells. First step in analyzing the moderate thick plates is identification boundaries. This is done by nodes scattering on problem domain. Mindlin/Reissner theory is used to express the equations of moderate thick plate. First and second order shape functions obtained from natural element method are used to discretize differential equations. Using numerical integration on whole discrete equations of domain, stiffness, geometry and mass matrices of plate are obtained. Buckling loads and vibration modes are expressed by substituting these matrices in plate equations of motions. Arbitrary shapes of plate are selected for solution. Comparing the results of the current approach with those obtained by other numerical analytical methods, it is shown that natural element method can solve problems with complex areas accurately.

  15. Buckling strength of square composite plates with geometrical imperfections

    DEFF Research Database (Denmark)

    Berggreen, Christian; Jensen, Christian; Hayman, Brian

    2007-01-01

    Tests have been performed on square composite plates under in-plane compression. Theplateshad a width-to-thickness ratio close to the value for which the elastic critical load and the load for compres-sive fibre failure over a complete section would be equal, giving the maximum sensitivity to ini...

  16. Buckling Behavior of Long Anisotropic Plates Subjected to Elastically Restrained Thermal Expansion

    Science.gov (United States)

    Nemeth, Michael P.

    2002-01-01

    An approach for synthesizing buckling results for, and behavior of, thin balanced and unbalanced symmetric laminates that are subjected to uniform heating or cooling and elastically restrained against thermal expansion or contraction is presented. This approach uses a nondimensional analysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based on useful nondimensional parameters. In addition, stiffness-weighted laminate thermal-expansion parameters and compliance coefficients are derived that are used to determine critical temperatures in terms of physically intuitive mechanical-buckling coefficients. The effects of membrane orthotropy and membrane anisotropy are included in the general formulation. Many results are presented for some common laminates that are intended to facilitate a structural designer's transition to the use of generic buckling design curves. Several curves that illustrate the fundamental parameters used in the analysis are presented, for nine contemporary material systems, that provide physical insight into the buckling response in addition to providing useful design data. Examples are presented that demonstrate the use of generic design curves. The analysis approach and generic results indicate the effects and characteristics of elastically restrained laminate thermal expansion or contraction, membrane orthotropy and anisotropy, and flexural orthotropy and anisotropy in a very general and unifying manner.

  17. Buckling of Laminated Composite Plates and Shell Panels

    Science.gov (United States)

    1985-06-01

    changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by y,)ur organization please notify AFWAL/ FIBRA , W...Dynamics Laboratory (AFWAL/ FIBRA ) 1*~ AOORE6S3 (CIII,. State and 7,P Code) 7b. ADDRESS (City, State and ZIP Code) 1314 Kinnear Rcid Wrigh-PattrsonAFB...AFWAL/ FIBRA . IAL! - .s P r:0-•ro #I S....... I TABLE OP CONTENTS CHAPTER PAGE I Introduction 1 Ii Orthotropic Plates - All Edges Simply Supported 11 2.1

  18. Thermal buckling analysis of annular FGM plate having variable thickness under thermal load of arbitrary distribution by finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Ghomshei, Mansour Mohieddin; Abbasi, Vahid [Islamic Azad University, Alborz (Iran, Islamic Republic of)

    2013-04-15

    In this paper, a finite element formulation is developed for analyzing the axisymmetric thermal buckling of FGM annular plates of variable thickness subjected to thermal loads generally distributed nonuniformly along the plate radial coordinate. The FGM assumed to be isotropic with material properties graded in the thickness direction according to a simple power-law in terms of the plate thickness coordinate, and has symmetry with respect to the plate midplane. At first, the pre-buckling plane elasticity problem is developed and solved using the finite element method, to determine the distribution of the pre-buckling in-plane forces in terms of the temperature rise distribution. Subsequently, based on Kierchhoff plate theory and using the principle of minimum total potential energy, the weak form of the differential equation governing the plate thermal stability is derived, then by employing the finite element method, the stability equations are solved numerically to evaluate the thermal buckling load factor. Convergence and validation of the presented finite element model are investigated by comparing the numerical results with those available in the literature. Parametric studies are carried out to cover the effects of parameters including thickness-to-radius ratio, taper parameter and boundary conditions on the thermal buckling load factor of the plates.

  19. Buckling analysis of rectangular composite plates with rectangular cutout subjected to linearly varying in-plane loading using fem

    Indian Academy of Sciences (India)

    A Lakshmi Narayana; Krishnamohana Rao; R Vijaya Kumar

    2014-06-01

    A numerical study is carried out using finite element method, to examine the effects of square and rectangular cutout on the buckling behavior of a sixteen ply quasi-isotropic graphite/epoxy symmetrically laminated rectangular composite plate $[0^\\circ /+45^\\circ /-45^\\circ /90^\\circ ]_{2s}$, subjected to various linearly varying in-plane compressive loads. Further, this paper addresses the effects of size of square/rectangular cutout, orientation of square/rectangular cutout, plate aspect ratio(a/b), plate length/thickness ratio(a/t), boundary conditions on the buckling bahaviour of symmetrically laminated rectangular composite plates subjected to various linearly varying in-plane compressive loading. It is observed that the various linearly varying in-plane loads and boundary conditions have a substantial influence on buckling strength of rectangular composite plate with square/rectangular cutout.

  20. Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function

    Institute of Scientific and Technical Information of China (English)

    Hong-Ling Ye; Wei-Wei Wang; Ning Chen; Yun-Kang Sui

    2016-01-01

    In this paper, a model of topology optimization with linear buckling constraints is established based on an independent and continuous mapping method to minimize the plate/shell structure weight. A composite exponential function (CEF) is selected as filtering functions for element weight, the element stiffness matrix and the element geomet-ric stiffness matrix, which recognize the design variables, and to implement the changing process of design variables from“discrete”to“continuous”and back to“discrete”. The buck-ling constraints are approximated as explicit formulations based on the Taylor expansion and the filtering function. The optimization model is transformed to dual programming and solved by the dual sequence quadratic programming algo-rithm. Finally, three numerical examples with power function and CEF as filter function are analyzed and discussed to demonstrate the feasibility and efficiency of the proposed method.

  1. Optimum design using VICONOPT, a buckling and strength constraint program for prismatic assemblies of anisotropic plates

    Science.gov (United States)

    Butler, R.; Williams, F. W.

    1992-01-01

    A computer program for obtaining the optimum (least mass) dimensions of the kind of prismatic assemblies of laminated, composite plates which occur in advanced aerospace construction is described. Rigorous buckling analysis (derived from exact member theory) and a tailored design procedure are used to produce designs which satisfy buckling and material strength constraints and configurational requirements. Analysis is two to three orders of magnitude quicker than FEM, keeps track of all the governing modes of failure and is efficiently adapted to give sensitivities and to maintain feasibility. Tailoring encourages convergence in fewer sizing cycles than competing programs and permits start designs which are a long way from feasible and/or optimum. Comparisons with its predecessor, PASCO, show that the program is more likely to produce an optimum, will do so more quickly in some cases, and remains accurate for a wider range of problems.

  2. Buckling And Postbuckling Of An Imperfect Plate Subjected To The Shear Load

    Directory of Open Access Journals (Sweden)

    Psotný Martin

    2015-12-01

    Full Text Available The stability analysis of an imperfect plate subjected to the shear load is presented. To solve this problem, a specialized computer program based on FEM has been created. The nonlinear finite element method equations are derived from the variational principle of minimum of total potential energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm is used. Corresponding levels of the total potential energy are defined. Special attention is paid to the influence of imperfections on the post-critical buckling mode. Obtained results are compared with those gained using ANSYS system.

  3. FEM buckling analysis of quasi-isotropic symmetrically laminated rectangular composite plates with a square/rectangular cutout

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, A. Lakshmi [Hindustan Aeronautics Limited, Bangalore (India); Rao, Krishnamohana [JNTUH, Hyderabad (India); Kumar, R. Vijaya [Hindustan Aeronautics Limited, Bangalor (India)

    2013-05-15

    A numerical study was conducted using the finite element method to determine the effects of square and rectangular cutouts on the buckling behavior of a 16-ply quasi-isotropic graphite/epoxy symmetrically laminated rectangular composite plate. The square/ rectangular cutouts were subjected to uniaxial compression loading. This study addresses the effects of the size of the square/rectangular cutout, orientation of the square/rectangular cutout, plate aspect ratio (a/b), and plate length/thickness ratio (a/t) on the buckling behavior of the symmetrically laminated rectangular composite plate under uniaxial compression loading. Buckling loads were computed for seven different quasi-isotropic laminate configurations [0 .deg. /+45 .deg. /-45 .deg. /90 .deg. ]{sub 2s}, [15 .deg. /+60 .deg. /-30 .deg. /-75 .deg. ]{sub 2s}, [30 .deg. /+75 .deg. /-15 .deg. /-60 .deg. ]{sub 2s}, [45 .deg. /+90 .deg. /0 .deg. /-45 .deg. ]{sub 2s}, [60 .deg. /-75 .deg. /+15 .deg. /-30 .deg. ]{sub 2s}, [75 .deg. /-60 .deg. /+30 .deg. /-15 .deg. ]{sub 2s}, [90 .deg. /-45 .deg. /+45 .deg. / .deg. 0 .deg. ]{sub 2s}. Results showed that the magnitudes of the buckling loads decrease with increasing cutout positioned angle as well as c/b and d/b ratios for plates with a rectangular cutout. The symmetrically laminated quasi-isotropic [0 .deg. /+45 .deg. /-45 .deg. /90 .deg. ]{sub 2s} composite plate is stronger than all other symmetrically analyzed laminated quasi-isotropic composite plates. The magnitudes of the buckling loads of a rectangular composite plate with square/rectangular cutout decrease with increasing plate aspect ratio (a/b) and plate length/thickness (a/t) ratio.

  4. NONLINEAR BUCKLING BEHAVIOR OF DAMAGED COMPOSITE SANDWICH PLATES CONSIDERING THE EFFECT OF TEMPERATURE-DEPENDENT THERMAL AND MECHANICAL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Bai Ruixiang; Chen Haoran

    2001-01-01

    On the basis of the first-order shear deformation plate theory and the zig-zag deformation assumption, an incremental finite element formulation for nonlinear buckling analysis of the composite sandwich plate is deduced and the temperature-dependent thermal and mechanical properties of composite is considered. A finite element method for thermal or thermo-mechanical coupling nonlinear buckling analysis of the composite sandwich plate with an interfacial crack damage between face and core is also developed. Numerical results and discussions concerning some typical examples show that the effects of the variation of the thermal and mechanical properties with temperature, extermal compressive loading, size of the damage zone and piy angle of the faces on the thermal buckling behavior are significant.

  5. Dynamic buckling analysis of delaminated composite plates using semi-analytical finite strip method

    Science.gov (United States)

    Ovesy, H. R.; Totounferoush, A.; Ghannadpour, S. A. M.

    2015-05-01

    The delamination phenomena can become of paramount importance when the design of the composite plates is concerned. In the current study, the effect of through-the-width delamination on dynamic buckling behavior of a composite plate is studied by implementing semi-analytical finite strip method. In this method, the energy and work integrations are computed analytically due to the implementation of trigonometric functions. Moreover, the method can lead to converged results with comparatively small number of degrees of freedom. These features have made the method quite efficient. To account for delamination effects, displacement field is enriched by adding appropriate terms. Also, the penetration of the delamination surfaces is prevented by incorporating an appropriate contact scheme into the time response analysis. Some selected results are validated against those available in the literature.

  6. Measurement of buckling load for metallic plate columns in severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Byeongnam, E-mail: jo@vis.t.u-tokyo.ac.jp; Sagawa, Wataru, E-mail: sagawa@vis.t.u-tokyo.ac.jp; Okamoto, Koji, E-mail: okamoto@n.t.u-tokyo.ac.jp

    2014-07-01

    Highlights: • Buckling load was experimentally measured in a wide range of temperature up to 1200 °C. • Two different test methods for measuring buckling failure load were suggested and compared. • Creep buckling under compressive load was performed to explain results of buckling tests. • Reduced buckling load was explained by effects of creep buckling, geometrical imperfection, and thermal stress. • Buckling processes were visualized by a high speed camera. - Abstract: In severe accidents, a reactor pressure vessel, its components, and piping have to be under extremely high temperature and high pressure conditions, which results in failure modes like rupture by internal pressure, buckling, creep, and their combinations. In this study, buckling (failure) load was experimentally measured for metallic columns under the compressive force from room temperature up to 1200 °C. A stainless steel was chosen to be a test material to measure the buckling load. Two different test methods were employed to explore the effect of thermal history of the material on the buckling load. Particularly, the effect of creep under a compressive load was considered as a reason for the reduced buckling load at high temperatures. Additionally, finite element simulations were also conducted to predict buckling load for both an ideal column and a column with geometrical imperfection as well. Moreover, buckling process was visualized using a high speed camera to understand buckling processes.

  7. Analysis of Thermal Buckling of Ceramic-Metal Functionally Graded Plates Using Refined Third Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    S. S. Daimi

    2014-08-01

    Full Text Available Functionally graded materials (FGMs are microscopically inhomogeneous spatial composite materials, typically composed of a ceramic-metal or ceramic-polymer pair of materials. Therefore, it is important to investigate the behaviors of engineering structures such as beams and plates made from FGMs when they are subjected to thermal loads for appropriate design. Therefore, using an improved third order shear deformation theory (TSDT based on more rigorous kinetics of displacements to predict the behaviors of functionally graded plates is expected to be more suitable than using other theories. In this paper, the improved TSDT is used to investigate thermal buckling of functionally graded plates. Temperature dependent material property solutions are adopted to investigate thermal buckling results of functionally graded plates. To obtain the solutions, the Ritz method using polynomial and trigonometric functions for defining admissible displacements and rotations is applied to solve the governing equations.

  8. Study of Dynamic Buckling of FG Plate Due to Heat Flux Pulse

    Directory of Open Access Journals (Sweden)

    Czechowski L.

    2015-02-01

    Full Text Available The paper deals with a FEM analysis of dynamic buckling of functionally graded clamped plates under heat flux loading with huge power. The materials of structures as well as their properties are varying in each layer across the plate thickness formulated by the power law distribution. The heat flux was applied evenly to the whole ceramic surface. The analysis was developed in the ANSYS 14.5 software. The duration of the heat flux loading equal to a period of natural fundamental flexural vibrations of given structures was taken into consideration. To implement large deflections of structures, the Green-Lagrange nonlinear-displacement equations and the incremental Newton-Raphson algorithm were applied. An evaluation of the dynamic response of structures was carried out on basis of the Budiansky-Hutchinson criterion. The studies were conducted for different volume fraction distributions and different shapes of the heat flux loading. The computation results of the heat flux versus maximal plate deflection are shown and discussed.

  9. Experimental and theoretical study of the buckling of narrow thin plates on an elastic foundation under compression

    Science.gov (United States)

    Kurguzov, V. D.; Demeshkin, A. G.

    2016-05-01

    The paper describes the processes of elastic deformation of thin films under mechanical loading. The film is modeled longitudinally by a compressed plate arranged on an elastic foundation. A computer model of the buckling of the narrow thin plate with a delamination portion located on an elastic foundation is constructed. This paper also touches upon the supercritical behavior of the plate-substrate system. The experiments on the axial compression of a metal strip adhered to a rubber plate are performed, and 2 to 7 buckling modes are obtained therein. The critical loads and buckling modes obtained in the numerical calculations are compared with the experimental data. It is shown that there is the possibility of progressive delamination of the metal plate from the foundation if the critical load is exceeded. It is found that the use of the proposed approach, which, in contrast to other approaches, accounts for the elastic deformation of the substrate, causes the dependence between the critical bending stress and the stiffness of the foundation.

  10. Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables

    Science.gov (United States)

    Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang

    2017-03-01

    The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.

  11. A Novel Higher-Order Shear and Normal Deformable Plate Theory for the Static, Free Vibration and Buckling Analysis of Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    Shi-Chao Yi

    2017-01-01

    Full Text Available Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations, natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs. Distinguished from the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics, such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and then the polynomials can form an exclusive plate theory. Thus, the novel plate theory has two merits: one is the orthogonality, where the majority of the coefficients of the equations derived from Hamilton’s principle are zero; the other is the flexibility, where the order of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters, length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural frequencies, and buckling response of various FGM plates are demonstrated.

  12. Buckling analysis of laminated plates using the extended Kantorovich method and a system of first-order differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Singhatanadgid, Pairod; Jommalai, Panupan [Chulalongkorn University, Bangkok (Thailand)

    2016-05-15

    The extended Kantorovich method using multi-term displacement functions is applied to the buckling problem of laminated plates with various boundary conditions. The out-of-plane displacement of the buckled plate is written as a series of products of functions of parameter x and functions of parameter y. With known functions in parameter x or parameter y, a set of governing equations and a set of boundary conditions are obtained after applying the variational principle to the total potential energy of the system. The higher order differential equations are then transformed into a set of first-order differential equations and solved for the buckling load and mode. Since the governing equations are first-order differential equations, solutions can be obtained analytically with the out-of-plane displacement written in the form of an exponential function. The solutions from the proposed technique are verified with solutions from the literature and FEM solutions. The bucking loads correspond very well to other available solutions in most of the comparisons. The buckling modes also compare very well with the finite element solutions. The proposed solution technique transforms higher-order differential equations to first-order differential equations, and they are analytically solved for out-of-plane displacement in the form of an exponential function. Therefore, the proposed solution technique yields a solution which can be considered as an analytical solution.

  13. Buckling induced delamination of graphene composites through hybrid molecular modeling

    Science.gov (United States)

    Cranford, Steven W.

    2013-01-01

    The efficiency of graphene-based composites relies on mechanical stability and cooperativity, whereby separation of layers (i.e., delamination) can severely hinder performance. Here we study buckling induced delamination of mono- and bilayer graphene-based composites, utilizing a hybrid full atomistic and coarse-grained molecular dynamics approach. The coarse-grain model allows exploration of an idealized model material to facilitate parametric variation beyond any particular molecular structure. Through theoretical and simulation analyses, we show a critical delamination condition, where ΔD∝kL4, where ΔD is the change in bending stiffness (eV), k the stiffness of adhesion (eV/Å4), and L the length of the adhered section (Å).

  14. Stochastic analysis of laminated composite plates on elastic foundation: The cases of post-buckling behavior and nonlinear free vibration

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N., E-mail: bnsingh@aero.iitkgp.ernet.i [Department of Aerospace Engineering, IIT Kharagpur 721 302, West Bengal (India); Lal, Achchhe [Department of Mechanical Engineering, SVNIT, Surat 395007 (India)

    2010-10-15

    This study deals with the stochastic post-buckling and nonlinear free vibration analysis of a laminated composite plate resting on a two parameters Pasternak foundation with Winkler cubic nonlinearity having uncertain system properties. The system properties are modeled as basic random variables. A C{sup 0} nonlinear finite element formulation of the random problem based on higher-order shear deformation theory in the von Karman sense is presented. A direct iterative method in conjunction with a stochastic nonlinear finite element method proposed earlier by the authors is extended to analyze the effect of uncertainty in system properties on the post-buckling and nonlinear free vibration of the composite plates having Winler type of geometric nonlinearity. Mean as well as standard deviation of the responses have been obtained for various combinations of geometric parameters, foundation parameters, stacking sequences and boundary conditions and compared with those available in the literature and Monte Carlo simulation.

  15. COMPARE THE BEHAVIOR FACTOR OF THE ULTIMATE RESISTANCE OF MOMENT FRAME, PLAIN AND PERFORATED STEEL PLATE SHEAR WALLS AND BUCKLING RESTRAINED BRACE AS YIELDING METAL DAMPER

    OpenAIRE

    Hamid Reza Ashrafi; Peyman Beiranvand; Kasra Shahbazian; Shaahin Bidmeshki; Somaye Yaghooti

    2016-01-01

    Steel moment frame systems, steel plate shear walls and also buckling restrained brace (BRB) are considered as the most widely used seismic resistant systems of the world. Firstly, in this research, in order to validate the finite element models, the tested sample of steel plate shear walls of 4 floors at the University of Alberta, Canada, and the tested sample of buckling restrained brace at the University of Berkeley California, with the software ABAQUS 6.10-1 were used. Then, the obtained ...

  16. A comparative computational investigation on the effects of randomly distributed general corrosion on the post-buckling behaviour of uniaxially loaded plates

    Energy Technology Data Exchange (ETDEWEB)

    Khedmati, Mohammad Reza; Nouri, Zorareh Hadj Mohammad Esmaeil; Roshanali, Mohammad Mahdi [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2012-03-15

    Post-buckling behaviour and ultimate strength of imperfect corroded steel plates used in ships and other related marine structures are investigated. Nonlinear elastic-plastic large deflection finite element analyses are performed on corroded steel plates. General corrosion wastage is considered to be distributed randomly on either one or both surfaces of the analyzed plates. The effects of general corrosion are introduced into the finite element models using a random thickness surface model. The effects of corroded plate parameters on the plate post-buckling and ultimate strengths are evaluated in detail. It was realized that the aspect ratio and thickness (slenderness) of the corroded plates affects their strength characteristics. Age of the plate models affects mainly their post-buckling-strength regimes and degrades their buckling/ultimate strength. Also, nonlinear post-buckling characteristics of the plates suffering either one-side or both-side random corrosion exhibit some differences. Finally, simple empirical formulations are proposed in order to give rough estimations of the ultimate strength of randomly corroded plates.

  17. Thermally Induced Asymmetric Buckling of Circular Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Haw-Long Lee

    2013-01-01

    Full Text Available The asymmetric buckling behaviors of circular monolayer graphene with clamped boundary condition subjected to temperature change are analytically studied based on the nonlocal elasticity theory, including the small length effect. The axisymmetrical and asymmetric critical buckling temperatures and mode shape of different order modes are obtained. According to the analysis, the asymmetric critical buckling temperature of monolayer graphene is larger than the axisymmetric one. The axisymmetrical and asymmetric critical buckling temperatures decrease with increasing nonlocal parameter. In addition, nodal diametrical lines and nodal circles can be found from the modal shapes. In order to avoid destruction of the sensors due to buckling of the structure, they can be placed at the nodal diametrical lines or nodal circles.

  18. Innovative design of composite structures: The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes

    Science.gov (United States)

    Hyer, M. W.; Lee, H. H.

    1990-01-01

    The gains in buckling performance are explored that can be achieved by deviating from the conventional straightline fiber format and considering the situation whereby the fiber orientation in a layer, or a group of layers, can vary from point to point. The particular situation studied is a simply supported square plate with a centrally located hole loaded in compression. By using both a sensitivity analysis and a gradient-search technique, fiber orientation in a number of regions of the plate are selected so as to increase the buckling load relative to baseline straightline designs. The sensitivity analysis is used to determine which regions of the plate have the most influence on buckling load, and the gradient search is used to find the design that is believed to represent the absolute maximum buckling load for the conditions prescribed. Convergence studies and sensitivity of the final design are discussed. By examining the stress resultant contours, it is shown how the curvilinear fibers move the load away from the unsupported hole region of the plate to the supported edges, thus increasing the buckling capacity. The tensile capacity of the improved buckling design is investigated, and it is shown that both tensile capacity and buckling capacity can be improved with the curvilinear fiber concept.

  19. Buckling and Vibration of Non-Homogeneous Rectangular Plates Subjected to Linearly Varying In-Plane Force

    Directory of Open Access Journals (Sweden)

    Roshan Lal

    2013-01-01

    Full Text Available The present work analyses the buckling and vibration behaviour of non-homogeneous rectangular plates of uniform thickness on the basis of classical plate theory when the two opposite edges are simply supported and are subjected to linearly varying in-plane force. For non-homogeneity of the plate material it is assumed that young's modulus and density of the plate material vary exponentially along axial direction. The governing partial differential equation of motion of such plates has been reduced to an ordinary differential equation using the sine function for mode shapes between the simply supported edges. This resulting equation has been solved numerically employing differential quadrature method for three different combinations of clamped, simply supported and free boundary conditions at the other two edges. The effect of various parameters has been studied on the natural frequencies for the first three modes of vibration. Critical buckling loads have been computed. Three dimensional mode shapes have been presented. Comparison has been made with the known results.

  20. Asymptotic solutions for buckling delamination induced crack propagation in the thin film-compliant substrate system

    Directory of Open Access Journals (Sweden)

    Tongqing Lu

    2014-01-01

    Full Text Available In a thin film-substrate system in-plane compressive stress is commonly generated in the film due to thermal mismatch in operation or fabrication process. If the stress exceeds a critical value, part of the film may buckle out of plane along the defective interface. After buckling delamination, the interface crack at the ends may propagate. In the whole process, the compliance of the substrate compared with the film plays an important role. In this work, we study a circular film subject to compressive stress on an infinitely thick substrate. We study the effects of compliance of the substrate by modeling the system as a plate on an elastic foundation. The critical buckling condition is formulated. The asymptotic solutions of post-buckling deformation and the corresponding energy release rate of the interface crack are obtained with perturbation methods. The results show that the more compliant the substrate is, the easier for the film to buckle and easier for the interface crack to propagate after buckling.

  1. Development of a finite-element-based design sensitivity analysis for buckling and postbuckling of composite plates

    Directory of Open Access Journals (Sweden)

    Guo Ruijiang

    1995-01-01

    Full Text Available A finite element based sensitivity analysis procedure is developed for buckling and postbuckling of composite plates. This procedure is based on the direct differentiation approach combined with the reference volume concept. Linear elastic material model and nonlinear geometric relations are used. The sensitivity analysis technique results in a set of linear algebraic equations which are easy to solve. The procedure developed provides the sensitivity derivatives directly from the current load and responses by solving the set of linear equations. Numerical results are presented and are compared with those obtained using finite difference technique. The results show good agreement except at points near critical buckling load where discontinuities occur. The procedure is very efficient computationally.

  2. Buckling delamination induced microchannel: Flow regulation in microfluidic devices

    Science.gov (United States)

    Kang, Jingtian; Wang, Changguo; Xue, Zhiming; Liu, Mengxiong; Tan, Huifeng

    2016-09-01

    The buckling delamination induced microchannel is employed to regulate fluid flow as a microvalve which can be utilized in microfluidic devices. This microvalve consists of a soft substrate and a stiff thin film, between which there is a pre-set small imperfection. Two critical strain values, namely, on-off strain and failure strain, have been proposed to determine the working strain interval using analytical predictions. Within this interval, the cross-sectional area of the microchannel can be controlled and predicted by different compressive strains of the film/substrate system. The fluid flow rate within this microchannel can be then estimated by both analytical and numerical simulations and adjusted to satisfy different values by alternating the compressive strain. In addition, a demonstrative experiment has been taken to verify the feasibility of this approach. This flexible microvalve has potential in the application where the use of traditional rigid microvalves is improper in flexible microfluidic devices. The method and approach of this paper can provide a general guide for flow rate control in microfluidic devices.

  3. Numerical modeling of nonlinear deformation and buckling of composite plate-shell structures under pulsed loading

    Science.gov (United States)

    Abrosimov, N. A.

    1999-11-01

    Nonlinear three-dimensional problems of dynamic deformation, buckling, and posteritical behavior of composite shell structures under pulsed loads are analyzed. The structure is assumed to be made of rigidly joined plates and shells of revolution along the lines coinciding with the coordinate directions of the joined elements. Individual structural elements can be made of both composite and conventional isotropic materials. The kinematic model of deformation of the structural elements is based on Timoshenko-type hypotheses. This approach is oriented to the calculation of nonstationary deformation processes in composite structures under small deformations but large displacements and rotation angles, and is implemented in the context of a simplified version of the geometrically nonlinear theory of shells. The physical relations in the composite structural elements are based on the theory of effective moduli for individual layers or for the package as a whole, whereas in the metallic elements this is done in the framework of the theory of plastic flow. The equations of motion of a composite shell structure are derived based on the principle of virtual displacements with some additional conditions allowing for the joint operation of structural elements. To solve the initial boundary-value problem formulated, an efficient numerical method is developed based on the finite-difference discretization of variational equations of motion in space variables and an explicit second-order time-integration scheme. The permissible time-integration step is determined using Neumann's spectral criterion. The above method is especially efficient in calculating thin-walled shells, as well as in the case of local loads acting on the structural element, when the discretization grid has to be condensed in the zones of rapidly changing solutions in space variables. The results of analyzing the nonstationary deformation processes and critical loads are presented for composite and isotropic

  4. Buckling analysis and smart control of SLGS using elastically coupled PVDF nanoplate based on the nonlocal Mindlin plate theory

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Kolahchi, R.; Vossough, H. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)

    2012-11-15

    This study presents an analytical approach for buckling analysis and smart control of a single layer graphene sheet (SLGS) using a coupled polyvinylidene fluoride (PVDF) nanoplate. The SLGS and PVDF nanoplate are considered to be coupled by an enclosing elastic medium which is simulated by the Pasternak foundation. The PVDF nanoplate is subjected to an applied voltage in the thickness direction which operates in control of critical load of the SLGS. In order to satisfy the Maxwell equation, electric potential distribution is assumed as a combination of a half-cosine and linear variation. The exact analysis is performed for the case when all four ends are simply supported and free electrical boundary condition. Adopting the nonlocal Mindlin plate theory, the governing equations are derived based on the energy method and Hamilton's principle. A detailed parametric study is conducted to elucidate the influences of the small scale coefficient, stiffness of the internal elastic medium, graphene length, mode number and external electric voltage on the buckling smart control of the SLGS. The results depict that the imposed external voltage is an effective controlling parameter for buckling of the SLGS. This study might be useful for the design and smart control of nano-devices.

  5. The buckling response of symmetrically laminated composite plates having a trapezoidal planform area. M.S. Thesis Interim Report No. 98, Aug. 1990 - May 1994

    Science.gov (United States)

    Radloff, H. D., II; Hyer, M. W.; Nemeth, M. P.

    1994-01-01

    The focus of this work is the buckling response of symmetrically laminated composite plates having a planform area in the shape of an isosceles trapezoid. The loading is assumed to be inplane and applied perpendicular to the parallel ends of the plate. The tapered edges of the plate are assumed to have simply supported boundary conditions, while the parallel ends are assumed to have either simply supported or clamped boundary conditions. A semi-analytic closed-form solution based on energy principles and the Trefftz stability criterion is derived and solutions are obtained using the Rayleigh-Ritz method. Intrinsic in this solution is a simplified prebuckling analysis which approximates the inplane force resultant distributions by the forms Nx=P/W(x) and Ny=Nxy=0, where P is the applied load and W(x) is the plate width which, for the trapezoidal planform, varies linearly with the lengthwise coordinate x. The out-of-plane displacement is approximated by a double trigonometric series. This analysis is posed in terms of four nondimensional parameters representing orthotropic and anisotropic material properties, and two nondimensional parameters representing geometric properties. For comparison purposes, a number of specific plate geometry, ply orientation, and stacking sequence combinations are investigated using the general purpose finite element code ABAQUS. Comparison of buckling coefficients calculated using the semi-analytical model and the finite element model show agreement within 5 percent, in general, and within 15 percent for the worst cases. In order to verify both the finite element and semi-analytical analyses, buckling loads are measured for graphite/epoxy plates having a wide range of plate geometries and stacking sequences. Test fixtures, instrumentation system, and experimental technique are described. Experimental results for the buckling load, the buckled mode shape, and the prebuckling plate stiffness are presented and show good agreement with the

  6. COMPARE THE BEHAVIOR FACTOR OF THE ULTIMATE RESISTANCE OF MOMENT FRAME, PLAIN AND PERFORATED STEEL PLATE SHEAR WALLS AND BUCKLING RESTRAINED BRACE AS YIELDING METAL DAMPER

    Directory of Open Access Journals (Sweden)

    Hamid Reza Ashrafi

    2016-03-01

    Full Text Available Steel moment frame systems, steel plate shear walls and also buckling restrained brace (BRB are considered as the most widely used seismic resistant systems of the world. Firstly, in this research, in order to validate the finite element models, the tested sample of steel plate shear walls of 4 floors at the University of Alberta, Canada, and the tested sample of buckling restrained brace at the University of Berkeley California, with the software ABAQUS 6.10-1 were used. Then, the obtained results of the test and analysis have been compared. The confirmed models have been used for the analysis of two-dimensional frame of plain and perforated steel plate shear walls with a regular pattern of positing holes in the screen, buckling restrained brace and moment frame of 4 floors.

  7. Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates

    KAUST Repository

    Vlček, Marián

    2015-07-01

    A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.

  8. Lock and key colloids through polymerization-induced buckling of monodisperse silicon oil droplets

    NARCIS (Netherlands)

    Sacanna, S.|info:eu-repo/dai/nl/311471676; Irvine, W.T.M.; Rossi, L.|info:eu-repo/dai/nl/314410376; Pine, D.J.

    2011-01-01

    We have developed a new simple method to fabricate bulk amounts of colloidal spheres with well defined cavities from monodisperse emulsions. Herein, we describe the formation mechanism of ‘‘reactive’’ silicon oil droplets that deform to reproducible shapes via a polymerization-induced buckling

  9. Shear-lag model of diffusion-induced buckling of core-shell nanowires

    Science.gov (United States)

    Li, Yong; Zhang, Kai; Zheng, Bailin; Yang, Fuqian

    2016-07-01

    The lithiation and de-lithiation during the electrochemical cycling of lithium-ion batteries (LIBs) can introduce local deformation in the active materials of electrodes, resulting in the evolution of local stress and strain in the active materials. Understanding the structural degradation associated with lithiation-induced deformation in the active materials is one of the important steps towards structural optimization of the active materials used in LIBs. There are various degradation modes, including swelling, cracking, and buckling especially for the nanowires and nanorods used in LIBs. In this work, a shear-lag model and the theory of diffusion-induced stress are used to investigate diffusion-induced buckling of core-shell nanowires during lithiation. The critical load for the onset of the buckling of a nanowire decreases with the increase of the nanowire length. The larger the surface current density, the less the time is to reach the critical load for the onset of the buckling of the nanowire.

  10. Measurement of interfacial toughness of metal film wire and polymer membrane through electricity induced buckling method.

    Science.gov (United States)

    Wang, Qinghua; Xie, Huimin; Lu, Jian; Chen, Pengwan; Zhang, Qingming

    2011-06-15

    Measurement of interfacial toughness of a metal film wire and a flexible substrate is a challenging issue for evaluating the interfacial bonding capacity of the film-wire/substrate systems. In this paper, an electricity induced buckling method is proposed to measure the interfacial toughness between a metal film wire and a polymer membrane, which does not use a pre-existing weak interface. This method relies on causing a buckling driven delamination of the metal film wire from the polymer membrane, by inducing a compressive stress due to electrification of the film wire. For a sort of structure formed by a constantan film wire and a polymer membrane, the current density range under which the buckling of the film wire will emerge is obtained from experiments. The average interfacial toughness of one typical sample is measured to be 31.6 J/m(2). According to the buckling topographies under different current densities, the interfacial toughness of the constantan film wire and the polymer substrate is found to vary from 10 J/m(2) to 60 J/m(2).

  11. Buckling delamination of the circular sandwich plate with piezoelectric face and elastic core layers under rotationally symmetric external pressure

    Science.gov (United States)

    Akbarov, Surkay D.; Cafarova, Fazile I.; Yahnioglu, Nazmiye

    2017-02-01

    The axisymmetric buckling delamination of the piezoelectric circular sandwich plate with piezoelectric face and elastic (metal) core layers around the interface penny-shaped cracks is investigated. The case is considered where short-circuit conditions with respect to the electrical potential on the upper and lower and also lateral surfaces of face layers are satisfied. It is assumed that the edge surfaces of the cracks have an infinitesimal rotationally symmetric initial imperfection and the development of this imperfection with rotationally symmetric compressive forces acting on the lateral surface of the plate is studied by employing the exact geometrically non-linear field equations and relations of electro-elasticity for piezoelectric materials. Solution to the considered nonlinear problem is reduced to solution of the series boundary value problems derived by applying the linearization procedure with respect to small imperfection of the sought values. Numerical results reveal the effect of piezoelectricity as well as geometrical and material parameters on the critical values are determined numerically by employing finite element method (FEM).

  12. POST-BUCKLING ANALYSIS OF DELAMINATED BEAM-PLATES%脱层梁-板的后屈曲分析

    Institute of Scientific and Technical Information of China (English)

    傅衣铭; 张运良

    2001-01-01

    Problem of post-buckling of beam-plates with a single arbitrarydelamination is studied under axial load. Taking a prop er asymptotic sequence and perturbation technique, the control equations, the co ntinuity, equilibrium and compatibility conditions of the first order and second order are derived. In the calculating examples, the response-curves of post-b cukling for the beam-plates are presented and compared with available data.%研究了含任意位置脱层的梁-板的后屈曲问题.采用小参数摄动法,导出了系统的一阶和二阶控制方程,边界条件,连续条件,平衡条件及相容条件.在算例中给出了梁-板的后屈曲响应曲线,且与有关文献进行了比较.

  13. Nonlinear vibration and buckling of circular sandwich plate under complex load

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The nonlinear vibration fundamental equation of circular sandwich plate under uniformed load and circumjacent load and the loosely clamped boundary condition were established by von Karman plate theory, and then accordingly exact solution of static load and its numerical results were given. Based on time mode hypothesis and the variational method, the control equation of the space mode was derived, and then the amplitude frequency-load character relation of circular sandwich plate was obtained by the modified iteration method. Consequently the rule of the effect of the two kinds of load on the vibration character of the circular sandwich plate was investigated. When circumjacent load makes the lowest natural frequency zero, critical load is obtained.

  14. Buckling of laminated composite plates subjected to mechanical and thermal loads using meshless collocations

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sandeep; Shukla, K. K. [Motilal Nehru National Institute of Technology, Allahabad (India); Shingh, Jeeoot [Department of Mechanical Engineering, Birla Institute of Technology Mesra, Ranchi (India)

    2013-02-15

    Meshless collocations utilizing Gaussian and Multi quadric radial basis functions for the stability analysis of orthotropic and cross ply laminated composite plates subjected to thermal and mechanical loading are presented. The governing differential equations of plate are based on higher order shear deformation theory considering two different transverse shear stress functions. The plate governing differential equations are discretized using radial basis functions to cast a set of simultaneous equations. The convergence of both radial basis functions is studied for different values of shape parameters. Several numerical examples are undertaken to demonstrate the accuracy of present method and the effects of orthotropy ratio of the material, span to thickness ratio of the plate, and fiber orientation on critical load/temperature are also presented.

  15. Evaporation-Induced Buckling and Fission of Microscale Droplet Interface Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Boreyko, Jonathan B [ORNL; Mruetusatorn, Prachya [ORNL; Sarles, Stephen A [ORNL; Retterer, Scott T [ORNL; Collier, Pat [ORNL

    2013-01-01

    Droplet interface bilayers (DIBs) are a robust platform for studying synthetic cellular membranes; however, to date no DIBs have been produced at cellular length scales. Here, we create microscale droplet interface bilayers ( DIBs) at the interface between aqueous femtoliter-volume droplets within an oil-filled microfluidic channel. The uniquely large area-to-volume ratio of the droplets results in strong evaporation effects, causing the system to transition through three distinct regimes. First, the two adjacent droplets shrink into the shape of a single spherical droplet, where an augmented lipid bilayer partitions two hemi-spherical volumes. In the second regime, the combined effects of the shrinking monolayers and growing bilayer force the confined bilayer to buckle to conserve its mass. Finally, at a bending moment corresponding to a critical shear stress, the buckling bilayer fissions a vesicle to regulate its shape and stress. The DIBs produced here enable evaporation-induced bilayer dynamics reminiscent of endo- and exocytosis in cells.

  16. Multi-scale bending, buckling and vibration analyses of carbon fiber/carbon nanotube-reinforced polymer nanocomposite plates with various shapes

    Science.gov (United States)

    Ahmadi, M.; Ansari, R.; Rouhi, H.

    2017-09-01

    Using a finite element-based multi-scale modeling approach, the bending, buckling and free vibration of hybrid polymer matrix composites reinforced by carbon fibers and carbon nanotubes (CF/CNT-RP) are analyzed herein. Thick composite plates with rectangular, circular, annular and elliptical shapes are considered. First, the equivalent material properties of CF/CNT-RP are calculated for different volume fractions of CF and CNT. To accomplish this aim, a two-step procedure is presented through which the coupled effects of nano- and micro-scale are taken into account. In the first step, modeling of dispersion of CNTs into the polymer matrix is done with considering interphase formed by their chemical interaction with the matrix, and the equivalent properties of resulting composite material are determined accordingly. CFs are then dispersed into CNT-RP which is considered a homogenous material in this step. Both distributions of CNTs and CFs are assumed to be random. After computing the equivalent properties of CF/CNT-RP for different volume fractions of its constituents, the bending, buckling and free vibration analyses of plates with different shapes are performed. It is shown that the reinforcement of the polymer matrix with both CF and CNT significantly affects the bending, buckling and free vibration characteristics of plates.

  17. Vibration of a delaminated beam-plate relative to buckled states

    Science.gov (United States)

    Yin, W.-L.; Jane, K. C.

    1992-07-01

    Free vibrations of delaminated beam-plates with respect to postbuckled referential states are studied. If the postbuckling deformation of the referential state is symmetric with respect to the mid-point, then the symmetric and antisymmetric vibration modes are uncoupled. Short delaminations which do not significantly degradate the overall stiffness of the beam-plate have little effect on the lowest modes of vibration and their frequencies, while the presence of a long delamination generally introduces additional vibration frequencies, the associated mode shapes of which show out-of-phase motions of the upper and lower delaminated layers. These new vibration modes and frequencies depend sensitively on the delamination length and location and on the magnitude of the postbuckling load. Hence their detection may indicate the presence and the nature of internal delamination damage.

  18. Vortex-induced buckling of a viscous drop impacting a pool

    KAUST Repository

    Li, Erqiang

    2017-07-20

    We study the intricate buckling patterns which can form when a viscous drop impacts a much lower viscosity miscible pool. The drop enters the pool by its impact inertia, flattens, and sinks by its own weight while stretching into a hemispheric bowl. Upward motion along the outer bottom surface of this bowl produces a vortical boundary layer which separates along its top and rolls up into a vortex ring. The vorticity is therefore produced in a fundamentally different way than for a drop impacting a pool of the same liquid. The vortex ring subsequently advects into the bowl, thereby stretching the drop liquid into ever thinner sheets, reaching the micron level. The rotating motion around the vortex pulls in folds to form multiple windings of double-walled toroidal viscous sheets. The axisymmetric velocity field thereby stretches the drop liquid into progressively finer sheets, which are susceptible to both axial and azimuthal compression-induced buckling. The azimuthal buckling of the sheets tends to occur on the inner side of the vortex ring, while their folds can be stretched and straightened on the outside edge. We characterize the total stretching from high-speed video imaging and use particle image velocimetry to track the formation and evolution of the vortex ring. The total interfacial area between the drop and the pool liquid can grow over 40-fold during the first 50 ms after impact. Increasing pool viscosity shows entrapment of a large bubble on top of the drop, while lowering the drop viscosity produces intricate buckled shapes, appearing at the earliest stage and being promoted by the crater motions. We also present an image collage of the most intriguing and convoluted structures observed. Finally, a simple point-vortex model reproduces some features from the experiments and shows variable stretching along the wrapping sheets.

  19. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  20. 硼-铝强化板的非线性屈曲有限元分析%Nonlinear buckling finite element analysis of stiffened B-Al plates

    Institute of Scientific and Technical Information of China (English)

    Ezgi GUNAY; Cevdet AYGUN; Yunus Onur YILDIZ

    2014-01-01

    通过有限元方法(FEA)分析强化复合板的非线性屈曲行为。该模型中硼-铝复合材料由硼基体和嵌入其中的不同形态的Al纤维组成。对片层结构的B-Al矩形板施加横向压缩应力,发现强化纤维对具有不同几何形状板材的屈曲行为有明显影响。建模中采用单向、具有矩形截面的强化纤维。结果表明:加载过程中存在一重要的载荷范围,临界屈曲模式在稳态和非稳态之间反复转变。确定由不同的纤维形态和板材高宽比组成的分叉失稳区域。通过 ANSYS 有限元计算,研究简支边界条件下强化板材的失稳模式,分别得到压应力(σx)与平面收缩(u)以及压应力(σx)与面外挠度(δ)的关系曲线。通过非线性分析,在C1、 C2、 C3和 C4四种形态的纤维中,嵌入C2纤维的板材获得最安全的临界屈服应力。结果表明,FEA非线性屈曲分析可以得到精确的结果。%Nonlinear buckling behavior of stiffened composite B-Al plates was analyzed by means of finite element analysis (FEA) method. In the method, the composite material was taken as B matrix into which Al fibers were embedded in different configurations. The laminated B-Al material in the form of rectangular plates was subjected to lateral compressive loading. It is observed that stiffeners have significant effect on the buckling behavior of plates under compressive loading and for various geometrical configurations. The stiffeners used in the modeling are one-sided and have rectangular cross-sections. It is found that there are physically important loading intervals and the critical buckling modes make transitions back and forth between stable and unstable states. Bifurcation buckling regions resulting from various configurations of fiber orientations and different plate aspect ratios are determined. The whole analysis is performed by using ANSYS finite element computations. Only the buckling patterns of stiffened

  1. Three-axis magnetic field induction sensor realized on buckled cantilever plate

    KAUST Repository

    Alfadhel, Ahmed

    2013-07-01

    This work presents the fabrication and characterization of a three-axis induction sensor consisting of one planar microcoil, fixed on the substrate, and two microcoils fabricated on Bbuckled cantilever plates (BCP) oriented perpendicularly to the substrate and each other. The BCP allows an out-of-plane translation while preserving a direct connection to the substrate, which aids the routing of electrical lines. The fabricated sensor is integrated on a single substrate, allowing interaction and integration with other systems. The devices are fabricated using a MEMS polymer fabrication process. Different microcoil configurations are realized with 17-30 turns, 5 μm track width, and 15-20 μm track pitch. The sensor showed up to 6.8 nT/√Hz resolution to magnetic fields within a frequency range of 40 Hz to 1 MHz. The BCP concept provides a strikingly simple method to fabricate a three-axis field sensor that can readily be integrated with electronic circuits, and the sensor\\'s performance can easily be adjusted within a wide range by changing the dimensions of the coils. © 2013 IEEE.

  2. Study on buckling and ultimate strength of a rectangular plate under combined inplane load; Kumiawase mennai kaju wo ukeru kukeiban no zakutsu saishu kyodo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujikubo, M.; Yao, T.; Varghese, B. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1996-10-01

    Elasto-plasticity analysis by using the finite element method was performed on a case that bi-axial compression and shear act on a thick rectangular plate, and applicability of the plasticity correction method was discussed. In the discussion, an investigation was made on effect of the loading method of a load on correlation between initial yield strength and ultimate strength of a rectangular plate under bi-axial compression. The analytical result from the finite element method was compared with estimated values derived by using the plasticity correction method with regard to the buckling strength. The result obtained may be summarized as follows: the effect of the loading method for combined load on the correlation between the initial yield strength and the ultimate strength is small; an approximation expression was derived for the upper limit of maximum initial bend of a deck panel of an actual vessel; the plasticity correction method for buckling strength as specified by classification societies has a certain applicability as a method to estimate ultimate strength on the safety side against plate thickness in a range of the upper limit of initial bend of an actual vessel; however, this method may estimate strength higher than the actual value depending on load ratio, hence attention is required. 5 refs., 8 figs.

  3. Consideration on buckling and plastic breakdown strength characteristics of a steel plate with surface layers of ultra fine grain microstructure (SUF); Hyoso chosairyu koban no zakutsu sosei hokai kyodo tokusei ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, M.; Yao, T.; Yajima, H.; Miyamoto, H.; Morita, S. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering; Ogihara, Y.; Ishikawa, T. [Nippon Steel Corp., Tokyo (Japan)

    1996-10-01

    Buckling and plastic breakdown strength characteristics of a structure fabricated by using new steel plates with surface layer made into ultra fine grain structure were analyzed and discussed by using a belt plate buckling and plasticity test and the finite element method. The tested steel plate has a thickness of 25 mm, and was fabricated for ocean vessel use, with surface layers on both sides of about 1/6 of the whole thickness having been made an ultra fine grain structure. As a result of a belt steel buckling and plasticity test on a steel plate with surface ratio of 29%, both of the initial yield stress and the buckling stress were found increased by about 4 to 10% as compared with a steel plate having surface ratio of 0%. An analysis by using the finite element method was made on square steel plates with a length of 80 cm, a width of 100 cm, and thicknesses of 12 mm and 24 mm. A result was obtained that, in the case of surface layer ratio of 33%, both of the initial yield stress and the maximum load withstanding force were higher by 5 to 16% than the case of surface ratio of 0%. Similar rise in strength was shown also in bend preventing plates which are basic constituting members of a vessel. 6 refs., 10 figs., 2 tabs.

  4. Study on buckling and plastic collapse behavior of a continuous stiffened plate subjected to in-plane compression loads; Mennai asshuku kaju wo ukeru renzoku bodo panel no zakutsu sosei hokai kyodo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yao, T.; Fujikubo, M.; Yanagihara, D. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1996-04-10

    A hull structure is constituted by thin panels, and reinforced longitudinally and laterally by stiffened members to increase the effectiveness of the structure. In order to attain findings on buckling and plastic collapse behavior of stiffened plates, this paper describes analysis of elasto-plastic large deflection by using the finite element method on thin stiffened plates having flat-bars and angle-bars. The analysis includes the case of an aspect ratio being 5.0 and the case to consider welding residual stress. Considerations were given on cross sectional shape, panel aspect ratio and effects of initial welding imperfections against the buckling and plastic collapse behavior of the stiffened plates. The angle-bars tend to cause secondary buckling more easily because it has greater bending and twisting rigidity, and stronger constraint against deflection than the flat-bars. When the aspect ratio is larger and the span is longer, the ultimate strength declines, and the withstand power after the ultimate strength decreases rapidly. Existence of the residual stress tends to make the secondary buckling occur more easily. The secondary buckling affects little the withstand power after the ultimate strength. 3 refs., 7 figs., 1 tab.

  5. Elastocapillary instability under partial wetting conditions: bending versus buckling

    CERN Document Server

    Andreotti, Bruno; Das, Siddhartha; Snoeijer, Jacco H

    2011-01-01

    The elastocapillary instability of a flexible plate plunged in a liquid bath is analysed theoretically. We show that the plate can bend due to two separate destabilizing mechanisms, when the liquid is partially wetting the solid. For contact angles $\\theta_e > \\pi/2$, the capillary forces acting tangential to the surface are compressing the plate and can induce a classical buckling instability. However, a second mechanism appears due to capillary forces normal to surface. These induce a destabilizing torque that tends to bend the plate for any value of the contact angle $\\theta_e > 0$. We denote these mechanisms as "buckling" and "bending" respectively and identify the two corresponding dimensionless parameters that govern the elastocapillary stability. The onset of instability is determined analytically and the different bifurcation scenarios are worked out for experimentally relevant conditions.

