WorldWideScience

Sample records for plastid-to-nucleus signaling activity

  1. Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Czarnecki, Olaf; Gläßer, Christine; Chen, Jin-Gui; Mayer, Klaus F. X.; Grimm, Bernhard

    2012-01-01

    The formation of 5-aminolevulinic acid (ALA) in tetrapyrrole biosynthesis is widely controlled by environmental and metabolic feedback cues that determine the influx into the entire metabolic path. Because of its central role as the rate-limiting step, we hypothesized a potential role of ALA biosynthesis in tetrapyrrole-mediated retrograde signaling and exploited the direct impact of ALA biosynthesis on nuclear gene expression (NGE) by using two different approaches. Firstly, the Arabidopsis gun1, hy1 (gun2), hy2 (gun3), gun4 mutants showing uncoupled NGE from the physiological state of chloroplasts were thoroughly examined for regulatory modifications of ALA synthesis and transcriptional control in the nucleus. We found that reduced ALA-synthesizing capacity is common to analyzed gun mutants. Inhibition of ALA synthesis by gabaculine (GAB) that inactivates glutamate-1-semialdehyde aminotransferase and ALA feeding of wild-type and mutant seedlings corroborate the expression data of gun mutants. Transcript level of photosynthetic marker genes were enhanced in norflurazon (NF)-treated seedlings upon additional GAB treatment, while enhanced ALA amounts diminish these RNA levels in NF-treated wild-type in comparison to the solely NF-treated seedlings. Secondly, the impact of posttranslationally down-regulated ALA synthesis on NGE was investigated by global transcriptome analysis of GAB-treated Arabidopsis seedlings and the gun4-1 mutant, which is also characterized by reduced ALA formation. A common set of significantly modulated genes was identified indicating ALA synthesis as a potential signal emitter. The over-represented gene ontology categories of genes with decreased or increased transcript abundance highlight a few biological processes and cellular functions, which are remarkably affected in response to plastid-localized ALA biosynthesis. These results support the hypothesis that ALA biosynthesis correlates with retrograde signaling-mediated control of NGE.

  2. Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signalling

    Directory of Open Access Journals (Sweden)

    Olaf eCzarnecki

    2012-10-01

    Full Text Available The formation of 5-aminolevulinic acid (ALA in tetrapyrrole biosynthesis is widely controlled by environmental and metabolic feedback cues that determine the influx into the entire metabolic path. Because of its central role as the rate-limiting step, we hypothesised a potential role of ALA biosynthesis in tetrapyrrole-mediated retrograde signalling and exploited the direct impact of ALA biosynthesis on nuclear gene expression (NGE by using two different approaches. Firstly, the Arabidopsis gun1, hy1 (gun2, hy2 (gun3, gun4 mutants showing uncoupled NGE from the physiological state of chloroplasts were thoroughly examined for regulatory modifications of ALA synthesis and transcriptional control in the nucleus. We found that reduced ALA-synthesising capacity is common to analysed gun mutants. Inhibition of ALA synthesis by gabaculine (GAB that inactivates glutamate-1-semialdhyde aminotransferase and ALA feeding of wild-type and mutant seedlings corroborate the expression data of gun mutants. Transcript level of photosynthetic marker genes were enhanced in norflurazon (NF-treated seedlings upon additional GAB treatment, while enhanced ALA amounts diminish these RNA levels in NF-treated wild-type in comparison to the solely NF-treated seedlings. Secondly, the impact of posttranslationally down-regulated ALA synthesis on NGE was investigated by global transcriptome analysis of GAB-treated Arabidopsis seedlings and the gun4-1 mutant, which is also characterized by reduced ALA formation. A common set of significantly modulated genes was identified indicating ALA synthesis as a potential signal emitter. The overrepresented gene ontology categories of genes with decreased or increased transcript abundance highlight a few biological processes and cellular functions, which are remarkably affected in response to plastid-localised ALA biosynthesis. These results support the hypothesis that ALA biosynthesis correlates with retrograde signalling

  3. Phytochrome and retrograde signalling pathways coverage to antogonistically regulate a light-induced transcription network

    Science.gov (United States)

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde and photosensory-receptor signaling has remained undefined. Here, we show that the phytochrome (phy) and retrograde signaling pathways converge a...

  4. Tetrapyrrole Signaling in Plants

    Science.gov (United States)

    Larkin, Robert M.

    2016-01-01

    Tetrapyrroles make critical contributions to a number of important processes in diverse organisms. In plants, tetrapyrroles are essential for light signaling, the detoxification of reactive oxygen species, the assimilation of nitrate and sulfate, respiration, photosynthesis, and programed cell death. The misregulation of tetrapyrrole metabolism can produce toxic reactive oxygen species. Thus, it is not surprising that tetrapyrrole metabolism is strictly regulated and that tetrapyrrole metabolism affects signaling mechanisms that regulate gene expression. In plants and algae, tetrapyrroles are synthesized in plastids and were some of the first plastid signals demonstrated to regulate nuclear gene expression. In plants, the mechanism of tetrapyrrole-dependent plastid-to-nucleus signaling remains poorly understood. Additionally, some of experiments that tested ideas for possible signaling mechanisms appeared to produce conflicting data. In some instances, these conflicts are potentially explained by different experimental conditions. Although the biological function of tetrapyrrole signaling is poorly understood, there is compelling evidence that this signaling is significant. Specifically, this signaling appears to affect the accumulation of starch and may promote abiotic stress tolerance. Tetrapyrrole-dependent plastid-to-nucleus signaling interacts with a distinct plastid-to-nucleus signaling mechanism that depends on GENOMES UNCUOPLED1 (GUN1). GUN1 contributes to a variety of processes, such as chloroplast biogenesis, the circadian rhythm, abiotic stress tolerance, and development. Thus, the contribution of tetrapyrrole signaling to plant function is potentially broader than we currently appreciate. In this review, I discuss these aspects of tetrapyrrole signaling.

  5. Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network.

    Science.gov (United States)

    Martín, Guiomar; Leivar, Pablo; Ludevid, Dolores; Tepperman, James M; Quail, Peter H; Monte, Elena

    2016-05-06

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde- and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression. Conversely, we show that retrograde signals repress this induction by a mechanism independent of PIF mediation. Collectively, our data indicate that light at moderate levels acts through the plant's nuclear-localized sensory-photoreceptor system to induce appropriate photomorphogenic development, but at excessive levels, sensed through the separate plastid-localized RS system, acts to suppress such development, thus providing a mechanism for protection against photo-oxidative damage by minimizing the tissue exposure to deleterious radiation.

  6. Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival

    Science.gov (United States)

    Duanmu, Deqiang; Casero, David; Dent, Rachel M.; Gallaher, Sean; Yang, Wenqiang; Rockwell, Nathan C.; Martin, Shelley S.; Pellegrini, Matteo; Niyogi, Krishna K.; Merchant, Sabeeha S.; Grossman, Arthur R.; Lagarias, J. Clark

    2013-01-01

    The maintenance of functional chloroplasts in photosynthetic eukaryotes requires real-time coordination of the nuclear and plastid genomes. Tetrapyrroles play a significant role in plastid-to-nucleus retrograde signaling in plants to ensure that nuclear gene expression is attuned to the needs of the chloroplast. Well-known sites of synthesis of chlorophyll for photosynthesis, plant chloroplasts also export heme and heme-derived linear tetrapyrroles (bilins), two critical metabolites respectively required for essential cellular activities and for light sensing by phytochromes. Here we establish that Chlamydomonas reinhardtii, one of many chlorophyte species that lack phytochromes, can synthesize bilins in both plastid and cytosol compartments. Genetic analyses show that both pathways contribute to iron acquisition from extracellular heme, whereas the plastid-localized pathway is essential for light-dependent greening and phototrophic growth. Our discovery of a bilin-dependent nuclear gene network implicates a widespread use of bilins as retrograde signals in oxygenic photosynthetic species. Our studies also suggest that bilins trigger critical metabolic pathways to detoxify molecular oxygen produced by photosynthesis, thereby permitting survival and phototrophic growth during the light period. PMID:23345435

  7. Chloroplast biogenesis-associated nuclear genes: Control by plastid signals evolved prior to their regulation as part of photomorphogenesis.

    Directory of Open Access Journals (Sweden)

    Alison C HIlls

    2015-12-01

    Full Text Available The assembly of photosynthetically-competent chloroplasts occurs in angiosperm seedlings when first exposed to light, and is due to the control by light of photosynthesis-associated nuclear genes (PhANGs, also dependent upon plastid-to-nucleus biogenic communication signals. The relationship between light- and plastid signal-regulation of PhANGs is close but poorly understood. In contrast, many conifers green in the dark and the promoter of a pine PhANG, Lhcb, is active in the dark in tobacco. Here we show that the activity of this promoter in tobacco is sensitive to plastid photobleaching, or to the inhibition of plastid translation in the light or the dark, and the same interventions reduce expression of the native gene in pine seedlings, demonstrating classic plastid biogenic signalling in gymnosperms. Furthermore, Arabidopsis mutations causing defective plastid biogenesis suppress the effect in darkness of mutations in COP1 and DET1, repressors of photomorphogenesis, for the expression of several PhANGs but not a photosynthesis-unrelated, light-regulated gene. GLK transcriptional regulators mediate the response of LHCB but not of other tested PhANGs. We propose gain of the ability by repressors of photomorphogenesis to suppress the response of PhANG promoters to positive plastid biogenic signals in the dark to have contributed to the evolution of light control of chloroplast biogenesis.

  8. Signal focusing through active transport

    Science.gov (United States)

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing—faster and more precise signaling—are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  9. Alternative Wnt Signaling Activates YAP/TAZ

    Science.gov (United States)

    Park, Hyun Woo; Kim, Young Chul; Yu, Bo; Moroishi, Toshiro; Mo, Jung-Soon; Plouffe, Steven W.; Meng, Zhipeng; Lin, Kimberly C.; Yu, Fa-Xing; Alexander, Caroline M.; Wang, Cunyu; Guan, Kun-Liang

    2015-01-01

    SUMMARY The transcriptional co-activators YAP and TAZ are key regulators of organ size and tissue homeostasis, and their dysregulation contributes to human cancer. Here we discover YAP/TAZ as bona fide downstream effectors of the alternative Wnt signaling pathway. Wnt5a/b and Wnt3a induce YAP/TAZ activation independent of canonical Wnt/β-catenin signaling. Mechanistically, we delineate the ‘alternative Wnt-YAP/TAZ signaling axis’ that consists of Wnt - FZD/ROR - Gα12/13 - Rho GTPases -Lats1/2 to promote YAP/TAZ activation and TEAD-mediated transcription. YAP/TAZ mediate the biological functions of alternative Wnt signaling including gene expression, osteogenic differentiation, cell migration, and antagonism of Wnt/β-catenin signaling. Together, our work establishes YAP/TAZ as critical mediators of alternative Wnt signaling. PMID:26276632

  10. CDPK Activation in PRR Signaling.

    Science.gov (United States)

    Seybold, Heike; Boudsocq, Marie; Romeis, Tina

    2017-01-01

    Calcium-dependent protein kinases undergo a rapid biochemical activation in response to an intracellular Ca increase induced by the PRR-dependent perception of a pathogen-related stimulus. Based on SDS gel resolution, the in-gel kinase assay allows the analysis of multiple in vivo protein samples in parallel, combining the advantage of protein separation according to molecular mass with the activity read-out of a protein kinase assay. It thus enables to follow the transient CDPK activation and inactivation in response to in vivo elicitation with a time-wise resolution. In addition, changes of CDPK phosphorylation activity often correlate with slight shifts in the enzyme's apparent molecular mass, indicating posttranslational modifications and a conformational change of the active enzyme compared to its inactive resting form. These band shifts can be detected by a simple immunoblotting to monitor CDPK activation.

  11. Lung carcinoma signaling pathways activated by smoking

    Institute of Scientific and Technical Information of China (English)

    Jing Wen; Jian-Hua Fu; Wei Zhang; Ming Guo

    2011-01-01

    Lung cancer is the leading cause of cancer death in men and women worldwide, with over a million deaths annually. Tobacco smoke is the major etiologic risk factor for lung cancer in current or previous smokers and has been strongly related to certain types of lung cancer, such as small cell lung carcinoma and squamous cell lung carcinoma. In recent years, there has been an increased incidence of lung adenocarcinoma. This change is strongly associated with changes in smoking behavior and cigarette design. Carcinogens present in tobacco products and their intermediate metabolites can activate multiple signaling pathways that contribute to lung cancer carcinogenesis. In this review, we summarize the smoking-activated signaling pathways involved in lung cancer.

  12. Disentangling stellar activity and planetary signals

    CERN Document Server

    Boisse, I; Hebrard, G; Bonfils, X; Santos, N C; Vauclair, S

    2010-01-01

    Photospheric stellar activity might be an important source of noise and confusion in the radial-velocity measurements. RV planet search surveys as well as follow-up of photometric transit surveys require a deeper understanding and characterization of the effects of stellar activities to disentangle it from planetary signals. We simulate dark spots on a rotating stellar photosphere. The variations of the photometry, RV and spectral line shapes are characterized and analyzed according to the stellar inclination, the latitude and the number of spots. The Lomb-Scargle periodograms of the RV variations induced by activity present power at the rotational period Prot of the star and its two-first harmonics Prot/2 and Prot/3. Three adjusted sinusoids fixed at Prot and its two-first harmonics allow to remove about 90% of the RV jitter amplitude. We apply and validate our approach on four known active planet-host stars: HD189733, GJ674, CoRoT-7 and iHor. We succeed in fitting simultaneously activity and planetary signa...

  13. Disentangling stellar activity and planetary signals

    Directory of Open Access Journals (Sweden)

    Santos N.C.

    2011-02-01

    Full Text Available Photospheric stellar activity (i.e. dark spots or bright plages might be an important source of noise and confusion in the radial-velocity (RV measurements. Radial-velocimetry planet search surveys as well as follow-up of photometric transit surveys require a deep understanding and precise characterization of the effects of stellar activity, in order to disentangle it from planetary signals. We simulate dark spots on a rotating stellar photosphere. The variations of the RV are characterized and analyzed according to the stellar inclination, the latitude and the number of spots. The Lomb-Scargle periodograms of the RV variations induced by activity present power at the rotational period Prot of the star and its two-first harmonics Prot/2 and Prot/3. Three adjusted sinusoids fixed at the fundamental period and its two-first harmonics allow to remove about 90% of the RV jitter amplitude. We apply and validate our approach on four known active planet-host stars: HD 189733, GJ 674, CoRoT-7 and ι Hor.

  14. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  15. Human ECG signal parameters estimation during controlled physical activity

    Science.gov (United States)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  16. Activation of DNA damage response signaling by condensed chromatin.

    Science.gov (United States)

    Burgess, Rebecca C; Burman, Bharat; Kruhlak, Michael J; Misteli, Tom

    2014-12-11

    The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.

  17. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation of subs...... the Arabidopsis thaliana MAPKs MPK3, 4, and 6 and MAP2Ks MKK1, 2, 4, and 5. Future work needs to focus on identifying substrates of MAPKs, and on understanding how specificity is achieved among MAPK signaling pathways....

  18. Wnt Signaling in Neurogenesis during Aging and Physical Activity

    Directory of Open Access Journals (Sweden)

    Michael Chen

    2012-12-01

    Full Text Available Over the past decade, much progress has been made regarding our understanding of neurogenesis in both young and old animals and where it occurs throughout the lifespan, although the growth of new neurons declines with increasing age. In addition, physical activity can reverse this age-dependent decline in neurogenesis. Highly correlated with this decline is the degree of inter and intracellular Wnt signaling, the molecular mechanisms of which have only recently started to be elucidated. So far, most of what we know about intracellular signaling during/following exercise centers around the CREB/CRE initiated transcriptional events. Relatively little is known, however, about how aging and physical activity affect the Wnt signaling pathway. Herein, we briefly review the salient features of neurogenesis in young and then in old adult animals. Then, we discuss Wnt signaling and review the very few in vitro and in vivo studies that have examined the Wnt signaling pathways in aging and physical activity.

  19. Activation of endothelial β-catenin signaling induces heart failure

    Science.gov (United States)

    Nakagawa, Akito; Naito, Atsuhiko T.; Sumida, Tomokazu; Nomura, Seitaro; Shibamoto, Masato; Higo, Tomoaki; Okada, Katsuki; Sakai, Taku; Hashimoto, Akihito; Kuramoto, Yuki; Oka, Toru; Lee, Jong-Kook; Harada, Mutsuo; Ueda, Kazutaka; Shiojima, Ichiro; Limbourg, Florian P.; Adams, Ralf H.; Noda, Tetsuo; Sakata, Yasushi; Akazawa, Hiroshi; Komuro, Issei

    2016-01-01

    Activation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment. Electron microscopic analysis revealed dilatation of T-tubules and degeneration of mitochondria in cardiomyocytes of Bmx/CA mice, which are similar to the changes observed in mice with decreased neuregulin-ErbB signaling. Endothelial expression of Nrg1 and cardiac ErbB signaling were suppressed in Bmx/CA mice. The cardiac dysfunction of Bmx/CA mice was ameliorated by administration of recombinant neuregulin protein. These results collectively suggest that sustained activation of Wnt/β-catenin signaling in endothelial cells might be a cause of heart failure through suppressing neuregulin-ErbB signaling, and that the Wnt/β-catenin/NRG axis in cardiac endothelial cells might become a therapeutic target for heart failure. PMID:27146149

  20. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  1. Cytoskeletal forces during signaling activation in Jurkat T-cells

    Science.gov (United States)

    Hui, King Lam; Balagopalan, Lakshmi; Samelson, Lawrence E.; Upadhyaya, Arpita

    2015-01-01

    T-cells are critical for the adaptive immune response in the body. The binding of the T-cell receptor (TCR) with antigen on the surface of antigen-presenting cells leads to cell spreading and signaling activation. The underlying mechanism of signaling activation is not completely understood. Although cytoskeletal forces have been implicated in this process, the contribution of different cytoskeletal components and their spatial organization are unknown. Here we use traction force microscopy to measure the forces exerted by Jurkat T-cells during TCR activation. Perturbation experiments reveal that these forces are largely due to actin assembly and dynamics, with myosin contractility contributing to the development of force but not its maintenance. We find that Jurkat T-cells are mechanosensitive, with cytoskeletal forces and signaling dynamics both sensitive to the stiffness of the substrate. Our results delineate the cytoskeletal contributions to interfacial forces exerted by T-cells during activation. PMID:25518938

  2. Coco is a dual activity modulator of TGFβ signaling

    Science.gov (United States)

    Deglincerti, Alessia; Haremaki, Tomomi; Warmflash, Aryeh; Sorre, Benoit; Brivanlou, Ali H.

    2015-01-01

    The TGFβ signaling pathway is a crucial regulator of developmental processes and disease. The activity of TGFβ ligands is modulated by various families of soluble inhibitors that interfere with the interactions between ligands and receptors. In an unbiased, genome-wide RNAi screen to identify genes involved in ligand-dependent signaling, we unexpectedly identified the BMP/Activin/Nodal inhibitor Coco as an enhancer of TGFβ1 signaling. Coco synergizes with TGFβ1 in both cell culture and Xenopus explants. Molecularly, Coco binds to TGFβ1 and enhances TGFβ1 binding to its receptor Alk5. Thus, Coco acts as both an inhibitor and an enhancer of signaling depending on the ligand it binds. This finding raises the need for a global reconsideration of the molecular mechanisms regulating TGFβ signaling. PMID:26116664

  3. Modulation of β-catenin signaling by glucagon receptor activation.

    Directory of Open Access Journals (Sweden)

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  4. Digital signaling decouples activation probability and population heterogeneity

    DEFF Research Database (Denmark)

    Kellogg, Ryan A; Tian, Chengzhe; Lipniacki, Tomasz;

    2015-01-01

    Digital signaling enhances robustness of cellular decisions in noisy environments, but it is unclear how digital systems transmit temporal information about a stimulus. To understand how temporal input information is encoded and decoded by the NF-κB system, we studied transcription factor dynamic...... and uniform dynamics. These results show that digital NF-κB signaling enables multidimensional control of cellular phenotype via input profile, allowing parallel and independent control of single-cell activation probability and population heterogeneity....

  5. Cellular phosphatases facilitate combinatorial processing of receptor-activated signals

    Directory of Open Access Journals (Sweden)

    Siddiqui Zaved

    2008-09-01

    Full Text Available Abstract Background Although reciprocal regulation of protein phosphorylation represents a key aspect of signal transduction, a larger perspective on how these various interactions integrate to contribute towards signal processing is presently unclear. For example, a key unanswered question is that of how phosphatase-mediated regulation of phosphorylation at the individual nodes of the signaling network translates into modulation of the net signal output and, thereby, the cellular phenotypic response. Results To address the above question we, in the present study, examined the dynamics of signaling from the B cell antigen receptor (BCR under conditions where individual cellular phosphatases were selectively depleted by siRNA. Results from such experiments revealed a highly enmeshed structure for the signaling network where each signaling node was linked to multiple phosphatases on the one hand, and each phosphatase to several nodes on the other. This resulted in a configuration where individual signaling intermediates could be influenced by a spectrum of regulatory phosphatases, but with the composition of the spectrum differing from one intermediate to another. Consequently, each node differentially experienced perturbations in phosphatase activity, yielding a unique fingerprint of nodal signals characteristic to that perturbation. This heterogeneity in nodal experiences, to a given perturbation, led to combinatorial manipulation of the corresponding signaling axes for the downstream transcription factors. Conclusion Our cumulative results reveal that it is the tight integration of phosphatases into the signaling network that provides the plasticity by which perturbation-specific information can be transmitted in the form of a multivariate output to the downstream transcription factor network. This output in turn specifies a context-defined response, when translated into the resulting gene expression profile.

  6. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  7. Activation of cell signaling via optical manipulation of gold-coated liposomes encapsulating signaling molecules

    Science.gov (United States)

    Orsinger, Gabriel V.; Leung, Sarah J.; Romanowski, Marek

    2013-02-01

    Many diseases involve changes in cell signaling cascades, as seen commonly in drug resistant cancers. To better understand these intricate signaling events in diseased cells and tissues, experimental methods of probing cellular communication at a single to multi-cell level are required. We recently introduced a general platform for activation of selected signaling pathways by optically controlled delivery and release of water soluble factors using gold-coated liposomes. In the example presented here, we encapsulated inositol trisphosphate (IP3), a ubiquitous intracellular secondary messenger involved in GPCR and Akt signaling cascades, within 100 nm gold-coated liposomes. The high polarizability of the liposome's unique gold pseudo-shell allows stable optical trapping for subcellular manipulation in the presence of cells. We take this optical manipulation further by optically injecting IP3-containing liposomes into the cytosol of a single cell to initiate localized cell signaling. Upon optical injection of liposomal IP3 into a single ovarian carcinoma cell, we observed localized activation as reported by changes in Indo-1 fluorescence intensity. With established gap junctions between the injected cell and neighboring cells, we monitored propagation of this signaling to and through nearby cells.

  8. Determination of strongly overlapping signaling activity from microarray data

    Directory of Open Access Journals (Sweden)

    Bidaut Ghislain

    2006-02-01

    Full Text Available Abstract Background As numerous diseases involve errors in signal transduction, modern therapeutics often target proteins involved in cellular signaling. Interpretation of the activity of signaling pathways during disease development or therapeutic intervention would assist in drug development, design of therapy, and target identification. Microarrays provide a global measure of cellular response, however linking these responses to signaling pathways requires an analytic approach tuned to the underlying biology. An ongoing issue in pattern recognition in microarrays has been how to determine the number of patterns (or clusters to use for data interpretation, and this is a critical issue as measures of statistical significance in gene ontology or pathways rely on proper separation of genes into groups. Results Here we introduce a method relying on gene annotation coupled to decompositional analysis of global gene expression data that allows us to estimate specific activity on strongly coupled signaling pathways and, in some cases, activity of specific signaling proteins. We demonstrate the technique using the Rosetta yeast deletion mutant data set, decompositional analysis by Bayesian Decomposition, and annotation analysis using ClutrFree. We determined from measurements of gene persistence in patterns across multiple potential dimensionalities that 15 basis vectors provides the correct dimensionality for interpreting the data. Using gene ontology and data on gene regulation in the Saccharomyces Genome Database, we identified the transcriptional signatures of several cellular processes in yeast, including cell wall creation, ribosomal disruption, chemical blocking of protein synthesis, and, criticially, individual signatures of the strongly coupled mating and filamentation pathways. Conclusion This works demonstrates that microarray data can provide downstream indicators of pathway activity either through use of gene ontology or transcription

  9. Cytokinin Signaling Activates WUSCHEL Expression during Axillary Meristem Initiation.

    Science.gov (United States)

    Wang, Jin; Tian, Caihuan; Zhang, Cui; Shi, Bihai; Cao, Xiuwei; Zhang, Tian-Qi; Zhao, Zhong; Wang, Jia-Wei; Jiao, Yuling

    2017-06-01

    The homeodomain transcription factor WUSCHEL (WUS) defines the shoot stem cell niche, but the mechanisms underlying the establishment of WUS expression remain unclear. Here, we show that cytokinin signaling precedes WUS expression in leaf axils and activates WUS expression de novo in the leaf axil to promote axillary meristem initiation. Furthermore, type-B Arabidopsis response regulator proteins, which are transcriptional activators in the cytokinin signaling pathway, directly bind to the WUS promoter and activate its expression. Finally, we show that cytokinin activation of WUS in the leaf axil correlates with increased histone acetylation and methylation markers associated with transcriptional activation, supporting the fact that WUS expression requires a permissive epigenetic environment to restrict it to highly defined meristematic tissues. Taken together, these findings explain how cytokinin regulates axillary meristem initiation and establish a mechanistic framework for the postembryonic establishment of the shoot stem cell niche. © 2017 American Society of Plant Biologists. All rights reserved.

  10. Active Finger Recognition from Surface EMG Signal Using Bayesian Filter

    Science.gov (United States)

    Araki, Nozomu; Hoashi, Yuki; Konishi, Yasuo; Mabuchi, Kunihiko; Ishigaki, Hiroyuki

    This paper proposed an active finger recognition method using Bayesian filter in order to control a myoelectric hand. We have previously proposed a finger joint angle estimation method based on measured surface electromyography (EMG) signals and a linear model. However, when we estimate 2 or more finger angles by this estimation method, the estimation angle of the inactive finger is not accurate. This is caused by interference of surface EMG signal. To solve this interference problem, we proposed active finger recognition method from the amplitude spectrum of surface EMG signal using Bayesian filter. To confirm the effectiveness of this recognition method, we developed a myoelectric hand simulator that implements proposed recognition algorithm and carried out real-time recognition experiment.

  11. Biased signaling by peptide agonists of protease activated receptor 2.

    Science.gov (United States)

    Jiang, Yuhong; Yau, Mei-Kwan; Kok, W Mei; Lim, Junxian; Wu, Kai-Chen; Liu, Ligong; Hill, Timothy A; Suen, Jacky Y; Fairlie, David P

    2017-02-07

    Protease activated receptor 2 (PAR2) is associated with metabolism, obesity, inflammatory, respiratory and gastrointestinal disorders, pain, cancer and other diseases. The extracellular N-terminus of PAR2 is a common target for multiple proteases, which cleave it at different sites to generate different N-termini that activate different PAR2-mediated intracellular signaling pathways. There are no synthetic PAR2 ligands that reproduce the same signaling profiles and potencies as proteases. Structure-activity relationships here for 26 compounds spanned a signaling bias over 3 log units, culminating in three small ligands as biased agonist tools for interrogating PAR2 functions. DF253 (2f-LAAAAI-NH2) triggered PAR2-mediated calcium release (EC50 2 μM) but not ERK1/2 phosphorylation (EC50 > 100 μM) in CHO cells transfected with hPAR2. AY77 (Isox-Cha-Chg-NH2) was a more potent calcium-biased agonist (EC50 40 nM, Ca2+; EC50 2 μM, ERK1/2), while its analogue AY254 (Isox-Cha-Chg-A-R-NH2) was an ERK-biased agonist (EC50 2 nM, ERK1/2; EC50 80 nM, Ca2+). Signaling bias led to different functional responses in human colorectal carcinoma cells (HT29). AY254, but not AY77 or DF253, attenuated cytokine-induced caspase 3/8 activation, promoted scratch-wound healing and induced IL-8 secretion, all via PAR2-ERK1/2 signaling. Different ligand components were responsible for different PAR2 signaling and functions, clues that can potentially lead to drugs that modulate different pathway-selective cellular and physiological responses.

  12. Metabolic signals and innate immune activation in obesity and exercise.

    Science.gov (United States)

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  13. Active Harmonic Load–Pull With Realistic Wideband Communications Signals

    NARCIS (Netherlands)

    Marchetti, M.; Pelk, M.J.; Buisman, K.; Neo, W.C.E.; Spirito, M.; De Vreede, L.C.N.

    2008-01-01

    A new wideband open-loop active harmonic load–pull measurement approach is presented. The proposed method is based on wideband data-acquisition and wideband signal-injection of the incident and device generated power waves at the frequencies of interest. The system provides full, user defined, in-ba

  14. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Olsen, Jesper V; Brandts, Christian

    2009-01-01

    Inappropriate activation of oncogenic kinases at intracellular locations is frequently observed in human cancers, but its effects on global signaling are incompletely understood. Here, we show that the oncogenic mutant of Flt3 (Flt3-ITD), when localized at the endoplasmic reticulum (ER), aberrant...

  15. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), c

  16. Dynamic neural activity during stress signals resilient coping

    OpenAIRE

    Sinha, Rajita; Lacadie, Cheryl M; Constable, R. Todd; Seo, Dongju

    2016-01-01

    We live in a time of increasing terror, stress, and trauma, and yet humans show a remarkable ability to cope under high stress states. How the brain supports such active resilient coping is not well-understood. Findings showed high stress levels are accompanied by dynamic brain signals in circuits representing the stress reaction, adaptation, and behavioral control responses. In addition, a ventromedial prefrontal cortical region showed initial decreases in brain activation, but then mobilize...

  17. Enhanced Multistatic Active Sonar via Innovative Signal Processing

    Science.gov (United States)

    2015-09-30

    Department of Electrical and Computer Engineering , P.O. Box 116130 University of Florida, Gainesville, FL 32611 phone: (352) 392-2642 fax: (352...Range-Doppler Imaging and Target Parameter Estimation in Multistatic Active Sonar Systems," IEEE Journal of Oceanic Engineering , Vol. 39, No. 2, pp...3. DATES COVERED (From - To) Oct. 01, 2014-Sept. 30, 2015 4. TITLE AND SUBTITLE Enhanced Multistatic Active Sonar via Innovative Signal

  18. Loss of signal transducer and activator of transcription 3 (STAT3) signaling during elevated activity causes vulnerability in hippocampal neurons.

    Science.gov (United States)

    Murase, Sachiko; Kim, Eunyoung; Lin, Lin; Hoffman, Dax A; McKay, Ronald D

    2012-10-31

    Chronically altered levels of network activity lead to changes in the morphology and functions of neurons. However, little is known of how changes in neuronal activity alter the intracellular signaling pathways mediating neuronal survival. Here, we use primary cultures of rat hippocampal neurons to show that elevated neuronal activity impairs phosphorylation of the serine/threonine kinase, Erk1/2, and the activation of signal transducer and activator of transcription 3 (STAT3) by phosphorylation of serine 727. Chronically stimulated neurons go through apoptosis when they fail to activate another serine/threonine kinase, Akt. Gain- and loss-of-function experiments show that STAT3 plays the key role directly downstream from Erk1/2 as the alternative survival pathway. Elevated neuronal activity resulted in increased expression of a tumor suppressor, p53, and its target gene, Bax. These changes are observed in Kv4.2 knock-out mouse hippocampal neurons, which are also sensitive to the blockade of TrkB signaling, confirming that the alteration occurs in vivo. Thus, this study provides new insight into a mechanism by which chronic elevation of activity may cause neurodegeneration.

  19. Survey of activated FLT3 signaling in leukemia.

    Directory of Open Access Journals (Sweden)

    Ting-lei Gu

    Full Text Available Activating mutations of FMS-like tyrosine kinase-3 (FLT3 are found in approximately 30% of patients with acute myeloid leukemia (AML. FLT3 is therefore an attractive drug target. However, the molecular mechanisms by which FLT3 mutations lead to cell transformation in AML remain unclear. To develop a better understanding of FLT3 signaling as well as its downstream effectors, we performed detailed phosphoproteomic analysis of FLT3 signaling in human leukemia cells. We identified over 1000 tyrosine phosphorylation sites from about 750 proteins in both AML (wild type and mutant FLT3 and B cell acute lymphoblastic leukemia (normal and amplification of FLT3 cell lines. Furthermore, using stable isotope labeling by amino acids in cell culture (SILAC, we were able to quantified over 400 phosphorylation sites (pTyr, pSer, and pThr that were responsive to FLT3 inhibition in FLT3 driven human leukemia cell lines. We also extended this phosphoproteomic analysis on bone marrow from primary AML patient samples, and identify over 200 tyrosine and 800 serine/threonine phosphorylation sites in vivo. This study showed that oncogenic FLT3 regulates proteins involving diverse cellular processes and affects multiple signaling pathways in human leukemia that we previously appreciated, such as Fc epsilon RI-mediated signaling, BCR, and CD40 signaling pathways. It provides a valuable resource for investigation of oncogenic FLT3 signaling in human leukemia.

  20. Physical parameters activating electrical signal distortions in polluted soils

    Directory of Open Access Journals (Sweden)

    R. Angelini

    2002-06-01

    Full Text Available Laboratory investigations and field measurements show that the electrical behaviour of polluted soils is strongly non-linear at low frequencies. This phenomenon can be related to the class and the amount of pollutants. To measure this non-linearity, we used only monochromatic voltage waveform as input signal and analysed the current signals at first by means of the classical spectral analysis. In particular, the Total Harmonic Distortion % (THD% and the Harmonic Distortion %(? measure the non-linearity level and identify the frequency interval where the non-linear electrical behaviour is activated. This frequency interval can be related to the pollutant molecular size. Open interpretative problems were the following: 1 phase localization of the signal deformation; 2 «local» amplitude of the applied signal activating the distortion, and 3 numerical fit of the distortion. We employed the wavelet analysis to study the phenomenon. The wavelet technique breaks up a signal into shifted and scaled versions of the original wavelet, which is a waveform of limited duration. These features of the wavelets allow us to obtain current components that can be interpreted on the bases of a real physical meaning. By using the wavelet analysis, we obtained the phase localization of the ‘oscillations’ of the details and consequently the phase and amplitude of the applied signal. The sum of nine details provides a good numerical fit of the distorted signal. Starting from the wavelet analysis, we determined the physical conditions activating each distortion, testing some parameters on experimental data. The parameters that resulted most significant are the phase ? of the distortion activation and the product Vin?t (Vs (where ?t is the time interval corresponding to the said ? and Vin is the integral tension applied to the sample on ?t. The latter parameter is in a very good agreement with field data of Advanced Monochromatic Spectral Induced Polarization (AMSIP

  1. Spatial regulation and the rate of signal transduction activation.

    Directory of Open Access Journals (Sweden)

    Nizar N Batada

    2006-05-01

    Full Text Available Of the many important signaling events that take place on the surface of a mammalian cell, activation of signal transduction pathways via interactions of cell surface receptors is one of the most important. Evidence suggests that cell surface proteins are not as freely diffusible as implied by the classic fluid mosaic model and that their confinement to membrane domains is regulated. It is unknown whether these dynamic localization mechanisms function to enhance signal transduction activation rate or to minimize cross talk among pathways that share common intermediates. To determine which of these two possibilities is more likely, we derive an explicit equation for the rate at which cell surface membrane proteins interact based on a Brownian motion model in the presence of endocytosis and exocytosis. We find that in the absence of any diffusion constraints, cell surface protein interaction rate is extremely high relative to cytoplasmic protein interaction rate even in a large mammalian cell with a receptor abundance of a mere two hundred molecules. Since a larger number of downstream signaling events needs to take place, each occurring at a much slower rate than the initial activation via association of cell surface proteins, we conclude that the role of co-localization is most likely that of cross-talk reduction rather than coupling efficiency enhancement.

  2. BMP2 Transfer to Neighboring Cells and Activation of Signaling.

    Science.gov (United States)

    Alborzinia, Hamed; Shaikhkarami, Marjan; Hortschansky, Peter; Wölfl, Stefan

    2016-09-01

    Morphogen gradients and concentration are critical features during early embryonic development and cellular differentiation. Previously we reported the preparation of biologically active, fluorescently labeled BMP2 and quantitatively analyzed their binding to the cell surface and followed BMP2 endocytosis over time on the level of single endosomes. Here we show that this internalized BMP2 can be transferred to neighboring cells and, moreover, also activates downstream BMP signaling in adjacent cells, indicated by Smad1/5/8 phosphorylation and activation of the downstream target gene id1. Using a 3D matrix to modulate cell-cell contacts in culture we could show that direct cell-cell contact significantly increased BMP2 transfer. Using inhibitors of vesicular transport, transfer was strongly inhibited. Interestingly, cotreatment with the physiological BMP inhibitor Noggin increased BMP2 uptake and transfer, albeit activation of Smad signaling in neighboring cells was completely suppressed. Our findings present a novel and interesting mechanism by which morphogens such as BMP2 can be transferred between cells and how this is modulated by BMP antagonists such as Noggin, and how this influences activation of Smad signaling by BMP2 in neighboring cells.

  3. ATP release and purinergic signaling in NLRP3 inflammasome activation

    Directory of Open Access Journals (Sweden)

    Isabelle eCOUILLIN

    2013-01-01

    Full Text Available The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing that senses pathogen- and danger-associated molecular patterns. One step- or two step- models have been proposed to explain the tight regulation of IL-1β production during inflammation. Moreover, cellular stimulation triggers ATP release and subsequent activation of purinergic receptors at the cell surface. Importantly some studies have reported roles for extracellular ATP (eATP, in NLRP3 inflammasome activation in response to PAMPs and DAMPs. In this mini review, we will discuss the link between active ATP release, purinergic signaling and NLRP3 inflammasome activation. We will focus on the role of autocrine or paracrine ATP export in particle-induced NLRP3 inflammasome activation and discuss how particle activators are competent to induce maturation and secretion of IL-1β through a process that involves, as a first event, extracellular release of endogenous ATP through hemichannel opening, and as a second event, signaling through purinergic receptors that trigger NLRP3 inflammasome activation. Finally, we will review the evidence for ATP as a key proinflammatory mediator released by dying cells. In particular we will discuss how cancer cells dying via autophagy trigger ATP-dependent NLRP3 inflammasome activation in the macrophages engulfing them, eliciting an immunogenic response against tumors.

  4. Energetics of neuronal signaling and fMRI activity.

    Science.gov (United States)

    Maandag, Natasja J G; Coman, Daniel; Sanganahalli, Basavaraju G; Herman, Peter; Smith, Arien J; Blumenfeld, Hal; Shulman, Robert G; Hyder, Fahmeed

    2007-12-18

    Energetics of resting and evoked fMRI signals were related to localized ensemble firing rates (nu) measured by electrophysiology in rats. Two different unstimulated, or baseline, states were established by anesthesia. Halothane and alpha-chloralose established baseline states of high and low energy, respectively, in which forepaw stimulation excited the contralateral primary somatosensory cortex (S1). With alpha-chloralose, forepaw stimulation induced strong and reproducible fMRI activations in the contralateral S1, where the ensemble firing was dominated by slow signaling neurons (SSN; nu range of 1-13 Hz). Under halothane, weaker and less reproducible fMRI activations were observed in the contralateral S1 and elsewhere in the cortex, but ensemble activity in S1 was dominated by rapid signaling neurons (RSN; nu range of 13-40 Hz). For both baseline states, the RSN activity (i.e., higher frequencies, including the gamma band) did not vary upon stimulation, whereas the SSN activity (i.e., alpha band and lower frequencies) did change. In the high energy baseline state, a large majority of total oxidative energy [cerebral metabolic rate of oxygen consumption (CMR(O2))] was devoted to RSN activity, whereas in the low energy baseline state, it was roughly divided between SSN and RSN activities. We hypothesize that in the high energy baseline state, the evoked changes in fMRI activation in areas beyond S1 are supported by rich intracortical interactions represented by RSN. We discuss implications for interpreting fMRI data where stimulus-specific DeltaCMR(O2) is generally small compared with baseline CMR(O2).

  5. Cherry Valley ducks mitochondrial antiviral-signaling protein (MAVS mediated signaling pathway and antiviral activity research

    Directory of Open Access Journals (Sweden)

    Ning Li

    2016-09-01

    Full Text Available Mitochondrial antiviral-signaling protein (MAVS, an adaptor protein of retinoic acid-inducible gene I (RIG-I like receptors (RLRs-mediated signal pathway, is involved in innate immunity. In this study, Cherry Valley duck MAVS (duMAVS was cloned from the spleen and analyzed. duMAVS was determined to have a caspase activation and recruitment domain at N-terminal, followed by a proline rich domain and a transmembrane domain at C-terminal. Quantitative real time PCR indicated that duMAVS was expressed in all tissues tested across a broad expression spectrum. The expression of duMAVS was significantly up-regulated after infection with duck Tembusu virus. Overexpression of duMAVS could drive the activation of interferon-β, nuclear factor-κB, interferon regulatory factor 7, and many downstream factors (such as Mx, PKR, OAS, and IL-8 in duck embryo fibroblast cells. What’s more, RNA interference further confirmed that duMAVS was an important adaptor for IFN-β activation. The antiviral assay showed that duMAVS could suppress the various viral replications (duck Tembusu virus, novel reovirus, and duck plague virus at early stages of infection. Overall, these results showed that the main signal pathway mediated by duMAVS and it had a broad-spectrum antiviral ability. This research will be helpful to better understanding the innate immune system of ducks.

  6. Different activation signals induce distinct mast cell degranulation strategies

    Science.gov (United States)

    Sibilano, Riccardo; Marichal, Thomas; Reber, Laurent L.; Cenac, Nicolas; McNeil, Benjamin D.; Dong, Xinzhong; Hernandez, Joseph D.; Sagi-Eisenberg, Ronit; Hammel, Ilan; Roers, Axel; Valitutti, Salvatore; Tsai, Mindy

    2016-01-01

    Mast cells (MCs) influence intercellular communication during inflammation by secreting cytoplasmic granules that contain diverse mediators. Here, we have demonstrated that MCs decode different activation stimuli into spatially and temporally distinct patterns of granule secretion. Certain signals, including substance P, the complement anaphylatoxins C3a and C5a, and endothelin 1, induced human MCs rapidly to secrete small and relatively spherical granule structures, a pattern consistent with the secretion of individual granules. Conversely, activating MCs with anti-IgE increased the time partition between signaling and secretion, which was associated with a period of sustained elevation of intracellular calcium and formation of larger and more heterogeneously shaped granule structures that underwent prolonged exteriorization. Pharmacological inhibition of IKK-β during IgE-dependent stimulation strongly reduced the time partition between signaling and secretion, inhibited SNAP23/STX4 complex formation, and switched the degranulation pattern into one that resembled degranulation induced by substance P. IgE-dependent and substance P–dependent activation in vivo also induced different patterns of mouse MC degranulation that were associated with distinct local and systemic pathophysiological responses. These findings show that cytoplasmic granule secretion from MCs that occurs in response to different activating stimuli can exhibit distinct dynamics and features that are associated with distinct patterns of MC-dependent inflammation. PMID:27643442

  7. Activation and signaling of the p38 MAP kinase pathway

    Institute of Scientific and Technical Information of China (English)

    Tyler ZARUBIN; Jiahuai HAN

    2005-01-01

    The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.

  8. Artifact suppression and analysis of brain activities with electroencephalography signals

    Institute of Scientific and Technical Information of China (English)

    Md. Rashed-Al-Mahfuz; Md. Rabiul Islam; Keikichi Hirose; Md. Khademul Islam Molla

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.

  9. TLR signaling augments macrophage bactericidal activity through mitochondrial ROS

    OpenAIRE

    West, A. Phillip; Brodsky, Igor E.; Rahner, Christoph; Woo, Dong Kyun; Erdjument-Bromage, Hediye; Tempst, Paul; Walsh, Matthew C; Choi, Yongwon; Shadel, Gerald S.; Ghosh, Sankar

    2011-01-01

    Reactive oxygen species (ROS) are essential components of the innate immune response against intracellular bacteria, and it is thought that professional phagocytes generate ROS primarily via the phagosomal NADPH oxidase (Phox) machinery 1 . However, recent studies have suggested that mitochondrial ROS (mROS) also contribute to macrophage bactericidal activity, although the mechanisms linking innate immune signaling to mitochondria for mROS generation remain unclear 2-4 . Here we demonstrate t...

  10. Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse.

    Science.gov (United States)

    Winkler, Tamara; Mahoney, Eric J; Sinner, Debora; Wylie, Christopher C; Dahia, Chitra Lekha

    2014-01-01

    Intervertebral discs (IVDs) are strong fibrocartilaginous joints that connect adjacent vertebrae of the spine. As discs age they become prone to failure, with neurological consequences that are often severe. Surgical repair of discs treats the result of the disease, which affects as many as one in seven people, rather than its cause. An ideal solution would be to repair degenerating discs using the mechanisms of their normal differentiation. However, these mechanisms are poorly understood. Using the mouse as a model, we previously showed that Shh signaling produced by nucleus pulposus cells activates the expression of differentiation markers, and cell proliferation, in the postnatal IVD. In the present study, we show that canonical Wnt signaling is required for the expression of Shh signaling targets in the IVD. We also show that Shh and canonical Wnt signaling pathways are down-regulated in adult IVDs. Furthermore, this down-regulation is reversible, since re-activation of the Wnt or Shh pathways in older discs can re-activate molecular markers of the IVD that are lost with age. These data suggest that biological treatments targeting Wnt and Shh signaling pathways may be feasible as a therapeutic for degenerative disc disease.

  11. Disentangling stellar activity from exoplanetary signals with interferometry

    Directory of Open Access Journals (Sweden)

    Ligi Roxanne

    2015-01-01

    Full Text Available Stellar activity can express as many forms at stellar surfaces: dark spots, convective cells, bright plages. Particularly, dark spots and bright plages add noise on photometric data or radial velocity measurements used to detect exoplanets, and thus lead to false detection or disrupt their derived parameters. Since interferometry provides a very high angular resolution, it may constitute an interesting solution to distinguish the signal of a transiting exoplanet and that of stellar activity. It has also been shown that granulation adds bias in visibility and closure phase measurements, affecting in turn the derived stellar parameters. We analyze the noises generated by dark spots on interferometric observables and compare them to exoplanet signals. We investigate the current interferometric instruments able to measure and disentangle these signals, and show that there is a lack in spatial resolution. We thus give a prospective of the improvements to be brought on future interferometers, which would also significantly extend the number of available targets.

  12. Signal integration by Ca2+ regulates intestinal stem cell activity

    Science.gov (United States)

    Deng, Hansong; Gerencser, Akos A.; Jasper, Heinrich

    2015-01-01

    Summary Somatic stem cells (SCs) maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here, we identify Ca2+ signaling as a central regulator of intestinal SC (ISC) activity in Drosophila. We find that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response and for an associated modulation of cytosolic Ca2+ oscillations that results in sustained high cytosolic Ca2+ concentrations. High cytosolic Ca2+ induces ISC proliferation by regulating Calcineurin and CREB - regulated transcriptional co-activator (CRTC). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca2+ oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca2+ levels allows effective integration of diverse mitogenic signals in ISCs to tailor their proliferative activity to the needs of the tissue. PMID:26633624

  13. SNIP1: a new activator of HSE signaling pathway.

    Science.gov (United States)

    Li, Qiang; An, Jian; Liu, Xianghua; Zhang, Mingjun; Ling, Yichen; Wang, Chenji; Zhao, Jing; Yu, Long

    2012-03-01

    In the last 10 years, more and more attention has been focused on SNIP1 (Smad nuclear interacting protein 1), which functions as a transcriptional coactivator. We report here that through quantitative real-time PCR analysis in 18 different human tissues, SNIP1 was found to be expressed ubiquitously. When overexpressed in HeLa cells, SNIP1-EGFP fused protein exhibited a nuclear localization with a characteristic subnuclear distribution in speckles or formed larger discrete nuclear bodies in some cells. Reporter gene assay showed that overexpression of SNIP1 in HEK 293 cells or H1299 cells strongly activated the HSE signaling pathway. Moreover, SNIP1 could selectively regulate the transcription of HSP70A1A and HSP27. Taken together, our findings suggest that SNIP1 might also be a positive regulator of HSE signaling pathway.

  14. Modafinil Activates Phasic Dopamine Signaling in Dorsal and Ventral Striata.

    Science.gov (United States)

    Bobak, Martin J; Weber, Matthew W; Doellman, Melissa A; Schuweiler, Douglas R; Athens, Jeana M; Juliano, Steven A; Garris, Paul A

    2016-12-01

    Modafinil (MOD) exhibits therapeutic efficacy for treating sleep and psychiatric disorders; however, its mechanism is not completely understood. Compared with other psychostimulants inhibiting dopamine (DA) uptake, MOD weakly interacts with the dopamine transporter (DAT) and modestly elevates striatal dialysate DA, suggesting additional targets besides DAT. However, the ability of MOD to induce wakefulness is abolished with DAT knockout, conversely suggesting that DAT is necessary for MOD action. Another psychostimulant target, but one not established for MOD, is activation of phasic DA signaling. This communication mode during which burst firing of DA neurons generates rapid changes in extracellular DA, the so-called DA transients, is critically implicated in reward learning. Here, we investigate MOD effects on phasic DA signaling in the striatum of urethane-anesthetized rats with fast-scan cyclic voltammetry. We found that MOD (30-300 mg/kg i.p.) robustly increases the amplitude of electrically evoked phasic-like DA signals in a time- and dose-dependent fashion, with greater effects in dorsal versus ventral striata. MOD-induced enhancement of these electrically evoked amplitudes was mediated preferentially by increased DA release compared with decreased DA uptake. Principal component regression of nonelectrically evoked recordings revealed negligible changes in basal DA with high-dose MOD (300 mg/kg i.p.). Finally, in the presence of the D2 DA antagonist, raclopride, low-dose MOD (30 mg/kg i.p.) robustly elicited DA transients in dorsal and ventral striata. Taken together, these results suggest that activation of phasic DA signaling is an important mechanism underlying the clinical efficacy of MOD. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    Directory of Open Access Journals (Sweden)

    Koul Sweaty

    2004-06-01

    Full Text Available Abstract The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy.

  16. Thrombin-Mediated Direct Activation of Proteinase-Activated Receptor-2: Another Target for Thrombin Signaling.

    Science.gov (United States)

    Mihara, Koichiro; Ramachandran, Rithwik; Saifeddine, Mahmoud; Hansen, Kristina K; Renaux, Bernard; Polley, Danny; Gibson, Stacy; Vanderboor, Christina; Hollenberg, Morley D

    2016-05-01

    Thrombin is known to signal to cells by cleaving/activating a G-protein-coupled family of proteinase-activated receptors (PARs). The signaling mechanism involves the proteolytic unmasking of an N-terminal receptor sequence that acts as a tethered receptor-activating ligand. To date, the recognized targets of thrombin cleavage and activation for signaling are PAR1 and PAR4, in which thrombin cleaves at a conserved target arginine to reveal a tethered ligand. PAR2, which like PAR1 is also cleaved at an N-terminal arginine to unmask its tethered ligand, is generally regarded as a target for trypsin but not for thrombin signaling. We now show that thrombin, at concentrations that can be achieved at sites of acute injury or in a tumor microenvironment, can directly activate PAR2 vasorelaxation and signaling, stimulating calcium and mitogen-activated protein kinase responses along with triggeringβ-arrestin recruitment. Thus, PAR2 can be added alongside PAR1 and PAR4 to the targets, whereby thrombin can affect tissue function.

  17. Monocyte Signal Transduction Receptors in Active and Latent Tuberculosis

    Directory of Open Access Journals (Sweden)

    Magdalena Druszczynska

    2013-01-01

    Full Text Available The mechanisms that promote either resistance or susceptibility to TB disease remain insufficiently understood. Our aim was to compare the expression of cell signaling transduction receptors, CD14, TLR2, CD206, and β2 integrin LFA-1 on monocytes from patients with active TB or nonmycobacterial lung disease and healthy individuals with M.tb latency and uninfected controls to explain the background of the differences between clinical and subclinical forms of M.tb infection. A simultaneous increase in the expression of the membrane bound mCD14 receptor and LFA-1 integrin in patients with active TB may be considered a prodrome of breaking immune control by M.tb bacilli in subjects with the latent TB and absence of clinical symptoms.

  18. Active Sonar Detection in Reverberation via Signal Subspace Extraction Algorithm

    Directory of Open Access Journals (Sweden)

    Ma Xiaochuan

    2010-01-01

    Full Text Available This paper presents a new algorithm called Signal Subspace Extraction (SSE for detecting and estimating target echoes in reverberation. The new algorithm can be taken as an extension of the Principal Component Inverse (PCI and maintains the benefit of PCI algorithm and moreover shows better performance due to a more reasonable reverberation model. In the SSE approach, a best low-rank estimate of a target echo is extracted by decomposing the returns into short duration subintervals and by invoking the Eckart-Young theorem twice. It was assumed that CW is less efficiency in lower Doppler than broadband waveforms in spectrum methods; however, the subspace methods show good performance in detection whatever the respective Doppler is. Hence, the signal emitted by active sonar is CW in the new algorithm which performs well in detection and estimation even when low Doppler is low. Further, a block forward matrix is proposed to extend the algorithm to the sensor array problem. The comparison among the block forward matrix, the conventional matrix, and the three-mode array is discussed. Echo separation is also provided by the new algorithm. Examples are presented using both real, active-sonar data and simulated data.

  19. You've found a safety signal--now what?: regulatory implications of industry signal detection activities.

    Science.gov (United States)

    Kahn, Sidney N

    2007-01-01

    Signals detected by measuring disproportionality of drug-event combinations are only statistical indicators of possible real safety issues, and are not per se necessarily medically important. Nevertheless, once a signal is observed, sponsors are obligated by regulations and ethical considerations to determine whether it represents a new product-associated risk by additional analysis, validation and evaluation of its clinical relevance. Signal strength does not necessarily correlate with medical significance. Strong signals most often represent known, expected and/or medically trivial adverse reactions or confounding by treatment indication, common co-morbidities or other common concomitant treatments. Conversely, any product with reasonably extensive clinical use and reporting of suspected adverse reactions is likely to manifest many weak but clinically unimportant signals, creating significant background 'noise'. Since relatively rare, medically important adverse drug reactions are often likely to manifest as weak signals, sponsors face a potentially onerous burden of evaluating multiple signals in order to distinguish true, clinically important events of concern from spurious signals. This paper discusses the regulatory, clinical and potential legal liability issues that confront industry as a consequence of signal identification activities, including: current and anticipated regulatory requirements for detection, assessment and reporting; the reliability of the data used for signal generation; assessment of clinical relevance; organisational approaches and responses to observed signals; targeted clinical and scientific responses to observed signals; and potential regulatory, legal and commercial impact.