  6. Micro-wrinkling and delamination-induced buckling of stretchable electronic structures

    Energy Technology Data Exchange (ETDEWEB)

    Oyewole, O. K. [Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Malete, P.M.B 1530, Ilorin, Kwara State (Nigeria); Yu, D. [Department of Mechanical and Aerospace Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Du, J. [Department of Mechanical and Aerospace Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 137 Reber Building, University Park, Pennsylvania (United States); Asare, J.; Fashina, A. [Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Oyewole, D. O. [Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Physics Advanced Laboratory, Sheda Science and Technology Complex, P.M.B 186, Garki, Abuja, Federal Capital Territory (Nigeria); Anye, V. C. [Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Zebaze Kana, M. G. [Department of Materials Science and Engineering, Kwara State University, Malete, P.M.B 1530, Ilorin, Kwara State (Nigeria); Physics Advanced Laboratory, Sheda Science and Technology Complex, P.M.B 186, Garki, Abuja, Federal Capital Territory (Nigeria); and others

    2015-06-21

    This paper presents the results of experimental and theoretical/computational micro-wrinkles and buckling on the surfaces of stretchable poly-dimethylsiloxane (PDMS) coated with nano-scale Gold (Au) layers. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. The critical stresses required for wrinkling and buckling are analyzed using analytical models. The possible interfacial cracking that can occur along with film buckling is also studied using finite element simulations of the interfacial crack growth. The implications of the results are discussed for potential applications of micro-wrinkles and micro-buckles in stretchable electronic structures and biomedical devices.

  7. Micro-wrinkling and delamination-induced buckling of stretchable electronic structures

    Science.gov (United States)

    Oyewole, O. K.; Yu, D.; Du, J.; Asare, J.; Oyewole, D. O.; Anye, V. C.; Fashina, A.; Zebaze Kana, M. G.; Soboyejo, W. O.

    2015-06-01

    This paper presents the results of experimental and theoretical/computational micro-wrinkles and buckling on the surfaces of stretchable poly-dimethylsiloxane (PDMS) coated with nano-scale Gold (Au) layers. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. The critical stresses required for wrinkling and buckling are analyzed using analytical models. The possible interfacial cracking that can occur along with film buckling is also studied using finite element simulations of the interfacial crack growth. The implications of the results are discussed for potential applications of micro-wrinkles and micro-buckles in stretchable electronic structures and biomedical devices.

  8. STABLE OR UNSTABLE CRACK GROWTHS IN THIN ROCK PLATE UNDER COMPRESSION FOR PREDICTING BUCKLING ROCKBURST%岩爆的屈曲失稳机制

    Institute of Scientific and Technical Information of China (English)

    刘小明

    2003-01-01

    Underground cavern opening can cause the surrounding rock tangential compressive stress to raise rapidly. Such high compressive stress increase can result in some original pre-existing cracks growing parallelly to the free surface of the remaining rock. This paper presents a model of crack stable or unstable propagation under compressive stress in thin layers that are separated from the main rock mass due to crack growth. Based on this analysis of flat plate buckling,a rock burst mechanism is presented. Immediate and delayed rock burst mechanism are proposed to explain time dependency in brittle rock sub-critical crack growth under compression. Influence of free surface on the surface-parallel crack growth is also discussed.

  9. Investigation of snap-through and homoclinic bifurcation of a magnet-induced buckled energy harvester by the Melnikov method

    Science.gov (United States)

    Li, H. T.; Zu, J.; Yang, Y. F.; Qin, W. Y.

    2016-12-01

    Snap-through is used to improve the efficiencies of energy harvesters and extend their effective frequency bandwidths. This work uses the Melnikov method to explore the underlying snap-through mechanism and the conditions necessary for homoclinic bifurcations in a magnet-induced buckled energy harvester. First, an electromechanical model of the energy harvester is established analytically using the Euler-Bernoulli beam theory and the extended Hamilton's principle. Second, the Melnikov function of the model is derived, and the necessary conditions for homoclinic bifurcations and chaos are presented on the basis of this model. The analysis reveals that the distance between the magnets and the end-block mass significantly affect the thresholds for chaotic motions and the high-energy solutions. Numerical and experimental studies confirm these analytical predictions and provide guidelines for optimum design of the magnet-induced buckled energy harvester.

  10. Induced signals in resistive plate chambers

    CERN Document Server

    Riegler, W

    2002-01-01

    We derive theorems for induced signals on electrodes embedded in a medium with a position and frequency dependent permittivity $\\vep(\\vx,s)$ and conductivity $\\sigma(\\vx,s)$ that are connected with arbitrary discrete elements. The problem is treated using the quasi-static approximation of Maxwell's equations for weakly conducting media \\cite{melcher}\\cite{quasi}. The induced signals can be derived by time dependent weighting fields and potentials and the result is the same as the one given in \\cite{gatti}. We also show how these time dependent weighting fields can be derived from electrostatic solutions. Finally we will apply the results to Resistive Plate Chambers (RPCs) where we discuss the effects of the resistive plates and thin resistive layers on the signals induced on plane electrodes and strips.

  11. Analyzing the effects of size of hole on Plate failure

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Mohammadzadeh; Noh, Hyukchun [Sejong Univ., Seoul (Korea, Republic of)

    2013-05-15

    The load at critical point in which an infinitesimal increase in load can make the plate to buckle, is buckling load. When a plate element is subjected to direct compression, bending, shear, or a combination of these stresses in its plane, the plate may buckle locally before the member as a whole becomes unstable or before the yield stress of the material is reached. Holes can either increase or decrease critical load of a plate depending on its position and geometry. The presence of holes in plates will change the strength and stiffness, so the amounts of stress and its distribution which induce strain and buckling will be changed. This study deals with studying the buckling of plate with holes using finite element method(FEM). Buckling is one of the main reasons for steel members to fail during service life time. As plates are frequently used in the structures of nuclear power plants and in some cases making holes in plates is necessary, it is necessary to assay the capacity of the plates especially in terms of buckling. FEM is a useful approach which makes the plate analysis be performed with ease. This study relates the buckling load of plates with through-thickness holes to a dimensionless parameter (D/a). By increasing D/a ratio, the amount of plate strength is observed to be decreased. After D/a=0.5, the rate of decreasing is observed to be increased drastically. Therefore, it is better to use ratio D/a less than or equal to 0.5. As a further study, it is possible to investigate other aspects such as different thickness, different positions and so on.

  12. Cholesterol-Induced Buckling in Physisorbed Polymer-Tethered Lipid Monolayers

    Directory of Open Access Journals (Sweden)

    Christoph A. Naumann

    2013-04-01

    Full Text Available The influence of cholesterol concentration on the formation of buckling structures is studied in a physisorbed polymer-tethered lipid monolayer system using epifluorescence microscopy (EPI and atomic force microscopy (AFM. The monolayer system, built using the Langmuir-Blodgett (LB technique, consists of 3 mol % poly(ethylene glycol (PEG lipopolymers and various concentrations of the phospholipid, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC, and cholesterol (CHOL. In the absence of CHOL, AFM micrographs show only occasional buckling structures, which is caused by the presence of the lipopolymers in the monolayer. In contrast, a gradual increase of CHOL concentration in the range of 0–40 mol % leads to fascinating film stress relaxation phenomena in the form of enhanced membrane buckling. Buckling structures are moderately deficient in CHOL, but do not cause any notable phospholipid-lipopolymer phase separation. Our experiments demonstrate that membrane buckling in physisorbed polymer-tethered membranes can be controlled through CHOL-mediated adjustment of membrane elastic properties. They further show that CHOL may have a notable impact on molecular confinement in the presence of crowding agents, such as lipopolymers. Our results are significant, because they offer an intriguing prospective on the role of CHOL on the material properties in complex membrane architecture.

  13. Quantitative characterization of the interfacial adhesion of Ni thin film on steel substrate: A compression-induced buckling delamination test

    Science.gov (United States)

    Zhu, W.; Zhou, Y. C.; Guo, J. W.; Yang, L.; Lu, C.

    2015-01-01

    A compression-induced buckling delamination test is employed to quantitatively characterize the interfacial adhesion of Ni thin film on steel substrate. It is shown that buckles initiate from edge flaws and surface morphologies exhibit symmetric, half-penny shapes. Taking the elastoplasticity of film and substrate into account, a three-dimensional finite element model for an edge flaw with the finite size is established to simulate the evolution of energy release rates and phase angles in the process of interfacial buckling-driven delamination. The results show that delamination propagates along both the straight side and curved front. The mode II delamination plays a dominant role in the process with a straight side whilst the curved front experiences almost the pure mode I. Based on the results of finite element analysis, a numerical model is developed to evaluate the interfacial energy release rate, which is in the range of 250-315 J/m2 with the corresponding phase angle from -41° to -66°. These results are in agreement with the available values determined by other testing methods, which confirms the effectiveness of the numerical model.

  14. A semianalytical approach for buckling analysis of composite laminated plates resting on a twoparameter foundation%双参数地基上层合板屈曲问题的半解析解法

    Institute of Scientific and Technical Information of China (English)

    杨杰; 沈惠申

    2001-01-01

    Buckling analysis for uniaxially or biaxially compressed laminated plates resting on a twoparameter foundation is presented based on the classical laminated plate theory. A semianalytical approach, which makes use of DQ approximation and Galerkin method, is developed to determine the buckling loads for the plate. Numerical examples show that fiber orientation, foundation parameters, plate aspect ratio and boundary conditions have great effects on the loadcarrying capacity of the plate.%采用经典层合板理论,分析弹性地基上复合材料层合板在单向或双向受压时的屈曲特性,给出了相应的半解析计算格式.通过实际算例讨论了层合板纤维铺设角、地基参数、边界约束条件、板长宽比、弹性转动刚度等因素对其屈曲特性的影响.

  15. Buckle Driven Delamination in Thin Hard Film Compliant Substrate Systems

    Directory of Open Access Journals (Sweden)

    Bahr D.F.

    2010-06-01

    Full Text Available Deformation and fracture of thin films on compliant substrates are key factors constraining the performance of emerging flexible substrate devices. [1-3] These systems often contain layers of thin polymer, ceramic and metallic films and stretchable interconnects where differing properties induce high normal and shear stresses. [4] As long as the films remain bonded to the substrates, they may deform far beyond their freestanding form. Once debonded, substrate constraint disappears leading to film failure. [3] Experimentally it is very difficult to measure properties in these systems at sub-micron and nanoscales. Theoretically it is very difficult to determine the contributions from the films, interfaces, and substrates. As a result our understanding of deformation and fracture behavior in compliant substrate systems is limited. This motivated a study of buckle driven delamination of thin hard tungsten films on pure PMMA substrates. The films were sputter deposited to thicknesses of 100 nm, 200 nm, and 400 nm with a residual compressive stress of 1.7 GPa. An aluminum oxide interlayer was added on several samples to alter interfacial composition. Buckles formed spontaneously on the PMMA substrates following film deposition. On films without the aluminum oxide interlayer, an extensive network of small telephone cord buckles formed following deposition, interspersed with regions of larger telephone cord buckles. (Figure 1 On films with an aluminum oxide interlayer, telephone cord buckles formed creating a uniform widely spaced pattern. Through-substrate optical observations revealed matching buckle patterns along the film-substrate interface indicating that delamination occurred for large and small buckles with and without an interlayer. The coexistence of large and small buckles on the same substrate led to two distinct behaviors as shown in Figure 2 where normalized buckle heights are plotted against normalized film stress. The behaviors deviate

  16. Buckle Driven Delamination in Thin Hard Film Compliant Substrate Systems

    Science.gov (United States)

    Moody, N. R.; Reedy, E. D.; Corona, E.; Adams, D. P.; Kennedy, M. S.; Cordill, M. J.; Bahr, D. F.

    2010-06-01

    Deformation and fracture of thin films on compliant substrates are key factors constraining the performance of emerging flexible substrate devices. [1-3] These systems often contain layers of thin polymer, ceramic and metallic films and stretchable interconnects where differing properties induce high normal and shear stresses. [4] As long as the films remain bonded to the substrates, they may deform far beyond their freestanding form. Once debonded, substrate constraint disappears leading to film failure. [3] Experimentally it is very difficult to measure properties in these systems at sub-micron and nanoscales. Theoretically it is very difficult to determine the contributions from the films, interfaces, and substrates. As a result our understanding of deformation and fracture behavior in compliant substrate systems is limited. This motivated a study of buckle driven delamination of thin hard tungsten films on pure PMMA substrates. The films were sputter deposited to thicknesses of 100 nm, 200 nm, and 400 nm with a residual compressive stress of 1.7 GPa. An aluminum oxide interlayer was added on several samples to alter interfacial composition. Buckles formed spontaneously on the PMMA substrates following film deposition. On films without the aluminum oxide interlayer, an extensive network of small telephone cord buckles formed following deposition, interspersed with regions of larger telephone cord buckles. (Figure 1) On films with an aluminum oxide interlayer, telephone cord buckles formed creating a uniform widely spaced pattern. Through-substrate optical observations revealed matching buckle patterns along the film-substrate interface indicating that delamination occurred for large and small buckles with and without an interlayer. The coexistence of large and small buckles on the same substrate led to two distinct behaviors as shown in Figure 2 where normalized buckle heights are plotted against normalized film stress. The behaviors deviate significantly from

  17. Water-Responsive Shape Recovery Induced Buckling in Biodegradable Photo-Cross-Linked Poly(ethylene glycol) (PEG) Hydrogel.

    Science.gov (United States)

    Salvekar, Abhijit Vijay; Huang, Wei Min; Xiao, Rui; Wong, Yee Shan; Venkatraman, Subbu S; Tay, Kiang Hiong; Shen, Ze Xiang

    2017-02-21

    -responsive shape memory embolization plug for temporary vascular occlusion. The plug consists of a composite with a poly(dl-lactide-co-glycolide) (PLGA) core (loaded with radiopaque filler) and cross-linked poly(ethylene glycol) (PEG) hydrogel outer layer. The device can be activated by body fluid (or water) after about 2 min of immersion in water. The whole occlusion process is completed within a few dozens of seconds. The underlying mechanism is water-responsive shape recovery induced buckling, which occurs in an expeditious manner within a short time period and does not require complete hydration of the whole hydrogel. In this paper, we experimentally and analytically investigate the water-activated shape recovery induced buckling in this biodegradable PEG hydrogel to understand the fundamentals in precisely controlling the buckling time. The molecular mechanism responsible for the water-induced SME in PEG hydrogel is also elucidated. The original diameter and amount of prestretching are identified as two influential parameters to tailor the buckling time between 1 and 4 min as confirmed by both experiments and simulation. The phenomenon reported here, chemically induced buckling via a combination of the SME and swelling, is generic, and the study reported here should be applicable to other water- and non-water-responsive gels.

  18. On the buckling eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Pedro R S, E-mail: pant@cii.fc.ul.pt [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Av. do Campo Grande, 376, 1749-024 Lisboa (Portugal); Group of Mathematical Physics of the University of Lisbon, Complexo Interdisciplinar, Av. Professor Gama Pinto 2, P-1649-003 Lisboa (Portugal)

    2011-05-27

    We prove a density result which allows us to justify the application of the method of fundamental solutions to solve the buckling eigenvalue problem of a plate. We address an example of an analytic convex domain for which the first eigenfunction does change the sign and present a large-scale numerical study with polygons providing numerical evidence to some new conjectures.

  19. Buckling of Bucket Foundations

    DEFF Research Database (Denmark)

    Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2012-01-01

    In this paper, the risk of structural buckling during installation of large-diameter bucket foundations is addressed using numerical methods. Imperfect geometries are introduced based on the pre-buckling mode shapes from a linear Eigenvalue buckling analysis. Various imperfect geometries...... are introduced to reveal how sensitive the buckling load is to the mentioned imperfections. Including the first 21 mode shapes as imperfect geometries reduces the buckling pressure compared to only considering mode 1....

  20. Laser Induced Selective Activation For Subsequent Autocatalytic Electroless Plating

    DEFF Research Database (Denmark)

    Zhang, Yang

    The subject of this PhD thesis is “Laser induced selective activation for subsequent autocatalytic electroless plating.” The objective of the project is to investigate the process chains for micro structuring of polymer surfaces for selective micro metallization. Laser induced selective activation...

  1. Structural and morphological modification of PDMS thick film surfaces by ion implantation with the formation of strain-induced buckling domains

    Energy Technology Data Exchange (ETDEWEB)

    Winton, B.R., E-mail: bwinton@gmail.com [ISEM, University of Wollongong, AIIM Facility, Innovation Campus, Squires Way, Fairy Meadow, NSW 2519 (Australia); Ionescu, M.; Dou, S.X.; Wexler, D.; Alvarez, G.A. [ISEM, University of Wollongong, AIIM Facility, Innovation Campus, Squires Way, Fairy Meadow, NSW 2519 (Australia)

    2010-03-15

    Elastomer films with three-dimensional features self-organized into coherent and semi-coherent buckling domains were created by implanting different species of metal ions and combinations thereof, using a metal evaporation ion source, into quality polydimethylsiloxane films. As a result of the implantation process, functionalized discrete regions of strain-induced surface buckling were created, taking the forms of domains of parallel surface waves, semi-ordered regions and disordered regions. In addition, deep, strain-induced, V-shaped cracks were observed to penetrate well into the elastomer matrix. Characterization was via optical microscopy, X-ray diffraction, atomic force microscopy and high-resolution scanning electron microscopy (SEM) in the form of field emission SEM. It was found that controlling the localized strain by altering the metal ion species can control the frequency of the V-shaped cracks and the properties of the buckled areas. These observations and possible mechanisms for the formation of the cracks and domains are discussed in this paper.

  2. Buckling of Bucket Foundations

    DEFF Research Database (Denmark)

    Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2012-01-01

    In this paper, the risk of structural buckling during installation of large-diameter bucket foundations is addressed using numerical methods. Imperfect geometries are introduced based on the pre-buckling mode shapes from a linear Eigenvalue buckling analysis. Various imperfect geometries are intr...

  3. Elastoswellability: Will it bend or will it buckle?

    Science.gov (United States)

    Holmes, Douglas; Pandey, Anupam

    2013-03-01

    Soft mechanical structures such as biological tissues and gels exhibit motion, instabilities, and large morphological changes when subjected to external stimuli. Swelling is a robust approach for inducing structural change as it occurs naturally in humid environments and can be easily adapted for industrial design. Small volumes of fluid that interact favorably with a material can cause large, dramatic, and geometrically nonlinear deformations including beam bending, plate buckling, and surface wrinkling. In this talk we address an overarching question regarding swelling-induced deformations: will the structural change occur globally, or will it be confined to the material's surface? We introduce a materials and geometry defined transition point that describes a fluid-structure's characteristic ``elastoswellability'' lengthscale. By locally swelling unconstrained slender beams and plates with solvents of varying solubility, we identify a transition between local surface wrinkling and global structural bending.

  4. Electrical characterization of a buckling thermal energy harvester

    Science.gov (United States)

    Trioux, E.; Rufer, L.; Monfray, S.; Skotnicki, T.; Muralt, P.; Basrour, S.

    2015-12-01

    This paper presents the electrical characterizations of a novel concept for thermal energy harvesting at micro scale. The devices presented here are based on a two-step transduction combining thermo-mechanical and piezoelectric conversion. The piezoelectric layer is directly integrated into a buckling bilayer plate made of aluminium and aluminium nitride. For the first time, we have characterized the structures electrically and we have investigated their output power during the buckling. Firstly, we have used an insulating tip to make the plate buckle in order to have an estimation of the output power due to piezoelectric contribution only, and to eliminate any pyroelectric contribution that might be present during the thermal actuation. Then, we heated up the structure and we collected the output signal with an instrumentation amplifier in order to measure the voltage generated during the buckling. The output power during the mechanical and the thermal buckling is compared in the paper.

  5. 非自治屈曲薄板全局分叉与混沌动力学%Global bifurcation and chaotic dynamics for a non-autonomous buckled thin plate

    Institute of Scientific and Technical Information of China (English)

    张君华; 张伟

    2006-01-01

    By using Melnikov method of multi-degree-of-freedom Hamiltonian systems with perturbations, the global bifurcation and chaotic dynamics of a parametrically excited and simply supported rectangular thin plate are studied. Based on the non-autonomous ordinary differential equations, which are much closer to the original system than the normal form given in the literature, global perturbation analysis of the parametrically excited rectangular thin plate is given by high dimensional Melnikov method. In the formulas of the thin plate, the case of buckling is considered which cannot be obtained after using multiple scales method. The results show that the chaotic motion can occur in the parametrically excited and simply supported rectangular thin plate. Numerical simulations verify the analytical predictions.%基于多自由度哈密尔顿系统的Melnikov理论,研究了参数激励下四边简支矩形薄板在屈曲状态下的全局分叉与混沌动力学.直接对非自治常微分方程进行全局分析,比文献中经过多次化简近似所得到的规范形更加接近原系统的性质.薄板的屈曲状态是文献中用多尺度方法所不能研究的.分析结果表明参数激励下四边简支矩形薄板存在Smale马蹄意义下的混沌,数值模拟进一步验证了解析方法的正确性.

  6. On the torque on birefringent plates induced by quantum fluctuations

    CERN Document Server

    Iannuzzi, D; Barash, Y; Capasso, F; Iannuzzi, Davide; Munday, Jeremy N.; Barash, Yuri; Capasso, Federico

    2004-01-01

    We present detailed numerical calculations of the mechanical torque induced by quantum fluctuations on two parallel birefringent plates with in plane optical anisotropy, separated by either vacuum or a liquid (ethanol). The torque is found to vary as $\\sin(2\\theta)$, where $\\theta$ represents the angle between the two optical axes, and its magnitude rapidly increases with decreasing plate separation $d$. For a 40 $\\mu$m diameter disk, made out of either quartz or calcite, kept parallel to a Barium Titanate plate at $d\\simeq 100$ nm, the maximum torque (at $\\theta={\\pi\\over 4}$) is of the order of $\\simeq 10^{-19}$ N$\\cdot$m. We propose an experiment to observe this torque when the Barium Titanate plate is immersed in ethanol and the other birefringent disk is placed on top of it. In this case the retarded van der Waals (or Casimir-Lifshitz) force between the two birefringent slabs is repulsive. The disk would float parallel to the plate at a distance where its net weight is counterbalanced by the retarded van...

  7. Calculation method of critical buckling stress for stiffened plate with closed ribs%闭口肋加劲板屈曲临界应力计算方法

    Institute of Scientific and Technical Information of China (English)

    张茜; 狄谨; 周绪红

    2012-01-01

    采用能量法,推导了单向均匀受压四边简支闭口肋加劲板屈曲临界应力计算方法,考虑加劲肋扭转刚度的影响,按照截面实际形心位置计算了加劲肋和母板的抗弯刚度。以苏通大桥钢箱梁中采用的梯形闭口肋加劲板为例,采用Timoshenko方法、小西一郎方法、板壳有限元法及提出的能量法进行了屈曲临界应力比较。分析结果表明:加劲板长宽比口小于1时,Timoshenko方法和小西一郎方法计算的临界应力与钢材屈服强度比值A大于能量法计算值;口在1~6之间时,Timoshenko方法和小西一郎方法计算的A值小于能量法计算值;口在3~6之间时,能量法计算值与有限元分析结果最接近,偏差在9%~25%之间。可见,采用能量法进行正交异性钢箱梁顶、底板弹性稳定分析可行。%A calculation method of critical buckling stress for stiffened plate with closed ribs was proposed by using energy method under unidirectional uniform pressure and simply supported on four sides. The influence of torsional rigidity of stiffened ribs was considered, the whole flexural rigidity of mother board and stiffened ribs was calculated according to the centroid of actual section. The stiffened plates with closed trapezoidal ribs in the steel box girder of Suzhou- Nantong Bridge were taken as example, the critical buckling stresses calculated by Timoshenko method, Ichiro Konishi method, shell finite element method and the proposed energy method were compared. Analysis result shows that when the length-width ratio t9 of stiffened plate is less than 1, the ratio A values of critical buckling stress to steel yield strength calculated by Timoshenko method and Iehiro Konishi method are greater than the calculation value of energy method. When p is between 1 to 6, the 3, values calculated by Timoshenko method and Ichiro Konishi method are less than the calculation value of energy method. When/5 is between

  8. Laser-induced selective copper plating of polypropylene surface

    Science.gov (United States)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  9. Buckling analysis of planar compression micro-springs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Sui, Li; Shi, Gengchen [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Science and Technology on Electromechanical Dynamic Control Laboratory, 5 South Street Zhongguancun, Haidian 100081, Beijing (China)

    2015-04-15

    Large compression deformation causes micro-springs buckling and loss of load capacity. We analyzed the impact of structural parameters and boundary conditions for planar micro-springs, and obtained the change rules for the two factors that affect buckling. A formula for critical buckling deformation of micro-springs under compressive load was derived based on elastic thin plate theory. Results from this formula were compared with finite element analysis results but these did not always correlate. Therefore, finite element analysis is necessary for micro-spring buckling analysis. We studied the variation of micro-spring critical buckling deformation caused by four structural parameters using ANSYS software under two constraint conditions. The simulation results show that when an x-direction constraint is added, the critical buckling deformation increases by 32.3-297.9%. The critical buckling deformation decreases with increase in micro-spring arc radius or section width and increases with increase in micro-spring thickness or straight beam width. We conducted experiments to confirm the simulation results, and the experimental and simulation trends were found to agree. Buckling analysis of the micro-spring establishes a theoretical foundation for optimizing micro-spring structural parameters and constraint conditions to maximize the critical buckling load.

  10. Designing Assemblies Of Plates

    Science.gov (United States)

    Williams, F. W.; Kennedy, D.; Butler, R.; Aston, G.; Anderson, M. S.

    1992-01-01

    VICONOPT calculates vibrations and instabilities of assemblies of prismatic plates. Designed for efficient, accurate analysis of buckling and vibration, and for optimum design of panels of composite materials. Written in FORTRAN 77.

  11. Application of Finite Element Method of Numerical Modelling to Understand Toe Buckling Deformation in the Southern Alps of New Zealand.

    Science.gov (United States)

    Ridl, Romy; Bell, David; Villeneuve, Marlene

    2017-04-01

    Toe buckling deformation is a temporal product of induced stresses concentrated at the base of a slope. Prolonged induced stresses may lead to yielding of an anisotropic rock mass, either through rheological creep deformation (flexural toe buckling) or brittle failure (hinge buckling). Progressive deformation can lead to the breakout at the buckled toe and ultimately result in deep seated displacements on a mountain range scale, referred to as deep seated gravitational slope deformation (DSGSD). DSGSD can have a considerable impact on civil infrastructure and should be well understood for hazard identification, to inform civil engineering design and for resource management purposes. Toe buckling deformation was identified beneath the basal sliding zone of three large (≥50 Mm3) landslides in the Cromwell Gorge, New Zealand. This area was subjected to extensive geotechnical investigations for the Clyde Hydropower Scheme. During these investigations seventeen major landslides were identified in the Cromwell Gorge and subsequently stabilised. The data from the landslide stabilisation project, including 26.7 km of boreholes and 9 km of tunnels, for the three landslides exhibiting toe buckling was made available for this study. This comprehensive database has enabled comparison and validation of numerical simulations carried out for the Cromwell Gorge. The application of numerical modelling has demonstrated that toe buckling within the Cromwell Gorge is a result of the combination of induced stresses acting on an anisotropic schistose rock mass. The induced stresses comprise: i) topographically-induced gravitational stresses parallel to the slope, associated with the evolution of the Cromwell Gorge from a relatively low relief surface to present day topography (1400 m deep valley), and ii) active far-field tectonic stresses associated with the obliquely convergent stress regime of the Australian-Pacific continent plate boundary. Finite Element Method (FEM) numerical

  12. Coupled Static and Dynamic Buckling Modelling of Thin-Walled Structures in Elastic Range Review of Selected Problems

    Directory of Open Access Journals (Sweden)

    Kołakowski Zbigniew

    2016-06-01

    Full Text Available A review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled structures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling is limited in practice to columns, single plates and shells. The applications of finite element method (FEM or/and analytical-numerical method (ANM to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered.

  13. Temporal behavior of laser induced elastic plate resonances

    CERN Document Server

    Laurent, Jérôme; Prada, Claire

    2014-01-01

    This paper investigates the dependence on Poisson's ratio of local plate resonances in low attenuating materials. In our experiments, these resonances are generated by a pulse laser source and detected with a heterodyne interferometer measuring surface displacement normal to the plate. The laser impact induces a set of resonances that are dominated by Zero Group Velocity (ZGV) Lamb modes. For some Poisson's ratio, thickness-shear resonances are also detected. These experiments confirm that the temporal decay of ZGV modes follows a $t^{-0.5}$ law and show that the temporal decay of the thickness resonances is much faster. Similar decays are obtained by numerical simulations achieved with a finite difference code. A simple model is proposed to describe the thickness resonances. It predicts that a thickness mode decays as $t^{-1.5}$ for large times and that the resonance amplitude is proportional to $D^{-1.5}$ where $D$ is the curvature of the dispersion curve $\\omega(k)$ at $k=0$. This curvature depends on the ...

  14. Microfabrication of Fresnel zone plates by laser induced solid ablation

    Science.gov (United States)

    Rodrigues, Vanessa R. M.; Thomas, John; Santhosh, Chidangil; Ramachandran, Hema; Mathur, Deepak

    2016-07-01

    A novel and simple single-step method of inscribing optical elements on metal-coated transparent substrates is demonstrated. Laser induced solid ablation (LISA) demands very low laser energies (nJ), as can be amply provided by a femtosecond laser oscillator. Here, LISA is used to write Fresnel zone plates on indium and tungsten coated glass. With up to 100 zones, remarkable agreement is obtained between measured and expected values of the focal length. LISA has enabled attainment of focal spot sizes that are 38% smaller than what would be obtained using conventional lenses of the same numerical aperture. The simplicity with which a high degree of automation can readily be achieved using LISA makes this cost-effective method amenable to a wide variety of applications related to microfabrication of optical elements.

  15. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through......Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  16. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  17. Ultimate Strength of a Ship’s Hull Girder in Plastic and Buckling Modes.

    Science.gov (United States)

    1980-06-01

    drawn for deep - web -frame plate panels, of low slenderness ratio, simple supported and edges kept straight. It should be noted, however, that the range...H.-G., "Notes on the Buckling and Post-buckling Behaviour of Deep Web Frames," J. Marine Tech., July 1972. V. 62 [34] Timoshenko, S., "Stability of

  18. Local Cooling during Welding: Prediction and Control of Residual Stresses and Buckling Distortion

    NARCIS (Netherlands)

    Van der Aa, E.M.

    2007-01-01

    One of the major problems during welding of thin plate structures is the occurrence of buckling distortion. This type of distortion is caused by the formation of compressive welding stresses; when these stresses exceed a certain critical stress level, the structure will buckle. Most methods for elim

  19. Buckling patterns of gold thin films on silicon substrates: Formation of superimposed blisters

    Science.gov (United States)

    Colin, J.; Coupeau, C.; Durinck, J.; Grilhé, J.

    2009-06-01

    Buckling phenomena leading to the formation of superimposed blisters have been experimentally observed with the help of a confocal interferometric microscope onto the surface of gold thin films deposited on silicon substrates. Assuming that residual folding effects resulting from plastic deformation mechanisms take place in the film during its morphological evolution, different probable scenarios for the formation of the observed buckling patterns are elaborated in the framework of the Föppl-von Karman's theory of thin plates. Multi-step buckling with growing interface delamination is considered for the first scenario while a single or multi-step buckling at a given delamination width is assumed for the other ones.

  20. Reaction-induced rheological weakening enables oceanic plate subduction

    Science.gov (United States)

    Hirauchi, Ken-Ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-08-01

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the `cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.

  1. THE EFFECT OF SUPPORT PLATE ON DRILLING-INDUCED DELAMINATION

    Directory of Open Access Journals (Sweden)

    Navid Zarif Karimi

    2016-02-01

    Full Text Available Delamination is considered as a major problem in drilling of composite materials, which degrades the mechanical properties of these materials. The thrust force exerted by the drill is considered as the major cause of delamination; and one practical approach to reduce delamination is to use a back-up plate under the specimen. In this paper, the effect of exit support plate on delamination in twist drilling of glass fiber reinforced composites is studied. Firstly, two analytical models based on linear fracture mechanics and elastic bending theory of plates are described to find critical thrust forces at the beginning of crack growth for drilling with and without back-up plate. Secondly, two series of experiments are carried out on glass fiber reinforced composites to determine quantitatively the effect of drilling parameters on the amount of delamination. Experimental findings verify a large reduction in the amount of delaminated area when a back-up plate is placed under the specimen.

  2. Scleral Buckling with Chandelier Illumination.

    Science.gov (United States)

    Seider, Michael I; Nomides, Riikka E K; Hahn, Paul; Mruthyunjaya, Prithvi; Mahmoud, Tamer H

    2016-01-01

    Scleral buckling is a highly successful technique for the repair of rhegmatogenous retinal detachment that requires intra-operative examination of the retina and treatment of retinal breaks via indirect ophthalmoscopy. Data suggest that scleral buckling likely results in improved outcomes for many patients but is declining in popularity, perhaps because of significant advances in vitrectomy instrumentation and visualization systems. Emerging data suggest that chandelier-assisted scleral buckling is safe and has many potential advantages over traditional buckling techniques. By combining traditional scleral buckling with contemporary vitreoretinal visualization techniques, chandelier-assistance may increase the popularity of scleral buckling to treat primary rhegmatogenous retinal detachment for surgeons of the next generation, maintaining buckling as an option for appropriate patients in the future.

  3. Scleral buckling with chandelier illumination

    Directory of Open Access Journals (Sweden)

    Michael I Seider

    2016-01-01

    Full Text Available Scleral buckling is a highly successful technique for the repair of rhegmatogenous retinal detachment that requires intra-operative examination of the retina and treatment of retinal breaks via indirect ophthalmoscopy. Data suggest that scleral buckling likely results in improved outcomes for many patients but is declining in popularity, perhaps because of significant advances in vitrectomy instrumentation and visualization systems. Emerging data suggest that chandelier-assisted scleral buckling is safe and has many potential advantages over traditional buckling techniques. By combining traditional scleral buckling with contemporary vitreoretinal visualization techniques, chandelier-assistance may increase the popularity of scleral buckling to treat primary rhegmatogenous retinal detachment for surgeons of the next generation, maintaining buckling as an option for appropriate patients in the future.

  4. Experimental and Numerical Study of Buckling of Vacuum Chambers for Fast-Cycling Synchrotrons

    DEFF Research Database (Denmark)

    Bräuner, Lars Erik

    The optimal functioning of the long span thin walled elliptical cross section shells used as vacuum chambers for fast-cycling synchrotrons is provided by their buckling capacity. Also it is often necessary to design inter-stiffener panels of elliptical shells used as vacuum chambers to resist any...... tendency towards pressure induced buckling due to some combination of excessive out-gassing, fragility, radiation damage, magnetic field distortion,. The analysis for design is complicated because elliptical shell chambers display a complex form of nonlinear snap buckling behavior under the external...... pressure. Buckling analysis for shells is further complicated by the observation that geometric imperfections have an important influence on the buckling mode as well as on the buckling load-carrying capacity. Buckling loads are, in general, considerably lower than the lowest critical loads predicted from...

  5. Thermally Induced Principal Parametric Resonance in Circular Plates

    Directory of Open Access Journals (Sweden)

    Ali H. Nayfeh

    2002-01-01

    Full Text Available We consider the problem of large-amplitude vibrations of a simply supported circular flat plate subjected to harmonically varying temperature fields arising from an external heat flux (aeroheating for example. The plate is modeled using the von Karman equations. We used the method of multiple scales to determine an approximate solution for the case in which the frequency of the thermal variations is approximately twice the fundamental natural frequency of the plate; that is, the case of principal parametric resonance. The results show that such thermal loads produce large-amplitude vibrations, with associated multi-valued responses and subcritical instabilities.

  6. Strengthening of Steel Columns under Load: Torsional-Flexural Buckling

    Directory of Open Access Journals (Sweden)

    Martin Vild

    2016-01-01

    Full Text Available The paper presents experimental and numerical research into the strengthening of steel columns under load using welded plates. So far, the experimental research in this field has been limited mostly to flexural buckling of columns and the preload had low effect on the column load resistance. This paper focuses on the local buckling and torsional-flexural buckling of columns. Three sets of three columns each were tested. Two sets corresponding to the base section (D and strengthened section (E were tested without preloading and were used for comparison. Columns from set (F were first preloaded to the load corresponding to the half of the load resistance of the base section (D. Then the columns were strengthened and after they cooled, they were loaded to failure. The columns strengthened under load (F had similar average resistance as the columns welded without preloading (E, meaning the preload affects even members susceptible to local buckling and torsional-flexural buckling only slightly. This is the same behaviour as of the tested columns from previous research into flexural buckling. The study includes results gained from finite element models of the problem created in ANSYS software. The results obtained from the experiments and numerical simulations were compared.

  7. Autophagy protects end plate chondrocytes from intermittent cyclic mechanical tension induced calcification.

    Science.gov (United States)

    Xu, Hong-guang; Yu, Yun-fei; Zheng, Quan; Zhang, Wei; Wang, Chuang-dong; Zhao, Xiao-yn; Tong, Wen-xue; Wang, Hong; Liu, Ping; Zhang, Xiao-ling

    2014-09-01

    Calcification of end plate chondrocytes is a major cause of intervertebral disc (IVD) degeneration. However, the underlying molecular mechanism of end plate chondrocyte calcification is still unclear. The aim of this study was to clarify whether autophagy in end plate chondrocytes could protect the calcification of end plate chondrocytes. Previous studies showed that intermittent cyclic mechanical tension (ICMT) contributes to the calcification of end plate chondrocytes in vitro. While autophagy serves as a cell survival mechanism, the relationship of autophagy and induced end plate chondrocyte calcification by mechanical tension in vitro is unknown. Thus, we investigated autophagy, the expression of the autophagy genes, Beclin-1 and LC3, and rat end plate chondrocyte calcification by ICMT. The viability of end plate chondrocytes was examined using the LIVE/DEAD viability/cytotoxicity kit. The reverse transcription-polymerase chain reaction and western blotting were used to detect the expression of Beclin-1; LC3; type I, II and X collagen; aggrecan; and Sox-9 genes. Immunofluorescent and fluorescent microscopy showed decreased autophagy in the 10- and 20-day groups loaded with ICMT. Additionally, Alizarin red and alkaline phosphatase staining detected the palpable calcification of end plate chondrocytes after ICMT treatment. We found that increased autophagy induced by short-term ICMT treatment was accompanied by an insignificant calcification of end plate chondrocytes. To the contrary, the suppressive autophagy inhibited by long-term ICMT was accompanied by a more significant calcification. The process of calcification induced by ICMT was partially resisted by increased autophagy activity induced by rapamycin, implicating that autophagy may prevent end plate chondrocyte calcification.

  8. Crack buckling in soft gels under compression

    Institute of Scientific and Technical Information of China (English)

    Rong Long; Chung-Yuen Hui

    2012-01-01

    Recent interest in designing soft gels with high fracture toughness has called for simple and robust methods to test fracture behavior.The conventional method of applying tension to a gel sample suffers from a difficulty of sample gripping.In this paper,we study a possible fracture mechanism of soft gels under uni-axial compression.We show that the surfaces of a pre-existing crack,oriented parallel to the loading axis,can buckle at a critical compressive stress.This buckling instability can open the crack surfaces and create highly concentrated stress fields near the crack tip,which can lead to crack growth.We show that the onset of crack buckling can be deduced by a dimensional argument combined with an analysis to determine the critical compression needed to induce surface instabilities of an elastic half space.The critical compression for buckling was verified for a neoHookean material model using finite element simulations.

  9. Focal evolution induced by combination of nonspiral and spiral phase plates

    Institute of Scientific and Technical Information of China (English)

    Xiumin Gao; Jian Wang

    2007-01-01

    Focusing properties of Gaussian beam induced by nonspiral and spiral phase plates are investigated numerically. The nonspiral phase plate introduces phase singularity to the incident beam, and the spiral one adjusts the radial phase distribution. Intensity distributions in geometrical focal plane show that the parameters of phase plates can alter the intensity distributions considerably. And local dark focal spots may be obtained, the focal spot may evolve into a circle, a two-peak spot, or a curve line, which indicates that the combination of nonspiral and spiral phase plates can be used to form novel focal spots.

  10. Plate tectonics on the Earth triggered by plume-induced subduction initiation.

    Science.gov (United States)

    Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A

    2015-11-12

    Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.

  11. Scleral Buckling with Chandelier Illumination

    OpenAIRE

    Michael I Seider; Riikka E.K Nomides; Paul Hahn; Prithvi Mruthyunjaya; Mahmoud, Tamer H

    2016-01-01

    Scleral buckling is a highly successful technique for the repair of rhegmatogenous retinal detachment that requires intra-operative examination of the retina and treatment of retinal breaks via indirect ophthalmoscopy. Data suggest that scleral buckling likely results in improved outcomes for many patients but is declining in popularity, perhaps because of significant advances in vitrectomy instrumentation and visualization systems. Emerging data suggest that chandelier-assisted scleral buckl...

  12. Dike-induced contraction along oceanic and continental divergent plate boundaries

    KAUST Repository

    Trippanera, D.

    2014-10-28

    The axis of divergent plate boundaries shows extension fractures and normal faults at the surface. Here we present evidence of contraction along the axis of the oceanic ridge of Iceland and the continental Main Ethiopian Rift. Contraction is found at the base of the tilted hanging wall of dilational normal faults, balancing part of their extension. Our experiments suggest that these structures result from dike emplacement. Multiple dike injection induces subsidence above and uplift to the sides of the dikes; the transition in between is accommodated by reverse faults and subsequent peripheral inward dipping normal faults. Our results suggest that contraction is a direct product of magma emplacement along divergent plate boundaries, at various scales, marking a precise evolutionary stage and initiating part of the extensional structures (extension fractures and normal faults). Key Points Contraction along divergent plate boundaries results from dike emplacementContraction generates extensional structures along divergent plate boundariesSurface deformation along divergent plate boundaries may be magma induced

  13. Buckling of dislocation in graphene

    Science.gov (United States)

    Yao, Yin; Wang, Shaofeng; Bai, Jianhui; Wang, Rui

    2016-10-01

    The buckling of dislocation in graphene is discussed through the lattice theory of dislocation and elastic theory. The approximate solution of the buckling is obtained based on the inner stress distribution caused by different structure of dislocations and is proved to be suitable by the simulation. The position of the highest buckling is predicted to be at the vertex of the pentagon far away from the heptagon. The buckling is strongly influenced by the internal stress and the distance between the extrusive area and stretching area, as well as the critical stress σc. The SW defect is proved to be unbuckled due to its strong interaction between extrusion and stretching.

  14. User manual for VICONOPT: An exact analysis and optimum design program covering the buckling and vibration of prismatic assemblies of flat in-plane loaded, anisotropic plates, with approximations for discrete supports, and transverse stiffeners

    Science.gov (United States)

    Williams, F. W.; Anderson, M. S.; Kennedy, D.; Butler, R.; Aston, G.

    1990-01-01

    A computer program which is designed for efficient, accurate buckling and vibration analysis and optimum design of composite panels is described. The capabilities of the program are given along with detailed user instructions. It is written in FORTRAN 77 and is operational on VAX, IBM, and CDC computers and should be readily adapted to others. Several illustrations of the various aspects of the input are given along the example problems illustrating the use and application of the program.

  15. The secondary buckling transition: wrinkling of buckled spherical shells.

    Science.gov (United States)

    Knoche, Sebastian; Kierfeld, Jan

    2014-07-01

    We theoretically explain the complete sequence of shapes of deflated spherical shells. Decreasing the volume, the shell remains spherical initially, then undergoes the classical buckling instability, where an axisymmetric dimple appears, and, finally, loses its axisymmetry by wrinkles developing in the vicinity of the dimple edge in a secondary buckling transition. We describe the first axisymmetric buckling transition by numerical integration of the complete set of shape equations and an approximate analytic model due to Pogorelov. In the buckled shape, both approaches exhibit a locally compressive hoop stress in a region where experiments and simulations show the development of polygonal wrinkles, along the dimple edge. In a simplified model based on the stability equations of shallow shells, a critical value for the compressive hoop stress is derived, for which the compressed circumferential fibres will buckle out of their circular shape in order to release the compression. By applying this wrinkling criterion to the solutions of the axisymmetric models, we can calculate the critical volume for the secondary buckling transition. Using the Pogorelov approach, we also obtain an analytical expression for the critical volume at the secondary buckling transition: The critical volume difference scales linearly with the bending stiffness, whereas the critical volume reduction at the classical axisymmetric buckling transition scales with the square root of the bending stiffness. These results are confirmed by another stability analysis in the framework of Donnel, Mushtari and Vlasov (DMV) shell theory, and by numerical simulations available in the literature.

  16. Elastic stability of superplastically formed/diffusion-bonded orthogonally corrugated core sandwich plates

    Science.gov (United States)

    Ko, W. L.

    1980-01-01

    The paper concerns the elastic buckling behavior of a newly developed superplastically formed/diffusion-bonded (SPF/DB) orthogonally corrugated core sandwich plate. Uniaxial buckling loads were calculated for this type of sandwich plate with simply supported edges by using orthotropic sandwich plate theory. The buckling behavior of this sandwich plate was then compared with that of an SPF/DB unidirectionally corrugated core sandwich plate under conditions of equal structural density. It was found that the buckling load for the former was considerably higher than that of the latter.

  17. Combined compressive and shear buckling analysis of hypersonic aircraft sandwich panels

    Science.gov (United States)

    Ko, William L.; Jackson, Raymond H.

    1992-01-01

    The combined-load (compression and shear) buckling equations were established for orthotropic sandwich panels by using the Rayleigh-Ritz method to minimize the panel total potential energy. The resulting combined-load buckling equations were used to generate buckling interaction curves for super-plastically-formed/diffusion-bonded titanium truss-core sandwich panels and titanium honeycomb-core sandwich panels having the same specific weight. The relative combined-load buckling strengths of these two types of sandwich panels are compared with consideration of their sandwich orientations. For square and nearly square panels of both types, the combined load always induces symmetric buckling. As the panel aspect ratios increase, antisymmetric buckling will show up when the loading is shear-dominated combined loading. The square panel (either type) has the highest combined buckling strength, but the combined load buckling strength drops sharply as the panel aspect ratio increases. For square panels, the truss-core sandwich panel has higher compression-dominated load buckling strength. However, for shear dominated loading, the square honeycomb-core sandwich panel has higher shear-dominated combined load buckling strength.

  18. Combined compressive and shear buckling analysis of hypersonic aircraft structural sandwich panels

    Science.gov (United States)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    The combined-load (compression and shear) buckling equations were established for orthotropic sandwich panels by using the Rayleigh-Ritz method to minimize the panel total potential energy. The resulting combined-load buckling equations were used to generate buckling interaction curves for super-plastically-formed/diffusion-bonded titanium truss-core sandwich panels and titanium honeycomb-core sandwich panels having the same specific weight. The relative combined-load buckling strengths of these two types of sandwich panels are compared with consideration of their sandwich orientations. For square and nearly square panels of both types, the combined load always induces symmetric buckling. As the panel aspect ratios increase, antisymmetric buckling will show up when the loading is shear-dominated combined loading. The square panel (either type) has the highest combined buckling strength, but the combined load buckling strength drops sharply as the panel aspect ratio increases. For square panels, the truss-core sandwich panel has higher compression-dominated combined load buckling strength. However, for shear dominated loading, the square honeycomb-core sandwich panel has higher shear-dominated combined load buckling strength.

  19. Buckling of polymerized monomolecular films

    Science.gov (United States)

    Bourdieu, L.; Daillant, J.; Chatenay, D.; Braslau, A.; Colson, D.

    1994-03-01

    The buckling of a two-dimensional polymer network at the air-water interface has been evidenced by grazing incidence x-ray scattering. A comprehensive description of the inhomogeneous octadecyltrichlorosilane polymerized film was obtained by atomic force microscopy and x-ray scattering measurements. The buckling occurs with a characteristic wavelength ~=10 μm.

  20. Experimental investigations on flow induced vibration of an externally excited flexible plate

    Science.gov (United States)

    Purohit, Ashish; Darpe, Ashish K.; Singh, S. P.

    2016-06-01

    Flow-induced vibration of a harmonically actuated flexible plate in the wake of an upstream bluff body is experimentally investigated. The experiments are performed in an open-ended wind tunnel. A flexible plate trailing a bluff body is under fluid induced excitation due to the flowing fluid. The additional external excitation to the trailing plate is applied using an electro-magnetic exciter. The frequency and amplitude of the external harmonic excitation are selected as variable parameters in the experiments and their effect on the plate vibration and is investigated. To know the nature of acoustic pressure wave generated from the vibrating system, near-field acoustic pressure is also measured. A laser vibrometer, a pressure microphone and a high-speed camera are employed to measure the plate vibration, pressure signal, and instantaneous images of the plate motion respectively. The results obtained indicate that the dynamics of the plate is influenced by both the flow-induced excitation and external harmonic excitation. When frequency of the two excitations is close enough, a large vibration level and a high tonal sound pressure are observed. At higher amplitude of external excitation, the frequency component corresponding to the flow-induced excitation is found to reduce significantly in the frequency spectrum of the vibration signal. It is observed that, for certain range of excitation frequency, the plate vibration first reduces, reaches a minimum value and then increases with increase in the level of external excitation. A fair qualitative agreement of the experimental results with numerical simulation result of the past study has been noted. In addition to the experiments, the role of phase difference between the flow-induced excitation generated from the front obstacle and externally applied harmonic excitation is investigated through numerical simulations. The result obtained reveals that the final steady state vibration of the coupled system is

  1. Enhancing buckling performance of perforated composite laminates by manipulating fiber direction using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hee Keun [Andong National University, Andong (Korea, Republic of); Rowlands, Robert E. [University of Wisconsin-Madison, Madison (United States)

    2015-09-15

    To maximize buckling loads of composite laminates, optimization is carried out using a Genetic algorithm (GA) in conjunction with finite element analysis. A perforated laminated composite plate is used for buckling analysis. The geometry is discretized into solid three dimensional twenty node isoparametric layered composite elements developed for this study. Fiber orientations of each element and individual plies are controlled independently by the genetic algorithm, which is especially advantageous for complex problems including many design variables. This approach for composite buckling produces more enhanced results than conventional methods, such as changing the stacking sequence of various rectilinear orthotropic plies with different fiber orientations, different ply thicknesses or different local fiber densities. Additionally, it can be used in diverse areas from sensitive local buckling to global stability of structures. The genetic algorithm, finite element analysis and eigen buckling analysis are numerically combined into a composite optimization code, COMBO20. The successful performance of the proposed approach is demonstrated with an example.

  2. Buckling failures in insect exoskeletons.

    Science.gov (United States)

    Parle, Eoin; Herbaj, Simona; Sheils, Fiona; Larmon, Hannah; Taylor, David

    2016-02-01

    Thin walled tubes are often used for load-bearing structures, in nature and in engineering, because they offer good resistance to bending and torsion at relatively low weight. However, when loaded in bending they are prone to failure by buckling. It is difficult to predict the loading conditions which cause buckling, especially for tubes whose cross sections are not simple shapes. Insights into buckling prevention might be gained by studying this phenomenon in the exoskeletons of insects and other arthropods. We investigated the leg segments (tibiae) of five different insects: the locust (Schistocerca gergaria), American cockroach (Periplaneta americana), death's head cockroach (Blaberus discoidalis), stick insect (Parapachymorpha zomproi) and bumblebee (Bombus terrestris audax). These were tested to failure in cantilever bending and modelled using finite element analysis (FEA). The tibiae of the locust and the cockroaches were found to be approximately circular in shape. Their buckling loads were well predicted by linear elastic FEA, and also by one of the analytical solutions available in the literature for elastic buckling. The legs of the stick insect are also circular in cross section but have several prominent longitudinal ridges. We hypothesised that these ridges might protect the legs against buckling but we found that this was not the case: the loads necessary for elastic buckling were not reached in practice because yield occurred in the material, causing plastic buckling. The legs of bees have a non-circular cross section due to a pollen-carrying feature (the corbicula). We found that this did not significantly affect their resistance to buckling. Our results imply that buckling is the dominant failure mode in the tibia of insects; it likely to be a significant consideration for other arthropods and any organisms with stiff exoskeletons. The interactions displayed here between material properties and cross sectional geometry may provide insights for the

  3. Electroless Plating on Plastic Induced by Selective Laser Activation

    DEFF Research Database (Denmark)

    Zhang, Yang; Tang, Peter Torben; Hansen, Hans Nørgaard

    2009-01-01

    This paper presents a new method for selective micro metallization of polymers. A Nd:YAG laser is employed to draw patterns on polymer surfaces that are submerged in a liquid (usually water). After subsequent activation with palladium chloride and followed by auto-catalytic electroless plating...... in width with 50μm between two tracks, but further optimization is expected in this field. Due to the porous and rough structure of the laser track, excellent adhesion between metallization and substrate is obtained. On top of the first copper layer, additional metal such as nickel, gold, palladium or tin...

  4. In-Plane Elastic Buckling of Arch

    Institute of Scientific and Technical Information of China (English)

    剧锦三; 郭彦林

    2002-01-01

    The in-plane elastic buckling behavior of arches is investigated using a new finite-element approach for the nonlinear analysis. The linear buckling, nonlinear primary buckling, and secondary bifurcation buckling behavior of arches are compared taking into account the large deformation and the effects of initial geometric imperfections or perturbations. The theoretical investigation emphasizes the nonlinear secondary bifurcation buckling behavior for a full span uniformly distributed load. The efficiency of compact method for tracing secondary buckling path is shown through several examples. Finally, a new structural design, which prevents the secondary bifurcation buckling by adding some crossed cables across the arch, is proposed to improve the limit load carrying capacity.

  5. Buckling and Delamination Growth Analysis of Composite Laminates Containing Embedded Delaminations

    Science.gov (United States)

    Hosseini-Toudeshky, H.; Hosseini, S.; Mohammadi, B.

    2010-04-01

    The objective of this work is to study the post buckling behavior of composite laminates, containing embedded delamination, under uniaxial compression loading. For this purpose, delamination initiation and propagation is modeled using the softening behavior of interface elements. The full layer-wise plate theory is also employed for approximating the displacement field of laminates and the interface elements are considered as a numerical layer between any two adjacent layers which delamination is expected to propagate. A finite element program was developed and the geometric non-linearity in the von karman sense is incorporated to the strain/displacement relations, to obtain the buckling behavior. It will be shown that, the buckling load, delamination growth process and buckling mode of the composite plates depends on the size of delamination and stacking sequence of the laminates.

  6. Buckling Characteristics of Cylindrical Pipes

    Institute of Scientific and Technical Information of China (English)

    Toshiaki Sakurai

    2015-01-01

    This paper describes the buckling pattern of the body frame by energy absorbed efficiency of crashworthiness related toresearch of the buckling characteristics of aluminum cylindrical pipes with various diameters formed mechanical tools. Experimentswere performed by the quasi-static test without lubrication between specimen and equipment. According to the change in the radiusversus thickness of the specimen, the buckling phenomena are transformed from folding to bellows and the rate of energy absorptionis understood. In crashworthiness, frames are characterized by the folding among three patterns from the absorbed energy efficiencypoint of view and weight reduction. With the development of new types of transport such as electric vehicles, innovated bodystructure should be designed.

  7. Highly asymmetric interaction forces induced by acoustic waves in coupled plate structures

    CERN Document Server

    Fan, Xiying; Zhang, Shenwei; Ke, Manzhu; Liu, Zhengyou

    2015-01-01

    Mutual forces can be induced between coupled structures when illuminated by external acoustic waves. In this Letter, we propose a concept of asymmetric interaction between two coupled plate-like structures, which is generated by oppositely incident plane waves. Besides the striking contrast in magnitude, the mutual force induced by one of the incidences can be tuned extremely strong due to the resonant excitation of the flexural plate modes. The highly asymmetric interaction with enhanced strength in single side should be potentially useful, such as in designing ultrasound instruments and sensors.

  8. Nonlinear Analysis of Buckling

    Directory of Open Access Journals (Sweden)

    Psotný Martin

    2014-06-01

    Full Text Available The stability analysis of slender web loaded in compression was presented. To solve this problem, a specialized computer program based on FEM was created. The nonlinear finite element method equations were derived from the variational principle of minimum of potential energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm was used. Corresponding levels of the total potential energy were defined. The peculiarities of the effects of the initial imperfections were investigated. Special attention was focused on the influence of imperfections on the post-critical buckling mode. The stable and unstable paths of the nonlinear solution were separated. Obtained results were compared with those gained using ANSYS system.

  9. A micro-mechanical model of knitted fabric and its application to the analysis of buckling under tension in wale direction: buckling analysis

    Institute of Scientific and Technical Information of China (English)

    Yitong Zhang; Cuiyu Li; Jiafu Xu

    2005-01-01

    With the aid of the micro-mechanical model of knitted fabric proposed in Part 1 we analyze the buckling of a knitted fabric sheet when it is subjected to a tension along the wale direction. The large deformation of the fabric sheet in the critical configuration is considered and, to avoid possible deviation due to the approximation of the theory of thin plate, the three-dimensional theory of instability is used.The fabric sheet is considered as a three-dimensional body and all boundary conditions are satisfied. It is shown that the buckling of the fabric sheet is possible, two buckling modes and the corresponding buckling conditions are obtained, but only the flexural mode is physically possible as observed in experiments.

  10. Creep buckling analysis of shells

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    The current study was conducted in an effort to determine the degree of conservatism or lack of conservatism in current ASME design rules concerning time-dependent (creep) buckling. In the course of this investigation, certain observations were made concerning the numerical solution of creep buckling problems. It was demonstrated that a nonlinear finite element code could be used to solve the time-dependent buckling problem. A direct method of solution was presented which proved to be computationally efficient and provided answers which agreed very well with available analytical solutions. It was observed that the calculated buckling times could vary widely for small errors in computed displacements. The presence of high creep strain rates contributed to the prediction of early buckling times when calculated during the primary creep stage. The predicted time estimates were found to increase with time until the secondary stage was reached and the estimates approached the critical times predicted without primary creep. It can be concluded, therefore, that for most nuclear piping components, whose primary creep stage is small compared to the secondary stage, the effect of primary creep is negligible and can be omitted from the calculations. In an evaluation of the past and current ASME design rules for time-dependent, load controlled buckling, it was concluded that current use of design load safety factors is not equivalent to a safety factor of ten on service life for low creep exponents.

  11. Analytical Shear Buckling Investigation of Curved Composite Panels.

    Science.gov (United States)

    1984-12-01

    Technology Air University in Partial Fulfillment of the Requirements for the Degree of Masters of Science by - Jay K. McDaniel Captian, USAF Graduate...throughout this thesis. I would also like to thank the Air Force Flight Dynamics Laboratory, in particular Dr. N. S. Khot and Mrs. Elizabeth Copenhaver , for... Science Series, Volume IV), Stamford: Technomic Publishing Company, 1970. 13. Whitney, James M., "Buckling of Anisotropic Laminated Cylindrical Plates

  12. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  13. Magnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field.

    Science.gov (United States)

    Sarveshanand; Singh, A K

    2015-01-01

    In this paper, the steady two-dimensional hydromagnetic free convective flow of an incompressible viscous and electrically conducting fluid between two parallel vertical porous plates has been considered. The effect of induced magnetic field arising due to the motion of an electrically conducting fluid is taken into account. The governing equations of the motion are a set of simultaneous ordinary differential equations and their analytical solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expression for the induced current density has been also obtained. The effects of various non-dimensional parameters on the velocity profile, the induced magnetic field profile, the temperature profile and the induced current density profile have been shown in the graphs. It is found that the effect of suction parameter is to decrease the velocity field and induced current density while it has increasing effect on the induced magnetic field.

  14. Elastic rods with incompatible strain: Macroscopic versus microscopic buckling

    Science.gov (United States)

    Lestringant, Claire; Audoly, Basile

    2017-06-01

    We consider the buckling of a long prismatic elastic solid under the combined effect of a pre-stress that is inhomogeneous in the cross-section, and of a prescribed displacement of its endpoints. A linear bifurcation analysis is carried out using different structural models (namely a double beam, a rectangular thin plate, and a hyper-elastic prismatic solid in 3-d): it yields the buckling mode and the wavenumber qc that are first encountered when the end-to-end displacement is progressively decreased with fixed pre-stress. For all three structural models, we find a transition from a long-wavelength (qc = 0) to a short-wavelength first buckling mode (qc ≠ 0) when the inhomogeneous pre-stress is increased past a critical value. A method for calculating the critical inhomogeneous pre-stress is proposed based on a small-wavenumber expansion of the buckling mode. Overall, our findings explain the formation of multiple perversions in elastomer strips, as well as the large variations in the number of perversions as a function of pre-stress and cross-sectional geometry, as reported by Liu et al. (2014).

  15. The elastic buckling of super-graphene and super-square carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Li Ying; Qiu Xinming [AML, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, 100084 Beijing (China); Yin Yajun, E-mail: yinyj@tsinghua.edu.c [AML, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, 100084 Beijing (China)] [Division of Mechanics, Nanjing University of Technology, 210009 Nanjing (China); Yang Fan [AML, Department of Engineering Mechanics, School of Aerospace, Tsinghua University, 100084 Beijing (China); Fan Qinshan [Division of Mechanics, Nanjing University of Technology, 210009 Nanjing (China)

    2010-04-05

    The super-graphene (SG) and super-square (SS) carbon nanotube network are built by the straight single-walled carbon nanotubes and corresponding junctions. The elastic buckling behaviors of these carbon nanotube networks under different boundary conditions are explored through the molecular structural mechanics method. The following results are obtained: (a) The critical buckling forces of the SG and SS networks decrease as the side lengths or aspect ratios of the networks increase. The continuum plate theory could give good predictions to the buckling of the SS network but not the SG network with non-uniform buckling modes. (b) The carbon nanotube networks are more stable structures than the graphene structures with less carbon atoms.

  16. The effect of delaminations on local buckling in wind turbine blades

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Bitsche, Robert; Branner, Kim

    2015-01-01

    was setup in Abaqus and cohesive elements were chosen for modelling delamination growth. For initial delaminations with a width of 30–50% of the cap width the study showed that delamination close to the surface started to grow in load ranges of normal operation conditions and led to local buckling modes....... The local buckling caused high strains and stresses in the surrounding of the delamination, which exceeded the material design properties and therefore should be considered as dangerous. Delaminations placed near the mid-surface of the cap did not have a significant effect on the blade response under normal...... operation conditions. In the simulations the static load exceeded the design load by more than 40% before delamination growth or cap buckling occurred. It could be concluded that delamination induced near-surface buckling modes have to be considered critical due to an onset of local sublaminate buckling...

  17. Buckling a Semiflexible Polymer Chain under Compression

    Directory of Open Access Journals (Sweden)

    Ekaterina Pilyugina

    2017-03-01

    Full Text Available Instability and structural transitions arise in many important problems involving dynamics at molecular length scales. Buckling of an elastic rod under a compressive load offers a useful general picture of such a transition. However, the existing theoretical description of buckling is applicable in the load response of macroscopic structures, only when fluctuations can be neglected, whereas membranes, polymer brushes, filaments, and macromolecular chains undergo considerable Brownian fluctuations. We analyze here the buckling of a fluctuating semiflexible polymer experiencing a compressive load. Previous works rely on approximations to the polymer statistics, resulting in a range of predictions for the buckling transition that disagree on whether fluctuations elevate or depress the critical buckling force. In contrast, our theory exploits exact results for the statistical behavior of the worm-like chain model yielding unambiguous predictions about the buckling conditions and nature of the buckling transition. We find that a fluctuating polymer under compressive load requires a larger force to buckle than an elastic rod in the absence of fluctuations. The nature of the buckling transition exhibits a marked change from being distinctly second order in the absence of fluctuations to being a more gradual, compliant transition in the presence of fluctuations. We analyze the thermodynamic contributions throughout the buckling transition to demonstrate that the chain entropy favors the extended state over the buckled state, providing a thermodynamic justification of the elevated buckling force.

  18. Mathematical modeling and full-scale shaking table tests for multi-curve buckling restrained braces

    Institute of Scientific and Technical Information of China (English)

    C. S. Tsai; Yungchang Lin; Wenshin Chen; H. C. Su

    2009-01-01

    Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling, such as: complex interfaces between the materials used, uncertain precision, and time consumption during the manufacturing processes. In this study, a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these disadvantages. The new device consists of a core plate with multiple neck portions assembled to form multiple energy dissipation segments, and the enlarged segment, lateral support elements and constraining elements to prevent the BRB from buckling. The enlarged segment located in the middle of the core plate can be welded to the lateral support and constraining elements to increase buckling resistance and to prevent them from sliding during earthquakes. Component tests and a series of shaking table tests on a full-scale steel structure equipped with MC-BRBs were carried out to investigate the behavior and capability of this new BRB design for seismic mitigation. The experimental results illustrate that the MC-BRB possesses a stable mechanical behavior under cyclic loadings and provides good protection to structures during earthquakes. Also, a mathematical model has been developed to simulate the mechanical characteristics of BRBs.

  19. The Cracking Induced by Oxidation-Hydriding in Welding Joints of Zircaloy-4 Plates

    Institute of Scientific and Technical Information of China (English)

    周邦新; 姚美意; 苗志; 李强; 刘文庆

    2003-01-01

    The welding joints of Zircaloy-4 plates obtained by diffusion welding at 800℃ under pressure in vacuum were cracked during autoclave tests at 400℃ superheated steam after exposure longer than 150 days. The section of specimens was examined by optical microscopy and the composition at the tips of cracking was analyzed by electron microprobe. The result shows that the combination of oxidation and hydriding induced cracking is responsible for this failure of the welding joints.

  20. Vibration and buckling studies of pretensioned structures

    Science.gov (United States)

    Belvin, W. K.

    1982-01-01

    Results of analyses and tests of a simple pretensional structure are presented. Linear finite element analysis correlated well with experimental small amplitude vibration data. The buckling and vibration behavior of a pretensional stayed column was studied in detail. The bifurcation buckling load was also predicted accurately. Postbuckling behavior of the column was unusual and results in a post buckling restoring force of only 1/64 the bifurcation buckling load. Interaction between lateral accelerations and compressive load creates isolated stay slackening at loads above 50 percent of the buckling load. Further research will be required to fully understand their impact on the use of pretensioned structures as large space structures.

  1. Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate

    Science.gov (United States)

    Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth

    2013-11-01

    We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).

  2. Combined scleral buckling and phacoemulsification

    Directory of Open Access Journals (Sweden)

    Pukhraj Rishi

    2009-01-01

    Conclusion: Combined scleral buckling and phacoemulsification is a safe and effective procedure that spares the patient the burden of repeated surgeries. It may be considered as a treatment option in selected cases of rhegmatogenous retinal detachment with significant cataract with/without early PVR.

  3. Vertebral plate regeneration induced by radiation-sterilized allogeneic bone sheets in sheep

    Institute of Scientific and Technical Information of China (English)

    TANG Xin; SUN Shi-quan; YU Cong-nian; YANG Shu-hua; XU Wei-hua; LI Jin; YANG Cao; YE Zhe-wei; FU De-hao; LI Kun; LI Bao-xing

    2007-01-01

    Objective:To evaluate the effects and mechanism of radiation-sterilized allogeneic bone sheets in inducing vertebral plate regeneration after laminectomy in sheep. Methods:Twelve adult male sheep (aged 1.5 years and weighing 27 kg on average ) provided by China Institute for Radiation Protection underwent L3-4 and L4-5 laminectomy.Then they were randomly divided into two groups:Group A (n =6) and Group B (n =6).The operated sites of L4-5 in Group A and L3-4 in Group B were covered by "H-shaped" freeze-drying and radiationsterilized allogeneic bone sheets ( the experimental segments),while the operated sites of L3-4 in Group A and L4-5 in Group B were uncovered as the self controls ( the control segments ). The regeneration process of the vertebral plate and the adhesion degree of the dura were observed at 4,8,12,16,20 and 24 weeks after operation.Xray and CT scan were performed in both segments of L3-4 and L4-5 at 4 and 24 weeks after operation. Results:In the experimental segments,the bone sheets were located in the anatomical site of vertebral plate,and no lumbar spinal stenosis or compression of the dura was observed.The bone sheets were absorbed gradually and fused well with the regenerated vertebral plate.While in the control segments,the regeneration of vertebral plate was not completed yet,the scar was inserted into the spinal canal,compressing the dura and the spinal cord,and the epidural area almost disappeared. Compared with the control segments, the dura adhesion degree in the experimental regenerated segments was much milder (P <0.01 ),the internal volume of the vertebral canal had no obvious change and the shape of the dura sack remained well without obvious compression. Conclusions:Freeze-drying and radiation-sterilized allogeneic bone sheets are ideal materials for extradural laminoplasty due to their good biocompatibility,biomechanical characteristics and osteogenic ability.They can effectively reduce formation of post-laminectomy scars

  4. European column buckling curves and finite element modelling including high strength steels

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Stan, Tudor-Cristian

    2017-01-01

    Eurocode allows for finite element modelling of plated steel structures, however the information in the code on how to perform the analysis or what assumptions to make is quite sparse. The present paper investigates the deterministic modelling of flexural column buckling using plane shell element...

  5. Post-buckled precompressed (PBP) subsonic micro flight control actuators and surfaces

    NARCIS (Netherlands)

    Barrett, R.; Vos, R.; De Breuker, R.

    2007-01-01

    This paper describes a new class of flight control actuators using Post-Buckled Precompressed (PBP) piezoelectric elements to provide much improved actuator performance. These PBP actuator elements are modeled using basic large deflection Euler-beam estimations accounting for laminated plate effects

  6. Prolonged upright posture induces calcified hypertrophy in the cartilage end plate in rat lumbar spine.

    Science.gov (United States)

    Bian, Qin; Liang, Qian-Qian; Wan, Chao; Hou, Wei; Li, Chen-Guang; Zhao, Yong-Jian; Lu, Sheng; Shi, Qi; Wang, Yong-Jun

    2011-11-15

    Both forelimbs of rats were amputated and these rats were kept in the custom-made cages to keep prolonged and repeated upright posture. Changes of bone were observed in the lumbar vertebrae at three different time points after the surgery. To investigate the effect of prolonged and repeated upright posture on the cartilage end plate of rat lumbar vertebrae. Previous studies show calcified hypertrophy is related to mechanical stress, but there are no clear evidences to indicate whether or not long-term and repeated assumption of the upright posture could result in calcified hypertrophy in cartilage end plate of rat lumbar spine. The forelimbs of 30 rats were amputated when they were 1 month old. These rats were kept in the custom-made cages and were forced to stand upright on their hind-limbs and tails to obtain water and food. Normal rats of the same ages kept in regular cages were used as control. The rats were killed at 5, 7, and 9 months after the surgery and lumbar vertebrae samples were harvested for micro-CT, histologic, and immunohistochemical studies. Total RNA isolated from these samples were used for real-time RT-PCR of type X collagen (Col10α1), vascular endothelial growth factor (VEGF), and transforming growth factor β1 (TGF-β1). Micro-CT showed increased inner part of cartilage end plate. Histologic revealed peripheral hypertrophy of disc after the surgery. Immunostaining and real-time RT-PCR showed increased protein and mRNA expression of type X collagen, VEGF, and TGF-β1. Prolonged upright posture induces cartilage end plate calcification and hypertrophy in rat lumbar spine.

  7. ON THE STABILITY ANALYSIS OF PLATES AND SHELLS USING A QUADRILATERAL,16-DEGREES OF FREEDOM PLAT SHELL ELEMENT DKQ16

    Institute of Scientific and Technical Information of China (English)

    郑长良; 李丽华; 钟万勰

    2004-01-01

    The linear buckling problems of plates and shells were analysed using a recently developped quadrilateral, 16-degrees of freedom flat shell element (called DKQ16). The geometrical stiffness matrix was established. Comparison of the numerical results for several typical problems shows that the DKQ16 element has a very good precision for the linear buckling problems of plates and shells.

  8. Use of a rotating cylinder to induce laminar and turbulent separation over a flat plate

    Science.gov (United States)

    Afroz, F.; Lang, A.; Jones, E.

    2017-06-01

    An innovative and easy technique using a rotating cylinder system has been implemented in a water tunnel experiment to generate an adverse pressure gradient (APG). The strength of the APG was varied through adjustment in the rotation speed and location of the cylinder. Then the technique was used for inducing a laminar separation bubble (LSB) and turbulent boundary layer (TBL) separation over a flat plate. A theoretical model to predict the pressure variation induced on the plate consists of an inviscid flow over a reverse doublet-like configuration of two counter rotating cylinders. This model quantified the pressure distribution with changes of cylinder speed and location. The dimensionless velocity ratio (VR) of the cylinder rotation rate to the mainstream velocity and gap to diameter ratio \\tfrac{G}{D} were chosen as the two main ways of varying the strength of the APG, which affects the nature and extent of the LSB as well as TBL separation. The experimental parametric study, using time-resolved digital particle image velocimetry, was then conducted in a water tunnel. The variation in height (h), length (l), and the separation point (S) of the LSB was documented due to the variation in the APG. The similar type of experimental parametric study was used to explore the unsteady, turbulent separation bubble in a 2D plane aligned with the flow and perpendicular to the plate. The mean detachment locations of TBL separation are determined by two different definitions: (i) back-flow coefficient (χ) = 50%, and (ii) location of start of negative mean skin friction coefficient (C f). They are in good agreement and separation bubble characteristics agreed well with results obtained using different methods thus proving the validity of the technique.

  9. The coupling of mechanical dynamics and induced currents in plates and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weissenburger, D.W.; Bialek, J.M.

    1986-10-01

    Significant mechanical reactions and deflections may be produced when electrical eddy currents induced in a conducting structure by transformer-like electromotive forces interact with background magnetic fields. Additional eddy currents induced by structural motion through the background fields modify both the mechanical and electrical dynamic behavior of the system. The observed effects of these motional eddy currents are sometimes referred to as magnetic damping and magnetic stiffness. This paper addresses the coupled structural deformation and eddy currents in flat plates and simple two-dimensional surfaces in three-space. A coupled system of equations has been formulated using finite element techniques for the mechanical aspects and a mesh network method for the electrical aspects of the problem.

  10. LASER INDUCED SELECTIVE ACTIVATION UTILIZING AUTO-CATALYTIC ELECTROLESS PLATING ON POLYMER SURFACE

    DEFF Research Database (Denmark)

    Zhang, Yang; Nielsen, Jakob Skov; Tang, Peter Torben

    2009-01-01

    . Characterization of the deposited copper layer was used to select and improve laser parameters. Several types of polymers with different melting points were used as substrate. Using the above mentioned laser treatment, standard grades of thermoplastic materials such as ABS, SAN, PE, PC and others have been......This paper presents a new method for selective micro metallization of polymers induced by laser. An Nd: YAG laser was employed to draw patterns on polymer surfaces using a special set-up. After subsequent activation and auto-catalytic electroless plating, copper only deposited on the laser tracks....... Induced by the laser, porous and rough structures are formed on the surface, which favours the palladium attachment during the activation step prior to the metallization. Laser focus detection, scanning electron microscopy (SEM) and other instruments were used to analyze the topography of the laser track...

  11. Stability analysis of the fluttering and autorotation of flow-induced rotation of a hinged flat plate

    Institute of Scientific and Technical Information of China (English)

    MIRZAEISEFAT Sina; FERNANDES Antonio Carlos

    2013-01-01

    This work describes investigations performed on the interaction of uniform current and freely rotating plate about a fixed vertical axis. Fluttering and autorotation are two different motions that may occur during the flow induced rotation. The dimensional analysis proves that the motion in flow induced rotation motion is governed essentially by the dimensionless moment of inertia and Reynolds number. Certain combinations define the stability boundaries between fluttering and autorotation. Fluttering is oscillation of body about a vertical axis and the autorotation is a name given to the case when the body turns continuously about the vertical axis. First, the loads and moment coefficients are calculated by experiments and streamline theory for different angles of attack for a fixed flat plate. Then for dynamic case, a bifurcation diagram is presented based on experiments to classify different motion states of flow induced rotation. Finally, a dynamical model is proposed for stability analysis of flow induced rotation of a flat plate.

  12. Measuring position in 2-dimensions using induced signals in a microchannel plate detector

    Science.gov (United States)

    Wiggins, Blake; Desouza, Romualdo

    2017-01-01

    Position-sensitive microchannel plate (MCP) detectors play an important role in the detection of photons, electrons, ions, and neutrons. Recently, a novel approach has been developed to provide position-sensitivity for an MCP detector. In this approach, namely the induced signal approach, the position of the incident particle is determined by sensing the electron cloud emanating from a MCP stack. The induced signals are inherently bipolar, where the negative lobe of the induced signal corresponds to the approach of the electron cloud to the sense wires and the positive lobe corresponds to the recession of the electron cloud from the sense wires. The zero-crossing point is the time at which the centroid of the charge cloud passes the wire plane. For a single incident electron, a spatial resolution of 103 μm (FWHM) has been achieved by utilizing the zero-crossing point of the induced signals. General considerations suggest that this spatial resolution can be improved by using the entire pulse shape information. The fundamentals of the induced signal approach as well as its implementation in slow neutron radiography will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.

  13. Size-dependent thermal buckling of heated nanowires with ends axially restrained

    Science.gov (United States)

    Wang, Yu; Wang, Zhi-Qiao; Lv, Jian-Guo

    2014-02-01

    Nanowires (NWs) are being actively explored for applications as nanoscale building blocks of sensors, actuators and nanoelectromechanical systems (NEMS). Temperature changes can induce an axial force within NWs due to the thermal expansion and may lead to buckling. The thermal buckling behaviors of ends-axially-restrained nanowires, subjected to a uniform temperature rise, are studied based on Bernoulli-Euler beam theory including the surface thermoelastic effects. Besides the surface elastic modulus, the influences of surface thermal expansion coefficient are incorporated into the model presented herein to describe size-dependent thermoelastic behaviors of nanowires. The results show that the critical buckling temperature and postbuckling deflection are significantly affected by surface thermoelastic effects and the influences become more prominent as the thickness of nanowire decreases. The corresponding influences of the slenderness ratio are also discussed. This research is helpful not only in understanding the thermal buckling properties of nanowires but also in designing the nanowire-based sensor and thermal actuator.

  14. Size-dependent thermal buckling of heated nanowires with ends axially restrained

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Key Laboratory on Deep GeoDrilling Technology, Ministry of Land and Resources, China University of Geosciences, Beijing 100083 (China); Wang, Zhi-Qiao, E-mail: zqwang@cugb.edu.cn [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Key Laboratory on Deep GeoDrilling Technology, Ministry of Land and Resources, China University of Geosciences, Beijing 100083 (China); Lv, Jian-Guo [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Key Laboratory on Deep GeoDrilling Technology, Ministry of Land and Resources, China University of Geosciences, Beijing 100083 (China)

    2014-02-01

    Nanowires (NWs) are being actively explored for applications as nanoscale building blocks of sensors, actuators and nanoelectromechanical systems (NEMS). Temperature changes can induce an axial force within NWs due to the thermal expansion and may lead to buckling. The thermal buckling behaviors of ends-axially-restrained nanowires, subjected to a uniform temperature rise, are studied based on Bernoulli–Euler beam theory including the surface thermoelastic effects. Besides the surface elastic modulus, the influences of surface thermal expansion coefficient are incorporated into the model presented herein to describe size-dependent thermoelastic behaviors of nanowires. The results show that the critical buckling temperature and postbuckling deflection are significantly affected by surface thermoelastic effects and the influences become more prominent as the thickness of nanowire decreases. The corresponding influences of the slenderness ratio are also discussed. This research is helpful not only in understanding the thermal buckling properties of nanowires but also in designing the nanowire-based sensor and thermal actuator.

  15. Contractile Units in Disordered Actomyosin Bundles Arise from F-Actin Buckling

    Science.gov (United States)

    Lenz, Martin; Thoresen, Todd; Gardel, Margaret L.; Dinner, Aaron R.

    2012-06-01

    Bundles of filaments and motors are central to contractility in cells. The classic example is striated muscle, where actomyosin contractility is mediated by highly organized sarcomeres which act as fundamental contractile units. However, many contractile bundles in vivo and in vitro lack sarcomeric organization. Here we propose a model for how contractility can arise in bundles without sarcomeric organization and validate its predictions with experiments on a reconstituted system. In the model, internal stresses in frustrated arrangements of motors with diverse velocities cause filaments to buckle, leading to overall shortening. We describe the onset of buckling in the presence of stochastic motor head detachment and predict that buckling-induced contraction occurs in an intermediate range of motor densities. We then calculate the size of the “contractile units” associated with this process. Consistent with these results, our reconstituted actomyosin bundles show contraction at relatively high motor density, and we observe buckling at the predicted length scale.

  16. Strain mapping on gold thin film buckling and siliconblistering

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, P.; Tamura, N.; Parry, G.; Colin, J.; Coupeau, C.; Cleymand, F.; Padmore, H.

    2005-09-01

    Stress/Strain fields associated with thin film buckling induced by compressive stresses or blistering due to the presence of gas bubbles underneath single crystal surfaces are difficult to measure owing to the microscale dimensions of these structures. In this work, we show that micro Scanning X-ray diffraction is a well suited technique for mapping the strain/stress tensor of these damaged structures.

  17. Buckling and Post-buckling Performance of Advanced Composite Stiffened Panel Under Compression

    Directory of Open Access Journals (Sweden)

    ZHANG Haoyu

    2016-08-01

    Full Text Available The axial compressive experiment was conducted on the domestic advanced composite stiffened panel, and its buckling and post-buckling performance was analyzed by monitoring strain and out-of-plane displacement of typical positions. The initial buckling load and buckling mode of panels were calculated by engineering methods to direct the follow-up axial compressive experiment. The experimental results show that the buckling patterns are mainly local buckling of panels between stiffeners, the second buckling of few positions of panels and cylindrical buckling of all 4 stiffeners successively; after local buckling of panels, part of load bearded by panels before is transferred to stiffeners and then stiffeners become the main bearing part; after fracture failure of stiffeners, the specimen is destroyed rapidly; the average value of failure load is 482.67 kN, which is 2.37 times of 204 kN of the average value of buckling load; the composite stiffened panel can bear more load after buckling.

  18. Effects of Elastic Edge Restraints and Initial Prestress on the Buckling Response of Compression-Loaded Composite Panels

    Science.gov (United States)

    Hilburger, Mark W.; Nemeth, Michael P.; Riddick, Jaret C.; Thornburgh, Robert P.

    2004-01-01

    A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should also be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance.

  19. Flexural buckling of fire exposed aluminium columns

    NARCIS (Netherlands)

    Maljaars, J.; Twilt, L.; Soetens, F.

    2009-01-01

    In order to study buckling of fire exposed aluminium columns, a finite element model is developed. The results of this model are verified with experiments. Based on a parametric study with the finite element model, it is concluded that the simple calculation model for flexural buckling of fire expos

  20. On the analysis of viscoplastic buckling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    1993-01-01

    For elastic-viscoplastic structures the classical elastic-plastic bifurcation approach to inelastic buckling is not valid. Only an elastic bifurcation point exists in the el~tic-viscoplastic case, and the inelastic buckling behaviour is controlled by a strong sensitivity to small imperfections...

  1. Sequential buckling of an elastic wall

    Science.gov (United States)

    Bico, Jose; Bense, Hadrien; Keiser, Ludovic; Roman, Benoit; Melo, Francisco; Abkarian, Manouk

    A beam under quasistatic compression classically buckles beyond a critical threshold. In the case of a free beam, the lowest buckling mode is selected. We investigate the case of a long ``wall'' grounded of a compliant base and compressed in the axial compression. In the case of a wall of slender rectangular cross section, the selected buckling mode adopts a nearly fixed wavelength proportional to the height of the wall. Higher compressive loads only increase the amplitude of the buckle. However if the cross section has a sharp shape (such as an Eiffel tower profile), we observe successive buckling modes of increasing wavelength. We interpret this unusual evolution in terms of scaling arguments. At small scales, this variable periodicity might be used to develop tunable optical devices. We thank ECOS C12E07, CNRS-CONICYT, and Fondecyt Grant No. N1130922 for partially funding this work.

  2. An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts

    Science.gov (United States)

    Sadamoto, S.; Ozdemir, M.; Tanaka, S.; Taniguchi, K.; Yu, T. T.; Bui, T. Q.

    2017-02-01

    The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods.

  3. Experimental Nondestructive Test for Estimation of Buckling Load on Unstiffened Cylindrical Shells Using Vibration Correlation Technique

    Directory of Open Access Journals (Sweden)

    Kaspars Kalnins

    2015-01-01

    Full Text Available Nondestructive methods, to calculate the buckling load of imperfection sensitive thin-walled structures, such as large-scale aerospace structures, are one of the most important techniques for the evaluation of new structures and validation of numerical models. The vibration correlation technique (VCT allows determining the buckling load for several types of structures without reaching the instability point, but this technique is still under development for thin-walled plates and shells. This paper presents and discusses an experimental verification of a novel approach using vibration correlation technique for the prediction of realistic buckling loads of unstiffened cylindrical shells loaded under axial compression. Four different test structures were manufactured and loaded up to buckling: two composite laminated cylindrical shells and two stainless steel cylinders. In order to characterize a relationship with the applied load, the first natural frequency of vibration and mode shape is measured during testing using a 3D laser scanner. The proposed vibration correlation technique allows one to predict the experimental buckling load with a very good approximation without actually reaching the instability point. Additional experimental tests and numerical models are currently under development to further validate the proposed approach for composite and metallic conical structures.

  4. 3D amino-induced electroless plating: a powerful toolset for localized metallization on polymer substrates.

    Science.gov (United States)

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Jégou, Pascale; Palacin, Serge

    2011-11-18

    The "3D amino-induced electroless plating" (3D-AIEP) process is an easy and cost-effective way to produce metallic patterns onto flexible polymer substrates with a micrometric resolution and based on the direct printing of the mask with a commercial printer. Its effectiveness is based on the covalent grafting onto substrates of a 3D polymer layer which presents the ability to entrap Pd species. Therefore, this activated Pd-loaded and 3D polymer layer acts both as a seed layer for electroless metal growth and as an interdigital layer for enhanced mechanical properties of the metallic patterns. Consequently, flexible and transparent poly(ethylene terephtalate) (PET) sheets were selectively metalized with nickel or copper patterns. The electrical properties of the obtained metallic patterns were also studied.

  5. Versatile Micropatterning of Plasmonic Nanostructures by Visible Light Induced Electroless Silver Plating on Gold Nanoseeds.

    Science.gov (United States)

    Yoshikawa, Hiroyuki; Hironou, Asami; Shen, ZhengJun; Tamiya, Eiichi

    2016-09-14

    A versatile fabrication technique for plasmonic silver (Ag) nanostructures that uses visible light exposure for micropatterning and plasmon resonance tuning is presented. The surface of a glass substrate modified with gold (Au) nanoseeds by a thermal dewetting process was used as a Ag plating platform. When a solution containing silver nitrate and sodium citrate was dropped on the Au nanoseeds under visible light exposure, the plasmon-mediated reduction of Ag ions was induced on the Au nanoseeds to form Ag nanostructures. The plasmon resonance spectra of Ag nanostructures were examined by an absorption spectral measurement and a finite-difference time-domain (FDTD) simulation. Some examples of Ag nanostructure patterning were demonstrated by means of light exposure through a photomask, direct writing with a focused laser beam, and the interference between two laser beams. Surface enhanced Raman spectroscopy (SERS) of 4-aminothiophenol (4-ATP) was conducted with fabricated Ag nanostructures.

  6. Improving poor fill factors for solar cells via light-induced plating

    Institute of Scientific and Technical Information of China (English)

    Xing Zhao; Jia Rui; Ding Wuchang; Meng Yanlong; Jin Zhi; Liu Xinyu

    2012-01-01

    Silicon solar cells are prepared following the conventional fabrication processes,except for the metallization firing process.The cells are divided into two groups with higher and lower fill factors,respectively.After light-induced plating (LIP),the fill factors of the solar cells in both groups with different initial values reach the same level.Scanning electron microscope (SEM) images are taken under the bulk silver electrodes,which prove that the improvement for cells with a poor factor after LIP should benefit from sufficient exploitation of the high density silver crystals formed during the firing process.Moreover,the application of LIP to cells with poor electrode contact performance,such as nanowire cells and radial junction solar cells,is proposed.

  7. Glassy Spin Dynamics in Geometrically Frustrated Buckled Colloidal Crystals

    Science.gov (United States)

    Zhou, Di; Wang, Feng; Li, Bo; Lou, Xiaojie; Han, Yilong

    2017-04-01

    Geometrical frustration arises when the lattice geometry prevents local interaction energies from minimizing simultaneously. Whether and how geometrically frustrated spins or charges in clean crystals exhibit glassy dynamics remain elusive due to the lack of measurements on microscopic dynamics. Here, we employ buckled monolayer colloidal crystals to mimic frustrated antiferromagnetic Ising spins on triangular lattices and measure single-spin dynamics using video microscopy. Both attractive and repulsive colloidal crystals buckled into zigzag stripes with glassy dynamics at low effective temperatures in experiment and simulation. The simple local spin configurations enable uncovering correlations among structure, dynamics, and soft vibrational modes. Machine learning analysis further reveals facilitated dynamics to be an important mechanism of structural relaxation. Moreover, our simulation reveals a similar structure and dynamics in lattice Coulomb liquids. Hence, spin-lattice coupling and long-range interaction can similarly lift degeneracy, induce a rugged landscape, and, thus, produce glassy dynamics.

  8. Observation of optomechanical buckling transitions

    Science.gov (United States)

    Xu, H.; Kemiktarak, U.; Fan, J.; Ragole, S.; Lawall, J.; Taylor, J. M.

    2017-03-01

    Correlated phases of matter provide long-term stability for systems as diverse as solids, magnets and potential exotic quantum materials. Mechanical systems, such as buckling transition spring switches, can have engineered, stable configurations whose dependence on a control variable is reminiscent of non-equilibrium phase transitions. In hybrid optomechanical systems, light and matter are strongly coupled, allowing engineering of rapid changes in the force landscape, storing and processing information, and ultimately probing and controlling behaviour at the quantum level. Here we report the observation of first- and second-order buckling transitions between stable mechanical states in an optomechanical system, in which full control of the nature of the transition is obtained by means of the laser power and detuning. The underlying multiwell confining potential we create is highly tunable, with a sub-nanometre distance between potential wells. Our results enable new applications in photonics and information technology, and may enable explorations of quantum phase transitions and macroscopic quantum tunnelling in mechanical systems.

  9. Micromechanics of collective buckling in CNT turfs

    Science.gov (United States)

    Torabi, Hamid; Radhakrishnan, Harish; Mesarovic, Sinisa Dj.

    2014-12-01

    Complex structures consisting of intertwined, nominally vertical carbon nanotubes (CNTs) are called turfs. Under uniform compression experiments, CNT turfs exhibit irreversible collective buckling of a layer preceded by reorientation of CNT segments. Experimentally observed independence of the buckling stress and the buckling wavelength on the turf width suggests the existence of an intrinsic material length. To investigate the relationship the macroscopic material properties and the statistical parameters describing the nano-scale geometry of the turf (tortuosity, density and connectivity) we develop a nano-scale computational model, based on the representation of CNT segments as elastica finite elements with van der Waals interactions. The virtual turfs are generated by means of a constrained random walk algorithm and subsequent relaxation. The resulting computational model is robust and is capable of modeling the collective behavior of CNTs. We first establish the dependence of statistical parameters on the computational parameters used for turf generation, then establish relationships between post-buckling stress, initial elastic modulus and buckling wavelength on statistical turf parameters. Finally, we analyze the reorientation of buckling planes of individual CNTs during the collective buckling process.

  10. Nitinol stent design - understanding axial buckling.

    Science.gov (United States)

    McGrath, D J; O'Brien, B; Bruzzi, M; McHugh, P E

    2014-12-01

    Nitinol׳s superelastic properties permit self-expanding stents to be crimped without plastic deformation, but its nonlinear properties can contribute towards stent buckling. This study investigates the axial buckling of a prototype tracheobronchial nitinol stent design during crimping, with the objective of eliminating buckling from the design. To capture the stent buckling mechanism a computational model of a radial force test is simulated, where small geometric defects are introduced to remove symmetry and allow buckling to occur. With the buckling mechanism ascertained, a sensitivity study is carried out to examine the effect that the transitional plateau region of the nitinol loading curve has on stent stability. Results of this analysis are then used to redesign the stent and remove buckling. It is found that the transitional plateau region can have a significant effect on the stability of a stent during crimping, and by reducing the amount of transitional material within the stent hinges during loading the stability of a nitinol stent can be increased.

  11. Stochastic behavior of nanoscale dielectric wall buckling

    Science.gov (United States)

    Friedman, Lawrence H.; Levin, Igor; Cook, Robert F.

    2016-01-01

    The random buckling patterns of nanoscale dielectric walls are analyzed using a nonlinear multi-scale stochastic method that combines experimental measurements with simulations. The dielectric walls, approximately 200 nm tall and 20 nm wide, consist of compliant, low dielectric constant (low-k) fins capped with stiff, compressively stressed TiN lines that provide the driving force for buckling. The deflections of the buckled lines exhibit sinusoidal pseudoperiodicity with amplitude fluctuation and phase decorrelation arising from stochastic variations in wall geometry, properties, and stress state at length scales shorter than the characteristic deflection wavelength of about 1000 nm. The buckling patterns are analyzed and modeled at two length scales: a longer scale (up to 5000 nm) that treats randomness as a longer-scale measurable quantity, and a shorter-scale (down to 20 nm) that treats buckling as a deterministic phenomenon. Statistical simulation is used to join the two length scales. Through this approach, the buckling model is validated and material properties and stress states are inferred. In particular, the stress state of TiN lines in three different systems is determined, along with the elastic moduli of low-k fins and the amplitudes of the small-scale random fluctuations in wall properties—all in the as-processed state. The important case of stochastic effects giving rise to buckling in a deterministically sub-critical buckling state is demonstrated. The nonlinear multiscale stochastic analysis provides guidance for design of low-k structures with acceptable buckling behavior and serves as a template for how randomness that is common to nanoscale phenomena might be measured and analyzed in other contexts. PMID:27330220

  12. Heavy-ion beam induced effects in enriched gadolinium target films prepared by molecular plating

    Science.gov (United States)

    Mayorov, D. A.; Tereshatov, E. E.; Werke, T. A.; Frey, M. M.; Folden, C. M.

    2017-09-01

    A series of enriched gadolinium (Gd, Z = 64) targets was prepared using the molecular plating process for nuclear physics experiments at the Cyclotron Institute at Texas A&M University. After irradiation with 48Ca and 45Sc projectiles at center-of-target energies of Ecot = 3.8-4.7 MeV/u, the molecular films displayed visible discoloration. The morphology of the films was examined and compared to the intact target surface. The thin films underwent a heavy-ion beam-induced density change as identified by scanning electron microscopy and α-particle energy loss measurements. The films became thinner and more homogenous, with the transformation occurring early on in the irradiation. This transformation is best described as a crystalline-to-amorphous phase transition induced by atomic displacement and destruction of structural order of the original film. The chemical composition of the thin films was surveyed using energy dispersive spectroscopy and X-ray diffraction, with the results confirming the complex chemistry of the molecular films previously noted in other publications.

  13. Air bubble-induced detachment of polystyrene particles with different sizes from collector surfaces in a parallel plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; van der Mei, HC; Busscher, HJ

    2001-01-01

    Particle size was found to be an important factor in air bubble-induced detachment of colloidal particles from collector surfaces in a parallel plate flow chamber and generally polystyrene particles with a diameter of 806 nm detached less than particles with a diameter of 1400 nm. Particle

  14. Fabrication and buckling dynamics of nanoneedle AFM probes

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Gordeev, S N, E-mail: jdb28@bath.ac.uk [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2011-04-29

    A new method for the fabrication of high-aspect-ratio probes by electron beam induced deposition is described. This technique allows the fabrication of cylindrical 'nanoneedle' structures on the atomic force microscope (AFM) probe tip which can be used for accurate imaging of surfaces with high steep features. Scanning electron microscope (SEM) imaging showed that needles with diameters in the range of 18-100 nm could be obtained by this technique. The needles were shown to undergo buckling deformation under large tip-sample forces. The deformation was observed to recover elastically under vertical deformations of up to {approx} 60% of the needle length, preventing damage to the needle. A technique of stabilizing the needle against buckling by coating it with additional electron beam deposited carbon was also investigated; it was shown that coated needles of 75 nm or greater total diameter did not buckle even under tip-sample forces of {approx} 1.5 {mu}N.

  15. Buckling instability of squeezed droplets

    CERN Document Server

    Elfring, Gwynn J

    2015-01-01

    Motivated by recent experiments, we consider theoretically the compression of droplets pinned at the bottom on a surface of finite area. We show that if the droplet is sufficiently compressed at the top by a surface, it will always develop a shape instability at a critical compression. When the top surface is flat, the shape instability occurs precisely when the apparent contact angle of the droplet at the pinned surface is pi, regardless of the contact angle of the upper surface, reminiscent of past work on liquid bridges and sessile droplets as first observed by Plateau. After the critical compression, the droplet transitions from a symmetric to an asymmetric shape. The force required to deform the droplet peaks at the critical point then progressively decreases indicative of catastrophic buckling. We characterize the transition in droplet shape using illustrative examples in two dimensions followed by perturbative analysis as well as numerical simulation in three dimensions. When the upper surface is not f...

  16. Scleral buckle infection with Alcaligenes xylosoxidans

    Directory of Open Access Journals (Sweden)

    Chih-Kang Hsu

    2014-01-01

    Full Text Available We describe a rare case of extraocular inflammation secondary to scleral buckle infection with Alcaligenes xylosoxidans. A 60-year-old female with a history of retinal detachment repair with open-book technique of scleral buckling presented with purulent discharge and irritation in the right eye that had begun 4 weeks earlier and had been treated ineffectively at another hospital. Conjunctival erosion with exposure of the scleral buckle was noted. The scleral buckle was removed and cultured. The explanted material grew gram-negative rod later identified as A. xylosoxidans. On the basis of the susceptibility test results, the patient was treated by subconjunctival injection and fortified topical ceftazidime. After 4 weeks of treatment, the infection resolved.

  17. Scleral buckle infection with Alcaligenes xylosoxidans.

    Science.gov (United States)

    Hsu, Chih-Kang; Chang, Yun-Hsiang; Chen, Jiann-Torng

    2014-06-01

    We describe a rare case of extraocular inflammation secondary to scleral buckle infection with Alcaligenes xylosoxidans. A 60-year-old female with a history of retinal detachment repair with open-book technique of scleral buckling presented with purulent discharge and irritation in the right eye that had begun 4 weeks earlier and had been treated ineffectively at another hospital. Conjunctival erosion with exposure of the scleral buckle was noted. The scleral buckle was removed and cultured. The explanted material grew gram-negative rod later identified as A. xylosoxidans. On the basis of the susceptibility test results, the patient was treated by subconjunctival injection and fortified topical ceftazidime. After 4 weeks of treatment, the infection resolved.

  18. Buckling optimisation of sandwich cylindrical panels

    Science.gov (United States)

    Abouhamzeh, M.; Sadighi, M.

    2016-06-01

    In this paper, the buckling load optimisation is performed on sandwich cylindrical panels. A finite element program is developed in MATLAB to solve the governing differential equations of the global buckling of the structure. In order to find the optimal solution, the genetic algorithm Toolbox in MATLAB is implemented. Verifications are made for both the buckling finite element code and also the results from the genetic algorithm by comparisons to the results available in literature. Sandwich cylindrical panels are optimised for the buckling strength with isotropic or orthotropic cores with different boundary conditions. Results are presented in terms of stacking sequence of fibers in the face sheets and core to face sheet thickness ratio.

  19. A Reduction Factor for Buckling Load of Spherical Cap Shells

    Directory of Open Access Journals (Sweden)

    P.N. Khakina

    2011-12-01

    Full Text Available The classical buckling theory usually overestimates the buckling load of shells. In this study, a reduction factor is determined using geometrical parameters so as to reduce the classical buckling load to a more realistic value based on the post-buckling load. It is observed that the buckling load is directly proportional to the thickness and rise and inversely proportional to the span of the spherical cap. Finite element modeling and simulation using ABAQUS was conducted to determine the buckling behavior of a spherical cap shell subjected to different initial geometrical imperfections. The load-deflection curves drawn from the simulation formed a plateau at the post-buckling load. It is observed that as the initial geometrical imperfection is increased, the value of the initial buckling load is almost the same as the value of the post-buckling load on the plateau. The results obtained from different shells were used to derive a formula for the reduction factor.