  20. Dynamic neural activity during stress signals resilient coping.

    Science.gov (United States)

    Sinha, Rajita; Lacadie, Cheryl M; Constable, R Todd; Seo, Dongju

    2016-08-02

    Active coping underlies a healthy stress response, but neural processes supporting such resilient coping are not well-known. Using a brief, sustained exposure paradigm contrasting highly stressful, threatening, and violent stimuli versus nonaversive neutral visual stimuli in a functional magnetic resonance imaging (fMRI) study, we show significant subjective, physiologic, and endocrine increases and temporally related dynamically distinct patterns of neural activation in brain circuits underlying the stress response. First, stress-specific sustained increases in the amygdala, striatum, hypothalamus, midbrain, right insula, and right dorsolateral prefrontal cortex (DLPFC) regions supported the stress processing and reactivity circuit. Second, dynamic neural activation during stress versus neutral runs, showing early increases followed by later reduced activation in the ventrolateral prefrontal cortex (VLPFC), dorsal anterior cingulate cortex (dACC), left DLPFC, hippocampus, and left insula, suggested a stress adaptation response network. Finally, dynamic stress-specific mobilization of the ventromedial prefrontal cortex (VmPFC), marked by initial hypoactivity followed by increased VmPFC activation, pointed to the VmPFC as a key locus of the emotional and behavioral control network. Consistent with this finding, greater neural flexibility signals in the VmPFC during stress correlated with active coping ratings whereas lower dynamic activity in the VmPFC also predicted a higher level of maladaptive coping behaviors in real life, including binge alcohol intake, emotional eating, and frequency of arguments and fights. These findings demonstrate acute functional neuroplasticity during stress, with distinct and separable brain networks that underlie critical components of the stress response, and a specific role for VmPFC neuroflexibility in stress-resilient coping.

  1. Oxymatrine inhibits microglia activation via HSP60-TLR4 signaling.

    Science.gov (United States)

    Ding, Feijia; Li, Yunhong; Hou, Xiaolin; Zhang, Rui; Hu, Shuting; Wang, Yin

    2016-11-01

    Oxymatrine (OMT) is an alkaloid extracted from Sophora flavescens, which has broad anti-inflammatory, antitumor and immunosuppressant actions. However, the underlying molecular mechanisms have remained elusive. Heat shock protein 60 (HSP60) has recently been shown to have an important role in autoimmune reactions. The present study aimed to investigate whether OMT exerts its anti-inflammatory effects by inhibiting microglial activation and examined the role of HSP60 in this process. Western blot analysis and ELISA showed that OMT decreased the expression and release of HSP60 by LPS-activated BV2 cells. The expression of heat shock factor 1, the transcription factor of HSP60, was also suppressed by OMT. Extracellular HSP60 has been previously indicated to induce microglial apoptosis through the Toll-like receptor (TLR)-4 pathway. Flow cytometric analysis demonstrated that LPS treatment induced apoptosis of BV2 cells, which was inhibited by OMT in parallel with inhibition of LPS-induced expression of TLR-4. Furthermore, OMT was shown to suppress the levels of myeloid differentiation factor (MYD)88, nuclear factor (NF)-κB, caspase-3, inducible nitric oxide synthase, tumor necrosis factor-α, interleukin (IL)-1β and IL-6. In light of these results, it was concluded that OMT may exert its neuroprotective effects via HSP60/TLR-4/MYD88/NF-κB signaling pathways to inhibit microglial activation. OMT may therefore offer substantial therapeutic potential for treating neurodegenerative diseases associated with microglial activation.

  2. Transfer function between EEG and BOLD signals of epileptic activity

    Directory of Open Access Journals (Sweden)

    Marco eLeite

    2013-01-01

    Full Text Available Simultaneous EEG-fMRI recordings have seen growing application in the evaluation of epilepsy, namely in the characterization of brain networks related to epileptic activity. In EEG-correlated fMRI studies, epileptic events are usually described as boxcar signals based on the timing information retrieved from the EEG, and subsequently convolved with a heamodynamic response function to model the associated BOLD changes. Although more flexible approaches may allow a higher degree of complexity for the haemodynamics, the issue of how to model these dynamics based on the EEG remains an open question. In this work, a new methodology for the integration of simultaneous EEG-fMRI data in epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD signal. Independent component analysis (ICA of the EEG is performed, and a number of metrics expressing different models of the EEG-BOLD transfer function are extracted from the resulting time courses. These metrics are then used to predict the fMRI data and to identify brain areas associated with the EEG epileptic activity. The methodology was tested on both ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma. When compared to the conventional analysis approach, plausible, consistent and more significant activations were obtained. Importantly, frequency-weighted EEG metrics yielded superior results than those weighted solely on the EEG power, which comes in agreement with previous literature. Reproducibility, specificity and sensitivity should be addressed in an extended group of patients in order to further validate the proposed methodology and generalize the presented proof of concept.

  3. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathwa...ys activated by microorganisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  4. DMPD: Macrophage activation by endogenous danger signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18161744 Macrophage activation by endogenous danger signals. Zhang X, Mosser DM. J ...Pathol. 2008 Jan;214(2):161-78. (.png) (.svg) (.html) (.csml) Show Macrophage activation by endogenous dange...r signals. PubmedID 18161744 Title Macrophage activation by endogenous danger signals. Authors Zhang X, Moss

  5. Bisphenol A (BPA) stimulates the interferon signaling and activates the inflammasome activity in myeloid cells.

    Science.gov (United States)

    Panchanathan, Ravichandran; Liu, Hongzhu; Leung, Yuet-Kin; Ho, Shuk-mei; Choubey, Divaker

    2015-11-05

    Environmental factors contribute to the development of autoimmune diseases, including systemic lupus erythematosus (SLE), which exhibits a strong female bias (female-to-male ratio 9:1). However, the molecular mechanisms remain largely unknown. Because a feedforward loop between the female sex hormone estrogen (E2) and type I interferon (IFN-α/β)-signaling induces the expression of certain p200-family proteins (such as murine p202 and human IFI16) that regulate innate immune responses and modify lupus susceptibility, we investigated whether treatment of myeloid cells with bisphenol A (BPA), an environmental estrogen, could regulate the p200-family proteins and activate innate immune responses. We found that treatment of murine bone marrow-derived cells (BMCs) and human peripheral blood mononuclear cells with BPA induced the expression of ERα and IFN-β, activated the IFN-signaling, and stimulated the expression of the p202 and IFI16 proteins. Further, the treatment increased levels of the NLRP3 inflammasome and stimulated its activity. Accordingly, BPA-treatment of BMCs from non lupus-prone C57BL/6 and the lupus-prone (NZB×NZW)F1 mice activated the type I IFN-signaling, induced the expression of p202, and activated an inflammasome activity. Our study demonstrates that BPA-induced signaling in the murine and human myeloid cells stimulates the type I IFN-signaling that results in an induction of the p202 and IFI16 innate immune sensors for the cytosolic DNA and activates an inflammasome activity. These observations provide novel molecular insights into the role of environmental BPA exposures in potentiating the development of certain autoimmune diseases such as SLE.

  6. Innate Immune Signaling Activated by MDR Bacteria in the Airway

    Science.gov (United States)

    Parker, Dane; Ahn, Danielle; Cohen, Taylor; Prince, Alice

    2015-01-01

    Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation. PMID:26582515

  7. Activation of PERK signaling attenuates Abeta-mediated ER stress.

    Directory of Open Access Journals (Sweden)

    Do Yeon Lee

    Full Text Available Alzheimer's disease (AD is characterized by the deposition of aggregated beta-amyloid (Abeta, which triggers a cellular stress response called the unfolded protein response (UPR. The UPR signaling pathway is a cellular defense system for dealing with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER stress is prolonged. ER stress is involved in neurodegenerative diseases including AD, but the molecular mechanisms of ER stress-mediated Abeta neurotoxicity still remain unknown. Here, we show that treatment of Abeta triggers the UPR in the SK-N-SH human neuroblastoma cells. Abeta mediated UPR pathway accompanies the activation of protective pathways such as Grp78/Bip and PERK-eIF2alpha pathway, as well as the apoptotic pathways of the UPR such as CHOP and caspase-4. Knockdown of PERK enhances Abeta neurotoxicity through reducing the activation of eIF2alpha and Grp8/Bip in neurons. Salubrinal, an activator of the eIF2alpha pathway, significantly increased the Grp78/Bip ER chaperone resulted in attenuating caspase-4 dependent apoptosis in Abeta treated neurons. These results indicate that PERK-eIF2alpha pathway is a potential target for therapeutic applications in neurodegenerative diseases including AD.

  8. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chen-Shuang Li

    2016-01-01

    Full Text Available Human umbilical cord mesenchymal stem cells (hUCMSCs are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.

  9. Signaling lymphocyte activating molecule (SLAM) expression in subacute sclerosing panencephalitis.

    Science.gov (United States)

    Piskin, A Kevser; Akpinar, Pinar; Muftuoglu, Sevda; Anlar, Banu

    2007-08-01

    Signaling lymphocyte activating molecule (SLAM) is a receptor for measles virus which also has immunomodulatory activity. We analyzed SLAM expression in mononuclear cells (MNC) of patients with SSPE (n=7) and control subjects (n=7) from the same population. Native 10% PAGE analysis in cell and brain tissue extracts followed by Western blotting using monoclonal anti-human SLAM showed four types of bands. Differences in the type and amount of SLAM expression were observed between SSPE and control cases. Lymphocytes of SSPE patients showed two types of SLAM bands in comparison to only one in control lymphocytes. Stimulation of cells with lipopolysaccharide (80 u/ml) and concanavalin A (1 microg/ml) in vitro led to the appearance of a second isoform in both groups. Brain homogenates of SSPE patients (n=2) displayed all four types of SLAM isoforms at significantly higher levels than those of control brains (n=2). Our results show native PAGE enables the detection of all SLAM isotypes. The expression of SLAM is increased in lymphocytes, monocytes, and brain tissues of SSPE patients.

  10. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity

    Directory of Open Access Journals (Sweden)

    Dieter Wicher

    2007-12-01

    Full Text Available The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR, we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH: PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage.

  11. Simvastatin impairs growth hormone-activated signal transducer and activator of transcription (STAT signaling pathway in UMR-106 osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    María Claudia Sandoval-Usme

    Full Text Available Recent studies have demonstrated that statins reduce cell viability and induce apoptosis in various types of cancer cells. The molecular mechanisms underlying these effects are poorly understood. The JAK/STAT pathway plays an important role in the regulation of proliferation and apoptosis in many tissues, and its deregulation is believed to be involved in tumorigenesis and cancer. The physiological activation of STAT proteins by GH is rapid but transient in nature and its inactivation is regulated mainly by the expression of SOCS proteins. UMR-106 osteosarcoma cells express a GH-responsive JAK2/STAT5 signaling pathway, providing an experimental model to study the influence of statins on this system. In this study we investigated the actions of simvastatin on cell proliferation, migration, and invasion on UMR-106 cells and examined whether alterations in GH-stimulated JAK/STAT/SOCS signaling may be observed. Results showed that treatment of osteosarcoma cells with simvastatin at 3 to 10 µM doses decreases cell proliferation, migration, and invasion in a time- and dose-dependent manner. At the molecular level, although the mechanisms used by simvastatin are not entirely clear, the effect of the statin on the reduction of JAK2 and STAT5 phosphorylation levels may partially explain the decrease in the GH-stimulated STAT5 transcriptional activity. This effect correlated with a time- and dose-dependent increase of SOCS-3 expression levels in cells treated with simvastatin, a regulatory role that has not been previously described. Furthermore, the finding that simvastatin is capable of inducing SOCS-3 and CIS genes expression shows the potential of the JAK/STAT pathway as a therapeutic target, reinforcing the efficacy of simvastatin as chemotherapeutic drug for the treatment of osteosarcoma.

  12. Signal transduction pathways in liver and the influence of hepatitis C virus infection on their activities

    Institute of Scientific and Technical Information of China (English)

    Magdalena M Dabrowska; Anatol Panasiuk; Robert Flisiak

    2009-01-01

    In liver, the most intensively studied transmembrane and intracellular signal transduction pathways are the Janus kinase signal transduction pathway, the mitogen-activated protein kinases signal transduction pathway, the transforming growth factor b signal transduction pathway, the tumor necrosis factor a signal transduction pathway and the recently discovered sphingolipid signal transduction pathway. All of them are activated by many different cytokines and growth factors. They regulate specific cell mechanisms such as hepatocytes proliferation, growth, differentiation, adhesion, apoptosis, and synthesis and degradation of the extracellular matrix. The replication cycle of hepatitis C virus (HCV) is intracellular and requires signal transduction to the nucleus to regulate transcription of its genes. Moreover, HCV itself, by its structural and nonstructural proteins, could influence the activity of the second signal messengers. Thus, the inhibition of the transmembrane and intracellular signal transduction pathways could be a new therapeutic target in chronic hepatitis C treatment.

  13. Treponema denticola activates mitogen-activated protein kinase signal pathways through Toll-like receptor 2.

    Science.gov (United States)

    Ruby, John; Rehani, Kunal; Martin, Michael

    2007-12-01

    Treponema denticola, a spirochete indigenous to the oral cavity, is associated with host inflammatory responses to anaerobic polymicrobial infections of the root canal, periodontium, and alveolar bone. However, the cellular mechanisms responsible for the recognition of T. denticola by the innate immune system and the underlying cell signaling pathways that regulate the inflammatory response to T. denticola are currently unresolved. In this study, we demonstrate that T. denticola induces innate immune responses via the utilization of Toll-like receptor 2 (TLR2) but not TLR4. Assessment of TLR2/1 and TLR2/6 heterodimers revealed that T. denticola predominantly utilizes TLR2/6 for the induction of cellular responses. Analysis of the mitogen-activated protein kinase (MAPK) signaling pathway in T. denticola-stimulated monocytes identified a prolonged up-regulation of the MAPK extracellular signal-related kinase 1/2 (ERK1/2) and p38, while no discernible increase in phospho-c-Jun N-terminal kinase 1/2 (JNK1/2) levels was observed. With the aid of pharmacological inhibitors selectively targeting ERK1/2 via the mitogen-activated protein kinase/extracellular signal-related kinase 1/2 kinase and p38, we further demonstrate that ERK1/2 and p38 play a major role in T. denticola-mediated pro- and anti-inflammatory cytokine production.

  14. Agonist-biased signaling via proteinase activated receptor-2: differential activation of calcium and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Ramachandran, Rithwik; Mihara, Koichiro; Mathur, Maneesh; Rochdi, Moulay Driss; Bouvier, Michel; Defea, Kathryn; Hollenberg, Morley D

    2009-10-01

    We evaluated the ability of different trypsin-revealed tethered ligand (TL) sequences of rat proteinase-activated receptor 2 (rPAR(2)) and the corresponding soluble TL-derived agonist peptides to trigger agonist-biased signaling. To do so, we mutated the proteolytically revealed TL sequence of rPAR(2) and examined the impact on stimulating intracellular calcium transients and mitogen-activated protein (MAP) kinase. The TL receptor mutants, rPAR(2)-Leu(37)Ser(38), rPAR(2)-Ala(37-38), and rPAR(2)-Ala(39-42) were compared with the trypsin-revealed wild-type rPAR(2) TL sequence, S(37)LIGRL(42)-. Upon trypsin activation, all constructs stimulated MAP kinase signaling, but only the wt-rPAR(2) and rPAR(2)-Ala(39-42) triggered calcium signaling. Furthermore, the TL-derived synthetic peptide SLAAAA-NH2 failed to cause PAR(2)-mediated calcium signaling but did activate MAP kinase, whereas SLIGRL-NH2 triggered both calcium and MAP kinase signaling by all receptors. The peptides AAIGRL-NH2 and LSIGRL-NH2 triggered neither calcium nor MAP kinase signals. Neither rPAR(2)-Ala(37-38) nor rPAR(2)-Leu(37)Ser(38) constructs recruited beta-arrestins-1 or -2 in response to trypsin stimulation, whereas both beta-arrestins were recruited to these mutants by SLIGRL-NH2. The lack of trypsin-triggered beta-arrestin interactions correlated with impaired trypsin-activated TL-mutant receptor internalization. Trypsin-stimulated MAP kinase activation by the TL-mutated receptors was not blocked by inhibitors of Galpha(i) (pertussis toxin), Galpha(q) [N-cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide (GP2A)], Src kinase [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], or the epidermal growth factor (EGF) receptor [4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478)], but was inhibited by the Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2HCl (Y27362). The data indicate that the

  15. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity

    Science.gov (United States)

    Burket, Jessica A.; Benson, Andrew D.; Tang, Amy H.; Deutsch, Stephen I.

    2017-01-01

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORCl in neurons (e.g., cerebellar Purkinje cells). mTORCl is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORCl, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORCl overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORCl activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are “drivers” of mTORCl activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders. PMID:25703582

  16. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity.

    Science.gov (United States)

    Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I

    2015-07-01

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORC1 in neurons (e.g., cerebellar Purkinje cells). mTORC1 is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORC1, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORC1 overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORC1 activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are "drivers" of mTORC1 activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders.

  17. Akt1 signaling coordinates BMP signaling and β-catenin activity to regulate second heart field progenitor development.

    Science.gov (United States)

    Luo, Wen; Zhao, Xia; Jin, Hengwei; Tao, Lichan; Zhu, Jingai; Wang, Huijuan; Hemmings, Brian A; Yang, Zhongzhou

    2015-02-15

    Second heart field (SHF) progenitors exhibit continued proliferation and delayed differentiation, which are modulated by FGF4/8/10, BMP and canonical Wnt/β-catenin signaling. PTEN-Akt signaling regulates the stem cell/progenitor cell homeostasis in several systems, such as hematopoietic stem cells, intestinal stem cells and neural progenitor cells. To address whether PTEN-Akt signaling is involved in regulating cardiac progenitors, we deleted Pten in SHF progenitors. Deletion of Pten caused SHF expansion and increased the size of the SHF derivatives, the right ventricle and the outflow tract. Cell proliferation of cardiac progenitors was enhanced, whereas cardiac differentiation was unaffected by Pten deletion. Removal of Akt1 rescued the phenotype and early lethality of Pten deletion mice, suggesting that Akt1 was the key downstream target that was negatively regulated by PTEN in cardiac progenitors. Furthermore, we found that inhibition of FOXO by Akt1 suppressed the expression of the gene encoding the BMP ligand (BMP7), leading to dampened BMP signaling in the hearts of Pten deletion mice. Cardiac activation of Akt also increased the Ser552 phosphorylation of β-catenin, thus enhancing its activity. Reducing β-catenin levels could partially rescue heart defects of Pten deletion mice. We conclude that Akt signaling regulates the cell proliferation of SHF progenitors through coordination of BMP signaling and β-catenin activity.

  18. A Active Micromachined Scalp Electrode Array for Eeg Signal Recording.

    Science.gov (United States)

    Alizadeh-Taheri, Babak

    This thesis describes the design, microfabrication, and testing of an active scalp EEG (electroencephalograph) electrode that has several distinct advantages over existing technologies. These advantages are: (1) no electrolyte used, (2) no skin preparation, (3) significantly reduced sensor size, and (4) compatibility with EEG monitoring systems. The active electrode array is an integrated system made of an array of capacitive sensors with local integrated circuitry housed in a package with batteries to power the circuitry. This level of integration was required to achieve the functional performance obtained by the electrode. The electrode consists of a silicon sensor substrate fabricated at UCD and a custom circuit substrate fabricated at Orbit Semiconductors, using a 2 μm analog CMOS technology. The circuitry was designed for low 1/f noise. One side of the sensor substrate holds four capacitive sensors with rm Si_3N _4 as the dielectric material. The opposite side holds aluminum pads for bonding to the circuit substrate. A via hole technology was developed to make electrical contact to both sides of the sensor substrate. The via holes are 200 μm square openings etched through the silicon by a reactive ion etching (RIE) process using an rm SF_6/O_2 gas mixture, oxidized, and then filled with sputtered aluminum for contacts through the substrate. The via holes have an aspect ratio of 2:1 (length of opening to depth of hole). Silicon RIE etch rates of up to 18 mu/hr were obtained under optimum conditions, using a 0.8 μm aluminum mask. The circuit and sensor substrates were bonded with silver adhesive, and wire bonding was used to make electrical contacts between the substrates. The two substrates were then integrated in a custom package for testing. The electrode was tested on an electrical test bench and on human subjects in four modalities of EEG activity, namely: (1) spontaneous EEG, (2) sensory event-related potentials, (3) brain stem potentials, and (4

  19. Sunitinib activates Axl signaling in renal cell cancer.

    Science.gov (United States)

    van der Mijn, Johannes C; Broxterman, Henk J; Knol, Jaco C; Piersma, Sander R; De Haas, Richard R; Dekker, Henk; Pham, Thang V; Van Beusechem, Victor W; Halmos, Balazs; Mier, James W; Jiménez, Connie R; Verheul, Henk M W

    2016-06-15

    Mass spectrometry-based phosphoproteomics provides a unique unbiased approach to evaluate signaling network in cancer cells. The tyrosine kinase inhibitor sunitinib is registered as treatment for patients with renal cell cancer (RCC). We investigated the effect of sunitinib on tyrosine phosphorylation in RCC tumor cells to get more insight in its mechanism of action and thereby to find potential leads for combination treatment strategies. Sunitinib inhibitory concentrations of proliferation (IC50) of 786-O, 769-p and A498 RCC cells were determined by MTT-assays. Global tyrosine phosphorylation was measured by LC-MS/MS after immunoprecipitation with the antiphosphotyrosine antibody p-TYR-100. Phosphoproteomic profiling of 786-O cells yielded 1519 phosphopeptides, corresponding to 675 unique proteins including 57 different phosphorylated protein kinases. Compared to control, incubation with sunitinib at its IC50 of 2 µM resulted in downregulation of 86 phosphopeptides including CDK5, DYRK3, DYRK4, G6PD, PKM and LDH-A, while 94 phosphopeptides including Axl, FAK, EPHA2 and p38α were upregulated. Axl- (y702), FAK- (y576) and p38α (y182) upregulation was confirmed by Western Blot in 786-O and A498 cells. Subsequent proliferation assays revealed that inhibition of Axl with a small molecule inhibitor (R428) sensitized 786-O RCC cells and immortalized endothelial cells to sunitinib up to 3 fold. In conclusion, incubation with sunitinib of RCC cells causes significant upregulation of multiple phosphopeptides including Axl. Simultaneous inhibition of Axl improves the antitumor activity of sunitinib. We envision that evaluation of phosphoproteomic changes by TKI treatment enables identification of new targets for combination treatment strategies.

  20. A third-order active-R filter with feedforward input signal

    Indian Academy of Sciences (India)

    G N Shinde; P B Patil; P R Mirkute

    2003-12-01

    A realization of voltage-mode transfer functions with feedforward input signal for third-order active-R filter using an oprational amplifier has been presented. This filter is useful for high frequency operation, monolithic IC implementation and is easy to design. The single circuit gives three filter functions, low pass, high pass and band pass. This filter circuit can be used for different and f0 with high passband gain. This gives better stop band attenuation and sharper cut-off at the edge of the passband.

  1. The Search for signals of technological activities in the galaxy

    CERN Document Server

    Lemarchand, Guillermo A

    2010-01-01

    In this article an analysis of the fundamentals used to search for extraterrestrial artificial signals in the galaxy, which have been developing for more than five decades, is presented. It is shown that the key factor for the success of these research projects is given by the technological civilizations lifetimes. Assuming the Principle of Mediocrity, estimations are made to determine the minimum number of civilizations that may co-exist in the galaxy and the probability of detecting a signal from them.

  2. Design of excitation signals for active system monitoring in a performance assessment setup

    DEFF Research Database (Denmark)

    Green, Torben; Izadi-Zamanabadi, Roozbeh; Niemann, Hans Henrik

    2011-01-01

    This paper investigates how the excitation signal should be chosen for a active performance setup. The signal is used in a setup where the main purpose is to detect whether a parameter change of the controller has changed the global performance significantly. The signal has to be able to excite...

  3. Loss of STAT3 signaling during elevated activity causes vulnerability in hippocampal neurons

    OpenAIRE

    2012-01-01

    Chronically altered levels of network activity lead to changes in the morphology and functions of neurons. However, little is known of how changes in neuronal activity alter the intracellular signaling pathways mediating neuronal survival. Here we use primary cultures of rat hippocampal neurons to show that elevated neuronal activity impairs phosphorylation of the serine/threonine kinase, Erk1/2 and the activation of signal transducer and activator of transcription 3 (STAT3) by phosphorylatio...

  4. Artemisinin inhibits neuroblastoma proliferation through activation of AHP-activated protein kinase (AMPK) signaling.

    Science.gov (United States)

    Tan, Wei-Qiang; Chen, Gang; Jia, Bing; Ye, Ming

    2014-06-01

    Recent population studies suggest that the use of artemisinin is associated with reduced incidence and improved prognosis of certain cancers. In the current study, we assessed the effect of artemisinin on neuroblastoma cells using SHSY5Y cells. We found that artemisinin inhibited growth and modulated expression of cell-cycle regulators in these cells. Treatment with artemisinin was also associated with activation of AMP kinase and inhibition of mTOR/p70S6K/pS6 signaling in SHSY5Y cells. In addition, inhibition of AMPK signaling reversed impact on the anti-proliferative roles of artemisinin. Taken together, these results provide evidence for a mechanism that may contribute to the antineoplastic effects of artemisinin suggested by recent population studies and justify further work to explore its potential roles in neuroblastoma prevention and treatment.

  5. Digital signaling decouples activation probability and population heterogeneity

    DEFF Research Database (Denmark)

    Kellogg, Ryan A; Tian, Chengzhe; Lipniacki, Tomasz

    2015-01-01

    Digital signaling enhances robustness of cellular decisions in noisy environments, but it is unclear how digital systems transmit temporal information about a stimulus. To understand how temporal input information is encoded and decoded by the NF-κB system, we studied transcription factor dynamic...

  6. Caffeine Induces Cell Death via Activation of Apoptotic Signal and Inactivation of Survival Signal in Human Osteoblasts

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2008-05-01

    Full Text Available Caffeine consumption is a risk factor for osteoporosis, but the precise regulatory mechanisms are currently unknown. Here, we show that cell viability decreases in osteoblasts treated with caffeine in a dose-dependent manner. This cell death is attributed primarily to apoptosis and to a smaller extent, necrosis. Moreover, caffeine directly stimulates intracellular oxidative stress. Our data support caffeine-induced apoptosis in osteoblasts via a mitochondria-dependent pathway. The apoptotic biochemical changes were effectively prevented upon pretreatment with ROS scavengers, indicating that ROS plays a critical role as an upstream controller in the caffeine-induced apoptotic cascade. Additionally, p21-activated protein kinase 2 (PAK2 and c-Jun N-terminal kinase (JNK were activated in caffeine-treated osteoblasts. Experiments further found that PAK2 activity is required for caffeine-induced JNK activation and apoptosis. Importantly, our data also show that caffeine triggers cell death via inactivation of the survival signal, including the ERK- and Akt-mediated anti-apoptotic pathways. Finally, exposure of rats to dietary water containing 10~20 μM caffeine led to bone mineral density loss. These results demonstrate for the first time that caffeine triggers apoptosis in osteoblasts via activation of mitochondria-dependent cell death signaling and inactivation of the survival signal, and causes bone mineral density loss in vivo.

  7. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou, E-mail: xinzhou_yang@hotmail.com

    2014-12-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals.

  8. Calcium signaling and the MAPK cascade are required for sperm activation in Caenorhabditis elegans.

    Science.gov (United States)

    Liu, Zhiyu; Wang, Bin; He, Ruijun; Zhao, Yanmei; Miao, Long

    2014-02-01

    In nematode, sperm activation (or spermiogenesis), a process in which the symmetric and non-motile spermatids transform into polarized and crawling spermatozoa, is critical for sperm cells to acquire fertilizing competence. SPE-8 dependent and SPE-8 independent pathways function redundantly during sperm activation in both males and hermaphrodites of Caenorhabditis elegans. However, the downstream signaling for both pathways remains unclear. Here we show that calcium signaling and the MAPK cascade are required for both SPE-8 dependent and SPE-8 independent sperm activation, implying that both pathways share common downstream signaling components during sperm activation. We demonstrate that activation of the MAPK cascade is sufficient to activate spermatids derived from either wild-type or spe-8 group mutant males and that activation of the MAPK cascade bypasses the requirement of calcium signal to induce sperm activation, indicating that the MAPK cascade functions downstream of or parallel with the calcium signaling during sperm activation. Interestingly, the persistent activation of MAPK in activated spermatozoa inhibits Major Sperm Protein (MSP)-based cytoskeleton dynamics. We demonstrate that MAPK plays dual roles in promoting pseudopod extension during sperm activation but also blocking the MSP-based, amoeboid motility of the spermatozoa. Thus, though nematode sperm are crawling cells, morphologically distinct from flagellated sperm, and the molecular machinery for motility of amoeboid and flagellated sperm is different, both types of sperm might utilize conserved signaling pathways to modulate sperm maturation.

  9. Signal transducer and activator of transcription 3 regulation by novel binding partners

    Institute of Scientific and Technical Information of China (English)

    Tadashi; Matsuda; Ryuta; Muromoto; Yuichi; Sekine; Sumihito; Togi; Yuichi; Kitai; Shigeyuki; Kon; Kenji; Oritani

    2015-01-01

    Signal transducers and activators of transcription(STATs) mediate essential signals for various biological processes,including immune responses,hematopoiesis,and neurogenesis. STAT3,for example,is involved in the pathogenesis of various human diseases,including cancers,autoimmune and inflammatory disorders. STAT3 activation is therefore tightly regulated at multiple levels to prevent these pathological conditions. A number of proteins have been reported to associate with STAT3 and regulate its activity. These STAT3-interacting proteins function to modulate STAT3-mediated signaling at various steps and mediate the crosstalk of STAT3 with other cellular signaling pathways. This article reviews the roles of novel STAT3 binding partners such as DAXX,zipperinteracting protein kinase,Krüppel-associated box-associated protein 1,Y14,PDZ and LIM domain 2 and signal transducing adaptor protein-2,in the regulation of STAT3-mediated signaling.

  10. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Qi-shan Ran

    2015-01-01

    Full Text Available The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling pathway using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial progenitor cells. Suppression of the Notch signaling pathway with Notch1 or Jagged1 siRNAs reduced the migratory capacity, invasiveness and angiogenic ability of endothelial progenitor cells. Activation of the Notch signaling pathway in vivo in a rat model of mild traumatic brain injury promoted neurovascular repair. These findings suggest that the activation of the Notch signaling pathway promotes blood vessel formation and tissue repair after brain trauma.

  11. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Qi-shan Ran; Yun-hu Yu; Xiao-hong Fu; Yuan-chao Wen

    2015-01-01

    The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling path-way using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial progenitor cells. Suppression of the Notch signaling pathway with Notch1 or Jagged1 siRNAs reduced the migratory capacity, invasiveness and angiogenic ability of endo-thelial progenitor cells. Activation of the Notch signaling pathwayin vivo in a rat model of mild traumatic brain injury promoted neurovascular repair. These ifndings suggest that the activation of the Notch signaling pathway promotes blood vessel formation and tissue repair after brain trauma.

  12. Danger Signals Activating the Immune Response after Trauma

    Directory of Open Access Journals (Sweden)

    Stefanie Hirsiger

    2012-01-01

    Full Text Available Sterile injury can cause a systemic inflammatory response syndrome (SIRS that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins as well as exogenous pathogen-associated molecular patterns (PAMPs play a crucial role in the initiation of the immune response. With popularization of the “danger theory,” numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1, interleukin-1α (IL-1α, and interleukin-33 (IL-33 as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.

  13. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling

    Directory of Open Access Journals (Sweden)

    Kumar N Alagramam

    2014-01-01

    Full Text Available Noise-induced hearing loss (NIHL is a major public health issue worldwide. Uncovering the early molecular events associated with NIHL would reveal mechanisms leading to the hearing loss. Our aim is to investigate the immediate molecular responses after different levels of noise exposure and identify the common and distinct pathways that mediate NIHL. Previous work showed mice exposed to 116 decibels sound pressure level (dB SPL broadband noise for 1 h had greater threshold shifts than the mice exposed to 110 dB SPL broadband noise, hence we used these two noise levels in this study. Groups of 4-8-week-old CBA/CaJ mice were exposed to no noise (control or to broadband noise for 1 h, followed by transcriptome analysis of total cochlear RNA isolated immediately after noise exposure. Previously identified and novel genes were found in all data sets. Following exposure to noise at 116 dB SPL, the earliest responses included up-regulation of 243 genes and down-regulation of 61 genes, while a similar exposure at 110 dB SPL up-regulated 155 genes and down-regulated 221 genes. Bioinformatics analysis indicated that mitogen-activated protein kinase (MAPK signaling was the major pathway in both levels of noise exposure. Nevertheless, both qualitative and quantitative differences were noticed in some MAPK signaling genes, after exposure to different noise levels. Cacna1b , Cacna1g , and Pla2g6 , related to calcium signaling were down-regulated after 110 dB SPL exposure, while the fold increase in the expression of Fos was relatively lower than what was observed after 116 dB SPL exposure. These subtle variations provide insight on the factors that may contribute to the differences in NIHL despite the activation of a common pathway.

  14. The Search for signals of technological activities in the galaxy

    OpenAIRE

    Lemarchand, Guillermo A.

    2010-01-01

    In this article an analysis of the fundamentals used to search for extraterrestrial artificial signals in the galaxy, which have been developing for more than five decades, is presented. It is shown that the key factor for the success of these research projects is given by the technological civilizations lifetimes. Assuming the Principle of Mediocrity, estimations are made to determine the minimum number of civilizations that may co-exist in the galaxy and the probability of detecting a signa...

  15. Transforming Growth Factor-β Signaling Pathway Activation in Keratoconus

    Science.gov (United States)

    ENGLER, CHRISTOPH; CHAKRAVARTI, SHUKTI; DOYLE, JEFFERSON; EBERHART, CHARLES G.; MENG, HUAN; STARK, WALTER J.; KELLIHER, CLARE; JUN, ALBERT S.

    2011-01-01

    PURPOSE To assess the presence of transforming growth factor-β (TGFβ) pathway markers in the epithelium of keratoconus patient corneas. DESIGN Retrospective, comparative case series of laboratory specimens. METHODS Immunohistochemistry results for TGFβ2, total TGFβ, mothers against decacentaplegic homolog (Smad) 2, and phosphorylated Smad2 was performed on formalin-fixed, paraffin-embedded sections of keratoconus patient corneas and normal corneas from human autopsy eyes. Keratoconus patient corneas were divided in two groups, depending on their severity based on keratometer readings and pachymetry. Autopsy controls were age-matched with the keratoconus cases. Immunohistochemistry signal quantification was performed using automated software. Real-time reverse-transcriptase polymerase chain reaction was performed on total ribonucleic acid of epithelium of keratoconus patient corneas and autopsy control corneas. RESULTS Immunohistochemistry quantification showed a significant increase in mean signal in the group of severe keratoconus cases compared with normal corneas for TGFβ2 and phosphorylated Smad2 (P keratoconus cases versus the autopsy controls. Reverse-transcriptase polymerase chain reaction exhibited elevated messenger ribonucleic acid levels of Smad2 and TGFβ2 in severe keratoconus corneal epithelium. CONCLUSIONS This work shows increased TGFβ pathway markers in severe keratoconus cases and provides the rationale for investigating TGFβ signaling further in the pathophysiology of keratoconus. PMID:21310385

  16. Stress and radiation-induced activation of multiple intracellular signaling pathways.

    Science.gov (United States)

    Dent, Paul; Yacoub, Adly; Contessa, Joseph; Caron, Ruben; Amorino, George; Valerie, Kristoffer; Hagan, Michael P; Grant, Steven; Schmidt-Ullrich, Rupert

    2003-03-01

    Exposure of cells to a variety of stresses induces compensatory activations of multiple intracellular signaling pathways. These activations can play critical roles in controlling cell survival and repopulation effects in a stress-specific and cell type-dependent manner. Some stress-induced signaling pathways are those normally activated by mitogens such as the EGFR/RAS/PI3K-MAPK pathway. Other pathways activated by stresses such as ionizing radiation include those downstream of death receptors, including pro-caspases and the transcription factor NFKB. This review will attempt to describe some of the complex network of signals induced by ionizing radiation and other cellular stresses in animal cells, with particular attention to signaling by growth factor and death receptors. This includes radiation-induced signaling via the EGFR and IGFI-R to the PI3K, MAPK, JNK, and p38 pathways as well as FAS-R and TNF-R signaling to pro-caspases and NFKB. The roles of autocrine ligands in the responses of cells and bystander cells to radiation and cellular stresses will also be discussed. Based on the data currently available, it appears that radiation can simultaneously activate multiple signaling pathways in cells. Reactive oxygen and nitrogen species may play an important role in this process by inhibiting protein tyrosine phosphatase activity. The ability of radiation to activate signaling pathways may depend on the expression of growth factor receptors, autocrine factors, RAS mutation, and PTEN expression. In other words, just because pathway X is activated by radiation in one cell type does not mean that pathway X will be activated in a different cell type. Radiation-induced signaling through growth factor receptors such as the EGFR may provide radioprotective signals through multiple downstream pathways. In some cell types, enhanced basal signaling by proto-oncogenes such as RAS may provide a radioprotective signal. In many cell types, this may be through PI3K, in others

  17. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem

    Science.gov (United States)

    Pfeiffer, Anne; Janocha, Denis; Dong, Yihan; Medzihradszky, Anna; Schöne, Stefanie; Daum, Gabor; Suzaki, Takuya; Forner, Joachim; Langenecker, Tobias; Rempel, Eugen; Schmid, Markus; Wirtz, Markus; Hell, Rüdiger; Lohmann, Jan U

    2016-01-01

    A major feature of embryogenesis is the specification of stem cell systems, but in contrast to the situation in most animals, plant stem cells remain quiescent until the postembryonic phase of development. Here, we dissect how light and metabolic signals are integrated to overcome stem cell dormancy at the shoot apical meristem. We show on the one hand that light is able to activate expression of the stem cell inducer WUSCHEL independently of photosynthesis and that this likely involves inter-regional cytokinin signaling. Metabolic signals, on the other hand, are transduced to the meristem through activation of the TARGET OF RAPAMYCIN (TOR) kinase. Surprisingly, TOR is also required for light signal dependent stem cell activation. Thus, the TOR kinase acts as a central integrator of light and metabolic signals and a key regulator of stem cell activation at the shoot apex. DOI: http://dx.doi.org/10.7554/eLife.17023.001 PMID:27400267

  18. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem.

    Science.gov (United States)

    Pfeiffer, Anne; Janocha, Denis; Dong, Yihan; Medzihradszky, Anna; Schöne, Stefanie; Daum, Gabor; Suzaki, Takuya; Forner, Joachim; Langenecker, Tobias; Rempel, Eugen; Schmid, Markus; Wirtz, Markus; Hell, Rüdiger; Lohmann, Jan U

    2016-07-11

    A major feature of embryogenesis is the specification of stem cell systems, but in contrast to the situation in most animals, plant stem cells remain quiescent until the postembryonic phase of development. Here, we dissect how light and metabolic signals are integrated to overcome stem cell dormancy at the shoot apical meristem. We show on the one hand that light is able to activate expression of the stem cell inducer WUSCHEL independently of photosynthesis and that this likely involves inter-regional cytokinin signaling. Metabolic signals, on the other hand, are transduced to the meristem through activation of the TARGET OF RAPAMYCIN (TOR) kinase. Surprisingly, TOR is also required for light signal dependent stem cell activation. Thus, the TOR kinase acts as a central integrator of light and metabolic signals and a key regulator of stem cell activation at the shoot apex.

  19. Angiogenic activity of sesamin through the activation of multiple signal pathways

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung-Hee [Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of); Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon (Korea, Republic of); Lee, Jung Joon [Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Kim, Jong-Dai [Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon (Korea, Republic of); Jeoung, Dooil; Lee, Hansoo [Division of Life Sciences, Kangwon National University, Chuncheon (Korea, Republic of); Choe, Jongseon; Ha, Kwon-Soo [Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of); Kwon, Young-Geun [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of)

    2010-01-01

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125{sup FAK}-, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  20. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals.

    Science.gov (United States)

    Altarejos, Judith Y; Montminy, Marc

    2011-03-01

    The cyclic AMP-responsive element-binding protein (CREB) is phosphorylated in response to a wide variety of signals, yet target gene transcription is only increased in a subset of cases. Recent studies indicate that CREB functions in concert with a family of latent cytoplasmic co-activators called cAMP-regulated transcriptional co-activators (CRTCs), which are activated through dephosphorylation. A dual requirement for CREB phosphorylation and CRTC dephosphorylation is likely to explain how these activator-co-activator cognates discriminate between different stimuli. Following their activation, CREB and CRTCs mediate the effects of fasting and feeding signals on the expression of metabolic programmes in insulin-sensitive tissues.

  1. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    OpenAIRE

    2015-01-01

    The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling pathway using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial pr...

  2. Molecular mechanism of cellular reception of ionizing radiation and of activation of signal transduction pathway

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Keiji [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    The author reviewed what in cells receives ionizing radiation as a stress and which signal transduction pathway is activated to induce the stress reaction in the following order: Activation of protein kinase C (PKC) pathway by radiation, activation of MAP kinase superfamily by radiation, induction of p53 function by radiation, and radiation exposure and stress reaction pathway. Conclusion was as follows: Cellular receptors to radiation can be cell membrane and DNA. Membrane reception of radiation induces activation of tyrosine kinase and sphingomyelinase, which resulting in activation of PKC- and MAP kinase-mediated signal transduction. The signal generated in the nucleus participates in regulation of cell cycle and in DNA repair. Therefore, it seems that irradiation of ionizing radiation gives energy to various cellular receptor sites as well as DNA, which generate various independent signals to be transduced and accumulated in the nucleus, and leading to cellular response. (K.H.). 63 refs.

  3. Alternative splicing of MALT1 controls signalling and activation of CD4(+) T cells.

    Science.gov (United States)

    Meininger, Isabel; Griesbach, Richard A; Hu, Desheng; Gehring, Torben; Seeholzer, Thomas; Bertossi, Arianna; Kranich, Jan; Oeckinghaus, Andrea; Eitelhuber, Andrea C; Greczmiel, Ute; Gewies, Andreas; Schmidt-Supprian, Marc; Ruland, Jürgen; Brocker, Thomas; Heissmeyer, Vigo; Heyd, Florian; Krappmann, Daniel

    2016-04-12

    MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity. Naive CD4(+) T cells express almost exclusively MALT1B and MALT1A expression is induced by TCR stimulation. We identify hnRNP U as a suppressor of exon7 inclusion. Whereas selective depletion of MALT1A impairs T-cell signalling and activation, downregulation of hnRNP U enhances MALT1A expression and T-cell activation. Thus, TCR-induced alternative splicing augments MALT1 scaffolding to enhance downstream signalling and to promote optimal T-cell activation.

  4. Signal Modulation of Super Read Only Memory with Thermally Activated Aperture Model

    Science.gov (United States)

    Kim, June Seo; Kwak, Keumcheol; You, Chun-Yeol

    2008-07-01

    We describe the signal modulation of super read only memory (ROM) with thermally activated aperture model using a three-dimensional finite-difference time-domain method. The thermally activated aperture is modeled using a spatially varied refractive indices of the GeSbTe layer. No meaningful signal modulation is observed without thermally activated aperture below the resolution limit of 120 nm. When we open the thermally activated aperture by considering the temperature dependence of the refractive indices in the GeSbTe layer, the 2.8 and 1.7% signal modulations are observed for 120 and 80 nm pits, respectively. The experimentally observed signal modulation under the resolution limit can be explained using the thermally activated aperture model.

  5. Tumor-secreted LOXL2 Activates Fibroblasts Through FAK Signaling

    OpenAIRE

    Barker, Holly E.; Bird, Demelza; Lang, Georgina; Janine T. Erler

    2013-01-01

    Cancer-associated fibroblasts enhance cancer progression when activated by tumor cells through mechanisms not yet fully understood. Blocking mammary tumor cell-derived lysyl oxidase-like 2 (LOXL2) significantly inhibited mammary tumor cell invasion and metastasis in transgenic and orthotopic mouse models. Here we discovered that tumor-derived LOXL2 directly activated stromal fibroblasts in the tumor microenvironment. Genetic manipulation or antibody inhibition of LOXL2 in orthotopically grown...

  6. Pleiotropic patterning response to activation of Shh signaling in the limb apical ectodermal ridge.

    Science.gov (United States)

    Wang, Chi-Kuang Leo; Tsugane, Mizuyo H; Scranton, Victoria; Kosher, Robert A; Pierro, Louis J; Upholt, William B; Dealy, Caroline N

    2011-05-01

    Sonic hedgehog (Shh) signaling in the limb plays a central role in coordination of limb patterning and outgrowth. Shh expression in the limb is limited to the cells of the zone of polarizing activity (ZPA), located in posterior limb bud mesoderm. Shh is not expressed by limb ectoderm or apical ectodermal ridge (AER), but recent studies suggest a role for AER-Shh signaling in limb patterning. Here, we have examined the effects of activation of Shh signaling in the AER. We find that targeted expression of Shh in the AER activates constitutive Shh signaling throughout the AER and subjacent limb mesoderm, and causes a range of limb patterning defects with progressive severity from mild polydactyly, to polysyndactyly with proximal defects, to severe oligodactyly with phocomelia and partial limb ventralization. Our studies emphasize the importance of control of the timing, level and location of Shh pathway signaling for limb anterior-posterior, proximal-distal, and dorsal-ventral patterning.

  7. An Apodized Kepler Periodogram for Separating Planetary and Stellar Activity Signals

    CERN Document Server

    Gregory, Philip C

    2016-01-01

    A new apodized Keplerian (AK) model is proposed for the analysis of precision radial velocity (RV) data to model both planetary and stellar activity (SA) induced RV signals. A symmetrical Gaussian apodization function with unknown width and center can distinguish planetary signals from SA signals on the basis of the span of the apodization window. The general model for $m$ apodized Keplerian signals includes a linear regression term between RV and the stellar activity diagnostic $\\log(R'hk)$, as well as an extra Gaussian noise term with unknown standard deviation. The model parameters are explored using a Bayesian fusion MCMC code. A differential version of the Generalized Lomb-Scargle periodogram that employs a control diagnostic provides an additional way of distinguishing SA signals and helps guide the choice of new periods. Results are reported for a recent international RV blind challenge which included multiple state of the art simulated data sets supported by a variety of stellar activity diagnostics. ...

  8. Discovery of novel small molecule activators of β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Folkert Verkaar

    Full Text Available Wnt/β-catenin signaling plays a major role in embryonic development and adult stem cell maintenance. Reduced activation of the Wnt/β-catenin pathway underlies neurodegenerative disorders and aberrations in bone formation. Screening of a small molecule compound library with a β-galactosidase fragment complementation assay measuring β-catenin nuclear entry revealed bona fide activators of β-catenin signaling. The compounds stabilized cytoplasmic β-catenin and activated β-catenin-dependent reporter gene activity. Although the mechanism through which the compounds activate β-catenin signaling has yet to be determined, several key regulators of Wnt/β-catenin signaling, including glycogen synthase kinase 3 and Frizzled receptors, were excluded as the molecular target. The compounds displayed remarkable selectivity, as they only induced β-catenin signaling in a human osteosarcoma U2OS cell line and not in a variety of other cell lines examined. Our data indicate that differences in cellular Wnt/β-catenin signaling machinery can be exploited to identify cell type-specific activators of Wnt/β-catenin signaling.

  9. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis.

    Science.gov (United States)

    Hayashi, Hisaki; Al Mamun, Abdullah; Sakima, Miho; Sato, Motohiko

    2016-03-15

    Activator of G-protein signaling 8 (AGS8, also known as FNDC1) is a receptor-independent accessory protein for the Gβγ subunit, which was isolated from rat heart subjected to repetitive transient ischemia with the substantial development of collaterals. Here, we report the role of AGS8 in vessel formation by endothelial cells. Knockdown of AGS8 by small interfering RNA (siRNA) inhibited vascular endothelial growth factor (VEGF)-induced tube formation, as well as VEGF-stimulated cell growth and migration. VEGF stimulated the phosphorylation of the VEGF receptor-2 (VEGFR-2, also known as KDR), ERK1/2 and p38 MAPK; however, knockdown of AGS8 inhibited these signaling events. Signal alterations by AGS8 siRNA were associated with a decrease of cell surface VEGFR-2 and an increase of VEGFR-2 in the cytosol. Endocytosis blockers did not influence the decrease of VEGFR-2 by AGS8 siRNA, suggesting the involvement of AGS8 in VEGFR-2 trafficking to the plasma membrane. VEGFR-2 formed a complex with AGS8 in cells, and a peptide designed to disrupt AGS8-Gβγ interaction inhibited VEGF-induced tube formation. These data suggest a potential role for AGS8-Gβγ in VEGF signal processing. AGS8 might play a key role in tissue adaptation by regulating angiogenic events.

  10. Remote activation of the Wnt/β-catenin signalling pathway using functionalised magnetic particles.

    Science.gov (United States)

    Rotherham, Michael; El Haj, Alicia J

    2015-01-01

    Wnt signalling pathways play crucial roles in developmental biology, stem cell fate and tissue patterning and have become an attractive therapeutic target in the fields of tissue engineering and regenerative medicine. Wnt signalling has also been shown to play a role in human Mesenchymal Stem Cell (hMSC) fate, which have shown potential as a cell therapy in bone and cartilage tissue engineering. Previous work has shown that biocompatible magnetic nanoparticles (MNP) can be used to stimulate specific mechanosensitive membrane receptors and ion channels in vitro and in vivo. Using this strategy, we determined the effects of mechano-stimulation of the Wnt Frizzled receptor on Wnt pathway activation in hMSC. Frizzled receptors were tagged using anti-Frizzled functionalised MNP (Fz-MNP). A commercially available oscillating magnetic bioreactor (MICA Biosystems) was used to mechanically stimulate Frizzled receptors remotely. Our results demonstrate that Fz-MNP can activate Wnt/β-catenin signalling at key checkpoints in the signalling pathway. Immunocytochemistry indicated nuclear localisation of the Wnt intracellular messenger β-catenin after treatment with Fz-MNP. A Wnt signalling TCF/LEF responsive luciferase reporter transfected into hMSC was used to assess terminal signal activation at the nucleus. We observed an increase in reporter activity after treatment with Fz-MNP and this effect was enhanced after mechano-stimulation using the magnetic array. Western blot analysis was used to probe the mechanism of signalling activation and indicated that Fz-MNP signal through an LRP independent mechanism. Finally, the gene expression profiles of stress response genes were found to be similar when cells were treated with recombinant Wnt-3A or Fz-MNP. This study provides proof of principle that Wnt signalling and Frizzled receptors are mechanosensitive and can be remotely activated in vitro. Using magnetic nanoparticle technology it may be possible to modulate Wnt signalling

  11. Remote activation of the Wnt/β-catenin signalling pathway using functionalised magnetic particles.

    Directory of Open Access Journals (Sweden)

    Michael Rotherham

    Full Text Available Wnt signalling pathways play crucial roles in developmental biology, stem cell fate and tissue patterning and have become an attractive therapeutic target in the fields of tissue engineering and regenerative medicine. Wnt signalling has also been shown to play a role in human Mesenchymal Stem Cell (hMSC fate, which have shown potential as a cell therapy in bone and cartilage tissue engineering. Previous work has shown that biocompatible magnetic nanoparticles (MNP can be used to stimulate specific mechanosensitive membrane receptors and ion channels in vitro and in vivo. Using this strategy, we determined the effects of mechano-stimulation of the Wnt Frizzled receptor on Wnt pathway activation in hMSC. Frizzled receptors were tagged using anti-Frizzled functionalised MNP (Fz-MNP. A commercially available oscillating magnetic bioreactor (MICA Biosystems was used to mechanically stimulate Frizzled receptors remotely. Our results demonstrate that Fz-MNP can activate Wnt/β-catenin signalling at key checkpoints in the signalling pathway. Immunocytochemistry indicated nuclear localisation of the Wnt intracellular messenger β-catenin after treatment with Fz-MNP. A Wnt signalling TCF/LEF responsive luciferase reporter transfected into hMSC was used to assess terminal signal activation at the nucleus. We observed an increase in reporter activity after treatment with Fz-MNP and this effect was enhanced after mechano-stimulation using the magnetic array. Western blot analysis was used to probe the mechanism of signalling activation and indicated that Fz-MNP signal through an LRP independent mechanism. Finally, the gene expression profiles of stress response genes were found to be similar when cells were treated with recombinant Wnt-3A or Fz-MNP. This study provides proof of principle that Wnt signalling and Frizzled receptors are mechanosensitive and can be remotely activated in vitro. Using magnetic nanoparticle technology it may be possible to modulate

  12. Initial results of bio-potential signal (Seismic Electric Signal) related to seismic activities

    Science.gov (United States)

    Kushwah, Vinod; Tiwari, Rudraksh; Gaur, Mulayam; Tiwari, Rajeev

    2013-08-01

    In recent year, there has been growing interest in the possible use of electromagnetic observations to study earthquakes and possible precursors prior to seismic activity, in response to the success in United States, Japan, Russia, China, and other countries using seismo-electromagnetic methods. We have established a new experimental setup (i.e., biopotential sensor) in Farah region (geographic coordinates: 27.17°N, 77.47°E), Mathura, India. The setup has started operating and analyzed the data since November 2011. The data have been tested by various methods and a good correlation with seismic events was found; thus, a real-time analysis from 21:00 p.m. through 8:00 a.m. every day was initiated. First, we recorded the amplitude enhancement in bio-potential and found positive correlation with seismic activities (near Delhi and Rajasthan) and analyzed the data with solar flares and magnetic storms during the same period, finding a negative correlation of these events. The studies of these events are in progress with statistical analysis of the data. We chose the observing site in Farah region because this region is well known for being a site of a conductive channel of seismic activity.

  13. Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets.

    Science.gov (United States)

    Khan, A M; Lee, Y K; Kim, T S

    2008-01-01

    Automatic recognition of human activities is one of the important and challenging research areas in proactive and ubiquitous computing. In this work, we present some preliminary results of recognizing human activities using augmented features extracted from the activity signals measured using a single triaxial accelerometer sensor and artificial neural nets. The features include autoregressive (AR) modeling coefficients of activity signals, signal magnitude areas (SMA), and title angles (TA). We have recognized four human activities using AR coefficients (ARC) only, ARC with SMA, and ARC with SMA and TA. With the last augmented features, we have achieved the recognition rate above 99% for all four activities including lying, standing, walking, and running. With our proposed technique, real time recognition of some human activities is possible.

  14. Evaluation of the effect of signalment and body conformation on activity monitoring in companion dogs.

    Science.gov (United States)

    Brown, Dorothy Cimino; Michel, Kathryn E; Love, Molly; Dow, Caitlin

    2010-03-01

    To evaluate the effect of signalment and body conformation on activity monitoring in companion dogs. 104 companion dogs. While wearing an activity monitor, each dog was led through a series of standard activities: lying down, walking laps, trotting laps, and trotting up and down stairs. Linear regression analysis was used to determine which signalment and body conformation factors were associated with activity counts. There was no significant effect of signalment or body conformation on activity counts when dogs were lying down, walking laps, and trotting laps. However, when dogs were trotting up and down stairs, there was a significant effect of age and body weight such that, for every 1-kg increase in body weight, there was a 1.7% (95% confidence interval, 1.1% to 2.4%) decrease in activity counts and for every 1-year increase in age, there was a 4.2% (95% confidence interval, 1.4% to 6.9%) decrease in activity counts. When activity was well controlled, there was no significant effect of signalment or body conformation on activity counts recorded by the activity monitor. However, when activity was less controlled, older dogs and larger dogs had lower activity counts than younger and smaller dogs. The wide range in body conformation (eg, limb or body length) among dogs did not appear to significantly impact the activity counts recorded by the monitor, but age and body weight did and must be considered in analysis of data collected from the monitors.

  15. Body morphology, energy stores, and muscle enzyme activity explain cricket acoustic mate attraction signaling variation.

    Directory of Open Access Journals (Sweden)

    Ian R Thomson

    Full Text Available High mating success in animals is often dependent on males signalling attractively with high effort. Since males should be selected to maximize their reproductive success, female preferences for these traits should result in minimal signal variation persisting in the population. However, extensive signal variation persists. The genic capture hypothesis proposes genetic variation persists because fitness-conferring traits depend on an individual's basic processes, including underlying physiological, morphological, and biochemical traits, which are themselves genetically variable. To explore the traits underlying signal variation, we quantified among-male differences in signalling, morphology, energy stores, and the activities of key enzymes associated with signalling muscle metabolism in two species of crickets, Gryllus assimilis (chirper: 20 pulses/chirp. Chirping G. assimilis primarily fuelled signalling with carbohydrate metabolism: smaller individuals and individuals with increased thoracic glycogen stores signalled for mates with greater effort; individuals with greater glycogen phosphorylase activity produced more attractive mating signals. Conversely, the more energetic trilling G. texensis fuelled signalling with both lipid and carbohydrate metabolism: individuals with increased β-hydroxyacyl-CoA dehydrogenase activity and increased thoracic free carbohydrate content signalled for mates with greater effort; individuals with higher thoracic and abdominal carbohydrate content and higher abdominal lipid stores produced more attractive signals. Our findings suggest variation in male reproductive success may be driven by hidden physiological trade-offs that affect the ability to uptake, retain, and use essential nutrients, although the results remain correlational in nature. Our findings indicate that a physiological perspective may help us to understand some of the causes of variation in behaviour.

  16. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    Science.gov (United States)

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis.

  17. Notch2 signaling promotes osteoclast resorption via activation of PYK2.

    Science.gov (United States)

    Jin, Won Jong; Kim, Bongjun; Kim, Jung-Wook; Kim, Hong-Hee; Ha, Hyunil; Lee, Zang Hee

    2016-05-01

    Notch signaling plays a central role in various cell fate decisions, including skeletal development. Recently, Notch signaling was implicated in osteoclast differentiation and maturation, including the resorption activity of osteoclasts. However, the specific involvement of notch signaling in resorption activity was not fully investigated. Here, we investigated the roles of Notch signaling in the resorption activity of osteoclasts by use of the gamma-secretase inhibitor dibenzazepine (DBZ). Attenuating Notch signaling by DBZ suppressed the expression of NFATc1, a master transcription factor for osteoclast differentiation. However, overexpression of a constitutively active form of NFATc1 did not fully rescue the effects of DBZ. DBZ suppressed the autophosphorylation of PYK2, which is essential for the formation of the podosome belt and sealing zone, with reduced c-Src/PYK2 interaction. We found that RANKL increases PYK2 activation accompanied by increased NICD2 production in osteoclasts. Overexpression of NICD2 in osteoclasts rescued DBZ-mediated suppression of resorption activity with promotion of PYK2 autophosphorylation and microtubule acetylation. Consistent with the in vitro results, DBZ strongly suppressed bone destruction in an interleukin-1-induced bone loss model. Collectively, these results demonstrate that Notch2 in osteoclasts plays a role in the control of resorption activity via the PYK2-c-Src-microtubule signaling pathway.

  18. Danger signals activating innate immunity in graft-versus-host disease.

    Science.gov (United States)

    Zeiser, Robert; Penack, Olaf; Holler, Ernst; Idzko, Marco

    2011-09-01

    Extensive cell death with consecutive release of danger signals can cause immune-mediated tissue destruction. The abundance of cell death is likely to determine the relevance of the danger signals as physiological mechanisms that counteract immune activation may be overruled. Such constellation is conceivable in chemo-/radiotherapy-induced tissue damage, reperfusion injury, trauma, and severe infection. Studies on graft-versus-host disease (GvHD) development have to consider the effects of chemo-/radiotherapy-related tissue damage leading to the release of exogenous and endogenous danger signals. Our previous work has demonstrated a role for adenosine-5'-triphosphate (ATP) as an endogenous danger signal in GvHD. Besides ATP, uric acid or soluble extracellular matrix components are functional danger signals that activate the NLRP3 inflammasome when released from dying cells or from extracellular matrix. In contrast to sterile inflammation, GvHD is more complex since bacterial components that leak through damaged intestinal barriers and the skin can activate pattern recognition receptors and directly contribute to GvHD pathogenesis. These exogenous danger signals transmit immune activation via toll-like receptors and NOD-like receptors of the innate immune system. This review covers both the impact of endogenous and exogenous danger signals activating innate immunity in GvHD.

  19. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Yao, Shen; Qiao, Rui-Fang; Levine, Alice C. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Kirschenbaum, Alexander [Department of Urology, Mount Sinai School of Medicine, New York, NY 10029 (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Qin, Weiping [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Cardozo, Christopher P., E-mail: chris.cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  20. Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome.

    Science.gov (United States)

    Meininger, Isabel; Krappmann, Daniel

    2016-12-01

    The CARMA1-BCL10-MALT1 (CBM) signalosome triggers canonical NF-κB signaling and lymphocyte activation upon antigen-receptor stimulation. Genetic studies in mice and the analysis of human immune pathologies unveiled a critical role of the CBM complex in adaptive immune responses. Great progress has been made in elucidating the fundamental mechanisms that dictate CBM assembly and disassembly. By bridging proximal antigen-receptor signaling to downstream signaling pathways, the CBM complex exerts a crucial scaffolding function. Moreover, the MALT1 subunit confers a unique proteolytic activity that is key for lymphocyte activation. Deregulated 'chronic' CBM signaling drives constitutive NF-κB signaling and MALT1 activation, which contribute to the development of autoimmune and inflammatory diseases as well as lymphomagenesis. Thus, the processes that govern CBM activation and function are promising targets for the treatment of immune disorders. Here, we summarize the current knowledge on the functions and mechanisms of CBM signaling in lymphocytes and how CBM deregulations contribute to aberrant signaling in malignant lymphomas.

  1. Arginase in Parasitic Infections: Macrophage Activation, Immunosuppression, and Intracellular Signals

    Directory of Open Access Journals (Sweden)

    Cinthia C. Stempin

    2010-01-01

    Full Text Available A type 1 cytokine-dependent proinflammatory response inducing classically activated macrophages (CaMϕs is crucial for parasite control during protozoan infections but can also contribute to the development of immunopathological disease symptoms. Type 2 cytokines such as IL-4 and IL-13 antagonize CaMϕs inducing alternatively activated macrophages (AaMϕs that upregulate arginase-1 expression. During several infections, induction of arginase-1-macrophages was showed to have a detrimental role by limiting CaMϕ-dependent parasite clearance and promoting parasite proliferation. Additionally, the role of arginase-1 in T cell suppression has been explored recently. Arginase-1 can also be induced by IL-10 and transforming growth factor-β (TGF-β or even directly by parasites or parasite components. Therefore, generation of alternative activation states of macrophages could limit collateral tissue damage because of excessive type 1 inflammation. However, they affect disease outcome by promoting parasite survival and proliferation. Thus, modulation of macrophage activation may be instrumental in allowing parasite persistence and long-term host survival.

  2. Bi-Static Active Microwave Remote Sensing of Reflected Signals-of-Opportunity Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate the use of these so-called signals-of-opportunity (SOP) to perform bi-static active microwave remote sensing of land surfaces. Specially,...

  3. Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Kandemir, Melih; Saarinen, Veli-Matti; Hirvenkari, Lotta; Parkkonen, Lauri; Klami, Arto; Hari, Riitta; Kaski, Samuel

    2015-05-15

    We hypothesize that brain activity can be used to control future information retrieval systems. To this end, we conducted a feasibility study on predicting the relevance of visual objects from brain activity. We analyze both magnetoencephalographic (MEG) and gaze signals from nine subjects who were viewing image collages, a subset of which was relevant to a predetermined task. We report three findings: i) the relevance of an image a subject looks at can be decoded from MEG signals with performance significantly better than chance, ii) fusion of gaze-based and MEG-based classifiers significantly improves the prediction performance compared to using either signal alone, and iii) non-linear classification of the MEG signals using Gaussian process classifiers outperforms linear classification. These findings break new ground for building brain-activity-based interactive image retrieval systems, as well as for systems utilizing feedback both from brain activity and eye movements.

  4. Activation of nuclear factor-kappa B signalling promotes cellular senescence

    NARCIS (Netherlands)

    Rovillain, E.; Mansfield, L.; Caetano, C.; Alvarez-Fernandez, M.; Caballero, O. L.; Medema, R. H.; Hummerich, H.; Jat, P. S.

    Cellular senescence is a programme of irreversible cell cycle arrest that normal cells undergo in response to progressive shortening of telomeres, changes in telomeric structure, oncogene activation or oxidative stress. The underlying signalling pathways, of major clinicopathological relevance, are

  5. Activation of nuclear factor-kappa B signalling promotes cellular senescence

    NARCIS (Netherlands)

    Rovillain, E.; Mansfield, L.; Caetano, C.; Alvarez-Fernandez, M.; Caballero, O. L.; Medema, R. H.; Hummerich, H.; Jat, P. S.

    2011-01-01

    Cellular senescence is a programme of irreversible cell cycle arrest that normal cells undergo in response to progressive shortening of telomeres, changes in telomeric structure, oncogene activation or oxidative stress. The underlying signalling pathways, of major clinicopathological relevance, are

  6. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways.

    Science.gov (United States)

    Huang, Shurong; Rutkowsky, Jennifer M; Snodgrass, Ryan G; Ono-Moore, Kikumi D; Schneider, Dina A; Newman, John W; Adams, Sean H; Hwang, Daniel H

    2012-09-01

    Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for solubilizing fatty acids. This report raised doubt about proinflammatory effects of SFAs. Our studies herein demonstrate that sodium palmitate (C16:0) or laurate (C12:0) without BSA solubilization induced phosphorylation of inhibitor of nuclear factor-κB α, c-Jun N-terminal kinase (JNK), p44/42 mitogen-activated-kinase (ERK), and nuclear factor-κB subunit p65, and TLR target gene expression in THP1 monocytes or RAW264.7 macrophages, respectively, when cultured in low FBS (0.25%) medium. C12:0 induced NFκB activation through TLR2 dimerized with TLR1 or TLR6, and through TLR4. Because BSA was not used in these experiments, contaminants in BSA have no relevance. Unlike in suspension cells (THP-1), BSA-solubilized C16:0 instead of sodium C16:0 is required to induce TLR target gene expression in adherent cells (RAW264.7). C16:0-BSA transactivated TLR2 dimerized with TLR1 or TLR6 and through TLR4 as seen with C12:0. These results and additional studies with the LPS sequester polymixin B and in MyD88(-/-) macrophages indicated that SFA-induced activation of TLR2 or TLR4 is a fatty acid-specific effect, but not due to contaminants in BSA or fatty acid preparations.

  7. Transient epileptiform signaling during neuronal network development: regulation by external stimulation and bimodal GABAergic activity.

    Science.gov (United States)

    Zemianek, Jill M; Shultz, Abraham M; Lee, Sangmook; Guaraldi, Mary; Yanco, Holly A; Shea, Thomas B

    2013-04-01

    A predominance of excitatory activity, with protracted appearance of inhibitory activity, accompanies cortical neuronal development. It is unclear whether or not inhibitory neuronal activity is solicited exclusively by excitatory neurons or whether the transient excitatory activity displayed by developing GABAergic neurons contributes to an excitatory threshold that fosters their conversion to inhibitory activity. We addressed this possibility by culturing murine embryonic neurons on multi-electrode arrays. A wave of individual 0.2-0.4 mV signals ("spikes") appeared between approx. 20-30 days in culture, then declined. A transient wave of high amplitude (>0.5 mV) epileptiform activity coincided with the developmental decline in spikes. Bursts (clusters of ≥3 low-amplitude spikes within 0.7s prior to returning to baseline) persisted following this decline. Addition of the GABAergic antagonist bicuculline initially had no effect on signaling, consistent with delayed development of GABAergic synapses. This was followed by a period in which bicuculline inhibited overall signaling, confirming that GABAergic neurons initially display excitatory activity in ex vivo networks. Following the transient developmental wave of epileptiform signaling, bicuculline induced a resurgence of epileptiform signaling, indicating that GABAergic neurons at this point displayed inhibitory activity. The appearance of transition after the developmental and decline of epileptiform activity, rather than immediately after the developmental decline in lower-amplitude spikes, suggests that the initial excitatory activity of GABAergic neurons contributes to their transition into inhibitory neurons, and that inhibitory GABAergic activity is essential for network development. Prior studies indicate that a minority (25%) of neurons in these cultures were GABAergic, suggesting that inhibitory neurons regulate multiple excitatory neurons. A similar robust increase in signaling following cessation of

  8. Activation of MyD88 Signaling upon Staphylococcal Enterotoxin Binding to MHC Class II Molecules

    Science.gov (United States)

    2011-01-20

    Activation of MyD88 Signaling upon Staphylococcal Enterotoxin Binding to MHC Class II Molecules Teri L. Kissner, Gordon Ruthel, Shahabuddin Alam...mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which...upon Staphylococcal Enterotoxin Binding to MHC Class II Molecules. PLoS ONE 6(1): e15985. doi:10.1371/journal.pone.0015985 Editor: Jacques Zimmer

  9. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations.

    Directory of Open Access Journals (Sweden)

    Cameron Brennan

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is an umbrella designation that includes a heterogeneous group of primary brain tumors. Several classification strategies of GBM have been reported, some by clinical course and others by resemblance to cell types either in the adult or during development. From a practical and therapeutic standpoint, classifying GBMs by signal transduction pathway activation and by mutation in pathway member genes may be particularly valuable for the development of targeted therapies. METHODOLOGY/PRINCIPAL FINDINGS: We performed targeted proteomic analysis of 27 surgical glioma samples to identify patterns of coordinate activation among glioma-relevant signal transduction pathways, then compared these results with integrated analysis of genomic and expression data of 243 GBM samples from The Cancer Genome Atlas (TCGA. In the pattern of signaling, three subclasses of GBM emerge which appear to be associated with predominance of EGFR activation, PDGFR activation, or loss of the RAS regulator NF1. The EGFR signaling class has prominent Notch pathway activation measured by elevated expression of Notch ligands, cleaved Notch receptor, and downstream target Hes1. The PDGF class showed high levels of PDGFB ligand and phosphorylation of PDGFRbeta and NFKB. NF1-loss was associated with lower overall MAPK and PI3K activation and relative overexpression of the mesenchymal marker YKL40. These three signaling classes appear to correspond with distinct transcriptomal subclasses of primary GBM samples from TCGA for which copy number aberration and mutation of EGFR, PDGFRA, and NF1 are signature events. CONCLUSIONS/SIGNIFICANCE: Proteomic analysis of GBM samples revealed three patterns of expression and activation of proteins in glioma-relevant signaling pathways. These three classes are comprised of roughly equal numbers showing either EGFR activation associated with amplification and mutation of the receptor, PDGF-pathway activation

  10. Enhanced Multistatic Active Sonar via Innovative Signal Processing

    Science.gov (United States)

    2014-09-30

    detection line. This is due to the ridge induced range-Doppler ambiguity associated with the Doppler- tolerant LFM waveforms, as the same target is...PAS) and continuous active sonar (CAS) in the presence of strong direct blast are studied for the Doppler- tolerant linear frequency modulation...and limitations of PAS and CAS, as well as Doppler- tolerant and Doppler- sensitive waveforms in the presence of a strong delay and Doppler-spread

  11. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling.

    Science.gov (United States)

    Blumer, Joe B; Smrcka, Alan V; Lanier, Stephen M

    2007-03-01

    Signal processing via heterotrimeric G-proteins in response to cell surface receptors is a central and much investigated aspect of how cells integrate cellular stimuli to produce coordinated biological responses. The system is a target of numerous therapeutic agents and plays an important role in adaptive processes of organs; aberrant processing of signals through these transducing systems is a component of various disease states. In addition to G-protein coupled receptor (GPCR)-mediated activation of G-protein signaling, nature has evolved creative ways to manipulate and utilize the Galphabetagamma heterotrimer or Galpha and Gbetagamma subunits independent of the cell surface receptor stimuli. In such situations, the G-protein subunits (Galpha and Gbetagamma) may actually be complexed with alternative binding partners independent of the typical heterotrimeric Galphabetagamma. Such regulatory accessory proteins include the family of regulator of G-protein signaling (RGS) proteins that accelerate the GTPase activity of Galpha and various entities that influence nucleotide binding properties and/or subunit interaction. The latter group of proteins includes receptor-independent activators of G-protein signaling (AGS) proteins that play surprising roles in signal processing. This review provides an overview of our current knowledge regarding AGS proteins. AGS proteins are indicative of a growing number of accessory proteins that influence signal propagation, facilitate cross talk between various types of signaling pathways, and provide a platform for diverse functions of both the heterotrimeric Galphabetagamma and the individual Galpha and Gbetagamma subunits.

  12. Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes.

    Science.gov (United States)

    Rock, Jeremy M; Lim, Daniel; Stach, Lasse; Ogrodowicz, Roksana W; Keck, Jamie M; Jones, Michele H; Wong, Catherine C L; Yates, John R; Winey, Mark; Smerdon, Stephen J; Yaffe, Michael B; Amon, Angelika

    2013-05-17

    Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.

  13. Active transport improves the precision of linear long distance molecular signalling

    Science.gov (United States)

    Godec, Aljaž; Metzler, Ralf

    2016-09-01

    Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficial when trafficking occurs over large distances, for instance up to the order of 1 metre in neurons. Here we explain how intermittent active transport allows for faster equilibration upon a change in concentration triggered by biochemical stimuli. Moreover, we show how intermittent active excursions induce qualitative changes in the noise in effectively one-dimensional systems such as dendrites. Thereby they allow for significantly improved signalling precision in the sense of a smaller relative deviation in the concentration read-out by the receptor. On the basis of linear response theory we derive the exact mean field precision limit for counting actively transported molecules. We explain how intermittent active excursions disrupt the recurrence in the molecular motion, thereby facilitating improved signalling accuracy. Our results provide a deeper understanding of how recurrence affects molecular signalling precision in biological cells and novel medical-diagnostic devices.

  14. Luminance and chromatic signals interact differently with melanopsin activation to control the pupil light response.

    Science.gov (United States)

    Barrionuevo, Pablo A; Cao, Dingcai

    2016-09-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin. These cells receive afferent inputs from rods and cones, which provide inputs to the postreceptoral visual pathways. It is unknown, however, how melanopsin activation is integrated with postreceptoral signals to control the pupillary light reflex. This study reports human flicker pupillary responses measured using stimuli generated with a five-primary photostimulator that selectively modulated melanopsin, rod, S-, M-, and L-cone excitations in isolation, or in combination to produce postreceptoral signals. We first analyzed the light adaptation behavior of melanopsin activation and rod and cones signals. Second, we determined how melanopsin is integrated with postreceptoral signals by testing with cone luminance, chromatic blue-yellow, and chromatic red-green stimuli that were processed by magnocellular (MC), koniocellular (KC), and parvocellular (PC) pathways, respectively. A combined rod and melanopsin response was also measured. The relative phase of the postreceptoral signals was varied with respect to the melanopsin phase. The results showed that light adaptation behavior for all conditions was weaker than typical Weber adaptation. Melanopsin activation combined linearly with luminance, S-cone, and rod inputs, suggesting the locus of integration with MC and KC signals was retinal. The melanopsin contribution to phasic pupil responses was lower than luminance contributions, but much higher than S-cone contributions. Chromatic red-green modulation interacted with melanopsin activation nonlinearly as described by a "winner-takes-all" process, suggesting the integration with PC signals might be mediated by a postretinal site.

  15. Microglial Immunoreceptor Tyrosine-Based Activation and Inhibition Motif Signaling in Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Bettina Linnartz

    2010-01-01

    Full Text Available Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM- Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2, signal regulatory protein-1, and complement receptor-3 (CD11b/CD18 signal via the adaptor protein DAP12 and activate phagocytic activity of microglia. Microglial ITAM-signaling receptors are counter-regulated by immunoreceptor tyrosine-based inhibition motif- (ITIM- signaling molecules such as sialic acid-binding immunoglobulin superfamily lectins (Siglecs. Siglecs can suppress the proinflammatory and phagocytic activity of microglia via ITIM signaling. Moreover, microglial neurotoxicity is alleviated via interaction of Siglec-11 with sialic acids on the neuronal glycocalyx. Thus, ITAM- and ITIM-signaling receptors modulate microglial phagocytosis and cytokine expression during neuroinflammatory processes. Their dysfunction could lead to impaired phagocytic clearance and neurodegeneration triggered by chronic inflammation.

  16. Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila.

    Science.gov (United States)

    Lee, Kyu-Sun; Choi, Jong-Soon; Hong, Sae-Yong; Son, Tae-Ho; Yu, Kweon

    2008-07-01

    Mobile phones are widely used in the modern world. However, biological effects of electromagnetic radiation produced by mobile phones are largely unknown. In this report, we show biological effects of the mobile phone 835 MHz electromagnetic field (EMF) in the Drosophila model system. When flies were exposed to the specific absorption rate (SAR) 1.6 W/kg, which is the proposed exposure limit by the American National Standards Institute (ANSI), more than 90% of the flies were viable even after the 30 h exposure. However, in the SAR 4.0 W/kg strong EMF exposure, viability dropped from the 12 h exposure. These EMF exposures triggered stress response and increased the production of reactive oxygen species. The EMF exposures also activated extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling, but not p38 kinase signaling. Interestingly, SAR 1.6 W/kg activated mainly ERK signaling and expression of an anti-apoptotic gene, whereas SAR 4.0 W/kg strongly activated JNK signaling and expression of apoptotic genes. In addition, SAR 4.0 W/kg amplified the number of apoptotic cells in the fly brain. These findings demonstrate that the exposure limit on electromagnetic radiation proposed by ANSI triggered ERK-survival signaling but the strong electromagnetic radiation activated JNK-apoptotic signaling in Drosophila.

  17. Active control of shocks and sonic boom ground signal

    Science.gov (United States)

    Yagiz, Bedri

    The manipulation of a flow field to obtain a desired change is a much heightened subject. Active flow control has been the subject of the major research areas in fluid mechanics for the past two decades. It offers new solutions for mitigation of shock strength, sonic boom alleviation, drag minimization, reducing blade-vortex interaction noise in helicopters, stall control and the performance maximization of existing designs to meet the increasing requirements of the aircraft industries. Despite the wide variety of the potential applications of active flow control, the majority of studies have been performed at subsonic speeds. The active flow control cases were investigated in transonic speed in this study. Although the active flow control provides significant improvements, the sensibility of aerodynamic performance to design parameters makes it a nontrivial and expensive problem, so the designer has to optimize a number of different parameters. For the purpose of gaining understanding of the active flow control concepts, an automated optimization cycle process was generated. Also, the optimization cycle reduces cost and turnaround time. The mass flow coefficient, location, width and angle were chosen as design parameters to maximize the aerodynamic performance of an aircraft. As the main contribution of this study, a detailed parametric study and optimization process were presented. The second step is to appraise the practicability of weakening the shock wave and thereby reducing the wave drag in transonic flight regime using flow control devices such as two dimensional contour bump, individual jet actuator, and also the hybrid control which includes both control devices together, thereby gaining the desired improvements in aerodynamic performance of the air-vehicle. After this study, to improve the aerodynamic performance, the flow control and shape parameters are optimized separately, combined, and in a serial combination. The remarkable part of all these

  18. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling

    DEFF Research Database (Denmark)

    Barker, Holly E; Bird, Demelza; Lang, Georgina

    2013-01-01

    models. Here, we discovered that tumor-derived LOXL2 directly activated stromal fibroblasts in the tumor microenvironment. Genetic manipulation or antibody inhibition of LOXL2 in orthotopically grown mammary tumors reduced the expression of α-smooth muscle actin (α-SMA). Using a marker for reticular...... fibroblasts, it was determined that expression of α-SMA was localized to fibroblasts recruited from the host tissue. This marker also revealed that the matrix present in tumors with reduced levels of LOXL2 was more scattered compared with control tumors which exhibited matrices with dense, parallel alignments....... Importantly, in vitro assays revealed that tumor-derived LOXL2 and a recombinant LOXL2 protein induced fibroblast branching on collagen matrices, as well as increased fibroblast-mediated collagen contraction and invasion of fibroblasts through extracellular matrix. Moreover, LOXL2 induced the expression of α-SMA...

  19. An Efficient Method to Identify Conditionally Activated Transcription Factors and their Corresponding Signal Transduction Pathway Segments

    Directory of Open Access Journals (Sweden)

    Haiyan Hu

    2009-11-01

    Full Text Available A signal transduction pathway (STP is a cascade composed of a series of signal transferring steps, which often activate one or more transcription factors (TFs to control the transcription of target genes. Understanding signaling pathways is important to our understanding of the molecular mechanisms of disease. Many condition-annotated pathways have been deposited in public databases. However, condition-annotated pathways are far from complete, considering the large number of possible conditions. Computational methods to assist in the identification of conditionally activated pathways are greatly needed. In this paper, we propose an efficient method to identify conditionally activated pathway segments starting from the identification of conditionally activated TFs, by incorporating protein-DNA binding data, gene expression data and protein interaction data. Applying our methods on several microarray datasets, we have discovered many significantly activated TFs and their corresponding pathway segments, which are supported by evidence in the literature.

  20. RKIP regulates MAP kinase signaling in cells with defective B-Raf activity.

    Science.gov (United States)

    Zeng, Lingchun; Ehrenreiter, Karin; Menon, Jyotsana; Menard, Ray; Kern, Florian; Nakazawa, Yoko; Bevilacqua, Elena; Imamoto, Akira; Baccarini, Manuela; Rosner, Marsha Rich

    2013-05-01

    MAP kinase (MAPK) signaling results from activation of Raf kinases in response to external or internal stimuli. Here, we demonstrate that Raf kinase inhibitory protein (RKIP) regulates the activation of MAPK when B-Raf signaling is defective. We used multiple models including mouse embryonic fibroblasts (MEFs) and primary keratinocytes from RKIP- or Raf-deficient mice as well as allografts in mice to investigate the mechanism. Loss of B-Raf protein or activity significantly reduces MAPK activation in these cells. We show that RKIP depletion can rescue the compromised ERK activation and promote proliferation, and this rescue occurs through a Raf-1 dependent mechanism. These results provide formal evidence that RKIP is a bona fide regulator of Raf-1. We propose a new model in which RKIP plays a key role in regulating the ability of cells to signal through Raf-1 to ERK in B-Raf compromised cells.

  1. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yoshikazu [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Itoh, Tohru, E-mail: itohru@iam.u-tokyo.ac.jp [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Miyajima, Atsushi [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2009-09-10

    Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk{sup +} hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk{sup +} hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk{sup +} hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.

  2. Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy

    Science.gov (United States)

    Nakhaei-Rad, Saeideh; Montenegro-Venegas, Carolina; Pina-Fernández, Eneko; Marini, Claudia; Santos, Monica; Ahmadian, Mohammad R.; Stork, Oliver; Zenker, Martin

    2017-01-01

    Noonan syndrome (NS) is characterized by reduced growth, craniofacial abnormalities, congenital heart defects, and variable cognitive deficits. NS belongs to the RASopathies, genetic conditions linked to mutations in components and regulators of the Ras signaling pathway. Approximately 50% of NS cases are caused by mutations in PTPN11. However, the molecular mechanisms underlying cognitive impairments in NS patients are still poorly understood. Here, we report the generation and characterization of a new conditional mouse strain that expresses the overactive Ptpn11D61Y allele only in the forebrain. Unlike mice with a global expression of this mutation, this strain is viable and without severe systemic phenotype, but shows lower exploratory activity and reduced memory specificity, which is in line with a causal role of disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive deficits. To explore the underlying mechanisms we investigated the neuronal activity-regulated Ras signaling in brains and neuronal cultures derived from this model. We observed an altered surface expression and trafficking of synaptic glutamate receptors, which are crucial for hippocampal neuronal plasticity. Furthermore, we show that the neuronal activity-induced ERK signaling, as well as the consecutive regulation of gene expression are strongly perturbed. Microarray-based hippocampal gene expression profiling revealed profound differences in the basal state and upon stimulation of neuronal activity. The neuronal activity-dependent gene regulation was strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional networks revealed changes in the cellular signaling beyond the dysregulation of Ras/MAPK signaling that is nearly exclusively discussed in the context of NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling were experimentally confirmed. In summary, this study uncovers aberrant neuronal activity-induced signaling and regulation

  3. Pterygium epithelium abnormal differentiation related to activation of extracellular signal-regulated kinase signaling pathway in vitro

    Directory of Open Access Journals (Sweden)

    Juan Peng

    2015-12-01

    Full Text Available AIM: To investigate whether the abnormal differentiation of the pterygium epithelium is related to the extracellular signal-regulated kinase (ERK signaling pathway in vitro. METHODS: The expression levels of phosphorylated ERK (P-ERK, keratin family members including K19 and K10 and the ocular master control gene Pax-6 were measured in 16 surgically excised pterygium tissues and 12 eye bank conjunctiva. In colony-forming cell assays, the differences in clone morphology and in K10, K19, P-ERK and Pax-6 expression between the head and body were investigated. When cocultured with the ERK signaling pathway inhibitor PD98059, the changes in clone morphology, colony-forming efficiency, differentiated marker K10, K19 and Pax-6 expression and P-ERK protein expression level were examined by immunoreactivity and Western blot analysis. RESULTS: The expression of K19 and Pax-6 decreased in the pterygium, especially in the head. No staining of K10 was found in the normal conjunctiva epithelium, but it was found to be expressed in the superficial cells in the head of the pterygium. Characteristic upregulation of P-ERK was observed by immunohistochemistry. The clone from the head with more differentiated cells in the center expressed more K10, and the clone from the body expressed more K19. The P-ERK protein level increased in the pterygium epithelium compared with conjunctiva and decreased when cocultured with PD98059. The same medium with the ERK inhibitor PD98059 was more effective in promoting clonal growth than conventional medium with 3T3 murine feeder layers. It was observed that the epithelium clone co-cultured with the inhibitor had decreased K10 expression and increased K19 and Pax-6 expression. CONCLUSION: We suggest ERK signaling pathway activation might play a role in the pterygium epithelium abnormal differentiation.

  4. Identification of Domains for Efficient Notch Signaling Activity in Immobilized Notch Ligand Proteins.

    Science.gov (United States)

    Liu, Ledi; Wada, Hiroe; Matsubara, Natsuki; Hozumi, Katsuto; Itoh, Motoyuki

    2017-04-01

    Notch is a critical signaling pathway that controls cell fate and tissue homeostasis, but the functional characterization of Notch ligand domains that activate Notch receptors remains incomplete. Here, we established a method for immobilizing Notch ligand proteins onto beads to measure time-dependent Notch activity after the addition of Notch ligand-coated beads. A comparison between activities by the Notch ligand found on the cell surface to that of the ligand immobilized on beads showed that immobilized Notch ligand protein produces comparable signal activity during the first 10 h. Follow-up truncation studies showed that the N-terminal epidermal growth factor (EGF) repeat three region of delta like canonical Notch ligand 4 (DLL4) or jagged 1 (JAG1) is the minimum region for activating Notch signaling, and the DLL4 EGF repeat three domain may have a role in activation through a mechanism other than by increasing binding affinity. In addition, we found that reconstruction of the DLL4 delta and OSM-11 (DOS) motif (N257P) resulted in an increase in both binding affinity and signaling activity, which suggests that the role of the DOS motif is conserved among Notch ligands. Furthermore, active DLL4 protein on beads promoted T cell differentiation or inhibited B cell differentiation in vitro, whereas JAG1 proteins on beads did not have any effect. Taken together, our findings provide unambiguous evidence for the role of different Notch ligands and their domains in Notch signal activation, and may be potential tools for controlling Notch signaling activation. J. Cell. Biochem. 118: 785-796, 2017. © 2016 Wiley Periodicals, Inc.

  5. Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation.

    Science.gov (United States)

    Katoh, Y; Katoh, M

    2009-09-01

    Hedgehog signaling is aberrantly activated in glioma, medulloblastoma, basal cell carcinoma, lung cancer, esophageal cancer, gastric cancer, pancreatic cancer, breast cancer, and other tumors. Hedgehog signals activate GLI family members via Smoothened. RTK signaling potentiates GLI activity through PI3K-AKT-mediated GSK3 inactivation or RAS-STIL1-mediated SUFU inactivation, while GPCR signaling to Gs represses GLI activity through adenylate cyclase-mediated PKA activation. GLI activators bind to GACCACCCA motif to regulate transcription of GLI1, PTCH1, PTCH2, HHIP1, MYCN, CCND1, CCND2, BCL2, CFLAR, FOXF1, FOXL1, PRDM1 (BLIMP1), JAG2, GREM1, and Follistatin. Hedgehog signals are fine-tuned based on positive feedback loop via GLI1 and negative feedback loop via PTCH1, PTCH2, and HHIP1. Excessive positive feedback or collapsed negative feedback of Hedgehog signaling due to epigenetic or genetic alterations leads to carcinogenesis. Hedgehog signals induce cellular proliferation through upregulation of N-Myc, Cyclin D/E, and FOXM1. Hedgehog signals directly upregulate JAG2, indirectly upregulate mesenchymal BMP4 via FOXF1 or FOXL1, and also upregulate WNT2B and WNT5A. Hedgehog signals induce stem cell markers BMI1, LGR5, CD44 and CD133 based on cross-talk with WNT and/or other signals. Hedgehog signals upregulate BCL2 and CFLAR to promote cellular survival, SNAI1 (Snail), SNAI2 (Slug), ZEB1, ZEB2 (SIP1), TWIST2, and FOXC2 to promote epithelial-to-mesenchymal transition, and PTHLH (PTHrP) to promote osteolytic bone metastasis. KAAD-cyclopamine, Mu-SSKYQ-cyclopamine, IPI-269609, SANT1, SANT2, CUR61414 and HhAntag are small-molecule inhibitors targeted to Smoothened, GANT58, GANT61 to GLI1 and GLI2, and Robot-nikinin to SHH. Hedgehog signaling inhibitors should be used in combination with RTK inhibitors, GPCR modulators, and/or irradiation for cancer therapy.

  6. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival

    Directory of Open Access Journals (Sweden)

    Hsieh Fu-Chuan

    2008-10-01

    Full Text Available Abstract Background Constitutive activation of signal transducer and activator of transcription 3 (Stat3 signaling pathway plays an important role in several human cancers. Activation of Stat3 is dependent on the phosphorylation at the tyrosine residue 705 by upstream kinases and subsequent nuclear translocation after dimerization. It remains unclear whether oncogenic Stat3 signaling pathway is involved in the oncogenesis of bladder cancer. Results We found that elevated Stat3 phosphorylation in 19 of 100 (19% bladder cancer tissues as well as bladder cancer cell lines, WH, UMUC-3 and 253J. To explore whether Stat3 activation is associated with cell growth and survival of bladder cancer, we targeted the Stat3 signaling pathway in bladder cancer cells using an adenovirus-mediated dominant-negative Stat3 (Y705F and a small molecule compound, STA-21. Both prohibited cell growth and induction of apoptosis in these bladder cancer cell lines but not in normal bladder smooth muscle cell (BdSMC. The survival inhibition might be mediated through apoptotic caspase 3, 8 and 9 pathways. Moreover, down-regulation of anti-apoptotic genes (Bcl-2, Bcl-xL and survivin and a cell cycle regulating gene (cyclin D1 was associated with the cell growth inhibition and apoptosis. Conclusion These results indicated that activation of Stat3 is crucial for bladder cancer cell growth and survival. Therefore, interference of Stat3 signaling pathway emerges as a potential therapeutic approach for bladder cancer.

  7. Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light

    Science.gov (United States)

    Lin, Liang; Liu, Ling; Zhao, Bing; Xie, Ran; Lin, Wei; Li, He; Li, Yaya; Shi, Minlong; Chen, Ye-Guang; Springer, Timothy A.; Chen, Xing

    2015-05-01

    Receptor-mediated signal transduction modulates complex cellular behaviours such as cell growth, migration and differentiation. Although photoactivatable proteins have emerged as a powerful tool for controlling molecular interactions and signalling cascades at precise times and spaces using light, many of these light-sensitive proteins are activated by ultraviolent or visible light, which has limited tissue penetration. Here, we report a single-walled carbon nanotube (SWCNT)-assisted approach that enables near-infrared light-triggered activation of transforming growth factor β (TGF-β) signal transduction, an important signalling pathway in embryonic development and cancer progression. The protein complex of TGF-β and its latency-associated peptide is conjugated onto SWCNTs, where TGF-β is inactive. Upon near-infrared irradiation, TGF-β is released through the photothermal effect of SWCNTs and becomes active. The released TGF-β activates downstream signal transduction in live cells and modulates cellular behaviours. Furthermore, preliminary studies show that the method can be used to mediate TGF-β signalling in living mice.

  8. Photolysis of caged compounds: studying Ca(2+) signaling and activation of Ca(2+)-dependent ion channels.

    Science.gov (United States)

    Almassy, Janos; Yule, David I

    2013-01-01

    A wide variety of signaling molecules have been chemically modified by conjugation to a photolabile chromophore to render the substance temporarily biologically inert. Subsequent exposure to ultraviolet (UV) light can release the active moiety from the "caged" precursor in an experimentally controlled manner. This allows the concentration of active molecule to be precisely manipulated in both time and space. These techniques are particularly useful in experimental protocols designed to investigate the mechanisms underlying Ca(2+) signaling and the activation of Ca(2+)-dependent effectors.

  9. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  10. Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function

    Science.gov (United States)

    Muhammad, Karzan; Reddy-Alla, Suneel; Driller, Jan H; Schreiner, Dietmar; Rey, Ulises; Böhme, Mathias A.; Hollmann, Christina; Ramesh, Niraja; Depner, Harald; Lützkendorf, Janine; Matkovic, Tanja; Götz, Torsten; Bergeron, Dominique D.; Schmoranzer, Jan; Goettfert, Fabian; Holt, Mathew; Wahl, Markus C.; Hell, Stefan W.; Scheiffele, Peter; Walter, Alexander M.; Loll, Bernhard; Sigrist, Stephan J.

    2015-01-01

    Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold protein spinophilin binds to the C-terminal portion of neurexin and is needed to limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of presynaptic spinophilin results in the formation of excess, but atypically small active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1, Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked transmission is strongly reduced at spinophilin terminals, owing to a severely reduced release probability at individual active zones. We conclude that presynaptic spinophilin fine-tunes neurexin/neuroligin signalling to control active zone number and functionality, thereby optimizing them for action potential-induced exocytosis. PMID:26471740

  11. Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra

    Directory of Open Access Journals (Sweden)

    Necmettin Sezgin

    2012-01-01

    Full Text Available The analysis and classification of electromyography (EMG signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions.

  12. Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function

    DEFF Research Database (Denmark)

    Indo, Hiroko P.; Hawkins, Clare L; Nakanishi, Ikuo

    2017-01-01

    Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF......-κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA...... signal transductions by mitochondrial superoxide. Oxidative phosphorylation via the electron transfer chain, glycolysis, and generation of superoxide from mitochondria could be important factors in regulating signal transduction, cellular homeostasis, and cell death....

  13. Crosstalk and signalling switches in mitogen-activated protein kinase cascades

    Directory of Open Access Journals (Sweden)

    Dirk eFey

    2012-09-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades control cell fate decisions, such as proliferation, differentiation and apoptosis by integrating and processing intra- and extracellular cues. However, similar MAPK kinetic profiles can be associated with opposing cellular decisions depending on cell type, signal strength and dynamics. This implies that signalling by each individual MAPK cascade has to be considered in the context of the entire MAPK network. Here, we develop a dynamic model of feedback and crosstalk for the three major MAPK cascades; extracellular signal-regulated kinase (ERK, p38 mitogen-activated protein kinase (p38, c-Jun N-terminal kinase (JNK, and also include input from protein kinase B (AKT. Focusing on the bistable activation characteristics of the JNK pathway, this model explains how pathway crosstalk harmonises different MAPK responses resulting in pivotal cell fate decisions. We show that JNK can switch from a transient to sustained activity due to multiple positive feedback loops. Once activated, positive feedback locks JNK in a highly active state and promotes cell death. The switch is modulated by the ERK, p38 and AKT pathways. ERK activation enhances the dual specificity phosphatase (DUSP mediated dephosphorylation of JNK and shifts the threshold of the apoptotic switch to higher inputs. Activation of p38 restores the threshold by inhibiting ERK activity via the PP1 or PP2A phosphatases. Finally, AKT activation inhibits the JNK positive feedback, thus abrogating the apoptotic switch and allowing only proliferative signalling. Our model facilitates understanding of how cancerous deregulations disturb MAPK signal processing and provides explanations for certain drug resistances. We highlight a critical role of DUSP1 and DUSP2 expression patterns in facilitating the switching of JNK activity and show how oncogene induced ERK hyperactivity prevents the normal apoptotic switch explaining the failure ocertain drugs to

  14. Danger signal-dependent activation of human dendritic cells by plasma-derived factor VIII products.

    Science.gov (United States)

    Miller, L; Weissmüller, S; Ringler, E; Crauwels, P; van Zandbergen, G; Seitz, R; Waibler, Z

    2015-08-01

    Treatment of haemophilia A by infusions of the clotting factor VIII (FVIII) results in the development of inhibitors/anti-drug antibodies in up to 25 % of patients. Mechanisms leading to immunogenicity of FVIII products are not yet fully understood. Amongst other factors, danger signals as elicited upon infection or surgery have been proposed to play a role. In the present study, we focused on effects of danger signals on maturation and activation of dendritic cells (DC) in the context of FVIII application. Human monocyte-derived DC were treated with FVIII alone, with a danger signal alone or a combination of both. By testing more than 60 different healthy donors, we show that FVIII and the bacterial danger signal lipopolysaccharide synergise in increasing DC activation, as characterised by increased expression of co-stimulatory molecules and secretion of pro-inflammatory cytokines. The degree and frequency of this synergistic activation correlate with CD86 expression levels on immature DC prior to stimulation. In our assay system, plasma-derived but not recombinant FVIII products activate human DC in a danger signal-dependent manner. Further tested danger signals, such as R848 also induced DC activation in combination with FVIII, albeit not in every tested donor. In our hands, human DC but not human B cells or macrophages could be activated by FVIII in a danger signal-dependent manner. Our results suggest that immunogenicity of FVIII is a result of multiple factors including the presence of danger, predisposition of the patient, and the choice of a FVIII product for treatment.

  15. Context-dependent activation of Wnt signaling by tumor suppressor RUNX3 in gastric cancer cells

    Science.gov (United States)

    Ju, Xiaoli; Ishikawa, Tomo-o; Naka, Kazuhito; Ito, Kosei; Ito, Yoshiaki; Oshima, Masanobu

    2014-01-01

    RUNX3 is a tumor suppressor for a variety of cancers. RUNX3 suppresses the canonical Wnt signaling pathway by binding to the TCF4/β-catenin complex, resulting in the inhibition of binding of the complex to the Wnt target gene promoter. Here, we confirmed that RUNX3 suppressed Wnt signaling activity in several gastric cancer cell lines; however, we found that RUNX3 increased the Wnt signaling activity in KatoIII and SNU668 gastric cancer cells. Notably, RUNX3 expression increased the ratio of the Wnt signaling-high population in the KatoIII cells. although the maximum Wnt activation level of individual cells was similar to that in the control. As found previously, RUNX3 also binds to TCF4 and β-catenin in KatoIII cells, suggesting that these molecules form a ternary complex. Moreover, the ChIP analyses revealed that TCF4, β-catenin and RUNX3 bind the promoter region of the Wnt target genes, Axin2 and c-Myc, and the occupancy of TCF4 and β-catenin in these promoter regions is increased by the RUNX3 expression. These results suggest that RUNX3 stabilizes the TCF4/β-catenin complex on the Wnt target gene promoter in KatoIII cells, leading to activation of Wnt signaling. Although RUNX3 increased the Wnt signaling activity, its expression resulted in suppression of tumorigenesis of KatoIII cells, indicating that RUNX3 plays a tumor-suppressing role in KatoIII cells through a Wnt-independent mechanism. These results indicate that RUNX3 can either suppress or activate the Wnt signaling pathway through its binding to the TCF4/β-catenin complex by cell context-dependent mechanisms. PMID:24447505

  16. Biophysical assay for tethered signaling reactions reveals tether-controlled activity for the phosphatase SHP-1

    Science.gov (United States)

    Goyette, Jesse; Salas, Citlali Solis; Coker-Gordon, Nicola; Bridge, Marcus; Isaacson, Samuel A.; Allard, Jun; Dushek, Omer

    2017-01-01

    Tethered enzymatic reactions are ubiquitous in signaling networks but are poorly understood. A previously unreported mathematical analysis is established for tethered signaling reactions in surface plasmon resonance (SPR). Applying the method to the phosphatase SHP-1 interacting with a phosphorylated tether corresponding to an immune receptor cytoplasmic tail provides five biophysical/biochemical constants from a single SPR experiment: two binding rates, two catalytic rates, and a reach parameter. Tether binding increases the activity of SHP-1 by 900-fold through a binding-induced allosteric activation (20-fold) and a more significant increase in local substrate concentration (45-fold). The reach parameter indicates that this local substrate concentration is exquisitely sensitive to receptor clustering. We further show that truncation of the tether leads not only to a lower reach but also to lower binding and catalysis. This work establishes a new framework for studying tethered signaling processes and highlights the tether as a control parameter in clustered receptor signaling.

  17. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  18. Dynamic regulation of integrin activation by intracellular and extracellular signals controls oligodendrocyte morphology

    Directory of Open Access Journals (Sweden)

    Olsen Inger

    2005-11-01

    Full Text Available Abstract Background Myelination requires precise control of oligodendrocyte morphology and myelin generation at each of the axons contacted by an individual cell. This control must involve the integration of extracellular cues, such as those on the axon surface, with intrinsic developmental programmes. We asked whether integrins represent one class of oligodendrocyte cell-surface receptors able to provide this integration. Results Integrins signal via a process of activation, a conformational change that can be induced either by "outside-in" signals comprising physiological extracellular matrix ligands (mimicked by the pharmacological use of the divalent cation manganese or "inside-out" signalling molecules such as R-Ras. Increasing levels of outside-in signalling via the laminin receptor α6β1 integrin were found to promote oligodendrocyte processing and myelin sheet formation in culture. Similar results were obtained when inside-out signalling was increased by the expression of a constitutively-active R-Ras. Inhibiting inside-out signalling by using dominant-negative R-Ras reduces processes and myelin sheets; importantly, this can be partially rescued by the co-stimulation of outside-in signalling using manganese. Conclusion The balance of the equilibrium between active and inactive integrins regulates oligodendrocyte morphology, which is itself regulated by extrinsic and intrinsic cues so providing a mechanism of signal integration. As laminins capable of providing outside-in signals are present on axons at the time of myelination, a mechanism exists by which morphology and myelin generation might be regulated independently in each oligodendrocyte process.

  19. Microglial Immunoreceptor Tyrosine-Based Activation and Inhibition Motif Signaling in Neuroinflammation

    OpenAIRE

    Bettina Linnartz; Yiner Wang; Harald Neumann

    2010-01-01

    Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM-) Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2), signal regulatory protein- 1, and complement re...

  20. Quercitrin attenuates osteoporosis in ovariectomized rats by regulating mitogen-activated protein kinase (MAPK) signaling pathways.

    Science.gov (United States)

    Xing, Li-Zhi; Ni, Huai-Jun; Wang, Yu-Ling

    2017-03-13

    MAPK signaling pathways are crucial in regulating osteogenesis, a genetic disorder affecting the bones. Quercitrin, a type of flavonoid, is widely distributed in nature and involved in many pharmacological activities. But its osteoprotective functions and mechanism in osteoporosis are far from being understood clearly. In this paper, the MAPK upregulation was observed in the ovariectomy-induced bone loss. Quercitrin was found to downregulate MAPK signaling pathways and prevent the ovariectomy-induced deterioration of bone mineral density (BMD), trabecular microstructure, and bone mechanical characteristics. In this study, quercitrin was seen to prevent the progression of the postmenopausal osteoporosis among the rats, which may be mediated by the downregulated MAPK signaling pathways.

  1. Integrin-dependent activation of the JNK signaling pathway by mechanical stress.

    Directory of Open Access Journals (Sweden)

    Andrea Maria Pereira

    Full Text Available Mechanical force is known to modulate the activity of the Jun N-terminal kinase (JNK signaling cascade. However, the effect of mechanical stresses on JNK signaling activation has previously only been analyzed by in vitro detection methods. It still remains unknown how living cells activate the JNK signaling cascade in response to mechanical stress and what its functions are in stretched cells.We assessed in real-time the activity of the JNK pathway in Drosophila cells by Fluorescence Lifetime Imaging Microscopy (FLIM, using an intramolecular phosphorylation-dependent dJun-FRET (Fluorescence Resonance Energy Transfer biosensor. We found that quantitative FRET-FLIM analysis and confocal microscopy revealed sustained dJun-FRET biosensor activation and stable morphology changes in response to mechanical stretch for Drosophila S2R+ cells. Further, these cells plated on different substrates showed distinct levels of JNK activity that associate with differences in cell morphology, integrin expression and focal adhesion organization.These data imply that alterations in the cytoskeleton and matrix attachments may act as regulators of JNK signaling, and that JNK activity might feed back to modulate the cytoskeleton and cell adhesion. We found that this dynamic system is highly plastic; at rest, integrins at focal adhesions and talin are key factors suppressing JNK activity, while multidirectional static stretch leads to integrin-dependent, and probably talin-independent, Jun sensor activation. Further, our data suggest that JNK activity has to coordinate with other signaling elements for the regulation of the cytoskeleton and cell shape remodeling associated with stretch.

  2. Acupuncture activates signal transduction pathways related to brain-tissue restoration after ischemic injury.

    Science.gov (United States)

    Tian, Haomei; Zhang, Hong; Zhu, Junbao; Zhang, Juan; Cai, Hening; Zhang, Yuchen; Chen, Chutao

    2012-08-25

    A middle cerebral artery occlusion-model was established in rats using the improved thread embolism method. Rats were treated with acupuncture at either Dazhui (DU14), Renzhong (DU26), Baihui (DU20), or a non-meridian point. Detection with protein-chip technology showed that the level of protein phosphorylation in both groups was upregulated or downregulated depending on the signaling pathway compared with the model group that did not receive acupuncture. Analysis of proteins showing downregulated phosphorylation revealed that five signaling pathways were activated in the acupuncture-treatment group, while only two were activated in the acupuncture- control group. In contrast, analysis of proteins showing upregulated phosphorylation revealed only one pathway was activated in the acupuncture-treatment group, whereas four pathways were activated in the acupuncture-control group. Furthermore, the number of activated proteins in the acupuncture-treatment group was not only higher than the acupuncture-control group, but unlike the acupuncture-control group, the majority of activated proteins were key proteins in the signaling pathways. Our findings indicate that acupuncture at specific points can activate multiple signaling pathways to promote the restoration of brain tissue following ischemic injury, and that this is based on a combination of effects resulting from multiple pathways, targets, and means.

  3. Silica nanoparticles induce endoplasmic reticulum stress response and activate mitogen activated kinase (MAPK signalling

    Directory of Open Access Journals (Sweden)

    Verena Christen

    2016-01-01

    Full Text Available Humans may be exposed to engineered silica nanoparticles (SiO2-NPs but potential adverse effects are poorly understood, in particular in relation to cellular effects and modes of action. Here we studied effects of SiO2-NPs on cellular function in human hepatoma cells (Huh7. Exposure for 24 h to 10 and 50 μg/ml SiO2-NPs led to induction of endoplasmic reticulum (ER stress as demonstrated by transcriptional induction of DNAJB9, GADD34, CHOP, as well as CHOP target genes BIM, CHAC-1, NOXA and PUMA. In addition, CHOP protein was induced. In addition, SiO2-NPs induced an inflammatory response as demonstrated by induction of TNF-α and IL-8. Activation of MAPK signalling was investigated employing a PCR array upon exposure of Huh7 cells to SiO2-NPs. Five of 84 analysed genes, including P21, P19, CFOS, CJUN and KSR1 exhibited significant transcriptional up-regulation, and 18 genes a significant down-regulation. Strongest down-regulation occurred for the proto-oncogene BRAF, MAPK11, one of the four p38 MAPK genes, and for NFATC4. Strong induction of CFOS, CJUN, FRA1 and CMYC was found after exposure to 50 μg/ml SiO2-NPs for 24 h. To analyse for effects derived from up-regulation of TNF-α, Huh7 cells were exposed to SiO2-NPs in the presence of the TNF-α inhibitor sauchinone, which reduced the induction of the TNF-α transcript by about 50%. These data demonstrate that SiO2-NPs induce ER stress, MAPK pathway and lead to inflammatory reaction in human hepatoma cells. Health implications of SiO2-NPs exposure should further be investigated for a risk assessment of these frequently used nanoparticles.