  20. Scleral buckle infection with aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Bouhaimed Manal

    2008-01-01

    Full Text Available Purpose: To present a case of scleral buckle infection with Aspergillus flavus in a tertiary eye center in Saudi Arabia. Methods: A retrospective case report of a 28-year-old Saudi male who presented with a six-month history of conjunctival injection and discharge from the left eye which had undergone uncomplicated conventional retinal detachment surgery, at the King Khaled Eye Specialist Hospital in Riyadh, Saudi Arabia, in the form of cryopexy, subretinal fluid drainage and scleral buckle (grooved segmental sponge and circumferential band with sleeve for a macula on retinal detachment four years earlier. A diagnosis of infected extruded scleral buckle was made and the buckle was removed. Results: The infected scleral buckle was removed under local anesthesia with administration of sub-conjunctival irrigation of 50 mg solution of Vancomycin, and sub-conjunctival injection of 25mg of Vancomycin. Post operative microbiological studies revealed infection with silver staining of moderate Aspergillus flavus hyphae. Visual acuity of the left eye improved from 20/200 before surgery to 20/60 in the two years follow-up visit. Conclusion: This case report indicates the importance of considering infection with multiple organisms - including fungal ones - in cases of scleral buckle infections in our population.

  1. Buckling Behavior of Substrate Supported Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Kuijian Yang

    2016-01-01

    Full Text Available The buckling of graphene sheets on substrates can significantly degrade their performance in materials and devices. Therefore, a systematic investigation on the buckling behavior of monolayer graphene sheet/substrate systems is carried out in this paper by both molecular mechanics simulations and theoretical analysis. From 70 simulation cases of simple-supported graphene sheets with different sizes under uniaxial compression, two different buckling modes are investigated and revealed to be dominated by the graphene size. Especially, for graphene sheets with length larger than 3 nm and width larger than 1.1 nm, the buckling mode depends only on the length/width ratio. Besides, it is revealed that the existence of graphene substrate can increase the critical buckling stress and strain to 4.39 N/m and 1.58%, respectively, which are about 10 times those for free-standing graphene sheets. Moreover, for graphene sheets with common size (longer than 20 nm, both theoretical and simulation results show that the critical buckling stress and strain are dominated only by the adhesive interactions with substrate and independent of the graphene size. Results in this work provide valuable insight and guidelines for the design and application of graphene-derived materials and nano-electromechanical systems.

  2. Buckling transition in long α-helices

    Energy Technology Data Exchange (ETDEWEB)

    Palenčár, Peter; Bleha, Tomáš, E-mail: bleha@savba.sk [Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava (Slovakia)

    2014-11-07

    The treatment of bending and buckling of stiff biopolymer filaments by the popular worm-like chain model does not provide adequate understanding of these processes at the microscopic level. Thus, we have used the atomistic molecular-dynamic simulations and the Amber03 force field to examine the compression buckling of α-helix (AH) filaments at room temperature. It was found that the buckling instability occurs in AHs at the critical force f{sub c} in the range of tens of pN depending on the AH length. The decrease of the force f{sub c} with the contour length follows the prediction of the classic thin rod theory. At the force f{sub c} the helical filament undergoes the swift and irreversible transition from the smoothly bent structure to the buckled one. A sharp kink in the AH contour arises at the transition, accompanied by the disruption of the hydrogen bonds in its vicinity. The kink defect brings in an effective softening of the AH molecule at buckling. Nonbonded interactions between helical branches drive the rearrangement of a kinked AH into the ultimate buckled structure of a compact helical hairpin described earlier in the literature.

  3. Postbuckling analysis of variable stiffness composite plates using a finite element-based perturbation method

    NARCIS (Netherlands)

    Rahman, T.; IJsselmuiden, S.T.; Abdalla, M.M.; Jansen, E.L.

    2011-01-01

    Modern fiber placement machines allow laminates with spatially varying stiffness properties to be manufactured. In earlier research, the authors optimized variable stiffness plates for maximum buckling load, demonstrating significant improvements in load-carrying capacity. In aerospace applications,

  4. Buckling analysis of a cylindrical shell, under neutron radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Arani, A. Ghorbanpour [Department of Mechanical Engineering, School of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Ahmadi, M. [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology (Iran, Islamic Republic of); Ahmadi, A. [Department of Management, University of Tehran, Tehran (Iran, Islamic Republic of); Rastgoo, A. [Department of Mechanical Engineering, School of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Sepyani, H.A., E-mail: hosepiani@yahoo.com [Department of Mechanical Engineering, School of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The work investigates the buckling of a shell in the neutron radiation environment. Black-Right-Pointing-Pointer Radiation induced porosity in elastic materials affects the material's properties. Black-Right-Pointing-Pointer The data based technique was used to determine the volume fraction porosity. Black-Right-Pointing-Pointer The theoretical formulations are presented based on the classical shell theory (CST). Black-Right-Pointing-Pointer It was concluded that both T and neutron induced swelling have significant effects. - Abstract: This research investigates the buckling of a cylindrical shell in the neutron radiation environment, subjected to combined static and periodic axial forces. Radiation induced porosity in elastic materials affects the thermal, electrical and mechanical properties of the materials. In this study, the data based technique was used to determine the volume fraction porosity, P, of shell material. A least-squares fit of the Young's module data yielded the estimated Young's modulus. The shell assumed made of iron irradiated in the range of 2-15e-7 dPa/s at 345-650 Degree-Sign C and theoretical formulations are presented based on the classical shell theory (CST). The research deals with the problem theoretically; keeping in mind that one means of generating relevant design data is to investigate prototype structures. A parametric study is followed and the stability of shell is discussed. It is concluded that both temperature and neutron induced swelling have significant effects on the buckling load.

  5. Full scale tests of all-steel buckling restrained braces

    Science.gov (United States)

    Ma, Ning; Wu, Bin; Li, Hui; Ou, Jinping; Yang, Weibiao

    2009-03-01

    Buckling-restrained braces (BRBs) are widely used seismic response-controlling members with excellent energy dissipation capacity without buckling at design deformation. However, the property of all-steel BRBs with cruciform cross section encased in a square steel tube remains insufficiently studied. In this paper, the properties of this kind of BRBs, which were used in two office buildings in Beijing, were examined by full-scale test. First, initial design was done according to the client's requirement. Then, two full-scale specimens were tested under uniaxial quasi-static cyclic loading. The test results indicate that there should be no welding in yielding portion of the core. Finally, the full-scale subassemblage test was done with an improved BRB and gusset plates installed in a frame. The result shows that the brace exhibited high energy dissipation capacity and stable hysteretic characteristic. According to the results from above tests, some important issues are summarized to provide advices for practical applications.

  6. Buckling collapse of the spine in childhood spinal tuberculosis.

    Science.gov (United States)

    Rajasekaran, S

    2007-07-01

    We prospectively followed 61 children under 15 years of age at the time of diagnosis to identify the risk factors for deformity progression. The children had 63 lesions and a minimum of 15 years followup. All exhibited an increase in deformity during the active disease phase, but 26 of 63 (41%) continued to progress during the quiescent phase until the growth was complete. In 21 of those 26, there was an increase in angular kyphosis with a final deformity column; the deformity was more than 100 degrees and associated with facet dislocation at multiple levels. These patients' vertebral segments above the level of destruction underwent severe sagittal rotation resulting in horizontal vertebrae with vertical growth plates, which resulted in longitudinal overgrowth of the vertebral segments. Risk factors for buckling collapse included an age of less than 7 years at the time of the disease, thoracolumbar involvement, loss of more than two vertebral bodies, and presence of radiographic spine-at-risk signs. Children at risk for buckling collapse must be carefully watched and the spine stabilized to avoid a massive increase in deformity.

  7. Photoelastic Measurement of Strain Induced by Die-Bonding of GaAs Chip on a Copper Heatsink Plate

    Science.gov (United States)

    Chu, Tao; Yamada, Masayoshi

    1999-02-01

    Die-bonding-induced strain in a GaAs chip bonded on a copper heatsink plate has been measured with a reflection type of infrared polariscope.The spatial distributions of bonding-induced strain were seen to vary from sample to sample.The maximum value of the bonding-induced strain was found to be of the order of 10-4, which corresponded to about 1/10 of that estimated from the thermal expansion difference for the unit length between GaAs and copper when it was cooled down from the die-bonding temperature to the room temperature.

  8. Production TTR modeling and dynamic buckling analysis

    Institute of Scientific and Technical Information of China (English)

    Hugh Liu; John Wei; Edward Huang

    2013-01-01

    In a typical tension leg platform (TLP) design,the top tension factor (TTF),measuring the top tension of a top tensioned riser (TTR) relative to its submerged weight in water,is one of the most important design parameters that has to be specified properly.While a very small TTF may lead to excessive vortex induced vibration (ⅤⅣ),clashing issues and possible compression close to seafloor,an unnecessarily high TTF may translate into excessive riser cost and vessel payload,and even has impacts on the TLP sizing and design in general.In the process of a production TTR design,it is found that its outer casing can be subjected to compression in a worst-case scenario with some extreme metocean and hardware conditions.The present paper shows how finite element analysis (FEA) models using beam elements and two different software packages (Flexcom and ABAQUS) are constructed to simulate the TTR properly,and especially the pipe-in-pipe effects.An ABAQUS model with hybrid elements (beam elements globally + shell elements locally) can be used to investigate how the outer casing behaves under compression.It is shown for the specified TTR design,even with its outer casing being under some local compression in the worst-case scenario,dynamic buckling would not occur; therefore the TTR design is adequate.

  9. Storage battery comprising negative plates of a wedge shaped configuration. [for preventing shape change induced malfunctions

    Science.gov (United States)

    Bogner, R. S.; Farris, C. D. (Inventor)

    1974-01-01

    An improved silver-zinc battery particularly suited for use in an environment where battery operation is subjected to multiple charge/discharge cycling over extended periods is described. The battery seperator system, containing a highly absorbent material continguous with the surfaces of the plates and multiple semi-permeable membranes interposed between the plates, is also characterized.

  10. Femoral Head Growth Plate Dysplasia and Fracture in Juvenile Rabbits Induced by Off-target Antiangiogenic Treatment.

    Science.gov (United States)

    Hall, A Peter; Mitchard, T; Rolf, M G; Stewart, J; Duffy, P

    2016-08-01

    Epiphyseal growth plate dysplasia (chondrodysplasia) might be considered as the pathognomonic feature of antiangiogenic treatment in preclinical species as it is reliably and dose-responsively induced in rodents and monkeys with vascular endothelial growth factor receptor (VEGFR) inhibitors, fibroblast growth factor (FGF) receptor inhibitors, matrix metalloproteinase inhibitors, and vascular targeting agents. Here we report epiphyseal growth plate dysplasia in juvenile rabbits treated with an oral spleen tyrosine kinase inhibitor induced by off-target antiangiogenic inhibition of VEGF and FGF family kinase receptors. Epiphyseal growth plate dysplasia resulted in weakening and fracturing of the femoral head physis in 6 of 10 male and 1 of 10 female animals as well as microfracturing and dysplasia of the distal femoral articular cartilage in 1 male animal. Fracture lines ran through the zone of hypertrophic cartilage (as well as adjacent zones), were orientated parallel to the physeal plane, and often involved displacement of the femoral head. We would suggest that the high prevalence of growth plate fracture in the rabbit may represent a potential additional adverse risk to those already established for children treated with antiangiogenic therapy.

  11. Investigation of scleral buckling by CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Maswadi, S

    2001-05-01

    This thesis investigates the effect of using the infrared wavelength CO{sub 2} laser (10.6{mu}m) as a localised heat source for inducing scleral buckling on eyes. Retinal detachment disease is a major cause of blindness and the scleral buckling is an important technique used in treatment. A radio-frequency excited 10.6{lambda}m laser source is used to heat collagen in the sclera above its shrinkage temperature so as to produce a localised indentation and deformation in the human eye (in vitro). Basic measurements of the onset shrinkage temperatures of porcine and human sclera are taken. Optical properties of sclera tissue at 10.6{mu}m are also determined to provide information about the interaction of the CO{sub 2} laser with the sclera. It is found that CO{sub 2} laser radiation is highly absorbed by the scleral water. Optical diffraction technique is investigated to quantify in-plane deformation in the sclera tissue as result of heating by producing grating on porcine and human sclera using the ArF laser (193nm). Photothermal deflection technique is also used to investigate scleral ablation by using the TEA and Ultrapulse CO{sub 2} laser. This technique provides a useful guide to the regime where ablation rather than heat shrinkage of collagen in the sclera will dominate using the Ultrapulse CO{sub 2} laser. A quantitative assessment of buckling using the technique of projection moire interferometry is described which allows a non-contact measurement to be made of the out-of-plane displacement by laser radiation. In-plane surface strain (shrinkage) has also been demonstrated using in-situ optical microscopy of the laser treated eye. The moire method is suitable to obtain information on buckling in real time and to obtain a three-dimensional view of the eye surface as laser treatment proceeds. A theoretical heat flow model is described for predicting the temperature profile produced in the sclera using the Ultrapulse CO{sub 2} laser. For appropriate exposure

  12. Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity

    Science.gov (United States)

    Akbarzadeh Khorshidi, Majid; Shaat, Mohamed; Abdelkefi, Abdessattar; Shariati, Mahmoud

    2017-01-01

    Buckling and postbuckling behaviors of cracked nanobeams made of single-crystalline nanomaterials are investigated. The nonlocal elasticity theory is used to model the nonlocal interatomic effects on the beam's performance accounting for the beam's axial stretching via von Karman nonlinear theory. The crack is then represented as torsional spring where the crack severity factor is derived accounting for the nonlocal features of the beam. By converting the beam into an equivalent infinite long plate with an edge crack subjected to a tensile stress at the far field, the crack energy release rate, intensity factor, and severity factor are derived according to the nonlocal elasticity theory. An analytical solution for the buckling and the postbuckling responses of cracked nonlocal nanobeams accounting for the beam axial stretching according to von Karman nonlinear theory of kinematics is derived. The impacts of the nonlocal parameter on the critical buckling loads and the static nonlinear postbuckling responses of cracked nonlocal nanobeams are studied. The results indicate that the buckling and postbuckling behaviors of cracked nanobeams are strongly affected by the crack location, crack depth, nonlocal parameter, and length-to-thickness ratio.

  13. Experimental Study of Inducing Compressive Stress by Anti-welding Heating Treatment in a Thin Plate Weldment with Variant Temperatures

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Significant compressive stress may be induced in thin plate weldment by anti-welding heating treatment (AWHT)with a temperature difference above 350℃, and an interesting phenomenon of obvious residual stress reduction on non-treated surface was discovered. The method of AWHT has no great effect on the mechanical properties including hardness, strength and toughness of the metal material. The results in the paper prompt a possibility application in shipbuilding industry.

  14. Non-linear buffeting response analysis of long-span suspension bridges with central buckle

    Science.gov (United States)

    Wang, Hao; Li, Aiqun; Zhao, Gengwen; Li, Jian

    2010-06-01

    The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data, a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented, in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.

  15. Contractile units in disordered actomyosin bundles arise from F-actin buckling

    CERN Document Server

    Lenz, Martin; Gardel, Margaret L; Dinner, Aaron R

    2012-01-01

    Bundles of filaments and motors are central to contractility in cells. The classic example is striated muscle, where actomyosin contractility is mediated by highly organized sarcomeres which act as fundamental contractile units. However, many contractile bundles in vivo and in vitro lack sarcomeric organization. Here we propose a model for how contractility can arise in actomyosin bundles without sarcomeric organization and validate its predictions with experiments on a reconstituted system. In the model, internal stresses in frustrated arrangements of motors with diverse velocities cause filaments to buckle, leading to overall shortening. We describe the onset of buckling in the presence of stochastic actin-myosin detachment and predict that buckling-induced contraction occurs in an intermediate range of motor densities. We then calculate the size of the "contractile units" associated with this process. Consistent with these results, our reconstituted actomyosin bundles contract at relatively high motor dens...

  16. Buckling Analysis of Supporting Skirt of Security Injection Tank

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The purpose of the calculating is to make a structural buckling analysis according to the code rules and the design requirements in order to judge whether the security injection tank have the ability to resist the buckling failure or not

  17. A DC corona discharge on a flat plate to induce air movement

    OpenAIRE

    Magnier, Pierre; Hong, Dunpin; Leroy-Chesneau, Annie; Pouvesle, Jean-Michel; Hureau, Jacques

    2007-01-01

    International audience; This paper describes a DC surface corona discharge designed to modify the airflow around a flat plate. The electrode configuration consisted of two thin copper layers placed on each side of the plate's attack edge. Discharge optical measurements with a photomultiplier tube indicated that the light emitted by the plasma is pulsating, at a frequency that increases with applied voltage. Moreover, with voltage higher than a threshold value, the electric discharge changes r...

  18. Cylindrical shell buckling through strain hardening

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S. [Brookhaven National Lab., Upton, NY (United States); Gupta, D. [USDOE, Germantown, MD (United States)

    1995-04-01

    Recently, the authors published results of plastic buckling analysis of cylindrical shells. Ideal elastic-plastic material behavior was used for the analysis. Subsequently, the buckling analysis program was continued with the realistic stress-strain relationship of a stainless steel alloy which does not exhibit a clear yield point. The plastic buckling analysis was carried out through the initial stages of strain hardening for various internal pressure values. The computer program BOSOR5 was used for this purpose. Results were compared with those obtained from the idealized elastic-plastic relationship using the offset stress level at 0.2% strain as the yield stress. For moderate hoop stress values, the realistic stress-grain case shows a slight reduction of the buckling strength. But, a substantial gain in the buckling strength is observed as the hoop stress approaches the yield strength. Most importantly, the shell retains a residual strength to carry a small amount of axial compressive load even when the hoop stress has exceeded the offset yield strength.

  19. 3D COMSOL Simulations for Thermal Deflection of HFIR Fuel Plate in the "Cheverton-Kelley" Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL; Cook, David Howard [ORNL

    2012-08-01

    Three dimensional simulation capabilities are currently being developed at Oak Ridge National Laboratory using COMSOL Multiphysics, a finite element modeling software, to investigate thermal expansion of High Flux Isotope Reactor (HFIR) s low enriched uranium fuel plates. To validate simulations, 3D models have also been developed for the experimental setup used by Cheverton and Kelley in 1968 to investigate the buckling and thermal deflections of HFIR s highly enriched uranium fuel plates. Results for several simulations are presented in this report, and comparisons with the experimental data are provided when data are available. A close agreement between the simulation results and experimental findings demonstrates that the COMSOL simulations are able to capture the thermal expansion physics accurately and that COMSOL could be deployed as a predictive tool for more advanced computations at realistic HFIR conditions to study temperature-induced fuel plate deflection behavior.

  20. Buckled Graphene for Efficient Energy Harvest, Storage, and Conversion

    OpenAIRE

    Jiang, Jin-Wu

    2016-01-01

    Buckling is one of the most common phenomena in atomic-thick layered structures like graphene. While the buckling phenomenon usually causes disaster for most nano-devices, we illustrate one positive application of the buckled graphene for energy harvest, storage, and conversion. More specifically, we perform molecular dynamical simulations to show that the buckled graphene can be used to collect the wasted mechanical energy and store the energy in the form of internal knotting potential. Thro...

  1. Along-strike variation in subducting plate velocity induced by along-strike variation in overriding plate structure: Insights from 3D numerical models

    Science.gov (United States)

    Rodríguez-González, Juan; Billen, Magali I.; Negredo, Ana M.; Montesi, Laurent G. J.

    2016-10-01

    Subduction dynamics can be understood as the result of the balance between driving and resisting forces. Previous work has traditionally regarded gravitational slab pull and viscous mantle drag as the main driving and resistive forces for plate motion respectively. However, this paradigm fails to explain many of the observations in subduction zones. For example, subducting plate velocity varies significantly along-strike in many subduction zones and this variation is not correlated to the age of subducting lithosphere. Here we present three-dimensional and time-dependent numerical models of subduction. We show that along-strike variations of the overriding plate thermal structure can lead to along-strike variations in subducting plate velocity. In turn, velocity variations lead to significant migration of the Euler pole over time. Our results show that the subducting plate is slower beneath the colder portion of the overriding plate due to two related mechanisms. First, the mantle wedge beneath the colder portion of the overriding plate is more viscous, which increases mantle drag. Second, where the mantle wedge is more viscous, hydrodynamic suction increases, leading to a lower slab dip. Both factors contribute to decreasing subducting plate velocity in the region; therefore, if the overriding plate is not uniform, the resulting velocity varies significantly along-strike, which causes the Euler pole to migrate closer to the subducting plate. We present a new mechanism to explain observations of subducting plate velocity in the Cocos and Nazca plates. These results shed new light on the balance of forces that control subduction dynamics and prove that future studies should take into consideration the three-dimensional structure of the overriding plate.

  2. 21 CFR 886.3300 - Absorbable implant (scleral buckling method).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable implant (scleral buckling method). 886... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3300 Absorbable implant (scleral buckling method). (a) Identification. An absorbable implant (scleral buckling method) is a...

  3. Buckling instability in amorphous carbon films

    Science.gov (United States)

    Zhu, X. D.; Narumi, K.; Naramoto, H.

    2007-06-01

    In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 °C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with π-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 µm with a height of ~500 nm and a wavelength of ~8.2 µm. However, the length decreases dramatically to 70 µm as the deposition temperature is increased to 550 °C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542).

  4. Scleral Buckle Extrusion Associated with Phthisis

    Directory of Open Access Journals (Sweden)

    Tural Galbinur

    2011-01-01

    Full Text Available Exposure of implanted episcleral element is a rare complication of buckling procedures. We describe a 40-year-old man who presented to our clinic complaining of foreign body sensation and irritation in his left eye which lasted several months. The patient history was positive for bilateral rhegmatogenous retinal detachment which was treated with sclera buckling. Upon presentation the left eye demonstrated phthisis and an exposed and infected sclera buckle and explant in the lower quadrants. The explant was removed, and the patient was treated with antibiotics. This case suggests that wide encircling sclera element might erode through the conjunctiva of eyes undergoing phthisis. Integrity of the conjunctiva overlying episcleral implant should be evaluated during routine follow-up exams to exclude exposure of the implant particularly in eyes undergoing phthisis.

  5. Dynamic Analysis of the Titanium Alloy Plate under Thermal-acoustic Loadings

    Directory of Open Access Journals (Sweden)

    Zou Xuefeng

    2015-01-01

    Full Text Available Hypersonic vehicles structures suffer complex combined loadings generally. For the thin-walled structures and thermal protection systems of the aircraft, high temperature and intensity acoustic loadings are the significant factors that leading to their break. The object of this paper is typical simply supported titanium alloy plate, the finite element method was adopted to calculate the critical thermal buckling temperature the ordinal coupling method and Newmark method were adopted to calculate the thermal-acoustic dynamic response. Based on the FEM analysis, the power spectrum densities (PSD of center point was presented. Research results show that the thermal buckling of the typical simply supported titanium alloy plate occurs easily because of the low critical thermal buckling temperature, dynamic response of the thermal buckled plate suffering acoustic loads performs strong nonlinear characteristics and complex forms of exercise.

  6. Prediction of flow induced sound and vibration of periodically stiffened plates.

    Science.gov (United States)

    Maxit, Laurent; Denis, Vivien

    2013-01-01

    Stiffened structures excited by the turbulent boundary layer (TBL) occur very frequently in engineering applications; for instance, in the wings of airplanes or the pressure hulls of submarines. To improve knowledge of the interaction between stiffened structures and TBL, this paper deals with the modeling of infinite periodically stiffened plates excited by TBL. The mathematical formulation of the problem is well-established in the literature. The originality of the present work relies on the use of a wavenumber-point reciprocity technique for evaluating the response of the plate to convected harmonic pressure waves. It follows a methodology for estimating the vibro-acoustic response of the plate excited by the TBL from the wall pressure spectrum and its displacements in the wavenumber space due to point excitations located at the receiving positions. The computing process can be reduced to the numerical integration of an analytical expression in the case of a periodically stiffened plate. An application to a naval test case highlights the effect of Bloch-Floquet waves on the vibrations of the plate and its radiated pressure in the fluid.

  7. Customization of flexographic printing plates related to uvc-induced changes in the crosslinking degree

    Directory of Open Access Journals (Sweden)

    Tamara Tomašegović

    2016-11-01

    Full Text Available In this paper, the swelling properties of photopolymer flexographic printing plates related to the variations of UVC post-treatment have been analysed. The aim of the research was to interconnect the changes in the crosslinking degree of the photopolymer material occurring due to the modified UVC radiation of the printing plate and the changes of its surface free energy crucial in the graphic reproduction process. Changes in the crosslinking degree in the photopolymer materials have been analysed by the swelling experiments. Results have proven that the partial dissolution of the photopolymer material caused by the immersion of the printing plates in various solvents is in the direct relation with the changes of the dispersive surface free energy. UVC post-treatment, used for the crosslinking termination and the definition of the surface properties of printing plates, is therefore directly affecting the resistivity of the printing plate in the solvent environment. By calculating the correlation coefficients for the weight loss of the photopolymer material in solvents and the dispersive surface free energy, the relation between the crosslinking degree and the UVC post-treatment has been established.

  8. A molecular dynamics investigation into the size-dependent buckling behavior of a novel three-dimensional metallic carbon nanostructure (T6)

    Science.gov (United States)

    Ansari, R.; Ajori, S.; Hassani, R.

    2016-09-01

    The buckling behavior of a novel three-dimensional metallic carbon nanostructure known as T6 is investigated herein employing the molecular dynamics (MD) simulations. The models are prepared on the basis of two beam- and plate-like structures to study the effects of size and geometry on the critical buckling force and critical strain. It is observed that the range of critical force for the beam-like and plate-like T6 with different geometrical parameters is approximately identical. Moreover, it is demonstrated that the critical buckling force decreases and increases by increasing the length and the width of T6, respectively. Moreover, it is shown that critical strain of beam-like T6 decreases by increasing the length, whereas, in the case of plate-like T6, the critical strain only fluctuates around 2% by increasing the width. It is further found that the buckling parameters of T6 are not comparable with those of single-walled carbon nanotubes (SWCNTs) and graphene with a relatively similar dimension. The critical buckling force and critical strain of T6 are considerably smaller than those of SWCNT and larger than those of graphene.

  9. Analysis of errors induced by λ/4 wave plate in fiber-optic current sensor system

    Institute of Scientific and Technical Information of China (English)

    杨瑞峰

    2008-01-01

    1/4λ wave plate is a key element in the fiber-optic current sensor system. When a retardation error or an orientation error of birefringence axes of 1/4λ wave plate with respect to the hi-bi fiber axes occurs in the 1/4λ wave plate, the sensor system will output a wrong result of the measured current. The contributions of these two errors to the final result of the whole system were studied and the errors functions were deduced by establishing the measurement function of the current sensor system with Jones matrixes of the optical elements. The results show that that the greater the orientation error or the retardation error, the larger the final error, and that these two errors cannot be compensated each other.

  10. ANALYTICAL RELATIONS BETWEEN EIGENVALUES OF CIRCULAR PLATE BASED ON VARIOUS PLATE THEORIES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the mathematical similarity of the axisymmetric eigenvalue problems of a circular plate between the classical plate theory(CPT), the first-order shear deformation plate theory(FPT) and the Reddy's third-order shear deformation plate theory(RPT), analytical relations between the eigenvalues of circular plate based on various plate theories are investigated. In the present paper, the eigenvalue problem is transformed to solve an algebra equation. Analytical relationships that are expressed explicitly between various theories are presented. Therefore, from these relationships one can easily obtain the exact RPT and FPT solutions of critical buckling load and natural frequencyfor a circular plate with CPT solutions. The relationships are useful for engineering application, and can be used to check the validity, convergence and accuracy of numerical results for the eigenvalue problem of plates.

  11. An Analytical Solution of the Potential Velocity Field Induced by a Growing Bubble from a Plate Orifice

    Institute of Scientific and Technical Information of China (English)

    ZhiTao; NingKang

    1993-01-01

    An analytical solution is derived with the mirror image method of the velocity field of an inviscid liquid induced by a growing bubble from a plate orifice.The flow is assumed potential,and the bubble shape is idealised as sphercal.In deriving the motion equation,the spherical image of a point source,which is a combination of a point source and a line source,is proved approximate to a double source,This approximation enables continuation of the effectiveness of mirror image method to the case studied in this paper.The derived velocity potential equation is verified for the boundary conditions on the bubble surface and the orifice plate.The streamlines of the velocity field are presented and compared with experimental results in the literature.

  12. Large Vortex in Front Stagnation Region of a Square Plate Induced by a Fine Interference Wire

    Institute of Scientific and Technical Information of China (English)

    连淇祥; 苏宗周

    1994-01-01

    Using hydrogen bubble technique, the great change in flow field caused by weak interference in the stagnation region has been observed. When a fine interference wire was set in the upstream of a square plate, the wake of the wire invoked a large counter rotating vortex pair in the front stagnation region of the square plate. This large vortex pair and the reverse flow region might occupy a region larger than half part of the model, with a size over a 100 times greater than the diameter of the interference wire. The formation and development process of the large vortex pair are investigated in this paper.

  13. Occlusal adjustment using the bite plate-induced occlusal position as a reference position for temporomandibular disorders: a pilot study

    Science.gov (United States)

    2010-01-01

    Background Many researchers have not accepted the use of occlusal treatments for temporomandibular disorders (TMDs). However, a recent report described a discrepancy between the habitual occlusal position (HOP) and the bite plate-induced occlusal position (BPOP) and discussed the relation of this discrepancy to TMD. Therefore, the treatment outcome of evidence-based occlusal adjustments using the bite plate-induced occlusal position (BPOP) as a muscular reference position should be evaluated in patients with TMD. Methods The BPOP was defined as the position at which a patient voluntarily closed his or her mouth while sitting in an upright posture after wearing an anterior flat bite plate for 5 minutes and then removing the plate. Twenty-one patients with TMDs underwent occlusal adjustment using the BPOP. The occlusal adjustments were continued until bilateral occlusal contacts were obtained in the BPOP. The treatment outcomes were evaluated using the subjective dysfunction index (SDI) and the Helkimo Clinical Dysfunction Index (CDI) before and after the occlusal adjustments; the changes in these two indices between the first examination and a one-year follow-up examination were then analyzed. In addition, the difference between the HOP and the BPOP was three-dimensionally measured before and after the treatment. Results The percentage of symptom-free patients after treatment was 86% according to the SDI and 76% according to the CDI. The changes in the two indices after treatment were significant (p 0.1). Conclusion Although the results of the present study should be confirmed in other studies, a randomized clinical trial examining occlusal adjustments using the BPOP as a reference position appears to be warranted. PMID:20346167

  14. Occlusal adjustment using the bite plate-induced occlusal position as a reference position for temporomandibular disorders: a pilot study

    Directory of Open Access Journals (Sweden)

    Chiwata Ichiro

    2010-03-01

    Full Text Available Abstract Background Many researchers have not accepted the use of occlusal treatments for temporomandibular disorders (TMDs. However, a recent report described a discrepancy between the habitual occlusal position (HOP and the bite plate-induced occlusal position (BPOP and discussed the relation of this discrepancy to TMD. Therefore, the treatment outcome of evidence-based occlusal adjustments using the bite plate-induced occlusal position (BPOP as a muscular reference position should be evaluated in patients with TMD. Methods The BPOP was defined as the position at which a patient voluntarily closed his or her mouth while sitting in an upright posture after wearing an anterior flat bite plate for 5 minutes and then removing the plate. Twenty-one patients with TMDs underwent occlusal adjustment using the BPOP. The occlusal adjustments were continued until bilateral occlusal contacts were obtained in the BPOP. The treatment outcomes were evaluated using the subjective dysfunction index (SDI and the Helkimo Clinical Dysfunction Index (CDI before and after the occlusal adjustments; the changes in these two indices between the first examination and a one-year follow-up examination were then analyzed. In addition, the difference between the HOP and the BPOP was three-dimensionally measured before and after the treatment. Results The percentage of symptom-free patients after treatment was 86% according to the SDI and 76% according to the CDI. The changes in the two indices after treatment were significant (p 0.1. Conclusion Although the results of the present study should be confirmed in other studies, a randomized clinical trial examining occlusal adjustments using the BPOP as a reference position appears to be warranted.

  15. Buckling modes of elastic thin films on elastic substrates

    Science.gov (United States)

    Mei, Haixia; Huang, Rui; Chung, Jun Young; Stafford, Christopher M.; Yu, Hong-Hui

    2007-04-01

    Two buckling modes have been observed in thin films: buckle delamination and wrinkling. This letter identifies the conditions for selecting the favored buckling modes for elastic films on elastic substrates. Transition from one buckling mode to another is predicted as the stiffness ratio between the substrate and the film or is predicted for variation of the stiffness ratio between the substrate and the film or variation of theinterfacial defect size. The theoretical results are demonstrated experimentally by observing the coexistence of both buckling modes and mode transition in one film-substrate system.

  16. Theory of buckling and post-buckling behavior of elastic structures

    Science.gov (United States)

    Budiansky, B.

    1974-01-01

    The present paper provides a unified, general presentation of the basic theory of the buckling and post-buckling behavior of elastic structures in a form suitable for application to a wide variety of special problems. The notation of functional analysis is used for this purpose. Before the general analysis, simple conceptual models are used to elucidate the basic concepts of bifurcation buckling, snap buckling, imperfection sensitivity, load-shortening relations, and stability. The energy approach, the virtual-work approach, and mode interaction are discussed. The derivations and results are applicable to continua and finite-dimensional systems. The virtual-work and energy approaches are given separate treatments, but their equivalence is made explicit. The basic concepts of stability occupy a secondary position in the present approach.

  17. Post Buckling Behaviour of a Nanobeam considering both the surface and nonlocal effects

    Science.gov (United States)

    Maitra, Rajarshi; Bose, Supratik

    2012-07-01

    Nano-scale beams and plates have been the key components of the sensor and actuator in nanoelectromechnical (NEMS) systems with wide applications in environmental monitoring, medical diagnostics, food processing, mining, bioengineering and defence. Nonlocal and surface effects have been incorporated to find critical load of a nano beam subjected to a transverse loading. The Nonlocal theory, expresses the stress field at a point in an elastic continuum in terms of not only strains at that point but also the strains throughout the body. The governing equation of a normal beam has been modified to achieve the governing differential equation of a nano beam. The post buckling behaviour of a nano beam has been tried to be assessed. The results showed that the surface effects try to delay the buckling process whereas the nonlocal effects contribute to the instability.

  18. An Analytical Insight into the Buckling Paradox for Circular Cylindrical Shells under Axial and Lateral Loading

    Directory of Open Access Journals (Sweden)

    Rabee Shamass

    2015-01-01

    Full Text Available A large number of authors in the past have concluded that the flow theory of plasticity tends to overestimate significantly the buckling load for many problems of plates and shells in the plastic range, while the deformation theory generally provides much more accurate predictions and is consequently used in practical applications. Following previous numerical studies by the same authors focused on axially compressed cylinders, the present work presents an analytical investigation which comprises the broader and different case of nonproportional loading. The analytical results are discussed and compared with experimental and numerical findings and the reason for the apparent discrepancy on the basis of the so-called “buckling paradox” appears once again to lay in the overconstrained kinematics on the basis of the analytical and numerical approaches present in the literature.

  19. Numerical investigation of flow-induced rotary oscillation of circular cylinder with rigid splitter plate

    Science.gov (United States)

    Lu, Lin; Guo, Xiao-ling; Tang, Guo-qiang; Liu, Ming-ming; Chen, Chuan-qi; Xie, Zhi-hua

    2016-09-01

    Numerical results of fluid flow over a rotationally oscillating circular cylinder with splitter plate are presented here. Different from the previous examinations with freely rotatable assembly, the fluid and structure interactions are treated as a coupled dynamic system by fully considering the structural inertia, stiffness, and damping. The hydrodynamic characteristics are examined in terms of reduced velocity Ur at a relatively low Reynolds number Re = 100 for different plate lengths of L/D = 0.5, 1.0, and 1.5, where Ur = U/(Dfn), Re = UD/υ and fn = (κ/J)0.5/2π with U the free stream velocity, D the diameter of the circular cylinder, υ the fluid kinematic viscosity, fn the natural frequency, J the inertial moment, κ the torsional stiffness, and L the plate length. Contrast to the freely rotating cylinder/plate body, that is, in the limit of κ → 0 or Ur →∞, remarkable rotary oscillation is observed at relatively low reduced velocities. For the typical case with L/D = 1.0, the maximum amplitude may reach five times that at the highest reduced velocity of Ur = 15.0 considered in this work. At the critical reduced velocity Ur = 4.2, notable hydrodynamic jumps are identified for the rotation amplitude, response frequency, mean drag coefficient, lift amplitude, and vortex shedding frequency. Moreover, the phase angle between the fluid moment and rotary oscillation abruptly changes from 0 to π at Ur = 6.5. Due to the combined effect of fluid moment, rotation response, and phase difference, the natural frequency of the rotating body varies in flow, leading to a wide regime of lock-in/synchronization (Ur ≥4.2, for L/D = 1.0). The phenomenon of rotation bifurcation, i.e., the equilibrium position of the rotary oscillation deflects to a position which is not parallel to the free stream, is found to only occur at higher reduced velocities. The longer splitter plate has the lower critical reduced velocity. The occurrence of bifurcation is attributed to the

  20. Plastic Buckling of Cylindrical Shells Under Transverse Loading

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chonghou; LIU Yansheng; Yoshiaki Goto

    2008-01-01

    Thick cylindrical shells under transverse loading exhibit an elephant foot buckling mode, whereas moderately thick cylindrical shells show a diamond buckling mode. There exists some intermediate geome- try at which the transition between buckling modes can take place. This behavior is significantly influenced by the radius-to-thickness ratio and the material yield strength, rather than the length-to-radius ratio and the axial force. This paper presents a critical value at which the transition of buckling modes occurs as a func- tion of the radius-to-thickness ratio and the material yield strength. The result shows that the circumferential wave number of the diamond buckling mode increases with decreasing wall thickness. The strain concentra- tion is also intensified for the diamond buckling modes compared with the elephant foot buckling modes.

  1. Buckling behavior of pipes in oil and gas wells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the non-linear differential equations of buckled pipes, the buckling behavior of pipes in different wellbores has been analyzed. The relation between the deflection of buckled pipe and the loads on it has been given, and the critical loads for sinusodal and helical buckling within different wellbores subjected to axial and torsional loads have been determined. Therefore, the profile of load increase during the post-buckling process and the bending moments in the buckled pipe can be determined. In addition, the effects of down-hole packer as fixed end on the helical buckling behavior of pipes have been investigated. These results can be applied to the related engineering design and construction.

  2. Lower Bound Approximation for Elastic Buckling Loads

    NARCIS (Netherlands)

    Vrouwenvelder, A.; Witteveen, J.

    1975-01-01

    An approximate method for the elastic buckling analysis of two-dimensional frames is introduced. The method can conveniently be explained with reference to a physical interpretation: In the frame every member is replaced by two new members: - a flexural member without extensional rigidity to transmi

  3. Buckling in quasi-2D polymers

    NARCIS (Netherlands)

    Edmondson, S; Frieda, K; Comrie, JE; Onck, PR; Huck, WTS

    2006-01-01

    Buckle-driven delamination and subsequent collapse of strained thin polymer films upon triggered release from the substrate is exploited to fabricate striking, well-defined ridging patterns (see figure). An analysis of these patterns is presented, including the effects of film thickness and the exte

  4. Critical Buckling Load on Large Spherical Shells

    DEFF Research Database (Denmark)

    Wedellsborg, B. W.

    1962-01-01

    Approximate evaluation for watertanks, hortonspheres, vapor containers, containment vessels for nuclear reactors, and so forth, has been computed, taking into account out-of-roundness and local flattened areas; graphs have been plotted giving critical buckling load as function of maximum radial...

  5. Dynamic Pulse Buckling--Theory and Experiment

    Science.gov (United States)

    1983-02-01

    34Buckling of Bars Subject to Axial Shock," Studii si Cercetari de Mecanica Applicata (Roumania), 7, 1, pp. 173-178, January 1956. 26. A.F. Schmitt, "A...Procopovici, "Transverse Deformation of an Elastic Bar Subjected to an Axial Impulsive Force," Studii si Ceretari de Mecanica Applicata. 8, 3, pp. 839

  6. Fluorometric assessment of acetaminophen-induced toxicity in rat hepatocyte spheroids seeded on micro-space cell culture plates.

    Science.gov (United States)

    Sanoh, Seigo; Santoh, Masataka; Takagi, Masashi; Kanayama, Tatsuya; Sugihara, Kazumi; Kotake, Yaichiro; Ejiri, Yoko; Horie, Toru; Kitamura, Shigeyuki; Ohta, Shigeru

    2014-09-01

    Hepatotoxicity induced by the metabolic activation of drugs is a major concern in drug discovery and development. Three-dimensional (3-D) cultures of hepatocyte spheroids may be superior to monolayer cultures for evaluating drug metabolism and toxicity because hepatocytes in spheroids maintain the expression of various metabolizing enzymes and transporters, such as cytochrome P450 (CYP). In this study, we examined the hepatotoxicity due to metabolic activation of acetaminophen (APAP) using fluorescent indicators of cell viability and intracellular levels of glutathione (GSH) in rat hepatocyte spheroids grown on micro-space cell culture plates. The mRNA expression levels of some drug-metabolizing enzymes were maintained during culture. Additionally, this culture system was compatible with microfluorometric imaging under confocal laser scanning microscopy. APAP induced a decrease in intracellular ATP at 10mM, which was blocked by the CYP inhibitor 1-aminobenzotriazole (ABT). APAP (10mM, 24h) decreased the levels of both intracellular ATP and GSH, and GSH-conjugated APAP (APAP-GSH) were formed. All three effects were blocked by ABT, confirming a contribution of APAP metabolic activation by CYP to spheroid toxicity. Fluorometric imaging of hepatocyte spheroids on micro-space cell culture plates may allow the screening of drug-induced hepatotoxicity during pharmaceutical development.

  7. Growth hormone improves growth retardation induced by rapamycin without blocking its antiproliferative and antiangiogenic effects on rat growth plate.

    Directory of Open Access Journals (Sweden)

    Óscar Álvarez-García

    Full Text Available Rapamycin, an immunosuppressant agent used in renal transplantation with antitumoral properties, has been reported to impair longitudinal growth in young individuals. As growth hormone (GH can be used to treat growth retardation in transplanted children, we aimed this study to find out the effect of GH therapy in a model of young rat with growth retardation induced by rapamycin administration. Three groups of 4-week-old rats treated with vehicle (C, daily injections of rapamycin alone (RAPA or in combination with GH (RGH at pharmacological doses for 1 week were compared. GH treatment caused a 20% increase in both growth velocity and body length in RGH animals when compared with RAPA group. GH treatment did not increase circulating levels of insulin-like growth factor I, a systemic mediator of GH actions. Instead, GH promoted the maturation and hypertrophy of growth plate chondrocytes, an effect likely related to AKT and ERK1/2 mediated inactivation of GSK3β, increase of glycogen deposits and stabilization of β-catenin. Interestingly, GH did not interfere with the antiproliferative and antiangiogenic activities of rapamycin in the growth plate and did not cause changes in chondrocyte autophagy markers. In summary, these findings indicate that GH administration improves longitudinal growth in rapamycin-treated rats by specifically acting on the process of growth plate chondrocyte hypertrophy but not by counteracting the effects of rapamycin on proliferation and angiogenesis.

  8. Immediate periodontal bone plate changes induced by rapid maxillary expansion in the early mixed dentition: CT findings

    Directory of Open Access Journals (Sweden)

    Daniela Gamba Garib

    2014-06-01

    Full Text Available OBJECTIVE: This study aimed at evaluating buccal and lingual bone plate changes caused by rapid maxillary expansion (RME in the mixed dentition by means of computed tomography (CT. METHODS: The sample comprised spiral CT exams taken from 22 mixed dentition patients from 6 to 9 years of age (mean age of 8.1 years presenting constricted maxillary arch treated with Haas-type expanders. Patients were submitted to spiral CT scan before expansion and after the screw activation period with a 30-day interval between T1 and T2. Multiplanar reconstruction was used to measure buccal and lingual bone plate thickness and buccal bone crest level of maxillary posterior deciduous and permanent teeth. Changes induced by expansion were evaluated using paired t test (p < 0.05. RESULTS: Thickness of buccal and lingual bone plates of posterior teeth remained unchanged during the expansion period, except for deciduous second molars which showed a slight reduction in bone thickness at the distal region of its buccal aspect. Buccal bone dehiscences were not observed in the supporting teeth after expansion. CONCLUSION: RME performed in mixed dentition did not produce immediate undesirable effects on periodontal bone tissues.

  9. Buckling of open-section bead-stiffened composite panels

    Science.gov (United States)

    Laananen, D. H.; Renze, S. P.

    Stiffened panels are structures that can be designed to efficiently support inplane compression, bending, and shear loads. Although the stiffeners are usually discrete elements which are fastened or bonded to a flat or continuously curved plate, manufacturing methods such as thermoforming allow integral formation of the stiffeners in a panel. Such a configuration offers potential advantages in terms of a reduced number of parts and manufacturing operations. For thermoplastic composite panels stiffened by integrally formed open-section beads, the effects of bead spacing and bend cross-section geometry on the initiation of buckling under uniaxial compression and uniform shear loading were investigated. Finite elements results for a range of stiffened panel sizes and bead geometries are presented and compared with approximate closed-form solutions based on an effective flat plate size. Experimental verification of analytical predictions for one of the shear panels and one of the compression panels is described. Compensation of the forming tool to reduce the degree of initial curvature of the panels was found to be necessary.

  10. Buckling of Single-Crystal Silicon Nanolines under Indentation

    Directory of Open Access Journals (Sweden)

    Min K. Kang

    2008-01-01

    Full Text Available Atomic force microscope-(AFM- based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and nearly atomically flat sidewalls, and the cross section is almost perfectly rectangular with uniform width and height along the longitudinal direction. The measured load-displacement curves from the indentation tests show an instability with large displacement bursts at a critical load ranging from 480 μN to 700 μN. This phenomenon is attributed to a transition of the buckling mode of the SiNLs under indentation. Using a set of finite element models with postbuckling analyses, we analyze the indentation-induced buckling modes and investigate the effects of tip location, contact friction, and substrate deformation on the critical load of mode transition. The results demonstrate a unique approach for the study of nanomaterials and patterned nanostructures via a combination of experiments and modeling.

  11. Euler buckling and nonlinear kinking of double-stranded DNA.

    Science.gov (United States)

    Fields, Alexander P; Meyer, Elisabeth A; Cohen, Adam E

    2013-11-01

    The bending stiffness of double-stranded DNA (dsDNA) at high curvatures is fundamental to its biological activity, yet this regime has been difficult to probe experimentally, and literature results have not been consistent. We created a 'molecular vise' in which base-pairing interactions generated a compressive force on sub-persistence length segments of dsDNA. Short dsDNA strands (Euler buckling'. We monitored the buckling transition via Förster Resonance Energy Transfer (FRET) between appended fluorophores. For low-to-moderate concentrations of monovalent salt (up to ∼150 mM), our results are in quantitative agreement with the worm-like chain (WLC) model of DNA elasticity, without the need to invoke any 'kinked' states. Greater concentrations of monovalent salts or 1 mM Mg(2+) induced an apparent softening of the dsDNA, which was best accounted for by a kink in the region of highest curvature. We tested the effects of all single-nucleotide mismatches on the DNA bending. Remarkably, the propensity to kink correlated with the thermodynamic destabilization of the mismatched DNA relative the perfectly complementary strand, suggesting that the kinked state is locally melted. The molecular vise is exquisitely sensitive to the sequence-dependent linear and nonlinear elastic properties of dsDNA.

  12. Robust simulation of buckled structures using reduced order modeling

    Science.gov (United States)

    Wiebe, R.; Perez, R. A.; Spottswood, S. M.

    2016-09-01

    Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties.

  13. Modeling the buckling and delamination of thin films

    Science.gov (United States)

    Jagla, E. A.

    2007-02-01

    I study numerically the problem of delamination of a thin film elastically attached to a rigid substrate. A nominally flat elastic thin film is modeled using a two-dimensional triangular mesh. Both compression and bending rigidities are included to simulate compression and bending of the film. The film can buckle (i.e., abandon its flat configuration) when enough compressive strain is applied. The buckled configurations of a piece of film with stripe geometry are investigated as a function of the compressive strain. It is found that the stable configuration depends strongly on the applied strain and the Poisson ratio of the film. Next, the film is considered to be attached to a rigid substrate by springs that can break when the detaching force exceeds a threshold value, producing partial delamination of the film. Delamination is induced by a mismatch of the relaxed configurations of film and substrate. The morphology of the delaminated film can be followed and compared with available experimental results as a function of model parameters. “Telephone-cord,” polygonal, and “brainlike” patterns qualitatively similar to experimentally observed configurations are obtained in different parameter regions. The main control parameters that select the different patterns are the strain mismatch between film and substrate and the degree of in-plane relaxation within the unbuckled regions.

  14. An Analytical Approach on Thermally Induced Vibrations of Nonhomogeneous Tapered Plate

    Directory of Open Access Journals (Sweden)

    Anupam Khanna

    2013-01-01

    Full Text Available A mathematical model to control the vibrations of a rectangular plate is constructed with an aim to assist engineers in designing and fabrication of various structures used in the field of science and technology, mostly used in satellite and aeronautical engineering. The present study is related to the analysis of free vibrations of nonhomogeneous rectangular plate clamped at all the four edges. Authors studied the bilinear effect of thickness as well as temperature variations in both and directions. Variation in Poisson's ratio is also considered linearly in -direction due to nonhomogeneity. Rayleigh-Ritz method is used to analyze the frequencies for the first two modes of vibrations for different values of thermal gradient, nonhomogeneity constant, taper constants and aspect ratio. All the numerical computations have been performed for an alloy of aluminum, that is, duralumin. All the results are presented in the form of graphs.

  15. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure

    Science.gov (United States)

    Wang, Tian; Ke, Manzhu; Li, Weiping; Yang, Qian; Qiu, Chunyin; Liu, Zhengyou

    2016-09-01

    In this work, we give direct demonstration of acoustic radiation force and acoustic torque on particles exerted by an acoustic vortex beam, which is realized by an acoustic artificial structure plate instead of traditional transducer arrays. First, the first order acoustic vortex beam, which has the distinctive features of a linear and continuous phase variation from -π to π around its propagation axis and a magnitude null at its core, is obtained through one single acoustic source incident upon a structured brass plate with Archimedean spiral grating engraved on the back surface. Second, annular self-patterning of polystyrene particles with a radius of 90 μm is realized in the gradient field of this acoustic vortex beam. In addition, we further exhibit acoustic angular momentum transfer to an acoustic absorptive matter, which is verified by a millimeter-sized polylactic acid disk self-rotating in water in the acoustic field of the generated vortex beam.