  4. Activation of NF-kappa B signaling promotes growth of prostate cancer cells in bone.

    Directory of Open Access Journals (Sweden)

    Renjie Jin

    Full Text Available Patients with advanced prostate cancer almost invariably develop osseous metastasis. Although many studies indicate that the activation of NF-κB signaling appears to be correlated with advanced cancer and promotes tumor metastasis by influencing tumor cell migration and angiogenesis, the influence of altered NF-κB signaling in prostate cancer cells within boney metastatic lesions is not clearly understood. While C4-2B and PC3 prostate cancer cells grow well in the bone, LNCaP cells are difficult to grow in murine bone following intraskeletal injection. Our studies show that when compared to LNCaP, NF-κB activity is significantly higher in C4-2B and PC3, and that the activation of NF-κB signaling in prostate cancer cells resulted in the increased expression of the osteoclast inducing genes PTHrP and RANKL. Further, conditioned medium derived from NF-κB activated LNCaP cells induce osteoclast differentiation. In addition, inactivation of NF-κB signaling in prostate cancer cells inhibited tumor formation in the bone, both in the osteolytic PC3 and osteoblastic/osteoclastic mixed C4-2B cells; while the activation of NF-κB signaling in LNCaP cells promoted tumor establishment and proliferation in the bone. The activation of NF-κB in LNCaP cells resulted in the formation of an osteoblastic/osteoclastic mixed tumor with increased osteoclasts surrounding the new formed bone, similar to metastases commonly seen in patients with prostate cancer. These results indicate that osteoclastic reaction is required even in the osteoblastic cancer cells and the activation of NF-κB signaling in prostate cancer cells increases osteoclastogenesis by up-regulating osteoclastogenic genes, thereby contributing to bone metastatic formation.

  5. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway.

    Science.gov (United States)

    Garner, Jo Meagan; Fan, Meiyun; Yang, Chuan He; Du, Ziyun; Sims, Michelle; Davidoff, Andrew M; Pfeffer, Lawrence M

    2013-09-06

    Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.

  6. Activation of Melatonin Signaling Promotes β-Cell Survival and Function.

    Science.gov (United States)

    Costes, Safia; Boss, Marti; Thomas, Anthony P; Matveyenko, Aleksey V

    2015-05-01

    Type 2 diabetes mellitus (T2DM) is characterized by pancreatic islet failure due to loss of β-cell secretory function and mass. Studies have identified a link between a variance in the gene encoding melatonin (MT) receptor 2, T2DM, and impaired insulin secretion. This genetic linkage raises the question whether MT signaling plays a role in regulation of β-cell function and survival in T2DM. To address this postulate, we used INS 832/13 cells to test whether activation of MT signaling attenuates proteotoxicity-induced β-cell apoptosis and through which molecular mechanism. We also used nondiabetic and T2DM human islets to test the potential of MT signaling to attenuate deleterious effects of glucotoxicity and T2DM on β-cell function. MT signaling in β-cells (with duration designed to mimic typical nightly exposure) significantly enhanced activation of the cAMP-dependent signal transduction pathway and attenuated proteotoxicity-induced β-cell apoptosis evidenced by reduced caspase-3 cleavage (∼40%), decreased activation of stress-activated protein kinase/Jun-amino-terminal kinase (∼50%) and diminished oxidative stress response. Activation of MT signaling in human islets was shown to restore glucose-stimulated insulin secretion in islets exposed to chronic hyperglycemia as well as in T2DM islets. Our data suggest that β-cell MT signaling is important for the regulation of β-cell survival and function and implies a preventative and therapeutic potential for preservation of β-cell mass and function in T2DM.

  7. Task control signals in pediatric Tourette syndrome show evidence of immature and anomalous functional activity

    Directory of Open Access Journals (Sweden)

    Jessica A Church

    2009-11-01

    Full Text Available Tourette Syndrome (TS is a pediatric movement disorder that may affect control signaling in the brain. Previous work has proposed a dual-networks architecture of control processing involving a task-maintenance network and an adaptive control network (Dosenbach et al., 2008. A prior resting-state functional connectivity MRI (rs-fcMRI analysis in TS has revealed functional immaturity in both putative control networks, with “anomalous” correlations (i.e. correlations outside the typical developmental range limited to the adaptive control network (Church et al., 2009. The present study used functional MRI (fMRI to study brain activity related to adaptive control (by studying start-cues signals, and to task-maintenance (by studying signals sustained across a task set. Two hypotheses from the previous rs-fcMRI results were tested. First, adaptive control (i.e., start-cue activity will be altered in TS, including activity inconsistent with typical development (“anomalous”. Second, group differences found in task maintenance (i.e., sustained activity will be consistent with functional immaturity in TS. We examined regions found through a direct comparison of adolescents with and without TS, as well as regions derived from a previous investigation that showed differences between unaffected children and adults. The TS group showed decreased start-cue signal magnitude in regions where start-cue activity is unchanged over typical development, consistent with anomalous adaptive control. The TS group also had higher magnitude sustained signals in frontal cortex regions that overlapped with regions showing differences over typical development, consistent with immature task maintenance in TS. The results demonstrate task-related fMRI signal differences anticipated by the atypical functional connectivity found previously in adolescents with TS, strengthening the evidence for functional immaturity and anomalous signaling in control networks in adolescents

  8. Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nomura, Wataru; Inoue, Yoshiharu

    2015-04-01

    Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr(1125) and Ser(1143). Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser(1143), which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1(T1125) affected the phosphorylation of Pkc1 at Ser(1143), in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser(473). Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes.

  9. The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis

    Directory of Open Access Journals (Sweden)

    Barth Julia MI

    2012-12-01

    Full Text Available Abstract Background The proper balance of autophagy, a lysosome-mediated degradation process, is indispensable for oogenesis in Drosophila. We recently demonstrated that egg development depends on autophagy in the somatic follicle cells (FC, but not in the germline cells (GCs. However, the lack of autophagy only affects oogenesis when FCs are autophagy-deficient but GCs are wild type, indicating that a dysfunctional signaling between soma and germline may be responsible for the oogenesis defects. Thus, autophagy could play an essential role in modulating signal transduction pathways during egg development. Results Here, we provide further evidence for the necessity of autophagy during oogenesis and demonstrate that autophagy is especially required in subsets of FCs. Generation of autophagy-deficient FCs leads to a wide range of phenotypes that are similar to mutants with defects in the classical cell-cell signaling pathways in the ovary. Interestingly, we observe that loss of autophagy leads to a precocious activation of the Notch pathway in the FCs as monitored by the expression of Cut and Hindsight, two downstream effectors of Notch signaling. Conclusion Our findings point to an unexpected function for autophagy in the modulation of the Notch signaling pathway during Drosophila oogenesis and suggest a function for autophagy in proper receptor activation. Egg development is affected by an imbalance of autophagy between signal sending (germline and signal receiving cell (FC, thus the lack of autophagy in the germline is likely to decrease the amount of active ligand and accordingly compensates for increased signaling in autophagy-defective follicle cells.

  10. PARP1 orchestrates variant histone exchange in signal-mediated transcriptional activation.

    Science.gov (United States)

    O'Donnell, Amanda; Yang, Shen-Hsi; Sharrocks, Andrew D

    2013-12-01

    Transcriptional activation is accompanied by multiple molecular events that remodel the local chromatin environment in promoter regions. These molecular events are often orchestrated in response to the activation of signalling pathways, as exemplified by the response of immediate early genes such as FOS to ERK MAP kinase signalling. Here, we demonstrate that inducible NFI recruitment permits PARP1 binding to the FOS promoter by a mutually reinforcing loop. PARP1 and its poly(ADP-ribosyl)ation activity are required for maintaining FOS activation kinetics. We also show that the histone variant H2A.Z associates with the FOS promoter and acts in a transcription-suppressive manner. However, in response to ERK pathway signalling, H2A.Z is replaced by H2A; PARP1 activity is required to promote this exchange. Thus, our work has revealed an additional facet of PARP1 function in promoting dynamic remodelling of promoter-associated nucleosomes to allow transcriptional activation in response to cellular signalling.

  11. Eviprostat Activates cAMP Signaling Pathway and Suppresses Bladder Smooth Muscle Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Masayuki Takeda

    2013-06-01

    Full Text Available Eviprostat is a popular phytotherapeutic agent for the treatment of lower urinary tract symptoms (LUTS. At present, the signaling mechanisms underlying its therapeutic effects are still poorly understood. Given that cAMP has been reported to suppress cell hyperplasia and hypertrophy in various pathological situations, we asked whether the effect of Eviprostat could be ascribed to the activation of the cAMP signaling pathway. In the study, exposure of cAMP response element (CRE-secreted alkaline phosphatase (SEAP (CRE-SEAP-reporter cells to Eviprostat elevated SEAP secretion, which was associated with an increased phosphorylation of vasodilator-stimulated phosphoprotein (VASP and cAMP-response element-binding protein (CREB, as well as enhanced expression of CRE-regulated protein connexin43, indicating an activation of the cAMP signaling pathway. Consistent with these observations, Eviprostat-induced expression of Cx43 was abolished in the presence of adenylyl cyclase inhibitor SQ22536 or PKA inhibitor H89, whereas it was mimicked by adenylyl cyclase activator, forskolin. Further analysis demonstrated that Eviprostat significantly potentiated the effect of phosphodiesterase 3 (PDE3 inhibitor, but not that of PDE4 inhibitor, on CRE activation. Moreover, Eviprostat suppressed PDGF-induced activation of ERK and Akt and inhibited cell proliferation and hillock formation in both mesangial cells and bladder smooth muscle cells. Collectively, activation of the cAMP signaling pathway could be an important mechanism by which Eviprostat exerts its therapeutic effects for LUTS.

  12. A role for Raptor phosphorylation in the mechanical activation of mTOR signaling.

    Science.gov (United States)

    Frey, John W; Jacobs, Brittany L; Goodman, Craig A; Hornberger, Troy A

    2014-02-01

    The activation of mTOR signaling is necessary for mechanically-induced changes in skeletal muscle mass, but the mechanisms that regulate the mechanical activation of mTOR signaling remain poorly defined. In this study, we set out to determine if changes in the phosphorylation of Raptor contribute to the mechanical activation of mTOR. To accomplish this goal, mouse skeletal muscles were subjected to mechanical stimulation via a bout of eccentric contractions (EC). Using mass spectrometry and Western blot analysis, we found that ECs induced an increase in Raptor S696, T706, and S863 phosphorylation, and this effect was not inhibited by rapamycin. This observation suggested that changes in Raptor phosphorylation might be an upstream event in the pathway through which mechanical stimuli activate mTOR. To test this, we employed a phospho-defective mutant of Raptor (S696A/T706A/S863A) and found that the EC-induced activation of mTOR signaling was significantly blunted in muscles expressing this mutant. Furthermore, mutation of the three phosphorylation sites altered the interactions of Raptor with PRAS40 and p70(S6k), and it also prevented the EC-induced dissociation of Raptor from p70(S6k). Combined, these results suggest that changes in the phosphorylation of Raptor play an important role in the pathway through which mechanical stimuli activate mTOR signaling.

  13. Angiotensin-converting enzyme inhibitor captopril prevents activation-induced apoptosis by interfering with T cell activation signals

    Science.gov (United States)

    Odaka, C; Mizuochi, T

    2000-01-01

    Captopril is an orally active inhibitor of angiotensin-converting enzyme (ACE) which is widely used as an anti-hypertensive agent. In addition to its ability to reduce blood pressure, captopril has a number of other biological activities. Recently the drug was shown to inhibit Fas-induced apoptosis in human activated peripheral T cells and human lung epithelial cells. In this study, we investigated whether captopril blocks activation-induced apoptosis in murine T cell hybridomas, and found that captopril inhibited IL-2 synthesis and apoptotic cell death upon activation with anti-CD3 antibody. In addition, captopril inhibited an inducible caspase-3-like activity during activation-induced apoptosis. On the other hand, captopril did not interfere with Fas signalling, since anti-Fas antibody-induced apoptosis in Fas+ Jurkat cells was unaffected by the drug. Furthermore, we examined whether captopril blocks activation-induced apoptosis by interfering with expression of Fas, Fas ligand (FasL), or both on T cell hybridomas. FasL expression on activated T cells was significantly inhibited by captopril, whereas up-expression of Fas was partially inhibited, as assessed by cell surface staining. Taking all data together, we conclude that captopril prevents activation-induced apoptosis in T cell hybridomas by interfering with T cell activation signals. Captopril has been reported to induce systemic lupus erythematosus syndrome, and our findings may be useful for elucidating the mechanism of captopril-induced autoimmunity. PMID:10971519

  14. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    Science.gov (United States)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  15. Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif)

    Science.gov (United States)

    Ng, Mei Ying; Wang, Mei; Casey, Patrick J.; Gan, Yunn-Hwen; Hagen, Thilo

    2017-01-01

    Cycle inhibiting factors (Cifs) are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL) and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways. PMID:28166272

  16. Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif).

    Science.gov (United States)

    Ng, Mei Ying; Wang, Mei; Casey, Patrick J; Gan, Yunn-Hwen; Hagen, Thilo

    2017-01-01

    Cycle inhibiting factors (Cifs) are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL) and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways.

  17. Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells

    OpenAIRE

    Meininger, Isabel; Griesbach, Richard A.; HU, DESHENG; Gehring, Torben; Seeholzer, Thomas; Bertossi, Arianna; Kranich, Jan; Oeckinghaus, Andrea; Eitelhuber, Andrea C.; Greczmiel, Ute; Gewies, Andreas; Schmidt-Supprian, Marc; Ruland, Jürgen; Brocker, Thomas; Heissmeyer, Vigo

    2016-01-01

    MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity. Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is induced by TCR stimulation. We identify...

  18. Active Elements for Analog Signal Processing: Classification, Review, and New Proposals

    Directory of Open Access Journals (Sweden)

    Z. Kolka

    2008-12-01

    Full Text Available In the paper, an analysis of the state-of-the-art of active elements for analog signal processing is presented which support – in contrast to the conventional operational amplifiers – not only the voltage-mode but also the current- and mixed-mode operations. Several problems are addressed which are associated with the utilization of these elements in linear applications, particularly in frequency filters. A methodology is proposed which generates a number of fundamentally new active elements with their potential utilization in various areas of signal processing.

  19. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner.

    Science.gov (United States)

    Sjöqvist, Marika; Antfolk, Daniel; Ferraris, Saima; Rraklli, Vilma; Haga, Cecilia; Antila, Christian; Mutvei, Anders; Imanishi, Susumu Y; Holmberg, Johan; Jin, Shaobo; Eriksson, John E; Lendahl, Urban; Sahlgren, Cecilia

    2014-04-01

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status.

  20. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans.

    Science.gov (United States)

    Andrusiak, Matthew G; Jin, Yishi

    2016-04-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans.

  1. Clicks, whistles and pulses: Passive and active signal use in dolphin communication

    Science.gov (United States)

    Herzing, Denise L.

    2014-12-01

    The search for signals out of noise is a problem not only with radio signals from the sky but in the study of animal communication. Dolphins use multiple modalities to communicate including body postures, touch, vision, and most elaborately sound. Like SETI radio signal searches, dolphin sound analysis includes the detection, recognition, analysis, and interpretation of signals. Dolphins use both passive listening and active production to communicate. Dolphins use three main types of acoustic signals: frequency modulated whistles (narrowband with harmonics), echolocation (broadband clicks) and burst pulsed sounds (packets of closely spaced broadband clicks). Dolphin sound analysis has focused on frequency-modulated whistles, yet the most commonly used signals are burst-pulsed sounds which, due to their graded and overlapping nature and bimodal inter-click interval (ICI) rates are hard to categorize. We will look at: 1) the mechanism of sound production and categories of sound types, 2) sound analysis techniques and information content, and 3) examples of lessons learned in the study of dolphin acoustics. The goal of this paper is to provide perspective on how animal communication studies might provide insight to both passive and active SETI in the larger context of searching for life signatures.

  2. Mitogen-activated protein kinase signaling pathways of the tangerine pathotype of Alternaria alternata

    Directory of Open Access Journals (Sweden)

    Kuang-Ren Chung

    2013-06-01

    Full Text Available Mitogen-activated protein kinase (MAPK- mediated signaling pathways have been known to have important functions in eukaryotic organisms. The mechanisms by which the filamentous fungus Alternaria alternata senses and responds to environmental signals have begun to be elucidated. Available data indicate that A. alternata utilizes the Fus3, Hog1 and Slt2 MAPK-mediated signaling pathways, either separately or in a cooperative manner, for conidia formation, resistance to oxidative and osmotic stress, and pathogenesis to citrus. This review provides an overview of our current knowledge of MAPK signaling pathways, in conjunction with the two-component histidine kinase and the Skn7 response regulator, in the tangerine pathotype of A. alternata.

  3. Low-cost detection of RC-IED activation signals in VHF band

    Science.gov (United States)

    Camargo Suarez, Victor Hugo; Marulanda B., Jose Ignacio

    2014-05-01

    The proliferation of Radio Controlled Improvised Explosive Devices (RC-IED) is a growing threat around the world. The ease of construction and low cost of these devices are transforming common things in lethal tramps. The fight against this threats normally involves the use of sophisticated and expensive equipment of Electronic Warfare based on high speed DSP systems, just to detect the presence of detonation signals. In this work is showed how to find activation signals based on the characteristic of the power in a specific band and the previous knowledge about the detonation signals. As proof of concept we have taken the information about the RC-IEDs used in the Colombian conflict and develop an algorithm to find detonation signals based on the measured power in frequencies between 136 MHz and 174 MHz (2 meter civil band)

  4. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran; Kim, Yong Kee [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Seo, Dong-Wan [College of Pharmacy, Dankook University, Cheonan 330-714 (Korea, Republic of); Kang, Jong-Sun [Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746 (Korea, Republic of); Bae, Gyu-Un, E-mail: gbae@sookmyung.ac.kr [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2016-01-29

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.

  5. Selenium Deficiency Attenuates Chicken Duodenal Mucosal Immunity via Activation of the NF-κb Signaling Pathway.

    Science.gov (United States)

    Liu, Zhe; Qu, Yanpeng; Wang, Jianfa; Wu, Rui

    2016-08-01

    Selenium (Se) deficiency can cause intestinal mucosal inflammation, which is related to activation of nuclear transcription factor kappa-B (NF-κB) signaling pathway. However, the mechanism of inflammatory response in chicken duodenal mucosa caused by Se deficiency and its relationship with the NF-κB signaling pathway remain elusive. In this study, we firstly obtained Se-deficient chickens bred with 0.01 mg/kg Se and the normal chickens bred with 0.4 mg/kg Se for 35 days. Then, NF-κB signaling pathway, secretory immunoglobulin A (SIgA), inflammatory cytokines, oxidized glutathione, glutathione peroxidase, and glutathione activities were determined. The results showed that Se deficiency obviously enhanced p50, p65, and p65 DNA-binding activities. The phosphorylation of IκB-α and phosphorylation of kappa-B kinase subunit alpha (IKKα) and IKKα were elevated, but IκB-α was decreased (P mucosal immunity via activation of NF-κB signaling pathway regulated by redox activity, which suggested that Se is a crucial host factor involved in regulating inflammation.

  6. Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals.

    Science.gov (United States)

    Prats-Boluda, Gema; Garcia-Casado, Javier; Martinez-de-Juan, Jose L; Ye-Lin, Yiyao

    2011-05-01

    Although the surface electroenterogram (EEnG) is a weak signal contaminated by strong physiological interference, such as ECG and respiration, abdominal surface recordings of the EEnG could provide a non-invasive method of studying intestinal activity. The goal of this work was to develop a modular, active, low-cost and easy-to-use sensor to obtain a direct estimation of the Laplacian of the EEnG on the abdominal surface in order to enhance the quality of bipolar surface monitoring of intestinal activity. The sensor is made up of a set of 3 concentric dry Ag/AgCl ring electrodes and a battery-powered signal-conditioning circuit. Each section is etched on a different printed circuit board (PCB) and the sections are joined to each other by surface mount technology connectors. This means the sensing electrodes can be treated independently for purposes of maintenance and replacement and the signal conditioning circuit can be re-used. A total of ten recording sessions were carried out on humans. The results show that the surface recordings of the EEnG obtained by the active sensor present significantly less ECG and respiration interference than those obtained by bipolar recordings. In addition, bioelectrical sources whose frequency fitted with the slow wave component of the EEnG (SW) were identified by parametric spectral analysis in the surface signals picked up by the active sensors.

  7. Immune signaling pathways activated in response to different pathogenic micro-organisms in Bombyx mori.

    Science.gov (United States)

    Liu, Wei; Liu, Jiabin; Lu, Yahong; Gong, Yongchang; Zhu, Min; Chen, Fei; Liang, Zi; Zhu, Liyuan; Kuang, Sulan; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2015-06-01

    The JAK/STAT, Toll, Imd, and RNAi pathways are the major signaling pathways associated with insect innate immunity. To explore the different immune signaling pathways triggered in response to pathogenic micro-organism infections in the silkworm, Bombyx mori, the expression levels of the signal transducer and activator of transcription (BmSTAT), spatzle-1 (Bmspz-1), peptidoglycan-recognition protein LB (BmPGRP-LB), peptidoglycan-recognition protein LE (BmPGRP-LE), argonaute 2 (Bmago2), and dicer-2 (Bmdcr2) genes after challenge with Escherichia coli (E. coli), Serratiamarcescens (Sm), Bacillus bombyseptieus (Bab), Beauveriabassiana (Beb), nucleopolyhedrovirus (BmNPV), cypovirus (BmCPV), bidensovirus (BmBDV), or Nosemabombycis (Nb) were determined using real-time PCR. We found that the JAK/STAT pathway could be activated by challenge with BmNPV and BmBDV, the Toll pathway could be most robustly induced by challenge with Beb, the Imd pathway was mainly activated in response to infection by E. coli and Sm, and the RNAi pathway was not activated by viral infection, but could be triggered by some bacterial infections. These findings yield insights into the immune signaling pathways activated in response to different pathogenic micro-organisms in the silkworm.

  8. Bz-423 superoxide signals apoptosis via selective activation of JNK, Bak, and Bax.

    Science.gov (United States)

    Blatt, Neal B; Boitano, Anthony E; Lyssiotis, Costas A; Opipari, Anthony W; Glick, Gary D

    2008-11-01

    Bz-423 is a proapoptotic 1,4-benzodiazepine with potent therapeutic properties in murine models of lupus and psoriasis. Bz-423 modulates the F(1)F(0)-ATPase, inducing the formation of superoxide within the mitochondrial respiratory chain, which then functions as a second messenger initiating apoptosis. Herein, we report the signaling pathway activated by Bz-423 in mouse embryonic fibroblasts containing knockouts of key apoptotic proteins. Bz-423-induced superoxide activates cytosolic ASK1 and its release from thioredoxin. A mitogen-activated protein kinase cascade follows, leading to the specific phosphorylation of JNK. JNK signals activation of Bax and Bak which then induces mitochondrial outer membrane permeabilization to cause the release of cytochrome c and a commitment to apoptosis. The response of these cells to Bz-423 is critically dependent on both superoxide and JNK activation as antioxidants and the JNK inhibitor SP600125 prevents Bax translocation, cytochrome c release, and cell death. These results demonstrate that superoxide generated from the mitochondrial respiratory chain as a consequence of a respiratory transition can signal a sequential and specific apoptotic response. Collectively, these data suggest that the selectivity of Bz-423 observed in vivo results from cell-type specific differences in redox balance and signaling by ASK1 and Bcl-2 proteins.

  9. Palmitoylation controls DLK localization, interactions and activity to ensure effective axonal injury signaling

    Science.gov (United States)

    Holland, Sabrina M.; Collura, Kaitlin M.; Ketschek, Andrea; Noma, Kentaro; Ferguson, Toby A.; Jin, Yishi; Gallo, Gianluca; Thomas, Gareth M.

    2016-01-01

    Dual leucine-zipper kinase (DLK) is critical for axon-to-soma retrograde signaling following nerve injury. However, it is unknown how DLK, a predicted soluble kinase, conveys long-distance signals and why homologous kinases cannot compensate for loss of DLK. Here, we report that DLK, but not homologous kinases, is palmitoylated at a conserved site adjacent to its kinase domain. Using short-hairpin RNA knockdown/rescue, we find that palmitoylation is critical for DLK-dependent retrograde signaling in sensory axons. This functional importance is because of three novel cellular and molecular roles of palmitoylation, which targets DLK to trafficking vesicles, is required to assemble DLK signaling complexes and, unexpectedly, is essential for DLK’s kinase activity. By simultaneously controlling DLK localization, interactions, and activity, palmitoylation ensures that only vesicle-bound DLK is active in neurons. These findings explain how DLK specifically mediates nerve injury responses and reveal a novel cellular mechanism that ensures the specificity of neuronal kinase signaling. PMID:26719418

  10. Activation of the wnt/β-Catenin Signaling Pathway in Polymyositis, Dermatomyositis and Duchenne Muscular Dystrophy

    Science.gov (United States)

    Liu, Fuchen; Liang, Zonglai; Xu, Jingwen; Li, Wei; Zhao, Dandan; Zhao, Yuying

    2016-01-01

    Background and Purpose The wnt/β-catenin signaling pathway plays a critical role in embryonic development and adult-tissue homeostasis. Recent investigations implicate the importance of wnt/β-catenin signaling in normal wound healing and its sustained activation being associated with fibrogenesis. We investigated the immunolocalization and activation of wnt/β-catenin in polymyositis (PM), dermatomyositis (DM), and Duchenne muscular dystrophy (DMD). Methods Immunofluorescence staining and Western blot analysis of β-catenin were performed in muscle specimens from 6 PM, 8 DM, and 6 DMD subjects. The β-catenin/Tcf4 DNA-binding activity in muscle was studied using an electrophoretic mobility shift assay (EMSA), and serum wnt/β-catenin/Tcf transcriptional activity was measured using a luciferase reporter gene assay. Results Immunoreactivity for β-catenin was found in the cytoplasm and nuclei of muscle fibers in PM, DM, and DMD. The protein level of β-catenin was elevated, and EMSA analysis confirmed the activation of wnt/β-catenin signaling. The transcriptional activities of β-catenin/Tcf in the circulation were increased in patients with PM, DM, and DMD, especially in those with interstitial lung disease, and these transcriptional activities decreased when PM or DM patients exhibited obvious clinical improvements. Conclusions Our findings indicate that wnt/β-catenin signaling is activated in PM, DM, and DMD. Its activation in muscle tissue and the circulation may play a role in modulating muscle regeneration and be at least partly involved in the process of muscle and pulmonary fibrosis. PMID:27165423

  11. Urokinase plasminogen activator receptor: a functional integrator of extracellular proteolysis, cell adhesion, and signal transduction.

    Science.gov (United States)

    Ferraris, Gian Maria Sarra; Sidenius, Nicolai

    2013-06-01

    The urokinase plasminogen activator receptor (uPAR) is a cell surface receptor involved in a multitude of physiologic and pathologic processes. uPAR regulates simultaneously a branch of the plasminogen activator system and modulates cell adhesion and intracellular signaling by interacting with extracellular matrix components and signaling receptors. The multiple uPAR functions are deeply interconnected, and their integration determines the effects that uPAR expression triggers in different contexts. The proteolytic function of uPAR affects both the signaling and the adhesive functions of the receptor, whereas these latter two are closely interconnected. This review focuses on the molecular mechanisms that connect and mutually regulate the different uPAR functions. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Circular polarization intrinsic optical signal recording of stimulus-evoked neural activity.

    Science.gov (United States)

    Lu, Rong-Wen; Zhang, Qiu-Xiang; Yao, Xin-Cheng

    2011-05-15

    Linear polarization intrinsic optical signal (LP-IOS) measurement can provide sensitive detection of neural activities in stimulus-activated neural tissues. However, the LP-IOS magnitude and signal-to-noise ratio (SNR) are highly correlated with the nerve orientation relative to the polarization plane of the incident light. Because of the complexity of orientation dependency, LP-IOS optimization and outcome interpretation are time consuming and complicated. In this study, we demonstrate the feasibility of circular polarization intrinsic optical signal (CP-IOS) measurement. Our theoretical modeling and experimental investigation indicate that CP-IOS magnitude and SNR are independent from the nerve orientation. Therefore, CP-IOS promises a practical method for polarization IOS imaging of complex neural systems.

  13. Active Bio-sensor System, Compatible with Arm Muscle Movement or Blinking Signals in BCI Application

    Directory of Open Access Journals (Sweden)

    Saeid Mehrkanoon

    2008-05-01

    Full Text Available This paper addresses a bionic active sensor system for the BCI application. Proposed system involves analog and digital parts. Two types of accurate sensors are used to pickup the blinking and muscle movement signals. A precision micro-power instrumentation amplifier with the adjustable gain, a sixth order low pass active filter with cutoff frequency 0.1 Hz, and a sixth order band pas filter with the bandwidth of 2-6 Hz are constructed to provide the clean blinking and arm muscle movement signals. TMS320C25 DSP processor is used for independent and unique command signals which are prepared for BCI application by a power amplifier and driver.

  14. Role of signaling lymphocytic activation molecule in T helper cell responses

    Directory of Open Access Journals (Sweden)

    Jan E. de Vries

    1998-01-01

    Full Text Available Signaling lymphocytic activation molecule (SLAM; CDw150 is a 70 kDa glycoprotein. Signaling lymphocytic activation molecule is constitutively expressed on memory T cells, CD56+ T cells, a subset of T cell receptor γδ+ cells, immature thymocytes and, at low levels, on a proportion of peripheral blood B cells. Signaling lymphocytic activation molecule is rapidly upregulated on all T and B cells after activation. Engagement of SLAM by F(ab’2 fragments of an anti-SLAM monoclonal antibody (mAb A12 enhances antigen-specific T cell proliferation. In addition, mAb A12 was directly mitogenic for T cell clones and activated T cells. T cell proliferation induced by mAb A12 is independent of interleukin (IL-2, IL-4, IL-12 and IL-15, but is cyclosporin A sensitive. Ligation of SLAM during antigen-specific T cell proliferation resulted in upregulation of interferon (IFN-γ production, even by allergen-specific T helper cell (Th 2 clones, whereas the levels of IL-4 and IL-5 production were only marginally affected. The mAb A12 was unable to induce IL-4 and IL-5 production by Th1 clones. Co-stimulation of skin-derived Der P1-specific Th2 cells from patients with atopic dermatitis via SLAM resulted in the generation of a population of IFN-γ-producing cells, thereby reverting their phenotype to a Th0 pattern. Signaling lymphocytic activation molecule is a high-affinity self ligand mediating homophilic cell interaction. In addition, soluble SLAM enhances both T and B cell proliferation. Collectively, these data indicate that SLAM molecules act both as receptors and ligands that are not only involved in T cell expansion but also drive the expanding T cells during immune responses into the Th0/Th1 pathway. This suggests that signaling through SLAM plays a role in directing Th0/Th1 development.

  15. Signal integration by Ca(2+) regulates intestinal stem-cell activity.

    Science.gov (United States)

    Deng, Hansong; Gerencser, Akos A; Jasper, Heinrich

    2015-12-10

    Somatic stem cells maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here we identify Ca(2+) signalling as a central regulator of intestinal stem cell (ISC) activity in Drosophila. We show that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response, and for an associated modulation of cytosolic Ca(2+) oscillations that results in sustained high cytosolic Ca(2+) concentrations. High cytosolic Ca(2+) concentrations induce ISC proliferation by regulating Calcineurin and CREB-regulated transcriptional co-activator (Crtc). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca(2+) oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca(2+) levels allows effective integration of diverse mitogenic signals in ISCs to adapt their proliferative activity to the needs of the tissue.

  16. Detecting stable phase structures in EEG signals to classify brain activity amplitude patterns

    Institute of Scientific and Technical Information of China (English)

    Yusely RUIZ; Guang LI; Walter J. FREEMAN; Eduardo GONZALEZ

    2009-01-01

    Obtaining an electrocorticograms (ECoG) signal requires an invasive procedure in which brain activity is recorded from the cortical surface. In contrast, obtaining electroencephalograms (EEG) recordings requires the non-invasive procedure of recording the brain activity from the scalp surface, which allows EEG recordings to be performed more easily on healthy humans. In this work, a technique previously used to study spatial-temporal patterns of brain activity on animal ECoG was adapted for use on EEG. The main issues are centered on solving the problems introduced by the increment on the interelectrode distance and the procedure to detect stable frames. The results showed that spatial patterns of beta and gamma activity can also be extracted from the EEG signal by using stable frames as time markers for feature extraction. This adapted technique makes it possible to take advantage of the cognitive and phenomenological awareness of a normal healthy subject.

  17. Development of response activation and inhibition in a selective stop-signal task

    NARCIS (Netherlands)

    van de Laar, M.C.; van den Wildenberg, W.P.M.; van Boxtel, G.J.M.; van der Molen, M.W.

    2014-01-01

    To gain more insight into the development of action control, the current brain potential study examined response selection, activation, and selective inhibition during choice- and stop-signal processing in three age groups (8-, 12-, and 21-year-olds). Results revealed that age groups differed in the

  18. Characterization of the intracellular signalling capacity of natural FXa mutants with reduced pro-coagulant activity

    NARCIS (Netherlands)

    M. Monti; K.S. Borensztajn; M. Pinotti; A. Canella; A. Branchini; G. Marchetti; P.H. Reitsma; F. Bernardi; C.A. Spek

    2009-01-01

    INTRODUCTION: Factor X (FX) is a serine-protease playing a crucial role in the blood coagulation pathway and triggering intracellular signalling in a variety of cells via protease-activated receptors (PARs). By exploiting naturally occurring variants (V342A and G381D, catalytic domain; E19A, gamma-c

  19. Concurrent inhibition of kit- and FcepsilonRI-mediated signaling: coordinated suppression of mast cell activation

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Beaven, Michael A; Iwaki, Shoko

    2008-01-01

    Although primarily required for the growth, differentiation, and survival of mast cells, Kit ligand (stem cell factor) is also required for optimal antigen-mediated mast cell activation. Therefore, concurrent inhibition of Kit- and FcepsilonRI-mediated signaling would be an attractive approach fo...

  20. A Bisindole Alkaloid with Hedgehog Signal Inhibitory Activity from the Myxomycete Perichaena chrysosperma.

    Science.gov (United States)

    Shintani, Akinori; Toume, Kazufumi; Rifai, Yusnita; Arai, Midori A; Ishibashi, Masami

    2010-10-22

    6-Hydroxy-9'-methoxystaurosporinone (1), a new bisindole alkaloid, was isolated from field-collected fruiting bodies of the myxomycete Perichaena chrysosperma, together with two known compounds. The structure of the new alkaloid was elucidated from spectral data, and compound 1 was shown to have hedgehog signal inhibitory activity. A related new alkaloid, 6,9'-dihydroxystaurosporinone (4), was also isolated from Arcyria cinerea.

  1. Signal transducer and activator of transcription 6 gene G2964A polymorphism and inflammatory bowel disease.

    NARCIS (Netherlands)

    Xia, B; Crusius, J.B.A.; Wu, J; Zwiers, A.; Bodegraven, van A.A.; Pena, A.S.

    2003-01-01

    Signal transducer and activator of transcription 6 (STAT6) is a key transcription factor involved in interleukin 4 (IL-4) and IL-13-mediated Th2 response. The STAT6 gene is located on chromosome 12q13.3-14.1 (IBD2 region) and is therefore a positional and functional candidate gene for study in infla

  2. Beacon Editor: Capturing Signal Transduction Pathways Using the Systems Biology Graphical Notation Activity Flow Language.

    Science.gov (United States)

    Elmarakeby, Haitham; Arefiyan, Mostafa; Myers, Elijah; Li, Song; Grene, Ruth; Heath, Lenwood S

    2017-08-28

    The Beacon Editor is a cross-platform desktop application for the creation and modification of signal transduction pathways using the Systems Biology Graphical Notation Activity Flow (SBGN-AF) language. Prompted by biologists' requests for enhancements, the Beacon Editor includes numerous powerful features for the benefit of creation and presentation.

  3. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    Directory of Open Access Journals (Sweden)

    Lama Tarayrah

    2015-11-01

    Full Text Available Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid maintains germline stem cell (GSC mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities.

  4. In vitro analysis of signal peptidase and membrane tannslocation activity in yeast microsomal membranes. Kobomaku kakubun wo mochiiru signal peptidase kassei oyobi makutoka kassei sokuteiho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, K.; Machida, M.; Jigami, Y. (The National Chemical Laboratory for Industry, Tsukuba (Japan))

    1991-05-29

    Studies have been pursued on proteins produced using microorganisms and cultured cells. The studies aim at facilitating the purification of the protein by making it secrete outside the cell and improving productivity. Signal peptidase is related to the secretion/translocation process of the protein. An in vitro analysis system for activity of yeast signal peptidase is made to elucidate effects of activity of signal peptidase on velocity and amount of secretion of the protein. As a result, in a combination of wheat germ extract and canine pancreatic membranes, the single peptidase activity and the membrane translocation activity are seen in a colibacillus {beta}-lactamase precursor and a yeast {alpha}-factor precursor, respectively. Moreover, in a combination of yeast lysates and yeast microsomal membranes, as the result of measuring the activity with the {alpha}-factor precursor as a substrate, the membrane translocation activity can be detected in this system. 16 refs., 4 figs., 1 tab.

  5. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor

    OpenAIRE

    Harrison, Hannah; Farnie, Gillian; Howell, Sacha J.; Rock, Rebecca E; Stylianou, Spyros; Brennan, Keith R.; Bundred, Nigel J; Clarke, Robert B.

    2010-01-01

    Notch receptor signaling pathways play an important role not only in normal breast development but also in breast cancer development and progression. We assessed the role of Notch receptors in stem cell activity in breast cancer cell lines and nine primary human tumor samples. Stem cells were enriched by selection of anoikis-resistant cells or cells expressing the membrane phenotype ESA+/CD44+/CD24low. Using these breast cancer stem cell populations, we compared the activation status of Notch...

  6. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    Science.gov (United States)

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration.

  7. An apodized Kepler periodogram for separating planetary and stellar activity signals

    Science.gov (United States)

    Gregory, Philip C.

    2016-05-01

    A new apodized Keplerian (AK) model is proposed for the analysis of precision radial velocity (RV) data to model both planetary and stellar activity (SA) induced RV signals. A symmetrical Gaussian apodization function with unknown width and centre can distinguish planetary signals from SA signals on the basis of the span of the apodization window. The general model for m AK signals includes a linear regression term between RV and the SA diagnostic log (R'hk), as well as an extra Gaussian noise term with unknown standard deviation. The model parameters are explored using a Bayesian fusion Markov chain Monte Carlo code. A differential version of the generalized Lomb-Scargle periodogram that employs a control diagnostic provides an additional way of distinguishing SA signals and helps guide the choice of new periods. Results are reported for a recent international RV blind challenge which included multiple state-of-the-art simulated data sets supported by a variety of SA diagnostics. In the current implementation, the AK method achieved a reduction in SA noise by a factor of approximately 6. Final parameter estimates for the planetary candidates are derived from fits that include AK signals to model the SA components and simple Keplerians to model the planetary candidates. Preliminary results are also reported for AK models augmented by a moving average component that allows for correlations in the residuals.

  8. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability.

    Directory of Open Access Journals (Sweden)

    Jia-Shiuan Tsai

    Full Text Available Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins.

  9. Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal

    Science.gov (United States)

    Dilanji, Gabriel; Langebrake, Jessica; Deleenheer, Patrick; Hagen, Stephen J.

    2012-02-01

    Bacteria in colonies coordinate gene regulation through the exchange of diffusible signal molecules known as autoinducers (AI). This ``quorum signaling'' often occurs in physically heterogeneous and spatially extended environments such as biofilms. Under these conditions the space and time scales for diffusion of the signal limit the range and timing of effective gene regulation. We expect that spatial and temporal patterns of gene expression will reflect physical environmental constraints as well as nonlinear transcriptional activation and feedback within the gene regulatory system. We have combined experiments and modeling to investigate how these spatiotemporal patterns develop. We embed engineered plasmid/GFP quorum sensor strains or wild type strains in a long narrow agar lane, and then introduce AI signal at one terminus of the lane. Diffusion of the AI initiates reporter expression along the length of the lane, extending to macroscopic distances of mm-cm. Resulting patterns are captured quantitatively by a mathematical model that incorporates logistic growth of the population, diffusion of AI, and nonlinear transcriptional activation. Our results show that a diffusing quorum signal can coordinate gene expression over distances of order 1cm on time scales of order 10 hrs.

  10. Loss of Pancreas upon Activated Wnt Signaling Is Concomitant with Emergence of Gastrointestinal Identity

    Science.gov (United States)

    Herrero-Martin, Griselda; Puri, Sapna; Taketo, Makoto Mark; Rojas, Anabel; Hebrok, Matthias; Cano, David A.

    2016-01-01

    Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries. PMID:27736991

  11. High expression of G-protein signaling modulator 2 in hepatocellular carcinoma facilitates tumor growth and metastasis by activating the PI3K/AKT signaling pathway.

    Science.gov (United States)

    He, Xiao-Qin; Zhang, Yue-Feng; Yu, Jia-Jun; Gan, Yuan-Yuan; Han, Na-Na; Zhang, Mei-Xia; Ge, Wei; Deng, Jun-Jian; Zheng, Yong-Fa; Xu, Xi-Ming

    2017-03-01

    The aim of this study was to investigate the role of G-protein signaling modulator 2 in the carcinogenesis and progression of hepatocellular carcinoma. We previously showed that G-protein signaling modulator 2 was upregulated in hepatitis B virus-related hepatocellular carcinoma tissues through a hierarchical clustering analysis. With this study, we first assessed the expression pattern of G-protein signaling modulator 2 in hepatocellular carcinoma specimens and adjacent noncancerous tissues; clinical data were analyzed, along survival times, utilizing the Kaplan-Meier method. Moreover, the functions of G-protein signaling modulator 2 were examined using small-interfering RNAs in vitro. The results showed that G-protein signaling modulator 2 was clearly overexpressed in hepatocellular carcinoma tissues and cell lines and that the G-protein signaling modulator 2 expression level was related to tumor size and hepatitis B virus infection. Furthermore, G-protein signaling modulator 2 knockdown studies suggested that G-protein signaling modulator 2 accelerates cell growth, cell cycle, migration, and invasion and inhibits apoptosis, acting as an oncogene in hepatocellular carcinoma. Western blotting indicated that silencing of G-protein signaling modulator 2 in HepG2 and SMMC-7721 cells increased the expression levels of Bax, caspase-3, and E-cadherin, while notably suppressing the cyclin-dependent kinase 4, cyclin-dependent kinase 6, CyclinD1, Snail1, Vimentin, and matrix metallopeptidase 9 expression levels, compared with that in the control groups. In addition, we found that G-protein signaling modulator 2 can affect the expression of key proteins involved in protein kinase B activation. In conclusion, high expression of G-protein signaling modulator 2 was involved in the pathological processes of hepatocellular carcinoma through activation of the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, which may provide an attractive potential diagnostic

  12. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Mackenzie RWA

    2014-02-01

    Full Text Available Richard WA Mackenzie, Bradley T Elliott Department of Human and Health Sciences, Facility of Science and Technology, University of Westminster, London, UK Abstract: Type 2 diabetes is a metabolic disease categorized primarily by reduced insulin sensitivity, β-cell dysfunction, and elevated hepatic glucose production. Treatments reducing hyperglycemia and the secondary complications that result from these dysfunctions are being sought after. Two distinct pathways encourage glucose transport activity in skeletal muscle, ie, the contraction-stimulated pathway reliant on Ca2+/5′-monophosphate-activated protein kinase (AMPK-dependent mechanisms and an insulin-dependent pathway activated via upregulation of serine/threonine protein kinase Akt/PKB. Metformin is an established treatment for type 2 diabetes due to its ability to increase peripheral glucose uptake while reducing hepatic glucose production in an AMPK-dependent manner. Peripheral insulin action is reduced in type 2 diabetics whereas AMPK signaling remains largely intact. This paper firstly reviews AMPK and its role in glucose uptake and then focuses on a novel mechanism known to operate via an insulin-dependent pathway. Inositol hexakisphosphate (IP6 kinase 1 (IP6K1 produces a pyrophosphate group at the position of IP6 to generate a further inositol pyrophosphate, ie, diphosphoinositol pentakisphosphate (IP7. IP7 binds with Akt/PKB at its pleckstrin homology domain, preventing interaction with phosphatidylinositol 3,4,5-trisphosphate, and therefore reducing Akt/PKB membrane translocation and insulin-stimulated glucose uptake. Novel evidence suggesting a reduction in IP7 production via IP6K1 inhibition represents an exciting therapeutic avenue in the treatment of insulin resistance. Metformin-induced activation of AMPK is a key current intervention in the management of type 2 diabetes. However, this treatment does not seem to improve peripheral insulin resistance. In light of this

  13. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    Science.gov (United States)

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  14. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages.

    Directory of Open Access Journals (Sweden)

    Bruno Bueno-Silva

    Full Text Available Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP, the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1 and of Il1β and Il1f9 (fold-change rate > 5, which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal, also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.

  15. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages.

    Science.gov (United States)

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S; Alencar, Severino M; Rosalen, Pedro L; Mayer, Marcia P A

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.

  16. Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals.

    Science.gov (United States)

    Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F

    2014-01-01

    Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2-3 days and used 1-2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory.

  17. Silybin-mediated inhibition of Notch signaling exerts antitumor activity in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Song Zhang

    Full Text Available Hepatocellular carcinoma (HCC is a global health burden that is associated with limited treatment options and poor patient prognoses. Silybin (SIL, an antioxidant derived from the milk thistle plant (Silybum marianum, has been reported to exert hepatoprotective and antitumorigenic effects both in vitro and in vivo. While SIL has been shown to have potent antitumor activity against various types of cancer, including HCC, the molecular mechanisms underlying the effects of SIL remain largely unknown. The Notch signaling pathway plays crucial roles in tumorigenesis and immune development. In the present study, we assessed the antitumor activity of SIL in human HCC HepG2 cells in vitro and in vivo and explored the roles of the Notch pathway and of the apoptosis-related signaling pathway on the activity of SIL. SIL treatment resulted in a dose- and time-dependent inhibition of HCC cell viability. Additionally, SIL exhibited strong antitumor activity, as evidenced not only by reductions in tumor cell adhesion, migration, intracellular glutathione (GSH levels and total antioxidant capability (T-AOC but also by increases in the apoptotic index, caspase3 activity, and reactive oxygen species (ROS. Furthermore, SIL treatment decreased the expression of the Notch1 intracellular domain (NICD, RBP-Jκ, and Hes1 proteins, upregulated the apoptosis pathway-related protein Bax, and downregulated Bcl2, survivin, and cyclin D1. Notch1 siRNA (in vitro or DAPT (a known Notch1 inhibitor, in vivo further enhanced the antitumor activity of SIL, and recombinant Jagged1 protein (a known Notch ligand in vitro attenuated the antitumor activity of SIL. Taken together, these data indicate that SIL is a potent inhibitor of HCC cell growth that targets the Notch signaling pathway and suggest that the inhibition of Notch signaling may be a novel therapeutic intervention for HCC.

  18. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Directory of Open Access Journals (Sweden)

    Emri Zsuzsa

    2011-10-01

    Full Text Available Abstract Background Accumulating evidence suggests that glial signalling is activated by different brain functions. However, knowledge regarding molecular mechanisms of activation or their relation to neuronal activity is limited. The purpose of the present study is to identify the characteristics of ATP-evoked glial signalling in the brain reward area, the nucleus accumbens (NAc, and thereby to explore the action of citric acid cycle intermediate succinate (SUC. Results We described the burst-like propagation of Ca2+ transients evoked by ATP in acute NAc slices from rat brain. Co-localization of the ATP-evoked Ca2+ signalling with immunoreactivities of the astroglia-specific gap junction forming channel protein connexin43 (Cx43 and the glial fibrillary acidic protein (GFAP indicated that the responsive cells were a subpopulation of Cx43 and GFAP immunoreactive astrocytes. The ATP-evoked Ca2+ transients were present under the blockade of neuronal activity, but were inhibited by Ca2+ store depletion and antagonism of the G protein coupled purinergic P2Y1 receptor subtype-specific antagonist MRS2179. Similarly, Ca2+ transients evoked by the P2Y1 receptor subtype-specific agonist 2-(Methylthioadenosine 5'-diphosphate were also blocked by MRS2179. These characteristics implied that intercellular Ca2+ signalling originated from the release of Ca2+ from internal stores, triggered by the activation of P2Y1 receptors. Inhibition by the gap junction blockers carbenoxolone and flufenamic acid and by an antibody raised against the gating-associated segment of Cx43 suggested that intercellular Ca2+ signalling proceeded through gap junctions. We demonstrated for the first time that extracellular SUC also evoked Ca2+ transients (EC50 = 50-60 μM in about 15% of the ATP-responsive NAc astrocytes. By contrast to glial cells, electrophysiologically identified NAc neurons surrounded by ATP-responsive astrocytes were not activated simultaneously. Conclusions We

  19. Efficient production of active chicken avidin using a bacterial signal peptide in Escherichia coli

    OpenAIRE

    Hytönen, Vesa P.; Laitinen, Olli H.; Airenne, Tomi T.; Kidron, Heidi; Meltola, Niko J.; Porkka, Eevaleena J.; Hörhä, Jarno; Paldanius, Tiina; Määttä, Juha A. E.; Nordlund, Henri R.; Johnson, Mark S.; Salminen, Tiina A.; Airenne, Kari J.; Ylä-Herttuala, Seppo; Kulomaa, Markku S.

    2004-01-01

    Chicken avidin is a highly popular tool with countless applications in the life sciences. In the present study, an efficient method for producing avidin protein in the periplasmic space of Escherichia coli in the active form is described. Avidin was produced by replacing the native signal sequence of the protein with a bacterial OmpA secretion signal. The yield after a single 2-iminobiotin–agarose affinity purification step was approx. 10 mg/l of virtually pure avidin. Purified avidin had 3.7...

  20. Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction.

    Science.gov (United States)

    Beguerisse-Díaz, Mariano; Desikan, Radhika; Barahona, Mauricio

    2016-08-01

    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction.

  1. Periostin responds to mechanical stress and tension by activating the MTOR signaling pathway.

    Directory of Open Access Journals (Sweden)

    Luciana K Rosselli-Murai

    Full Text Available Current knowledge about Periostin biology has expanded from its recognized functions in embryogenesis and bone metabolism to its roles in tissue repair and remodeling and its clinical implications in cancer. Emerging evidence suggests that Periostin plays a critical role in the mechanism of wound healing; however, the paracrine effect of Periostin in epithelial cell biology is still poorly understood. We found that epithelial cells are capable of producing endogenous Periostin that, unlike mesenchymal cell, cannot be secreted. Epithelial cells responded to Periostin paracrine stimuli by enhancing cellular migration and proliferation and by activating the mTOR signaling pathway. Interestingly, biomechanical stimulation of epithelial cells, which simulates tension forces that occur during initial steps of tissue healing, induced Periostin production and mTOR activation. The molecular association of Periostin and mTOR signaling was further dissected by administering rapamycin, a selective pharmacological inhibitor of mTOR, and by disruption of Raptor and Rictor scaffold proteins implicated in the regulation of mTORC1 and mTORC2 complex assembly. Both strategies resulted in ablation of Periostin-induced mitogenic and migratory activity. These results indicate that Periostin-induced epithelial migration and proliferation requires mTOR signaling. Collectively, our findings identify Periostin as a mechanical stress responsive molecule that is primarily secreted by fibroblasts during wound healing and expressed endogenously in epithelial cells resulting in the control of cellular physiology through a mechanism mediated by the mTOR signaling cascade.

  2. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis.

    Science.gov (United States)

    Cheng, Ji; Zhang, Tao; Ji, Hongbin; Tao, Kaixiong; Guo, Jianping; Wei, Wenyi

    2016-12-01

    AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.

  3. Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Yuan Tian

    2016-08-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD, characterized by fat accumulation in liver, is closely associated with central obesity, over-nutrition and other features of metabolic syndrome, which elevate the risk of developing hepatocellular carcinoma (HCC. The Wnt/β-catenin signaling pathway plays a significant role in the physiology and pathology of liver. Up to half of HCC patients have activation of Wnt/β-catenin signaling. However, the mutation frequencies of CTNNB1 (encoding β-catenin protein or other antagonists targeting Wnt/β-catenin signaling are low in HCC patients, suggesting that genetic mutations are not the major factor driving abnormal β-catenin activities in HCC. Emerging evidence has demonstrated that obesity-induced metabolic pathways can deregulate chromatin modifiers such as histone deacetylase 8 to trigger undesired global epigenetic changes, thereby modifying gene expression program which contributes to oncogenic signaling. This review focuses on the aberrant epigenetic activation of Wnt/β-catenin in the development of NAFLD-associated HCC. A deeper understanding of the molecular mechanisms underlying such deregulation may shed light on the identification of novel druggable epigenetic targets for the prevention and/or treatment of HCC in obese and diabetic patients.

  4. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  5. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Directory of Open Access Journals (Sweden)

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  6. Stress-activated signaling responses leading to apoptosis following photodynamic therapy

    Science.gov (United States)

    Oleinick, Nancy L.; He, Jin; Xue, Liang-yan; Separovic, Duska

    1998-05-01

    Photodynamic treatment with the phthalocyanine Pc 4, a mitochondrially localizing photosensitizer, is an efficient inducer of cell death by apoptosis, a cell suicide pathway that can be triggered by physiological stimuli as well as by various types of cellular damage. Upon exposure of the dye- loaded cells to red light, several stress signalling pathways are rapidly activated. In murine L5178Y-R lymphoblasts, caspase activation and other hallmarks of the final phase of apoptosis are observed within a few minutes post-PDT. In Chinese hamster CHO-K1 cells, the first signs of apoptosis are not observed for 1 - 2 hours. The possible involvement of three parallel mitogen-activated protein kinase (MAPK) signalling pathways has been investigated. The extracellular- regulated kinases (ERK-1 and ERK-2), that are thought to promote cell growth, are not appreciably altered by PDT. However, PDT causes marked activation of the stress-activated protein kinase (SAPK) cascade in both cell types and of the p38/HOG-type kinase in CHO cells. Both of these latter pathways have been demonstrated to be associated with apoptosis. A specific inhibitor of the ERK pathway did not alter PDT-induced apoptosis; however, an inhibitor of the p38 pathway partially blocked PDT-induced apoptosis. Blockage of the SAPK pathway is being pursued by a genetic approach. It appears that the SAPK and p38 pathways may participate in signaling apoptosis in response to PDT with Pc 4.

  7. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    Science.gov (United States)

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-01-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene. PMID:28257035

  8. MALT1-ubiquitination triggers non-genomic NF-κB/IKK signaling upon platelet activation.

    Science.gov (United States)

    Karim, Zubair A; Vemana, Hari Priya; Khasawneh, Fadi T

    2015-01-01

    We have recently shown that IKK complex plays an important non-genomic role in platelet function, i.e., regulates SNARE machinery-dependent membrane fusion. In this connection, it is well known that MALT1, whose activity is modulated by proteasome, plays an important role in the regulation of IKK complex. Therefore, the present studies investigated the mechanism by which IKK signaling is regulated in the context of the platelet proteasome. It was found that platelets express a functional proteasome, and form CARMA/MALT1/Bcl10 (CBM) complex when activated. Using a pharmacological inhibitor, the proteasome was found to regulate platelet function (aggregation, integrin activation, secretion, phosphatidylserine exposure and changes in intracellular calcium). It was also found to regulate thrombogenesis and physiologic hemostasis. We also observed, upon platelet activation, that MALT1 is ubiquitinated, and this coincides with the activation of the IKK/NF-κB-signaling pathway. Finally, we observed that the proteasome inhibitor blocks CBM complex formation and the interaction of IKKγ and MALT1; abrogates SNARE formation, and the association of MALT1 with TAK1 and TAB2, which are upstream of the CBM complex. Thus, our data demonstrate that MALT1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing platelet signals to the NF-κB pathway.

  9. MALT1-ubiquitination triggers non-genomic NF-κB/IKK signaling upon platelet activation.

    Directory of Open Access Journals (Sweden)

    Zubair A Karim

    Full Text Available We have recently shown that IKK complex plays an important non-genomic role in platelet function, i.e., regulates SNARE machinery-dependent membrane fusion. In this connection, it is well known that MALT1, whose activity is modulated by proteasome, plays an important role in the regulation of IKK complex. Therefore, the present studies investigated the mechanism by which IKK signaling is regulated in the context of the platelet proteasome. It was found that platelets express a functional proteasome, and form CARMA/MALT1/Bcl10 (CBM complex when activated. Using a pharmacological inhibitor, the proteasome was found to regulate platelet function (aggregation, integrin activation, secretion, phosphatidylserine exposure and changes in intracellular calcium. It was also found to regulate thrombogenesis and physiologic hemostasis. We also observed, upon platelet activation, that MALT1 is ubiquitinated, and this coincides with the activation of the IKK/NF-κB-signaling pathway. Finally, we observed that the proteasome inhibitor blocks CBM complex formation and the interaction of IKKγ and MALT1; abrogates SNARE formation, and the association of MALT1 with TAK1 and TAB2, which are upstream of the CBM complex. Thus, our data demonstrate that MALT1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing platelet signals to the NF-κB pathway.

  10. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells.

    Science.gov (United States)

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-03-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.

  11. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shubham Dayal

    2017-03-01

    Full Text Available The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1 to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase activity to increase cell migration. Activity of matrix metalloproteinase (MMP-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.

  12. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    Science.gov (United States)

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  13. Association of signaling transducers and activators of transcription 1 and systemic lupus erythematosus.

    Science.gov (United States)

    Liang, Yan; Xu, Wang-Dong; Yang, Xiao-Ke; Fang, Xin-Yu; Liu, Yan-Yan; Ni, Jing; Qiu, Li-Juan; Hui, Peng; Cen, Han; Leng, Rui-Xue; Pan, Hai-Feng; Ye, Dong-Qing

    2014-05-01

    Systemic lupus erythematosus (SLE) is complex autoimmune disease which involves various facets of the immune system. Signaling transducers and activators of transcription 1 (STAT1) belongs to the family of STAT transcription factors that mediate various biological responses. Recently, studies in both experimental animal models of lupus and patients with SLE have revealed expression and activation of STAT1 is closely associated with the pathogenesis of SLE. Moreover, increased production of interferons (IFNs) and aberrant activation of IFNs signaling, which is mechanistically linked to increased level of STAT1, are crucial for the development of SLE. Therefore, we will focus on the association of STAT1 and SLE based on recent understandings to render more information about the mechanisms of STAT1 might perform in. Hopefully, the information obtained will lead to a better understanding of the development and pathogenesis of systemic autoimmune diseases, as well as its clinical implications and therapeutic potential.

  14. A switch from low to high Shh activity regulates establishment of limb progenitors and signaling centers.

    Science.gov (United States)

    Zhulyn, Olena; Li, Danyi; Deimling, Steven; Vakili, Niki Alizadeh; Mo, Rong; Puviindran, Vijitha; Chen, Miao-Hsueh; Chuang, Pao-Tien; Hopyan, Sevan; Hui, Chi-chung

    2014-04-28

    The patterning and growth of the embryonic vertebrate limb is dependent on Sonic hedgehog (Shh), a morphogen that regulates the activity of Gli transcription factors. However, Shh expression is not observed during the first 12 hr of limb development. During this phase, the limb bud is prepatterned into anterior and posterior regions through the antagonistic actions of transcription factors Gli3 and Hand2. We demonstrate that precocious activation of Shh signaling during this early phase interferes with the Gli3-dependent specification of anterior progenitors, disturbing establishment of signaling centers and normal outgrowth of the limb. Our findings illustrate that limb development requires a sweet spot in the level and timing of pathway activation that allows for the Shh-dependent expansion of posterior progenitors without interfering with early prepatterning functions of Gli3/Gli3R or specification of anterior progenitors.

  15. The neuroprotective role of acupuncture and activation of the BDNF signaling pathway.

    Science.gov (United States)

    Lin, Dong; De La Pena, Ike; Lin, Lili; Zhou, Shu-Feng; Borlongan, Cesar V; Cao, Chuanhai

    2014-02-21

    Recent studies have been conducted to examine the neuroprotective effects of acupuncture in many neurological disorders. Although the neuroprotective effects of acupuncture has been linked to changes in signaling pathways, accumulating evidence suggest the participation of endogenous biological mediators, such as the neurotrophin (NT) family of proteins, specifically, the brain derived neurotrophic factor (BDNF). Accordingly, acupuncture can inhibit neurodegeneration via expression and activation of BDNF. Moreover, recent studies have reported that acupuncture can increase ATP levels at local stimulated points. We have also demonstrated that acupuncture could activate monocytes and increase the expression of BDNF via the stimulation of ATP. The purpose of this article is to review the recent findings and ongoing studies on the neuroprotective roles of acupuncture and therapeutic implications of acupuncture-induced activation of BDNF and its signaling pathway.

  16. The Neuroprotective Role of Acupuncture and Activation of the BDNF Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Dong Lin

    2014-02-01

    Full Text Available Recent studies have been conducted to examine the neuroprotective effects of acupuncture in many neurological disorders. Although the neuroprotective effects of acupuncture has been linked to changes in signaling pathways, accumulating evidence suggest the participation of endogenous biological mediators, such as the neurotrophin (NT family of proteins, specifically, the brain derived neurotrophic factor (BDNF. Accordingly, acupuncture can inhibit neurodegeneration via expression and activation of BDNF. Moreover, recent studies have reported that acupuncture can increase ATP levels at local stimulated points. We have also demonstrated that acupuncture could activate monocytes and increase the expression of BDNF via the stimulation of ATP. The purpose of this article is to review the recent findings and ongoing studies on the neuroprotective roles of acupuncture and therapeutic implications of acupuncture-induced activation of BDNF and its signaling pathway.

  17. ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation.

    Science.gov (United States)

    Riteau, N; Baron, L; Villeret, B; Guillou, N; Savigny, F; Ryffel, B; Rassendren, F; Le Bert, M; Gombault, A; Couillin, I

    2012-10-11

    Deposition of uric acid crystals in joints causes the acute and chronic inflammatory disease known as gout and prolonged airway exposure to silica crystals leads to the development of silicosis, an irreversible fibrotic pulmonary disease. Aluminum salt (Alum) crystals are frequently used as vaccine adjuvant. The mechanisms by which crystals activate innate immunity through the Nlrp3 inflammasome are not well understood. Here, we show that uric acid, silica and Alum crystals trigger the extracellular delivery of endogenous ATP, which just precedes the secretion of mature interleukin-1β (IL-1β) by macrophages, both events depending on purinergic receptors and connexin/pannexin channels. Interestingly, not only ATP but also ADP and UTP are involved in IL-1β production upon these Nlrp3 inflammasome activators through multiple purinergic receptor signaling. These findings support a pivotal role for nucleotides as danger signals and provide a new molecular mechanism to explain how chemically and structurally diverse stimuli can activate the Nlrp3 inflammasome.

  18. Enhanced osteoclastogenesis by mitochondrial retrograde signaling through transcriptional activation of the cathepsin K gene.

    Science.gov (United States)

    Guha, Manti; Srinivasan, Satish; Koenigstein, Alexander; Zaidi, Mone; Avadhani, Narayan G

    2016-01-01

    Mitochondrial dysfunction has emerged as an important factor in wide ranging human pathologies. We have previously defined a retrograde signaling pathway that originates from dysfunctional mitochondria (Mt-RS) and causes a global nuclear transcriptional reprograming as its end point. Mitochondrial dysfunction causing disruption of mitochondrial membrane potential and consequent increase in cytosolic calcium [Ca(2) ](c) activates calcineurin and the transcription factors NF-κB, NFAT, CREB, and C/EBPδ. In macrophages, this signaling complements receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastic differentiation. Here, we show that the Mt-RS activated transcriptional coactivator heterogeneous ribonucleoprotein A2 (hnRNP A2) is induced by hypoxia in murine macrophages. We demonstrate that the cathepsin K gene (Ctsk), one of the key genes upregulated during osteoclast differentiation, is transcriptionally activated by Mt-RS factors. HnRNP A2 acts as a coactivator with nuclear transcription factors, cRel, and C/EBPδ for Ctsk promoter activation under hypoxic conditions. Notably, our study shows that hypoxia-induced activation of the stress target factors mediates effects similar to that of RANKL with regard to Ctsk activation. We therefore suggest that mitochondrial dysfunction and activation of Mt-RS, induced by various pathophysiologic conditions, is a potential risk factor for osteoclastogenesis and bone loss.

  19. Enhanced osteoclastogenesis by mitochondrial retrograde signaling through transcriptional activation of the cathepsin K gene

    Science.gov (United States)

    Guha, Manti; Srinivasan, Satish; Koenigstein, Alexander; Zaidi, Mone; Avadhani, Narayan G.

    2015-01-01

    Mitochondrial dysfunction has emerged as an important factor in wide ranging human pathologies. We have previously defined a retrograde signaling pathway that originates from dysfunctional mitochondria (Mt-RS) and causes a global nuclear transcriptional reprograming as its endpoint. Mitochondrial dysfunction causing disruption of mitochondrial membrane potential and consequent increase in cytosolic calcium [Ca2](c) activates calcineurin and the transcription factors NF-κB, NFAT, CREB, and C/EBPδ. In macrophages this signaling complements receptor activator of nuclear factor kappa-B ligand (RANKL)–induced osteoclastic differentiation. Here, we show that the Mt-RS activated transcriptional coactivator heterogeneous ribonucleoprotein A2 (hnRNP A2) is induced by hypoxia in murine macrophages. We demonstrate that the cathepsin K gene (Cstk), one of the key genes upregulated during osteoclast differentiation, is transcriptionally activated by Mt-RS factors. HnRNP A2 acts as a coactivator with nuclear transcription factors, cRel, and C/EBPδ for Cstk promoter activation under hypoxic conditions. Notably, our study shows that hypoxia-induced activation of the stress target factors mediates effects similar to that of RANKL with regard to Cstk activation. We therefore suggest that mitochondrial dysfunction and activation of Mt-RS, induced by various pathophysiologic conditions, is a potential risk factor for osteoclastogenesis and bone loss. PMID:25800988

  20. Activation and interruption of the reproduction of Varroa destructor is triggered by host signals (Apis mellifera).

    Science.gov (United States)

    Frey, Eva; Odemer, Richard; Blum, Thomas; Rosenkranz, Peter

    2013-05-01

    The reproductive cycle of the parasitic mite Varroa destructor is closely linked to the development of the honey bee host larvae. Using a within colony approach we introduced phoretic Varroa females into brood cells of different age in order to analyze the capacity of certain stages of the honey bee larva to either activate or interrupt the reproduction of Varroa females. Only larvae within 18 h (worker) and 36 h (drones), respectively, after cell capping were able to stimulate the mite's oogenesis. Therewith we could specify for the first time the short time window where honey bee larvae provide the signals for the activation of the Varroa reproduction. Stage specific volatiles of the larval cuticle are at least part of these activation signals. This is confirmed by the successful stimulation of presumably non-reproducing mites to oviposition by the application of a larval extract into the sealed brood cells. According to preliminary quantitative GC-MS analysis we suggest certain fatty acid ethyl esters as candidate compounds. If Varroa females that have just started with egg formation are transferred to brood cells containing host larvae of an elder stage two-thirds of these mites stopped their oogenesis. This confirms the presence of an additional signal in the host larvae allowing the reproducing mites to adjust their own reproductive cycle to the ontogenetic development of the host. From an adaptive point of view that sort of a stop signal enables the female mite to save resources for a next reproductive cycle if the own egg development is not sufficiently synchronized with the development of the host. The results presented here offer the opportunity to analyze exactly those host stages that have the capacity to activate or interrupt the Varroa reproduction in order to identify the crucial host signals.

  1. Activated Wnt Signaling in Stroma Contributes to Development of Pancreatic Mucinous Cystic Neoplasms

    Science.gov (United States)

    Sano, Makoto; Driscoll, David R.; De Jesus-Monge, Wilfredo E.; Klimstra, David S.; Lewis, Brian C.

    2014-01-01

    BACKGROUND & AIMS Pancreatic mucinous cystic neoplasm (MCN), a cystic tumor of the pancreas that develops most frequently in women, is a potential precursor to pancreatic ductal adenocarcinoma. MCNs develop primarily in the body and tail of the pancreas and are characterized by the presence of a mucinous epithelium and ovarian-like subepithelial stroma. We investigated the involvement of Wnt signaling in KRAS-mediated pancreatic tumorigenesis and development of MCN in mice, and Wnt activation in human MCN samples. METHODS LSL-KrasG12D, Ptf1a-cre mice were crossed with elastase-tva mice to allow for introduction of genes encoded by the replication-competent avian sarcoma-leukosis virus long-terminal repeat with splice acceptor viruses to pancreatic acinar cells and acinar cell progenitors, postnatally and sporadically. Repeat with splice acceptor viruses that expressed Wnt1 were delivered to the pancreatic epithelium of these mice; pancreatic lesions were analyzed by histopathology and immunohistochemical analyses. We analyzed levels of factors in Wnt signaling pathways in 19 MCN samples from patients. RESULTS Expression of Wnt1 in the pancreatic acinar cells and acinar cell progenitors of female mice led to development of unilocular or multilocular epithelial cysts in the pancreas body and tail, similar to MCN. The cystic lesions resembled the estrogen receptor– and progesterone receptor–positive ovarian-like stroma of MCN, but lacked the typical mucinous epithelium. Activated Wnt signaling, based on nuclear localization of β-catenin, was detected in the stroma but not cyst epithelium. Wnt signaling to β-catenin was found to be activated in MCN samples from patients, within the ovarian-like stroma, consistent with the findings in mice. CONCLUSIONS Based on studies of mice and pancreatic MCN samples from patients, the canonical Wnt signaling pathway becomes activated and promotes development of the ovarian-like stroma to contribute to formation of MCNs. PMID

  2. Efficient T-cell priming and activation requires signaling through prostaglandin E2 (EP) receptors.

    Science.gov (United States)

    Sreeramkumar, Vinatha; Hons, Miroslav; Punzón, Carmen; Stein, Jens V; Sancho, David; Fresno, Manuel; Cuesta, Natalia

    2016-01-01

    Understanding the regulation of T-cell responses during inflammation and auto-immunity is fundamental for designing efficient therapeutic strategies against immune diseases. In this regard, prostaglandin E2 (PGE2) is mostly considered a myeloid-derived immunosuppressive molecule. We describe for the first time that T cells secrete PGE2 during T-cell receptor stimulation. In addition, we show that autocrine PGE2 signaling through EP receptors is essential for optimal CD4(+) T-cell activation in vitro and in vivo, and for T helper 1 (Th1) and regulatory T cell differentiation. PGE2 was found to provide additive co-stimulatory signaling through AKT activation. Intravital multiphoton microscopy showed that triggering EP receptors in T cells is also essential for the stability of T cell-dendritic cell (DC) interactions and Th-cell accumulation in draining lymph nodes (LNs) during inflammation. We further demonstrated that blocking EP receptors in T cells during the initial phase of collagen-induced arthritis in mice resulted in a reduction of clinical arthritis. This could be attributable to defective T-cell activation, accompanied by a decline in activated and interferon-γ-producing CD4(+) Th1 cells in draining LNs. In conclusion, we prove that T lymphocytes secret picomolar concentrations of PGE2, which in turn provide additive co-stimulatory signaling, enabling T cells to attain a favorable activation threshold. PGE2 signaling in T cells is also required for maintaining long and stable interactions with DCs within LNs. Blockade of EP receptors in vivo impairs T-cell activation and development of T cell-mediated inflammatory responses. This may have implications in various pathophysiological settings.

  3. Activity-dependent survival of developing neocortical neurons depends on PI3K signalling.

    Science.gov (United States)

    Wagner-Golbs, Antje; Luhmann, Heiko J

    2012-02-01

    Spontaneous electrical network activity plays a major role in the control of cell survival in the developing brain. Several intracellular pathways are implicated in transducing electrical activity into gene expression dependent and independent survival signals. These include activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector Akt, activation of Ras and subsequently MAPK/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase and signalling via calcium/calmodulin-dependent protein kinase (CaMK). In the present study, we analyzed the role of these pathways for the control of neuronal survival in different extracellular potassium concentrations ([K(+) ](ex) ). Organotypic neocortical slice cultures prepared from newborn mice were kept in 5.3, 8.0 and 25.0mM [K(+) ](ex) and treated with specific inhibitors of PI3K, MEK1, CaMKK and a broad spectrum CaMK inhibitor. After 6h of incubation, slices were immunostained for activated caspase 3 (a-caspase 3) and the number of apoptotic cells was quantified by computer based analysis. We found that in 5.3 and 8.0mM [K(+) ](ex) only PI3K was important for neuronal survival. When [K(+) ](ex) was raised to 25.0mM, a concentration above the depolarization block, we found no influence of PI3K on neuronal survival. Our data demonstrate that only the PI3K pathway, and not the MEK1, CaMKK or CaMKs pathway, plays a central role in the regulation of activity-dependent neuronal survival in the developing cerebral cortex.

  4. Two zebrafish G2A homologs activate multiple intracellular signaling pathways in acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Ichijo, Yuta; Mochimaru, Yuta [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Azuma, Morio [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Satou, Kazuhiro; Negishi, Jun [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, 2-11-1 Itabashi-Ku, Tokyo 173-8605 (Japan); Oshima, Natsuki [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Mogi, Chihiro; Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Matsuda, Kouhei [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tomura, Hideaki, E-mail: tomurah@meiji.ac.jp [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan)

    2016-01-01

    Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the G{sub s}-protein/cAMP/CRE, G{sub 12/13}-protein/Rho/SRE, and G{sub q}-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways. We also examined whether histidine residue and basic amino acid residue in the N-terminus of the homologs also play roles similar to those played by human G2A residues if the homologs sense protons. We found that the zG2A-a showed the high CRE, SRE, and NFAT activities, however, zG2A-b showed only the high SRE activity under a pH of 8.0. Extracellular acidification from pH 7.4 to 6.3 ameliorated these activities in zG2A-a-expressing cells. On the other hand, acidification ameliorated the SRE activity but not the CRE and NFAT activities in zG2A-b-expressing cells. LPC or 9-HODE did not modify any activity of either homolog. The substitution of histidine residue at the 174{sup th} position from the N-terminus of zG2A-a to asparagine residue attenuated proton-induced CRE and NFAT activities but not SRE activity. The substitution of arginine residue at the 32nd position from the N-terminus of zG2A-a to the alanine residue also attenuated its high and the proton-induced CRE and NFAT activities. On the contrary, the substitution did not attenuate SRE activity. The substitution of the arginine residue at the 10th position from the N-terminus of zG2A-b to the alanine residue also did not attenuate its high or the proton-induced SRE activity. These results indicate that zebrafish G2A homologs were activated by protons but not by LPC and 9-HODE, and the activation mechanisms of the homologs were similar to those of human G2A. - Highlights: • Zebrafish two G2A homologs are proton

  5. Potato signal molecules that activate pectate lyase synthesis in Pectobacterium atrosepticum SCRI1043.

    Science.gov (United States)

    Tarasova, Nadezhda; Gorshkov, Vladimir; Petrova, Olga; Gogolev, Yuri

    2013-07-01

    A new type of plant-derived signal molecules that activate extracellular pectate lyase activity in phytopathogenic bacterium Pectobacterium atrosepticum SCRI1043 was revealed. These compounds were characterized and partially purified by means of several approaches including RT-PCR analysis, luminescence bioassay and HPLC fractionation. They were smaller than 1 kDa, thermoresistant, nonproteinaceous, hydrophilic, and slightly negatively charged molecules. Using gene expression analysis and bacterial biosensor assay the mode of activity of revealed compounds was studied. The possibility of their action through quorum sensing- and KdgR-mediated pathways was analyzed.

  6. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans

    Science.gov (United States)

    Ezcurra, Marina; Walker, Denise S.; Beets, Isabel; Swoboda, Peter

    2016-01-01

    Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways. PMID:26985027

  7. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Institute of Scientific and Technical Information of China (English)

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  8. Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse.

    Science.gov (United States)

    Soares, Helena; Henriques, Ricardo; Sachse, Martin; Ventimiglia, Leandro; Alonso, Miguel A; Zimmer, Christophe; Thoulouze, Maria-Isabel; Alcover, Andrés

    2013-10-21

    How the vesicular traffic of signaling molecules contributes to T cell receptor (TCR) signal transduction at the immunological synapse remains poorly understood. In this study, we show that the protein tyrosine kinase Lck, the TCRζ subunit, and the adapter LAT traffic through distinct exocytic compartments, which are released at the immunological synapse in a differentially regulated manner. Lck vesicular release depends on MAL protein. Synaptic Lck, in turn, conditions the calcium- and synaptotagmin-7-dependent fusion of LAT and TCRζ containing vesicles. Fusion of vesicles containing TCRζ and LAT at the synaptic membrane determines not only the nanoscale organization of phosphorylated TCRζ, ZAP70, LAT, and SLP76 clusters but also the presence of phosphorylated LAT and SLP76 in interacting signaling nanoterritories. This mechanism is required for priming IL-2 and IFN-γ production and may contribute to fine-tuning T cell activation breadth in response to different stimulatory conditions.

  9. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans.

    Science.gov (United States)

    Ezcurra, Marina; Walker, Denise S; Beets, Isabel; Swoboda, Peter; Schafer, William R

    2016-03-16

    Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways.

  10. The Effects of the Active Hypoxia to the Speech Signal Inharmonicity

    Directory of Open Access Journals (Sweden)

    Z. N. Milivojevic

    2014-06-01

    Full Text Available When the people are climbing on the mountain, they are exposed to decreased oxygen concentration in the tissue, which is commonly called the active hypoxia. This paper addressed the problem of an acute hypoxia that affects the speech signal at the altitude up to 2500 m. For the experiment, the speech signal database that contains the articulation of vowels was recorded at different alti¬tudes. This speech signal was processed by the originally developed algorithm, which extracted the fundamental frequency and the inharmonicity coefficient. Then, they were subjected to the analysis in order to derive the effects of the acute hypoxia. The results showed that the hypoxia level can be determined by the change of the inharmonicity coefficient. Accordingly, the degree of hypoxia can be estimated.

  11. [Acupuncture-moxibustion and mitogen-activated protein kinase signal transduction pathways].

    Science.gov (United States)

    Tiano, Shen; Zhong-Ren, Li

    2012-03-01

    The Literatures on mechanism of acupuncture from the aspect of mitogen-activated protein kinase (MAPK) signal transduction pathways are analyzed in this paper. And the result shows that many acupuncture effects are closely related with the regulation of MAPK signal transduction pathway. However, the current studies only cover limited aspects, and there problems still existed in the experiment designation. Acupuncture and electroacupuncture are often adopted for the treatment group, while moxibustion is not applied for most of them. There are not unified wave model, frequency and stimulation period for electroacupuncture. And the studies still remain in simple confirmation and proper inference. In the future, the domain of researches should be further wid ened and the experiment designation further perfected. Therefore, the therapeutic effect of acupuncture in clinic will be greatly improved through researches on MAPK signal transduction pathway and the production mechanism of acupuncture effect.

  12. Putamen Activation Represents an Intrinsic Positive Prediction Error Signal for Visual Search in Repeated Configurations.

    Science.gov (United States)

    Sommer, Susanne; Pollmann, Stefan

    2016-01-01

    We investigated fMRI responses to visual search targets appearing at locations that were predicted by the search context. Based on previous work in visual category learning we expected an intrinsic reward prediction error signal in the putamen whenever the target appeared at a location that was predicted with some degree of uncertainty. Comparing target appearance at locations predicted with 50% probability to either locations predicted with 100% probability or unpredicted locations, increased activation was observed in left posterior putamen and adjacent left posterior insula. Thus, our hypothesis of an intrinsic prediction error-like signal was confirmed. This extends the observation of intrinsic prediction error-like signals, driven by intrinsic rather than extrinsic reward, to memory-driven visual search.

  13. Putamen Activation Represents an Intrinsic Positive Prediction Error Signal for Visual Search in Repeated Configurations

    Science.gov (United States)

    Sommer, Susanne; Pollmann, Stefan

    2016-01-01

    We investigated fMRI responses to visual search targets appearing at locations that were predicted by the search context. Based on previous work in visual category learning we expected an intrinsic reward prediction error signal in the putamen whenever the target appeared at a location that was predicted with some degree of uncertainty. Comparing target appearance at locations predicted with 50% probability to either locations predicted with 100% probability or unpredicted locations, increased activation was observed in left posterior putamen and adjacent left posterior insula. Thus, our hypothesis of an intrinsic prediction error-like signal was confirmed. This extends the observation of intrinsic prediction error-like signals, driven by intrinsic rather than extrinsic reward, to memory-driven visual search. PMID:27867436

  14. Activation of extracellular signal-regulated kinase but not of p38 mitogen-activated protein kinase pathways in lymphocytes requires allosteric activation of SOS.

    Science.gov (United States)

    Jun, Jesse E; Yang, Ming; Chen, Hang; Chakraborty, Arup K; Roose, Jeroen P

    2013-06-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation.

  15. Activation of Signal Transducer and Activator of Transcription 5 (STAT5) in Splenocyte Proliferation of Asthma Mice Induced by Ovalbumin

    Institute of Scientific and Technical Information of China (English)

    Guoping Li; Zhigang Liu; Peixing Ran; Jing Qiu; Nanshan Zhong

    2004-01-01

    To investigate the role of signal transducer and transcriptional activator 5 (STAT5) activated in ovalbumin (OVA)-induced splenocyte proliferation of asthma mice, an asthma mouse model was set up by intraperitoneal injection and aspiration of OVA with nebulizer. The proliferation of splenocytes isolated from the asthma mice was detected by [3H] thymidine incorporation. The phosphorytation of STAT5 was examined by Western blotting and STAT5-DNA binding was measured by electrophoretic mobility shift assay (EMSA). OVA could pronouncedly induce the splenocyte proliferation of asthma mice in a dose-dependent manner compared with control groups. Phosphorylation of STAT5 and STAT5-DNA binding were observed in splenocytes from asthma mice induced by OVA at 1 h and 3 h. These results indicated that STAT5 signal pathway played an important role in lymphocyte proliferation of asthma mice induced by OVA. Cellular & Molecular Immunology.2004;1(6):471-474.

  16. Cholesterol selectively regulates IL-5 induced mitogen activated protein kinase signaling in human eosinophils.

    Directory of Open Access Journals (Sweden)

    Mandy E Burnham

    Full Text Available Eosinophils function contributes to human allergic and autoimmune diseases, many of which currently lack curative treatment. Development of more effective treatments for eosinophil-related diseases requires expanded understanding of eosinophil signaling and biology. Cell signaling requires integration of extracellular signals with intracellular responses, and is organized in part by cholesterol rich membrane microdomains (CRMMs, commonly referred to as lipid rafts. Formation of these organizational membrane domains is in turn dependent upon the amount of available cholesterol, which can fluctuate widely with a variety of disease states. We tested the hypothesis that manipulating membrane cholesterol content in primary human peripheral blood eosinophils (PBEos would selectively alter signaling pathways that depend upon membrane-anchored signaling proteins localized within CRMMs (e.g., mitogen activated protein kinase [MAPK] pathway, while not affecting pathways that signal through soluble proteins, like the Janus Kinase/Signal Transducer and Activator of Transcription [JAK/STAT] pathway. Cholesterol levels were increased or decreased utilizing cholesterol-chelating methyl-β-cyclodextrin (MβCD, which can either extract membrane cholesterol or add exogenous membrane cholesterol depending on whether MβCD is preloaded with cholesterol. Human PBEos were pretreated with MβCD (cholesterol removal or MβCD+Cholesterol (MβCD+Chol; cholesterol delivery; subsequent IL-5-stimulated signaling and physiological endpoints were assessed. MβCD reduced membrane cholesterol in PBEos, and attenuated an IL-5-stimulated p38 and extracellular-regulated kinase 1/2 phosphorylation (p-p38, p-ERK1/2, and an IL-5-dependent increase in interleukin-1β (IL-1β mRNA levels. In contrast, MβCD+Chol treatment elevated PBEos membrane cholesterol levels and basal p-p38, but did not alter IL-5-stimulated phosphorylation of ERK1/2, STAT5, or STAT3. Furthermore, M

  17. Stretch activates human myometrium via ERK, caldesmon and focal adhesion signaling.

    Directory of Open Access Journals (Sweden)

    Yunping Li

    Full Text Available An incomplete understanding of the molecular mechanisms responsible for myometrial activation from the quiescent pregnant state to the active contractile state during labor has hindered the development of effective therapies for preterm labor. Myometrial stretch has been implicated clinically in the initiation of labor and the etiology of preterm labor, but the molecular mechanisms involved in the human have not been determined. We investigated the mechanisms by which gestation-dependent stretch contributes to myometrial activation, by using human uterine samples from gynecologic hysterectomies and Cesarean sections. Here we demonstrate that the Ca requirement for activation of the contractile filaments in human myometrium increases with caldesmon protein content during gestation and that an increase in caldesmon phosphorylation can reverse this inhibitory effect during labor. By using phosphotyrosine screening and mass spectrometry of stretched human myometrial samples, we identify 3 stretch-activated focal adhesion proteins, FAK, p130Cas, and alpha actinin. FAK-Y397, which signals integrin engagement, is constitutively phosphorylated in term human myometrium whereas FAK-Y925, which signals downstream ERK activation, is phosphorylated during stretch. We have recently identified smooth muscle Archvillin (SmAV as an ERK regulator. A newly produced SmAV-specific antibody demonstrates gestation-specific increases in SmAV protein levels and stretch-specific increases in SmAV association with focal adhesion proteins. Thus, whereas increases in caldesmon levels suppress human myometrium contractility during pregnancy, stretch-dependent focal adhesion signaling, facilitated by the ERK activator SmAV, can contribute to myometrial activation. These results suggest that focal adhesion proteins may present new targets for drug discovery programs aimed at regulation of uterine contractility.

  18. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades

    Science.gov (United States)

    Liu, Siqi; Chen, Jueqi; Cai, Xin; Wu, Jiaxi; Chen, Xiang; Wu, You-Tong; Sun, Lijun; Chen, Zhijian J

    2013-01-01

    RNA virus infections are detected by the RIG-I family of receptors, which induce type-I interferons through the mitochondrial protein MAVS. MAVS forms large prion-like polymers that activate the cytosolic kinases IKK and TBK1, which in turn activate NF-κB and IRF3, respectively, to induce interferons. Here we show that MAVS polymers recruit several TRAF proteins, including TRAF2, TRAF5, and TRAF6, through distinct TRAF-binding motifs. Mutations of these motifs that disrupted MAVS binding to TRAFs abrogated its ability to activate IRF3. IRF3 activation was also abolished in cells lacking TRAF2, 5, and 6. These TRAF proteins promoted ubiquitination reactions that recruited NEMO to the MAVS signaling complex, leading to the activation of IKK and TBK1. These results delineate the mechanism of MAVS signaling and reveal that TRAF2, 5, and 6, which are normally associated with NF-κB activation, also play a crucial role in IRF3 activation in antiviral immune responses. DOI: http://dx.doi.org/10.7554/eLife.00785.001 PMID:23951545

  19. Chloroquine inhibits human CD4+ T-cell activation by AP-1 signaling modulation

    Science.gov (United States)

    Schmidt, Ralf L. J.; Jutz, Sabrina; Goldhahn, Katrin; Witzeneder, Nadine; Gerner, Marlene C.; Trapin, Doris; Greiner, Georg; Hoermann, Gregor; Steiner, Guenter; Pickl, Winfried F.; Burgmann, Heinz; Steinberger, Peter; Ratzinger, Franz; Schmetterer, Klaus G.

    2017-01-01

    Chloroquine (CQ) is widely used as an anti-inflammatory therapeutic for rheumatic diseases. Although its modes of action on the innate immune system are well described, there is still insufficient knowledge about its direct effects on the adaptive immune system. Thus, we evaluated the influence of CQ on activation parameters of human CD4+ T-cells. CQ directly suppressed proliferation, metabolic activity and cytokine secretion of T-cells following anti-CD3/anti-CD28 activation. In contrast, CQ showed no effect on up-regulation of T-cell activation markers. CQ inhibited activation of all T helper cell subsets, although IL-4 and IL-13 secretion by Th2 cells were less influenced compared to other Th-specific cytokines. Up to 10 μM, CQ did not reduce cell viability, suggesting specific suppressive effects on T-cells. These properties of CQ were fully reversible in re-stimulation experiments. Analyses of intracellular signaling showed that CQ specifically inhibited autophagic flux and additionally activation of AP-1 by reducing phosphorylation of c-JUN. This effect was mediated by inhibition of JNK catalytic activity. In summary, we characterized selective and reversible immunomodulatory effects of CQ on human CD4+ T-cells. These findings provide new insights into the biological actions of JNK/AP-1 signaling in T-cells and may help to expand the therapeutic spectrum of CQ. PMID:28169350

  20. Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling

    Directory of Open Access Journals (Sweden)

    Irvine Kenneth D

    2008-01-01

    Full Text Available Abstract Background O-fucosyltransferase1 (OFUT1 is a conserved ER protein essential for Notch signaling. OFUT1 glycosylates EGF domains, which can then be further modified by the N-acetylglucosaminyltransferase Fringe. OFUT1 also possesses a chaperone activity that promotes the folding and secretion of Notch. Here, we investigate the respective contributions of these activities to Notch signaling in Drosophila. Results We show that expression of an isoform lacking fucosyltransferase activity, Ofut1R245A, rescues the requirement for Ofut1 in embryonic neurogenesis. Lack of requirement for O-fucosylation is further supported by the absence of embryonic phenotypes in Gmd mutants, which lack all forms of fucosylation. Requirements for O-fucose during imaginal development were evaluated by characterizing clones of cells expressing only Ofut1R245A. These clones phenocopy fringe mutant clones, indicating that the absence of O-fucose is functionally equivalent to the absence of elongated O-fucose. Conclusion Our results establish that Notch does not need to be O-fucosylated for fringe-independent Notch signaling in Drosophila; the chaperone activity of OFUT1 is sufficient for the generation of functional Notch.

  1. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  2. Macroglia-Microglia Interactions via TSPO Signaling Regulates Microglial Activation in the Mouse Retina

    Science.gov (United States)

    Wang, Minhua; Wang, Xu; Zhao, Lian; Ma, Wenxin; Rodriguez, Ignacio R.; Fariss, Robert N.

    2014-01-01

    Chronic retinal inflammation in the form of activated microglia and macrophages are implicated in the etiology of neurodegenerative diseases of the retina, including age-related macular degeneration, diabetic retinopathy, and glaucoma. However, molecular biomarkers and targeted therapies for immune cell activation in these disorders are currently lacking. To address this, we investigated the involvement and role of translocator protein (TSPO), a biomarker of microglial and astrocyte gliosis in brain degeneration, in the context of retinal inflammation. Here, we find that TSPO is acutely and specifically upregulated in retinal microglia in separate mouse models of retinal inflammation and injury. Concomitantly, its endogenous ligand, diazepam-binding inhibitor (DBI), is upregulated in the macroglia of the mouse retina such as astrocytes and Müller cells. In addition, we discover that TSPO-mediated signaling in microglia via DBI-derived ligands negatively regulates features of microglial activation, including reactive oxygen species production, TNF-α expression and secretion, and microglial proliferation. The inducibility and effects of DBI-TSPO signaling in the retina reveal a mechanism of coordinated macroglia-microglia interactions, the function of which is to limit the magnitude of inflammatory responses after their initiation, facilitating a return to baseline quiescence. Our results indicate that TSPO is a promising molecular marker for imaging inflammatory cell activation in the retina and highlight DBI-TSPO signaling as a potential target for immodulatory therapies. PMID:24599476

  3. Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease

    Directory of Open Access Journals (Sweden)

    Natalie Sampson

    2014-01-01

    Full Text Available Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGFβ is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes recent in vitro and in vivo data demonstrating that TGFβ-induced myofibroblast differentiation is driven by a prooxidant shift in redox homeostasis. Elevated NADPH oxidase 4 (NOX4-derived hydrogen peroxide (H2O2 supported by concomitant decreases in nitric oxide (NO signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H2O2 and NO signaling regulates myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of different degenerative fibrotic disorders.

  4. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol.

    Science.gov (United States)

    Pektas, Mehmet Bilgehan; Koca, Halit Bugra; Sadi, Gokhan; Akar, Fatma

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin signaling including IR, IRS-1, IRS-2, Akt, PI3K, eNOS, mTOR, and PPARγ, despite induction of proinflammatory markers, iNOS, TNFα, IL-1β, IL-18, MDA, and ALT, as well as anti-inflammatory factors, IL-10 and Nrf2 in adipose tissues from males and females. Total and free testosterone concentrations of adipose tissues were impaired in males but increased in females, although there were no changes in their blood levels. Resveratrol supplementation markedly restored the levels of MDA, IL6, IL-10, and IL-18, as well as iNOS, Nrf2, and PI3K mRNA, in adipose tissues of both genders. Dietary fructose activates both insulin signaling and inflammatory pathway in the adipose tissues of male and female rats proposing no correlation between the tissue insulin signaling and inflammation. Resveratrol has partly modulatory effects on fructose-induced changes.

  5. Isoorientin reverts TNF-α-induced insulin resistance in adipocytes activating the insulin signaling pathway.

    Science.gov (United States)

    Alonso-Castro, Angel Josabad; Zapata-Bustos, Rocio; Gómez-Espinoza, Guadalupe; Salazar-Olivo, Luis A

    2012-11-01

    Isoorientin (ISO) is a plant C-glycosylflavonoid with purported antidiabetic effects but unexplored mechanisms of action. To gain insight into its antidiabetic mechanisms, we assayed nontoxic ISO concentrations on the 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2-deoxy-d-glucose (2-NBDG) uptake by murine 3T3-F442A and human sc adipocytes. In insulin-sensitive adipocytes, ISO stimulated the 2-NBDG uptake by 210% (murine) and 67% (human), compared with insulin treatment. Notably, ISO also induced 2-NBDG uptake in murine (139%) and human (60%) adipocytes made resistant to insulin by treatment with TNF-α, compared with the incorporation induced in these cells by rosiglitazone. ISO induction of glucose uptake in adipocytes was abolished by inhibitors of the insulin signaling pathway. These inhibitors also blocked the proper phosphorylation of insulin signaling pathway components induced by ISO in both insulin-sensitive and insulin-resistant adipocytes. Additionally, ISO stimulated the transcription of genes encoding components of insulin signaling pathway in murine insulin-sensitive and insulin-resistant adipocytes. In summary, we show here that ISO exerts its antidiabetic effects by activating the insulin signaling pathway in adipocytes, reverts the insulin resistance caused in these cells by TNF-α by stimulating the proper phosphorylation of proteins in this signaling pathway, and induces the expression of genes encoding these proteins.

  6. Notch Signaling Molecules Activate TGF-β in Rat Mesangial Cells under High Glucose Conditions

    Directory of Open Access Journals (Sweden)

    Li Liu

    2013-01-01

    Full Text Available The involvement of the Notch signaling pathway in the cellular differentiation of the mammalian kidney is established. Recently, the dysregulation of Notch signaling molecules has been identified in acute and chronic renal injuries, fibrosis models, and diabetic kidney biopsies. The canonical Notch ligand , Jagged1, is upregulated in a transforming growth factor-beta- (TGF-β- dependent manner during chronic kidney disease. TGF-β, a central mediator of renal fibrosis, also is a major contributor to the development of diabetic nephropathy. To explore the roles and possible mechanisms of Notch signaling molecules in the pathogenesis of diabetic nephropathy, we exposed cultured rat mesangial cells to a γ-secretase inhibitor (DAPT or high glucose and measured the expression of Notch signaling molecules and the fibrosis index. Notch pathway-related molecules, TGF-β, and fibronectin increased with exposure to high glucose and decreased with DAPT treatment. Our results suggest that the Notch signaling pathway may precipitate diabetic nephropathy via TGF-β activation.

  7. Notch Signaling Is Associated With ALDH Activity And An Aggressive Metastatic Phenotype In Murine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Xiaodong eMu

    2013-06-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone, and pulmonary metastatic disease accounts for nearly all mortality. However, little is known about the biochemical signaling alterations that drive the progression of metastatic disease. Two murine OS cell populations, K7M2 and K12, are clonally related but differ significantly in their metastatic phenotypes and therefore represent excellent tools for studying metastatic OS molecular biology. K7M2 cells are highly metastatic, whereas K12 cells display limited metastatic potential. Here we report that the expression of Notch genes (Notch1, 2, 4 are up-regulated, including downstream targets Hes1 and Stat3, in the highly metastatic K7M2 cells compared to the less metastatic K12 cells, indicating that the Notch signaling pathway is more active in K7M2 cells. We have previously described that K7M2 cells exhibit higher levels of aldehyde dehydrogenase (ALDH activity. Here we report that K7M2 cell ALDH activity is reduced with Notch inhibition, suggesting that ALDH activity may be regulated in part by the Notch pathway. Notch signaling is also associated with increased resistance to oxidative stress, migration, invasion, and VEGF expression in vitro. However, Notch inhibition did not significantly alter K7M2 cell proliferation. In conclusion, we provide evidence that Notch signaling is associated with ALDH activity and increased metastatic behavior in OS cells. Both Notch and ALDH are putative molecular targets for the treatment and prevention of OS metastasis.

  8. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    Science.gov (United States)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  9. IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo.

    Science.gov (United States)

    Scheibe, Kristina; Backert, Ingo; Wirtz, Stefan; Hueber, Axel; Schett, Georg; Vieth, Michael; Probst, Hans Christian; Bopp, Tobias; Neurath, Markus F; Neufert, Clemens

    2017-05-01

    Interleukin (IL)-36R signalling plays a proinflammatory role in different organs including the skin, but the expression of IL-36R ligands and their molecular function in intestinal inflammation are largely unknown. We studied the characteristics of IL-36R ligand expression in IBDs and experimental colitis. The functional role of IL-36R signalling in the intestine was addressed in experimental colitis and wound healing models in vivo by using mice with defective IL-36R signalling (IL-36R-/-) or Myd88, neutralising anti-IL-36R antibodies, recombinant IL-36R ligands and RNA-seq genome expression analysis. Expression of IL-36α and IL-36γ was significantly elevated in active human IBD and experimental colitis. While IL-36γ was predominantly detected in nuclei of the intestinal epithelium, IL-36α was mainly found in the cytoplasm of CD14(+) inflammatory macrophages. Functional studies showed that defective IL-36R signalling causes high susceptibility to acute dextran sodium sulfate colitis and impairs wound healing. Mechanistically, IL-36R ligands released upon mucosal damage activated IL-36R(+) colonic fibroblasts via Myd88 thereby inducing expression of chemokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-6. Moreover, they induced proliferation of intestinal epithelial cells (IECs) and expression of the antimicrobial protein lipocalin 2. Finally, treatment of experimental intestinal wounds with IL-36R ligands significantly accelerated mucosal healing in vivo. IL-36R signalling is activated upon intestinal damage, stimulates IECs and fibroblasts and drives mucosal healing. Modulation of the IL-36R pathway emerges as a potential therapeutic strategy for induction of mucosal healing in IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia.

    Science.gov (United States)

    Matsushita, Masaki; Kitoh, Hiroshi; Ohkawara, Bisei; Mishima, Kenichi; Kaneko, Hiroshi; Ito, Mikako; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2013-01-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS) cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8) cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP) as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias.

  11. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia.

    Directory of Open Access Journals (Sweden)

    Masaki Matsushita

    Full Text Available Achondroplasia (ACH is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8 cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias.

  12. Polysaccharides Purified from Wild Cordyceps Activate FGF2/FGFR1c Signaling

    Institute of Scientific and Technical Information of China (English)

    ZENG Yangyang; HAN Zhangrun; YU Guangli; HAO Jiejie; ZHANG Lijuan

    2015-01-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when ex-posed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chi-nese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also fromCordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccha-rides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  13. Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice.

    Science.gov (United States)

    Liang, Hai Po H; Kerschen, Edward J; Basu, Sreemanti; Hernandez, Irene; Zogg, Mark; Jia, Shuang; Hessner, Martin J; Toso, Raffaella; Rezaie, Alireza R; Fernández, José A; Camire, Rodney M; Ruf, Wolfram; Griffin, John H; Weiler, Hartmut

    2015-11-19

    The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage-specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection.

  14. Joint spatial-spectral feature space clustering for speech activity detection from ECoG signals.

    Science.gov (United States)

    Kanas, Vasileios G; Mporas, Iosif; Benz, Heather L; Sgarbas, Kyriakos N; Bezerianos, Anastasios; Crone, Nathan E

    2014-04-01

    Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication.

  15. Predicting the effect of urban noise on the active space of avian vocal signals.

    Science.gov (United States)

    Parris, Kirsten M; McCarthy, Michael A

    2013-10-01

    Urbanization changes the physical environment of nonhuman species but also markedly changes their acoustic environment. Urban noise interferes with acoustic communication in a range of animals, including birds, with potentially profound impacts on fitness. However, a mechanistic theory to predict which species of birds will be most affected by urban noise is lacking. We develop a mathematical model to predict the decrease in the active space of avian vocal signals after moving from quiet forest habitats to noisy urban habitats. We find that the magnitude of the decrease is largely a function of signal frequency. However, this relationship is not monotonic. A metaregression of observed increases in the frequency of birdsong in urban noise supports the model's predictions for signals with frequencies between 1.5 and 4 kHz. Using results of the metaregression and the model described above, we show that the expected gain in active space following observed frequency shifts is up to 12% and greatest for birds with signals at the lower end of this frequency range. Our generally applicable model, along with three predictions regarding the behavioral and population-level responses of birds to urban noise, represents an important step toward a theory of acoustic communication in urban habitats.

  16. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion

    Science.gov (United States)

    Fan, Xueping; Yang, Hongying; Kumar, Sudhir; Tumelty, Kathleen E.; Pisarek-Horowitz, Anna; Sharma, Richa; Chan, Stefanie; Tyminski, Edyta; Shamashkin, Michael; Belghasem, Mostafa; Henderson, Joel M.; Coyle, Anthony J.; Berasi, Stephen P.

    2016-01-01

    The repulsive guidance cue SLIT2 and its receptor ROBO2 are required for kidney development and podocyte foot process structure, but the SLIT2/ROBO2 signaling mechanism regulating podocyte function is not known. Here we report that a potentially novel signaling pathway consisting of SLIT/ROBO Rho GTPase activating protein 1 (SRGAP1) and nonmuscle myosin IIA (NMIIA) regulates podocyte adhesion downstream of ROBO2. We found that the myosin II regulatory light chain (MRLC), a subunit of NMIIA, interacts directly with SRGAP1 and forms a complex with ROBO2/SRGAP1/NMIIA in the presence of SLIT2. Immunostaining demonstrated that SRGAP1 is a podocyte protein and is colocalized with ROBO2 on the basal surface of podocytes. In addition, SLIT2 stimulation inhibits NMIIA activity, decreases focal adhesion formation, and reduces podocyte attachment to collagen. In vivo studies further showed that podocyte-specific knockout of Robo2 protects mice from hypertension-induced podocyte detachment and albuminuria and also partially rescues the podocyte-loss phenotype in Myh9 knockout mice. Thus, we have identified SLIT2/ROBO2/SRGAP1/NMIIA as a potentially novel signaling pathway in kidney podocytes, which may play a role in regulating podocyte adhesion and attachment. Our findings also suggest that SLIT2/ROBO2 signaling might be a therapeutic target for kidney diseases associated with podocyte detachment and loss. PMID:27882344

  17. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Leonor ePuerto-Galán

    2013-08-01

    Full Text Available Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species (ROS, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs, thiol-based peroxidases able to reduce hydrogen- and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  18. Bovine lactoferrin counteracts Toll-like receptor mediated activation signals in antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Patrizia Puddu

    Full Text Available Lactoferrin (LF, a key element in mammalian immune system, plays pivotal roles in host defence against infection and excessive inflammation. Its protective effects range from direct antimicrobial activities against a large panel of microbes, including bacteria, viruses, fungi and parasites, to antinflammatory and anticancer activities. In this study, we show that monocyte-derived dendritic cells (MD-DCs generated in the presence of bovine LF (bLF fail to undergo activation by up-modulating CD83, co-stimulatory and major histocompatibility complex molecules, and cytokine/chemokine secretion. Moreover, these cells are weak activators of T cell proliferation and retain antigen uptake activity. Consistent with an impaired maturation, bLF-MD-DC primed T lymphocytes exhibit a functional unresponsiveness characterized by reduced expression of CD154 and impaired expression of IFN-γ and IL-2. The observed imunosuppressive effects correlate with an increased expression of molecules with negative regulatory functions (i.e. immunoglobulin-like transcript 3 and programmed death ligand 1, indoleamine 2,3-dioxygenase, and suppressor of cytokine signaling-3. Interestingly, bLF-MD-DCs produce IL-6 and exhibit constitutive signal transducer and activator of transcription 3 activation. Conversely, bLF exposure of already differentiated MD-DCs completely fails to induce IL-6, and partially inhibits Toll-like receptor (TLR agonist-induced activation. Cell-specific differences in bLF internalization likely account for the distinct response elicited by bLF in monocytes versus immature DCs, providing a mechanistic base for its multiple effects. These results indicate that bLF exerts a potent anti-inflammatory activity by skewing monocyte differentiation into DCs with impaired capacity to undergo activation and to promote Th1 responses. Overall, these bLF-mediated effects may represent a strategy to block excessive DC activation upon TLR-induced inflammation, adding

  19. Commitment to the CD4 lineage mediated by extracellular signal-related kinase mitogen-activated protein kinase and lck signaling.

    Science.gov (United States)

    Sharp, L L; Hedrick, S M

    1999-12-15

    The development of T cells results in a concordance between the specificity of the TCR for MHC class I and class II molecules and the expression of CD8 and CD4 coreceptors. Based on analogy to simple metazoan models of organ development and lineage commitment, we sought to determine whether extracellular signal-related kinase (Erk) mitogen-activated protein (MAP) kinase pathway signaling acts as an inductive signal for the CD4 lineage. Here, we show that, by altering the intracellular signaling involving the Erk/MAP kinase pathway, T cells with specificity for MHC class I can be diverted to express CD4, and, conversely, T cells with specificity for MHC class II can be diverted to express CD8. Furthermore, we find that activation of the src-family tyrosine kinase, p56lck is an upstream mediator of lineage commitment. These results suggest a simple mechanism for lineage commitment in T cell development.

  20. Reactive oxygen species in signalling the transcriptional activation of WIPK expression in tobacco.

    Science.gov (United States)

    Xu, Juan; Yang, Kwang-Yeol; Yoo, Seung Jin; Liu, Yidong; Ren, Dongtao; Zhang, Shuqun

    2014-07-01

    Plant mitogen-activated protein kinases represented by tobacco WIPK (wounding-induced protein kinase) and its orthologs in other species are unique in their regulation at transcriptional level in response to stress and pathogen infection. We previously demonstrated that transcriptional activation of WIPK is essential for induced WIPK activity, and activation of salicylic acid-induced protein kinase (SIPK) by the constitutively active NtMEK2(DD) is sufficient to induce WIPK gene expression. Here, we report that the effect of SIPK on WIPK gene expression is mediated by reactive oxygen species (ROS). Using a combination of pharmacological and gain-of-function transgenic approaches, we studied the relationship among SIPK activation, WIPK gene activation in response to fungal cryptogein, light-dependent ROS generation in chloroplasts, and ROS generated via NADPH oxidase. In the conditional gain-of-function GVG-NtMEK2(DD) transgenic tobacco, induction of WIPK expression is dependent on the ROS generation in chloroplasts. Consistently, methyl viologen, an inducer of ROS generation in chloroplasts, highly activated WIPK expression. In addition to chloroplast-originated ROS, H(2)O(2) generated from the cell-surface NADPH oxidase could also activate WIPK gene expression, and inhibition of cryptogein-induced ROS generation also abolished WIPK gene activation. Our data demonstrate that WIPK gene activation is mediated by ROS, which provides a mechanism by which ROS influence cellular signalling processes in plant stress/defence response.

  1. Lifelong physical activity preserves functional sympatholysis and purinergic signalling in the ageing human leg

    DEFF Research Database (Denmark)

    Mortensen, S P; Nyberg, Michael; Winding, K;

    2012-01-01

    and exercise hyperaemia in the leg and whether ATP signalling is altered by ageing and physical activity. Leg haemodynamics, interstitial [ATP] and P2Y(2) receptor content was determined in eight young (23 ± 1 years), eight lifelong sedentary elderly (66 ± 2 years) and eight lifelong active elderly (62 ± 2...... not alter the vasodilator response to ATP infusion in any of the three groups. Plasma [noradrenaline] increased more during tyramine infusion in both elderly groups compared to young (P physically active lifestyle can maintain an intact functional sympatholysis during exercise......Ageing is associated with an impaired ability to modulate sympathetic vasoconstrictor activity (functional sympatholysis) and a reduced exercise hyperaemia. The purpose of this study was to investigate whether a physically active lifestyle can offset the impaired functional sympatholysis...