  16. Plate-like convection induced by symmetries in fluids with temperature-dependent viscosity

    CERN Document Server

    Curbelo, Jezabel

    2014-01-01

    The study of instabilities in fluids in which viscosity experiences a transition at a certain temperature range is of great interest for the understanding of planetary interiors, since this phenomena models the melting and solidification of a magma ocean and thus is suitable for representing a lithosphere over a convecting mantle. To this end, we study a 2D convection problem in which viscosity depends on temperature by abruptly changing its value by a factor 400 within a narrow temperature gap at which magma melts. We perform a study which combines bifurcation analysis and time dependent simulations. Solutions such as limit cycles are found that are fundamentally related to the presence of symmetry. Sporadically during these cycles, through abrupt bursts, spontaneous plate-like behaviors that rapidly evolve towards a stagnant lid regime emerge. The plate-like evolution alternates motions towards either right or left, introducing temporary asymmetries on the convecting styles. Further time dependent regimes w...

  17. Human nail plate modifications induced by onychomycosis: implications for topical therapy.

    OpenAIRE

    Baraldi, A.; S. A. Jones; Guesné, S.; Traynor, M.J.; McAuley, W.J.; Brown, M B; Murdan, S.

    2015-01-01

    Purpose Through the characterisation of the human onchomycotic nail plate this study aimed to inform the design of new topical ungual formulations. Methods The mechanical properties of the human nail were characterised using a Lloyd tensile strength tester. The nail’s density was determined via pycnometry and the nail’s ultrastructure by electron microscopy. Raman spectroscopy analysed the keratin disulphide bonds within the nail and its permeability properties were assessed by quantifying wa...

  18. Human Nail Plate Modifications Induced by Onychomycosis: Implications for Topical Therapy

    OpenAIRE

    Baraldi, A.; Jones, S.A.; Guesné, S.; Traynor, M. J.; McAuley, W J; Brown, M.B.; Murdan, S.

    2014-01-01

    Purpose Through the characterisation of the human onchomycotic nail plate this study aimed to inform the design of new topical ungual formulations. Methods The mechanical properties of the human nail were characterised using a Lloyd tensile strength tester. The nail’s density was determined via pycnometry and the nail’s ultrastructure by electron microscopy. Raman spectroscopy analysed the keratin disulphide bonds within the nail and its permeability properties were assessed by quantifying wa...

  19. Chaotic advection induced heat transfer enhancement in a chevron-type plate heat exchanger

    Science.gov (United States)

    Tohidi, A.; Hosseinalipour, S. M.; Taheri, P.; Nouri, N. M.; Mujumdar, A. S.

    2013-11-01

    The present work examines the role of chaotic mixing as a means of heat transfer enhancement in plate heat exchangers. In order to demonstrate the chaotic behavior, sensitivity to initial conditions and horseshoe maps are visualized. The Nusselt number and the friction factor were computed in the range of reynolds number, 1 < Re < 10. The Nusselt number increases considerably in chaotic models whereas the friction factor increases only marginally.

  20. Growth hormone induces multiplication of the slowly cycling germinal cells of the rat tibial growth plate.

    Science.gov (United States)

    Ohlsson, C; Nilsson, A; Isaksson, O; Lindahl, A

    1992-10-15

    To study the effect of locally infused growth hormone (GH) or insulin-like growth factor I(IGF-I) on slowly cycling cells in the germinal cell layer of the tibial growth plate, osmotic minipumps delivering 14.3 microCi of [3H]thymidine per day were implanted s.c. into hypophysectomized rats, and GH (1 microgram) or IGF-I (10 micrograms) was injected daily through a cannula implanted in the proximal tibia. The opposite leg served as a control. After 12 days of treatment, the osmotic minipumps were removed, and three rats in each group were given GH (20 micrograms/day, s.c.) for an additional 14 days to chase the labeled cells out of the proliferative layers. Labeled cells remained in the germinal layer, in the perichondrial ring, and on the surface of the articular cartilage close to the epiphyseal plate. GH administered together with labeled thymidine significantly increased the number of labeled cells in the germinal cell layer compared to that in the control leg (ratio = 1.95 +/- 0.13), whereas IGF-I showed no stimulatory effect (ratio = 0.96 +/- 0.04). Therefore GH but not IGF-I stimulates the multiplication of the slowly cycling (label-retaining) cells in the germinal layer of the epiphyseal plate. IGF-I acts only on the proliferation of the resulting chondrocytes.

  1. Post-Buckling Analysis of Curved Honeycomb Sandwich Panels Containing Interfacial Disbonds

    Science.gov (United States)

    Pineda, Evan J.; Bednarcyk, Brett A.; Krivanek, Thomas K.

    2016-01-01

    A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance plan for the next-generation Space Launch System heavy lift launch vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method incorporating geometric nonlinearity. In a predetermined circular region, facesheet and core nodes were detached to simulate a disbond, between the outer mold line facesheet and honeycomb core, induced via low-speed impact. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements and obtain realistic stresses in the core. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. Significant changes in the slope of the edge load-deflection response were used to determine the onset of global buckling and corresponding buckling load. Finally, several studies were conducted to determine the sensitivity of the numerical predictions to refinement in the finite element mesh.

  2. Growth hormone induces multiplication of the slowly cycling germinal cells of the rat tibial growth plate.

    OpenAIRE

    Ohlsson, C.; Nilsson, A; Isaksson, O; Lindahl, A

    1992-01-01

    To study the effect of locally infused growth hormone (GH) or insulin-like growth factor I(IGF-I) on slowly cycling cells in the germinal cell layer of the tibial growth plate, osmotic minipumps delivering 14.3 microCi of [3H]thymidine per day were implanted s.c. into hypophysectomized rats, and GH (1 microgram) or IGF-I (10 micrograms) was injected daily through a cannula implanted in the proximal tibia. The opposite leg served as a control. After 12 days of treatment, the osmotic minipumps ...

  3. Stability of Three-Layered Annular Plate with Composite Facings

    Science.gov (United States)

    Pawlus, D.

    2017-02-01

    Paper presents the behaviour of three-layered annular plates subjected to loads acting in plate plane. Plates are composed of laminated fibre-reinforced composite facings and foam core. The static and dynamic parameters of plate critical state were evaluated. The sensitivity of composite structure of plate to the acting of quickly increasing in time loads is shown. The problem has been solved numerically using the finite element method. Results have been compared with ones obtained for plate models with isotropic layers. These plate models have also been calculated solving formulated task analytically and numerically by means of the finite difference method. Solutions to the problem concern the axisymmetrical and asymmetrical plate buckling modes. Numerous presented tables and figures create the image of the stability behaviour of examined composite plates.

  4. Human nail plate modifications induced by onychomycosis: implications for topical therapy.

    Science.gov (United States)

    Baraldi, A; Jones, S A; Guesné, S; Traynor, M J; McAuley, W J; Brown, M B; Murdan, S

    2015-05-01

    Through the characterisation of the human onchomycotic nail plate this study aimed to inform the design of new topical ungual formulations. The mechanical properties of the human nail were characterised using a Lloyd tensile strength tester. The nail's density was determined via pycnometry and the nail's ultrastructure by electron microscopy. Raman spectroscopy analysed the keratin disulphide bonds within the nail and its permeability properties were assessed by quantifying water and rhodamine uptake. Chronic in vivo nail plate infection increased human nailplate thickness (healthy 0.49 ± 0.15 mm; diseased 1.20 ± 0.67 mm), but reduced its tensile strength (healthy 63.7 ± 13.4 MPa; diseased 41.7 ± 5.0 MPa) and density (healthy 1.34 ± 0.01 g/cm(3); diseased 1.29 ± 0.00 g/cm(3)). Onchomycosis caused cell-cell separation, without disrupting the nail disulfide bonds or desmosomes. The diseased and healthy nails showed equivalent water uptake profiles, but the rhodamine penetration was 4-fold higher in the diseased nails using a PBS vehicle and 3 -fold higher in an ethanol/PBS vehicle. Onchomycotic nails presented a thicker but more porous barrier, and its eroded intracellular matrix rendered the tissue more permeable to topically applied chemicals when an aqueous vehicle was used.

  5. Photothermally induced bromination of carbon/polymer bipolar plate materials for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Martin; Franzka, Steffen [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Cappuccio, Franco; Peinecke, Volker; Heinzel, Angelika [Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Zentrum für BrennstoffzellenTechnik (ZBT), Carl-Benz-Straße 201, 47057 Duisburg (Germany); Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany)

    2015-05-01

    Graphical abstract: - Highlights: • Photothermal laser bromination of carbon/polymer materials is demonstrated. • Using a microfocused laser functionalized domains with diameters of 5 μm and 100 μm and more can be fabricated. • Bromine groups can be transformed in a variety of other chemical functionalities, i.e. amine groups. • Depending on the chemical functionality, the local chemical affinity and wettability is changed. • The routine can be applied to standard bipolar plate materials used for fuel cell applications. - Abstract: A facile photothermal procedure for direct functionalization of carbon/polymer bipolar plate materials is demonstrated. Through irradiation with a microfocused beam of an Ar{sup +}-laser at λ = 514 nm in gaseous bromine and distinct laser powers and pulse lengths local bromination of the carbon/polymer material takes place. At a 1/e spot diameter of 2.1 μm, functionalized surface areas with diameters down to 5 μm are fabricated. In complementary experiments large-area bromination is investigated using an ordinary tungsten lamp. For characterization contact angle goniometry, X-ray photoelectron spectroscopy and electron microscopy in conjunction with labeling techniques are employed. After irradiation bromine groups can easily be substituted by other chemical functionalities, e.g. azide and amine groups. This provides a facile approach in order to fabricate surface patterns and gradient structures with varying wetting characteristics. Mechanistic aspects and prospects of photothermal routines in micropatterning of carbon/polymer materials are discussed.

  6. Pre-subduction metasomatic enrichment of the oceanic lithosphere induced by plate flexure

    Science.gov (United States)

    Pilet, S.; Abe, N.; Rochat, L.; Kaczmarek, M.-A.; Hirano, N.; Machida, S.; Buchs, D. M.; Baumgartner, P. O.; Müntener, O.

    2016-12-01

    Oceanic lithospheric mantle is generally interpreted as depleted mantle residue after mid-ocean ridge basalt extraction. Several models have suggested that metasomatic processes can refertilize portions of the lithospheric mantle before subduction. Here, we report mantle xenocrysts and xenoliths in petit-spot lavas that provide direct evidence that the lower oceanic lithosphere is affected by metasomatic processes. We find a chemical similarity between clinopyroxene observed in petit-spot mantle xenoliths and clinopyroxene from melt-metasomatized garnet or spinel peridotites, which are sampled by kimberlites and intracontinental basalts respectively. We suggest that extensional stresses in oceanic lithosphere, such as plate bending in front of subduction zones, allow low-degree melts from the seismic low-velocity zone to percolate, interact and weaken the oceanic lithospheric mantle. Thus, metasomatism is not limited to mantle upwelling zones such as mid-ocean ridges or mantle plumes, but could be initiated by tectonic processes. Since plate flexure is a global mechanism in subduction zones, a significant portion of oceanic lithospheric mantle is likely to be metasomatized. Recycling of metasomatic domains into the convecting mantle is fundamental to understanding the generation of small-scale mantle isotopic and volatile heterogeneities sampled by oceanic island and mid-ocean ridge basalts.

  7. Circumferential buckling instability of a growing cylindrical tube

    KAUST Repository

    Moulton, D.E.

    2011-03-01

    A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure. © 2011 Elsevier Ltd. All rights reserved.

  8. Buckled graphene for efficient energy harvest, storage and conversion.

    Science.gov (United States)

    Jiang, Jin-Wu

    2016-10-07

    Buckling is one of the most common phenomena in atom-thick layered structures like graphene. While the buckling phenomenon usually causes disaster for most nanodevices, we illustrate one positive application of buckled graphene for energy harvest, storage and conversion. More specifically, we perform molecular dynamical simulations to show that buckled graphene can be used to collect wasted mechanical energy and store the energy in the form of internal knotting potential. Through strain engineering, the knotting potential can be converted into useful kinetic (thermal) energy that is highly concentrated at the free edges of buckled graphene. The present study demonstrates potential applications of buckled graphene for converting dispersed wasted mechanical energy into concentrated useful kinetic (thermal) energy.

  9. Buckled graphene for efficient energy harvest, storage and conversion

    Science.gov (United States)

    Jiang, Jin-Wu

    2016-10-01

    Buckling is one of the most common phenomena in atom-thick layered structures like graphene. While the buckling phenomenon usually causes disaster for most nanodevices, we illustrate one positive application of buckled graphene for energy harvest, storage and conversion. More specifically, we perform molecular dynamical simulations to show that buckled graphene can be used to collect wasted mechanical energy and store the energy in the form of internal knotting potential. Through strain engineering, the knotting potential can be converted into useful kinetic (thermal) energy that is highly concentrated at the free edges of buckled graphene. The present study demonstrates potential applications of buckled graphene for converting dispersed wasted mechanical energy into concentrated useful kinetic (thermal) energy.

  10. Dynamic buckling behavior of thin metal film lines from substrate

    Science.gov (United States)

    Wu, Dan; Xie, Huimin; Wang, Heling; Zhang, Jie; Li, Chuanwei

    2014-10-01

    The dynamic buckling behavior of thin films from substrate is studied in this work. The experimental results show that the buckling morphology of the constantan film lines from the polymer substrate is inconsistent and non-sinusoidal, which is different from the sinusoidal form of the buckling morphology under static loads. The plastic deformation of the film lines results in the non-sinusoidal buckling morphology and residual deformation when unloaded. Finite element modeling results with regard to the plastic dissipation of the constantan film lines reveal that the plastic dissipation suppresses the buckling-driven delaminating under impact loads. This study will give some new perspectives on the buckling behavior of thin film from substrate.

  11. Buckling Instability in Liquid Crystalline Physical Gels

    Science.gov (United States)

    Verduzco, Rafael; Meng, Guangnan; Kornfield, Julia A.; Meyer, Robert B.

    2006-04-01

    In a nematic gel we observe a low-energy buckling deformation arising from soft and semisoft elastic modes. We prepare the self-assembled gel by dissolving a coil side-group liquid-crystalline polymer coil copolymer in a nematic liquid crystal. The gel has long network strands and a precisely tailored structure, making it ideal for studying nematic rubber elasticity. Under polarized optical microscopy we observe a striped texture that forms when gels uniformly aligned at 35 °C are cooled to room temperature. We model the instability using the molecular theory of nematic rubber elasticity, and the theory correctly captures the change in pitch length with sample thickness and polymer concentration. This buckling instability is a clear example of a low-energy deformation that arises in materials where polymer network strains are coupled to the director orientation.

  12. Buckling driven debonding in sandwich columns

    DEFF Research Database (Denmark)

    Østergaard, Rasmus Christian

    2008-01-01

    A compression loaded sandwich column that contains a debond is analyzed using a geometrically non-linear finite element model. The model includes a cohesive zone along one face sheet/core interface whereby the debond can extend by interface crack growth. Two geometrical imperfections are introduced......; a global imperfection of the sandwich column axis and a local imperfection of the debonded face sheet axis. The model predicts the sandwich column to be very sensitive to the initial debond length and the local face sheet imperfection. The study shows that the sensitivity to the face sheet imperfection...... results from two mechanisms: (a) interaction of local debond buckling and global buckling and (b) the development of a damaged zone at the debond crack tip. Based on the pronounced imperfection sensitivity, the author predicts that an experimental measurement of the strength of sandwich structures may...

  13. Dynamic buckling of actin within filopodia

    DEFF Research Database (Denmark)

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Pól Martin

    2015-01-01

    Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted...... on external substrates.(1) These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling...... microsphere which acts like an external substrate attached to the filopodial tip. There is a clear correlation between presence of actin near the tip and exertion of a traction force, thus demonstrating that the traction force is transduced along the actin shaft inside the filopodium. By extending...

  14. Buckling of stepped beams with elastic supports

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-sheng; LU Nian-li; LAN Peng

    2009-01-01

    The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral deflection including second-order effects, the relationship of force versus displacement is established. In the formulation of finite element method ( FEM), the stiffness matrix developed has the same accuracy with the solution of exact differential equations. The proposed tangent stiffness matrix will degenerate into the BernoulliEuler beam without the effects of shear deformation. The critical buckling force can be determined from the determinant element assemblage by FEM. The equivalent stiffness matrix constructed by the topmost deflection and slope is established by static condensation method, and then a recurrence formula is proposed. The validity and efficiency of the proposed method are shown by solving various numerical examples found in the literature.

  15. Effect of shear connectors on local buckling and composite action in steel concrete composite walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai, E-mail: kai-zh@purdue.edu [School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R., E-mail: smalusht@bechtel.com [Bechtel Power Corporation, Frederick, MD (United States); Gallocher, Stewart, E-mail: stewart.gallocher@steelbricks.com [Modular Walling Systems Ltd., Glasgow (United Kingdom)

    2014-04-01

    Steel concrete composite (SC) walls are being used for the third generation nuclear power plants, and also being considered for small modular reactors. SC walls consist of thick concrete walls with exterior steel faceplates serving as reinforcement. These steel faceplates are anchored to the concrete infill using shear connectors, for example, headed steel studs. The steel faceplate thickness (t{sub p}) and yield stress (F{sub y}), and the shear connector spacing (s), stiffness (k{sub s}), and strength (Q{sub n}) determine: (a) the level of composite action between the steel plates and the concrete infill, (b) the development length of steel faceplates, and (c) the local buckling of the steel faceplates. Thus, the shear connectors have a significant influence on the behavior of composite SC walls, and should be designed accordingly. This paper presents the effects of shear connector design on the level of composite action and development length of steel faceplates in SC walls. The maximum steel plate slenderness, i.e., ratio of shear connector spacing-to-plate thickness (s/t{sub p}) ratio to prevent local buckling before yielding is also developed based on the existing experimental database and additional numerical analysis.

  16. Stability diagram of unilateral buckling patterns of strip-delaminated films.

    Science.gov (United States)

    Parry, G; Cimetière, A; Coupeau, C; Colin, J; Grilhé, J

    2006-12-01

    Thin films deposited on substrates are usually submitted to large residual compression stresses, causing delamination and buckling of the film into various patterns. The present study is focused on the different equilibria arising on strip-shaped delaminated areas. The three most common types of buckling patterns observed on such strips are known as the straight-sided wrinkles, bubble pattern, and telephone cord blisters. The stability of those equilibria as a function of the two stress components of the loading is investigated. The Föppl-Von Karman model for elastic plates is used for theoretical aspects. The post-critical equilibrium paths of the buckling patterns are investigated numerically by means of the finite-element method. The substrate is assumed to be rigid and the contact to be frictionless. The equilibrium solutions can be classified into families of homologous equilibria allowing the identification of dimensionless parameters for the study of stability. A mapping of the different stable post-critical equilibria is given. It is shown that the straight-sided wrinkles and the bubbles are associated with anisotropy of stresses and/or of elastic properties, whereas the telephone cords are stable at high isotropic stresses. The morphological transitions are experimentally evidenced by in situ atomic force microscopy observations of a nickel 50-nm-thick film under stress.

  17. Buckling analysis of nanoplates using IGA

    Science.gov (United States)

    Phung-Van, P.; Abdel-Wahab, M.; Nguyen-Xuan, H.

    2017-05-01

    Isogeometric analysis (IGA) based on HSDT is used to simulate buckling analysis of nanoplates. The material properties of nanoplates based on the Mori-Tanaka schemes and the rule of mixture are used. The differential nonlocal equations with size effect are utilized. The nonlocal governing equations are approximated according to IGA, that satisfies naturally the higher-order derivatives continuity requirement in weak form of nanoplates. Several numerical results are presented to demonstrate the reliability of the proposed method.

  18. Remaining local buckling resistance of corroded pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qishi [C-FER Technologies, Edmonton, AB (Canada); Khoo, Heng Aik [Carleton University, Ottawa, Ontario (Canada); Cheng, Roger [University of Alberta, Edmonton, AB (Canada); Zhou, Joe [TransCanada Pipelines Limited, Calgary, AB (Canada)

    2010-07-01

    The Pipeline Research Council International has undertaken a multi-year research program to investigate the local buckling (or wrinkling) of onshore pipelines affected by corrosion. Local buckling resistance depends on wall thickness and seems to be considerably reduced by metal-loss defects. Experimental data were lacking, which led to the use of overly conservative assumptions. C-FER and the University of Alberta conducted research in three phases in order to develop local buckling criteria for pipelines with corrosion defects. In Phase 1, the influence of various corrosion defect features was assessed with finite element analysis, and the ranking of key parameters was determined. On this basis, Phase 2 consisted in developing a test matrix and carrying out 10 full-scale tests to collect data. In Phase 3, finite element models were used to analyze over 150 parametric cases and develop criteria for assessing maximum moment and compressive strain limit. These criteria were applied to in-service pipelines with general corrosion features.

  19. Experiments of dike-induced deformation: Insights on the long-term evolution of divergent plate boundaries

    KAUST Repository

    Trippanera, D.

    2015-10-22

    The shallow transport of magma occurs through dikes causing surface deformation. Our understanding of the effects of diking at the surface is limited, especially on the long term, for repeated intrusive episodes. We use analogue models to study the upper crustal deformation induced by dikes. We insert metal plates within cohesive sand with three setups: in setup A, the intrusion rises upward with constant thickness and in setups B and C, the intrusion thickens at a fixed depth, with final rectangular (setup B) or triangular (setup C) shape in section. Setup A creates a doming delimited by reverse faults, with secondary apical graben, without close correspondence in nature. In setups B and C, a depression flanked by two uplifted areas is bordered by inward dipping normal faults propagating downward and, for deeper intrusions in setup B, also by inner faults, reverse at the surface; this deformation is similar to what is observed in nature, suggesting a consistent physical behavior. Dikes in nature initially propagate developing a mode I fracture at the tip, subsequently thickened by magma intrusion, without any host rock translation in the propagation direction (as in setup A). The deformation pattern in setups B and C depends on the intrusion depth and thickness, consistently to what is observed along divergent plate boundaries. The early deformation in setups B and C is similar to that from a single rifting episode (i.e., Lakagigar, Iceland, and Dabbahu, Afar), whereas the late stages resemble the structure of mature rifts (i.e., Krafla, Iceland), confirming diking as a major process in shaping divergent plate boundaries.

  20. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    Energy Technology Data Exchange (ETDEWEB)

    Kurebayashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Sakurai, H., E-mail: sakurail@sci.kj.yamagata-u.ac.jp [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Takahashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Doshita, N. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kikuchi, S. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Tokanai, F. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Horiuchi, K. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Tajima, Y. [Institute of Arts and Sciences, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Oe, T. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sato, T. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Gunji, S. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Inui, E. [Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kondo, K. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Iwata, N. [Dept. of Earth and Environmental Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sasaki, N. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Matsuzaki, H. [Micro Analysis Laboratory, Tandem accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kunieda, S. [Nuclear Data Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun 319-1195, Ibaraki (Japan)

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10{sup –9} PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×10{sup 13} was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  1. Lateral-Torsional Buckling Instability Caused by Individuals Walking on Wood Composite I-Joists

    Science.gov (United States)

    Villasenor Aguilar, Jose Maria

    Recent research has shown that a significant number of the falls from elevation occur when laborers are working on unfinished structures. Workers walking on wood I-joists on roofs and floors are prone to fall hazards. Wood I-joists have been replacing dimension lumber for many floor systems and a substantial number of roof systems in light-frame construction. Wood I-joists are designed to resist axial stresses on the flanges and shear stresses on the web while minimizing material used. However, wood I-joists have poor resistance to applied lateral and torsional loads and are susceptible to lateral-torsional buckling instability. Workers walking on unbraced or partially braced wood I-joists can induce axial and lateral forces as well as twist. Experimental testing demonstrated that workers cause lateral-torsional buckling instability in wood I-joists. However, no research was found related to the lateral-torsional buckling instability induced by individuals walking on the wood I-joists. Furthermore, no research was found considering the effects of the supported end conditions and partial bracing in the lateral-torsional buckling instability of wood I-joists. The goal of this research was to derive mathematical models to predict the dynamic lateral-torsional buckling instability of wood composite I-joists loaded by individuals walking considering different supported end conditions and bracing system configurations. The dynamic lateral-torsional buckling instability was analyzed by linearly combining the static lateral-torsional buckling instability with the lateral bending motion of the wood Ijoists. Mathematical models were derived to calculate the static critical loads for the simply supported end condition and four wood I-joist hanger supported end conditions. Additionally, mathematical models were derived to calculate the dynamic maximum lateral displacements and positions of the individual walking on the wood Ijoists for the same five different supported end

  2. Intermediate Crack Induced Debonding in Concrete Beams Strengthened with CFRP Plates - An Experimental Study

    DEFF Research Database (Denmark)

    Rusinowski, Piotr Michal; Täljsten, Björn

    2009-01-01

    , ductility and even durability. Design of structural strengthening applications using externally bonded FRP composites is usually based on conventional design approaches with improvement to account for the presence and characteristics of the FRP material. Non-conventional design issues that are specific...... of the strengthening method. End-peeling has governed a large interest and several debonding models have been presented. However, interfacial peeling at flexural cracks has not attained the same focus – even though this debonding failure is most likely more common. This paper presents laboratory tests of concrete...... beams strengthened in flexure with CFRP epoxy bonded plates. Wrapping with CFRP sheets was applied in order to try to localize the failure initiation. Concrete cracking as well as debonding initiation and propagation was possible to observe with help of advanced optical measuring system and high speed...

  3. Adhesion energies of Cr thin films on polyimide determined from buckling: Experiment and model

    Energy Technology Data Exchange (ETDEWEB)

    Cordill, M.J., E-mail: megan.cordill@oeaw.ac.at [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences and Department of Material Physics, Montanuniversitaet Leoben, Leoben 8700 (Austria); Fischer, F.D. [Institute of Mechanics, Montanuniversitaet Leoben, Leoben 8700 (Austria); Rammerstorfer, F.G. [Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna 1040 (Austria); Dehm, G. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences and Department of Material Physics, Montanuniversitaet Leoben, Leoben 8700 (Austria)

    2010-09-15

    For the realization of flexible electronic devices, the metal-polymer interfaces upon which they are based need to be optimized. These interfaces are prone to fracture in such systems and hence form a weak point. In order to quantify the interfacial adhesion, novel mechanical tests and modeling approaches are required. In this study, a tensile testing approach that induces buckling of films by lateral contraction of the substrate is employed to cause delamination of the film. Based on a newly developed energy balance model, the adhesion energy of Cr films on polyimide substrates is determined by measuring the buckle geometry induced by the tensile test. The obtained minimum values for the adhesion energy (about 4.5 J m{sup -2}) of 50-190 nm thick films compare well to those found in the literature for metal films on polymer substrates.

  4. 冷弯薄壁构件屈曲模态力学准则的有限元验证%Finite element verification of the mechanic criteria of cold-formed thin-walled steel member's buckling mode definitions

    Institute of Scientific and Technical Information of China (English)

    张登祥; 李占杰; B W Schafer

    2012-01-01

    In current cold-formed thin-walled steel design specifications,buckling information of all the three types,local-plate buckling,distortional buckling and global buckling(or Euler buckling),are desired.From the desire of practical design,the basic theory of constrained finite strip method(cFSM) was systematically introduced and new progress was presented.An emphasis had been put on the associated mechanic assumptions for defining the buckling modes.For these mechanic assumptions,a brand-new view in terms of the definition of buckling modes was illustrated via the static finite element analysis to verify its validity.%现有冷弯薄壁型钢设计规范中需要获知薄壁结构各个模态屈曲特性,如局部板件屈曲、畸变屈曲和整体屈曲。从工程设计需要出发,系统介绍约束有限元条分法的基础理论及进展,并着重阐述其在区分屈曲模态时的相关力学假设。对于由这些力学假设定义的模态是否正确,基于有限元静力分析从一个全新的角度验证其合理性。

  5. Radiation induced currents in parallel plate ionization chambers: measurement and Monte Carlo simulation for megavoltage photon and electron beams.

    Science.gov (United States)

    Abdel-Rahman, Wamied; Seuntjens, Jan P; Verhaegen, Frank; Podgorsak, Ervin B

    2006-09-01

    Polarity effects in ionization chambers are caused by a radiation induced current, also known as Compton current, which arises as a charge imbalance due to charge deposition in electrodes of ionization chambers. We used a phantom-embedded extrapolation chamber (PEEC) for measurements of Compton current in megavoltage photon and electron beams. Electron contamination of photon beams and photon contamination of electron beams have a negligible effect on the measured Compton current. To allow for a theoretical understanding of the Compton current produced in the PEEC effect we carried out Monte Carlo calculations with a modified user code, the COMPTON/ EGSnrc. The Monte Carlo calculated COMPTON currents agree well with measured data for both photon and electron beams; the calculated polarity correction factors, on the other hand, do not agree with measurement results. The conclusions reached for the PEEC can be extended to parallel-plate ionization chambers in general.

  6. Fluid modeling of resistive plate chambers: impact of transport data on development of streamers and induced signals

    Science.gov (United States)

    Bošnjaković, D.; Petrović, Z. Lj; Dujko, S.

    2016-10-01

    We discuss the implementation of transport data in modeling of resistive plate chambers (RPCs), which are used for timing and triggering purposes in many high energy physics experiments. Particularly, we stress the importance of making a distinction between flux and bulk transport data when non-conservative collisions, such as attachment and/or ionization, are present. A 1.5-dimensional fluid model with photoionization is employed to demonstrate how the duality of transport data affects the calculated signals of the ATLAS triggering RPC and ALICE timing RPC used at CERN, and also a timing RPC with high \\text{S}{{\\text{F}}6} content. It is shown that in the case of timing RPCs, the difference between the induced charges calculated using flux and bulk transport data can reach several hundred percent at lower operating electric fields. The effects of photoionization and space charge are also discussed.

  7. Effects of antimicrobial peptide revealed by simulations: translocation, pore formation, membrane corrugation and euler buckling.

    Science.gov (United States)

    Chen, Licui; Jia, Nana; Gao, Lianghui; Fang, Weihai; Golubovic, Leonardo

    2013-04-11

    We explore the effects of the peripheral and transmembrane antimicrobial peptides on the lipid bilayer membrane by using the coarse grained Dissipative Particle Dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling.

  8. Dynamic Response of Three-Layered Annular Plate with Imperfections

    Directory of Open Access Journals (Sweden)

    Pawlus Dorota

    2015-02-01

    Full Text Available This paper presents the imperfection sensitivity of annular plate with three-layered structure. The plate composed of thin elastic facings and a thicker elastic core is loaded in facing plane. The classical issue of a three-layered plate was solved for dynamic deflection problem using the approximation methods: orthogonalization and finite difference. The solution includes the axisymmetric and asymmetric plate modes of the dynamic stability loss. The evaluation of the rate of plate sensitivity to imperfection of plate preliminary geometry has been enriched by the analysis of plate models built of finite elements. The ABAQUS program has been used. The numerous calculation results in the form of deflection characteristics, buckling modes, values of critical parameters create the view of response of dynamic plate structure with different rate of imperfection and linear in time loading growth, too.

  9. Corneal topographic changes after 20-gauge pars plana vitrectomy associated with scleral buckling for the treatment of rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Alexandre Achille Grandinetti

    2013-04-01

    Full Text Available PURPOSE: To evaluate the changes in corneal topography after 20-gauge pars plana vitrectomy associated with scleral buckling for the repair of rhegmatogenous retinal detachment. METHODS: Twenty-five eyes of 25 patients with rhegmatogenous retinal detachment were included in this study. 20-gauge pars plana vitrectomy associated with scleral buckling was performed in all patients. The corneal topography of each was measured before surgery and one week, one month, and three months after surgery by computer-assisted videokeratoscopy. RESULTS: A statistically significant central corneal steepening (average, 0,9 D , p<0,001 was noted one week after surgery. The total corneal astigmatism had a significant increase in the first postoperative month (p=0,007. All these topographic changes persisted for the first month but returned to preoperative values three months after the surgery. CONCLUSION: Pars plana vitrectomy with scleral buckling was found to induce transient changes in corneal topography.

  10. Evaluation of post buckling residual strength of H section steel column for both ends are fixed condition

    Energy Technology Data Exchange (ETDEWEB)

    Abebe, Daniel Yeshewawork; Choi, Jae Hyouk; Kim, Jin Hyang [Chosun Univ., Gwangju (Korea, Republic of)

    2013-01-15

    Progressive collapse is a chain reaction of failures propagating throughout a portion of a structure that is disproportionate to the original local failure. When column members are subjected to unexpected load (compression load), they will buckle it the applied load is greater than the critical load the induces buckling. The post buckling strength of the columns will decrease rapidly, but if there is enough residual strength, the members will absorb the potential energy generated by the impact load to prevent progressive collapse. Thus, it is necessary to identify the relationship of the load deformation of a column member in the progressive collapse of a structure up to final collapse. In this study, we carried out nonlinear FEM analysis and based on deflection theory, we investigated the load deformation relationship of H section steel columns when both ends were fixed.

  11. Thermal buckling and progressive ovalization of pipes: experiences at the TTS sodium test facility and their analysis

    Energy Technology Data Exchange (ETDEWEB)

    Watashi, K. [PNC, Ibaraki (Japan). OEC; Iwata, K. [PNC, Ibaraki (Japan). OEC

    1995-01-01

    Two remarkable thermally induced deformation mechanisms of pipes which may have serious effects on structural integrity, thermal buckling and progressive ovalization, were observed on the horizontal piping of the sodium test facility, called TTS, with which cyclic thermal transient tests of structures had been conducted. The thermal buckling, which was caused by thermal stratification, occurred at a circumferentially welded region of the pipe where a noticeable geometrical imperfection existed. The buckling was analyzed comprehensively for this pipe, using both the finite element method and a simplified method based on Gellin`s analysis results. The predictions were reasonable and gave confidence in accounting for the sodium leakage encountered at the TTS. It was also demonstrated by the finite element analyses that the progressive ovalization of the pipe cross-section from a circular to a downward triangular shape can be caused by cyclic thermal stratification under the existence of cover gas in the pipe. ((orig.)).

  12. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu; Cao, Hong; Cu, Fenglong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Lei, Youying [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Tan, Yang [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  13. Glucocorticoid-induced effects on the growth plate and the IGF system

    NARCIS (Netherlands)

    Smink, Jeske Johanna

    2003-01-01

    Glucocorticoids (GCs) are widely used as anti-inflammatory and immunosuppressive drugs. The use of these potent drugs, however, often results in side-effects, such as growth retardation in children. For already many years, this GC-induced growth retardation is suggested to involve impaired action of

  14. Initial approach to assess lateral buckling behavior: comparison between design and operational condition of offshore pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Familiar Solano, Rafael; Reis Antunes, Bruno; Santos Hansen, Alexandre [PETROBRAS, Rio de Janeiro, (Brazil)

    2010-07-01

    Offshore pipelines can be subject to lateral buckling; some strategies are applied to prevent buckle initiation by monitoring the buckling behaviour. Some pipelines have been modified by PETROBRAS with triggers and sleepers; and distributed buoyancies have been added along the pipeline route. This paper investigated the thermo-mechanical design of the pipeline to avoid buckling and its consequences. Both planned buckles at dual sleepers and at distributed buoyancy modules and unplanned buckles were studied. Comparisons between the results obtained in design with finite element analysis and observed during operation with sidescan images were made. Seven planned buckles and two unplanned buckles were mapped and analyzed. It was found that the maximum stress, strain and fatigue damage at the buckle locations were fairly low. The mapping tests showed that the lengths and amplitudes of the buckles were compatible with lateral buckles in the design of pipelines.

  15. Dynamic torsional buckling of multi-walled carbon nanotubes embedded in an elastic medium

    Institute of Scientific and Technical Information of China (English)

    Chengqi Sun; Kaixin Liu; Guoxing Lu

    2008-01-01

    In this paper the dynamic torsional buckling of multi-walled carbon nanotubes (MWNTs) embedded in an elastic medium is studied by using a continuum mechan-ics model. By introducing initial imperfections for MWNTs and applying the preferred mode analytical method, a buck-ling condition is derived for the buckling load and associ-ated buckling mode. In particular, explicit expressions are obtained for embedded double-walled carbon nanotubes (DWNTs). Numerical results show that, for both the DWNTs and embedded DWNTs, the buckling form shifts from the lower buckling mode to the higher buckling mode with increasing the buckling load, but the buckling mode is invari-able for a certain domain of the buckling load. It is also indicated that, the surrounding elastic medium generally has effect on the lower buckling mode of DWNTs only when compared with the corresponding one for individual DWNTs.

  16. Direct observation of binding stress-induced crystalline orientation change in piezoelectric plate sensors

    Science.gov (United States)

    Wu, Wei; Shih, Wei-Heng; Shih, Wan Y.

    2016-03-01

    We have examined the mechanism of the detection resonance frequency shift, Δf/f, of a 1370 μm long and 537 μm wide [Pb(Mg1/3Nb2/3)O3]0.65[PbTiO3]0.35 (PMN-PT) piezoelectric plate sensor (PEPS) made of a 8-μm thick PMN-PT freestanding film. The Δf/f of the PEPS was monitored in a three-step binding model detections of (1) binding of maleimide-activated biotin to the sulfhydryl on the PEPS surface followed by (2) binding of streptavidin to the bound biotin and (3) subsequent binding of biotinylated probe deoxyribonucleic acid to the bound streptavidin. We used a PMN-PT surrogate made of the same 8-μm thick PMN-PT freestanding film that the PEPS was made of but was about 1 cm in length and width to carry out crystalline orientation study using X-ray diffraction (XRD) scan around the (002)/(200) peaks after each of the binding steps. The result of the XRD studies indicated that each binding step caused the crystalline orientation of the PMN-PT thin layer to switch from the vertical (002) orientation to the horizontal (200) orientation, and most of the PEPS detection Δf/f was due to the change in the lateral Young's modulus of the PMN-PT thin layer as a result of the crystalline orientation change.

  17. 49 CFR 179.400-6 - Bursting and buckling pressure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bursting and buckling pressure. 179.400-6 Section 179.400-6 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... and 107A) § 179.400-6 Bursting and buckling pressure. (a) [Reserved] (b) The outer jacket of the...

  18. Silicon active microvalves using buckled membranes for actuation

    NARCIS (Netherlands)

    Popescu, D.O.; Dascula, Dan C.; Elwenspoek, Michael Curt; Lammerink, Theodorus S.J.

    1995-01-01

    Design considerations and experiments have been made for obtaining a new type of active microvalves using silicon buckled membranes. The properties of the buckled membranes permitting to obtain high deflections and to actuate them more convenient are demonstrated. A thermal actuation using an

  19. On the buckling of an elastic rotating beam

    DEFF Research Database (Denmark)

    Furta, Stanislaw D.; Kliem, Wolfhard; Pommer, Christian

    1997-01-01

    A nonlinear model is developed, which describes the buckling phenomena of an elastic beam clamped to the interior of a rotating wheel. We use a power series method to obtain an approximate expression of the buckling equation and compare this with previous results in the literature. The linearized...

  20. Buckling of Carbon Nanotubes: A State of the Art Review

    Directory of Open Access Journals (Sweden)

    Hiroyuki Shima

    2011-12-01

    Full Text Available The nonlinear mechanical response of carbon nanotubes, referred to as their “buckling” behavior, is a major topic in the nanotube research community. Buckling means a deformation process in which a large strain beyond a threshold causes an abrupt change in the strain energy vs. deformation profile. Thus far, much effort has been devoted to analysis of the buckling of nanotubes under various loading conditions: compression, bending, torsion, and their certain combinations. Such extensive studies have been motivated by (i the structural resilience of nanotubes against buckling, and (ii the substantial influence of buckling on their physical properties. In this contribution, I review the dramatic progress in nanotube buckling research during the past few years.

  1. Buckling Instability in Liquid Crystalline Physical Gels

    OpenAIRE

    Verduzco, Rafael; Meng, Guangnan; Kornfield, Julia A; Meyer, Robert B.

    2006-01-01

    In a nematic gel we observe a low-energy buckling deformation arising from soft and semisoft elastic modes. We prepare the self-assembled gel by dissolving a coil–side-group liquid-crystalline polymer–coil copolymer in a nematic liquid crystal. The gel has long network strands and a precisely tailored structure, making it ideal for studying nematic rubber elasticity. Under polarized optical microscopy we observe a striped texture that forms when gels uniformly aligned at 35 °C are cooled to r...

  2. Computational modelling of buckling of woven fabrics

    CSIR Research Space (South Africa)

    Anandjiwala, RD

    2006-02-01

    Full Text Available generalized model of a plain woven fabric and subsequently for modifying Huang’s extension analysis. Although, Kang et al have utilized Huang’s bilinearity in their model, the obvious inconsistency of applying the classical beam theory to the textile problem... couple which influences the behaviour of textile materials, such as yarns and fabrics. This implies that M a = 0 and B = B*. When substituting these values in Equations (4) to (16) equations are obtained that are similar to the buckling of a strut...

  3. Generation of buckle folds in Naga fold thrust belt, north-east India

    Science.gov (United States)

    Saha, B.; Dietl, C.

    2009-04-01

    Naga fold thrust belt (NFTB), India, formed as a result of northward migration of the Indian plate initiated in Eocene and its subsequent collision with the Burmese plate during Oligocene. The NW-SE oriented compression generated a spectrum of structures; among them, we intend to focus on the folds- varying from gentle to tight asymmetric in geometry. Large recumbent folds are often associated with thrusting. Buckle folds forming under shallow crustal conditions are frequently reported from NFTB. Buckle folding occurs mainly within sandstones with intercalated shale layers which are in the study area typical for the Barail, Surma and Tipam Groups. We have tried to explain the controlling factors behind the variation of the buckle fold shapes and their varying wavelengths throughout the fold thrust belt with the aid of analogue (sand box) modelling. It is undoubted that competence contrast along with the layer parallel compressive stress are the major influencing factors in generation of buckle folds. Schmalholz and Podladchikov (1999) and Jeng et al. (2002) have shown that when low strain rate and low temperature are applicable, not only the viscosity contrast, but also the elasticity contrast govern the geometry of the developing buckle folds. Rocks deforming under high temperature and high pressure deform in pure viscous manner, whereas, rocks undergoing less confining stress and less temperature, are subjected to pure elastic deformation. However, they are the end members, and most of the deformations are a combination of these two end members, i.e. of viscoelastic nature. Our models are made up of sieved sand (0.5 mm grain size) and mica layers (1-5 mm) This interlayering imparts a mechanical anisotropy in the model. Mica is not a pure viscous material, rather it displays more elastic behaviour. The mica layers in the model produce bedding parallel slip during shortening through internal reorganization of the individual mica crystals leading to the thickening

  4. Air bubble-induced detachment of positively and negatively charged polystyrene particles from collector surfaces in a parallel-plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; Van der Mei, HC; Busscher, HJ

    2000-01-01

    Electrostatic interactions between colloidal particles and collector surfaces were found tcr be important in particle detachment as induced by the passage of air bubbles in a parallel-plate Row chamber. Electrostatic interactions between adhering particles and passing air bubbles, however, a-ere

  5. Air bubble-induced detachment of positively and negatively charged polystyrene particles from collector surfaces in a parallel-plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; Van der Mei, HC; Busscher, HJ

    2000-01-01

    Electrostatic interactions between colloidal particles and collector surfaces were found tcr be important in particle detachment as induced by the passage of air bubbles in a parallel-plate Row chamber. Electrostatic interactions between adhering particles and passing air bubbles, however, a-ere fou

  6. Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, Shamsuddin; Kumar, Dhananjay

    2012-07-31

    Dense Pd, Pd-Cu and Pd-Ag composite membranes on microporous stainless steel substrate (MPSS) were fabricated by a novel electroless plating (EP) process. In the conventional Pd-EP process, the oxidation-reduction reactions between Pd-complex and hydrazine result in an evolution of NH{sub 3} and N{sub 2} gas bubbles. When adhered to the substrate surface and in the pores, these gas bubbles hinder uniform Pd-film deposition which results in dendrite growth leading to poor film formation. This problem was addressed by introducing cationic surfactant in the electroless plating process known as surfactant induced electroless plating (SIEP). The unique features of this innovation provide control of Pd-deposition rate, and Pd-grain size distribution. The surfactant molecules play an important role in the EP process by tailoring grain size and the process of agglomeration by removing tiny gas bubbles through adsorption at the gas-liquid interface. As a result surfactant can tailor a nanocrystalline Pd, Cu and Ag deposition in the film resulting in reduced membrane film thickness. Also, it produces a uniform, agglomerated film structure. The Pd-Cu and Pd-Ag membranes on MPSS support were fabricated by sequential deposition using SIEP method. The pre- and post-annealing characterizations of these membranes (Pd, Pd-Cu and Pd-Ag on MPSS substrate) were carried out by SEM, EDX, XRD, and AFM studies. The SEM images show significant improvement of the membrane surface morphology, in terms of metal grain structures and grain agglomeration compared to the membranes fabricated by conventional EP process. The SEM images and helium gas-tightness studies indicate that dense and thinner films of Pd, Pd-Cu and Pd-Ag membranes can be produced with shorter deposition time using surfactant. H{sub 2} Flux through the membranes fabricated by SIEP shows large improvement compared to those by CEP with comparable permselectivity. Pd-MPSS composite membrane was subjected to test for long term

  7. Global lateral buckling analysis of idealized subsea pipelines

    Institute of Scientific and Technical Information of China (English)

    刘润; 刘文彬; 吴新利; 闫澍旺

    2014-01-01

    In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty, usually high temperature and high pressure are used in the transportation of oil and gas. The differences of temperature and pressure cause additional stress along the pipeline, due to the constraint of the foundation soil, the additional stress can not release freely, when the additional stress is large enough to motivate the submarine pipelines buckle. In this work, the energy method is introduced to deduce the analytical solution which is suitable for the global buckling modes of idealized subsea pipeline and analyze the relationship between the critical buckling temperature, buckling length and amplitude under different high-order global lateral buckling modes. To obtain a consistent formulation of the problem, the principles of virtual displacements and the variation calculus for variable matching points are applied. The finite element method based on elasto-plastic theory is used to simulate the lateral global buckling of the pipelines under high temperature and pressure. The factors influencing the lateral buckling of pipelines are further studied. Based upon some actual engineering projects, the finite element results are compared with the analytical ones, and then the influence of thermal stress, the section rigidity of pipeline, the soil properties and the trigging force to the high order lateral buckling are discussed. The method of applying the small trigging force on pipeline is reliable in global buckling numerical analysis. In practice, increasing the section rigidity of a pipeline is an effective measure to improve the ability to resist the global buckling.

  8. Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-Pasternak substrate via modified strain gradient theory

    Science.gov (United States)

    Jamalpoor, A.; Ahmadi-Savadkoohi, A.; Hosseini-Hashemi, Sh

    2016-10-01

    This paper deals with the theoretical analysis of free vibration and biaxial buckling of magneto-electro-elastic (MEE) microplate resting on Kelvin-Voigt visco-Pasternak foundation and subjected to initial external electric and magnetic potentials, using modified strain gradient theory (MSGT). Kirchhoff plate model and Hamilton’s principle are employed to extract the governing equations of motion. Governing equations were analytically solved to obtain clear closed-form expression for complex natural frequencies and buckling loads using Navier’s approach. Numerical results are presented to reveal variations of natural frequency and buckling load ratio of MEE microplate against different amounts of the length scale parameter, initial external electric and magnetic potentials, aspect ratio, damping and transverse and shear stiffness parameters of the visco-Pasternak foundation, length to thickness ratio, microplate thickness and higher modes. Numerical results of this study illustrate that by increasing thickness-to-material length scale parameter ratio, both natural frequency and buckling load ratio predicted by MSGT and modified couple stress theory are reduced because the non-dimensional length scale parameter tends to decrease the stiffness of structures and make them more flexible. In addition, results show that initial external electric and initial external magnetic potentials have no considerable influence on the buckling load ratio and frequency of MEE microplate as the microplate thickness increases.

  9. Optical Evaluation on Delamination Buckling of Composite Laminate with Impact Damage

    Directory of Open Access Journals (Sweden)

    J. T. Ruan

    2014-01-01

    Full Text Available The delamination buckling and growth behaviors of a cross-ply composite laminate with damage induced by low velocity impact are investigated optically using three-dimensional digital image correlation (3D-DIC method. For the 3D deformation measurement, the 3D-DIC setup comprised of two CCD cameras was adopted. The rectangle specimen was impacted under the impact energy of 7.0 J using a drop-weight testing machine, and the impact damage was detected by means of X-ray nondestructive evaluation (NDE technique. The 3D deformation field measured with the optical system clearly reveals that the delamination buckling characteristic of the specimen mainly appears local deformation mode under compression after impact test. Moreover, the behavior of delamination growth evaluated by the 3D-DIC optical method reasonably agrees with the NDE observed damage result after compression.

  10. Endoilluminator-assisted scleral buckling: Our results

    Directory of Open Access Journals (Sweden)

    Varun Gogia

    2014-01-01

    Full Text Available Aims: The aim was to evaluate the long-term surgical outcomes of endoillumination assisted scleral buckling (EASB in primary rhegmatogenous retinal detachment (RRD. Methods: Twenty-five eyes of 25 patients with primary RRD and proliferative vitreoretinopathy ≤C2 where any preoperative break could not be localised, were included. All patients underwent 25 gauge endoilluminator assisted rhegma localisation. Successful break determination was followed by cryopexy and standard scleral buckling under surgical microscope. Anatomical and functional outcomes were evaluated at the end of 2 years. Results: At least one intraoperative break could be localized in 23 of 25 (92% eyes. Median age of these patients was 46 years (range: 17-72. Thirteen eyes (56.52% were phakic, 8 (34.78% were pseudophakic and 2 (8.6% were aphakic. Anatomical success (attachment of retina was achieved in 22 (95.63% of 23 eyes with EASB. All eyes remained attached at the end of 2 years. Significant improvement in mean visual acuity (VA was achieved at the end of follow-up (1.09 ± 0.46 log of the minimum angle of resolution [logMAR] compared with preoperative VA (1.77 ± 0.28 logMAR (P < 0.001. Conclusion: EASB can be considered an effective alternative to vitreoretinal surgery in simple retinal detachment cases with the added advantage of enhanced microscopic magnification and wide field illumination.