  2. Nuclear Factor-κB: Activation and Regulation during Toll-like Receptor Signaling

    Institute of Scientific and Technical Information of China (English)

    Ruaidhrí J. Carmody; Youhai H. Chen

    2007-01-01

    Toll-like receptors (TLRs) recognize distinct microbial components to initiate the innate and adaptive immune responses. TLR activation culminates in the expression of appropriate pro-inflammatory and immunomodulatory factors to meet pathogenic challenges. The transcription factor NF-κB is the master regulator of all TLR-induced responses and its activation is the pivotal event in TLR-mediated activation of the innate immune response. Many of the key molecular events required for TLR-induced NF-κB activation have been elucidated. However, much remain to be learned about the ability of TLRs to generate pathogen-specific responses using a limited number of transcription factors. This review will focus on our current understanding of NF-κB activation by TLRs and potential mechanisms for achieving a signal-specific response through NF-κB.

  3. Multifractal analysis of sEMG signal of the complex muscle activity

    CERN Document Server

    Trybek, Paulina; Nowakowski, Michal; Machura, Lukasz

    2014-01-01

    The neuro--muscular activity while working on laparoscopic trainer is the example of the complex (and complicated) movement. This class of problems are still waiting for the proper theory which will be able to describe the actual properties of the muscle performance. Here we consider the signals obtained from three states of muscle activity: at maximum contraction, during complex movements (at actual work) and in the completely relaxed state. In addition the difference between a professional and an amateur is presented. The Multifractal Detrended Fluctuation Analysis was used in description of the properties the kinesiological surface electromyographic signals (sEMG). We demonstrate the dissimilarity between each state of work for the selected group of muscles as well as between trained and untrained individuals.

  4. The Activity of Surface Electromyographic Signal of Selected Muscles during Classic Rehabilitation Exercise

    Directory of Open Access Journals (Sweden)

    Jinzhuang Xiao

    2016-01-01

    Full Text Available Objectives. Prone bridge, unilateral bridge, supine bridge, and bird-dog are classic rehabilitation exercises, which have been advocated as effective ways to improve core stability among healthy individuals and patients with low back pain. The aim of this study was to investigate the activity of seven selected muscles during rehabilitation exercises through the signal of surface electromyographic. Approaches. We measured the surface electromyographic signals of four lower limb muscles, two abdominal muscles, and one back muscle during rehabilitation exercises of 30 healthy students and then analyzed its activity level using the median frequency method. Results. Different levels of muscle activity during the four rehabilitation exercises were observed. The prone bridge and unilateral bridge caused the greatest muscle fatigue; however, the supine bridge generated the lowest muscle activity. There was no significant difference (P>0.05 between left and right body side muscles in the median frequency slope during the four rehabilitation exercises of seven muscles. Conclusions. The prone bridge can affect the low back and lower limb muscles of most people. The unilateral bridge was found to stimulate muscles much more active than the supine bridge. The bird-dog does not cause much fatigue to muscles but can make most selected muscles active.

  5. Activation of NR2A receptors induces ischemic tolerance through CREB signaling.

    Science.gov (United States)

    Terasaki, Yasukazu; Sasaki, Tsutomu; Yagita, Yoshiki; Okazaki, Shuhei; Sugiyama, Yukio; Oyama, Naoki; Omura-Matsuoka, Emi; Sakoda, Saburo; Kitagawa, Kazuo

    2010-08-01

    Previous exposure to a nonlethal ischemic insult protects the brain against subsequent harmful ischemia. N-methyl-D-aspartate (NMDA) receptors are a highly studied target of neuroprotection after ischemia. Recently, NMDA receptor subtypes were implicated in neuronal survival and death. We focused on the contribution of NR2A and cyclic-AMP response element (CRE)-binding protein (CREB) signaling to ischemic tolerance using primary cortical neurons. Ischemia in vitro was modeled by oxygen-glucose deprivation (OGD). Ischemic tolerance was induced by applying 45-mins OGD 24 h before 180-mins OGD. Sublethal OGD also induced cross-tolerance against lethal glutamate and hydrogen peroxide. After sublethal OGD, expression of phosphorylated CREB and CRE transcriptional activity were significantly increased. When CRE activity was inhibited by CREB-S133A, a mutant CREB, ischemic tolerance was abolished. Inhibiting NR2A using NVP-AAM077 attenuated preconditioning-induced neuroprotection and correlated with decreased CRE activity levels. Activating NR2A using bicuculline and 4-aminopiridine induced resistance to lethal ischemia accompanied by elevated CRE activity levels, and this effect was abolished by NVP-AAM077. Elevated brain-derived neurotrophic factor (BDNF) transcriptional activities were observed after sublethal OGD and administration of bicuculline and 4-aminopiridine. NR2A-containing NMDA receptors and CREB signaling have important functions in the induction of ischemic tolerance. This may provide potential novel therapeutic strategies to treat ischemic stroke.

  6. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling

    Science.gov (United States)

    Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling. PMID:27980220

  7. Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Prasad N Paradkar

    2014-04-01

    Full Text Available Despite their importance as vectors of human and livestock diseases, relatively little is known about innate antiviral immune pathways in mosquitoes and other insects. Previous work has shown that Culex Vago (CxVago, which is induced and secreted from West Nile virus (WNV-infected mosquito cells, acts as a functional homolog of interferon, by activating Jak-STAT pathway and limiting virus replication in neighbouring cells. Here we describe the Dicer-2-dependent pathway leading to WNV-induced CxVago activation. Using a luciferase reporter assay, we show that a NF-κB-like binding site in CxVago promoter region is conserved in mosquito species and is responsible for induction of CxVago expression following WNV infection. Using dsRNA-based gene knockdown, we show that the NF-κB ortholog, Rel2, plays significant role in the signaling pathway that activates CxVago in mosquito cells in vitro and in vivo. Using similar approaches, we also show that TRAF, but not TRAF-3, is involved in activation of Rel2 after viral infection. Overall the study shows that a conserved signaling pathway, which is similar to mammalian interferon activation pathway, is responsible for the induction and antiviral activity of CxVago.

  8. Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway.

    Science.gov (United States)

    Paradkar, Prasad N; Duchemin, Jean-Bernard; Voysey, Rhonda; Walker, Peter J

    2014-04-01

    Despite their importance as vectors of human and livestock diseases, relatively little is known about innate antiviral immune pathways in mosquitoes and other insects. Previous work has shown that Culex Vago (CxVago), which is induced and secreted from West Nile virus (WNV)-infected mosquito cells, acts as a functional homolog of interferon, by activating Jak-STAT pathway and limiting virus replication in neighbouring cells. Here we describe the Dicer-2-dependent pathway leading to WNV-induced CxVago activation. Using a luciferase reporter assay, we show that a NF-κB-like binding site in CxVago promoter region is conserved in mosquito species and is responsible for induction of CxVago expression following WNV infection. Using dsRNA-based gene knockdown, we show that the NF-κB ortholog, Rel2, plays significant role in the signaling pathway that activates CxVago in mosquito cells in vitro and in vivo. Using similar approaches, we also show that TRAF, but not TRAF-3, is involved in activation of Rel2 after viral infection. Overall the study shows that a conserved signaling pathway, which is similar to mammalian interferon activation pathway, is responsible for the induction and antiviral activity of CxVago.

  9. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation.

    Science.gov (United States)

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre; Polakowska, Renata

    2014-04-15

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Y(low) stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration.

  10. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Dennis J Grab

    Full Text Available BACKGROUND: Using human brain microvascular endothelial cells (HBMECs as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain. In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs known as protease activated receptors (PARs that might be implicated in calcium signaling by African trypanosomes. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA interference (RNAi we found that in vitro PAR-2 gene (F2RL1 expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%-49% and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Galpha(q with Pasteurella multocida toxin (PMT. PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified. CONCLUSIONS/SIGNIFICANCE: Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Galpha(q-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease.

  11. Functional characterization of protease-activated receptor -1 palmitoylation in receptor signaling and trafficking /

    OpenAIRE

    2014-01-01

    G protein-coupled receptors (GPCRs) are the largest family of signaling receptors that respond to diverse stimuli and regulate many physiological responses. GPCRs elicit their cellular responses by coupling to distinct subtypes of heterotrimeric G-proteins composed of G[alpha] and G[beta][gamma] subunits. Activated GPCRs undergo conformational changes that allow the receptor to exchange GDP for GTP on the G[alpha] subunit, which induces dissociation from the [beta][gamma] subunits and subsequ...

  12. Pleiotropic β-Agonist–Promoted Receptor Conformations and Signals Independent of Intrinsic Activity

    OpenAIRE

    2006-01-01

    β-Agonists used for treatment of obstructive lung disease have a variety of different structures but are typically classified by their intrinsic activities for stimulation of cAMP, and predictions are made concerning other downstream signals based on such a classification. We generated modified β2-adrenergic receptors with insertions of energy donor and acceptor moieties to monitor agonist-promoted conformational changes of the receptor using intramolecular bioluminescence resonance energy tr...

  13. Rho signaling in Entamoeba histolytica modulates actomyosin-dependent activities stimulated during invasive behavior.

    Science.gov (United States)

    Franco-Barraza, Janusz; Zamudio-Meza, Horacio; Franco, Elizabeth; del Carmen Domínguez-Robles, M; Villegas-Sepúlveda, Nicolás; Meza, Isaura

    2006-03-01

    Interaction of Entamoeba histolytica trophozoites with target cells and substrates activates signaling pathways in the parasite. Phosphorylation cascades triggered by phospho-inositide and adenyl-cyclase-dependent pathways modulate reorganization of the actin cytoskeleton to form structures that facilitate adhesion. In contrast, little is known about participation of Rho proteins and Rho signaling in actin rearrangements. We report here the in vivo expression of at least one Rho protein in trophozoites, whose activation induced actin reorganization and actin-myosin interaction. Antibodies to EhRhoA1 recombinant protein mainly localized Rho in the cytosol of nonactivated amoebae, but it was translocated to vesicular membranes and to some extent to the plasma membrane after treatment with lysophosphatidic acid (LPA), a specific agonist of Rho activation. Activated Rho was identified in LPA-treated trophozoites. LPA induced striking polymerization of actin into distinct dynamic structures. Disorganization of these structures by inhibition of Rho effector, Rho-kinase (ROCK), and by ML-7, an inhibitor of myosin light chain kinase dependent phosphorylation of myosin light chain, suggested that the actin structures also contained myosin. LPA stimulated concanavalin-A-mediated formation of caps, chemotaxis, invasion of extracellular matrix substrates, and erythrophagocytosis, but not binding to fibronectin. ROCK inhibition impaired LPA-stimulated functions and to some extent adhesion to fibronectin. Similar results were obtained with ML-7. These data suggest the presence and operation of Rho-signaling pathways in E. histolytica, that together with other, already described, signaling routes modulate actomyosin-dependent motile processes, particularly stimulated during invasive behavior.

  14. TRAIL-Induced Caspase Activation Is a Prerequisite for Activation of the Endoplasmic Reticulum Stress-Induced Signal Transduction Pathways.

    Science.gov (United States)

    Lee, Dae-Hee; Sung, Ki Sa; Guo, Zong Sheng; Kwon, William Taehyung; Bartlett, David L; Oh, Sang Cheul; Kwon, Yong Tae; Lee, Yong J

    2016-05-01

    It is well known that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis can be initially triggered by surface death receptors (the extrinsic pathway) and subsequently amplified through mitochondrial dysfunction (the intrinsic pathway). However, little is known about signaling pathways activated by the TRAIL-induced endoplasmic reticulum (ER) stress response. In this study, we report that TRAIL-induced apoptosis is associated with the endoplasmic reticulum (ER) stress response. Human colorectal carcinoma HCT116 cells were treated with TRAIL and the ER stress-induced signal transduction pathway was investigated. During TRAIL treatment, expression of ER stress marker genes, in particular the BiP (binding immunoglobulin protein) gene, was increased and activation of the PERK (PKR-like ER kinase)-eIF2α (eukaryotic initiation factor 2α)-ATF4 (activating transcription factor 4)-CHOP (CCAAT-enhancer-binding protein homologous protein) apoptotic signal transduction pathway occurred. Experimental data from use of a siRNA (small interfering RNA) technique, caspase inhibitor, and caspase-3-deficient cell line revealed that TRAIL-induced caspase activation is a prerequisite for the TRAIL-induced ER stress response. TRAIL-induced ER stress was triggered by caspase-8-mediated cleavage of BAP31 (B cell receptor-associated protein 31). The involvement of the proapoptotic PERK-CHOP pathway in TRAIL-induced apoptosis was verified by using a PERK knockout (PERK(-/-)) mouse embryo fibroblast (MEF) cell line and a CHOP(-/-) MEF cell line. These results suggest that TRAIL-induced the activation of ER stress response plays a role in TRAIL-induced apoptotic death.

  15. Disintegrins: integrin selective ligands which activate integrin-coupled signaling and modulate leukocyte functions

    Directory of Open Access Journals (Sweden)

    Barja-Fidalgo C.

    2005-01-01

    Full Text Available Extracellular matrix proteins and cell adhesion receptors (integrins play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.

  16. Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling.

    Science.gov (United States)

    Han, Yong-Seok; Lee, Jun Hee; Lee, Sang Hun

    2015-05-01

    We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment activated the Akt signaling pathway, which was inhibited by treatment with an Akt inhibitor. The inhibition of Akt activation reversed the fucoidan-induced decrease in cell proliferation, the induction of G1-phase-associated p21WAF1 expression, and the reduction in cell cycle regulatory protein expression. Intraperitoneal injection of fucoidan reduced tumor volume; this enhanced antitumor efficacy was associated with induction of apoptosis and decreased angiogenesis. These data suggest that the activation of Akt signaling is involved in the growth inhibition of colon cancer cells treated with fucoidan. Thus, fucoidan may serve as a potential therapeutic agent for colon cancer.

  17. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  18. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells.

    Science.gov (United States)

    Freund, Jacquelyn; May, Rebecca M; Yang, Enjun; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K; Kambayashi, Taku

    2016-08-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.

  19. Actin induction during PMA and cAMP-dependent signal pathway activation in Entamoeba histolytica trophozoites.

    Science.gov (United States)

    Ortiz, D; del Carmen Dominguez-Robles, M; Villegas-Sepúlveda, N; Meza, I

    2000-10-01

    Activation of PKC or cAMP-dependent signalling pathways in Entamoeba histolytica triggers the phosphorylation of proteins involved in actin rearrangements necessary for adhesion and locomotion. Analogous motifs to SRE and CRE sequences--known to respond to PMA and cAMP--were identified within the 5' regulatory region (5'RR) of one of the parasite actin genes. These sequences could be involved in the actin transcriptional upregulation reported during signalling. To test this hypothesis, a plasmid containing the 5'RR of the actin gene fused to the bacterial neomycin gene (neo) was used for stable transfection. Expression of neo and endogenous actin was measured after stimulation of transfected amoebae by PMA and dcAMP. It was found that both compounds induced neo and actin expression and showed a co-operative effect in the induction of neo. Induction by PMA or dcAMP failed if the directing amoebic 5'RR lacked SRE and CRE motifs. Transfection of amoebae with plasmid constructs, containing either progressive deletions of the actin 5'RR or site-directed mutations of the SRE and CRE-like motifs, corroborated that these sequences and a co-ordinated participation of PKC- and PKA-activated transcription factors are responsible for the increments in neo and actin mRNAs. In vivo, these PMA and cAMP-response elements could play an important role in regulating actin expression and organization in signalling processes activated during tissue invasion.

  20. Quantitative impedimetric NPY-receptor activation monitoring and signal pathway profiling in living cells.

    Science.gov (United States)

    te Kamp, Verena; Lindner, Ricco; Jahnke, Heinz-Georg; Krinke, Dana; Kostelnik, Katja B; Beck-Sickinger, Annette G; Robitzki, Andrea A

    2015-05-15

    Label-free and non-invasive monitoring of receptor activation and identification of the involved signal pathways in living cells is an ongoing analytic challenge and a great opportunity for biosensoric systems. In this context, we developed an impedance spectroscopy-based system for the activation monitoring of NPY-receptors in living cells. Using an optimized interdigital electrode array for sensitive detection of cellular alterations, we were able for the first time to quantitatively detect the NPY-receptor activation directly without a secondary or enhancer reaction like cAMP-stimulation by forskolin. More strikingly, we could show that the impedimetric based NPY-receptor activation monitoring is not restricted to the Y1-receptor but also possible for the Y2- and Y5-receptor. Furthermore, we could monitor the NPY-receptor activation in different cell lines that natively express NPY-receptors and proof the specificity of the observed impedimetric effect by agonist/antagonist studies in recombinant NPY-receptor expressing cell lines. To clarify the nature of the observed impedimetric effect we performed an equivalent circuit analysis as well as analyzed the role of cell morphology and receptor internalization. Finally, an antagonist based extensive molecular signal pathway analysis revealed small alterations of the actin cytoskeleton as well as the inhibition of at least L-type calcium channels as major reasons for the observed NPY-induced impedance increase. Taken together, our novel impedance spectroscopy based NPY-receptor activation monitoring system offers the opportunity to identify signal pathways as well as for novel versatile agonist/antagonist screening systems for identification of novel therapeutics in the field of obesity and cancer.

  1. cAMP signaling prevents podocyte apoptosis via activation of protein kinase A and mitochondrial fusion.

    Science.gov (United States)

    Li, Xiaoying; Tao, Hua; Xie, Kewei; Ni, Zhaohui; Yan, Yucheng; Wei, Kai; Chuang, Peter Y; He, John Cijiang; Gu, Leyi

    2014-01-01

    Our previous in vitro studies suggested that cyclic AMP (cAMP) signaling prevents adriamycin (ADR) and puromycin aminonucleoside (PAN)-induced apoptosis in podocytes. As cAMP is an important second messenger and plays a key role in cell proliferation, differentiation and cytoskeleton formation via protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac) pathways, we sought to determine the role of PKA or Epac signaling in cAMP-mediated protection of podocytes. In the ADR nephrosis model, we found that forskolin, a selective activator of adenylate cyclase, attenuated albuminuria and improved the expression of podocyte marker WT-1. When podocytes were treated with pCPT-cAMP (a selective cAMP/PKA activator), PKA activation was increased in a time-dependent manner and prevented PAN-induced podocyte loss and caspase 3 activation, as well as a reduction in mitochondrial membrane potential. We found that PAN and ADR resulted in a decrease in Mfn1 expression and mitochondrial fission in podocytes. pCPT-cAMP restored Mfn1 expression in puromycin or ADR-treated podocytes and induced Drp1 phosphorylation, as well as mitochondrial fusion. Treating podocytes with arachidonic acid resulted in mitochondrial fission, podocyte loss and cleaved caspase 3 production. Arachidonic acid abolished the protective effects of pCPT-cAMP on PAN-treated podocytes. Mdivi, a mitochondrial division inhibitor, prevented PAN-induced cleaved caspase 3 production in podocytes. We conclude that activation of cAMP alleviated murine podocyte caused by ADR. PKA signaling resulted in mitochondrial fusion in podocytes, which at least partially mediated the effects of cAMP.

  2. cAMP signaling prevents podocyte apoptosis via activation of protein kinase A and mitochondrial fusion.

    Directory of Open Access Journals (Sweden)

    Xiaoying Li

    Full Text Available Our previous in vitro studies suggested that cyclic AMP (cAMP signaling prevents adriamycin (ADR and puromycin aminonucleoside (PAN-induced apoptosis in podocytes. As cAMP is an important second messenger and plays a key role in cell proliferation, differentiation and cytoskeleton formation via protein kinase A (PKA or exchange protein directly activated by cAMP (Epac pathways, we sought to determine the role of PKA or Epac signaling in cAMP-mediated protection of podocytes. In the ADR nephrosis model, we found that forskolin, a selective activator of adenylate cyclase, attenuated albuminuria and improved the expression of podocyte marker WT-1. When podocytes were treated with pCPT-cAMP (a selective cAMP/PKA activator, PKA activation was increased in a time-dependent manner and prevented PAN-induced podocyte loss and caspase 3 activation, as well as a reduction in mitochondrial membrane potential. We found that PAN and ADR resulted in a decrease in Mfn1 expression and mitochondrial fission in podocytes. pCPT-cAMP restored Mfn1 expression in puromycin or ADR-treated podocytes and induced Drp1 phosphorylation, as well as mitochondrial fusion. Treating podocytes with arachidonic acid resulted in mitochondrial fission, podocyte loss and cleaved caspase 3 production. Arachidonic acid abolished the protective effects of pCPT-cAMP on PAN-treated podocytes. Mdivi, a mitochondrial division inhibitor, prevented PAN-induced cleaved caspase 3 production in podocytes. We conclude that activation of cAMP alleviated murine podocyte caused by ADR. PKA signaling resulted in mitochondrial fusion in podocytes, which at least partially mediated the effects of cAMP.

  3. CFTR impairment upregulates c-Src activity through IL-1β autocrine signaling.

    Science.gov (United States)

    Massip-Copiz, María Macarena; Clauzure, Mariángeles; Valdivieso, Ángel Gabriel; Santa-Coloma, Tomás Antonio

    2017-02-15

    Cystic Fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Previously, we found several genes showing a differential expression in CFDE cells (epithelial cells derived from a CF patient). One corresponded to c-Src; its expression and activity was found increased in CFDE cells, acting as a signaling molecule between the CFTR activity and MUC1 overexpression. Here we report that bronchial IB3-1 cells (CF cells) also showed increased c-Src activity compared to 'CFTR-corrected' S9 cells. In addition, three different Caco-2 cell lines, each stably transfected with a different CFTR-specific shRNAs, displayed increased c-Src activity. The IL-1β receptor antagonist IL1RN reduced the c-Src activity of Caco-2/pRS26 cells (expressing a CFTR-specific shRNA). In addition, increased mitochondrial and cellular ROS levels were detected in Caco-2/pRS26 cells. ROS levels were partially reduced by incubation with PP2 (c-Src inhibitor) or IL1RN, and further reduced by using the NOX1/4 inhibitor GKT137831. Thus, IL-1β→c-Src and IL-1β→NOX signaling pathways appear to be responsible for the production of cellular and mitochondrial ROS in CFTR-KD cells. In conclusion, IL-1β constitutes a new step in the CFTR signaling pathway, located upstream of c-Src, which is stimulated in cells with impaired CFTR activity.

  4. Signal Transducer and Activator of Transcription 3 (STAT3 and Trophoblast Invasion

    Directory of Open Access Journals (Sweden)

    Fitzgerald JS

    2007-01-01

    Full Text Available Human trophoblast cells have the fascinating property of physiological invasiveness into allogenic tissue. The underlying mechanisms, such as extra- and intracellular signalling, are very similar to those abused by a variety of tumours. The main contrasting feature to cancerous cells is the very fundamental ability of trophoblasts to auto-regulate invasion with respect to time and space. Trophoblast cells start invasion into the decidua very shortly after implantation, which approaches a maximum during the first trimester of gestation period. During this period of time, several cytokines from cells of different maternal origin, including NK cells, dendritic cells, stroma cells and endothelial cells, are present which, analogous to the situation in tumours, have the potential to trigger and enhance invasion, migration and proliferation of trophoblast cells. These mainly include interleukin-6 (IL-6, IL-11, Leukaemia Inhibitory Factor (LIF, Hepatocyte Growth Factor (HGF and Insulin-like Growth Factors (IGF. Cytokines, upon binding to their specific receptors present on the trophoblast cells, trigger several intracellular signalling cascades. One of these signalling pathways is the Janus Kinase (Jak/Signal Transducers and Activators of Transcription (STAT pathway. As recent studies have shown, the tyrosine phosphorylated form of STAT3 is a major inducer of invasiveness which mainly takes place upon binding of LIF to its receptor. For autoregulation of signals, STAT3 induces the transcription of Suppressor of Cytokine Signalling 3 (SOCS3. The balance between STAT3 and SOCS3 may be argued as one of the main tuners of trophoblast invasion for successful implantation. Disturbances in this balance may lead to serious complications like cancer and implantation failure.

  5. Activin and Bmp4 Signaling Converge on Wnt Activation during Odontogenesis.

    Science.gov (United States)

    Kwon, H-J E; Jia, S; Lan, Y; Liu, H; Jiang, R

    2017-09-01

    Previous studies show that both activin and Bmp4 act as crucial mesenchymal odontogenic signals during early tooth development. Remarkably, mice lacking activin-βA ( Inhba(-/-)) and mice with neural crest-specific inactivation of Bmp4 ( Bmp4(ncko/ncko)) both exhibit bud-stage developmental arrest of the mandibular molar tooth germs while their maxillary molar tooth germs completed morphogenesis. In this study, we found that, whereas expression of Inhba and Bmp4 in the developing tooth mesenchyme is independent of each other, Bmp4(ncko/ncko)Inhba(-/-) compound mutant mice exhibit early developmental arrest of all tooth germs. Moreover, genetic inactivation of Osr2, a negative regulator of the odontogenic function of the Bmp4-Msx1 signaling pathway, rescues mandibular molar morphogenesis in Inhba(-/-) embryos. We recently reported that Osr2 and the Bmp4-Msx1 pathway control the bud-to-cap transition of tooth morphogenesis through antagonistic regulation of expression of secreted Wnt antagonists, including Dkk2 and Sfrp2, in the developing tooth mesenchyme. We show here that expression of Dkk2 messenger RNAs was significantly upregulated and expanded into the tooth bud mesenchyme in Inhba(-/-) embryos in comparison with wild-type littermates. Furthermore, in utero treatment with either lithium chloride, an agonist of canonical Wnt signaling, or the DKK inhibitor IIIC3a rescued mandibular molar tooth morphogenesis in Inhba(-/-) embryos. Together with our finding that the developing mandibular molar tooth bud mesenchyme expresses significantly higher levels of Dkk2 than the developing maxillary molar tooth mesenchyme, these data indicate that Bmp4 and activin signaling pathways converge on activation of the Wnt signaling pathway to promote tooth morphogenesis through the bud-to-cap transition and that the differential effects of loss of activin or Bmp4 signaling on maxillary and mandibular molar tooth morphogenesis are mainly due to the differential expression of Wnt

  6. The D. melanogaster capa-1 neuropeptide activates renal NF-kB signaling.

    Science.gov (United States)

    Terhzaz, Selim; Overend, Gayle; Sebastian, Sujith; Dow, Julian A T; Davies, Shireen-A

    2014-03-01

    The capa peptide family exists in a very wide range of insects including species of medical, veterinary and agricultural importance. Capa peptides act via a cognate G-protein coupled receptor (capaR) and have a diuretic action on the Malpighian tubules of Dipteran and Lepidopteran species. Capa signaling is critical for fluid homeostasis and has been associated with desiccation tolerance in the fly, Drosophila melanogaster. The mode of capa signaling is highly complex, affecting calcium, nitric oxide and cyclic GMP pathways. Such complex physiological regulation by cell signaling pathways may occur ultimately for optimal organismal stress tolerance to multiple stressors. Here we show that D. melanogaster capa-1 (Drome-capa-1) acts via the Nuclear Factor kappa B (NF-kB) stress signaling network. Human PCR gene arrays of capaR-transfected Human Embryonic Kidney (HEK) 293 cells showed that Drome-capa-1 increases expression of NF-kB, NF-kB regulated genes including IL8, TNF and PTGS2, and NF-kB pathway-associated transcription factors i.e. EGR1, FOS, cJUN. Furthermore, desiccated HEK293 cells show increased EGR1, EGR3 and PTGS2 - but not IL8, expression. CapaR-transfected NF-kB reporter cells showed that Drome-capa-1 increased NF-kB promoter activity via increased calcium. In Malpighian tubules, both Drome-capa-1 stimulation and desiccation result in increased gene expression of the D. melanogaster NF-kB orthologue, Relish; as well as EGR-like stripe and klumpfuss. Drome-capa-1 also induces Relish translocation in tubule principal cells. Targeted knockdown of Relish in only tubule principal cells reduces desiccation stress tolerance of adult flies. Together, these data suggest that Drome-capa-1 acts in desiccation stress tolerance, by activating NF-kB signaling.

  7. Indications for influence of artificial (man-made) activity on radon signals, in simulation experiments

    Science.gov (United States)

    Steinitz, G.; Kotlarsky, P.; Piatibratova, O.

    2016-11-01

    Radon (Rn-222; a radioactive noble gas) is characterized by large temporal variations that differ significantly from variations of (i) other trace elements in geogas (noble gases); (ii) variation patterns of other dynamic geophysical systems (atmospheric, tidal). Consensus exists that there is no simple and straightforward understanding of the phenomena and its behaviour. This lacuna in the understanding of the underlying principles hampers the development of applications-such as radon as a proxy of processes in the seismogenic context. Using results from field investigations and simulation experiments the GSI suggested that an unidentified extraterrestrial component, probably in solar radiation, drives periodic radon signals in the diurnal and annual frequency bands. Recent findings from experimental investigations shed additional perspectives allowing a new evaluation of the issue. Particular transient signals, measured with alpha and gamma detectors, are interpreted to reflect the influence of artificial activity. Criteria are (i) signals lasting several hours that occur around midday on workdays (Sunday-Thursday); (ii) signals composed of a train of around 10 strong pulses, each lasting less than 15 min, occurring within several hours once a week, from Wednesday afternoon/evening to Thursday morning. A first interpretation is that an unidentified artificial activity of some sort (industrial?) generates and emits an unidentified agent that reaches enhanced confined mode experiments at the GSI laboratory, which respond to the incoming agent in the form of radon signals. Developing the capability of identification of such an earth-bound source generating an influencing agent is a key step towards understanding of external influence on radioactivity of radon.

  8. Normalization of voltage-sensitive dye signal with functional activity measures.

    Directory of Open Access Journals (Sweden)

    Kentaroh Takagaki

    Full Text Available In general, signal amplitude in optical imaging is normalized using the well-established DeltaF/F method, where functional activity is divided by the total fluorescent light flux. This measure is used both directly, as a measure of population activity, and indirectly, to quantify spatial and spatiotemporal activity patterns. Despite its ubiquitous use, the stability and accuracy of this measure has not been validated for voltage-sensitive dye imaging of mammalian neocortex in vivo. In this report, we find that this normalization can introduce dynamic biases. In particular, the DeltaF/F is influenced by dye staining quality, and the ratio is also unstable over the course of experiments. As methods to record and analyze optical imaging signals become more precise, such biases can have an increasingly pernicious impact on the accuracy of findings, especially in the comparison of cytoarchitechtonic areas, in area-of-activation measurements, and in plasticity or developmental experiments. These dynamic biases of the DeltaF/F method may, to an extent, be mitigated by a novel method of normalization, DeltaF/DeltaF(epileptiform. This normalization uses as a reference the measured activity of epileptiform spikes elicited by global disinhibition with bicuculline methiodide. Since this normalization is based on a functional measure, i.e. the signal amplitude of "hypersynchronized" bursts of activity in the cortical network, it is less influenced by staining of non-functional elements. We demonstrate that such a functional measure can better represent the amplitude of population mass action, and discuss alternative functional normalizations based on the amplitude of synchronized spontaneous sleep-like activity. These findings demonstrate that the traditional DeltaF/F normalization of voltage-sensitive dye signals can introduce pernicious inaccuracies in the quantification of neural population activity. They further suggest that normalization

  9. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling.

    Science.gov (United States)

    Lu, Jianming; Zhang, Keqiang; Nam, Sangkil; Anderson, Richard A; Jove, Richard; Wen, Wei

    2010-03-01

    As a critical factor in the induction of angiogenesis, vascular endothelial growth factor (VEGF) has become an attractive target for anti-angiogenesis treatment. However, the side effects associated with most anti-VEGF agents limit their chronic use. Identification of naturally occurring VEGF inhibitors derived from diet is a potential alternative approach, with the advantage of known safety. To isolate natural inhibitors of VEGF, we established an in vitro tyrosine kinase assay to screen for diet-based agents that suppress VEGFR2 kinase activity. We found that a water-based extract from cinnamon (cinnamon extract, CE), one of the oldest and most popular spices, was a potent inhibitor of VEGFR2 kinase activity, directly inhibiting kinase activity of purified VEGFR2 as well as mitogen-activated protein kinase- and Stat3-mediated signaling pathway in endothelial cells. As a result, CE inhibited VEGF-induced endothelial cell proliferation, migration and tube formation in vitro, sprout formation from aortic ring ex vivo and tumor-induced blood vessel formation in vivo. Depletion of polyphenol from CE with polyvinylpyrrolidone abolished its anti-angiogenesis activity. While cinnamaldehyde, a component responsible for CE aroma, had little effect on VEGFR2 kinase activity, high-performance liquid chromatography-purified components of CE, procyanidin type A trimer (molecular weight, 864) and a tetramer (molecular weight, 1152) were found to inhibit kinase activity of purified VEGFR2 and VEGFR2 signaling, implicating procyanidin oligomers as active components in CE that inhibit angiogenesis. Our data revealed a novel activity in cinnamon and identified a natural VEGF inhibitor that could potentially be useful in cancer prevention and/or treatment.

  10. An inside job: hacking into Janus kinase/signal transducer and activator of transcription signaling cascades by the intracellular protozoan Toxoplasma gondii.

    Science.gov (United States)

    Denkers, Eric Y; Bzik, David J; Fox, Barbara A; Butcher, Barbara A

    2012-02-01

    The intracellular protozoan Toxoplasma gondii is well known for its skill at invading and living within host cells. New discoveries are now also revealing the astounding ability of the parasite to inject effector proteins into the cytoplasm to seize control of the host cell. This review summarizes recent advances in our understanding of one such secretory protein called ROP16. This molecule is released from rhoptries into the host cell during invasion. The ROP16 molecule acts as a kinase, directly activating both signal transducer and activator of transcription 3 (STAT3) and STAT6 signaling pathways. In macrophages, an important and preferential target cell of parasite infection, the injection of ROP16 has multiple consequences, including downregulation of proinflammatory cytokine signaling and macrophage deviation to an alternatively activated phenotype.

  11. An Inside Job: Hacking into Janus Kinase/Signal Transducer and Activator of Transcription Signaling Cascades by the Intracellular Protozoan Toxoplasma gondii

    Science.gov (United States)

    Bzik, David J.; Fox, Barbara A.; Butcher, Barbara A.

    2012-01-01

    The intracellular protozoan Toxoplasma gondii is well known for its skill at invading and living within host cells. New discoveries are now also revealing the astounding ability of the parasite to inject effector proteins into the cytoplasm to seize control of the host cell. This review summarizes recent advances in our understanding of one such secretory protein called ROP16. This molecule is released from rhoptries into the host cell during invasion. The ROP16 molecule acts as a kinase, directly activating both signal transducer and activator of transcription 3 (STAT3) and STAT6 signaling pathways. In macrophages, an important and preferential target cell of parasite infection, the injection of ROP16 has multiple consequences, including downregulation of proinflammatory cytokine signaling and macrophage deviation to an alternatively activated phenotype. PMID:22104110

  12. Active electroreception in Gymnotus omari: imaging, object discrimination, and early processing of actively generated signals.

    Science.gov (United States)

    Caputi, Angel A; Castelló, María E; Aguilera, Pedro A; Pereira, Carolina; Nogueira, Javier; Rodríguez-Cattaneo, Alejo; Lezcano, Carolina

    2008-01-01

    Weakly electric fishes "electrically illuminate" the environment in two forms: pulse fishes emit a succession of discrete electric discharges while wave fishes emit a continuous wave. These strategies are present in both taxonomic groups of weakly electric fishes, mormyrids and gymnotids. As a consequence one can distinguish four major types of active electrosensory strategies evolving in parallel. Pulse gymnotids have an electrolocating strategy common with pulse mormyrids, but brains of pulse and wave gymnotids are alike. The beating strategy associated to other differences in the electrogenic system and electrosensory responses suggests that similar hardware might work in a different mode for processing actively generated electrosensory images. In this review we summarize our findings in pulse gymnotids' active electroreception and outline a primary agenda for the next research.

  13. An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth.

    Science.gov (United States)

    Shi, Xuanming; Zhang, Zilai; Zhan, Xiaoming; Cao, Mou; Satoh, Takashi; Akira, Shizuo; Shpargel, Karl; Magnuson, Terry; Li, Qingtian; Wang, Rongfu; Wang, Chaochen; Ge, Kai; Wu, Jiang

    2014-11-05

    The Sonic hedgehog (Shh) signalling pathway plays important roles during development and in cancer. Here we report a Shh-induced epigenetic switch that cooperates with Gli to control transcription outcomes. Before induction, poised Shh target genes are marked by a bivalent chromatin domain containing a repressive histone H3K27me3 mark and an active H3K4me3 mark. Shh activation induces a local switch of epigenetic cofactors from the H3K27 methyltransferase polycomb repressive complex 2 (PRC2) to an H3K27me3 demethylase Jmjd3/Kdm6b-centred coactivator complex. We also find that non-enzymatic activities of Jmjd3 are important and that Jmjd3 recruits the Set1/MLL H3K4 methyltransferase complexes in a Shh-dependent manner to resolve the bivalent domain. In vivo, changes of the bivalent domain accompanied Shh-activated cerebellar progenitor proliferation. Overall, our results reveal a regulatory mechanism that underlies the activation of Shh target genes and provides insight into the causes of various diseases and cancers exhibiting altered Shh signalling.

  14. Repetitive Peroxide Exposure Reveals Pleiotropic Mitogen-Activated Protein Kinase Signaling Mechanisms

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    2011-01-01

    Full Text Available Oxidative stressors such as hydrogen peroxide control the activation of many interconnected signaling systems and are implicated in neurodegenerative disease etiology. Application of hydrogen peroxide to PC12 cells activated multiple tyrosine kinases (c-Src, epidermal growth factor receptor (EGFR, and Pyk2 and the serine-threonine kinase ERK1/2. Peroxide-induced ERK1/2 activation was sensitive to intracellular calcium chelation and EGFR and c-Src kinase inhibition. Acute application and removal of peroxide allowed ERK1/2 activity levels to rapidly subside to basal serum-deprived levels. Using this protocol, we demonstrated that ERK1/2 activation tachyphylaxis developed upon repeated peroxide exposures. This tachyphylaxis was independent of c-Src/Pyk2 tyrosine phosphorylation but was associated with a progressive reduction of peroxide-induced EGFR tyrosine phosphorylation, EGFR interaction with growth factor receptor binding protein 2, and a redistribution of EGFR from the plasma membrane to the cytoplasm. Our data indicates that components of peroxide-induced ERK1/2 cascades are differentially affected by repeated exposures, indicating that oxidative signaling may be contextually variable.

  15. Regulatory Activity of Polyunsaturated Fatty Acids in T-Cell Signaling

    Science.gov (United States)

    Kim, Wooki; Khan, Naim A.; McMurray, David N.; Prior, Ian A.; Wang, Naisyin; Chapkin, Robert S.

    2010-01-01

    n-3 polyunsaturated fatty acids (PUFA) are considered to be authentic immunosuppressors and appear to exert beneficial effects with respect to certain immune-mediated diseases. In addition to promoting T-helper 1 (Th1) cell to T-helper 2 (Th2) cell effector T-cell differentiation, n-3 PUFA may also exert anti-inflammatory actions by inducing apoptosis in Th1 cells. With respect to mechanisms of action, effects range from the modulation of membrane receptors to gene transcription via perturbation of a number of second messenger cascades. In this review, the putative targets of anti-inflammatory n-3 PUFA, activated during early and late events of T-cell activation will be discussed. Studies have demonstrated that these fatty acids alter plasma membrane micro-organization (lipid rafts) at the immunological synapse, the site where T-cells and antigen presenting cells (APC) form a physical contact for antigen initiated T-cell signaling. In addition, the production of diacylglycerol and the activation of different isoforms of protein kinase C (PKC), mitogen activated protein kinase (MAPK), calcium signaling, and nuclear translocation/activation of transcriptional factors, can be modulated by n-3 PUFA. Advantages and limitations of diverse methodologies to study the membrane lipid raft hypothesis, as well as apparent contradictions regarding the effect of n-3 PUFA on lipid rafts will be critically presented. PMID:20176053

  16. LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway

    Science.gov (United States)

    Cuevas, Eva P.; Eraso, Pilar; Mazón, María J.; Santos, Vanesa; Moreno-Bueno, Gema; Cano, Amparo; Portillo, Francisco

    2017-01-01

    Epithelial-to-Mesenchymal Transition (EMT) is a key process contributing to the aggressiveness of cancer cells. EMT is triggered by activation of different transcription factors collectively known as EMT-TFs. Different cellular cues and cell signalling networks activate EMT at transcriptional and posttranscriptional level in different biological and pathological situations. Among them, overexpression of LOXL2 (lysyl oxidase-like 2) induces EMT independent of its catalytic activity. Remarkably, perinuclear/cytoplasmic accumulation of LOXL2 is a poor prognosis marker of squamous cell carcinomas and is associated to basal breast cancer metastasis by mechanisms no yet fully understood. Here, we report that overexpression of LOXL2 promotes its accumulation in the Endoplasmic Reticulum where it interacts with HSPA5 leading to activation of the IRE1-XBP1 signalling pathway of the ER-stress response. LOXL2-dependent IRE1-XBP1 activation induces the expression of several EMT-TFs: SNAI1, SNAI2, ZEB2 and TCF3 that are direct transcriptional targets of XBP1. Remarkably, inhibition of IRE1 blocks LOXL2-dependent upregulation of EMT-TFs thus hindering EMT induction. PMID:28332555

  17. Neuronal c-Abl activation leads to induction of cell cycle and interferon signaling pathways

    Science.gov (United States)

    2012-01-01

    Background Expression of active c-Abl in adult mouse forebrain neurons in the AblPP/tTA mice resulted in severe neurodegeneration, particularly in the CA1 region of the hippocampus. Neuronal loss was preceded and accompanied by substantial microgliosis and astrocytosis. In contrast, expression of constitutively active Arg (Abl-related gene) in mouse forebrain neurons (ArgPP/tTA mice) caused no detectable neuronal loss or gliosis, although protein expression and kinase activity were at similar levels to those in the AblPP/tTA mice. Methods To begin to elucidate the mechanism of c-Abl-induced neuronal loss and gliosis, gene expression analysis of AblPP/tTA mouse forebrain prior to development of overt pathology was performed. Selected results from gene expression studies were validated with quantitative reverse transcription PCR , immunoblotting and bromodeoxyuridine (BrdU) labeling, and by immunocytochemistry. Results Two of the top pathways upregulated in AblPP/tTA mice with c-Abl expression for 2 weeks were cell cycle and interferon signaling. However, only the expression of interferon signaling pathway genes remained elevated at 4 weeks of c-Abl induction. BrdU incorporation studies confirm that, while the cell cycle pathway is upregulated in AblPP/tTA mice at 2 weeks of c-Abl induction, the anatomical localization of the pathway is not consistent with previous pathology seen in the AblPP/tTA mice. Increased expression and activation of STAT1, a known component of interferon signaling and interferon-induced neuronal excitotoxicity, is an early consequence of c-Abl activation in AblPP/tTA mice and occurs in the CA1 region of the hippocampus, the same region that goes on to develop severe neurodegenerative pathology and neuroinflammation. Interestingly, no upregulation of gene expression of interferons themselves was detected. Conclusions Our data suggest that the interferon signaling pathway may play a role in the pathologic processes caused by c-Abl expression in

  18. Neuronal c-Abl activation leads to induction of cell cycle and interferon signaling pathways

    Directory of Open Access Journals (Sweden)

    Schlatterer Sarah D

    2012-08-01

    Full Text Available Abstract Background Expression of active c-Abl in adult mouse forebrain neurons in the AblPP/tTA mice resulted in severe neurodegeneration, particularly in the CA1 region of the hippocampus. Neuronal loss was preceded and accompanied by substantial microgliosis and astrocytosis. In contrast, expression of constitutively active Arg (Abl-related gene in mouse forebrain neurons (ArgPP/tTA mice caused no detectable neuronal loss or gliosis, although protein expression and kinase activity were at similar levels to those in the AblPP/tTA mice. Methods To begin to elucidate the mechanism of c-Abl-induced neuronal loss and gliosis, gene expression analysis of AblPP/tTA mouse forebrain prior to development of overt pathology was performed. Selected results from gene expression studies were validated with quantitative reverse transcription PCR , immunoblotting and bromodeoxyuridine (BrdU labeling, and by immunocytochemistry. Results Two of the top pathways upregulated in AblPP/tTA mice with c-Abl expression for 2 weeks were cell cycle and interferon signaling. However, only the expression of interferon signaling pathway genes remained elevated at 4 weeks of c-Abl induction. BrdU incorporation studies confirm that, while the cell cycle pathway is upregulated in AblPP/tTA mice at 2 weeks of c-Abl induction, the anatomical localization of the pathway is not consistent with previous pathology seen in the AblPP/tTA mice. Increased expression and activation of STAT1, a known component of interferon signaling and interferon-induced neuronal excitotoxicity, is an early consequence of c-Abl activation in AblPP/tTA mice and occurs in the CA1 region of the hippocampus, the same region that goes on to develop severe neurodegenerative pathology and neuroinflammation. Interestingly, no upregulation of gene expression of interferons themselves was detected. Conclusions Our data suggest that the interferon signaling pathway may play a role in the pathologic processes

  19. Slit2/Robo1 signaling promotes intestinal tumorigenesis through Src-mediated activation of the Wnt/β-catenin pathway.

    Science.gov (United States)

    Zhang, Qian-Qian; Zhou, Da-Lei; Lei, Yan; Zheng, Li; Chen, Sheng-Xia; Gou, Hong-Ju; Gu, Qu-Liang; He, Xiao-Dong; Lan, Tian; Qi, Cui-Ling; Li, Jiang-Chao; Ding, Yan-Qing; Qiao, Liang; Wang, Li-Jing

    2015-02-20

    Slit2 is often overexpressed in cancers. Slit2 is a secreted protein that binds to Roundabout (Robo) receptors to regulate cell growth and migration. Here, we employed several complementary mouse models of intestinal cancers, including the Slit2 transgenic mice, the ApcMin/+ spontaneous intestinal adenoma mouse model, and the DMH/DSS-induced colorectal carcinoma model to clarify function of Slit2/Robo1 signaling in intestinal tumorigenesis. We showed that Slit2 and Robo1 are overexpressed in intestinal tumors and may contribute to tumor generation. The Slit2/Robo1 signaling can induce precancerous lesions of the intestine and tumor progression. Ectopic expression of Slit2 activated Slit2/Robo1 signaling and promoted tumorigenesis and tumor growth. This was mediated in part through activation of the Src signaling, which then down-regulated E-cadherin, thereby activating Wnt/β-catenin signaling. Thus, Slit2/Robo1 signaling is oncogenic in intestinal tumorigenesis.

  20. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice.

    Directory of Open Access Journals (Sweden)

    Gerhard Sengle

    2015-06-01

    Full Text Available Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that

  1. Mitogen-activated protein kinase signaling controls basal and oncostatin M-mediated JUNB gene expression.

    Science.gov (United States)

    Hicks, Mellissa J; Hu, Qiuping; Macrae, Erin; DeWille, James

    2015-05-01

    The mitogen-activated protein kinase (MAPK) pathway is aberrantly activated in many human cancers, including breast cancer. Activation of MAPK signaling is associated with the increased expression of a wide range of genes that promote cell survival, proliferation, and migration. This report investigated the influence of MAPK signaling on the regulation and expression of JUNB in human breast cancer cell lines. JUNB has been associated with tumor suppressor and oncogenic functions, with most reports describing JUNB as an oncogene in breast cancer. Our results indicated that JUNB expression is elevated in MCF10A(met), SKBR3, and MDA-MB-231 human breast cancer cell lines compared to nontransformed MCF10A mammary epithelial cells. Increased RAS/MAPK signaling in MCF10A(met) cells correlates with the increased association of RNA polymerase II (Pol II) phosphorylated on serine 5 (Pol IIser5p) with the JUNB proximal promoter. Pol IIser5p is the "transcription initiating" form of Pol II. Treatment with U0126, a MAPK pathway inhibitor, reduces Pol IIser5p association with the JUNB proximal promoter and reduces JUNB expression. Oncostatin M (OSM) enhances MAPK and STAT3 signaling and significantly induces JUNB expression. U0126 treatment reduces OSM-induced Pol IIser5p binding to the JUNB proximal promoter and JUNB expression, but does not reduce pSTAT3 levels or the association of pSTAT3 with the JUNB proximal promoter. These results demonstrate that the MAPK pathway plays a primary role in the control of JUNB gene expression by promoting the association of Pol IIser5p with the JUNB proximal promoter.

  2. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice.

    Science.gov (United States)

    Sengle, Gerhard; Carlberg, Valerie; Tufa, Sara F; Charbonneau, Noe L; Smaldone, Silvia; Carlson, Eric J; Ramirez, Francesco; Keene, Douglas R; Sakai, Lynn Y

    2015-06-01

    Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background) are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that fibrillin-2 can

  3. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    Science.gov (United States)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  4. Sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by AMPK signaling pathway.

    Science.gov (United States)

    Lee, Ju-Hee; Moon, Myung-Hee; Jeong, Jae-Kyo; Park, Yang-Gyu; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2012-10-05

    Sulforaphane, an aliphatic isothiocyanate derived from cruciferous vegetables, is known for its antidiabetic properties. The effects of sulforaphane on lipid metabolism in adipocytes are not clearly understood. Here, we investigated whether sulforaphane stimulates lipolysis. Mature adipocytes were incubated with sulforaphane for 24h and analyzed using a lipolysis assay which quantified glycerol released into the medium. We investigated gene expression of hormone-sensitive lipase (HSL), and levels of HSL phosphorylation and AMP-activated protein kinase on sulforaphane-mediated lipolysis in adipocytes. Sulforaphane promoted lipolysis and increased both HSL gene expression and HSL activation. Sulforaphane suppressed AMPK phosphorylation at Thr-172 in a dose-dependent manner, which was associated with a decrease in HSL phosphorylation at Ser-565, enhancing the phosphorylation of HSL Ser-563. Taken together, these results suggest that sulforaphane promotes lipolysis via hormone sensitive lipase activation mediated by decreasing AMPK signal activation in adipocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Gamma-secretase activity of presenilin 1 regulates acetylcholine muscarinic receptor-mediated signal transduction

    DEFF Research Database (Denmark)

    Popescu, Bogdan O; Cedazo-Minguez, Angel; Benedikz, Eirikur

    2004-01-01

    Familial Alzheimer's disease (FAD) presenilin 1 (PS1) mutations give enhanced calcium responses upon different stimuli, attenuated capacitative calcium entry, an increased sensitivity of cells to undergo apoptosis, and increased gamma-secretase activity. We previously showed that the FAD mutation...... causing an exon 9 deletion in PS1 results in enhanced basal phospholipase C (PLC) activity (Cedazo-Minguez, A., Popescu, B. O., Ankarcrona, M., Nishimura, T., and Cowburn, R. F. (2002) J. Biol. Chem. 277, 36646-36655). To further elucidate the mechanisms by which PS1 interferes with PLC-calcium signaling...... or PS1 D385N dominant negative cells. Our findings suggest that PS1 can regulate PLC activity and that this function is gamma-secretase activity-dependent....

  6. Pituitary adenylate cyclase activating peptide (PACAP participates in adipogenesis by activating ERK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Tatjana Arsenijevic

    Full Text Available Pituitary adenylate cyclase activating peptide (PACAP belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP family. Its action can be mediated by three different receptor subtypes: PAC1, which has exclusive affinity for PACAP, and VPAC1 and VPAC2 which have equal affinity for PACAP and VIP. We showed that all three receptors are expressed in 3T3-L1 cells throughout their differentiation into adipocytes. We established the activity of these receptors by cAMP accumulation upon induction by PACAP. Together with insulin and dexamethasone, PACAP induced adipogenesis in 3T3-L1 cell line. PACAP increased cAMP production within 15 min upon stimulation and targeted the expression and phosphorylation of MAPK (ERK1/2, strengthened by the ERK1/2 phosphorylation being partially or completely abolished by different combinations of PACAP receptors antagonists. We therefore speculate that ERK1/2 activation is crucial for the activation of CCAAT/enhancer- binding protein β (C/EBPβ.

  7. Antibody constant region peptides can display immunomodulatory activity through activation of the Dectin-1 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Elena Gabrielli

    Full Text Available We previously reported that a synthetic peptide with sequence identical to a CDR of a mouse monoclonal antibody specific for difucosyl human blood group A exerted an immunomodulatory activity on murine macrophages. It was therapeutic against systemic candidiasis without possessing direct candidacidal properties. Here we demonstrate that a selected peptide, N10K, putatively deriving from the enzymatic cleavage of the constant region (Fc of human IgG(1, is able to induce IL-6 secretion and pIkB-α activation. More importantly, it causes an up-regulation of Dectin-1 expression. This leads to an increased activation of β-glucan-induced pSyk, CARD9 and pIkB-α, and an increase in the production of pro-inflammatory cytokines such as IL-6, IL-12, IL-1β and TNF-α. The increased activation of this pathway coincides with an augmented phagocytosis of non opsonized Candida albicans cells by monocytes. The findings suggest that some Fc-peptides, potentially deriving from the proteolysis of immunoglobulins, may cause an unexpected immunoregulation in a way reminiscent of innate immunity molecules.

  8. Aberrant activation of Sonic hedgehog signaling in chronic cholecystitis and gallbladder carcinoma.

    Science.gov (United States)

    Xie, Fang; Xu, Xiaoping; Xu, Angao; Liu, Cuiping; Liang, Fenfen; Xue, Minmin; Bai, Lan

    2014-03-01

    Sonic hedgehog (Shh) signaling has been extensively studied and is implicated in various inflammatory diseases and malignant tumors. We summarized the clinicopathological features and performed immunohistochemistry assays to examine expression of Shh signaling proteins in 10 normal mucosa, 32 gallbladder carcinoma (GBC), and 95 chronic cholecystitis (CC) specimens. The CC specimens were classified into three groups according to degree of inflammation. Compared with normal mucosa, CC, and GBC specimens exhibited increased expression of Shh. The immunoreactive score of Shh in the GBC group was higher than that in the mild to moderate CC groups but lower than that in the severe CC group (P cholecystitis to malignant tumors. Compared with CC specimens, GBC specimens showed higher cytoplasmic and membranous expression for Ptch (P < .05). Gli1 staining showed cytoplasmic expression of Gli1 in both CC (60% for mild, 77% for moderate, and 84% for severe) and GBC specimens (97%). Nuclear expression of Gli1 was detected in 16% of severe CC specimens with moderate to poor atypical hyperplasia, and in 62.5% of GBC specimens. Shh expression strongly correlated with expression of Ptch and Gli1. Furthermore, patients with strongly positive Gli1 staining had significantly lower survival rates than those with weakly positive staining. Our data indicate that the Shh signaling pathway is aberrantly activated in CC and GBC, and altered Shh signaling may be involved in the course of development from CC to gallbladder carcinogenesis.