  11. Structure of twisted and buckled bilayer graphene

    Science.gov (United States)

    Jain, Sandeep K.; Juričić, Vladimir; Barkema, Gerard T.

    2017-03-01

    We study the atomic structure of twisted bilayer graphene, with very small mismatch angles (θ ∼ {0.28}0), a topic of intense recent interest. We use simulations, in which we combine a recently presented semi-empirical potential for single-layer graphene, with a new term for out-of-plane deformations, (Jain et al 2015 J. Phys. Chem. C 119 9646) and an often-used interlayer potential (Kolmogorov et al 2005 Phys. Rev. B 71 235415). This combination of potentials is computationally cheap but accurate and precise at the same time, allowing us to study very large samples, which is necessary to reach very small mismatch angles in periodic samples. By performing large scale atomistic simulations, we show that the vortices appearing in the Moiré pattern in the twisted bilayer graphene samples converge to a constant size in the thermodynamic limit. Furthermore, the well known sinusoidal behavior of energy no longer persists once the misorientation angle becomes very small (θ \\lt {1}0). We also show that there is a significant buckling after the relaxation in the samples, with the buckling height proportional to the system size. These structural properties have direct consequences on the electronic and optical properties of bilayer graphene.

  12. Introduction to Analysis and Design of Plate Panels

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Lützen, Marie

    The present notes cover plate theory dealing with bending, vibrations, elastic buckling and ultimate strength. The plate structures considered are isotropic, orthotropic and stiffened plates made of metallic materials. The main objective of the notes is to give an introduction to plates and plate....... Comments and amendments received by the students in the course have had a significant influence on the present layout. A special thanks to Torben Christiansen for careful proof-readings of the examples and valuable improvements.......¨utzen in 2002. It has now been amended and extended with ultimate strength of plates, an introduction to the theory of shells and additional examples to cover the lecture material for the course ”41215 Plate and Shell Structures” at the Department of Mechanical Engineering, the Technical University of Denmark...

  13. Flutter and Thermal Buckling Analysis for Composite Laminated Panel Embedded with Shape Memory Alloy Wires in Supersonic Flow

    Directory of Open Access Journals (Sweden)

    Chonghui Shao

    2016-01-01

    Full Text Available The flutter and thermal buckling behavior of laminated composite panels embedded with shape memory alloy (SMA wires are studied in this research. The classical plate theory and nonlinear von-Karman strain-displacement relation are employed to investigate the aeroelastic behavior of the smart laminated panel. The thermodynamic behaviors of SMA wires are simulated based on one-dimensional Brinson SMA model. The aerodynamic pressure on the panel is described by the nonlinear piston theory. Nonlinear governing partial differential equations of motion are derived for the panel via the Hamilton principle. The effects of ply angle of the composite panel, SMA layer location and orientation, SMA wires temperature, volume fraction and prestrain on the buckling, flutter boundary, and amplitude of limit cycle oscillation of the panel are analyzed in detail.

  14. Establishing a cellular FRET-based fluorescence plate reader assay to monitor proNGF-induced cross-linking of sortilin and the neurotrophin receptor p75(NTR)

    DEFF Research Database (Denmark)

    Skeldal, Sune; Kjaergaard, Maj M; Alwasel, Saleh

    2015-01-01

    the vps10p domain receptor sortilin and the neurotrophin receptor p75(NTR). However, proNGF-induced receptor complex formation has been difficult to directly assess other than by western blotting. We here describe a fluorescence resonance energy transfer (FRET) based fluorescence plate reader assay...... to monitor the interaction between fluorescently tagged sortilin and p75(NTR) in live cells. The method is based on a standard fluorescent plate reader found in many biochemical laboratories and the results are evaluated using a microscopy-based quantified sensitized acceptor emission FRET approach making...

  15. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    Science.gov (United States)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M. S.; Guest, James K.

    2016-05-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  16. Nonlocal free vibration in the pre- and post-buckled states of magneto-electro-thermo elastic rectangular nanoplates with various edge conditions

    Science.gov (United States)

    Ansari, R.; Gholami, R.

    2016-09-01

    Considering the small scale effect together with the influences of transverse shear deformation, rotary inertia and the magneto-electro-thermo-mechanical coupling, the linear free vibration of magneto-electro-thermo-elastic (METE) rectangular nanoplates with various edge supports in pre- and post-buckled states is investigated herein. It is assumed that the METE nanoplate is subjected to the external in-plane compressive loads in combination with magnetic, electric and thermal loads. The Mindlin plate theory, von Kármán hypothesis and the nonlocal theory are utilized to develop a size-dependent geometrically nonlinear plate model for describing the size-dependent linear and nonlinear mechanical characteristics of moderately thick METE rectangular nanoplates. The nonlinear governing equations and the corresponding boundary conditions are derived using Hamilton’s principle which are then discretized via the generalized differential quadrature method. The pseudo-arc length continuation approach is used to obtain the equilibrium postbuckling path of METE nanoplates. By the obtained postbuckling response, and taking a time-dependent small disturbance around the buckled configuration, and inserting them into the nonlinear governing equations, an eigenvalue problem is achieved from which the frequencies of pre- and post-buckled METE nanoplates can be calculated. The effects of nonlocal parameter, electric, magnetic and thermal loadings, length-to-thickness ratio and different boundary conditions on the free vibration response of METE rectangular nanoplates in the pre- and post-buckled states are highlighted.

  17. Optical manifestation of buckled configurations in graphene-like materials

    Science.gov (United States)

    Kazemlou, V.; Phirouznia, A.; Jamshidi-Ghaleh, K.

    2017-04-01

    In the present study, the effects of the configuration buckling on dielectric function of silicene, germanene and stanene are investigated. The behavior of the optical absorption spectrum and the refractive index dispersion are studied using the density functional theory in terms of incident photon energy at different buckling heights. The results show that for a fixed bond length, increasing the unit cell buckling height, increases the absorption and the refractive index in silicene and germanene but decreases in stanene. In addition, the absorption peaks shift toward the longer wavelengths (red shift) in the case of silicene and germanene by increasing the buckling height. For clear understanding of the mentioned results, the behavior of the optical absorption spectrum and refractive index dispersion at different buckling heights are studied within the present work. In the case of the silicene and germanene reduction of the band gap with increasing the buckling height could be regarded as the origin of this red shift. Meanwhile unlike the silicene and germanene, band-structure reshaping in stanene could explain the stanene blue shift as a result of the buckling height increment.

  18. The electromechanical response of silicon nanowires to buckling mode transitions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Chee Chung; Liao, Kin [Division of Bioengineering, Nanyang Technological University (Singapore); Reboud, Julien; Neuzil, Pavel; Soon, Jeffrey; Agarwal, Ajay; Balasubramanian, Naranayan, E-mail: pavel@kist-europe.de, E-mail: askliao@ntu.edu.sg [Institute of Microelectronics, A-STAR (Agency for Science, Technology, and Research) (Singapore)

    2010-10-08

    Here we show how the electromechanical properties of silicon nanowires (NWs) are modified when they are subjected to extreme mechanical deformations (buckling and buckling mode transitions), such as those appearing in flexible devices. Flexible devices are prone to frequent dynamic stress variations, especially buckling, while the small size of NWs could give them an advantage as ultra-sensitive electromechanical stress sensors embedded in such devices. We evaluated the NWs post-buckling behavior and the effects of buckling mode transition on their piezoresistive gauge factor (GF). Polycrystalline silicon NWs were embedded in SiO{sub 2} microbridges to facilitate concurrent monitoring of their electrical resistance without problematic interference, while an external stylus performed controlled deformations of the microbridges. At points of instability, the abrupt change in the buckling configuration of the microbridge corresponded to a sharp resistance change in the embedded NWs, without altering the NWs' GF. These results also highlight the importance of strategically positioning the NW in the devices, since electrical monitoring of buckling mode transitions is feasible when the deformations impact a region where the NW is placed. The highly flexible NWs also exhibited unusually large fracture strength, sustaining tensile strains up to 5.6%; this will prove valuable in demanding flexible sensors.

  19. Elastic Buckling Behaviour of General Multi-Layered Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Rong Ming Lin

    2015-04-01

    Full Text Available Elastic buckling behaviour of multi-layered graphene sheets is rigorously investigated. Van der Waals forces are modelled, to a first order approximation, as linear physical springs which connect the nodes between the layers. Critical buckling loads and their associated modes are established and analyzed under different boundary conditions, aspect ratios and compressive loading ratios in the case of graphene sheets compressed in two perpendicular directions. Various practically possible loading configurations are examined and their effect on buckling characteristics is assessed. To model more accurately the buckling behaviour of multi-layered graphene sheets, a physically more representative and realistic mixed boundary support concept is proposed and applied. For the fundamental buckling mode under mixed boundary support, the layers with different boundary supports deform similarly but non-identically, leading to resultant van der Waals bonding forces between the layers which in turn affect critical buckling load. Results are compared with existing known solutions to illustrate the excellent numerical accuracy of the proposed modelling approach. The buckling characteristics of graphene sheets presented in this paper form a comprehensive and wholesome study which can be used as potential structural design guideline when graphene sheets are employed for nano-scale sensing and actuation applications such as nano-electro-mechanical systems.

  20. The Generation of Human Induced Pluripotent Stem Cells from Blood Cells: An Efficient Protocol Using Serial Plating of Reprogrammed Cells by Centrifugation

    Directory of Open Access Journals (Sweden)

    Youngkyun Kim

    2016-01-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs have demonstrated great potential for differentiation into diverse tissues. We report a straightforward and highly efficient method for the generation of iPSCs from PBMCs. By plating the cells serially to a newly coated plate by centrifugation, this protocol provides multiple healthy iPSC colonies even from a small number of PBMCs. The generated iPSCs expressed pluripotent markers and differentiated into all three germ layer lineages. The protocol can also be used with umbilical cord blood mononuclear cells (CBMCs. In this study, we present a simple and efficient protocol that improved the yield of iPSCs from floating cells such as PBMCs and CBMCs by serial plating and centrifugation.

  1. The Generation of Human Induced Pluripotent Stem Cells from Blood Cells: An Efficient Protocol Using Serial Plating of Reprogrammed Cells by Centrifugation.

    Science.gov (United States)

    Kim, Youngkyun; Rim, Yeri Alice; Yi, Hyoju; Park, Narae; Park, Sung-Hwan; Ju, Ji Hyeon

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) have demonstrated great potential for differentiation into diverse tissues. We report a straightforward and highly efficient method for the generation of iPSCs from PBMCs. By plating the cells serially to a newly coated plate by centrifugation, this protocol provides multiple healthy iPSC colonies even from a small number of PBMCs. The generated iPSCs expressed pluripotent markers and differentiated into all three germ layer lineages. The protocol can also be used with umbilical cord blood mononuclear cells (CBMCs). In this study, we present a simple and efficient protocol that improved the yield of iPSCs from floating cells such as PBMCs and CBMCs by serial plating and centrifugation.

  2. Validating the BTrackS Balance Plate as a low cost alternative for the measurement of sway-induced center of pressure.

    Science.gov (United States)

    O'Connor, Shawn M; Baweja, Harsimran S; Goble, Daniel J

    2016-12-08

    The BTrackS Balance Plate (BBP) is a low-cost force plate that provides objective balance assessment and true portability for the user. Given that this technology is relatively new, the purpose of the present study was to provide the first center of pressure (COP) validation of the BBP. Two BBP devices (one new and one used) were compared with a laboratory-grade force plate (LFP) during simultaneous collection of COP that was induced by an inverted pendulum device with human-like sway characteristics. The results of this study showed almost perfect agreement between the BBP devices and the LFP (ICC>0.999), as well as a high degree of BBP accuracy (cost solution for objective balance testing in the laboratory or clinic.

  3. ANALYSIS OF DYNAMICAL BUCKLING AND POST BUCKLING FOR BEAMS BY FINITE SEGMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    YIN Xue-gang; DU Si-yi; HU Ji-yun; DING Jian-ping

    2005-01-01

    Based on the multi-rigid body discretization model, namely, finite segment model,a chain multi-rigid-body-hinge-spring system model of a beam was presented,then a nonlinear parametrically exacted vibration equation of multi-degrees of freedom system was established using the coordination transformation method, and its resonance fields were derived by the restriction parameter method, that is, the dynamical buckling analysis of the beam. Because the deformation of a beam is not restricted by the discrete model and dynamic equation, the post buckling analysis can be done in above math model. The numerical solutions of a few examples were obtained by direct integrated method, which shows that the mechanical and math model gotten is correct.

  4. Electromechanical Dynamics Analysis of Buckling Microstructure For Micromirror

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jianyuan; Chen, Guimin; Fan, Guobin [Xidian Univ., Jiangxi (China)

    2002-11-15

    The electromechanical dynamics characteristic and emulation of buckling microstructure for digital micromirror device are studied. The microstructure of digital micromirror device based on buckling theory is designed and its electromechanical dynamics model is established. The hidden functions in the dynamics model are found out by numerical methods such as Runge-Kutta method and Finite Element method. A numerical emulation to the whole motion differential equation has been presented, and a continuous angular displacement curve of micro-reflectmirror is obtained. At last, it is concluded that the buckling microstructure has an advantage of light beam stability.

  5. Buckling localization in a cylindrical panel under axial compression

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum...

  6. Buckling of carbon nanotubes wrapped by polyethylene molecules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q., E-mail: Q_Wang@Umanitoba.c [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)

    2011-01-17

    The discovery of a buckling instability of a single-walled carbon nanotube wrapped by a polyethylene molecule subjected to compression is reported through molecular mechanics simulations. A decrease up to 44% in the buckling strain of the nano-structure owing to the van der Waals interaction between the two molecules is uncovered. A continuum model is developed to calculate both the interaction between the tube and the polymer and the decreased buckling strain of the structure by fitting the molecular mechanics results.

  7. Buckling of carbon nanotubes wrapped by polyethylene molecules

    Science.gov (United States)

    Wang, Q.

    2011-01-01

    The discovery of a buckling instability of a single-walled carbon nanotube wrapped by a polyethylene molecule subjected to compression is reported through molecular mechanics simulations. A decrease up to 44% in the buckling strain of the nano-structure owing to the van der Waals interaction between the two molecules is uncovered. A continuum model is developed to calculate both the interaction between the tube and the polymer and the decreased buckling strain of the structure by fitting the molecular mechanics results.

  8. Buckling Analysis of Debonded Sandwich Panel Under Compression

    Science.gov (United States)

    Sleight, David W.; Wang, John T.

    1995-01-01

    A sandwich panel with initial through-the-width debonds is analyzed to study the buckling of its faceskin when subject to an in-plane compressive load. The debonded faceskin is modeled as a beam on a Winkler elastic foundation in which the springs of the elastic foundation represent the sandwich foam. The Rayleigh-Ritz and finite-difference methods are used to predict the critical buckling load for various debond lengths and stiffnesses of the sandwich foam. The accuracy of the methods is assessed with a plane-strain finite-element analysis. Results indicate that the elastic foundation approach underpredicts buckling loads for sandwich panels with isotropic foam cores.

  9. The postbuckling analysis of laminated circular plate with elliptic delamination

    Science.gov (United States)

    Chen, Deliang; Chen, Changping; Fu, Yiming

    2011-01-01

    Based on the Von Karman plate theory, considering the effect of transverse shear deformation, and using the method of the dissociated three regions, the postbuckling governing equations for the axisymmetric laminated circular plates with elliptical delamination are derived. By using the orthogonal point collocation method, the governing equations, boundary conditions and continuity conditions are transformed into a group of nonlinear algebraically equation and the equations are solved with the alternative method. In the numerical examples, the effects of various elliptical in shape, delamination depth and different material properties on buckling and postbuckling of the laminated circular plates are discussed and the numerical results are compared with available data.

  10. Model Test Based Soil Spring Model and Application in Pipeline Thermal Buckling Analysis

    Institute of Scientific and Technical Information of China (English)

    GAO Xi-feng; LIU Run; YAN Shu-wang

    2011-01-01

    The buckling of submarine pipelines may occur due to the action of axial soil frictional force caused by relative movement of soil and pipeline,which is induced by the thermal and internal pressure.The likelihood of occurrence of this buckling phenomenon is largely determined by soil resistance.A series of large-scale model tests were carried out to facilitate the establishment of substantial data base for a variety of burial pipeline relationships.Based on the test data,nonlinear soil spring can be adopted to simulate the soil behavior during the pipeline movement.For uplift resistance,an ideal elasticity plasticity model is recommended in the case of H/D (depth-to-diameter ratio)>5 and an elasticity softened model is recommended in the case of H/D≤5.The soil resistance along the pipeline axial direction can be simulated by an ideal elasticity plasticity model.The numerical analyzing results show that the capacity of pipeline against thermal buckling decreases with its initial imperfection enlargement and increases with the burial depth enhancement.

  11. Buckling of Bucket Foundations During Installation

    DEFF Research Database (Denmark)

    Madsen, Søren

    in order to reduce the cost of energy. This limits the on land application due to transportation limitations and unwillingness from prospect neighbours. Thus, offshore wind energy started developing over the last couple of years. Although installing the wind turbines offshore resolves the before men tioned...... issues, it brings up the cost of energy mainly due to increased installation and maintenance costs. A very large part—up to 30–50% using current technology—of the installation cost origins from the expenses related to the installation of foundations. A new foundation concept—the bucket foundation...... the suction assisted installation process. In this thesis, the phenomenon of buckling of the bucket foundation during installation is investigated by means of Finite Element Analysis. The influence of boundary conditions on the bucket foundation is adressed as well as the effect of including the surrounding...

  12. Forced Vibrations of Silos Leading to Buckling

    Science.gov (United States)

    FLORES, FERNANDO G.; GODOY, LUIS A.

    1999-07-01

    The large-amplitude force vibrations of steel thin-walled silos when empty are investigated. The basic geometry configuration modelled is a cylinder clamped at the bottom with a top conical roof. Wind pressure distributions are assumed as non-axisymmetric in the circumferential direction and with a rectangular impulse or step distribution in time. Instability is identified from finite-element computations of the time response of the shell using a criterion due to Budianski and Roth. Results are computed for silos made with plain as well as with corrugated sheets, and the influences of geometric imperfections and the stiffening due to the roof are included in the analysis. The problems are also modelled with static pressures using both continuation techniques and bifurcation analysis from a linear fundamental path. Additional results have been obtained to estimate the dynamic buckling load for step loading using energy procedures. All results are computed using finite-element codes developed by the authors.

  13. Advances in Shell Buckling: Theory and Experiments

    Science.gov (United States)

    Thompson, J. Michael T.

    In a recent feature article in this journal, coauthored by Gert van der Heijden, I described the static-dynamic analogy and its role in understanding the localized post-buckling of shell-like structures, looking exclusively at integrable systems. We showed the true significance of the Maxwell energy criterion load in predicting the sudden onset of "shock sensitivity" to lateral disturbances. The present paper extends the survey to cover nonintegrable systems, such as thin compressed shells. These exhibit spatial chaos, generating a multiplicity of localized paths (and escape routes) with complex snaking and laddering phenomena. The final theoretical contribution shows how these concepts relate to the response and energy barriers of an axially compressed cylindrical shell. After surveying NASA's current shell-testing programme, a new nondestructive technique is proposed to estimate the "shock sensitivity" of a laboratory specimen that is in a compressed metastable state before buckling. A probe is used to measure the nonlinear load-deflection characteristic under a rigidly applied lateral displacement. Sensing the passive resisting force, it can be plotted in real time against the displacement, displaying an equilibrium path along which the force rises to a maximum and then decreases to zero: having reached the free state of the shell that forms a mountain-pass in the potential energy. The area under this graph gives the energy barrier against lateral shocks. The test is repeated at different levels of the overall compression. If a symmetry-breaking bifurcation is encountered on the path, computer simulations show how this can be suppressed by a controlled secondary probe tuned to deliver zero force on the shell.

  14. Determining the elastic modulus of thin films using a buckling-based method: computational study

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Xiupeng; Cao Yanping; Li Bo; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Jiang Hanqing [Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287 (United States); Huang, Yonggang Y, E-mail: caoyanping@tsinghua.edu.c, E-mail: fengxq@tsinghua.edu.c [Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2009-09-07

    The buckling mode of a thin film lying on a soft substrate has been used to determine the elastic modulus of thin films and one-dimensional objects (e.g. nanowires and nanotubes). In this paper, dimensional analysis and three-dimensional nonlinear finite element computations have been made to investigate the buckling of a film with finite width bonded to a compliant substrate. Our study demonstrates that the effect of Poisson's ratio of the film can be neglected when its width-thickness ratio is smaller than 20. For wider films, omitting the influence of Poisson's ratio may lead to a significant systematic error in the measurement of the Young's modulus and, therefore, the film should be treated as a plate. It is also found that the assumption of the uniform interfacial normal stress along the width of the film made in the theoretical analysis does not cause an evident error, even when its width is comparable to its thickness. Based on the computational results, we further present a simple expression to correlate the buckling wavelength with the width and thickness of the film and the material properties (Young's moduli and Poisson's ratios) of the film and substrate, which has a similar form to that in the classical plane-strain problem. The fundamental solutions reported here are not only very accurate in a broad range of geometric and material parameters but also convenient for practical use since they do not involve any complex calculation.

  15. Study of Buckling Restrained Braces in Steel Frame Building

    Directory of Open Access Journals (Sweden)

    Mr. Y. D. Kumbhar

    2014-08-01

    Full Text Available Conventional braces have limited deformation ductility capacity, and exhibit unsymmetrical hysteretic cycles, with marked strength deterioration when loaded in compression. To overcome the above mentioned problems, a new type of brace was developed in Japan called as buckling restrained braces, designated as BRB’s. These braces are designed such that buckling is inhibited to occur, exhibiting adequate behavior and symmetrical hysteretic curves under the action of both tensile and compressive cycles, produced by the action of seismic and wind forces. This paper presents experimental results concerning the lateral load carrying capacity of steel frame model by use of buckling restrained brace. This paper also includes the comparative study of lateral load carrying capacity of frame model for bare frame, frame with Conventional brace and frame with buckling restrained brace.

  16. Buckling analysis of a ring stiffened hybrid composite cylinder

    Science.gov (United States)

    Potluri, Rakesh; Eswara Kumar, A.; Navuri, Karteek; Nagaraju, M.; Mojeswara Rao, Duduku

    2016-09-01

    This study aims to understand the response of the ring stiffened cylinders made up of hybrid composites subjected to buckling loads by using the concepts of Design of Experiments (DOE) and optimization by using Finite Element Method (FEM) simulation software Ansys workbench V15. Carbon epoxy and E-glass epoxy composites were used in the hybrid composite. This hybrid composite was analyzed by using different layup angles. Central composite design (CCD) was used to perform design of experiments (D.O.E) and kriging method was used to generate a response surface. The response surface optimization (RSO) was performed by using the method of the multi-objective genetic algorithm (MOGA). After optimization, the best candidate was chosen and applied to the ring stiffened cylinder and eigenvalue buckling analysis was performed to understand the buckling behavior. Best laminate candidates with high buckling strength have been identified. A generalized procedure of the laminate optimization and analysis have been shown.

  17. Scale effects on thermal buckling properties of carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yize, E-mail: wangyize@gmail.co [P.O. Box 137, School of Astronautics, Harbin Institute of Technology, Harbin 150001 (China); Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Li Fengming, E-mail: fmli@hit.edu.c [P.O. Box 137, School of Astronautics, Harbin Institute of Technology, Harbin 150001 (China); Kishimoto, Kikuo [Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2010-11-01

    In this Letter, the thermal buckling properties of carbon nanotube with small scale effects are studied. Based on the nonlocal continuum theory and the Timoshenko beam model, the governing equation is derived and the nondimensional critical buckling temperature is presented. The influences of the scale coefficients, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia are discussed. It can be observed that the small scale effects are significant and should be considered for thermal analysis of carbon nanotube. The nondimensional critical buckling temperature becomes higher with the ratio of length to diameter increasing. Furthermore, for smaller ratios of the length to the diameter and higher mode numbers, the transverse shear deformation and rotary inertia have remarkable influences on the thermal buckling behaviors.

  18. Scleral buckling biomaterials and implants for retinal detachment surgery.

    Science.gov (United States)

    Baino, Francesco

    2010-11-01

    Scleral buckling is a widely used surgical procedure that aims at repairing retinal detachments. Many materials and procedural techniques have been variously proposed and tested in an attempt to find the best combination for providing optimal results to the patient. This review highlights the evolution of scleral buckling implants and chronicles the main advances that have been made in such a context. Specifically, the limitations of the materials and implants fallen in disuse, as well as the advantages of currently adopted devices are critically examined and discussed. Future directions for the research are considered, underlining in particular the great potential carried by the development of accurate mathematical models for describing the postoperative evolution of buckled eye. These analytical models, supported by a comprehensive data set provided by advanced techniques of medical investigations, may become useful tools for helping surgeons to choose, and to design if necessary, the best buckling material and configuration to be used in each specific clinical case.

  19. Uncertain Buckling Load and Reliability of Columns with Uncertain Properties

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    Continuous and finite element methods are utilized to determine the buckling load of columns with material and geometrical uncertainties considering deterministic, stochastic and interval models for the bending rigidity of columns. When the bending rigidity field is assumed to be deterministic......, the ordinary finite element method slightly overestimates the buckling load, and with a very few number of elements high rate of convergence to the exact results is observed. If the bending rigidity field is modelled using random fields, stochastic finite element method is utilized. The discretization...... is performed using weighted intergrals. Then, the buckling load becomes a random variable. The sensitivity of the lower order moments of the buckling load with respect to the mesh size, the correlation length and coefficient of variation of the random field are examined. The reliability of columns designed...

  20. Modeling of plates with multiple anisotropic layers and residual stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Pedersen, Thomas; Thomsen, Erik Vilain

    2016-01-01

    Usually the analytical approach for modeling of plates uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. Based on the stress–strain relation of each layer and balancing stress resultants and bending moments, a general...... multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular clamped plate of anisotropic materials with residual bi-axial stress.From the deflection shape the critical stress for buckling is calculated......, and an excellent agreement between the two models is seen with a relative difference of less than 2% for all calculations. The model was also used to extract the cell capacitance, the parasitic capacitance and the residual stress of a pressure sensor composed of a multilayered plate of silicon and silicon oxide...

  1. The flow of a non-Newtonian fluid induced due to the oscillations of a porous plate

    Directory of Open Access Journals (Sweden)

    S. Asghar

    2004-01-01

    Full Text Available An analytic solution of the flow of a third-grade fluid on a porous plate is constructed. The porous plate is executing oscillations in its own plane with superimposed injection or suction. An increasing or decreasing velocity amplitude of the oscillating porous plate is also examined. It is also shown that in case of third-grade fluid, a combination of suction/injection and decreasing/increasing velocity amplitude is possible as well. Several limiting situations with their implications are given and discussed.

  2. Buckling transition of nematic gels in confined geometry

    OpenAIRE

    Meng, Guangnan; Meyer, Robert B.

    2009-01-01

    A spontaneous buckling transition in thin layers of monodomain nematic liquid crystalline gel was observed by polarized light microscopy. The coupling between the orientational ordering of liquid crystalline solvent and the translational ordering of crosslinked polymer backbones inside the nematic gel contributes to such buckling transition. As the nematic mesogens become more ordered when the gel is cooled down from a higher gelation temperature, the polymeric backbones tend to elongate alon...

  3. LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL

    OpenAIRE

    SREELATHA P.R; ALICE MATHAI

    2012-01-01

    Submarine is a watercraft capable of independent operation under water. Use of submarines includes marine science, offshore industry underwater exploration etc. The pressure hull of submarine is constructed as combination of cylinders and domes. The shell is subjected to very high hydrostatic pressure, which creates large compressive stress resultants. Due to this the structure is susceptible to buckling. The introduction of stiffeners in both directions considerably increases the buckling st...

  4. A Numerical Study on the Effect of Facesheet-Core Disbonds on the Buckling Load of Curved Honeycomb Sandwich Panels

    Science.gov (United States)

    Pineda, Evan J.; Myers, David E.; Bednarcyk, Brett A.; Krivanek, Thomas M.

    2015-01-01

    A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance approach for the next-generation Space Launch System heavy lift vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method. Facesheet and core nodes in a predetermined circular region were detached to simulate a disbond induced via low-speed impact between the outer mold line facesheet and honeycomb core. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. A significant change in the slope of the edge load-deflection response was used to determine the onset of global buckling and corresponding buckling load.

  5. Axisymmetric compressive buckling of multi-walled carbon nanotubes under different boundary conditions

    Institute of Scientific and Technical Information of China (English)

    Cheng-Qi Sun; Kai-Xin Liu; You-Shi Hong

    2012-01-01

    The paper studies the axisymmetric compressive buckling behavior of multi-walled carbon nanotubes (MWNTs) under different boundary conditions based on continuum mechanics model.A buckling condition is derived for determining the critical buckling load and associated buckling mode of MWNTs,and numerical results are worked out for MWNTs with different aspect ratios under fixed and simply supported boundary conditions.It is shown that the critical buckling load of MWNTs is insensitive to boundary conditions,except for nanotubes with smaller radii and very small aspect ratio.The associated buckling modes for different layers of MWNTs are in-phase,and the buckling displacement ratios for different layers are independent of the boundary conditions and the length of MWNTs.Moreover,for simply supported boundary conditions,the critical buckling load is compared with the corresponding one for axial compressive buckling,which indicates that the critical buckling load for axial compressive buckling can be well approximated by the corresponding one for axisymmetric compressive buckling.In particular,for axial compressive buckling of double-walled carbon nanotubes,an analytical expression is given for approximating the critical buckling load.The present investigation may be of some help in further understanding the mechanical properties of MWNTs.

  6. Thermal buckling comparative analysis using Different FE (Finite Element) tools

    Energy Technology Data Exchange (ETDEWEB)

    Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)

    2009-12-19

    High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)

  7. Are buckling force measurements reliable in nocturnal penile tumescence studies?

    Science.gov (United States)

    Nofzinger, E A; Fasiczka, A L; Thase, M E; Reynolds, C F; Frank, E; Jennings, J R; Garamoni, G L; Matzzie, J V; Kupfer, D J

    1993-02-01

    The study of nocturnal penile tumescence (NPT) is frequently used to evaluate male erectile dysfunction. Buckling force, a measure of rigidity, is an important part of this evaluation, but its reliability is unknown. Accordingly, we studied the reliability of buckling force measurement and the stability of "maximum buckling force" between consecutive NPT series repeated in the same subject. For individual subjects, we correlated buckling forces for separate episodes of sleep-related tumescence that were of comparable fullness (0-100%) as rated by a technician's visual estimates. For healthy control subjects, test-retest correlations were > 0.8 both within-night and across study series separated by an average of 70 weeks. In depressed men, correlations within nights were > 0.9, but fell to 0.64 across study series separated by an average of 21 weeks. Despite the high reliability of buckling force measurement, we found little stability of "maximum buckling force" between NPT series for individual subjects. Considerable variability in the maximum degree of penile rigidity was seen over time despite a constant level of reported daytime erectile function. We conclude that although penile rigidity is one of the more important variables in the assessment of male erectile dysfunction and can be measured reliably, the instability of maximum rigidity during sleep-related erections suggests that it is, at best, an imprecise correlate of daytime erectile function.

  8. BUCKLING ANALYSES OF A HEAVY COLUMN CONSIDERATED IN WATER

    Directory of Open Access Journals (Sweden)

    Yeliz PEKBEY

    2008-02-01

    Full Text Available In 1744, the critical buckling load with the assumption of uniform cross-section without weight of column were computed by Euler. Whenever an economical solution is required, the weight of column must be considered for solution of buckling analyses. In literature, the critical buckling load and asymptotic behaviour of heavy column in condition of atmosphere have inverstigated for ten different support types. When this literature is examined, it is stated that the differential equations of for four different suppport types in condition of water is similar to condition of atmosphere. However, the differential equations of other four different suppport types in condition of water is different from to condition of atmosphere. And it is stated that the critical buckling load these different suppport types in condition of water is not calculated from condition of atmosphere. The goals of this paper are to develop self weight buckling of column at its top fixed and lower end fixed-roller supported in condition of water. This paper, presents a analytical method for calculating the critical buckling load of the heavy column.

  9. Combined torsional buckling of multi-walled carbon nanotubes

    Science.gov (United States)

    Lu, Y. J.; Wang, X.

    2006-08-01

    This paper reports the results of an investigation on combined torsional buckling of an individual multi-walled carbon nanotube (MWNT) under combined torque and axial loading. Here, a multiple shell model is adopted and the effect of van der Waals forces between two adjacent tubes is taken into account. According to the ratio of radius to thickness, MWNTs discussed in this paper are classified into three types: thin, thick and nearly solid. The critical shear stress and the combined buckling mode are calculated for three types of MWNTs under combined torque and axial loading. Results carried out show that the buckling mode (m, n) corresponding to the critical shear stress is unique, which is obviously different from the purely axial compression buckling of an individual MWNT. Numerical results also show that the critical shear stresses and the corresponding buckling modes of MWNTs under combined torque and axial loading are dependent on the axial loading form and the types of MWNTs. The new features and meaningful numerical results in the present work on combined buckling of MWNTs under combined torque and axial loading may be used as a useful reference for the designs of nano-drive devices and rotational actuators in which MWNTs act as basic elements.

  10. Flexural-torsional buckling behavior of aluminum alloy beams

    Institute of Scientific and Technical Information of China (English)

    Xiaonong GUO; Zhe XIONG; Zuyan SHEN

    2015-01-01

    This paper presents an investigation on the flexural-torsional buckling behavior of aluminum alloy beams (AAB). First, based on the tests of 14 aluminum alloy beams under concentrated loads, the failure pattern, load- deformation curves, bearing capacity and flexural-torsional buckling factor are studied. It is found that all the beam specimens collapsed in the flexuml-torsional buckling with excessive deformation pattern. Moreover, the span, loading location and slenderness ratio influence the flexural-torsional buckling capacity of beams significantly. Secondly, besides the experiments, a finite element method (FEM) analysis on the flexural-torsional buckling behavior of AAB is also conducted. The main parameters in the FEM analysis are initial imperfection, material property, cross-section and loading scheme. According to the analytical results, it is indicated that the FEM is reasonable to capture mechanical behavior of AAB. Finally, on the basis of the experimental and analytical results, theoretical formulae to estimate the flexural- torsional buckling capacity of AAB are proposed, which could improve the application of present codes for AAB.

  11. Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging

    Science.gov (United States)

    Yang, Xiao-Guang; Leng, Yongjun; Zhang, Guangsheng; Ge, Shanhai; Wang, Chao-Yang

    2017-08-01

    A physics-based Li-ion battery (LIB) aging model accounting for both lithium plating and solid electrolyte interphase (SEI) growth is presented, and is applied to study the aging behavior of a cell undergoing prolonged cycling at moderate operating conditions. Cell aging is found to be linear in the early stage of cycling but highly nonlinear in the end with rapid capacity drop and resistance rise. The linear aging stage is found to be dominated by SEI growth, while the transition from linear to nonlinear aging is attributed to the sharp rise of lithium plating rate. Lithium plating starts to occur in a narrow portion of the anode near the separator after a certain number of cycles. The onset of lithium plating is attributed to the drop of anode porosity associated with SEI growth, which aggravates the local electrolyte potential gradient in the anode. The presence of lithium metal accelerates the porosity reduction, further promoting lithium plating. This positive feedback leads to exponential increase of lithium plating rate in the late stage of cycling, as well as local pore clogging near the anode/separator interface which in turn leads to a sharp resistance rise.

  12. Aeroelastic Deformation and Buckling of Inflatable Wings under Dynamic Loads

    Science.gov (United States)

    Simpson, Andrew; Smith, Suzanne; Jacob, Jamey

    2006-11-01

    Inflatable wings have recently been used to control a vehicle in flight via wing warping. Internal pressure is required to maintain wing shape and externally mounted mechanical actuators are used to asynchronously deform the wing semi-spans for control. Since the rigidity of the inflatable wing varies as a function of inflation pressure, there is a need to relate the wing shape with aerodynamic loads. Via wind tunnel tests, span-wise deformations, twist and flutter have been observed under certain dynamic loading conditions. Photogrammetry techniques are used to measure the static aeroelastic deformation of the wings and videogrammetry is used to examine the dynamic shape changes (flutter). The resulting shapes can be used to determine corresponding aerodynamic characteristics. For particular inflation pressures, buckling can be induced at sufficiently high dynamic loads either through high dynamic pressure or large angle of attack. This results in a set of critical loading parameters. An inflatable winged vehicle would require operation within these limits. The focus of the presentation will be on defining and exploring the unsuitable operating conditions and the effects these conditions have on the operation of the wing.

  13. Methodology for Selection of Optimum Light Stringers in Functionally Graded Panels Designed for Prescribed Fundamental Frequency or Buckling Load

    Science.gov (United States)

    Birman, Victor; Byrd, Larry W.

    2008-02-01

    The interest to functionally graded materials (FGM) and structures has been generated by their potential advantages, including enhanced thermal properties, reduced or eliminated delamination concerns, a potential for an improved stress distribution, etc. Various aspects of the processing, design, micromechanics and analysis of FGM have been outlined in a number of reviews, mentioned here are [1-3]. In particular, functionally graded panels may be advantageous compared to their conventional counterparts in numerous applications. However, a typical FGM panel is asymmetric about its middle plane resulting in lower buckling loads and fundamental frequencies as well as higher stresses and deformations than the counterpart with a symmetric distribution of the same constituents. The reduced stiffness of FGM panels can be compensated by reinforcing them with stringers. For example, metallic stringers at the metal-rich surface of a FGM ceramic-metal panel may provide an efficient solution enabling a designer to increase both buckling loads as well as natural frequencies. The list of studies on optimization of FGM is extensive as could be anticipated for such tailored structural elements. For example, recent papers by Batra and his collaborators present optimization of the natural frequencies of a FGM plate through material grading [4] and through the graded fiber orientation [5]. The present paper is concerned with an optimum design of the system of stringers for a specified FGM panel. The task is to design the lightest system of stringers enabling the panel to achieve prescribed buckling loads or fundamental frequency.

  14. Nonlinear contact between pipeline's outer wall and slip-on buckle arrestor's inner wall during buckling process

    Science.gov (United States)

    Ma, Weilin; Liu, Jiande; Dong, Sheng; Zhang, Xin; Ma, Xiaozhou

    2017-02-01

    In order to theoretically study the buckle propagation of subsea pipelines with slip-on buckle arrestors, a two-dimensional ring model was set up to represent the pipeline and a nonlinear spring model was adopted to simulate the contact between pipeline's inner walls and between pipeline's outer wall and slip-on buckle arrestor's inner wall during buckle propagation. In addition, some reverse springs are added to prevent the wall of left and right sides separating from the inner wall of slip-on buckle arrestors. Considering large deformation kinematics relations and the elastic-plastic constitutive relation of material, balance equations were established with the principle of virtual work. The variation of external pressure with respect to the cross-sectional area of pipelines was analyzed, and the lower bound of the crossover pressure of slip-on buckle arrestors was calculated based on Maxwell's energy balance method. By comparing the theoretical results with experiment and finite element numerical simulation, the theoretical method is proved to be correct and reliable.

  15. Out-of-plane buckled cantilever microstructures with adjustable angular positions using thermal bimorph actuation for transducer applications

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-10-27

    The integration of thermal bimorph actuators and buckled cantilever structures to form an out-of-plane plate with adjustable angular positions is reported. This structure could be used as a platform to build other transducers such as optical micromirrors, scanning antennas, switches or low-frequency oscillators. The electromechanical characterisation has shown that these structures can adjust their angular position by 6° when they are operated using a DC source. The thermal characterisation performed by an infrared camera showed that the heat-affected zone reaches a maximum temperature of 125°C while the rest of the structure remains unaffected by the generated heat.

  16. Analysis of Potential for Titanium Liner Buckling after Proof in a Large Kevlar/Epoxy COPV

    Science.gov (United States)

    Phoenix, S. Leigh; Kezirian, Michael T.

    2009-01-01

    We analyze the potential for liner buckling in a 40-in Kevlar49/epoxy overwrapped spherical pressure vessel (COPV) due to long, local depressions or valleys in the titanium liner, which appeared after proof testing (autofrettage). We begin by presenting the geometric characteristics of approximately 20 mil (0.02 in.) deep depressions measured by laser profilometry in several vessels. While such depths were more typical, depths of more than 40 mils (0.02 in.) were seen near the equator in one particular vessel. Such depressions are largely the result of overlap of the edges of overwrap bands (with rectangular cross-section prepreg tows) from the first or second wrap patterns particularly where they start and end. We then discuss the physical mechanisms of formation of the depressions during the autofrettage process in terms of uneven void compaction in the overwrap around the tow overlap lines and the resulting 10-fold increase in through-thickness stiffness of the overwrap. We consider the effects of liner plastic yielding mechanisms in the liner on residual bending moments and interface pressures with the overwrap both at the peak proof pressure (approx.6500 psi) and when reducing the pressure to 0 psi. During depressurization the Bauschinger phenomenon becomes very important whereby extensive yielding in tension reduces the magnitude of the yield threshold in compression by 30 to 40%, compared to the virgin annealed state of the liner titanium. In the absence of a depression, the liner is elastically stable in compression even at liner overwrap interface pressures nominally 6 times the approx. 1000 psi interface pressure that exists at 0 psi. Using a model based on a plate-on-an-elastic-foundation, we develop an extensive analysis of the possible destabilizing effects of a frozen-in valley. The analysis treats the modifying effects of the residual bending moments and interface pressures remaining after the proof hold as well as the Bauschinger effect on the

  17. Isomerization dynamics of a buckled nanobeam.

    Science.gov (United States)

    Collins, Peter; Ezra, Gregory S; Wiggins, Stephen

    2012-11-01

    We analyze the dynamics of a model of a nanobeam under compression. The model is a two-mode truncation of the Euler-Bernoulli beam equation subject to compressive stress applied at both ends. We consider parameter regimes where the first mode is unstable and the second mode can be either stable or unstable, and the remaining modes (neglected) are always stable. Material parameters used correspond to a silicon nanobeam. The two-mode model Hamiltonian is the sum of a (diagonal) kinetic energy term and a potential energy term. The form of the potential energy function suggests an analogy with isomerization reactions in chemistry, where "isomerization" here corresponds to a transition between two stable beam configurations. We therefore study the dynamics of the buckled beam using the conceptual framework established for the theory of isomerization reactions. When the second mode is stable the potential energy surface has an index one saddle, and when the second mode is unstable the potential energy surface has an index two saddle and two index one saddles. Symmetry of the system allows us to readily construct a phase space dividing surface between the two "isomers" (buckled states); we rigorously prove that, in a specific energy range, it is a normally hyperbolic invariant manifold. The energy range is sufficiently wide that we can treat the effects of the index one and index two saddles on the isomerization dynamics in a unified fashion. We have computed reactive fluxes, mean gap times, and reactant phase space volumes for three stress values at several different energies. In all cases the phase space volume swept out by isomerizing trajectories is considerably less than the reactant density of states, proving that the dynamics is highly nonergodic. The associated gap time distributions consist of one or more "pulses" of trajectories. Computation of the reactive flux correlation function shows no sign of a plateau region; rather, the flux exhibits oscillatory decay

  18. 两种建立金黄地鼠颊囊癌模型方法的对照研究%Comparison between Two Methods of Establishing Induced Buckle Pouch Carcinogenesis Model in Syrian Golden Hamster

    Institute of Scientific and Technical Information of China (English)

    李志革; 张宝平; 张红; 门海燕; 徐越; 付文强; 刘斌

    2012-01-01

    目的 二甲基苯并蒽丙酮注射法建立金黄地鼠颊囊癌动物模型,并与传统涂抹法相比较,为颊囊癌研究提供理想的动物模型.方法 随机将81只金黄地鼠分为注射组、涂抹组和空白对照组.DM-BA丙酮注射组60只地鼠,将注射浓度预设为0.5%、0.4%、0.3%、0.2%、0.1%5个组,每组12只地鼠,每周两次,于注射后每周进行大体观察、监测体重并计算肿瘤生长率,至3、6、9、12周麻醉后各处死3只,进行组织学观察;涂抹组15只地鼠,以0.5% DMBA丙酮涂抹,每周三次,至6、9、12、15、18周后麻醉处死3只;空白对照组不做任何处理,于12周全部处死行组织学观察.结果 注射浓度组0.4%、0.3%、0.2%、0.1%分别在13,9,12,16周时出现约为0.8cm×0.6 cm×0.5cm大小的肿瘤;12周时成瘤率分别为25%、87%、42%、58%;死亡率分别为48%、11%、13%、10%;相比0.5% DMBA丙酮涂抹组,12周时成瘤率为48%,死亡率为37%,至18周时才出现颊黏膜高分化鳞癌.结论 经筛选采用0.3% DMBA丙酮液注射法可诱发形成口腔鳞癌动物模型,缩短建模周期,降低建模成本,能为科学研究提供较为理想的动物模型.%Objective To establish hamster buckle pouch carcinogenesis model with injection of DMBA acetone solution at different concentrations, and compares it with the traditional paint method. Methods Eighty one golden hamsters were assigned randomly into three groups: 60 hamsters in the injection groups were injected with DMBA acetone solution according at the concentrations of 0. 5% ,0. 4% ,0. 3% ,0. 2% ,0. 1 % respectively, twice a week, for 9 weeks. 15 hamsters as the paint group were painted with 0. 5% DMBA acetone solution,and 6 hamsters without any treatment belonged to the control group. General observation, weight, histopathology were executed every week. Three animals in every group were sacrificed by anesthesia at 3,6,9,12,18 weeks respectively

  19. [Changes of perimysial junctional plates induced by excessive eccentric training and the effects of acupuncture intervention].

    Science.gov (United States)

    Kong, Mei; Zhang, Xiang; Ye, Mei-Ling; Zhang, Xue-Lin

    2017-02-25

    This study aimed to investigate the effects of acupuncture intervention on excessive eccentric training-induced changes of perimysial junctional plates (PJPs) domain. Thirty healthy male Wistar rats were randomly assigned to 5 groups: control group, four-week training group, four-week training + 1-week recovery group and four-week training + 1-week acupuncture group. Rats were subjected to continuous excessive eccentric training for 4 weeks (incline -16°, speed 16-20 m/min, 60-90 min/d, 5 day per week), and then were subjected to one-week spontaneous recovery or one-week recovery with acupuncture intervention (a piece of filiform needle for 4 min every day). The PJPs domain changes were observed under transmission electron microscopy, and the perimysial collagen network structural changes were examined by scanning electron microscopy with or without a digestion technique (NaOH). The following results were obtained: (1) Compared with control group, PJPs domain of four-week training group showed excessive shortening of sarcomere (P < 0.001), serious damage of sarcomere structure, and altered mitochondria morphology in intermyofibria and subsarcolemma; 54% degradation of sarcolemma, and increased number of caveolae (P < 0.01); reduced number of PJPs (P < 0.001). (2) In comparison with four-week training group, PJPs domain was slightly changed in four-week training + 1-week recovery group, i.e., partial recovery of sarcomere length and structure (accounting for 85.23% of control group), and recovery of intermyofibrial and subsarcolemmal mitochondria morphology; decreased sarcolemmal degradation (P < 0.001), and increased number of caveolae (P < 0.05); increased PJPs number (P < 0.001). (3) PJPs domain changed in four-week training + 1-week acupuncture group compared with four-week training + 1-week recovery group, which were substantial recovery of sarcomere length (accounting for 94.51% of control group), increased subsarcolemmal mitochondrial fusion (P

  20. Prediction of welding distortion during assembly process of thin plate structures

    Institute of Scientific and Technical Information of China (English)

    Luo Yu; Deng De'an; Jiang Xiaoling

    2005-01-01

    Ships and automobiles are fabricated from thin plates. To assemble parts, welding is commonly employed.However, welding distortion in large thin-plate panel structure is usually cased by buckling due to the residual stress. In this study, an elastic finite element method for predicting the welding distortion of three-dimensional thin-plate structures with considering welding sequence was proposed. In this method, the inherent strain was employed to model the local shrinkage due to welding itself, and the interface element was introduced to simulate the assembly process. The proposed method was applied to study the influence of welding sequence on the buckling distortion of the large thin-plate panel structure during assembly.

  1. Numerical simulation on bucking distortion of aluminum alloy thin-plate weldment

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Jian-guo YANG; Ha-Mong LI; De-jun YAN; Hong-yuan FANG

    2009-01-01

    In this paper, the welding residual distortion of aluminum alloy thin plates is predicted using the elasticity-plasticity finite element method (FEM). The factors contributing to the welding buckling distortion of thin plates are studied by investigating the formation and evolution process of welding stresses. Results of experi-ments and numerical simulations show that the buckling appearance of thin-plate aluminum alloy weldments is asymmetrical in the welding length direction, and the maximum longitudinal deflection appears at the position a certain distance from the middle point of the side edge towards the arc-starting end. The angular deformation direction of thin-plate weldments is not fixed, and such case as the angular deformation value of the arc-starting end being higher than that of the arc-blowout end exists.

  2. Comparison of the transcriptomic profile of hepatic human induced pluripotent stem like cells cultured in plates and in a 3D microscale dynamic environment.

    Science.gov (United States)

    Leclerc, Eric; Kimura, Keiichi; Shinohara, Marie; Danoy, Mathieu; Le Gall, Morgane; Kido, Taketomo; Miyajima, Atsushi; Fujii, Teruo; Sakai, Yasuyuki

    2017-01-01

    We have compared the transcriptomic profiles of human induced pluripotent stem cells after their differentiation in hepatocytes like cells in plates and microfluidic biochips. The biochips provided a 3D and dynamic support during the cell differentiation when compared to the 2D static cultures in plates. The microarray have demonstrated the up regulation of important pathway related to liver development and maturation during the culture in biochips. Furthermore, the results of the transcriptomic profile, coupled with immunostaining, and RTqPCR analysis have shown typical biomarkers illustrating the presence of responders of biliary like cells, hepatocytes like cells, and endothelial like cells. However, the overall tissue still presented characteristic of immature and foetal patterns. Nevertheless, the biochip culture provided a specific micro-environment in which a complex multicellular differentiation toward liver could be oriented.

  3. Thermal stresses induced by a point heat source in a circular plate by quasi-static approach

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The present paper deals with the determination of quasi-static thermal stresses due to an instantaneous point heat source of strength g_(pi) situated at certain circle along the radial direction of the circular plate and releasing its heat spontaneously at time t=τ.A circular plate is considered having arbitrary initial temperature and subjected to time dependent heat flux at the fixed circular boundary of r=b.The governing heat conduction equation is solved by using the integral transform method,and res...

  4. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats.

    Science.gov (United States)

    Su, Yu-Wen; Chung, Rosa; Ruan, Chun-Sheng; Chim, Shek Man; Kuek, Vincent; Dwivedi, Prem P; Hassanshahi, Mohammadhossein; Chen, Ke-Ming; Xie, Yangli; Chen, Lin; Foster, Bruce K; Rosen, Vicki; Zhou, Xin-Fu; Xu, Jiake; Xian, Cory J

    2016-06-01

    Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016

  5. 削斜筋板架的抗屈曲能力研究%Buckling capacity of snip stiffened panel

    Institute of Scientific and Technical Information of China (English)

    蒋晓波; 吴剑国; 洪英; 初艳玲; 师桂杰

    2014-01-01

    According to the CSR senior buckling analysis method, this paper studies the buckling capacity of the snip stiffened panel through the ifnite element software ABAQUS. It calculates the yield strength and the ultimate strength of the ifve-stiffened plate, the small snip stiffened plate, the snip stiffened plate and the four-stiffened plate. The results show that the yield strength of the stiffened plate with the snip stiffener decreases more obviously than its ultimate strength. Under the condition of the longitudinal load, carrying the capacity declines with the snip stiffener, while under the condition of the lateral load, the ultimate strength doesn't show any obvious decrease.%根据CSR高级屈曲分析方法,运用有限元软件ABAQUS,研究削斜筋板架的屈曲能力,计算了5筋板架、小削斜筋板架、削斜筋板架以及4筋板架的屈服强度以及极限强度。结果表明:加强筋削斜后,加筋板屈服强度的下降比极限强度更明显;在纵向载荷条件下,承载能力随着加强筋的削斜而降低,而在横向载荷条件下,其极限强度没有明显下降。

  6. DYNAMIC BUCKLING OF DOUBLE-WALLED CARBON NANOTUBES UNDER STEP AXIAL LOAD

    Institute of Scientific and Technical Information of China (English)

    Chengqi Sun; Kaixln Liu

    2009-01-01

    An approximate method is presented in this paper for studying the dynamic buckling of double-walled carbon nanotubes (DWNTs) under step axial load. The analysis is based on the continuum mechanics model, which takes into account the van der Waals interaction between the outer and inner nanotubes. A buckling condition is derived, from which the critical buckling load and associated buckling mode can be determined. As examples, numerical results are worked out for DWNTs under fixed boundary conditions. It is shown that, due to the effect of van der Waals forces, the critical buckling load of a DWNT is enhanced when inserting an inner tube into a single-walled one. The paper indicates that the critical buckling load of DWNTs for dynamic buckling is higher than that for static buckling. The effect of the radii is also examined. In addition, some of the results are compared with the previous ones.

  7. Molecular dynamics analysis on buckling of defective carbon nanotubes.

    Science.gov (United States)

    Kulathunga, D D T K; Ang, K K; Reddy, J N

    2010-09-01

    Owing to their remarkable mechanical properties, carbon nanotubes have been employed in many diverse areas of applications. However, similar to any of the many man-made materials used today, carbon nanotubes (CNTs) are also susceptible to various kinds of defects. Understanding the effect of defects on the mechanical properties and behavior of CNTs is essential in the design of nanotube-based devices and composites. It has been found in various past studies that these defects can considerably affect the tensile strength and fracture of CNTs. Comprehensive studies on the effect of defects on the buckling and vibration of nanotubes is however lacking in the literature. In this paper, the effects of various configurations of atomic vacancy defects, on axial buckling of single-walled carbon nanotubes (SWCNTs), in different thermal environments, is investigated using molecular dynamics simulations (MDS), based on a COMPASS force field. Our findings revealed that even a single missing atom can cause a significant reduction in the critical buckling strain and load of SWCNTs. In general, increasing the number of missing atoms, asymmetry of vacancy configurations and asymmetric distribution of vacancy clusters seemed to lead to higher deterioration in buckling properties. Further, SWCNTs with a single vacancy cluster, compared to SWCNTs with two or more vacancy clusters having the same number of missing atoms, appeared to cause higher deterioration of buckling properties. However, exceptions from the above mentioned trends could be expected due to chemical instabilities of defects. Temperature appeared to have less effect on defective CNTs compared to pristine CNTs.

  8. Engineering electronic states of periodic and quasiperiodic chains by buckling

    Science.gov (United States)

    Mukherjee, Amrita; Nandy, Atanu; Chakrabarti, Arunava

    2017-07-01

    The spectrum of spinless, non-interacting electrons on a linear chain that is buckled in a non-uniform, quasiperiodic manner is investigated within a tight binding formalism. We have addressed two specific cases, viz., a perfectly periodic chain wrinkled in a quasiperiodic Fibonacci pattern, and a quasiperiodic Fibonacci chain, where the buckling also takes place in a Fibonacci pattern. The buckling brings distant neighbors in the parent chain to close proximity, which is simulated by a tunnel hopping amplitude. It is seen that, in the perfectly ordered case, increasing the strength of the tunnel hopping (that is, bending the segments more) absolutely continuous density of states is retained towards the edges of the band, while the central portion becomes fragmented and host subbands of narrowing widths containing extended, current carrying states, and multiple isolated bound states formed as a result of the bending. A switching ;on; and ;off; of the electronic transmission can thus be engineered by buckling. On the other hand, in the second example of a quasiperiodic Fibonacci chain, imparting a quasiperiodic buckling is found to generate continuous subband(s) destroying the usual multifractality of the energy spectrum. We present exact results based on a real space renormalization group analysis, that is corroborated by explicit calculation of the two terminal electronic transport.

  9. Interaction of hydraulic and buckling mechanisms in blowout fractures.

    Science.gov (United States)

    Nagasao, Tomohisa; Miyamoto, Junpei; Jiang, Hua; Tamaki, Tamotsu; Kaneko, Tsuyoshi

    2010-04-01

    The etiology of blowout fractures is generally attributed to 2 mechanisms--increase in the pressure of the orbital contents (the hydraulic mechanism) and direct transmission of impacts on the orbital walls (the buckling mechanism). The present study aims to elucidate whether or not an interaction exists between these 2 mechanisms. We performed a simulation experiment using 10 Computer-Aided-Design skull models. We applied destructive energy to the orbits of the 10 models in 3 different ways. First, to simulate pure hydraulic mechanism, energy was applied solely on the internal walls of the orbit. Second, to simulate pure buckling mechanism, energy was applied solely on the inferior rim of the orbit. Third, to simulate the combined effect of the hydraulic and buckling mechanisms, energy was applied both on the internal wall of the orbit and inferior rim of the orbit. After applying the energy, we calculated the areas of the regions where fracture occurred in the models. Thereafter, we compared the areas among the 3 energy application patterns. When the hydraulic and buckling mechanisms work simultaneously, fracture occurs on wider areas of the orbital walls than when each of these mechanisms works separately. The hydraulic and buckling mechanisms interact, enhancing each other's effect. This information should be taken into consideration when we examine patients in whom blowout fracture is suspected.

  10. Buckling in polymer monolayers: Molecular-weight dependence

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.; Basu, J.K.; (IIS)

    2010-11-12

    We present systematic investigations of buckling in Langmuir monolayers of polyvinyl acetate formed at the air-water interface. On compression the polymer monolayers are converted to a continuous membrane with a thickness of {approx}2-3 nm of well-defined periodicity, {lambda}{sub b}. Above a certain surface concentration the membrane undergoes a morphological transition buckling, leading to the formation of striped patterns. The periodicity seems to depend on molecular weight as per the predictions of the gravity-bending buckling formalism of Milner et al. for fluidlike films on water. However anomalously low values of bending rigidity and Young's modulus are obtained using this formalism. Hence we have considered an alternative model of buckling-based solidlike films on viscoelastic substrates. The values of bending rigidity and Young's modulus obtained by this method, although lower than expected, are closer to the bulk values. Remarkably, no buckling is found to occur above a certain molecular weight. We have tried to explain the observed molecular-weight dependence in terms of the variation in isothermal compressive modulus of the monolayers with surface concentration as well as provided possible explanations for the obtained low values of mechanical properties similar to that observed for ultrathin polymer films.

  11. Buckling analysis of composite cylindrical shell using numerical analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hae Young; Bae, Won Byung [Pusan Nat' l Univ., Busan (Korea, Republic of); Cho, Jong Rae [Korea Maritime Univ., Busan (Korea, Republic of); Lee, Woo Hyung [Underwater Vehicle Research Center, Busan (Korea, Republic of)

    2012-01-15

    The objective of this paper is to predict the buckling pressure of a composite cylindrical shell using buckling formulas (ASME 2007, NASA SP 8007) and finite element analysis. The model in this study uses a stacking angle of [0/90]12t and USN 125 composite material. All specimens were made using a prepreg method. First, finite element analysis was conducted, and the results were verified through comparison with the hydrostatic pressure bucking experiment results. Second, the values obtained from the buckling formula and the buckling pressure values obtained from the finite element analysis were compared as the stacking angle was changed in 5 .deg. increments from 20 .deg. to 90 .deg. The linear and nonlinear results of the finite element analysis were consistent with the results of the experiment, with a safety factor of 0.85-1. Based on the above result, the ASME 2007 formula, a simplified version of the NASA SP 8007 formula, is regarded as a buckling formula that provides a reliable safety factor.

  12. Molecular dynamics analysis on buckling of defective carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kulathunga, D D T K; Ang, K K [Department of Civil Engineering, National University of Singapore (Singapore); Reddy, J N, E-mail: cveangkk@nus.edu.s [Department of Mechanical Engineering, Texas A and M University, College Station, TX 77843-3123 (United States)

    2010-09-01

    Owing to their remarkable mechanical properties, carbon nanotubes have been employed in many diverse areas of applications. However, similar to any of the many man-made materials used today, carbon nanotubes (CNTs) are also susceptible to various kinds of defects. Understanding the effect of defects on the mechanical properties and behavior of CNTs is essential in the design of nanotube-based devices and composites. It has been found in various past studies that these defects can considerably affect the tensile strength and fracture of CNTs. Comprehensive studies on the effect of defects on the buckling and vibration of nanotubes is however lacking in the literature. In this paper, the effects of various configurations of atomic vacancy defects, on axial buckling of single-walled carbon nanotubes (SWCNTs), in different thermal environments, is investigated using molecular dynamics simulations (MDS), based on a COMPASS force field. Our findings revealed that even a single missing atom can cause a significant reduction in the critical buckling strain and load of SWCNTs. In general, increasing the number of missing atoms, asymmetry of vacancy configurations and asymmetric distribution of vacancy clusters seemed to lead to higher deterioration in buckling properties. Further, SWCNTs with a single vacancy cluster, compared to SWCNTs with two or more vacancy clusters having the same number of missing atoms, appeared to cause higher deterioration of buckling properties. However, exceptions from the above mentioned trends could be expected due to chemical instabilities of defects. Temperature appeared to have less effect on defective CNTs compared to pristine CNTs.

  13. Interdistance Effects on Flat and Buckled Silicene Like-bilayers

    Science.gov (United States)

    Naji, S.; Khalil, B.; Labrim, H.; Bhihi, M.; Belhaj, A.; Benyoussef, A.; Lakhal, M.; El Kenz, A.

    2014-03-01

    Using ab intio numerical calculations based on the all-electron full-potential local-orbital minimum-basis scheme FPLO9.00-34, we discuss the interdistance effect on the energy gap of two parallel layers of the silicone systems. The like- bilayer systems we dealt with here are relying on a dynamic monolayer of silicene located at distance d along the normal direction z forming with a static one a (AA) stacking arrangement. In particular, we investigate the effect of the dynamic layer by varying the distance d starting from a distance around the bond length of Van der Waals. More precisely, we consider the flat and two buckled geometries in (AA) arrangements. The flat geometry is associated with the usual (AA) configuration appearing in the pure graphene material. For buckled geometry, we can distinguish two configurations. The first one corresponds to the usual buckled configuration that keeps the same vertical distance between the two layers atoms while the remaining one is obtained by reversing one silicene layer. We show that the band gap can be opened by simply varying the distance, starting around a Van der Waals distance, between two parallel silicene for flat and buckled geometries due to an electronic transition of electrons living in pz orbital states. Furthermore, we study the stability between the buckled and the flat configuration in the mono and bilayer system.

  14. Electrical Bending and Mechanical Buckling Instabilities in Electrospinning Jets

    Science.gov (United States)

    Han, Tao; Reneker, Darrell H.

    2007-03-01

    The electrospinning jet was a continuous fluid flow ejected from the surface of a fluid when the applied electrical force overcomes the surface tension. The jet moved straight away from the tip and then became unstable and bent into coils. This phenomenon is the electrical bending instability [1]. When the distance between the tip and collector was reduced to less than the maximal straight segment length, the electrical bending instability did not occur. The periodic buckling of a fluid jet incident onto a surface is a striking fluid mechanical instability [2]. When axial compressive stress along the jet reached a sufficient value, it produced the fluid mechanics analogue to the buckling of a slender solid column. In the electrospinning, the buckling instability occurred just above the collector where the jet was compressed as it encountered the collector. The buckling frequencies of these jets are in the range of 10^4 to 10^5 Hz. The buckling lengths of these jets are in the range of 10 to 100μm. *Reneker,D.H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Journal of Applied Physics, 87, 4531, 2000 *Tchavdarov B.; Yarin, A. L.; Radev S., Journal of Fluid Mechanics; 253, 593,1993

  15. Perturbation analysis on post-buckling behavior of pile

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to transform the equation to a series of linear differential equations to be solved, and the deflection function according with the boundary condition was considered. Then,the nonlinear higher-order asymptotic solution of post-buckling behavior of a pile was obtained by parameter-substituting. The influencing factors such as bury-depth ratio and stiffness ratio of soil to pile, slenderness ratio on the post-buckling behavior of a pile were analyzed. The results show that the pile is more unstable when the bury-depth ratio and stiffness ratio of soil to pile increase,and although the buckling load increases with the stiffness of soil, the pile may ruin for its brittleness. Thus, in the region where buckling behavior of pile must be taken into account, the high grade concrete is supposed to be applied, and the dynamic buckling behavior of pile needs to be further studied.

  16. THERMAL POST-BUCKLING OF FUNCTIONALLY GRADED MATERIAL TIMOSHENKO BEAMS

    Institute of Scientific and Technical Information of China (English)

    LI Shi-rong; ZHANG Jing-hua; ZHAO Yong-gang

    2006-01-01

    Analysis of thermal post-buckling of FGM (Functionally Graded Material)Timoshenko beams subjected to transversely non-uniform temperature rise is presented.By accurately considering the axial extension and transverse shear deformation in the sense of theory of Timoshenko beam, geometrical nonlinear governing equations including seven basic unknown functions for functionally graded beams subjected to mechanical and thermal loads were formulated. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and thermal buckling and post-buckling response of transversely non-uniformly heated FGM Timoshenko beams with fixed-fixed edges were obtained. Characteristic curves of the buckling deformation of the beam varying with thermal load and the power law index are plotted. The effects of material gradient property on the buckling deformation and critical temperature of beam were discussed in details. The results show that there exists the tension-bend coupling deformation in the uniformly heated beam because of the transversely non-uniform characteristic of materials.

  17. Circumferential nonlocal effect on the buckling and vibration of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng Yuan, E-mail: cywang@ujs.edu.cn; Li, Xiao Hu; Luo, Ying

    2016-04-01

    The nonlocal beam theories are widely used to study the mechanics of cylindrical nanotubes (NTs). The one-dimensional models however are unable to account for the nonlocal effect in the circumferential direction, which may substantially affect the applicability of the nonlocal beam models. To address the issue this letter examines the circumferential nonlocal effect (CNE) on the buckling and vibration of the NTs. Here the CNE is characterized by the difference between the nonlocal beam model considering the axial nonlocal effect only and the nonlocal shell model with both axial and circumferential nonlocal effects. The aspect ratio and radius-dependence of the CNE are calculated for the singlewall carbon NTs selected as a typical example. The results show that the CNE is substantial for the buckling and vibration of the NTs with small radius (e.g., <1 nm) and aspect ratio (e.g., <15). It however decreases with the rising radius and the aspect ratio, and turns out to be small for relatively wide and long NTs. The nonlocal beam theories thus may overestimate the buckling load and vibration frequency for the thin and short NTs. - Highlights: • First revealed the substantial circumferential nonlocal effect (CNE) on nanotube buckling. • Achieved radius/aspect ratio-dependence of CNE on nanotube buckling and vibration. • Located the range of applicability of the nonlocal beam theory without CNE.

  18. Buckling of hybrid nanocomposites with embedded graphene and carbon nanotubes

    Science.gov (United States)

    Chandra, Y.; Saavedra Flores, E. I.; Scarpa, F.; Adhikari, S.

    2016-09-01

    With the aid of atomistic multiscale modelling and analytical approaches, buckling strength has been determined for carbon nanofibres/epoxy composite systems. Various nanofibres configurations considered are single walled carbon nano tube (SWCNT) and single layer graphene sheet (SLGS) and SLGS/SWCNT hybrid systems. Computationally, both eigen-value and non-linear large deformation-based methods have been employed to calculate the buckling strength. The non-linear computational model generated here takes into account of complex features such as debonding between polymer and filler (delamination under compression), nonlinearity in the polymer, strain-based damage criteria for the matrix, contact between fillers and interlocking of distorted filler surfaces with polymer. The effect of bridging nanofibres with an interlinking compound on the buckling strength of nano-composites has also been presented here. Computed enhancement in buckling strength of the polymer system due to nano reinforcement is found to be in the range of experimental and molecular dynamics based results available in open literature. The findings of this work indicate that carbon based nanofillers enhance the buckling strength of host polymers through various local failure mechanisms.

  19. Numerical modeling of manufacturing process of corrugated plate

    Directory of Open Access Journals (Sweden)

    Khodos Ol'ga Aleksandrovna

    2014-09-01

    Full Text Available The rigidity increase of structures consisting of plates and shells is a relevant task. One way to obtain plates with enhanced stiffness performance is the corrugation, i.e. change of its topography elevation. Depending on the method, corrugation provides a plate with additional rigidity in one or several directions without weight gain. The most common way to get corrugated plates is pressure forming. The problem of finding the most energy saving method is very relevant. In this regard, a possible approach is to use buckling of thin cylinder. The idea of this technique comes from the fact that as a result of stability loss of cylindrical shell in compression along its elements, the cylinder walls are deformed periodically. The article considers the problem of corrugated plates manufacturing using smooth sheet metal. The method of manufacture is based on irreversible process of cylindrical buckling of a shell previously obtained from a worksheet. Such a deformation process may be useful if the energy spent on its implementation is smaller than the energy in standard process of forming. The task of defining the stiffness of a corrugated plate is quite difficult because it is difficult to experimentally measure the tension, bending and coupled stiffness. The numerical simulation of three ways to manufacture corrugated cylindrical shell made of smooth sheet by elastic-plastic deformation process are offered: the first way is to deform the cylindrical shell under the action of axial load on the butt end, and the second way is the influence of strutting internal pressure. In the third way the cylindrical shell is made of the leaf using the special techniques. In order to compare the effectiveness of the options presented for each case the internal energy is calculated. It is shown that the energy expenditure in buckling method is the smallest.

  20. Uncertainty in Loading and Control of an Active Column Critical to Buckling

    Directory of Open Access Journals (Sweden)

    G.C. Enss

    2012-01-01

    Full Text Available Buckling of load-carrying column structures is an important design constraint in light-weight structures as it may result in the collapse of an entire structure. When a column is loaded by an axial compressive load equal to its individual critical buckling load, a critically stable equilibrium occurs. When loaded above its critical buckling load, the passive column may buckle. If the actual loading during usage is not fully known, stability becomes highly uncertain.

  1. Thermal buckling of axisymmetrically laminated cylindrically orthotropic shallow spherical shells including transverse shear

    Institute of Scientific and Technical Information of China (English)

    ZHU Yong-an; WANG Fan; LIU Ren-huai

    2008-01-01

    The nonlinear thermal buckling of symmetrically laminated cylindrically orthotropic shallow spherical shell under temperature field and uniform pressure including transverse shear is studied.Also the analytic formulas for determining the critical buckling loads under different temperature fields are obtained by using the modified iteration method.The effect of transverse shear deformation and different temperature fields on critical buckling load is discussed.

  2. Bifurcations in the optimal elastic foundation for a buckling column

    Energy Technology Data Exchange (ETDEWEB)

    Rayneau-Kirkhope, Daniel, E-mail: ppxdr@nottingham.ac.u [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Farr, Robert [Unilever R and D, Olivier van Noortlaan 120, AT3133, Vlaardingen (Netherlands); London Institute for Mathematical Sciences, 22 South Audley Street, Mayfair, London (United Kingdom); Ding, K. [Department of Physics, Fudan University, Shanghai, 200433 (China); Mao, Yong [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)

    2010-12-01

    We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show that with only weak lateral support, the optimum distribution is a delta-function at the centre of the beam. When more support is allowed, we find numerically that the optimal distribution undergoes a series of bifurcations. We obtain analytical expressions for the buckling load around the first bifurcation point and corresponding expansions for the optimal position of support. Our theoretical predictions, including the critical exponent of the bifurcation, are confirmed by computer simulations.

  3. Vibrations of post-buckled rods: The singular inextensible limit

    KAUST Repository

    Neukirch, Sébastien

    2012-01-01

    The small-amplitude in-plane vibrations of an elastic rod clamped at both extremities are studied. The rod is modeled as an extensible, shearable, planar Kirchhoff elastic rod under large displacements and rotations, and the vibration frequencies are computed both analytically and numerically as a function of the loading. Of particular interest is the variation of mode frequencies as the load is increased through the buckling threshold. While for some modes there are no qualitative changes in the mode frequencies, other frequencies experience rapid variations after the buckling threshold, the thinner the rod, the more abrupt the variations. Eventually, a mismatch for half of the frequencies at buckling arises between the zero thickness limit of the extensible model and the inextensible model. © 2011 Elsevier Ltd. All rights reserved.

  4. NONLINEAR BUCKLING CHARACTERISTIC OF GRADED MULTIWEB STRUCTURE OF HETEROGENEOUS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    LI Yong; ZHANG Zhi-min

    2005-01-01

    The graded multiweb structure of heterogeneous anisotropic materials, which makes full use of the continuous, gradual and changing physical mechanical performance of material properties, has a widespread application in aeroplane aerofoil structure and automobile lightweight structure. On the basis of laminate buckling theory,the equivalent rigidity method is adopted to establish the corresponding constitutive relation and the non-linear buckling governing equation for the graded multiweb structure. In finding the solution, the critical load of buckling under different complicated boundary conditions together with combined loads were obtained and testification of the experimental analysis shows that the calculation results can satisfy the requirements of engineering design in a satisfactory way. Results obtained from the research say that: graded materials can reduce the concentrated stress on the interface in an effective way and weaken the effect of initial defect in materials and thereby improve the strength and toughness of materials.

  5. Finite deformation mechanics in buckled thin films on compliant supports.

    Science.gov (United States)

    Jiang, Hanqing; Khang, Dahl-Young; Song, Jizhou; Sun, Yugang; Huang, Yonggang; Rogers, John A

    2007-10-02

    We present detailed experimental and theoretical studies of the mechanics of thin buckled films on compliant substrates. In particular, accurate measurements of the wavelengths and amplitudes in structures that consist of thin, single-crystal ribbons of silicon covalently bonded to elastomeric substrates of poly(dimethylsiloxane) reveal responses that include wavelengths that change in an approximately linear fashion with strain in the substrate, for all values of strain above the critical strain for buckling. Theoretical reexamination of this system yields analytical models that can explain these and other experimental observations at a quantitative level. We show that the resulting mechanics has many features in common with that of a simple accordion bellows. These results have relevance to the many emerging applications of controlled buckling structures in stretchable electronics, microelectromechanical systems, thin-film metrology, optical devices, and others.

  6. Axisymmetric buckling of laminated thick annular spherical cap

    Science.gov (United States)

    Dumir, P. C.; Dube, G. P.; Mallick, A.

    2005-03-01

    Axisymmetric buckling analysis is presented for moderately thick laminated shallow annular spherical cap under transverse load. Buckling under central ring load and uniformly distributed transverse load, applied statically or as a step function load is considered. The central circular opening is either free or plugged by a rigid central mass or reinforced by a rigid ring. Annular spherical caps have been analysed for clamped and simple supports with movable and immovable inplane edge conditions. The governing equations of the Marguerre-type, first order shear deformation shallow shell theory (FSDT), formulated in terms of transverse deflection w, the rotation ψ of the normal to the midsurface and the stress function Φ, are solved by the orthogonal point collocation method. Typical numerical results for static and dynamic buckling loads for FSDT are compared with the classical lamination theory and the dependence of the effect of the shear deformation on the thickness parameter for various boundary conditions is investigated.

  7. Quantum capacitance in monolayers of silicene and related buckled materials

    Science.gov (United States)

    Nawaz, S.; Tahir, M.

    2016-02-01

    Silicene and related buckled materials are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit coupling and the buckled structure. These materials have potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit coupling. We present a theoretical realization of quantum capacitance which has advantages over the scattering problems of traditional transport measurements. We derive and discuss quantum capacitance as a function of the Fermi energy and temperature taking into account electron-hole puddles through a Gaussian broadening distribution. Our predicted results are very exciting and pave the way for future spintronic and valleytronic devices.

  8. NASTRAN buckling study of a linear induction motor reaction rail

    Science.gov (United States)

    Williams, J. G.

    1973-01-01

    NASTRAN was used to study problems associated with the installation of a linear induction motor reaction rail test track. Specific problems studied include determination of the critical axial compressive buckling stress and establishment of the lateral stiffness of the reaction rail under combined loads. NASTRAN results were compared with experimentally obtained values and satisfactory agreement was obtained. The reaction rail was found to buckle at an axial compressive stress of 11,400 pounds per square inch. The results of this investigation were used to select procedures for installation of the reaction rail.

  9. On the buckling behavior of piezoelectric nanobeams: An exact solution

    Energy Technology Data Exchange (ETDEWEB)

    Jandaghian, Ali Akbar; Rahmaini, Omid [University of Zanjan, Zanjan (Iran, Islamic Republic of)

    2015-08-15

    In this paper, thermoelectric-mechanical buckling behavior of the piezoelectric nanobeams is investigated based on the nonlocal theory and Euler-Bernoulli beam theory. The electric potential is assumed linear through the thickness of the nanobeam and the governing equations are derived by Hamilton's principle. The governing equations are solved analytically for different boundary conditions. The effects of the nonlocal parameter, temperature change, and external electric voltage on the critical buckling load of the piezoelectric nanobeams are discussed in detail. This study should be useful for the design of piezoelectric nanodevices.

  10. Buckling of microtubules: An insight by molecular and continuum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jin; Meguid, S. A., E-mail: meguid@mie.utoronto.ca [Mechanics and Aerospace Design Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada)

    2014-10-27

    The molecular structural mechanics method has been extended to investigate the buckling of microtubules (MTs) with various configurations. The results indicate that for relative short MTs the shear deformation effect, rather than the nonlocal effect, is mainly responsible for the limitation of their widely used Euler beam description and the observed length-dependence of their bending stiffness. In addition, the configuration effect of MTs is also studied and considered as an explanation for the large scattering of the critical buckling force and bending stiffness observed in existing experiments. This configuration effect is also found to mainly originate from the geometry of the MTs and is mainly determined by the protofilament number.

  11. Buckling-driven delamination of carbon nanotube forests

    Science.gov (United States)

    Pour Shahid Saeed Abadi, Parisa; Hutchens, Shelby B.; Greer, Julia R.; Cola, Baratunde A.; Graham, Samuel

    2013-06-01

    We report buckling-driven delamination of carbon nanotube (CNT) forests from their growth substrates when subjected to compression. Macroscale compression experiments reveal local delamination at the CNT forest-substrate interface. Results of microscale flat punch indentations indicate that enhanced CNT interlocking at the top surface of the forest accomplished by application of a metal coating causes delamination of the forest from the growth substrate, a phenomenon not observed in indentation of as-grown CNT forests. We postulate that the post-buckling tensile stresses that develop at the base of the CNT forests serve as the driving force for delamination.

  12. Dynamic Buckling of Column Impacted by a Rigid Body

    Institute of Scientific and Technical Information of China (English)

    Zhijun Han; Hongwei Ma; Shanyuan Zhang

    2004-01-01

    The dynamic buckling of an elastic column subjected to axial impact by a rigid body is discussed in accordance with the energy law in this paper. The equation of lateral disturbance used to analysis the problem is developed by taking into account the effect of stress wave. The power series solution of this problem has been obtained by using the power series approach. The buckling criterion of this problem is proposed by analyzing the characteristics of the solution. The relationships between critical velocity and impacting mass as well as critical velocity and critical length are given by using theoretical analysis and numerical computation.

  13. Fatigue Crack Propagation in Steel A131 Under Ice Loading of Crushing, Bending and Buckling

    Institute of Scientific and Technical Information of China (English)

    DUAN Menglan(段梦兰); SONG Lisong(宋立崧); FAN Xiaodong(樊晓东); James C.M.LId; FANG Huacan(方华灿)

    2001-01-01

    Three types of ice loading, which are most commonly present when ice acts on structures,are chosen and simulated for use of fatigue crack propagation tests on offshore structural steel Al31. The three types of ice categorized in accordance with the failure modes when acting on structures called crushing ice, bending ice, and buckling ice,respectively. This paper presents an experimental investigation on the fatigue crack propagation behavior of widely used high strength steel A 131 for offshore jackets in the loading environment of ice crushing, bending, and buckling. The test results of fatigue crack propagation in steel A 13 l under these simulated ice loading at temperature 292K are presented and analyzed in detail in this paper. The amplitude root mean square stress intensity factor is optimized to be the fundamental parameter of fatigue crack propagation for all types of ice loading histories. The results are also compared with constant amplitude fatigue crack propagation conclusions as in wave load mode, and a joint investigation on the results from ice forces, ice-induced vibrations, and ice-induced fatigue crack propagation is conducted, Conclusions are drawn for reference in structural design and material selection for offshore structures in ice environments.

  14. Slab stagnation and buckling in the mantle transition zone: Rheology, phase transition, trench migration, and seismic structure

    Science.gov (United States)

    Bina, Craig; Cizkova, Hana

    2014-05-01

    Subducting slabs may exhibit buckling instabilities and consequent folding behavior in the mantle transition zone for various combinations of dynamical parameters, accompanied by temporal variations in dip angle, plate velocity, and trench retreat. Parameters governing such behavior include both viscous forces (slab and mantle rheology) and buoyancy forces (slab thermal structure and mineral phase relations). 2D numerical experiments show that many parameter sets lead to slab deflection at the base of the transition zone, typically accompanied by quasi-periodic oscillations (consistent with previous scaling analyses) in largely anticorrelated plate and rollback velocities, resulting in undulating stagnant slabs as buckle folds accumulate subhorizontally atop the lower mantle. Slab interactions with mantle phase transitions are important components of this process (Bina and Kawakatsu, 2010; Čížková and Bina, 2013). For terrestrial parameter sets, trench retreat is found to be nearly ubiquitous, and trench advance is quite rare - due to both rheological structure and ridge-push effects (Čížková and Bina, 2013). Recent analyses of global plate motions indicate that significant trench advance is also rare on Earth, being largely restricted to the Izu-Bonin arc (Matthews et al., 2013). Consequently, we explore the conditions necessary for terrestrial trench advance through dynamical models involving the unusual geometry associated with the Philippine Sea region. Detailed images of buckled stagnant slabs are difficult to resolve due to smoothing effects inherent in seismic tomography, but velocity structures computed for compositionally layered slabs, using laboratory data on relevant mineral assemblages, can be spatially low-pass filtered for comparison with tomographic images of corresponding resolution. When applied to P-wave velocity anomalies from stagnant slab material beneath northeast China, model slabs which undulate due to compound buckling fit

  15. Slab Stagnation and Buckling in the Mantle Transition Zone: Petrology, Rheology, and the Geodynamics of Trench Migration

    Science.gov (United States)

    Bina, C. R.; Čížková, H.

    2015-12-01

    Recent work indicates that subducting slabs may exhibit buckling instabilities and consequent folding behavior in the mantle transition zone for various dynamical parameters, accompanied by temporal variations in dip angle, plate velocity, and trench retreat. Governing parameters include both viscous (rheological) and buoyancy (thermo-petrological) forces. 2D numerical experiments show that many parameter sets lead to slab deflection at the base of the transition zone, typically accompanied by quasi-periodic oscillations in largely anticorrelated plate and rollback velocities, resulting in undulating stagnant slabs as buckle folds accumulate subhorizontally atop the lower mantle. Slab petrology, of mantle phase transitions and hydrated crust, is a dominant factor in this process (Čížková and Bina, 2013). For terrestrial parameter sets, trench retreat is found to be nearly ubiquitous and trench advance quite rare, largely due to rheological and ridge-push effects. Recently updated analyses of global plate motions indicate that significant trench advance is also rare on Earth, being largely restricted to the Izu-Bonin arc (Matthews et al., 2013). Thus, we explore conditions necessary for terrestrial trench advance through dynamical models involving the unusual geometry of the Philippine Sea region. Our 2D modeling of such geometries, in which distal subduction of the overriding plate overprints an opposed slab-pull force on the usual ridge-push at the trench, yields persistent trench advance interrupted by episodes of back-arc extension, demonstrating that trench advance can occur for terrestrial rheologies in such special geometries (Čížková and Bina, 2015).

  16. Effect of Topological Defects on Buckling Behavior of Single-walled Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    Wang Guoxiu

    2011-01-01

    Full Text Available Abstract Molecular dynamic simulation method has been employed to consider the critical buckling force, pressure, and strain of pristine and defected single-walled carbon nanotube (SWCNT under axial compression. Effects of length, radius, chirality, Stone–Wales (SW defect, and single vacancy (SV defect on buckling behavior of SWCNTs have been studied. Obtained results indicate that axial stability of SWCNT reduces significantly due to topological defects. Critical buckling strain is more susceptible to defects than critical buckling force. Both SW and SV defects decrease the buckling mode of SWCNT. Comparative approach of this study leads to more reliable design of nanostructures.

  17. Establishing a cellular FRET-based fluorescence plate reader assay to monitor proNGF-induced cross-linking of sortilin and the neurotrophin receptor p75(NTR).

    Science.gov (United States)

    Skeldal, Sune; Kjaergaard, Maj M; Alwasel, Saleh; Nyengaard, Jens R

    2015-01-01

    Whereas the proform of the nerve growth factor (proNGF) is crucial for eliminating superfluous cells during neuronal development it also promotes apoptosis following brain trauma and neuronal injury. The apoptotic signal is elicited upon formation of a trimeric receptor complex also containing the vps10p domain receptor sortilin and the neurotrophin receptor p75(NTR). However, proNGF-induced receptor complex formation has been difficult to directly assess other than by western blotting. We here describe a fluorescence resonance energy transfer (FRET) based fluorescence plate reader assay to monitor the interaction between fluorescently tagged sortilin and p75(NTR) in live cells. The method is based on a standard fluorescent plate reader found in many biochemical laboratories and the results are evaluated using a microscopy-based quantified sensitized acceptor emission FRET approach making use of a pair of FRET standard constructs. As a result, the effect of proNGF on the interaction between sortilin and p75(NTR) can be evaluated in live cells allowing for screening and selection of therapeutic compounds interfering with proNGF-induced cell death.

  18. Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.

  19. Study on collapse behavior of a square plate subjected to water pressure; Suiatsu wo ukeru kukeiban no atsukai kyodo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yao, T.; Fujikubo, M.; Mizutani, K. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1996-04-10

    Bottom plates of a hull are subjected to laterally distributing force due to in-plane compression force and water pressure in the ship`s length direction as a result of longitudinal bending in a hogging condition. Because buckling collapse of the hull bottom plates leads directly to longitudinal bending collapse of the hull bottom cross section, the hull bottom plates must have sufficient strength. The present study performs a static elastic large deflection analysis and an elasto-plastic large deflection analysis. It elucidates buckling collapse behavior of a square plate subjected to water pressure and in-plane compression load, and considers limits in application of conventional approximation analysis methods. In the case of a water pressure action, deflection components growing in excess of the buckling load do not necessarily correspond to buckling modes of the case where no water pressure is acting upon. Conventional approximation analysis methods may not be able often to pursue actual buckling phenomena. According the result of an analysis on hull bottom panels of an actual ship, the ultimate strength decreases when the water pressure is large. Compression force in the lateral direction as a result of water pressure acting on ship`s sides affected very little the ultimate strength. 3 refs., 7 figs.

  20. Global buckling assessment of high pressure and high temperature (HP/HT) offshore pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung-Ho; Jung, Jong-Jin; Lee, Woo-Seob [Maritime Research Institute, Hyundai Heavy Industries, Ulsan, (Korea, Republic of); Kim, Yun-Hak; Kim, Jong-Bae [Offshore Installation Engineering Department, Hyundai Heavy Industries, Ulsan, (Korea, Republic of)

    2010-07-01

    High pressure and high temperature (HP/HT) offshore pipelines are frequently subjected to lateral buckling due to excessive compressive axial force. Several control processes have been designed such as sleepers to reduce lateral buckling. This paper investigated the effect of the introduction of sleepers as buckle triggers on the behavior of HP/HT pipelines. A 3D finite element analysis using ABAQUS software was performed to simulate concrete sleepers and a profile of the seabed. The analysis criteria were the buckling amplitude, Von Mises stress, equivalent plastic strain and the effective axial force on the pipeline. A case study for HP/HT pipeline was been carried out based on installation surveys. Comparisons between the results from a model without buckle trigger and those from a model with buckle trigger were carried out. It was found that the change to the support structure, adding a buckle trigger, affected the behaviour of the pipeline considerably.

  1. Mechanical and thermal buckling analysis of rectangular sandwich panels under different edge conditions

    Science.gov (United States)

    Ko, William L.

    1994-01-01

    The combined load (mechanical or thermal load) buckling equations were established for orthotropic rectangular sandwich panels under four different edge conditions by using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system. Two-dimensional buckling interaction curves and three-dimensional buckling interaction surfaces were constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide overall comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. In addition, thermal buckling curves of these sandwich panels are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory.

  2. Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    Chu-lin YU; Zhi-ping CHEN; Ji WANG; Shun-juan YAN; Li-cai YANG

    2012-01-01

    The effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells is investigated through experimental and numerical buckling analysis using six welded steel cylindrical shell specimens.The relationship between the amplitude of weld reinforcement and the axial plastic buckling critical load is explored.The effect of the material yield strength and the number of circumferential welds on the axial plastic buckling is studied.Results show that circumferential weld reinforcement represents a severe imperfect form of axially compressed welded steel cylindrical shells and the axial plastic buckling critical load decreases with the increment of the mean amplitude of circumferential weld reinforcement.The material yield strength and the number of circumferential welds are found to have no significant effect on buckling waveforms; however,the axial plastic buckling critical load can be decreased to some extent with the increase of the number of circumferential welds.

  3. A survey of buckling of conical shells subjected to axial compression and external pressure

    Directory of Open Access Journals (Sweden)

    O. Ifayefunmi

    2014-07-01

    Full Text Available The paper reviews literature on buckling of conical shells subjected to three loading conditions: (i axial compression only, (ii external pressure only and (iii combined loading. The review is from the theoretical as well as experimental points of view. This review covers known experiments on cones from (1958 – 2012. The literature review is split thematically into the following categories: theoretical prediction of axially compressed cones, theoretical prediction of externally pressurized cones, theoretical prediction of cones under combined loading, buckling experiments on axially compressed cones, buckling experiments on externally pressurized cones, buckling experiments on cones subjected to combined loading, buckling experiments on composite conical shells, equivalent cylinder approach, effect of initial geometric imperfection on the buckling behaviour of cones and effect of imperfect boundary conditions on the buckling behaviour of cones.

  4. Reporting buckling strength and elastic properties of nanowires

    Science.gov (United States)

    Shaat, M.; Abdelkefi, A.

    2016-12-01

    Nanocrystalline-nanowires have been incorporated in many micro-/nano-scale applications. To design nanowires-based nano-devices, studies should be conducted on the characterization of the elastic properties and the buckling strengths of nanowires. The challenge associated with detecting the properties of nanowires is that their properties are size-dependent. This motivated us to propose a model for the mechanics of nanocrystalline nanowires. In the context of this model, new measures are incorportated to account for the nanowire material structure and size effects and to reflect the experimental observations of nanomaterials-nanowires. This model is then harnessed to report the ranges of the buckling strength and the elastic properties of nanowires made of nanocrystalline diamond, Si, Al, Cu, Ag, Au, and Pt, for the first time. First, we report the range of the grain boundary Young's modulus for the various nanocrystalline materials. Depending on the contents of the grain boundary and the amount of impurities, the grain boundary Young's modulus is likely to be within the reported ranges. Second, for each grain size (from 200 nm to 2 nm), we report the range of Young's modulus, shear modulus, bulk modulus, and mass density of the aforementioned nanocrystalline nanomaterials. Third, we report the buckling strength and the equivalent Young's modulus of nanowires with different sizes accounting for the nanowire surface effects. The reported ranges of the buckling strength and the elastic properties of nanowires are experimentally validated.

  5. Orbital cellulitis following silicone-sponge scleral buckles

    Directory of Open Access Journals (Sweden)

    Nemet AY

    2013-10-01

    Full Text Available Arie Y Nemet, Joseph R Ferencz, Ori Segal, Amit Meshi Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel Background: Acute or chronic infection of the scleral explant is rare. We report seven cases of scleral explant infections that caused orbital cellulitis. Materials and methods: This was a retrospective chart review of oculoplastics at oculoplastics and vitreo-retinal units in a secondary referral hospital. All subjects had orbital cellulitis secondary to scleral buckle in the range of January 1990 to March 2010. Demographics, imaging studies, and pathology specimens were reviewed. Results: A total of 841 silicone-sponge scleral buckle implants for rhegmatogenous retinal detachment were performed. Forty were extracted (4.75%; annual rate of 1.9 cases. Seven (0.83% had orbital cellulitis. The mean time from implantation to presentation was 5.7 years. There was bacterial growth in all specimens, with Staphylococcus aureus in four. Conclusions: Patients who are operated on with silicone-sponge scleral buckling for rhegmatogenous retinal detachment sometimes require removal of the implant because of infection. However, the infection rate is low. Patients should be followed in the long term for possible complications. Keywords: scleral explant infection, scleral buckle, orbital cellulitis, rhegmatogenous retinal detachment

  6. Buckling-driven Delamination in Layered Spherical Shells

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten; Jensen, Henrik Myhre

    2008-01-01

    An analysis of buckling-driven delamination of a thin film on a spherical substrate has been carried out. The effects of the substrate having a double curvature compared to previous studies of delamination on cylindrical substrates turn out to be non-trivial: In addition to the effect of the shap...

  7. Uncertainty modelling of critical column buckling for reinforced concrete buildings

    Indian Academy of Sciences (India)

    Kasim A Korkmaz; Fuat Demir; Hamide Tekeli

    2011-04-01

    Buckling is a critical issue for structural stability in structural design. In most of the buckling analyses, applied loads, structural and material properties are considered certain. However, in reality, these parameters are uncertain. Therefore, a prognostic solution is necessary and uncertainties have to be considered. Fuzzy logic algorithms can be a solution to generate more dependable results. This study investigates the material uncertainties on column design and proposes an uncertainty model for critical column buckling reinforced concrete buildings. Fuzzy logic algorithm was employed in the study. Lower and upper bounds of elastic modulus representing material properties were defined to take uncertainties into account. The results show that uncertainties play an important role in stability analyses and should be considered in the design. The proposed approach is applicable to both future numerical and experimental researches. According to the study results, it is seen that, calculated buckling load values are stayed in lower and upper bounds while the load values are different for same concrete strength values by using different code formula.

  8. Effect of Physical Nonlinearity on Local Buckling in Sandwich Beams

    NARCIS (Netherlands)

    Koissin, Vitaly; Shipsha, Andrey; Skvortsov, Vitaly

    2010-01-01

    This article deals with experimental, theoretical, and FE characterization of the local buckling in foam-core sandwich beams. In the theoretical approach, this phenomena is considered in a periodic formulation (unbounded wrinkle wave); a nonlinear stress—strain response of the face material is accou

  9. Buckling and dynamic analysis of drill strings for core sampling

    Energy Technology Data Exchange (ETDEWEB)

    Ziada, H.H., Westinghouse Hanford

    1996-05-15

    This supporting document presents buckling and dynamic stability analyses of the drill strings used for core sampling. The results of the drill string analyses provide limiting operating axial loads and rotational speeds to prevent drill string failure, instability and drill bit overheating during core sampling. The recommended loads and speeds provide controls necessary for Tank Waste Remediation System (TWRS) programmatic field operations.

  10. Functional buckling behavior of silicone rubber shells for biomedical use

    NARCIS (Netherlands)

    van der Houwen, E B; Kuiper, L H; Burgerhof, J G M; van der Laan, B F A M; Verkerke, G J

    2013-01-01

    BACKGROUND: The use of soft elastic biomaterials in medical devices enables substantial function integration. The consequent increased simplification in design can improve reliability at a lower cost in comparison to traditional (hard) biomaterials. Functional bi-stable buckling is one of the many n

  11. Buckling of Thin Films in Nano-Scale

    Directory of Open Access Journals (Sweden)

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  12. Finite Element Modeling of the Buckling Response of Sandwich Panels

    Science.gov (United States)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  13. Buckling of Thin Films in Nano-Scale

    Science.gov (United States)

    Wang, S.; Jia, H. K.; Sun, J.; Ren, X. N.; Li, L. A.

    2010-06-01

    Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  14. Effect of Physical Nonlinearity on Local Buckling in Sandwich Beams

    NARCIS (Netherlands)

    Koysin, V.; Shipsha, Andrey; Skvortsov, Vitaly

    2010-01-01

    This article deals with experimental, theoretical, and FE characterization of the local buckling in foam-core sandwich beams. In the theoretical approach, this phenomena is considered in a periodic formulation (unbounded wrinkle wave); a nonlinear stress—strain response of the face material is accou

  15. Elastic Buckling of Bionic Cylindrical Shells Based on Bamboo

    Institute of Scientific and Technical Information of China (English)

    Jian-feng Ma; Wu-yi Chen; Ling Zhao; Da-hai Zhao

    2008-01-01

    High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years.Biomimicking from nature may offer the potential for lightweight design. In the viewpoint of mechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.

  16. Motor-Driven Bacterial Flagella and Buckling Instabilities

    CERN Document Server

    Vogel, Reinhard

    2012-01-01

    Many types of bacteria swim by rotating a bundle of helical filaments also called flagella. Each filament is driven by a rotary motor and a very flexible hook transmits the motor torque to the filament. We model it by discretizing Kirchhoff's elastic-rod theory and develop a coarse-grained approach for driving the helical filament by a motor torque. A rotating flagellum generates a thrust force, which pushes the cell body forward and which increases with the motor torque. We fix the rotating flagellum in space and show that it buckles under the thrust force at a critical motor torque. Buckling becomes visible as a supercritical Hopf bifurcation in the thrust force. A second buckling transition occurs at an even higher motor torque. We attach the flagellum to a spherical cell body and also observe the first buckling transition during locomotion. By changing the size of the cell body, we vary the necessary thrust force and thereby obtain a characteristic relation between the critical thrust force and motor torq...

  17. Buckling instabilities of subducted lithosphere beneath the transition zone

    NARCIS (Netherlands)

    Ribe, N.M.; Stutzmann, E.; Ren, Y.; Hilst, R.D. van der

    2007-01-01

    A sheet of viscous fluid poured onto a surface buckles periodically to generate a pile of regular folds. Recent tomographic images beneath subduction zones, together with quantitative fluid mechanical scaling laws, suggest that a similar instability can occur when slabs of subducted oceanic

  18. An investigation of the effects of wind-induced inclination on floating wind turbine dynamics: heave plate excursion

    OpenAIRE

    Antonutti, Raffaello; Peyrard, Christophe; Johanning, Lars; Ingram, David; Incecik, Atilla

    2014-01-01

    A current trend in offshore wind is the quest for exploitation of ever deeper water sites. At depths between 50 m and 100 m a promising substructure is the column-stabilised semi-submersible floating type. This solution is currently being tested at full scale at the WindFloat and Fukushima Forward demonstrator sites in Portugal and Japan respectively. The semi-sub design class frequently adopts passive motion control devices based on the water entrapment principle, such as heave plates, tanks...

  19. Flexural Vibration Characteristics of Initially Stressed Composite Plates

    Directory of Open Access Journals (Sweden)

    Rupesh Daripa

    2010-01-01

    Full Text Available The influence of localised in-plane load on the flexural vibration characteristics of isotropic and composite plates have been studied using a four-noded shear flexible high precision plate bending finite element. First, the critical buckling loads of such plates subjected to partial or concentrated compressive loads were calculated, then the linear and nonlinear flexural vibration frequencies were obtained. Limited parametric study was carried out to study the influences of location and distribution of tensile or compressive in-plane load on the vibration frequencies of such plates.Defence Science Journal, 2010, 60(1, pp.106-111, DOI:http://dx.doi.org/10.14429/dsj.60.117

  20. Flexural-slip during visco-elastic buckle folding

    Science.gov (United States)

    Damasceno, Davi R.; Eckert, Andreas; Liu, Xiaolong

    2017-07-01

    Flexural-slip is considered as an important mechanism during folding and a general conceptual and qualitative understanding has been provided by various field studies. However, quantitative evidence of the importance of the flexural-slip mechanism during fold evolution is sparse due to the lack of suitable strain markers. In this study, 2D finite element analysis is used to overcome these disadvantages and to simulate flexural-slip during visco-elastic buckle folding. Variations of single and multilayer layer fold configurations are investigated, showing that flexural-slip is most likely to occur in effective single layer buckle folds, where slip occurs between contacts of competent layers. Based on effective single layer buckle folds, the influence of the number of slip surfaces, the degree of mechanical coupling (based on the friction coefficient), and layer thickness, on the resulting slip distribution are investigated. The results are in agreement with the conceptual flexural-slip model and show that slip is initiated sequentially during the deformation history and is maximum along the central slip surface of the fold limb. The cumulative amount of slip increases as the number of slip surfaces is increased. For a lower degree of mechanical coupling increased slip results in different fold shapes, such as box folds, during buckling. In comparison with laboratory experiments, geometrical relationships and field observations, the numerical modeling results show similar slip magnitudes. It is concluded that flexural-slip should represent a significant contribution during buckle folding, affecting the resulting fold shape for increased amounts of slip.