  9. Review: Mitogen-Activated Protein kinases in nutritional signaling in Arabidopsis

    KAUST Repository

    Chardin, Camille

    2017-04-14

    Mitogen-Activated Protein Kinase (MAPK) cascades are functional modules widespread among eukaryotic organisms. In plants, these modules are encoded by large multigenic families and are involved in many biological processes ranging from stress responses to cellular differentiation and organ development. Furthermore, MAPK pathways are involved in the perception of environmental and physiological modifications. Interestingly, some MAPKs play a role in several signaling networks and could have an integrative function for the response of plants to their environment. In this review, we describe the classification of MAPKs and highlight some of their biochemical actions. We performed an in silico analysis of MAPK gene expression in response to nutrients supporting their involvement in nutritional signaling. While several MAPKs have been identified as players in sugar, nitrogen, phosphate, iron and potassium-related signaling pathways, their biochemical functions are yet mainly unknown. The integration of these regulatory cascades in the current understanding of nutrient signaling is discussed and potential new avenues for approaches toward plants with higher nutrient use efficiencies are evoked.

  10. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kaijun [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China); Jiang, Yiqian [The First People Hospital of Xiaoshan, Hangzhou (China); Wang, Wei; Ma, Jian [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China); Chen, Min, E-mail: eyedrchenminzj@163.com [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China)

    2015-12-25

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H{sub 2}O{sub 2}) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H{sub 2}O{sub 2}-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H{sub 2}O{sub 2} were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolished escin-mediated anti-oxidant activity and RPE cytoprotection against H{sub 2}O{sub 2}. Reversely, escin was more potent against H{sub 2}O{sub 2} damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H{sub 2}O{sub 2} was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling.

  11. Signal Intensities in Preoperative MRI Do Not Reflect Proliferative Activity in Meningioma

    Directory of Open Access Journals (Sweden)

    Stefan Schob

    2016-08-01

    Full Text Available BACKGROUND: Identification of high-grade meningiomas in preoperative magnetic resonance imaging (MRI is important for optimized surgical strategy and best possible resection. Numerous studies investigated subjectively determined morphological features as predictors of tumor biology in meningiomas. The aim of this study was to identify the predictive value of more reliable, quantitatively measured signal intensities in MRI for differentiation of high- and low-grade meningiomas and identification of meningiomas with high proliferation rates, respectively. PATIENTS AND METHODS: Sixty-six patients (56 World Health Organization [WHO] grade I, 9 WHO grade II, and 1 WHO grade I were included in the study. Preoperative MRI signal intensities (fluid-attenuated inversion recovery [FLAIR], T1 precontrast, and T1 postcontrast as genuine and normalized values were correlated with Ki-67 expression in tissue sections of resected meningiomas. Differences between the groups (analysis of variance and Spearman rho correlation were computed using SPSS 22. RESULTS: Mean values of genuine signal intensities of meningiomas in FLAIR, T1 native, and T1 postcontrast were 323.9 ± 59, 332.8 ± 67.9, and 768.5 ± 165.3. Mean values of normalized (to the contralateral white matter signal intensities of meningiomas in FLAIR, T1 native, and T1 postcontrast were 1.5 ± 0.3, 0.8 ± 0.1, and 1.9 ± 0.4. There was no significant correlation between MRI signal intensities and WHO grade or Ki-67 expression. Signal intensities did not differ significantly between WHO grade I and II/III meningiomas. Ki-67 expression was significantly increased in high-grade meningiomas compared with low-grade meningiomas (P < 0.01. Objectively measured values of MRI signal intensities (FLAIR, T1 precontrast, and T1 postcontrast enhancement did not distinguish between high-grade and low-grade meningiomas. Furthermore, there was no association between MRI signal intensities and Ki-67 expression

  12. Functional Near-Infrared Spectroscopy Signals Measure Neuronal Activity in the Cortex

    Science.gov (United States)

    Harrivel, Angela; Hearn, Tristan

    2013-01-01

    Functional near infrared spectroscopy (fNIRS) is an emerging optical neuroimaging technology that indirectly measures neuronal activity in the cortex via neurovascular coupling. It quantifies hemoglobin concentration ([Hb]) and thus measures the same hemodynamic response as functional magnetic resonance imaging (fMRI), but is portable, non-confining, relatively inexpensive, and is appropriate for long-duration monitoring and use at the bedside. Like fMRI, it is noninvasive and safe for repeated measurements. Patterns of [Hb] changes are used to classify cognitive state. Thus, fNIRS technology offers much potential for application in operational contexts. For instance, the use of fNIRS to detect the mental state of commercial aircraft operators in near real time could allow intelligent flight decks of the future to optimally support human performance in the interest of safety by responding to hazardous mental states of the operator. However, many opportunities remain for improving robustness and reliability. It is desirable to reduce the impact of motion and poor optical coupling of probes to the skin. Such artifacts degrade signal quality and thus cognitive state classification accuracy. Field application calls for further development of algorithms and filters for the automation of bad channel detection and dynamic artifact removal. This work introduces a novel adaptive filter method for automated real-time fNIRS signal quality detection and improvement. The output signal (after filtering) will have had contributions from motion and poor coupling reduced or removed, thus leaving a signal more indicative of changes due to hemodynamic brain activations of interest. Cognitive state classifications based on these signals reflect brain activity more reliably. The filter has been tested successfully with both synthetic and real human subject data, and requires no auxiliary measurement. This method could be implemented as a real-time filtering option or bad channel

  13. Cucurbitacin E Induces Autophagy via Downregulating mTORC1 Signaling and Upregulating AMPK Activity.

    Directory of Open Access Journals (Sweden)

    Qing-Bing Zha

    Full Text Available Cucurbitacins, the natural triterpenoids possessing many biological activities, have been reported to suppress the mTORC1/p70S6K pathway and to induce autophagy. However, the correlation between such activities is largely unknown. In this study, we addressed this issue in human cancer cells in response to cucurbitacin E (CuE treatment. Our results showed that CuE induced autophagy as evidenced by the formation of LC3-II and colocalization of punctate LC3 with the lysosomal marker LAMP2 in HeLa and MCF7 cells. However, CuE induced much lower levels of autophagy in ATG5-knocked down cells and failed to induce autophagy in DU145 cells lacking functional ATG5 expression, suggesting the dependence of CuE-induced autophagy on ATG5. Consistent with autophagy induction, mTORC1 activity (as reflected by p70S6K and ULK1S758 phosphorylation was inhibited by CuE treatment. The suppression of mTORC1 activity was further confirmed by reduced recruitment of mTOR to the lysosome, which is the activation site of mTORC1. In contrast, CuE rapidly activated AMPK leading to increased phosphorylation of its substrates. AMPK activation contributed to CuE-induced suppression of mTORC1/p70S6K signaling and autophagy induction, since AMPK knockdown diminished these effects. Collectively, our data suggested that CuE induced autophagy in human cancer cells at least partly via downregulation of mTORC1 signaling and upregulation of AMPK activity.

  14. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-08-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  15. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation.

    Science.gov (United States)

    Xavier, Guilherme M; Patist, Amanda L; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T; Martinez-Barbera, Juan Pedro; Thavaraj, Selvam; Cobourne, Martyn T; Andoniadou, Cynthia L

    2015-09-28

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma.

  16. Saturated fatty acids activate ERK signaling to downregulate hepatic sortilin 1 in obese and diabetic mice.

    Science.gov (United States)

    Bi, Lipeng; Chiang, John Y L; Ding, Wen-Xing; Dunn, Winston; Roberts, Benjamin; Li, Tiangang

    2013-10-01

    Hepatic VLDL overproduction is a characteristic feature of diabetes and an important contributor to diabetic dyslipidemia. Hepatic sortilin 1 (Sort1), a cellular trafficking receptor, is a novel regulator of plasma lipid metabolism and reduces plasma cholesterol and triglycerides by inhibiting hepatic apolipoprotein B production. Elevated circulating free fatty acids play key roles in hepatic VLDL overproduction and the development of dyslipidemia. This study investigated the regulation of hepatic Sort1 in obesity and diabetes and the potential implications in diabetic dyslipidemia. Results showed that hepatic Sort1 protein was markedly decreased in mouse models of type I and type II diabetes and in human individuals with obesity and liver steatosis, whereas increasing hepatic Sort1 expression reduced plasma cholesterol and triglycerides in mice. Mechanistic studies showed that the saturated fatty acid palmitate activated extracellular signal-regulated kinase (ERK) and inhibited Sort1 protein by mechanisms involving Sort1 protein ubiquitination and degradation. Consistently, hepatic ERK signaling was activated in diabetic mice, whereas blocking ERK signaling by an ERK inhibitor increased hepatic Sort1 protein in mice. These results suggest that increased saturated fatty acids downregulate liver Sort1 protein, which may contribute to the development of dyslipidemia in obesity and diabetes.

  17. Sequentially Adapted Parallel Feedforward Active Noise Control of Noisy Sinusoidal Signals

    Directory of Open Access Journals (Sweden)

    Govind Kannan

    2009-01-01

    Full Text Available A large class of acoustic noise sources has an underlying periodic process that generates a periodic noise component, and thus their acoustic noise can in general be modeled as the sum of a periodic signal and a randomly fluctuating signal (usually a broadband background noise. Active control of periodic noise (i.e., for a mixture of sinusoids is more effective than that of random noise. For mixtures of sinusoids in a background broadband random noise, conventional FXLMS-based single filter method does not reach the maximum achievable Noise Attenuation Level (NALmax⁡. In this paper, an alternative approach is taken and the idea of a parallel active noise control (ANC architecture for cancelling mixtures of periodic and random signals is presented. The proposed ANC system separates the noise into periodic and random components and generates corresponding antinoises via separate noise cancelling filters, and tends to reach NALmax⁡ consistently. The derivation of NALmax⁡ is presented. Both the separation and noise cancellation are based on adaptive filtering. Experimental results verify the analytical development by showing superior performance of the proposed method, over the single-filter approach, for several cases of sinusoids in white noise.

  18. Atrazine promotes RM1 prostate cancer cell proliferation by activating STAT3 signaling.

    Science.gov (United States)

    Hu, Kebang; Tian, Yong; Du, Yanwei; Huang, Liandi; Chen, Junyu; Li, Na; Liu, Wei; Liang, Zuowen; Zhao, Lijing

    2016-05-01

    Atrazine, a widely used pesticide, is frequently detected in soil and surface water, which alarms epidemiologists and medical professionals because of its potential deleterious effects on health. Indeed, atrazine is a potent endocrine disruptor that increases aromatase expression in some human cancer cell lines. Both animal and human studies have suggested that atrazine is possibly carcinogenic, although discrepant results have been reported. In this study, RM1 cells were used to explore the atrazine effects on prostate cancer. Proliferation, migration and invasion of RM1 cells were assessed by colony formation, wound-healing and invasion assays, respectively, after in vitro exposure to atrazine. In addition, an RM1 cell xenograft model was generated to evaluate the effects of atrazine in vivo. To explore the molecular mechanisms, qRT‑PCR, immunohistochemistry, and western blot analyses were employed to detect mRNA and protein levels of STAT3 signaling and cell cycle related proteins, including p53, p21, cyclin B1 and cyclin D1. Interestingly, RM1 cell proliferation was increased after treatment with atrazine, concomitantly with STAT3 signaling activation. These results suggest that atrazine promotes RM1 cell growth in vitro and in vivo by activating STAT3 signaling.

  19. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation

    Science.gov (United States)

    Xavier, Guilherme M.; Patist, Amanda L.; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T.; Pedro Martinez-Barbera, Juan; Thavaraj, Selvam; Cobourne, Martyn T.; Andoniadou, Cynthia L.

    2015-01-01

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma. PMID:26411543

  20. Time-dependent regulation of muscle caveolin activation and insulin signalling in response to high-fat diet.

    Science.gov (United States)

    Gómez-Ruiz, Ana; de Miguel, Carlos; Campión, Javier; Martínez, J Alfredo; Milagro, Fermín I

    2009-10-06

    We studied the effect of high-fat diet on the expression and activation of the three caveolins in rat skeletal muscle and their association with the insulin signalling cascade. Initial response was characterized by increased signalling through Cav-1 and Cav-3 phosphorylation, suggesting that both participate in an initial acute response to the calorie surplus. Afterwards, Cav-1 signalling was slightly reduced, whereas Cav-3 remained active. Late chronic phase signalling through both proteins was impaired inducing a prediabetic state. Summarizing, caveolins seem to mediate a time-dependent regulation of insulin cascade in response to high-fat diet in muscle.

  1. Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition

    Directory of Open Access Journals (Sweden)

    Wu Chi-Hsun

    2010-06-01

    Full Text Available Abstract Background Brain oscillatory activities are stochastic and non-linearly dynamic, due to their non-phase-locked nature and inter-trial variability. Non-phase-locked rhythmic signals can vary from trial-to-trial dependent upon variations in a subject's performance and state, which may be linked to fluctuations in expectation, attention, arousal, and task strategy. Therefore, a method that permits the extraction of the oscillatory signal on a single-trial basis is important for the study of subtle brain dynamics, which can be used as probes to study neurophysiology in normal brain and pathophysiology in the diseased. Methods This paper presents an empirical mode decomposition (EMD-based spatiotemporal approach to extract neural oscillatory activities from multi-channel electroencephalograph (EEG data. The efficacy of this approach manifests in extracting single-trial post-movement beta activities when performing a right index-finger lifting task. In each single trial, an EEG epoch recorded at the channel of interest (CI was first separated into a number of intrinsic mode functions (IMFs. Sensorimotor-related oscillatory activities were reconstructed from sensorimotor-related IMFs chosen by a spatial map matching process. Post-movement beta activities were acquired by band-pass filtering the sensorimotor-related oscillatory activities within a trial-specific beta band. Signal envelopes of post-movement beta activities were detected using amplitude modulation (AM method to obtain post-movement beta event-related synchronization (PM-bERS. The maximum amplitude in the PM-bERS within the post-movement period was subtracted by the mean amplitude of the reference period to find the single-trial beta rebound (BR. Results The results showed single-trial BRs computed by the current method were significantly higher than those obtained from conventional average method (P Conclusions The EMD-based method is effective for artefact removal and extracting

  2. Constitutive activation of BMP signalling abrogates experimental metastasis of OVCA429 cells via reduced cell adhesion

    Directory of Open Access Journals (Sweden)

    Shepherd Trevor G

    2010-02-01

    Full Text Available Abstract Background Activation of bone morphogenetic protein (BMP4 signalling in human ovarian cancer cells induces a number of phenotypic changes in vitro, including altered cell morphology, adhesion, motility and invasion, relative to normal human ovarian surface epithelial cells. From these in vitro analyses, we had hypothesized that active BMP signalling promotes the metastatic potential of ovarian cancer. Methods To test this directly, we engineered OVCA429 human ovarian cancer cells possessing doxycycline-inducible expression of a constitutively-active mutant BMP receptor, ALK3QD, and administered these cells to immunocompromised mice. Further characterization was performed in vitro to address the role of activated BMP signalling on the EOC phenotype, with particular emphasis on epithelial-mesenchymal transition (EMT and cell adhesion. Results Unexpectedly, doxycycline-induced ALK3QD expression in OVCA429 cells reduced tumour implantation on peritoneal surfaces and ascites formation when xenografted into immunocompromised mice by intraperitoneal injection. To determine the potential mechanisms controlling this in vivo observation, we followed with several cell culture experiments. Doxycycline-induced ALK3QD expression enhanced the refractile, spindle-shaped morphology of cultured OVCA429 cells eliciting an EMT-like response. Using in vitro wound healing assays, we observed that ALK3QD-expressing cells migrated with long, cytoplasmic projections extending into the wound space. The phenotypic alterations of ALK3QD-expressing cells correlated with changes in specific gene expression patterns of EMT, including increased Snail and Slug and reduced E-cadherin mRNA expression. In addition, ALK3QD signalling reduced β1- and β3-integrin expression, critical molecules involved in ovarian cancer cell adhesion. The combination of reduced E-cadherin and β-integrin expression correlates directly with the reduced EOC cell cohesion in spheroids and

  3. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Susanne, E-mail: Susanne.Schuster@medizin.uni-leipzig.de [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Penke, Melanie; Gorski, Theresa [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Gebhardt, Rolf [Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Weiss, Thomas S. [Children' s University Hospital, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Kiess, Wieland; Garten, Antje [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany)

    2015-03-06

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  4. Initial analysis of peripheral lymphocytic extracellular signal related kinase activation in autism.

    Science.gov (United States)

    Erickson, Craig A; Ray, Balmiki; Wink, Logan K; Bayon, Baindu L; Pedapati, Ernest V; Shaffer, Rebecca; Schaefer, Tori L; Lahiri, Debomoy K

    2017-01-01

    Dysregulation of extracellular signal-related kinase (ERK) activity has been potentially implicated in the pathophysiology of autistic disorder (autism). ERK is part of a central intracellular signaling cascade responsible for a myriad of cellular functions. ERK is expressed in peripheral blood lymphocytes, and measurement of activated (phosphorylated) lymphocytic ERK is commonly executed in many areas of medicine. We sought to conduct the first study of ERK activation in humans with autism by utilizing a lymphocytic ERK activation assay. We hypothesized that ERK activation would be enhanced in peripheral blood lymphocytes from persons with autism compared to those of neurotypical control subjects. We conducted an initial study of peripheral lymphocyte ERK activation in 45 subjects with autism and 26 age- and gender-matched control subjects (total n = 71). ERK activation was measured using a lymphocyte counting method (primary outcome expressed as lymphocytes staining positive for cytosolic phosphorylated ERK divided by total cells counted) and additional Western blot analysis of whole cell phosphorylated ERK adjusted for total ERK present in the lymphocyte lysate sample. Cytosolic/nuclear localization of pERK activated cells were increased by almost two-fold in the autism subject group compared to matched neurotypical control subjects (cell count ratio of 0.064 ± 0.044 versus 0.034 ± 0.031; p = 0.002). Elevated phosphorylated ERK levels in whole cell lysates also showed increased activated ERK in the autism group compared to controls (n = 54 total) in Western blot analysis. The results of this first in human ERK activation study are consistent with enhanced peripheral lymphocytic ERK activation in autism, as well as suggesting that cellular compartmentalization of activated ERK may be altered in this disorder. Future work will be required to explore the impact of concomitant medication use and other subject characteristics such as level of cognitive

  5. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    Science.gov (United States)

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-08-09

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  6. A model for signal processing and predictive control of semi-active structural control system

    Indian Academy of Sciences (India)

    M-H Shih; W-P Sung; Ching-Jong Wang

    2009-06-01

    The theory for structural control has been well developed and applied to perform excellent energy dissipation using dampers. Both active and semi-active control systems may be used to decide on the optimal switch point of the damper based on the current and past structural responses to the excitation of external forces. However, numerous noises may occur when the control signals are accessed and transported thus causing a delay of the damper. Therefore, a predictive control technique that integrates an improved method of detecting the control signal based on the direction of the structural motion, and a calculator for detecting the velocity using the least-square polynomial regression is proposed in this research. Comparisons of the analytical data and experimental results show that this predictor is effective in switching the moving direction of the semi-active damper. This conclusion is further verified using the component and shaking table test with constant amplitude but various frequencies, and the El Centro earthquake test. All tests confirm that this predictive control technique is effective to alleviate the time delay problem of semi-active dampers. This predictive control technique promotes about 30% to 40% reduction of the structural displacement response and about 35% to 45% reduction of the structural acceleration response.

  7. A superstructure-based electrochemical assay for signal-amplified detection of DNA methyltransferase activity.

    Science.gov (United States)

    Zhang, Hui; Yang, Yin; Dong, Huilei; Cai, Chenxin

    2016-12-15

    DNA methyltransferase (MTase) activity is highly correlated with the occurrence and development of cancer. This work reports a superstructure-based electrochemical assay for signal-amplified detection of DNA MTase activity using M.SssI as an example. First, low-density coverage of DNA duplexes on the surface of the gold electrode was achieved by immobilized mercaptohexanol, followed by immobilization of DNA duplexes. The duplex can be cleaved by BstUI endonuclease in the absence of DNA superstructures. However, the cleavage is blocked after the DNA is methylated by M.SssI. The DNA superstructures are formed with the addition of helper DNA. By using an electroactive complex, RuHex, which can bind to DNA double strands, the activity of M.SssI can be quantitatively detected by differential pulse voltammetry. Due to the high site-specific cleavage by BstUI and signal amplification by the DNA superstructure, the biosensor can achieve ultrasensitive detection of DNA MTase activity down to 0.025U/mL. The method can be used for evaluation and screening of the inhibitors of MTase, and thus has potential in the discovery of methylation-related anticancer drugs.

  8. Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation.

    Science.gov (United States)

    Oeckinghaus, Andrea; Wegener, Elmar; Welteke, Verena; Ferch, Uta; Arslan, Seda Cöl; Ruland, Jürgen; Scheidereit, Claus; Krappmann, Daniel

    2007-11-14

    Triggering of antigen receptors on lymphocytes is critical for initiating adaptive immune response against pathogens. T-cell receptor (TCR) engagement induces the formation of the Carma1-Bcl10-Malt1 (CBM) complex that is essential for activation of the IkappaB kinase (IKK)/NF-kappaB pathway. However, the molecular mechanisms that link CBM complex formation to IKK activation remain unclear. Here we report that Malt1 is polyubiquitinated upon T-cell activation. Ubiquitin chains on Malt1 provide a docking surface for the recruitment of the IKK regulatory subunit NEMO/IKKgamma. TRAF6 associates with Malt1 in response to T-cell activation and can function as an E3 ligase for Malt1 in vitro and in vivo, mediating lysine 63-linked ubiquitination of Malt1. Multiple lysine residues in the C-terminus of Malt1 serve as acceptor sites for the assembly of polyubiquitin chains. Malt1 mutants that lack C-terminal ubiquitin acceptor lysines are impaired in rescuing NF-kappaB signaling and IL-2 production in Malt1-/- T cells. Thus, our data demonstrate that induced Malt1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing TCR signals to the canonical NF-kappaB pathway.

  9. Genetic and logic networks with the signal-inhibitor-activator structure are dynamically robust

    Institute of Scientific and Technical Information of China (English)

    LI Fangting; TAN Ning

    2006-01-01

    The proteins, DNA and RNA interaction networks govern various biological functions in living cells, these networks should be dynamically robust in the intracellular and environmental fluctuations. Here, we use Boolean network to study the robust structure of both genetic and logic networks. First, SOS network in bacteria E. coli, which regulates cell survival and repair after DNA damage, is shown to be dynamically robust. Comparing with cell cycle network in budding yeast and flagella network in E. coli, we find the signal-inhibitor-activator (SIA) structure in transcription regulatory networks. Second, under the dynamical rule that inhibition is much stronger than activation, we have searched 3-node non-self-loop logical networks that are dynamically robust, and that if the attractive basin of a final attractor is as large as seven, and the final attractor has only one active node, then the active node acts as inhibitor, and the SIA and signal-inhibitor (SI) structures are fundamental architectures of robust networks. SIA and SI networks with dynamic robustness against environment uncertainties may be selected and maintained over the course of evolution, rather than blind trial-error testing and be ing an accidental consequence of particular evolutionary history. SIA network can perform a more complex process than SI network, andSIA might be used to design robust artificial genetic network. Our results provide dynamical support for why the inhibitors and SIA/SI structures are frequently employed in cellular regulatory networks.

  10. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  11. Ligand Perception, Activation, and Early Signaling of Plant Steroid Receptor Brassinosteroid Insensitive 1

    Institute of Scientific and Technical Information of China (English)

    Jianjun Jiang; Chi Zhang; Xuelu Wang

    2013-01-01

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) belong to a large group of cell surface proteins involved in many aspects of plant development and environmental responses in both monocots and dicots. Brassinosteroid insensitive 1 (BRI1), a member of the LRR X subfamily, was first identified through several forward genetic screenings for mutants insensitive to brassinosteroids (BRs), which are a class of plant-specific steroid hormones. Since its identification, BRI1 and its homologs had been proved as receptors perceiving BRs and initiating BR signaling. The co-receptor BRI1-associated kinase 1 and its homologs, and other BRI1 interacting proteins such as its inhibitor BRI1 kinase inhibitor 1 (BKI1) were identified by genetic and biochemical approaches. The detailed mechanisms of BR perception by BRI1 and the activation of BRI1 receptor complex have also been elucidated. Moreover, several mechanisms for termination of the activated BRI1 signaling were also discovered. In this review, we will focus on the recent advances on the mechanism of BRI1 phosphorylation and activation, the regulation of its receptor complex, the structure basis of BRI1 ectodomain and BR recognition, its direct substrates, and the termination of the activated BRI1 receptor complex.

  12. Chemerin Stimulates Vascular Smooth Muscle Cell Proliferation and Carotid Neointimal Hyperplasia by Activating Mitogen-Activated Protein Kinase Signaling

    Science.gov (United States)

    Xiong, Wei; Luo, Yu; Wu, Lin; Liu, Feng; Liu, Huadong; Li, Jianghua; Liao, Bihong; Dong, Shaohong

    2016-01-01

    Vascular neointimal hyperplasia and remodeling arising from local inflammation are characteristic pathogeneses of proliferative cardiovascular diseases, such as atherosclerosis and post angioplasty restenosis. The molecular mechanisms behind these pathological processes have not been fully determined. The adipokine chemerin is associated with obesity, metabolism, and control of inflammation. Recently, chemerin has gained increased attention as it was found to play a critical role in the development of cardiovascular diseases. In this study, we investigated the effects of chemerin on the regulation of vascular smooth muscle cells and carotid neointimal formation after angioplasty. We found that circulating chemerin levels increased after carotid balloon injury, and that knockdown of chemerin significantly inhibited the proliferative aspects of vascular smooth muscle cells induced by platelet-derived growth factor-BB and pro-inflammatory chemokines in vitro as well as prohibited carotid neointimal hyperplasia and pro-inflammatory chemokines in vivo after angioplasty. Additionally, inhibition of chemerin down-regulated the expression of several proteins, including phosphorylated p38 mitogen-activated protein kinase, phosphorylated extracellular signal regulated kinase 1/2, nuclear factor-kappa B p65, and proliferation cell nuclear antigen. The novel finding of this study is that chemerin stimulated vascular smooth muscle cells proliferation and carotid intimal hyperplasia through activation of the mitogen-activated protein kinase signaling pathway, which may lead to vascular inflammation and remodeling, and is relevant to proliferative cardiovascular diseases. PMID:27792753

  13. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    Science.gov (United States)

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  14. Targeting signal transducers and activators of transcription (STAT) in human cancer by dietary polyphenolic antioxidants.

    Science.gov (United States)

    Amani, Hamed; Ajami, Marjan; Maleki, Solmaz Nasseri; Pazoki-Toroudi, Hamidreza; Daglia, Maria; Tsetegho Sokeng, Arold Jorel; Di Lorenzo, Arianna; Nabavi, Seyed Fazel; Devi, Kasi Pandima; Nabavi, Seyed Mohammad

    2017-08-11

    Over the course of the last three decades, a large body of evidence has shown that polyphenols, the secondary metabolites occurring in plant foods and beverages, exert protective effects due to their antioxidant activity mediated through different mechanisms ranging from direct radical scavenging and metal chelating activities, to the capacity to inhibit pro-oxidant enzymes and to target specific cell-signalling pathways. In the last decade, dietary components, and polyphenols in particular have gained considerable attention as chemopreventive agents against different types of cancer. The signal transducers and activators of transcription (STAT) family is a group of cytoplasmic transcription factors which interact with specific sequences of DNA, inducing the expression of specific genes which in turn give rise to adaptive and highly specific biological responses. Growing evidence suggests that, of the seven STAT members identified, STAT3 is over-expressed in many human tumors (i.e. solid tumors and hematological malignancies) promoting the onset and development of cancer in humans by inhibiting apoptosis or by inducing cell proliferation, angiogenesis, invasion, and metastasis. This review article aims to assess the most recent studies on the role of STATs, with focus on STAT3, in oncogenesis, and the promising effects of some polyphenols on STAT expression. Moreover, the mechanisms behind the anti-inflammatory and antioxidant activities of polyphenols which have an influence on STAT expression are discussed, with a focus on their ability to target specific cell-signalling pathways. Copyright © 2017 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.

  15. PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway

    Science.gov (United States)

    Xu, Jialin; Shimpi, Prajakta; Armstrong, Laura; Salter, Deanna; Slitt, Angela L.

    2016-01-01

    PFOS is a chemical of nearly ubiquitous exposure in humans. Recent studies have associated PFOS exposure to adipose tissue-related effects. The present study was to determine whether PFOS alters the process of adipogenesis and regulates insulin-stimulated glucose uptake in mouse and human preadipocytes. In murine-derived 3T3-L1 preadipocytes, PFOS enhanced hormone-induced differentiation to adipocytes and adipogenic gene expression, increased insulin-stimulated glucose uptake at concentrations ranging from 10 to 100 µM, and enhanced Glucose transporter type 4 and Insulin receptor substrate-1 expression. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase, quinone 1 and Glutamate-cysteine ligase, catalytic subunit were significantly induced in 3T3-L1 cells treated with PFOS, along with a robust induction of Antioxidant Response Element (ARE) reporter in mouse embryonic fibroblasts isolated from ARE-hPAP transgenic mice by PFOS treatment. Chromatin immunoprecipitation assays further illustrated that PFOS increased Nrf2 binding to ARE sites in mouse Nqo1 promoter, suggesting that PFOS activated Nrf2 signaling in murine-derived preadipocytes. Additionally, PFOS administration in mice (100 µg/kg/day) induced adipogenic gene expression and activated Nrf2 signaling in epididymal white adipose tissue. Moreover, the treatment on human visceral preadipocytes illustrated that PFOS (5 and 50 µM) promoted adipogenesis and increased cellular lipid accumulation. It was observed that PFOS increased Nrf2 binding to ARE sites in association with Nrf2 signaling activation, induction of Peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α expression, and increased adipogenesis. This study points to a potential role PFOS in dysregulation of adipose tissue expandability, and warrants further investigations on the adverse effects of persistent pollutants on human health. PMID:26548598

  16. The cytotoxic and proapoptotic activities of hypnophilin are associated with calcium signaling in UACC-62 cells.

    Science.gov (United States)

    Pinto, Mauro C X; Cota, Betania B; Rodrigues, Michele A; Leite, Maria F; de Souza-Fagundes, Elaine M

    2013-11-01

    Hypnophilin (HNP) is a sesquiterpene that is isolated from Lentinus cf. strigosus and has cytotoxic activities. Here, we studied the calcium signaling and cytotoxic effects of HNP in UACC-62 cells, a human skin melanoma cell line. HNP was able to increase the intracellular calcium concentration in UACC-62 cells, which was blocked in cells stimulated in Ca(2+) -free media. HNP treatment with BAPTA-AM, an intracellular Ca(2+) chelator, caused an increase in calcium signals. HNP showed cytotoxicity against UACC-62 cells in which it induced DNA fragmentation and morphological alterations, including changes in the nuclear chromatin profile and increased cytoplasmatic vacuolization, but it had no effect on the plasma membrane integrity. These data suggest that cytotoxicity in UACC-62 cells, after treatment with HNP, is associated with Ca(2+) influx. Together, these findings suggest that HNP is a relevant tool for the further investigation of new anticancer approaches.

  17. Effects of activated ACM on expression of signal transducers in cerebral cortical neurons of rats.

    Science.gov (United States)

    Wang, Xiaojing; Li, Zhengli; Zhu, Changgeng; Li, Zhongyu

    2007-06-01

    To explore the roles of astrocytes in the epileptogenesis, astrocytes and neurons were isolated, purified and cultured in vitro from cerebral cortex of rats. The astrocytes were activated by ciliary neurotrophic factor (CNTF) and astrocytic conditioned medium (ACM) was collected to treat neurons for 4, 8 and 12 h. By using Western blot, the expression of calmodulin dependent protein kinase II (CaMK II), inducible nitric oxide synthase (iNOS) and adenylate cyclase (AC) was detected in neurons. The results showed that the expression of CaMK II, iNOS and AC was increased significantly in the neurons treated with ACM from 4 h to 12 h (PACM and such signal pathways as NOS-NO-cGMP, Ca2+/CaM-CaMK II and AC-cAMP-PKA might take part in the signal transduction of epileptogenesis.

  18. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

    Science.gov (United States)

    Stouffer, Melissa A.; Woods, Catherine A.; Patel, Jyoti C.; Lee, Christian R.; Witkovsky, Paul; Bao, Li; Machold, Robert P.; Jones, Kymry T.; de Vaca, Soledad Cabeza; Reith, Maarten E. A.; Carr, Kenneth D.; Rice, Margaret E.

    2015-01-01

    Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate–putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices. PMID:26503322

  19. Generalized proportional integral control for periodic signals under active disturbance rejection approach.

    Science.gov (United States)

    Cortés-Romero, John; Ramos, Germán A; Coral-Enriquez, Horacio

    2014-11-01

    Conventional repetitive control has proven to be an effective strategy to reject/track periodic signals with constant frequency; however, it shows poor performance in varying frequency applications. This paper proposes an active disturbance rejection methodology applied to a large class of uncertain flat systems for the tracking and rejection of periodic signals, in which the possibilities of the generalized proportional integral (GPI) observer-based control to address repetitive control problems are studied. In the proposed scheme, model uncertainties and external disturbances are lumped together in a general additive disturbance input that is estimated and rejected on-line. An illustrative case study of mechatronic nature is considered. Experimental results show that the proposed GPI observer-based control successfully rejects periodic disturbances even under varying speed conditions.

  20. Circadian period integrates network information through activation of the BMP signaling pathway.

    Science.gov (United States)

    Beckwith, Esteban J; Gorostiza, E Axel; Berni, Jimena; Rezával, Carolina; Pérez-Santángelo, Agustín; Nadra, Alejandro D; Ceriani, María Fernanda

    2013-12-01

    Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF) set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP) signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands.

  1. Circadian period integrates network information through activation of the BMP signaling pathway.

    Directory of Open Access Journals (Sweden)

    Esteban J Beckwith

    2013-12-01

    Full Text Available Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands.

  2. lschemic preconditioning in pigs: a causal role for signal transducer and activator of transcription 3.

    Science.gov (United States)

    Gent, Sabine; Skyschally, Andreas; Kleinbongard, Petra; Heusch, Gerd

    2017-03-01

    Ischemic preconditioning (IPC), i.e., brief episodes of nonlethal myocardial ischemia-reperfusion (I/R) before sustained ischemia with subsequent reperfusion, reduces infarct size in all species tested so far, including humans. In rodents, the cardioprotective signal transduction causally involves an activation of Akt, ERK1/2, and STAT3. However, there are apparent species differences in the signal transduction between rodents and larger mammals such as pigs, where data on IPC's signal transduction are inconsistent for Akt and ERK1/2. The role of STAT3 has not yet been analyzed. Pigs were subjected to 60 min of left anterior descending coronary artery occlusion and 180 min of reperfusion without or with IPC (2 cycles of 3-min occlusion separated by 2 min of reperfusion 15 min before sustained I/R). Infarct size was analyzed by triphenyl tetrazolium chloride staining, and Akt, ERK1/2, and STAT3 phosphorylation was quantified in myocardial biopsies taken at baseline and early reperfusion. AG490 was used to block the STAT3 signaling pathway. IPC reduced infarct size (%area at risk; mean ± SE, I/R, 45 ± 3 vs. IPC, 18 ± 3, P IPC. In contrast, STAT3 phosphorylation at early reperfusion was only increased with IPC (%baseline; mean ± SE, I/R, 126 ± 29 vs. IPC, 408 ± 147, P IPC-related increase of STAT3 phosphorylation at reperfusion (%baseline; mean ± SE, 82 ± 12) and abolished IPC's cardioprotection (%area at risk; mean ± SE, 35 ± 4). In pigs, increased phosphorylation of STAT3 is causally involved, whereas Akt and ERK1/2 seem to play no role in IPC's cardioprotection.NEW & NOTEWORTHY In pig hearts in situ, ischemic preconditioning (IPC) causally involves increased phosphorylation of STAT3, whereas Akt and ERK1/2 play no role for cardioprotection. The cardioprotective signal transduction of IPC is similar to that of ischemic postconditioning and remote IPC in pigs.

  3. Amplification of IL-21 signalling pathway through Bruton's tyrosine kinase in human B cell activation.

    Science.gov (United States)

    Wang, Sheau-Pey; Iwata, Shigeru; Nakayamada, Shingo; Niiro, Hiroaki; Jabbarzadeh-Tabrizi, Siamak; Kondo, Masahiro; Kubo, Satoshi; Yoshikawa, Maiko; Tanaka, Yoshiya

    2015-08-01

    B cells play an important role in the pathogenesis of autoimmune diseases. The role of Bruton's tyrosine kinase (Btk) in cytokine-induced human B cell differentiation and class-switch recombination remains incompletely defined. This study analysed the effect of Btk on human activated B cells. Purified B cells from healthy subjects were stimulated with B cell receptor (BCR) and other stimuli with or without a Btk inhibitor and gene expression was measured. The B cell line BJAB was used to assess Btk-associated signalling cascades. Phosphorylated Btk (p-Btk) in peripheral blood B cells obtained from 10 healthy subjects and 41 patients with RA was measured by flow cytometry and compared with patient backgrounds. IL-21 signalling, in concert with BCR, CD40 and BAFF signals, led to robust expression of differentiation- and class-switch DNA recombination-related genes and IgG production in human B cells, all of which were significantly suppressed by the Btk inhibitor. Although phosphorylation of STAT1 and STAT3 was induced by co-stimulation with IL-21, BCR and CD40, STAT1 phosphorylation in the nucleus, but not in the cytoplasm, was exclusively impaired by Btk blockade. High levels of p-Btk were noted in B cells of RA patients compared with controls and they correlated significantly with titres of RF among RF-positive patients. The findings elucidate a model in which Btk not only plays a fundamental role in the regulation of BCR signalling, but may also mediate crosstalk with cytokine signalling pathways through regulation of IL-21-induced phosphorylation of STAT1 in the nuclei of human B cells. Btk appears to have pathological relevance in RA. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling.

    Science.gov (United States)

    Yu, Ling; Fan, Zhengfu; Fang, Shuo; Yang, Jian; Gao, Tian; Simões, Bruno M; Eyre, Rachel; Guo, Weichun; Clarke, Robert B

    2016-05-31

    Notch signaling regulates normal stem cells and is also thought to regulate cancer stem cells (CSCs). Recent data indicate that Notch signaling plays a role in the development and progression of osteosarcoma, however the regulation of Notch in chemo-resistant stem-like cells has not yet been fully elucidated. In this study we generated cisplatin-resistant osteosarcoma cells by treating them with sub-lethal dose of cisplatin, sufficient to induce DNA damage responses. Cisplatin-resistant osteosarcoma cells exhibited lower proliferation, enhanced spheroid formation and more mesenchymal characteristics than cisplatin-sensitive cells, were enriched for Stro-1+/CD117+ cells and showed increased expression of stem cell-related genes. A similar effect was observed in vivo, and in addition in vivo tumorigenicity was enhanced during serial transplantation. Using several publicly available datasets, we identified that Notch expression was closely associated with osteosarcoma stem cells and chemotherapy resistance. We confirmed that cisplatin-induced enrichment of osteosarcoma stem cells was mediated through Notch signaling in vitro, and immunohistochemistry showed that cleaved Notch1 (NICD1) positive cells were significantly increased in a relapsed xenograft which had received cisplatin treatment. Furthermore, pretreatment with a γ-secretase inhibitor (GSI) to prevent Notch signalling inhibited cisplatin-enriched osteosarcoma stem cell activity in vitro, including Stro-1+/CD117+ double positive cells and spheroid formation capacity. The Notch inhibitor DAPT also prevented tumor recurrence in resistant xenograft tumors. Overall, our results show that cisplatin induces the enrichment of osteosarcoma stem-like cells through Notch signaling, and targeted inactivation of Notch may be useful for the elimination of CSCs and overcoming drug resistance.

  5. Activation of Phosphotyrosine Phosphatase Activity Attenuates Mitogen-Activated Protein Kinase Signaling and Inhibits c-FOS and Nitric Oxide Synthase Expression in Macrophages Infected with Leishmania donovani

    OpenAIRE

    Nandan, Devki; Lo, Raymond; Reiner, Neil E

    1999-01-01

    Intracellular protozoan parasites of the genus Leishmania antagonize host defense mechanisms by interfering with cell signaling in macrophages. In this report, the impact of Leishmania donovani on mitogen-activated protein (MAP) kinases and nitric oxide synthase (NOS) expression in the macrophage cell line RAW 264 was investigated. Overnight infection of cells with leishmania led to a significant decrease in phorbol-12-myristate-13-acetate (PMA)-stimulated MAP kinase activity and inhibited PM...

  6. Modest Interference with Actin Dynamics in Primary T Cell Activation by Antigen Presenting Cells Preferentially Affects Lamellal Signaling.

    Directory of Open Access Journals (Sweden)

    Kole T Roybal

    Full Text Available Dynamic subcellular distributions of signaling system components are critical regulators of cellular signal transduction through their control of molecular interactions. Understanding how signaling activity depends on such distributions and the cellular structures driving them is required for comprehensive insight into signal transduction. In the activation of primary murine T cells by antigen presenting cells (APC signaling intermediates associate with various subcellular structures, prominently a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell. While actin dynamics are well established as general regulators of cellular organization, their role in controlling signaling organization in primary T cell:APC couples and the specific cellular structures driving it is unresolved. Using modest interference with actin dynamics with a low concentration of Jasplakinolide as corroborated by costimulation blockade we show that T cell actin preferentially controls lamellal signaling localization and activity leading downstream to calcium signaling. Lamellal localization repeatedly related to efficient T cell function. This suggests that the transient lamellal actin matrix regulates T cell signaling associations that facilitate T cell activation.

  7. Huang Qi Decoction Prevents BDL-Induced Liver Fibrosis Through Inhibition of Notch Signaling Activation.

    Science.gov (United States)

    Zhang, Xiao; Xu, Ying; Chen, Jia-Mei; Liu, Cheng; Du, Guang-Li; Zhang, Hua; Chen, Gao-Feng; Jiang, Shi-Li; Liu, Cheng-Hai; Mu, Yong-Ping; Liu, Ping

    2017-01-01

    Notch signaling has been demonstrated to be involved in ductular reactions and fibrosis. Previous studies have shown that Huang Qi Decoction (HQD) can prevent the progression of cholestatic liver fibrosis (CLF). However, whether HQD affects the Notch signaling pathway is unclear. In this study, CLF was established by common bile duct ligation (BDL) in rats. At the end of the first week, the rats were randomly divided into a model group (i.e., BDL), an HQD group, and a sorafenib positive control group (SORA) and were treated for 3 weeks. Bile duct proliferation and liver fibrosis were determined by tissue staining. Activation of the Notch signaling pathway was evaluated by analyzing expressions of Notch-1, -2, -3, and -4, Jagged (JAG) 1, and Delta like (DLL)-1, -3, and -4. The results showed that HQD significantly reduced the deposition of collagen and the Hyp content of liver tissue and inhibited the activation of HSCs compared with the BDL group. In addition, HQD significantly decreased the protein and mRNA expressions of TGF-[Formula: see text]1 and [Formula: see text]-SMA. In contrast, HQD significantly enhanced expression of the Smad 7 protein. HQD also reduced biliary epithelial cell proliferation, and reduced the mRNA levels of CK7, CK8, CK18, SRY-related high mobility group-box gene (SOX) 9, epithelial cell adhesion molecule (EpCAM) and the positive areas of CK19 and OV6. In addition, the mRNA and protein expressions of Notch-3, -4, JAG1, and DLL-1, -3 were significantly reduced in the HQD compared to the BDL group. These results demonstrated that HQD may prevent biliary liver fibrosis through inhibition of the Notch signaling pathway, and it may be a potential treatment for cholestatic liver disease.

  8. Sam68 Mediates the Activation of Insulin and Leptin Signalling in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Antonio Pérez-Pérez

    Full Text Available Obesity is a well-known risk factor for breast cancer development in postmenopausal women. High insulin and leptin levels seem to have a role modulating the growth of these tumours. Sam68 is an RNA-binding protein with signalling functions that has been found to be overexpressed in breast cancer. Moreover, Sam68 may be recruited to insulin and leptin signalling pathways, mediating its effects on survival, growth and proliferation in different cellular types. We aimed to study the expression of Sam68 and its phosphorylation level upon insulin and leptin stimulation, and the role of Sam68 in the proliferative effect and signalling pathways that are activated by insulin or leptin in human breast adenocarcinoma cells. In the human breast adenocarcinoma cell lines MCF7, MDA-MB-231 and BT-474, Sam68 protein quantity and gene expression were increased upon leptin or insulin stimulation, as it was checked by qPCR and immunoblot. Moreover, both insulin and leptin stimulation promoted an increase in Sam68 tyrosine phosphorylation and negatively regulated its RNA binding capacity. siRNA was used to downregulate Sam68 expression, which resulted in lower proliferative effects of both insulin and leptin, as well as a lower activation of MAPK and PI3K pathways promoted by both hormones. These effects may be partly explained by the decrease in IRS-1 expression by down-regulation of Sam68. These results suggest the participation of Sam68 in both leptin and insulin receptor signaling in human breast cancer cells, mediating the trophic effects of these hormones in proliferation and cellular growth.

  9. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity.

    Science.gov (United States)

    Umberger, Nicole L; Caspary, Tamara

    2015-01-15

    Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet- derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-Akt(T308) and P-Akt(S473), and previous work showed decreased P-Akt(S473) in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-Akt(T308) and P-Akt(S473) in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-Akt(T308). Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFR)α levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-Akt(S473) or P-Akt(T308) upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA-dependent phosphorylation of Akt(S473) and Akt(T308) in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling.

  10. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    Energy Technology Data Exchange (ETDEWEB)

    Piwkowska, Agnieszka, E-mail: apiwkowska@cmdik.pan.pl [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Rogacka, Dorota; Angielski, Stefan [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Jankowski, Maciej [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Medical University of Gdansk, Department of Therapy Monitoring and Pharmacogenetics (Poland)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} activates the insulin signaling pathway and glucose uptake in podocytes. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} induces time-dependent changes in AMPK phosphorylation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} enhances insulin signaling pathways via AMPK activation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H{sub 2}O{sub 2}) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H{sub 2}O{sub 2}-induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H{sub 2}O{sub 2} (100 {mu}M) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min ({Delta} 183%, P < 0.05), 3 min ({Delta} 414%, P < 0.05), and 10 min ({Delta} 35%, P < 0.05), respectively. Immunostaining cells with an Akt-specific antibody showed increased intensity at the plasma membrane after treatment with H{sub 2}O{sub 2}>. Furthermore, H{sub 2}O{sub 2} inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; {Delta} -32%, P < 0.05) and stimulated phosphorylation of the AMP-dependent kinase alpha subunit (AMPK{alpha}; 78% at 3 min and 244% at 10 min). The stimulation of AMPK was abolished with an AMPK inhibitor, Compound C (100 {mu}M, 2 h). Moreover, Compound C significantly reduced the effect of H{sub 2}O{sub 2} on IR phosphorylation by about 40% (from 2.07 {+-} 0.28 to 1.28 {+-} 0.12, P < 0.05). In addition, H{sub 2}O{sub 2} increased glucose uptake in podocytes

  11. Characterization of rotavirus RNAs that activate innate immune signaling through the RIG-I-like receptors.

    Directory of Open Access Journals (Sweden)

    Dina Uzri

    Full Text Available In mammalian cells, the first line of defense against viral pathogens is the innate immune response, which is characterized by induction of type I interferons (IFN and other pro-inflammatory cytokines that establish an antiviral milieu both in infected cells and in neighboring uninfected cells. Rotavirus, a double-stranded RNA virus of the Reoviridae family, is the primary etiological agent of severe diarrhea in young children worldwide. Previous studies demonstrated that rotavirus replication induces a MAVS-dependent type I IFN response that involves both RIG-I and MDA5, two cytoplasmic viral RNA sensors. This study reports the isolation and characterization of rotavirus RNAs that activate IFN signaling. Using an in vitro approach with purified rotavirus double-layer particles, nascent single-stranded RNA (ssRNA transcripts (termed in vitro ssRNA were found to be potent IFN inducers. In addition, large RNAs isolated from rotavirus-infected cells six hours post-infection (termed in vivo 6 hr large RNAs, also activated IFN signaling, whereas a comparable large RNA fraction isolated from cells infected for only one hour lacked this stimulatory activity. Experiments using knockout murine embryonic fibroblasts showed that RIG-I is required for and MDA5 partly contributes to innate immune signaling by both in vitro ssRNA and in vivo 6 hr large RNAs. Enzymatic studies demonstrated that in vitro ssRNA and in vivo 6 hr large RNA samples contain uncapped RNAs with exposed 5' phosphate groups. RNAs lacking 2'-O-methylated 5' cap structures were also detected in the in vivo 6 hr large RNA sample. Taken together, our data provide strong evidence that the rotavirus VP3 enzyme, which encodes both guanylyltransferase and methyltransferase activities, is not completely efficient at either 5' capping or 2'-O-methylation of the 5' cap structures of viral transcripts, and in this way produces RNA patterns that activate innate immune signaling through the RIG

  12. Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks

    KAUST Repository

    Irving, Helen R.

    2012-02-01

    Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles.

  13. A REVIEW ON INFLUENCE OF MUSIC ON BRAIN ACTIVITY USING SIGNAL PROCESSING AND IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. K. ADALARASU,

    2011-04-01

    Full Text Available As per clinical neuroscience, listening to music involves many brain activities and its study has advanced greatly in the last thirty years. Research shows that music has significant effect on our body and mind. Music has a positive effect on the hormone system and allows the brain to concentrate more easily and assimilate more information in less time, thereby boosting learning and information intake and thus augmenting cognitive skills. Studies have found that the silence between two musical notes triggers brain cells and neurons which are responsible for the development of sharp memory. Music at different pitches (for example, Madhyamavati, Sankarabarnam raga and so on elicits exceptionally emotions and is capable ofreliably affecting the mood of individuals, which in turn changes the brain activity. This article provides a brief overview of currently available signal processing and imaging techniques to study the influence of different music on human brain activity.

  14. Delaying or advancing higher-order sideband signals with active optomechanics

    CERN Document Server

    Jiao, Yafeng; Qian, Jun; Li, Yong; Jing, H

    2016-01-01

    We study the gain-assisted light transmissions in optomechanical systems, especially the nonlinear higher-order sideband process. We find that: (i) in a single active cavity, the efficiency of the second-order process is considerably enhanced, and the accompanying group delay can surpass that of the probe field, which is unattainable for a lossy cavity (i.e. without any gain); (ii) in an active-passive compound system, the second-order process can be further enhanced by approaching to the gain-loss balance, and hundreds of microsecond of relative delay or advance are achievable between the probe and the second-order signal, indicating an active optomechanical modulator both in frequency and time domains.

  15. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells.

    Directory of Open Access Journals (Sweden)

    Shweta Jain

    Full Text Available Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB cells, by involving TLR-2 and CD40--molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID, signifying class switch recombination (CSR. Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.

  16. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  17. Activated T cell exosomes promote tumor invasion via Fas signaling pathway.

    Science.gov (United States)

    Cai, Zhijian; Yang, Fei; Yu, Lei; Yu, Zhou; Jiang, Lingling; Wang, Qingqing; Yang, Yunshan; Wang, Lie; Cao, Xuetao; Wang, Jianli

    2012-06-15

    Activated T cells release bioactive Fas ligand (FasL) in exosomes, which subsequently induce self-apoptosis of T cells. However, their potential effects on cell apoptosis in tumors are still unknown. In this study, we purified exosomes expressing FasL from activated CD8(+) T cell from OT-I mice and found that activated T cell exosomes had little effect on apoptosis and proliferation of tumor cells but promoted the invasion of B16 and 3LL cancer cells in vitro via the Fas/FasL pathway. Activated T cell exosomes increased the amount of cellular FLICE inhibitory proteins and subsequently activated the ERK and NF-κB pathways, which subsequently increased MMP9 expression in the B16 murine melanoma cells. In a tumor-invasive model in vivo, we observed that the activated T cell exosomes promoted the migration of B16 tumor cells to lung. Interestingly, pretreatment with FasL mAb significantly reduced the migration of B16 tumor cells to lung. Furthermore, CD8 and FasL double-positive exosomes from tumor mice, but not normal mice, also increased the expression of MMP9 and promoted the invasive ability of B16 murine melanoma and 3LL lung cancer cells. In conclusion, our results indicate that activated T cell exosomes promote melanoma and lung cancer cell metastasis by increasing the expression of MMP9 via Fas signaling, revealing a new mechanism of tumor immune escape.

  18. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, Gabriel; Coufal, Monique [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Li, Huang [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Ramirez, Jonathan [Digestive Disease Research Center, Scott and White Hospital, Temple, TX (United States); DeMorrow, Sharon, E-mail: demorrow@medicine.tamhsc.edu [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Digestive Disease Research Center, Scott and White Hospital, Temple, TX (United States)

    2010-05-15

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the {gamma}-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-{gamma}-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the {gamma}-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

  19. Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo

    Directory of Open Access Journals (Sweden)

    Lavu Siva

    2009-03-01

    Full Text Available Abstract Background Calorie restriction (CR produces a number of health benefits and ameliorates diseases of aging such as type 2 diabetes. The components of the pathways downstream of CR may provide intervention points for developing therapeutics for treating diseases of aging. The NAD+-dependent protein deacetylase SIRT1 has been implicated as one of the key downstream regulators of CR in yeast, rodents, and humans. Small molecule activators of SIRT1 have been identified that exhibit efficacy in animal models of diseases typically associated with aging including type 2 diabetes. To identify molecular processes induced in the liver of mice treated with two structurally distinct SIRT1 activators, SIRT501 (formulated resveratrol and SRT1720, for three days, we utilized a systems biology approach and applied Causal Network Modeling (CNM on gene expression data to elucidate downstream effects of SIRT1 activation. Results Here we demonstrate that SIRT1 activators recapitulate many of the molecular events downstream of CR in vivo, such as enhancing mitochondrial biogenesis, improving metabolic signaling pathways, and blunting pro-inflammatory pathways in mice fed a high fat, high calorie diet. Conclusion CNM of gene expression data from mice treated with SRT501 or SRT1720 in combination with supporting in vitro and in vivo data demonstrates that SRT501 and SRT1720 produce a signaling profile that mirrors CR, improves glucose and insulin homeostasis, and acts via SIRT1 activation in vivo. Taken together these results are encouraging regarding the use of small molecule activators of SIRT1 for therapeutic intervention into type 2 diabetes, a strategy which is currently being investigated in multiple clinical trials.