  1. Buckling assisted and lithographically micropatterned fully flexible sensors for conformal integration applications.

    Science.gov (United States)

    Maji, Debashis; Das, Debanjan; Wala, Jyoti; Das, Soumen

    2015-12-07

    Development of flexible sensors/electronics over substrates thicker than 100 μm is of immense importance for its practical feasibility. However, unlike over ultrathin films, large bending stress hinders its flexibility. Here we have employed a novel technique of fabricating sensors over a non-planar ridge topology under pre-stretched condition which not only helps in spontaneous generation of large and uniform parallel buckles upon release, but also acts as stress reduction zones thereby preventing Poisson's ratio induced lateral cracking. Further, we propose a complete lithography compatible process to realize flexible sensors over pre-stretched substrates thicker than 100 μm that are released through dissolution of a water soluble sacrificial layer of polyvinyl alcohol. These buckling assisted flexible sensors demonstrated superior performance along different flexible modalities. Based on the above concept, we also realized a micro thermal flow sensor, conformally wrapped around angiographic catheters to detect flow abnormalities for potential applications in interventional catheterization process.

  2. Optimal design of a smart post-buckled beam actuator using bat algorithm: simulations and experiments

    Science.gov (United States)

    Mallick, Rajnish; Ganguli, Ranjan; Kumar, Ravi

    2017-05-01

    The optimized design of a smart post-buckled beam actuator (PBA) is performed in this study. A smart material based piezoceramic stack actuator is used as a prime-mover to drive the buckled beam actuator. Piezoceramic actuators are high force, small displacement devices; they possess high energy density and have high bandwidth. In this study, bench top experiments are conducted to investigate the angular tip deflections due to the PBA. A new design of a linear-to-linear motion amplification device (LX-4) is developed to circumvent the small displacement handicap of piezoceramic stack actuators. LX-4 enhances the piezoceramic actuator mechanical leverage by a factor of four. The PBA model is based on dynamic elastic stability and is analyzed using the Mathieu-Hill equation. A formal optimization is carried out using a newly developed meta-heuristic nature inspired algorithm, named as the bat algorithm (BA). The BA utilizes the echolocation capability of bats. An optimized PBA in conjunction with LX-4 generates end rotations of the order of 15° at the output end. The optimized PBA design incurs less weight and induces large end rotations, which will be useful in development of various mechanical and aerospace devices, such as helicopter trailing edge flaps, micro and nano aerial vehicles and other robotic systems.

  3. Slab-rollback induced upper mantle upwelling near lateral slab edges: A new mechanism for generating intra-plate magmatism in the central Mediterranean

    Science.gov (United States)

    Schellart, W. P.

    2010-12-01

    east-directed rollback of the Ionian slab that started at ~8 Ma. Three-dimensional fluid dynamic models of progressive subduction demonstrate that rollback-induced mantle return flow occurs in a quasi-toroidal fashion with a component of downwelling directly below and above the slab, and a component of upwelling next to the subduction zone with maximum upwelling observed next to the sub-slab region and reduced upwelling next to the mantle wedge region. Significant upwelling is observed at 90-430 km depth and extends 55-660 km away from the projected distance of inferred arc magmatism at the slab edge. The models can thereby explain the large spatial separation of up to 400 km between volcanism in Sicily and the magmatic arc during the last ~7 Myr, the contemporaneous activity of arc magmatism in the Tyrrhenian Sea and volcanism in Sicily, and the intra-plate character of the volcanics in Sicily. Finally, it explains a broad slow S-wave anomaly at ~300 km depth below Sicily, and more local low Qp and high Vp/Vs anomalies at 50-150 km depth below northeastern Sicily.

  4. An impact test system design and its applications to dynamic buckling of a spacer grid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sheng, E-mail: liusheng_05@126.com; Fan, Chenguang; Yang, Yiren

    2016-11-15

    This study is aimed at investigating the dynamic buckling load, dynamic stiffness, damping and buckling characteristics of the spacer grid assembly (SGA). A pendulum impact test system is designed to experiment the buckling of SGAs. Three criterions are discussed and compared to determine the buckling loads of SGAs: B-R criterion, energy criterion and extreme value criterion. Two approaches are applied to calculate the dynamic stiffness of SGAs: One method is natural period method based on the hypothesis of harmonic motion of the pendulum whose period is approximated because of the passivation and tailing of the impact force time history; and the other is energy method based on the conservation of mechanical energy. The equivalent viscous damping is defined as the resultant cause of dissipation and is obtained by the energy principle. The impact force time history loses its approximate symmetry after buckling occurs. The impact force and displacement reach their maxima almost at the same time at pre-buckling states but not post-buckling states. Vertical straps in SGA are found to be transversely shared by horizontal straps at the buckling position. The buckling of SGA results from the lack of strength of complete structure; and the strength of material has no effects on the buckling.

  5. Using the Hypergeometric Model to analyze the buckling of drillstrings in curved boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, J.H.B. Jr. [PETROBRAS, Rio de Janeiro (Brazil); Eustes, A.W. III [Colorado School of Mines, Golden, CO (United States). Petroleum Engineering Dept.

    1998-12-31

    Current methodologies for analytically determining the onset of buckling of drillstrings within curved boreholes are limited. In this paper, the Hypergeometric Model is shown to be an effective model to determine drillstring buckling within curved boreholes. With the Hypergeometric Model, the analysis of drillstring buckling results in curves expressing the local buckling force versus the angle of inclination. The local buckling force alone, however, does not contain all the information required for a practical analysis. From the local buckling force curve, the positional buckling force is derived. The positional buckling force considers the distributed weight of the drillstring and the friction between the drillstring and the borehole wall. From this curve, the point of minimum resistance to buckling of the drillstring is determined. Using the local and positional buckling force curves, experimental results and simulations are presented. When multiple configurations exist (for example tapered drillstrings, tapered boreholes, multi-curved boreholes, or any combination of these), the analysis procedure uses superposition of two or more single configuration curves and a graphical algorithm. The Hypergeometric Model permits the optimization of the position of the crossing points (cross-over positioning, casing-shoe positioning, and change of curvature) to achieve extended reach with less risk and cost. The procedure for this model and examples are presented in this paper.

  6. Finite Element Analysis of Residual Stress in Ti-6Al-4V Alloy Plate Induced by Deep Rolling Process under Complex Roller Path

    Directory of Open Access Journals (Sweden)

    J. J. Liou

    2014-01-01

    Full Text Available The kinematics of the deep rolling tool, contact stress, and induced residual stress in the near-surface material of a flat Ti-6Al-4V alloy plate are numerically investigated. The deep rolling tool is under multiaxis nonlinear motion in the process. Unlike available deep rolling simulations in the open literature, the roller motion investigated in this study includes penetrative and slightly translational motions. A three-dimensional finite element model with dynamic explicit technique is developed to simulate the instantaneous complex roller motions during the deep rolling process. The initial motion of the rollers followed by the penetration motion to apply the load and perform the deep rolling process, the load releasing, and material recovery steps is sequentially simulated. This model is able to capture the transient characteristics of the kinematics on the roller and contacts between the roller and the plate due to variations of roller motion. The predictions show that the magnitude of roller reaction force in the penetration direction starts to decrease with time when the roller motion changes to the deep rolling step and the residual stress distributions in the near-surface material after the material recovery step varies considerably along the roller path.

  7. Refractive changes after scleral buckling surgery Alterações refracionais após retinopexia com explante escleral

    Directory of Open Access Journals (Sweden)

    João Jorge Nassaralla Junior

    2003-10-01

    Full Text Available PURPOSE: A prospective study was conducted to compare the refractive changes after three different types of scleral buckling surgery. METHODS: A total of 100 eyes of 100 patients were divided into three groups according to the type of performed buckling procedure: Group 1, encircling scleral buckling (42 patients; Group 2, encircling with vitrectomy (30 patients; Group 3, encircling with additional segmental buckling (28 patients. Refractive examinations were performed before and at 1, 3 and 6 months after surgery. RESULTS: Changes in spherical equivalent and axial length were significant in all 3 groups. The amount of induced astigmatism was more significant in Group 3. No statistically significant difference was found in the amount of surgically induced changes between Groups 1 and 2, at any postoperative period. CONCLUSIONS: All three types of scleral buckling surgery were found to produce refractive changes. A correlation exists between additional segments and extent of refractive changes.OBJETIVO: Estudo prospectivo foi realizado para comparar as alterações refracionais encontradas após três diferentes tipos de cirurgia com explante escleral. MÉTODOS: Cem olhos de 100 pacientes foram divididos em 3 grupos de acordo com o tipo de cerclagem retiniana realizada: Grupo 1, cerclagem simples (42 pacientes; Grupo 2, cerclagem associada a vitrectomia (30 pacientes; Grupo 3, cerclagem associado a implante escleral segmentar (28 pacientes. Exames refracionais foram realizados antes e após 1, 3 e 6 meses da cirurgia. RESULTADOS: A indução de astigmatismo foi maior no Grupo 3. Alterações no equivalente esférico e no diâmetro ântero-posterior foram significantes nos 3 grupos após a cirurgia. Nenhuma diferença estaticamente significativa foi encontrada nas alterações induzidas pela cirurgia entre os grupos 1 e 2, em nenhum momento após a cirurgia. CONCLUSÃO: Os três tipos de retinopexia causam alteração refracional. Existe correla

  8. The Effects of Geometric and Loading Imperfections on the Response and Lower-Bound Buckling Load of a Compression-Loaded Cylindrical Shell

    Science.gov (United States)

    Kriegesmann, Benedikt; Hilburger, Mark W.; Rolfes, Raimund

    2012-01-01

    Results from a numerical study of the buckling response of a thin-walled compressionloaded isotropic circular cylindrical shell with initial geometric and loading imperfections are used to determine a lower bound buckling load estimate suitable for preliminary design. The lower bound prediction techniques presented herein include an imperfection caused by a lateral perturbation load, an imperfection in the shape of a single stress-free dimple (similar to the lateral pertubation imperfection), and a distributed load imperfection that induces a nonuniform load in the shell. The ABAQUS finite element code is used for the analyses. Responses of the cylinders for selected imperfection amplitudes and imperfection types are considered, and the effect of each imperfection is compared to the response of a geometrically perfect cylinder. The results indicate that compression-loaded shells subjected to a lateral perturbation load or a single dimple imperfection, and a nonuniform load imperfection, exhibit similar buckling behavior and lower bound trends and the predicted lower bounds are much less conservative than the corresponding design recommendation NASA SP-8007 for the design of buckling-critical shells. In addition, the lateral perturbation technique and the distributed load imperfection produce response characteristics that are physically meaningful and can be validated via laboratory testing.

  9. BEAM 1.7: development for modelling fuel element and bundle buckling strength

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, G.; Xu, S.; Xu, Z.; Paul, U.K. [Atomic Energy of Canada, Mississauga, Ontario (Canada)

    2010-07-01

    This paper describes BEAM, an AECL developed computer program, used to assess mechanical integrity of CANDU fuel bundles. The BEAM code has been developed to satisfy the need for buckling strength analysis of fuel bundles. Buckling refers to the phenomenon where a compressive axial load is large enough that a small lateral load can cause large lateral deflections. The buckling strength refers to the critical compressive axial load at which lateral instability is reached. The buckling strength analysis has practical significance for the design of fuel bundles, where the buckling strength of a fuel element/bundle is assessed so that the conditions leading to bundle jamming in the pressure tube are excluded. This paper presents the development and qualification of the BEAM code, with emphasis on the theoretical background and code implementation of the newly developed fuel element/bundle buckling strength model. (author)

  10. Caught in the Act: Direct Detection of Galactic Bars in the Buckling Phase

    CERN Document Server

    Erwin, Peter

    2016-01-01

    The majority of massive disk galaxies, including our own, have stellar bars with vertically thick inner regions -- so-called "boxy/peanut-shaped" (B/P) bulges. The most commonly suggested mechanism for the formation of B/P bulges is a violent vertical "buckling" instability in the bar, something that has been seen in N-body simulations for over twenty years, but never identified in real galaxies. Here, we present the first direct observational evidence for ongoing buckling in two nearby galaxies (NGC 3227 and NGC 4569), including characteristic asymmetric isophotes and (in NGC 4569) stellar-kinematic asymmetries that match buckling in simulations. This confirms that the buckling instability takes place and produces B/P bulges in real galaxies. A toy model of bar evolution yields a local fraction of buckling bars consistent with observations if the buckling phase lasts ~0.5--1 Gyr, in agreement with simulations.

  11. Prediction of Buckling of Plain Knitted Fabric Sheets Subjected to Simple Shear in Wale Direction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yitong; AO Tao; XU Jiafu

    2007-01-01

    Knitted fabric is very different from woven fabric due to its more complicated knitting structures. The buckling of knitted fabric sheets subjected to simple shear in the wale direction is investigated analytically in consideration of the large deformation of fabric sheet in critical configuration. The theory on instability of finite deformation is applied to the analysis. All the stress boundary conditions of knitted fabric sheet are satisfied. An equation to determine the buckling direction angle is de-rived. It is shown that there are two possible buckling modes, flexural mode and barreling mode. The buckling condition equations for the flexural mode and barreling mode are also obtained respectively. Numerical illustrations reveal that only the flexural mode can actually occur and the barreling mode cannot, which agrees with the experimental observations. For a permitted buckling mode on margin boundaries, the critical value of shear amount and the buckling direction angle can be deter-mined.

  12. Oblique and Herringbone Buckling Analysis of Steel Strip by Spline FEM

    Institute of Scientific and Technical Information of China (English)

    QIN Jian; ZHANG Qing-dong; HUANG Ke-fu

    2011-01-01

    The tilted waves in steel strip during rolling and leveling of sheet metal can be classified into two different types of buckling, oblique and herringbone buckling, respectively. Numerical considerations of oblique and herringbone buckling phenomena are dealt with by the spline finite element method (FEM). It is pointed out that the shear stress due to residual strains caused by the rolling process or applied non-uniform loading is the main reason of oblique and herringbone buckle. According to the analysis of stress distribution in plane, the appropriate initial strain patterns are adopted and the corresponding buckling modes are calculated by the spline FEM. The developed numerical model provides an estimation of buckling critical load and wave configuration.

  13. Alternative Shape of Suction Caisson to Reduce Risk of Buckling under high Pressure

    DEFF Research Database (Denmark)

    Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2013-01-01

    by uniform external pressure and vertical forces. The bucket foundation does not require heavy installation equipment, but since it is constructed as a thin steel shell structure, instability, in the form of buckling, becomes a crucial issue during installation. Typically, the bucket foundation is a large...... cylindrical monopod foundation made of steel. In this paper, an alternative design/shape of the suction caisson, having a smaller risk of buckling under high pressure is presented. The risk of structural buckling is addressed using numerical methods to determine the buckling pressures of the re......-designed bucket foundation during installation. Further, the effect of the lateral restraint offered by the surrounding soil on the buckling pressures is analysed. It is found that the new design enables a significantly larger buckling load compared to the traditional design....

  14. Buckling Response of Pipe-in-Pipe Systems Subjected to Bending

    Institute of Scientific and Technical Information of China (English)

    王哲; 陈志华; 刘红波; 何永禹; 马克俭

    2015-01-01

    The buckling response of pipe-in-pipe(PIP)systems subjected to bending is investigated in this paper. A set of parameterized models are established to explore the bending characteristics of the PIP systems through eigen-value buckling analysis and nonlinear post-buckling analysis. The results show that the length of PIP systems and the height of centralizers are the most significant factors that influence the buckling moment, ultimate bending mo-ment and buckling mode; the other geometric characteristics, such as initial geometric imperfection and friction between centralizers and outer pipes, evidently influence the post-buckling path and ductility of PIPs; the equivalent bending stiffness is dependent on the length and centralizers. Moreover, the range of equivalent bending stiffness is also discussed.

  15. Buckling of Bilayer Laminates - A Novel Approach to Synthetic Papillae

    Science.gov (United States)

    2013-10-01

    a very  small  region. This method of immobilization was  used in some experiments.    We also d indentatio with a sin this layer  scale inde be measu...must  select the lowest energy mode. (Fig. 8).  (3) Radial buckling of an  annulus  where the buckling mode cannot be predicted by linear stability...conductivity, volume conservation can be approximated, at least for  small   deformations.  We considered two typical forms of the anisotropic thermal expansion

  16. Size-dependent axisymmetric vibration of functionally graded circular plates in bifurcation/limit point instability

    Science.gov (United States)

    Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.

    2017-04-01

    In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.

  17. Structural Stability and Dynamics of FGM Plates Using an Improved 8-ANS Finite Element

    Directory of Open Access Journals (Sweden)

    Weon-Tae Park

    2016-01-01

    Full Text Available I investigate the vibration and buckling analysis of functionally graded material (FGM structures, using a modified 8-node shell element. The properties of FGM vary continuously through the thickness direction according to the volume fraction of constituents defined by sigmoid function. The modified 8-ANS shell element has been employed to study the effect of power law index on dynamic analysis of FGM plates with various boundary conditions and buckling analysis under combined loads, and interaction curves of FGM plates are carried out. To overcome shear and membrane locking problems, the assumed natural strain method is employed. In order to validate and compare the finite element numerical solutions, the reference results of plates based on Navier’s method, the series solutions of sigmoid FGM (S-FGM plates are compared. Results of the present study show good agreement with the reference results. The solutions of vibration and buckling analysis are numerically illustrated in a number of tables and figures to show the influence of power law index, side-to-thickness ratio, aspect ratio, types of loads, and boundary conditions in FGM structures. This work is relevant to the simulation of wing surfaces, aircrafts, and box structures under various boundary conditions and loadings.

  18. Create Your Plate

    Medline Plus

    Full Text Available ... A A A Listen En Español Create Your Plate Create Your Plate is a simple and effective ... and that your options are endless. Create Your Plate! Click on the plate sections below to add ...

  19. Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.

    Science.gov (United States)

    Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin

    2016-07-01

    Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented.

  20. Energy harvesting from controlled buckling of piezoelectric beams

    Science.gov (United States)

    Ansari, M. H.; Karami, M. Amin

    2015-11-01

    A piezoelectric vibration energy harvester is presented that can generate electricity from the weight of passing cars or crowds. The energy harvester consists of a piezoelectric beam, which buckles when the device is stepped on. The energy harvester can have a horizontal or vertical configuration. In the vertical (direct) configuration, the piezoelectric beam is vertical and directly sustains the weight of the vehicles or people. In the horizontal (indirect) configuration, the vertical weight is transferred to a horizontal axial force through a scissor-like mechanism. Buckling of the beam results in significant stresses and, thus, large power production. However, if the beam’s buckling is not controlled, the beam will fracture. To prevent this, the axial deformation is constrained to limit the deformations of the beam. In this paper, the energy harvester is analytically modeled. The considered piezoelectric beam is a general non-uniform beam. The natural frequencies, mode shapes, and the critical buckling force corresponding to each mode shape are calculated. The electro-mechanical coupling and the geometric nonlinearities are included in the model. The design criteria for the device are discussed. It is demonstrated that a device, realized with commonly used piezoelectric patches, can generate tens of milliwatts of power from passing car traffic. The proposed device could also be implemented in the sidewalks or integrated in shoe soles for energy generation. One of the key features of the device is its frequency up-conversion characteristics. The piezoelectric beam undergoes free vibrations each time the weight is applied to or removed from the energy harvester. The frequency of the free vibrations is orders of magnitude larger than the frequency of the load. The device is, thus, both efficient and insensitive to the frequency of the force excitations.

  1. Orbital cellulitis following silicone-sponge scleral buckles

    OpenAIRE

    Nemet AY; Ferencz JR; Segal O; Meshi A

    2013-01-01

    Arie Y Nemet, Joseph R Ferencz, Ori Segal, Amit Meshi Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel Background: Acute or chronic infection of the scleral explant is rare. We report seven cases of scleral explant infections that caused orbital cellulitis. Materials and methods: This was a retrospective chart review of oculoplastics at oculoplastics and vitreo-retinal units in a secondary referral hospital. All subjects had orbital cellulitis secondary to scleral buckle i...

  2. Scleral buckling for retinal detachment in patients with retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Buzney, S.M.; Pruett, R.C.; Regan, C.D.; Walton, D.S.; Smith, T.R.

    1984-10-15

    Three children (two girls and one boy) with bilateral retinoblastoma each developed a presumed rhegmatogenous retinal detachment in one eye. All three eyes had previously received radiation and cryotherapy. In each case the retinal detachment responded promptly to conventional surgical methods via scleral buckling in the area of treated retinoblastoma and presumed retinal break. All three eyes have retained useful vision for follow-up periods of 3.5 to 12 years.

  3. Buckled graphene: A model study based on density functional theory

    KAUST Repository

    Khan, Mohammad A.

    2010-09-01

    We make use of ab initio calculations within density functional theory to investigate the influence of buckling on the electronic structure of single layer graphene. Our systematic study addresses a wide range of bond length and bond angle variations in order to obtain insights into the energy scale associated with the formation of ripples in a graphene sheet. © 2010 Elsevier B.V. All rights reserved.

  4. Outpatient- and inpatient-based buckling surgery: a comparative study

    Directory of Open Access Journals (Sweden)

    Lee JC

    2014-04-01

    Full Text Available Jin Cheol Lee,* Yu Cheol Kim*Department of Ophthalmology, Keimyung University School of Medicine, Dongsan Medical Center, Daegu, Korea *Both authors contributed equally to this workPurpose: To evaluate the clinical outcomes of ambulatory buckling surgery, comparing outpatient- with inpatient-based surgery.Methods: The authors performed a retrospective study of 80 consecutive cases of rhegmato genous retinal detachment from January 2009 to December 2011 treated by scleral buckling surgery. Two groups of patients were defined according to inpatient (group 1 or outpatient (group 2 surgery, and a comparison of several parameters between these two groups was performed.Results: Of the 80 subjects in this study, the average age of group 1 (50 patients was 49.7 years, and that of group 2 (30 patients was 47.5 years. There were no statistically significant differences in the average logarithm of the minimum angle of resolution-visual acuity, the condition of the lens, or the presence of retinal lattice degeneration prior to the surgery between the groups. There were no statistically significant differences in the patterns of tear or retinal detachment or in surgical procedure between the groups. Comparing the best-corrected visual acuity after 6 months with that prior to the surgery, the changes in group 1 and group 2 were 0.26 and 0.31, respectively. The functional success rates of group 1 and group 2 after 6 months were 90% and 93%, respectively, and the anatomical success rates of group 1 and group 2 after 6 months were 94% and 96%, respectively, but these were also statistically insignificant.Conclusion: Hospitalization is not essential for buckling surgery in uncomplicated rhegmatogenous retinal detachment surgery.Keywords: ambulatory, scleral buckling, rhegmatogenous retinal detachment

  5. Numerical Analysis Of Buckling Of Von Mises Planar Truss

    Directory of Open Access Journals (Sweden)

    Kalina Martin

    2015-12-01

    Full Text Available A computational algorithm of a discrete model of von Mises planar steel truss is presented. The structure deformation is evaluated by seeking the minimal potential energy. The critical force invented by mathematical solution was compared with solution by computer algorithm. Symmetric and asymmetric effects of initial shape of geometric imperfection of axis of struts are used in model. The shapes of buckling of von Mises planar truss of selected vertical displacement of top joint are shown.

  6. Buckling of Elastomeric Beams Enables Actuation of Soft Machines

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; School of Engineering and Applied Sciences Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Mosadegh, Bobak [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Wyss Institute for Biologically Inspired Engineering Harvard University, 60 Oxford Street Cambridge MA 02138 USA; Ainla, Alar [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Lee, Benjamin [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Khashai, Fatemeh [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Suo, Zhigang [School of Engineering and Applied Sciences Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Kavli Institute for Bionano Science & Technology Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Bertoldi, Katia [School of Engineering and Applied Sciences Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Kavli Institute for Bionano Science & Technology Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Whitesides, George M. [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Wyss Institute for Biologically Inspired Engineering Harvard University, 60 Oxford Street Cambridge MA 02138 USA; Kavli Institute for Bionano Science & Technology Harvard University, 29 Oxford Street Cambridge MA 02138 USA

    2015-09-21

    Soft, pneumatic actuators that buckle when interior pressure is less than exterior provide a new mechanism of actuation. Upon application of negative pneumatic pressure, elastic beam elements in these actuators undergo reversible, cooperative collapse, and generate a rotational motion. These actuators are inexpensive to fabricate, lightweight, easy to control, and safe to operate. They can be used in devices that manipulate objects, locomote, or interact cooperatively with humans.

  7. Controlled Buckling and Crumpling of Nanoparticle-Coated Droplets

    OpenAIRE

    Datta, Sujit S.; Shum, Ho Cheung; Weitz, David A.

    2010-01-01

    We introduce a new experimental approach to study the structural transitions of large numbers of nanoparticle-coated droplets as their volume is reduced. We use an emulsion system where the dispersed phase is slightly soluble in the continuous phase. By adding a fixed amount of unsaturated continuous phase, the volume of the droplets can be controllably reduced, causing them to buckle or crumple, thereby becoming nonspherical. The resultant morphologies depend both on the extent of volume red...

  8. A buckling mechanism for ESCRT-III budding

    CERN Document Server

    Lenz, Martin; Joanny, Jean-François

    2009-01-01

    The ESCRT-III protein complex binds to the membrane of eukaryotic cells, causing it to bud into long tubes. Here we propose that this budding is akin to a buckling instability. We analyze the linear stability of flat ESCRT-III-dressed membranes and account for the formation of long tubes. We study strongly deformed dressed membranes and their bifurcation diagram numerically. Our mechanism is compatible with reasonable in vivo parameter values and we propose an experiment allowing its validation.

  9. In situ measurement using FBGs of process-induced strains during curing of thick glass/epoxy laminate plate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Hattel, Jesper Henri;

    2012-01-01

    For large composite structures, such as wind turbine blades, thick laminates are required to withstand large in-service loads. During the manufacture of thick laminates, one of the challenges met is avoiding process-induced shape distortions and residual stresses. In this paper, embedded fibre...

  10. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    Science.gov (United States)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  11. Controlled buckling of thin film on elastomeric substrate in large deformation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Electronic systems with large stretchability have many applications.A precisely controlled buckling strategy to increase the stretchability has been demonstrated by combining lithographically patterned surface bonding chemistry and a buckling process.The buckled geometry was assumed to have a sinusoidal form,which may result in errors to determine the strains in the film.A theoretical model is presented in this letter to study the mechanics of this type of thin film/substrate system by discarding the ass...

  12. Critical radius and temperature for buckling in graphene

    Science.gov (United States)

    Bonilla, L. L.; Ruiz-Garcia, M.

    2016-03-01

    In this work, we find an analytical flat-membrane solution to the saddle point equations, derived by F. Guinea et al. [Phys. Rev. B 89, 125428 (2014), 10.1103/PhysRevB.89.125428], for the case of a suspended graphene membrane of circular shape. We also find how different buckled membrane solutions bifurcate from the flat membrane at critical temperatures and membrane radii. The saddle point equations take into account electron-phonon coupling and this coupling provides a residual stress even for a flat graphene layer. Below a critical temperature (which is exceedingly high for an infinite layer) or above a critical size that depend on boundary conditions, different buckling modes that may be the germ of rippling appear. Our results provide the opportunity to develop new feasible experiments dealing with buckling in small suspended graphene membranes that could verify them. These experiments may also be used to fit the phonon-electron coupling constant or the bending energy.

  13. Snap-Through Buckling Problem of Spherical Shell Structure

    Directory of Open Access Journals (Sweden)

    Sumirin Sumirin

    2014-12-01

    Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.

  14. Buckling Experiment on Anisotropic Long and Short Cylinders

    Directory of Open Access Journals (Sweden)

    Atsushi Takano

    2016-07-01

    Full Text Available A buckling experiment was performed on anisotropic, long and short cylinders with various radius-to-thickness ratios. The 13 cylinders had symmetric and anti-symmetric layups, were between 2 and 6 in terms of the length-to-radius ratio, between 154 and 647 in radius-to-thickness ratio, and made of two kinds of carbon fiber reinforced plastic (CFRP prepreg with high or low fiber modulus. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length and compared with the test results. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length. The knockdown factor, defined as the ratio of the experimental value to the theoretical value, was found to be between 0.451 and 0.877. The test results indicated that a large length-to-radius ratio reduces the knockdown factor, but the radius-to-thickness ratio and other factors do not affect it.

  15. Buckling of a beam extruded into highly viscous fluid

    Science.gov (United States)

    Gosselin, F. P.; Neetzow, P.; Paak, M.

    2014-11-01

    Inspired by microscopic Paramecia which use trichocyst extrusion to propel themselves away from thermal aggression, we propose a macroscopic experiment to study the stability of a slender beam extruded in a highly viscous fluid. Piano wires were extruded axially at constant speed in a tank filled with corn syrup. The force necessary to extrude the wire was measured to increase linearly at first until the compressive viscous force causes the wire to buckle. A numerical model, coupling a lengthening elastica formulation with resistive-force theory, predicts a similar behavior. The model is used to study the dynamics at large time when the beam is highly deformed. It is found that at large time, a large deformation regime exists in which the force necessary to extrude the beam at constant speed becomes constant and length independent. With a proper dimensional analysis, the beam can be shown to buckle at a critical length based on the extrusion speed, the bending rigidity, and the dynamic viscosity of the fluid. Hypothesizing that the trichocysts of Paramecia must be sized to maximize their thrust per unit volume as well as avoid buckling instabilities, we predict that their bending rigidity must be about 3 ×10-9N μ m2 . The verification of this prediction is left for future work.

  16. Buckling of Delaminated Long Panels Under Pressure and of Radially-Loaded Stiffened Annular Plates.

    Science.gov (United States)

    1985-10-01

    Sheinman [7-10]. The governing equations for the nonlinear analysis of imperfect, stiffened, laminated, circular, cylindrical thin shells, subjected to...No. 4, 1985, pp. 529-544. 7. Simi tses, G. J.I Sheinman , I., and Shaw, D., "Stability of Laminated ComposJte Shells Subjected to Uniform Axial... Sheinman , I., "Imperfect, Laminated, Cyl ndri cal Shells in Torsion and Axial Compression", Acta -,Ftronautica, v. 10, No. 5-6, 1983, pp. 395-400

  17. Local buckling behavior of 48', X80 high-strain line pipes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Nobuhisa; Tajika, Hisakazu; Igi, Satoshi; Okatsu, Mitsuru; Kondo, Joe; Arakawa, Takekazu [JFE Steel Corporation (Japan)

    2010-07-01

    In the natural gas sector, more and more long distance and high pressure pipelines are now constructed in challenging areas, such as seismic and Arctic regions. In order to provide safe and reliable operations, high strength, high strain and large diameter pipes are used in such projects to withstand the important strains induced by the environment. The aim of this paper is to investigate the local buckling behavior of high strength and large diameter line pipes. A bending test apparatus was developed and used to perform 2 bending tests on X80 grade, 48'' pipes pressurized to 60% SMYS and a finite element analysis (FEA) was conducted. The comparison between experimental results and simulations showed that the FEA was successful in predicting bending moment, displacement and longitudinal strain. This paper demonstrated the FEA can be used to determine the behavior of high strength, high strain and large diameter pipes.

  18. Hollow Bragg waveguides fabricated by controlled buckling of Si/SiO2 multilayers.

    Science.gov (United States)

    Epp, E; Ponnampalam, N; Newman, W; Drobot, B; McMullin, J N; Meldrum, A F; DeCorby, R G

    2010-11-22

    We describe integrated air-core waveguides with Bragg reflector claddings, fabricated by controlled delamination and buckling of sputtered Si/SiO2 multilayers. Thin film deposition parameters were tailored to produce a desired amount of compressive stress, and a patterned, embedded fluorocarbon layer was used to define regions of reduced adhesion. Self-assembled air channels formed either spontaneously or upon heating-induced decomposition of the patterned film. Preliminary optical experiments confirmed that light is confined to the air channels by a photonic band-gap guidance mechanism, with loss ~5 dB/cm in the 1550 nm wavelength region. The waveguides employ standard silicon processes and have potential applications in MEMS and lab-on-chip systems.

  19. Molecular dynamics simulation on the buckling behavior of GaN nanowires under uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiguo; Zu, Xiaotao; Yang, Li; Gao, Fei; Weber, William J

    2008-01-01

    Molecular dynamics simulation is one of the most promising methods for investigating the mechanical behavior of nanostructures, such as nanowires and nanotubes. Atomistic simulations are performed to investigate the buckling properties of [001], [11¯0] and [110] oriented GaN nanowires under uniaxial compression, these three types of nanowires correspond to experimentally synthesized nanowires. The effects of simulation temperature, and wire length on the buckling behavior are investigated. The simulation results show that critical stress decreases with the increase of wire length, which is in agreement with the Euler theory. Buckling occurs as a result of dynamic processes, buckling strain (and corresponding stress) decreases as temperature is increased.

  20. The effect of temperature on the compressive buckling of boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shokuhfar, Ali; Ebrahimi-Nejad, Salman [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, 19991-43344 Tehran (Iran, Islamic Republic of); Hosseini-Sadegh, Amin [Faculty of Petroleum Engineering, Petroleum University of Technology, 14539-53153 Tehran (Iran, Islamic Republic of); Zare-Shahabadi, Abolfazl [Department of Mechanical Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of)

    2012-07-15

    Inspired by the stability at high temperature and the high mechanical strength of boron nitride nanotubes (BNNTs), the effect of temperature on the compressive buckling of BNNTs has been investigated in this paper. Molecular dynamics (MD) simulations of BNNTs subjected to high temperatures (up to 3000 K) were performed and their structures were analyzed by studying their optimized structures at different temperatures through the radial distribution function (RDF). Then, the structural stability and compressive resistance properties of these nanotubes were investigated and the critical buckling loads and critical buckling strains of the nanotubes and their susceptibility to high temperatures were determined. The gradual decrease in the sharpness of the peaks of RDF plots of non-loaded nanotubes implies that at higher temperatures the structure displays greater deviations from that at room temperature. Results of buckling simulations also indicate a general weakening of the nanotubes and lower critical buckling loads and critical buckling strains at increased temperatures. The decrease in the critical buckling load is more significant for the longer nanotube (L {proportional_to} 6 nm) than the shorter one (L {proportional_to} 3 nm). The critical buckling strain experienced a drop of about 35-50% at temperatures higher than 1500 K. A transitional behavior was observed between T = 1000 and 2000 K. Temperature-dependent axial buckling behavior of boron nitride nanotubes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Numerical Simulations on Buckling Failure of Preloaded Cylindrical Shell Irradiated by High Power Laser Beam

    Institute of Scientific and Technical Information of China (English)

    王吉; 王肖钧; 王峰; 赵凯

    2004-01-01

    With finite-element software ANSYS 7.0 and simple thermal-mechanical coupling constitutive relations,the buckling failure of preloaded cylindrical shell irradiated by high power laser beam was studied by numerical simulations. The buckling mode and buckling critical loading were analysed for different preloading conditions. The influence of laser intensity, beam irradiation time, preloading conditions and geometric parameters of cylindrical shell on the buckling mode were discussed. The numerical results show that: ① the buckling deformation of the cylindrical shell was concentrated in the area of laser spot and the radial buckling was the main buckling mode, ② a linear relationship between the buckling eigenvalue and the maximum temperature at the center of laser spot was approached, ③ the buckling failure of cylindrical shell was attributed to the coupling effect of the material softening and the radial deformation in the laser spot, and hence to raise the stiffness of the material would enhance the ability for anti-irradiation of structure substantially.

  2. Mechanical and thermal buckling analysis of sandwich panels under different edge conditions

    Science.gov (United States)

    Ko, William L.

    1993-01-01

    By using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system, combined load (mechanical or thermal load) buckling equations are established for orthotropic rectangular sandwich panels supported under four different edge conditions. Two-dimensional buckling interaction curves and three dimensional buckling interaction surfaces are constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide easy comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. Thermal buckling curves of the sandwich panels also are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory. In sandwich panels, the effect of transverse shear is quite large, and by neglecting the transverse shear effect, the buckling loads could be overpredicted considerably. Clamping of the edges could greatly increase buckling strength more in compression than in shear.

  3. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    Science.gov (United States)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  4. Buckling Analysis of Bucket Foundations for Wind Turbines in Deep Water

    DEFF Research Database (Denmark)

    Madsen, Søren; Andersen, Lars; Ibsen, Lars Bo

    2011-01-01

    Using large suction caissons for offshore wind turbines is an upcoming technology also referred to as bucket foundations. The bucket foundation does not require heavy installation equipment, but since it is constructed as a thin steel shell structure, instability, in form of buckling, becomes...... a crucial issue during installation. This paper addresses the hydrostatic buckling pressure of the bucket foundation using threedimensional, non-linear finite element analysis. The main finding of this paper is that introducing an imperfect geometry based on the first linear pre-buckling mode shape, can...... increase the buckling load significantly....

  5. A simple higher order shear deformation theory for mechanical behavior of laminated composite plates

    Science.gov (United States)

    Adim, Belkacem; Daouadji, Tahar Hassaine; Rabahi, Aberezak

    2016-06-01

    In the present study, the static, buckling, and free vibration of laminated composite plates is examined using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated composite plates. These models take into account the parabolic distribution of transverse shear stresses and satisfy the condition of zero shear stresses on the top and bottom surfaces of the plates. The most interesting feature of this theory is that it allows for parabolic distributions of transverse shear stresses across the plate thickness and satisfies the conditions of zero shear stresses at the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns in the present theory is four, as against five in other shear deformation theories. In the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained through the use of Hamilton's principle. The accuracy of the analysis presented is demonstrated by comparing the results with solutions derived from other higher order models and with data found in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static, the buckling, and free vibration behaviors of laminated composite plates.

  6. Numerical Analysis of Elastic Distortional Buckling for Cold-formed Thin-walled Steel Lipped Channel Columns%冷弯薄壁卷边槽钢柱弹性畸变屈曲数值分析

    Institute of Scientific and Technical Information of China (English)

    姚永红; 武振宇

    2012-01-01

    The distortional buckling which becomes a significant failure mode probably appears prior to the plates local buckling when high-strength steel with thinner cross-sections are widely used in building. The failure mechanism of distortional buckling is different from the local buckling, and the computing process of those elasticbuckling stress are quite distinct. The present procedures for the calculation of critical elastic distortional buckling stress are very complicated and cumbersome, and the estimation of the buckling stress in design is depended on the numerical analysis method which the finite strip method and finite element method are usually used. A comparison of the results of elastic distortional buckling stress and half wavelength got by finite strip method and finite element method were conducted, it was found that the values were very close to each other. Two methods can be used for predicting the elastic distortional buckling of cold-formed thin-walled steel columns.%随着高强冷弯薄壁型钢在建筑业中的大规模应用,使得构件畸变屈曲的出现可能先于板件的局部屈曲,成为构件失效控制模式.畸变屈曲的破坏机理不同于局部屈曲,其弹性屈曲应力计算过程也大相径庭.现有畸变屈曲临界应力的计算公式异常复杂,在设计中可以借助数值分析的方法进行计算.有限条方法和有限元方法是常用的两种数值分析方法,采用有限条方法和有限元方法计算了冷弯薄壁型钢柱构件弹性畸变屈曲应力和屈曲半波长度,对比研究发现二者结果非常接近,均可用于分析柱试件的弹性畸变屈曲.

  7. Vitrectomy with and without scleral buckling for retinal detachment Vitrectomia com e sem "scleral buckling" para descolamento da retina

    Directory of Open Access Journals (Sweden)

    Rubens Camargo Siqueira

    2007-03-01

    Full Text Available PURPOSE: To compare the surgical results of vitrectomy with and without scleral buckling for rhegmatogenous retinal detachment (RD. METHODS: Fifty-one patients with rhegmatogenous retinal detachment with proliferative vitreoretinopathy (PVR at different stages were submitted to pars plana vitrectomy as the primary surgery, 23 patients (45.09% with scleral buckle (group I and 28 (54.90% without scleral buckle (group II. Visual acuity, anterior segment complications, intraocular pressure, strabismus and retina reattachment rate were evaluated in both groups. RESULTS: The anatomical success and postoperative complications were similar in both groups. Retinal reattachment was achieved in 20 of 23 eyes (87% of group I and in 24 of 28 eyes (85.7% of group II after the initial surgery (p=1.000. Elevated intraocular pressure was noted in 2 eyes (8.7% of group I and 1 eye (3.6% of group II (p=0.583. Corneal abnormalities were seen in 3 eyes (13% of group I and 2 eyes (7.19% of the group II (p=0.647. Visual acuity improved from a preoperative median of 20/200 to a median of 20/100 in group 1 and from 20/400 to 20/100 in group 2; the difference between the two groups was statistically significant (pOBJETIVOS: Comparar os resultados cirúrgicos da vitrectomia com e sem "buckle" escleral para descolamento da retina regmatogênico (DR. MÉTODOS: Cinqüenta e um pacientes com descolamento da retina regmatogênico com proliferação vitreorretiniana (PVR em diferentes estádios foram submetidos a vitrectomia pars plana como cirurgia primária; 23 pacientes (45,09% com buckle escleral (grupo 1 e 28 pacientes (54,90% sem "buckle" escleral (grupo 2. Acuidade visual, complicações do segmento anterior, pressão intra-ocular, estrabismo e razão do redescolamento da retina foram avaliados em ambos os grupos. RESULTADOS: O sucesso anatômico e complicações pós-operatórias foram semelhantes em ambos os grupos. A reaplicação da retina foi obtida em 20 dos 23

  8. Estimation of post-buckling fatigue damage for LMFBR reactor vessel under seismic load

    Energy Technology Data Exchange (ETDEWEB)

    Ogiso, S.; Sasaki, T.; Oooka, Y. [Kawasaki Heavy Industries, Ltd., Tokyo (Japan). Nuclear Systems Div.; Nakamura, H. [Central Research Inst. of Electric Power Industry, Chiba (Japan)

    1995-12-31

    Estimation of fatigue damage caused by buckling deformation is important to evaluate safety margin in a seismic buckling design criterion for LMFBR reactor vessels, in addition to limiting the buckling strength. An advanced buckling design guideline draft including the seismic margin criterion has been proposed under the sponsorship of MITI to date. An ultimate state in this criterion was defined as the condition that the maximum global displacement {delta}{sub max} reaches a critical displacement {delta}{sub u}. The authors have previously proposed an estimation method of the fatigue damage based on the post buckling fatigue tests 304 s.s. cylinders at room temperature. However, adoption of a modified 316 s.s named 316FR s.s is under development as the material of reactor vessel of the updated design of the Demonstration Fast Breeder Reactor. The buckling tests with 316FR s.s cylinders were performed under high temperature to obtain the skeleton curve of the relation between load and displacement. And the buckling behaviors under the cyclic loading were compared with those of 304 s.s. Objectives of the present study are: to apply the proposed estimation method to a reactor vessel made of 316FR s.s., and clarify the correlation between {delta}{sub max} and fatigue failure; to verify structural soundness of the ultimate state derived from the seismic margin criterion against the fatigue failure due to the buckling deformation. (author). 7 refs., 12 figs., 1 tab.

  9. A Nonlinear Theory of Bending and Buckling of Thin Elastic Shallow Spherical Shells

    Science.gov (United States)

    Kaplan, A; Fung, Y C

    1954-01-01

    The problem of the finite displacement and buckling, of a shallow spherical dome is investigated both theoretically and experimentally. Experimental results seem to indicate that the classical criterion of buckling is applicable to very shallow spherical domes for which the theoretical calculation was made. A transition to energy criterion for higher domes is also indicated.

  10. Computation Analysis of Buckling Loads of Thin-Walled Members with Open Sections

    Directory of Open Access Journals (Sweden)

    Lihua Huang

    2016-01-01

    Full Text Available The computational methods for solving buckling loads of thin-walled members with open sections are not unique when different concerns are emphasized. In this paper, the buckling loads of thin-walled members in linear-elastic, geometrically nonlinear-elastic, and nonlinear-inelastic behaviors are investigated from the views of mathematical formulation, experiment, and numerical solution. The differential equations and their solutions of linear-elastic and geometrically nonlinear-elastic buckling of thin-walled members with various constraints are derived. Taking structural angle as an example, numerical analysis of elastic and inelastic buckling is carried out via ANSYS. Elastic analyses for linearized buckling and nonlinear buckling are realized using finite elements of beam and shell and are compared with the theoretical results. The effect of modeling of constraints on numerical results is studied when shell element is applied. The factors that influence the inelastic buckling load in numerical solution, such as modeling of constraint, loading pattern, adding rib, scale factor of initial defect, and yield strength of material, are studied. The noteworthy problems and their solutions in numerically buckling analysis of thin-walled member with open section are pointed out.

  11. Nonlocal shear deformable shell model for bending buckling of microtubules embedded in an elastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Shen Huishen, E-mail: hsshen@mail.sjtu.edu.c [Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200030 (China); State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2010-08-30

    A nonlocal shear deformable shell model is developed for buckling of microtubules embedded in an elastic matrix of cytoplasm under bending in thermal environments. The results reveal that the lateral constraint has a significant effect on the buckling moments of a microtubule when the foundation stiffness is sufficiently large.

  12. Buckling of composite beams with two enveloped delaminations: Lower and upper bounds

    NARCIS (Netherlands)

    Parlapalli, M.S.R.; Shu, Dongwei; Chai, Gin B.

    2008-01-01

    Lower and upper bounds of the buckling load of a composite beam with two enveloped delaminations are obtained from newly developed analytical models. The characteristic equation, governing the delamination buckling is derived by using Euler–Bernoulli beam and classical lamination theory, performing

  13. Influence of central buckle on suspension bridge dynamic characteristics and driving comfort

    Institute of Scientific and Technical Information of China (English)

    王达; 邓扬; 刘扬

    2015-01-01

    The central buckle, which is often used in a suspension bridge, can improve bridges’ performance in the actual operation condition. The influence of the central buckle on natural vibration characteristics and bridge-deck driving comfort of a long-span suspension bridge is studied by using a case study of Siduhe Suspension Bridge in China. Based on the finite element software ANSYS and independently complied program, the influence of the central buckle on the structure force-applied characteristics of a long-span suspension bridge has been explored. The results show that the huge increases of natural frequencies can result in the presence of central buckles because of the increases of bending and torsional rigidities. The central buckle basically makes the stiffening girders and cables within the triangular area covered as a relatively approximate rigid area. Hence, the central buckle can reduce the torsional displacement of the main girder. However, the increases of bending and torsional rigidities have little influence on the impact factor, which is obtained by using vehicle-bridge coupled vibration analysis. This means that the central buckle has little effect on the comfort indices. In addition, it is found that the central buckle can enhance the bridge deck’s driving stability due to the decrease of the torsional displacements of the main girder.

  14. Buckling of Monopod Bucket Foundations – Influence of Boundary Conditions and Soil-structure Interaction

    DEFF Research Database (Denmark)

    Madsen, Søren; Pinna, Rodney; Randolph, M. F.

    2015-01-01

    Using large monopod bucket foundations as an alternative to monopiles for offshore wind turbines offers the potential for large cost savings compared to typical piled foundations. In this paper, numerical simulations are carried out to assess the risk of structural buckling during installation...... is investigated. The effects of including soil restraint and soil–structure interaction on the buckling analysis are also addressed....

  15. Discrete Material Buckling Optimization of Laminated Composite Structures considering "Worst" Shape Imperfections

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    Robust design of laminated composite structures is considered in this work. Because laminated composite structures are often thin walled, buckling failure can occur prior to material failure, making it desirable to maximize the buckling load. However, as a structure always contains imperfections...

  16. Numerical and Exact Solution of Buckling Load For Beam on Elastic Foundation

    Directory of Open Access Journals (Sweden)

    Roland JANČO

    2013-06-01

    Full Text Available In this paper we will be presented the exact solution of buckling load for supported beam on elastic foundation. Exact solution will be compared with numerical solution by FEM in our code in Matlab. Implementation of buckling to FEM will be presented here.

  17. On modelling of lateral buckling failure in flexible pipe tensile armour layers

    DEFF Research Database (Denmark)

    Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.

    2012-01-01

    In the present paper, a mathematical model which is capable of representing the physics of lateral buckling failure in the tensile armour layers of flexible pipes is introduced. Flexible pipes are unbounded composite steel–polymer structures, which are known to be prone to lateral wire buckling...

  18. The Carnegie-Irvine Galaxy Survey. V. Statistical Study of Bars and Buckled Bars

    Science.gov (United States)

    Li, Zhao-Yu; Ho, Luis C.; Barth, Aaron J.

    2017-08-01

    Simulations have shown that bars are subject to a vertical buckling instability that transforms thin bars into boxy or peanut-shaped structures, but the physical conditions necessary for buckling to occur are not fully understood. We use the large sample of local disk galaxies in the Carnegie-Irvine Galaxy Survey to examine the incidence of bars and buckled bars across the Hubble sequence. Depending on the disk inclination angle (i), a buckled bar reveals itself as either a boxy/peanut-shaped bulge (at high i) or as a barlens structure (at low i). We visually identify bars, boxy/peanut-shaped bulges, and barlenses, and examine the dependence of bar and buckled bar fractions on host galaxy properties, including Hubble type, stellar mass, color, and gas mass fraction. We find that the barred and unbarred disks show similar distributions in these physical parameters. The bar fraction is higher (70%-80%) in late-type disks with low stellar mass (M * 1010.5 M ⊙), and decreases with higher gas mass ratio. These results suggest that bars are more difficult to grow in massive disks that are dynamically hotter than low-mass disks. However, once a bar forms, it can easily buckle in the massive disks, where a deeper potential can sustain the vertical resonant orbits. We also find a probable buckling bar candidate (ESO 506-G004) that could provide further clues to understand the timescale of the buckling process.

  19. MULTI-FIELD COUPLING BEHAVIOR OF SIMPLY-SUPPORTED CONDUCTIVE PLATE UNDER THE CONDITION OF A TRANSVERSE STRONG IMPULSIVE MAGNETIC FIELD

    Institute of Scientific and Technical Information of China (English)

    Zhu Linli; Zhang Jianping; Zheng Xiaojing

    2006-01-01

    In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter τ on the critical value Bocr of the applied magnetic field.

  20. Hydroelasticity of a Floating Plate

    DEFF Research Database (Denmark)

    Chen, X.; Jensen, Jørgen Juncher; Cui, W.

    2003-01-01

    The membrane forces are included in the hydroelastic analysis of a floating plate undergoing large vertical deflections in regular monochromatic multidirectional waves. The first-order vertical displacements induced by the linear wave exciting forces are calculated by the mode expansion method...... in the frequency domain. The second-order vertical displacements induced by the membrane forces are calculated by the von Karman plate theory. The results show that the membrane contribution both in terms of the axial stresses and the effect on the bending stresses can be important...