  20. The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals.

    Science.gov (United States)

    Geiger, Tobias; Goerke, Christiane; Mainiero, Markus; Kraus, Dirk; Wolz, Christiane

    2008-05-01

    The two-component system SaeRS of Staphylococcus aureus is closely involved in the regulation of major virulence factors. However, little is known about the signals leading to saeRS activation. A total of four overlapping transcripts (T1 to T4) from three different transcription starting points are expressed in the sae operon. We used a beta-galactosidase reporter assay to characterize the putative promoter regions within the saeRS upstream region. The main transcript T2 is probably generated by endoribonucleolytic processing of the T1 transcript. Only two distinct promoter elements (P1 and P3) could be detected within the saeRS upstream region. The P3 promoter, upstream of saeRS, generates the T3 transcript, includes a cis-acting enhancer element and is repressed by saeRS. The most distal P1 promoter is strongly autoregulated, activated by agr, and repressed by sigma factor B. In strain Newman a mutation within the histidine kinase SaeS leads to a constitutively activated sae system. Evaluation of different external signals revealed that the P1 promoter in strain ISP479R and strain UAMS-1 is inhibited by low pH and high NaCl concentrations but activated by hydrogen peroxide. The most prominent induction of P1 was observed at subinhibitory concentrations of alpha-defensins in various S. aureus strains, with the exception of strain ISP479R and strain COL. P1 was not activated by the antimicrobial peptides LL37 and daptomycin. In summary, the results indicate that the sensor molecule SaeS is activated by alteration within the membrane allowing the pathogen to react to phagocytosis related effector molecules.

  1. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling.

    Science.gov (United States)

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-07-01

    Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration.

  2. The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle.

    Science.gov (United States)

    Hornberger, T A; Chu, W K; Mak, Y W; Hsiung, J W; Huang, S A; Chien, S

    2006-03-21

    Signaling by the mammalian target of rapamycin (mTOR) has been reported to be necessary for mechanical load-induced growth of skeletal muscle. The mechanisms involved in the mechanical activation of mTOR signaling are not known, but several studies indicate that a unique [phosphotidylinositol-3-kinase (PI3K)- and nutrient-independent] mechanism is involved. In this study, we have demonstrated that a regulatory pathway for mTOR signaling that involves phospholipase D (PLD) and the lipid second messenger phosphatidic acid (PA) plays a critical role in the mechanical activation of mTOR signaling. First, an elevation in PA concentration was sufficient for the activation of mTOR signaling. Second, the isozymes of PLD (PLD1 and PLD2) are localized to the z-band in skeletal muscle (a critical site of mechanical force transmission). Third, mechanical stimulation of skeletal muscle with intermittent passive stretch ex vivo induced PLD activation, PA accumulation, and mTOR signaling. Finally, pharmacological inhibition of PLD blocked the mechanically induced increase in PA and the activation of mTOR signaling. Combined, these results indicate that mechanical stimuli activate mTOR signaling through a PLD-dependent increase in PA. Furthermore, we showed that mTOR signaling was partially resistant to rapamycin in muscles subjected to mechanical stimulation. Because rapamycin and PA compete for binding to the FRB domain on mTOR, these results suggest that mechanical stimuli activate mTOR signaling through an enhanced binding of PA to the FRB domain on mTOR.

  3. A novel role of sesamol in inhibiting NF-κB-mediated signaling in platelet activation

    Directory of Open Access Journals (Sweden)

    Chang Chao-Chien

    2011-12-01

    Full Text Available Abstract Background Platelet activation is relevant to a variety of coronary heart diseases. Our previous studies revealed that sesamol possesses potent antiplatelet activity through increasing cyclic AMP formation. Although platelets are anucleated cells, they also express the transcription factor, NF-κB, that may exert non-genomic functions in platelet activation. Therefore, we further investigated the inhibitory roles of sesamol in NF-κB-mediated platelet function. Methods Platelet aggregation, Fura 2-AM fluorescence, and immunoblotting analysis were used in this study. Results NF-κB signaling events, including IKKβ phosphorylation, IκBα degradation, and p65 phosphorylation, were markedly activated by collagen (1 μg/ml in washed human platelets, and these signaling events were attenuated by sesamol (2.5~25 μM. Furthermore, SQ22536 and ODQ, inhibitors of adenylate cyclase and guanylate cyclase, respectively, strongly reversed the sesamol (25 μM-mediated inhibitory effects of IKKβ phosphorylation, IκBα degradation, and p65 phosphorylation stimulated by collagen. The protein kinase A (PKA inhibitor, H89, also reversed sesamol-mediated inhibition of IκBα degradation. Moreover, BAY11-7082, an NF-κB inhibitor, abolished IκBα degradation, phospholipase C (PLCγ2 phosphorylation, protein kinase C (PKC activation, [Ca2+]i mobilization, and platelet aggregation stimulated by collagen. Preincubation of platelets with the inhibitors, SQ22536 and H89, both strongly reversed sesamol-mediated inhibition of platelet aggregation and [Ca2+]i mobilization. Conclusions Sesamol activates cAMP-PKA signaling, followed by inhibition of the NF-κB-PLC-PKC cascade, thereby leading to inhibition of [Ca2+]i mobilization and platelet aggregation. Because platelet activation is not only linked to hemostasis, but also has a relevant role in inflammation and metastasis, our data demonstrating that inhibition of NF-κB interferes with platelet function may

  4. Retinoic acid signalling is activated in the postischemic heart and may influence remodelling.

    Directory of Open Access Journals (Sweden)

    Dusan Bilbija

    Full Text Available BACKGROUND: All-trans retinoic acid (atRA, an active derivative of vitamin A, regulates cell differentiation, proliferation and cardiac morphogenesis via transcriptional activation of retinoic acid receptors (RARs acting on retinoic acid response elements (RARE. We hypothesized that the retinoic acid (RA signalling pathway is activated in myocardial ischemia and postischemic remodelling. METHODS AND FINDINGS: Myocardial infarction was induced through ligating the left coronary artery in mice. In vivo cardiac activation of the RARs was measured by imaging RARE-luciferase reporter mice, and analysing expression of RAR target genes and proteins by real time RT-PCR and western blot. Endogenous retinoids in postinfarcted hearts were analysed by triple-stage liquid chromatography/tandem mass spectrometry. Cardiomyocytes (CM and cardiofibroblasts (CF were isolated from infarcted and sham operated RARE luciferase reporter hearts and monitored for RAR activity and expression of target genes. The effect of atRA on CF proliferation was evaluated by EdU incorporation. Myocardial infarction increased thoracic RAR activity in vivo (p<0.001, which was ascribed to the heart through ex vivo imaging (p = 0.002 with the largest signal 1 week postinfarct. This was accompanied by increased cardiac gene and protein expression of the RAR target genes retinol binding protein 1 (p = 0.01 for RNA, p = 0,006 for protein and aldehyde dehydrogenase 1A2 (p = 0.04 for RNA, p = 0,014 for protein, while gene expression of cytochrome P450 26B1 was downregulated (p = 0.007. Concomitantly, retinol accumulated in the infarcted zone (p = 0.02. CM and CF isolated from infarcted hearts had higher luminescence than those from sham operated hearts (p = 0.02 and p = 0.008. AtRA inhibited CF proliferation in vitro (p = 0.02. CONCLUSION: The RA signalling pathway is activated in postischemic hearts and may play a role in regulation of damage and

  5. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway.

    Science.gov (United States)

    Nepal, Manoj; Li, Liang; Cho, Hyoung Kwon; Park, Jong Kun; Soh, Yunjo

    2013-12-01

    Endochondral bone formation occurs when mesenchymal cells condense to differentiate into chondrocytes, the primary cell types of cartilage. The aim of the present study was to identify novel factors regulating chondrogenesis. We investigated whether kaempferol induces chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Kaempferol treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Kaempferol-treated ATDC5 cells stained more intensely with alcian blue staining than control cells, suggesting greater synthesis of matrix proteoglycans in the kaempferol-treated cells. Similarly, kaempferol induced greater activation of alkaline phosphatase activity than control cells, and it enhanced the expression of chondrogenic marker genes, such as collagen type I, collagen type X, OCN, Runx2, and Sox9. Kaempferol induced an acute activation of extracellular signal-regulated kinase (ERK) but not c-jun N-terminal kinase or p38 MAP kinase. PD98059, an inhibitor of MAPK/ERK, decreased in stained cells treated with kaempferol. Furthermore, kaempferol greatly expressed the protein and mRNA levels of BMP-2, suggesting chondrogenesis was stimulated via a BMP-2 pathway. Taken together, our results suggest that kaempferol has chondromodulating effects via an ERK/BMP-2 signaling pathway and could potentially be used as a therapeutic agent for bone growth disorders.

  6. Salmonella Protein AvrA Activates the STAT3 Signaling Pathway in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Rong Lu

    2016-05-01

    Full Text Available Salmonella infection in humans can become chronic, which leads to low-grade persistent inflammation. These chronic infections increase the risk of several gastrointestinal diseases, including cancer. Salmonella AvrA is a multifunctional protein that influences eukaryotic cell pathways by regulating ubiquitination and acetylation. In an animal model, we have demonstrated that infection with AvrA-expressing Salmonella induces beta-catenin signals and enhances colonic tumorigenesis. Beta-catenin signaling is a key player in intestinal proliferation and tumorigenesis. The relative contributions of AvrA-induced proliferation and inflammation on tumorigenesis, however, are unknown. STAT3 is activated in chronically inflamed intestines in human inflammatory bowel diseases and in colitis-associated colon cancer. In the current study, mice were colonized with Salmonella AvrA-sufficient or AvrA-deficient bacterial strains. Then, inflammation-associated colon cancer was induced through the use of azoxymethane/dextran sulfate sodium. We determined that AvrA-expressing bacteria activated the STAT3 pathway, which is predicted to enhance proliferation and promote tumorigenesis. Transcriptional activity of STAT3 and its target genes were upregulated by Salmonella expressing AvrA, thus promoting proliferation and intestinal tumorigenesis. Our findings provide new insights regarding a STAT3-dependent mechanism by which the specific bacterial product AvrA enhances the development of infection-associated colon cancer. These insights might suggest future biomarkers to risk assessment and early detection of infection-related cancer.

  7. Osteogenesis on nanoparticulate mineralized collagen scaffolds via autogenous activation of the canonical BMP receptor signaling pathway.

    Science.gov (United States)

    Ren, Xiaoyan; Bischoff, David; Weisgerber, Daniel W; Lewis, Michael S; Tu, Victor; Yamaguchi, Dean T; Miller, Timothy A; Harley, Brendan A C; Lee, Justine C

    2015-05-01

    Skeletal regenerative medicine frequently incorporates deliverable growth factors to stimulate osteogenesis. However, the cost and side effects secondary to supraphysiologic dosages of growth factors warrant investigation of alternative methods of stimulating osteogenesis for clinical utilization. In this work, we describe growth factor independent osteogenic induction of human mesenchymal stem cells (hMSCs) on a novel nanoparticulate mineralized collagen glycosaminoglycan scaffold (MC-GAG). hMSCs demonstrated elevated osteogenic gene expression and mineralization on MC-GAG with minimal to no effect upon addition of BMP-2 when compared to non-mineralized scaffolds (Col-GAG). To investigate the intracellular pathways responsible for the increase in osteogenesis, we examined the canonical and non-canonical pathways downstream from BMP receptor activation. Constitutive Smad1/5 phosphorylation with nuclear translocation occurred on MC-GAG independent of BMP-2, whereas Smad1/5 phosphorylation depended on BMP-2 stimulation on Col-GAG. When non-canonical BMPR signaling molecules were examined, ERK1/2 phosphorylation was found to be decreased in MC-GAG but elevated in Col-GAG. No differences in Smad2/3 or p38 activation were detected. Collectively, these results demonstrated that MC-GAG scaffolds induce osteogenesis without exogenous BMP-2 addition via endogenous activation of the canonical BMP receptor signaling pathway.

  8. Physiology and cell biology of acupuncture observed in calcium signaling activated by acoustic shear wave.

    Science.gov (United States)

    Li, Geng; Liang, Jie-Ming; Li, Pei-Wen; Yao, Xiaoqiang; Pei, Peter Zhong; Li, Wei; He, Qi-Hua; Yang, Xifei; Chan, Queenie C C; Cheung, Paul Y S; Ma, Qi Yuan; Lam, Siu Kam; Cheng, Patrick Y C; Yang, Edward S

    2011-10-01

    This article presents a novel model of acupuncture physiology based on cellular calcium activation by an acoustic shear wave (ASW) generated by the mechanical movement of the needle. An acupuncture needle was driven by a piezoelectric transducer at 100 Hz or below, and the ASW in human calf was imaged by magnetic resonance elastography. At the cell level, the ASW activated intracellular Ca(2+) transients and oscillations in fibroblasts and endothelial, ventricular myocytes and neuronal PC-12 cells along with frequency-amplitude tuning and memory capabilities. Monitoring in vivo mammalian experiments with ASW, enhancement of endorphin in blood plasma and blocking by Gd(3+) were observed; and increased Ca(2+) fluorescence in mouse hind leg muscle was imaged by two-photon microscopy. In contrast with traditional acupuncture models, the signal source is derived from the total acoustic energy. ASW signaling makes use of the anisotropy of elasticity of tissues as its waveguides for transmission and that cell activation is not based on the nervous system.

  9. Five layers of receptor signalling in γδ T cell differentiation and activation

    Directory of Open Access Journals (Sweden)

    Sérgio T. Ribeiro

    2015-01-01

    Full Text Available The contributions of gamma-delta T cells to immunity to infection or tumours critically depend on their activation and differentiation into effectors capable of secreting cytokines and killing infected or transformed cells. These processes are molecularly controlled by surface receptors that capture key extracellular cues and convey downstream intracellular signals that regulate gamma-delta T cell physiology. The understanding of how environmental signals are integrated by gamma-delta T cells is critical for their manipulation in clinical settings. Here we discuss how different classes of surface receptors impact on human and murine gamma-delta T cell differentiation, activation and expansion. In particular, we review the role of five receptor types: the T cell receptor (TCR, costimulatory receptors, cytokine receptors, NK receptors and inhibitory receptors. Some of the key players are the costimulatory receptors CD27 and CD28, which differentially impact on pro-inflammatory subsets of gamma-delta T cells; the cytokine receptors IL-2R, IL-7R and IL-15R, which drive functional differentiation and expansion of gamma-delta T cells; the NK receptor NKG2D and its contribution to gamma-delta T cell cytotoxicity; and the inhibitory receptors PD-1 and BTLA that control gamma-delta T cell homeostasis. We discuss these and other receptors in the context of a five-step model of receptor signalling in gamma-delta T cell differentiation and activation, and discuss its implications for the manipulation of gamma-delta T cells in immunotherapy.

  10. Epidermal hyperplasia induced by Raf-MAPK signaling requires Stat3 activation.

    Science.gov (United States)

    Tarutani, Masahito; Nakajima, Kimiko; Takaishi, Mikiro; Ohko, Kentaro; Sano, Shigetoshi

    2013-11-01

    Raf is one of the downstream effectors of Ras GTPases, and plays a key role in regulating cell proliferation and differentiation through the activation of MAPK. We have previously demonstrated that temporal induction of Raf in the epidermis of K14-Raf:ER transgenic mice results in epidermal hyperplasia resembling squamous cell carcinoma and psoriasis. It has been demonstrated that epidermal Stat3 activation is required for psoriasis development, since keratinocyte-specific Stat3 activation in a mouse model elicits a psoriasis-like phenotype, which is reversed by inhibition of Stat3 signaling. The aim of this study was whether Stat3 signaling is involved in Raf-MAPK-dependent epidermal hyperplasia. K14-Raf:ER transgenic mice, in which the 4-hydroxytamoxifen (4OHT)-responsive mutant estrogen receptor ligand binding domain-Raf fusion gene is expressed under control of the keratin 14 promoter, were mated with epidermis-specific Stat3 null mice (K5-Cre.Stat3(flox/flox)). K5-Cre.Stat3(flox/flox) mice were used to define the impact of Stat3 deficiency on Raf-induced epidermal hyperplasia. Over-expression of Raf by 4OHT treatment in K14-Raf:ER;K5-Cre.Stat3(flox/flox) mice greatly attenuated the epidermal hyperplasia and dermal cell infiltrates compared with K14-Raf:ER;K5-Cre.Stat3(flox/WT) mice. Also, up-regulation of psoriasis-associated cytokine profiles, including VEGF, was inhibited in the skin from K14-Raf:ER;K5-Cre.Stat3(flox/flox) mice following 4OHT treatment. These results clearly indicate that Raf-MAPK-dependent psoriatic-like epidermal hyperplasia requires Stat3 signaling in keratinocytes. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Epstein-Barr virus LMP2A signaling in statu nascendi mimics a B cell antigen receptor-like activation signal

    Directory of Open Access Journals (Sweden)

    Engels Niklas

    2012-04-01

    Full Text Available Abstract Background The latent membrane protein (LMP 2A of Epstein-Barr virus (EBV is expressed during different latency stages of EBV-infected B cells in which it triggers activation of cytoplasmic protein tyrosine kinases. Early studies revealed that an immunoreceptor tyrosine-based activation motif (ITAM in the cytoplasmic N-terminus of LMP2A can trigger a transient increase of the cytosolic Ca2+ concentration similar to that observed in antigen-activated B cells when expressed as a chimeric transmembrane receptor. Even so, LMP2A was subsequently ascribed an inhibitory rather than an activating function because its expression seemed to partially inhibit B cell antigen receptor (BCR signaling in EBV-transformed B cell lines. However, the analysis of LMP2A signaling has been hampered by the lack of cellular model systems in which LMP2A can be studied without the influence of other EBV-encoded factors. Results We have reanalyzed LMP2A signaling using B cells in which LMP2A is expressed in an inducible manner in the absence of any other EBV signaling protein. This allowed us for the first time to monitor LMP2A signaling in statu nascendi as it occurs during the EBV life cycle in vivo. We show that mere expression of LMP2A not only stimulated protein tyrosine kinases but also induced phospholipase C-γ2-mediated Ca2+ oscillations followed by activation of the extracellular signal-regulated kinase (Erk mitogen-activated protein kinase pathway and induction of the lytic EBV gene bzlf1. Furthermore, expression of the constitutively phosphorylated LMP2A ITAM modulated rather than inhibited BCR-induced Ca2+ mobilization. Conclusion Our data establish that LMP2A expression has a function beyond the putative inhibition of the BCR by generating a ligand-independent cellular activation signal that may provide a molecular switch for different EBV life cycle stages and most probably contributes to EBV-associated lymphoproliferative disorders.

  12. Signal frequency based self-tuning fuzzy controller for semi-active suspension system

    Institute of Scientific and Technical Information of China (English)

    孙涛; 黄震宇; 陈大跃; 汤磊

    2003-01-01

    A new kind of fuzzy control scheme, based on the identification of the signal's main frequency and the behavior of the ER damper, is proposed to control the semi-active suspension system. This method adjusts the fuzzy controller to achieve the best isolation effect by analyzing the main frequency's characters and inspecting the change of system parameters. The input of the fuzzy controller is the main frequency and the optimal damping ratio is the output. Simulation results indicated that the proposed control method is very effective in isolating the vibration.

  13. Signal frequency based self-tuning fuzzy controller for semi-active suspension system

    Institute of Scientific and Technical Information of China (English)

    孙涛; 黄震宇; 陈大跃; 汤磊

    2003-01-01

    A new kind of fuzzy control scheme, based on the identification of the signal' s main frequency and the behavior of the ER damper, is proposed to control the semi-active suspension system. This method ad-justs the fuzzy controller to achieve the best isolation effect by analyzing the main frequency' s characters and inspecting the change of system parameters. The input of the fuzzy controller is the main frequency and the op-timal damping ratio is the output. Simulation results indicated that the proposed control method is very effec-tive in isolating the vibration.

  14. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization.

    Science.gov (United States)

    Sun, Wenxiang; Li, Yang; Chen, Lu; Chen, Huihui; You, Fuping; Zhou, Xiang; Zhou, Yi; Zhai, Zhonghe; Chen, Danying; Jiang, Zhengfan

    2009-05-26

    We report here the identification and characterization of a protein, ERIS, an endoplasmic reticulum (ER) IFN stimulator, which is a strong type I IFN stimulator and plays a pivotal role in response to both non-self-cytosolic RNA and dsDNA. ERIS (also known as STING or MITA) resided exclusively on ER membrane. The ER retention/retrieval sequence RIR was found to be critical to retain the protein on ER membrane and to maintain its integrity. ERIS was dimerized on innate immune challenges. Coumermycin-induced ERIS dimerization led to strong and fast IFN induction, suggesting that dimerization of ERIS was critical for self-activation and subsequent downstream signaling.

  15. Lightening up Light Therapy: Activation of Retrograde Signaling Pathway by Photobiomodulation.

    Science.gov (United States)

    Kim, Hong Pyo

    2014-11-01

    Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600∼1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode. It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular. Recently it has been suggested radiation of visible and infrared (IR) activates retrograde signaling pathway from mitochondria to nucleus. In this review, the role of COX in the photobiomodulation will be discussed. Further a possible role of water as a photoreceptor will be suggested.

  16. Activation of Sonic Hedgehog Signaling Pathway in S-type Neuroblastoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    周昱男; 戴若连; 毛玲; 夏远鹏; 姚玉芳; 杨雪; 胡波

    2010-01-01

    The effects of Sonic hedgehog(Shh) signaling pathway activation on S-type neuroblastoma(NB) cell lines and its role in NB tumorigenesis were investigated.Immunohistochemistry was used to detect the expression of Shh pathway components- Patched1(PTCH1) and Gli1 in 40 human primary NB samples.Western blotting and RT-PCR were used to examine the protein expression and mRNA levels of PTCH1 and Gli1 in three kinds of S-type NB cell lines(SK-N-AS,SK-N-SH and SHEP1),respectively.Exogenous Shh was administrated to ...

  17. Interferon lambda 4 signals via the IFNλ receptor to regulate antiviral activity against HCV and coronaviruses

    DEFF Research Database (Denmark)

    Hamming, Ole Jensen; Terczynska-Dyla, Ewa; Vieyres, Gabrielle

    2013-01-01

    The IFNL4 gene is a recently discovered type III interferon, which in a significant fraction of the human population harbours a frameshift mutation abolishing the IFNλ4 ORF. The expression of IFNλ4 is correlated with both poor spontaneous clearance of hepatitis C virus (HCV) and poor response...... to treatment with type I interferon. Here, we show that the IFNL4 gene encodes an active type III interferon, named IFNλ4, which signals through the IFNλR1 and IL-10R2 receptor chains. Recombinant IFNλ4 is antiviral against both HCV and coronaviruses at levels comparable to IFNλ3. However, the secretion...

  18. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response

    Directory of Open Access Journals (Sweden)

    Andreas Stengel

    2017-04-01

    Full Text Available Corticotropin-releasing factor (CRF is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.

  19. Signal transducer and activator of transcription 3 as a therapeutic target for cancer and the tumor microenvironment.

    Science.gov (United States)

    Kim, Byung-Hak; Yi, Eun Hee; Ye, Sang-Kyu

    2016-08-01

    Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that modulates the transcription of a variety of genes to regulate important biological functions, including cell proliferation, differentiation, survival, angiogenesis, and immune response. Constitutive activation of STAT3 is important in oncogenic signaling and occurs at high frequency in human cancers, including diverse solid tumors and hematologic malignancies. Moreover, it is associated with a poor prognosis. The tumor microenvironment has recently been recognized as a key condition for cancer progression, invasion, angiogenesis, metastasis, and drug resistance by activation of STAT3 signaling. Therefore, understanding the biology associated with STAT3-mediated signaling cascades in the tumor microenvironment may offer the therapeutic potential to treat human cancers. This review presents an overview of the critical roles of STAT3 in the tumor microenvironment related to cancer biology and discusses recent advancements in the development of anticancer drugs that therapeutically inhibit STAT3 signaling cascades.

  20. Expanding the neuron's calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation.

    Directory of Open Access Journals (Sweden)

    Stefanie Ryglewski

    2007-04-01

    Full Text Available Neuronal calcium acts as a charge carrier during information processing and as a ubiquitous intracellular messenger. Calcium signals are fundamental to numerous aspects of neuronal development and plasticity. Specific and independent regulation of these vital cellular processes is achieved by a rich bouquet of different calcium signaling mechanisms within the neuron, which either can operate independently or may act in concert. This study demonstrates the existence of a novel calcium signaling mechanism by simultaneous patch clamping and calcium imaging from acutely isolated central neurons. These neurons possess a membrane voltage sensor that, independent of calcium influx, causes G-protein activation, which subsequently leads to calcium release from intracellular stores via phospholipase C and inositol 1,4,5-trisphosphate receptor activation. This allows neurons to monitor activity by intracellular calcium release without relying on calcium as the input signal and opens up new insights into intracellular signaling, developmental regulation, and information processing in neuronal compartments lacking calcium channels.

  1. DMPD: Activation of lymphokine genes in T cells: role of cis-acting DNA elements thatrespond to T cell activation signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1492121 Activation of lymphokine genes in T cells: role of cis-acting DNA elements ...html) (.csml) Show Activation of lymphokine genes in T cells: role of cis-acting ...DNA elements thatrespond to T cell activation signals. PubmedID 1492121 Title Activation of lymphokine genes in T cells: role

  2. Resolving Early Signaling Events in T-Cell Activation Leading to IL-2 and FOXP3 Transcription

    Directory of Open Access Journals (Sweden)

    Jeffrey P. Perley

    2014-11-01

    Full Text Available Signal intensity and feedback regulation are known to be major factors in the signaling events stemming from the T-cell receptor (TCR and its various coreceptors, but the exact nature of these relationships remains in question. We present a mathematical model of the complex signaling network involved in T-cell activation with cross-talk between the Erk, calcium, PKC and mTOR signaling pathways. The model parameters are adjusted to fit new and published data on TCR trafficking, Zap70, calcium, Erk and Isignaling. The regulation of the early signaling events by phosphatases, CD45 and SHP1, and the TCR dynamics are critical to determining the behavior of the model. Additional model corroboration is provided through quantitative and qualitative agreement with experimental data collected under different stimulating and knockout conditions. The resulting model is analyzed to investigate how signal intensity and feedback regulation affect TCR- and coreceptor-mediated signal transduction and their downstream transcriptional profiles to predict the outcome for a variety of stimulatory and knockdown experiments. Analysis of the model shows that: (1 SHP1 negative feedback is necessary for preventing hyperactivity in TCR signaling; (2 CD45 is required for TCR signaling, but also partially suppresses it at high expression levels; and (3 elevated FOXP3 and reduced IL-2 signaling, an expression profile often associated with T regulatory cells (Tregs, is observed when the system is subjected to weak TCR and CD28 costimulation or a severe reduction in CD45 activity.

  3. Dual role for membrane localization in yeast MAP kinase cascade activation and its contribution to signaling fidelity.

    Science.gov (United States)

    Lamson, Rachel E; Takahashi, Satoe; Winters, Matthew J; Pryciak, Peter M

    2006-03-21

    Distinct MAP kinase pathways in yeast share several signaling components , including the PAK Ste20 and the MAPKKK Ste11, yet signaling is specific. Mating pheromones trigger an initial step in which Ste20 activates Ste11 , and this requires plasma membrane recruitment of the MAP kinase cascade scaffold protein, Ste5 . Here, we demonstrate an additional role for Ste5 membrane localization. Once Ste11 is activated, signaling through the mating pathway remains minimal but is substantially amplified when Ste5 is recruited to the membrane either by the Gbetagamma dimer or by direct membrane targeting, even to internal membranes. Ste11 signaling is also amplified by Ste5 oligomerization and by a hyperactivating mutation in the Ste7 binding region of Ste5. We suggest a model in which membrane recruitment of Ste5 concentrates its binding partners and thereby amplifies signaling through the kinase cascade. We find similar behavior in the osmotically responsive HOG pathway. Remarkably, while both pheromone and hyperosmotic stimuli amplify signaling from constitutively active Ste11, the resulting signaling output remains pathway specific. These findings suggest a common mode of regulation in which pathway stimuli both initiate and amplify MAP kinase cascade signaling. The regulation of rate-limiting steps that lie after a branchpoint from shared components helps ensure signaling specificity.

  4. Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development.

    Science.gov (United States)

    Whyte, Jacqueline; Bergin, Orla; Bianchi, Alessandro; McNally, Sara; Martin, Finian

    2009-01-01

    Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development.

  5. Ror2 signaling is required for local upregulation of GDF6 and activation of BMP signaling at the neural plate border.

    Science.gov (United States)

    Schille, Carolin; Bayerlová, Michaela; Bleckmann, Annalen; Schambony, Alexandra

    2016-09-01

    The receptor tyrosine kinase Ror2 is a major Wnt receptor that activates β-catenin-independent signaling and plays a conserved role in the regulation of convergent extension movements and planar cell polarity in vertebrates. Mutations in the ROR2 gene cause recessive Robinow syndrome in humans, a short-limbed dwarfism associated with craniofacial malformations. Here, we show that Ror2 is required for local upregulation of gdf6 at the neural plate border in Xenopus embryos. Ror2 morphant embryos fail to upregulate neural plate border genes and show defects in the induction of neural crest cell fate. These embryos lack the spatially restricted activation of BMP signaling at the neural plate border at early neurula stages, which is required for neural crest induction. Ror2-dependent planar cell polarity signaling is required in the dorsolateral marginal zone during gastrulation indirectly to upregulate the BMP ligand Gdf6 at the neural plate border and Gdf6 is sufficient to rescue neural plate border specification in Ror2 morphant embryos. Thereby, Ror2 links Wnt/planar cell polarity signaling to BMP signaling in neural plate border specification and neural crest induction.

  6. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression.

    Science.gov (United States)

    Cai, Hanyang; Zhao, Lihua; Wang, Lulu; Zhang, Man; Su, Zhenxia; Cheng, Yan; Zhao, Heming; Qin, Yuan

    2017-03-13

    Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue.

  7. Activation of SHH signaling pathway promotes vasculogenesis in post-myocardial ischemic-reperfusion injury.

    Science.gov (United States)

    Guo, Wei; Yi, Xin; Ren, Faxin; Liu, Liwen; Wu, Suning; Yang, Jun

    2015-01-01

    This study aimed to investigate the potential roles of sonic Hedgehog (SHH) expression in vasculogenesis in post-myocardial ischemic-reperfusion injury (MIRI) and its underlying mechanism. Cardiac microvascular endothelial cells (CMECs) isolated from the SD rat hearts tissues were used to construct the MIRI model. mRNA level of SHH in control cells and MIRI cells was detected using RT-PCR analysis. Furthermore, effects of SHH expression on CMECs viability and apoptosis were analyzed using MTT assay and Annexin-V-FITC kit respectively. Moreover, effects of SHH expression on the pathway signal proteins expression was analyzed using ELISA and western blotting. mRNA level of SHH was significantly decreased compared to the controls (PSHH application compared with the controls (PSHH application, as well as the SHH signal proteins including Patch-1, Gli1, Gli2 and SMO (PSHH application on biological factors levels were reversed by the SHH inhibitor application. This study suggested that SHH over expression may play a pivotal contribute role in vasculogenesis through activating the SHH signals in post-MIRI.

  8. Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney.

    Science.gov (United States)

    Mark, Allyn L; Agassandian, Khristofor; Morgan, Donald A; Liu, Xuebo; Cassell, Martin D; Rahmouni, Kamal

    2009-02-01

    The hypothalamic arcuate nucleus was initially regarded as the principal site of leptin action, but there is increasing evidence for functional leptin receptors in extrahypothalamic sites, including the nucleus tractus solitarii (NTS). We demonstrated previously that arcuate injection of leptin increases sympathetic nerve activity (SNA) to brown adipose tissue and kidney. In this study, we tested the hypothesis that leptin signaling in the NTS affects sympathetic neural outflow. Using a stereotaxic device in anesthetized rats, we microinjected leptin (0.25 to 1.00 microg) or saline into the NTS while recording SNA to kidney and brown adipose tissue. Microinjection of leptin into the commissural and medial subnuclei of the caudal NTS at the level of the area postrema in Sprague-Dawley rats produced a dose-related increase in renal SNA (+112+/-15% with leptin 1 microg; n=7; Pleptin receptors, because it was not observed in Zucker obese rats that have a missense mutation in the leptin receptor. Rostral NTS injection of leptin failed to increase SNA, indicating that leptin signaling in the NTS is probably confined to the caudal NTS at the level of the area postrema. In summary, this study demonstrates that leptin signaling in the caudal NTS increases SNA to the kidney but not to the brown adipose tissue. The study strengthens the concept of a distributed brain network of leptin action and demonstrates that these distributed brain sites can mediate contrasting sympathetic responses to leptin.

  9. Nitric oxide signals postovulatory aging-induced abortive spontaneous egg activation in rats.

    Science.gov (United States)

    Premkumar, Karuppanan V; Chaube, Shail K

    2015-07-01

    The aim of this study was to determine whether an increase of intracellular nitric oxide (NO) level signals postovulatory aging-induced abortive spontaneous egg activation (SEA) in rats. Freshly ovulated eggs (arrested at metaphase-II stage; M-II) were cultured in vitro for 3 hours to induce postovulatory egg aging. The morphological changes, inducible nitric oxide synthase (iNOS) expression, NO, cytosolic free Ca(2+), 3',5' cyclic guanosine monophosphate (cGMP), cell division cycle 25B (Cdc25B) and Wee1 levels, specific phosphorylation (pThr-14/Tyr-15) as well as total cyclin-dependent kinases-1 (Cdk1) (PSTAIRE) levels were analyzed. Postovulatory aging induced generation of NO possibly through an iNOS-mediated pathway. The increase in NO level was associated with augmented cytosolic free Ca(2+) as well as cGMP levels in aged eggs. A significant increase in Wee1 level and decrease of Cdc25B level were observed in aged eggs. An accumulation of phosphorylated Cdk1 (pThr-14/Tyr-15) level was observed in aged eggs, while total Cdk1 (PSTAIR) level remained unchanged. Our study demonstrates that generation of NO through an iNOS-mediated pathway increases cytosolic free Ca2+and cGMP levels. High levels of these signal molecules trigger the accumulation of phosphorylated Cdk1 in aged eggs. Thus, NO signals the accumulation of phosphorylated Cdk1 and induces postovulatory aging-induced abortive SEA in the rat.

  10. Activation of GABAB receptors inhibits protein kinase B /Glycogen Synthase Kinase 3 signaling

    Directory of Open Access Journals (Sweden)

    Lu Frances Fangjia

    2012-11-01

    Full Text Available Abstract Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt/glycogen synthase kinase (GSK-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308 and enhances the phosphorylation of GSK-3α (Ser-21/β (Ser-9 in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  11. Activation of GABA(B) receptors inhibits protein kinase B/glycogen synthase kinase 3 signaling.

    Science.gov (United States)

    Lu, Frances Fangjia; Su, Ping; Liu, Fang; Daskalakis, Zafiris J

    2012-11-28

    Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt)/glycogen synthase kinase (GSK)-3 signaling. Here we report that activation of GABA(B) receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABA(B) receptors enhances the phosphorylation of Akt (Thr-308) and enhances the phosphorylation of GSK-3α (Ser-21)/β (Ser-9) in both HEK-293T cells expressing GABA(B) receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABA(B) receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABA(B) receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  12. Guidance of Signaling Activations by Cadherins and Integrins in Epithelial Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Francesca Roggiani

    2016-08-01

    Full Text Available Epithelial ovarian cancer (EOC is the deadliest tumor among gynecological cancer in the industrialized countries. The EOC incidence and mortality have remained unchanged over the last 30 years, despite the progress in diagnosis and treatment. In order to develop novel and more effective therapeutic approaches, the molecular mechanisms involved in EOC progression have been thoroughly investigated in the last few decades. At the late stage, peritoneal metastases originate from the attachment of small clusters of cancer cells that shed from the primary site and carried by the ascites adhere to the abdominal peritoneum or omentum. This behavior suggests that cell–cell or cell–matrix adhesion mechanisms regulate EOC growth and dissemination. Complex downstream signalings, which might be influenced by functional cross-talk between adhesion molecules and co-expressed and activated signaling proteins, can affect the proliferation/survival and the migration/invasion of EOC cells. This review aimed to define the impact of the mechanisms of cell–cell, through cadherins, and cell–extracellular matrix adhesion, through integrins, on the signaling cascades induced by membrane receptors and cytoplasmic proteins known to have a role in the proliferation, migration and invasion of EOC cells. Finally, some novel approaches using peptidomimetic ligands to cadherin and integrins are summarized.

  13. Reduced E-cadherin facilitates renal cell carcinoma progression by WNT/β-catenin signaling activation.

    Science.gov (United States)

    Zhang, Xinqi; Yang, Mingxi; Shi, Hua; Hu, Jianxin; Wang, Yuanlin; Sun, Zhaolin; Xu, Shuxiong

    2017-02-15

    Reduced expression of E-cadherin was observed in renal cell carcinoma (RCC). However, its potential clinical value and correlation with WNT/β-catenin signaling in RCC progression was still unclear. Immunohistochemical staining was performed in RCC tissue microarray to examine the expression status and prognosis value of E-cadherin and β-catenin. The potential role of E-cadherin in β-catenin translocation was analyzed with immunobloting assays. A significant negative correlation was observed between E-cadherin and β-catenin expression in RCC tissues. E-cadherin inhibits β-catenin translocation from membrane to cytoplasm in RCC tissues, which was an important step for WNT/β-catenin signaling. Reduced E-cadherin expression was associated with poor prognosis. More importantly, E-cadherin-/β-catenin+ was an independent detrimental factor for survival estimation of RCC patients. Reduced E-cadherin expression in RCC promoted cancer progression via WNT/β-catenin signaling pathway activation. E-cadherin/β-catenin provides a valuable prognosis marker for RCC, which may be an effective target for RCC therapy.

  14. Activation of ERK signaling and induction of colon cancer cell death by piperlongumine.

    Science.gov (United States)

    Randhawa, H; Kibble, K; Zeng, H; Moyer, M P; Reindl, K M

    2013-09-01

    Piperlongumine (PPLGM) is a bioactive compound isolated from long peppers that shows selective toxicity towards a variety of cancer cell types including colon cancer. The signaling pathways that lead to cancer cell death in response to PPLGM exposure have not been previously identified. Our objective was to identify the intracellular signaling mechanisms by which PPLGM leads to enhanced colon cancer cell death. We found that PPLGM inhibited the growth of colon cancer cells in time- and concentration-dependent manners, but was not toxic toward normal colon mucosal cells at concentrations below 10 μM. Acute (0-60 min) and prolonged (24h) exposure of HT-29 cells to PPLGM resulted in phosphorylation of ERK. To investigate whether ERK signaling was involved in PPLGM-mediated cell death, we treated HT-29 cells with the MEK inhibitor U0126, prior to treating with PPLGM. We found that U0126 attenuated PPLGM-induced activation of ERK and partially protected against PPLGM-induced cell death. These results suggest that PPLGM works, at least in part, through the MEK/ERK pathway to result in colon cancer cell death. A more thorough understanding of the molecular mechanisms by which PPLGM induces colon cancer cell death will be useful in developing therapeutic strategies to treat colon cancer.

  15. Chloroplasts activity and PAP-signaling regulate programmed cell death in Arabidopsis

    KAUST Repository

    Bruggeman, Quentin

    2016-01-09

    Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3’-phosphoadenosine 5’-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5’-3’ exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks.

    Science.gov (United States)

    González-Villar, Alberto J; Bonilla, F Mauricio; Carrillo-de-la-Peña, María T

    2016-10-01

    It has been suggested that mental rehearsal activates brain areas similar to those activated by real performance. Although inhibition is a key function of human behavior, there are no previous reports of brain activity during imagined response cancellation. We analyzed event-related potentials (ERPs) and time-frequency data associated with motor execution and inhibition during real and imagined performance of a stop-signal task. The ERPs characteristic of stop trials-that is, the stop-N2 and stop-P3-were also observed during covert performance of the task. Imagined stop (IS) trials yielded smaller stop-N2 amplitudes than did successful stop (SS) and unsuccessful stop (US) trials, but midfrontal theta power similar to that in SS trials. The stop-P3 amplitude for IS was intermediate between those observed for SS and US. The results may be explained by the absence of error-processing and correction processes during imagined performance. For go trials, real execution was associated with higher mu and beta desynchronization over motor areas, which confirms previous reports of lower motor activation during imagined execution and also with larger P3b amplitudes, probably indicating increased top-down attention to the real task. The similar patterns of activity observed for imagined and real performance suggest that imagination tasks may be useful for training inhibitory processes. Nevertheless, brain activation was generally weaker during mental rehearsal, probably as a result of the reduced engagement of top-down mechanisms and limited error processing.

  17. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Büttner, Robert, E-mail: Robert-Buettner@gmx.net [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany); Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Gleinig, Anna, E-mail: annagleinig@yahoo.com [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Richter, Petra, E-mail: P.Richter@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Chen, Yuan, E-mail: Yuan.Chen@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Franz, Marcus, E-mail: Marcus.Franz@med.uni-jena.de [Clinic of Internal Medicine I, Jena University Hospital, 07740 Jena (Germany); Liebmann, Claus, E-mail: Claus.Liebmann@uni-jena.de [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany)

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  18. Identification of alternatively translated Tetherin isoforms with differing antiviral and signaling activities.

    Directory of Open Access Journals (Sweden)

    Luis J Cocka

    2012-09-01

    Full Text Available Tetherin (BST-2/CD317/HM1.24 is an IFN induced transmembrane protein that restricts release of a broad range of enveloped viruses. Important features required for Tetherin activity and regulation reside within the cytoplasmic domain. Here we demonstrate that two isoforms, derived by alternative translation initiation from highly conserved methionine residues in the cytoplasmic domain, are produced in both cultured human cell lines and primary cells. These two isoforms have distinct biological properties. The short isoform (s-Tetherin, which lacks 12 residues present in the long isoform (l-Tetherin, is significantly more resistant to HIV-1 Vpu-mediated downregulation and consequently more effectively restricts HIV-1 viral budding in the presence of Vpu. s-Tetherin Vpu resistance can be accounted for by the loss of serine-threonine and tyrosine motifs present in the long isoform. By contrast, the l-Tetherin isoform was found to be an activator of nuclear factor-kappa B (NF-κB signaling whereas s-Tetherin does not activate NF-κB. Activation of NF-κB requires a tyrosine-based motif found within the cytoplasmic tail of the longer species and may entail formation of l-Tetherin homodimers since co-expression of s-Tetherin impairs the ability of the longer isoform to activate NF-κB. These results demonstrate a novel mechanism for control of Tetherin antiviral and signaling function and provide insight into Tetherin function both in the presence and absence of infection.

  19. Reporter Gene-Facilitated Detection of Compounds in Arabidopsis Leaf Extracts that Activate the Karrikin Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Yueming Kelly Sun

    2016-12-01

    Full Text Available Karrikins are potent germination stimulants generated by the combustion of plant matter. Treatment of Arabidopsis with karrikins triggers a signalling process that is dependent upon a putative receptor protein KARRIKIN INSENSITIVE 2 (KAI2. KAI2 is a homologue of DWARF 14 (D14, the receptor for endogenous strigolactone hormones. Genetic analyses suggest that KAI2 also perceives endogenous signal(s that are not strigolactones. Activation of KAI2 by addition of karrikins to Arabidopsis plants induces expression of transcripts including D14-LIKE 2 (DLK2. We constructed the synthetic reporter gene DLK2:LUC in Arabidopsis, which comprises the firefly luciferase gene (LUC driven by the DLK2 promoter. Here we describe a luminescence-based reporter assay with Arabidopsis seeds to detect chemical signals that can activate the KAI2 signalling pathway. We demonstrate that the DLK2:LUC assay can selectively and sensitively detect karrikins and a functionally similar synthetic strigolactone analogue. Crucially we show that crude extracts from Arabidopsis leaves can also activate DLK2:LUC in a KAI2-dependent manner. Our work provides the first direct evidence for the existence of endogenous chemical signals that can activate the KAI2-mediated signalling pathway in Arabidopsis. This sensitive reporter system can now be used for the bioassay-guided purification and identification of putative endogenous KAI2 ligands or their precursors, and endogenous compounds that might modulate the KAI2 signalling pathway.

  20. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by xmeta, an allosteric partial agonist antibody

    Science.gov (United States)

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  1. Activation of PI3K signaling prevents aminoglycoside-induced hair cell death in the murine cochlea

    Directory of Open Access Journals (Sweden)

    Azadeh Jadali

    2016-06-01

    Full Text Available Loss of sensory hair cells of the inner ear due to aminoglycoside exposure is a major cause of hearing loss. Using an immortalized multipotent otic progenitor (iMOP cell line, specific signaling pathways that promote otic cell survival were identified. Of the signaling pathways identified, the PI3K pathway emerged as a strong candidate for promoting hair cell survival. In aging animals, components for active PI3K signaling are present but decrease in hair cells. In this study, we determined whether activated PI3K signaling in hair cells promotes survival. To activate PI3K signaling in hair cells, we used a small molecule inhibitor of PTEN or genetically ablated PTEN using a conditional knockout animal. Hair cell survival was challenged by addition of gentamicin to cochlear cultures. Hair cells with activated PI3K signaling were more resistant to aminoglycoside-induced hair cell death. These results indicate that increased PI3K signaling in hair cells promote survival and the PI3K signaling pathway is a target for preventing aminoglycoside-induced hearing loss.

  2. The Bmx tyrosine kinase induces activation of the Stat signaling pathway, which is specifically inhibited by protein kinase Cdelta.

    Science.gov (United States)

    Saharinen, P; Ekman, N; Sarvas, K; Parker, P; Alitalo, K; Silvennoinen, O

    1997-12-01

    Members of the hematopoietically expressed Tec tyrosine kinase family have an important role in hematopoietic signal transduction, as exemplified by the crucial role of Btk for B-cell differentiation and activation. Although a variety of cell surface receptors have been found to activate Tec tyrosine kinases, the specific signaling pathways and substrate molecules used by Tec kinases are still largely unknown. In this study a Tec family kinase, Bmx, was found to induce activation of the Stat signaling pathway. Bmx induced the tyrosine phosphorylation and DNA binding activity of all the Stat factors tested, including Stat1, Stat3, and Stat5, both in mammalian and insect cells. Bmx also induced transcriptional activation of Stat1- and Stat5-dependent reporter genes. Other cytoplasmic tyrosine kinases, Syk, Fyn, and c-Src, showed no or only weak ability to activate Stat proteins. Expression of Bmx in mammalian cells was found to induce activation of endogenous Stat proteins without activation of endogenous Jak kinases. We further analyzed the Bmx-mediated activation of Stat1, which was found to be regulated by protein kinase C delta (PKCdelta) isoform, but not beta 1, epsilon, or zeta isoforms, leading to inhibition of Stat1 tyrosine phosphorylation. In conclusion, these studies show that Bmx, a Tec family kinase, can function as an activator of the Stat signaling pathway and identify a role for PKCdelta in the regulation of Bmx signaling.

  3. Parathyroid hormone-related protein activates Wnt signaling to specify the embryonic mammary mesenchyme.

    Science.gov (United States)

    Hiremath, Minoti; Dann, Pamela; Fischer, Jennifer; Butterworth, Daniela; Boras-Granic, Kata; Hens, Julie; Van Houten, Joshua; Shi, Wei; Wysolmerski, John

    2012-11-01

    Parathyroid hormone-related protein (PTHrP) regulates cell fate and specifies the mammary mesenchyme during embryonic development. Loss of PTHrP or its receptor (Pthr1) abolishes the expression of mammary mesenchyme markers and allows mammary bud cells to revert to an epidermal fate. By contrast, overexpression of PTHrP in basal keratinocytes induces inappropriate differentiation of the ventral epidermis into nipple-like skin and is accompanied by ectopic expression of Lef1, β-catenin and other markers of the mammary mesenchyme. In this study, we document that PTHrP modulates Wnt/β-catenin signaling in the mammary mesenchyme using a Wnt signaling reporter, TOPGAL-C. Reporter expression is completely abolished by loss of PTHrP signaling and ectopic reporter activity is induced by overexpression of PTHrP. We also demonstrate that loss of Lef1, a key component of the Wnt pathway, attenuates the PTHrP-induced abnormal differentiation of the ventral skin. To characterize further the contribution of canonical Wnt signaling to embryonic mammary development, we deleted β-catenin specifically in the mammary mesenchyme. Loss of mesenchymal β-catenin abolished expression of the TOPGAL-C reporter and resulted in mammary buds with reduced expression of mammary mesenchyme markers and impaired sexual dimorphism. It also prevented the ectopic, ventral expression of mammary mesenchyme markers caused by overexpression of PTHrP in basal keratinocytes. Therefore, we conclude that a mesenchymal, canonical Wnt pathway mediates the PTHrP-dependent specification of the mammary mesenchyme.

  4. Galectin-8 Promotes Cytoskeletal Rearrangement in Trabecular Meshwork Cells through Activation of Rho Signaling

    Science.gov (United States)

    Cao, Zhiyi; Gyawali, Smita; Gong, Haiyan; Soza, Andrea; González, Alfonso; Panjwani, Noorjahan

    2012-01-01

    Purpose The trabecular meshwork (TM) cell-matrix interactions and factors that influence Rho signaling in TM cells are thought to play a pivotal role in the regulation of aqueous outflow. The current study was designed to evaluate the role of a carbohydrate-binding protein, galectin-8 (Gal8), in TM cell adhesion and Rho signaling. Methods Normal human TM cells were assayed for Gal8 expression by immunohistochemistry and Western blot analysis. To assess the role of Gal8 in TM cell adhesion and Rho signaling, the cell adhesion and spreading assays were performed on Gal8-coated culture plates in the presence and the absence of anti-β1 integrin antibody and Rho and Rho-kinase inhibitors. In addition, the effect of Gal8-mediated cell-matrix interactions on TM cell cytoskeleton arrangement and myosin light chain 2 (MLC2) phosphorylation was examined. Principal Findings We demonstrate here that Gal8 is expressed in the TM and a function-blocking anti-β1 integrin antibody inhibits the adhesion and spreading of TM cells to Gal8-coated wells. Cell spreading on Gal8 substratum was associated with the accumulation of phosphorylated myosin light chain and the formation of stress fibers that was inhibited by the Rho inhibitor, C3 transferase, as well as by the Rho-kinase inhibitor, Y27632. Conclusions/Significance The above findings present a novel function for Gal8 in activating Rho signaling in TM cells. This function may allow Gal8 to participate in the regulation of aqueous outflow. PMID:22973445

  5. HIV Tat Impairs Neurogenesis through Functioning As a Notch Ligand and Activation of Notch Signaling Pathway.

    Science.gov (United States)

    Fan, Yan; Gao, Xiang; Chen, Jinhui; Liu, Ying; He, Johnny J

    2016-11-02

    Alterations in adult neurogenesis have been noted in the brain of HIV-infected individuals and are likely linked to HIV-associated neurocognitive deficits, including those in learning and memory. But the underlying molecular mechanisms are not fully understood. In the study, we took advantage of doxycycline-inducible and astrocyte-specific HIV-1 Tat transgenic mice (iTat) and determined the relationship between Tat expression and neurogenesis. Tat expression in astrocytes was associated with fewer neuron progenitor cells (NPCs), fewer immature neurons, and fewer mature neurons in the dentate gyrus of the hippocampus of the mouse brain. In vitro NPC-derived neurosphere assays showed that Tat-containing conditioned media from astrocytes or recombinant Tat protein inhibited NPC proliferation and migration and altered NPC differentiation, while immunodepletion of Tat from Tat-containing conditioned media or heat inactivation of recombinant Tat abrogated those effects. Notch signaling downstream gene Hes1 promoter-driven luciferase reporter gene assay and Western blotting showed that recombinant Tat or Tat-containing conditioned media activated Hes1 transcription and protein expression, which were abrogated by Tat heat inactivation, immunodepletion, and cysteine mutation at position 30. Last, Notch signaling inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) significantly rescued Tat-impaired NPC differentiation in vitro and neurogenesis in vivo Together, these results show that Tat adversely affects NPCs and neurogenesis through Notch signaling and point to the potential of developing Notch signaling inhibitors as HIV/neuroAIDS therapeutics.

  6. STAT3 can be activated through paracrine signaling in breast epithelial cells

    Directory of Open Access Journals (Sweden)

    Sasser A Kate

    2008-10-01

    Full Text Available Abstract Background Many cancers, including breast cancer, have been identified with increased levels of phosphorylated or the active form of Signal Transducers and Activators of Transcription 3 (STAT3 protein. However, whether the tumor microenvironment plays a role in this activation is still poorly understood. Methods Conditioned media, which contains soluble factors from MDA-MB-231 and MDA-MB-468 breast cancer cells and breast cancer associated fibroblasts, was added to MCF-10A breast epithelial and MDA-MB-453 breast cancer cells. The stimulation of phosphorylated STAT3 (p-STAT3 levels by conditioned media was assayed by Western blot in the presence or absence of neutralized IL-6 antibody, or a JAK/STAT3 inhibitor, JSI-124. The stimulation of cell proliferation in MCF-10A cells by conditioned media in the presence or absence of JSI-124 was subjected to MTT analysis. IL-6, IL-10, and VEGF levels were determined by ELISA analysis. Results Our results demonstrated that conditioned media from cell lines with constitutively active STAT3 are sufficient to induce p-STAT3 levels in various recipients that do not possess elevated p-STAT3 levels. This signaling occurs through the JAK/STAT3 pathway, leading to STAT3 phosphorylation as early as 30 minutes and is persistent for at least 24 hours. ELISA analysis confirmed a correlation between elevated levels of IL-6 production and p-STAT3. Neutralization of the IL-6 ligand or gp130 was sufficient to block increased levels of p-STAT3 (Y705 in treated cells. Furthermore, soluble factors within the MDA-MB-231 conditioned media were also sufficient to stimulate an increase in IL-6 production from MCF-10A cells. Conclusion These results demonstrate STAT3 phosphorylation in breast epithelial cells can be stimulated by paracrine signaling through soluble factors from both breast cancer cells and breast cancer associated fibroblasts with elevated STAT3 phosphorylation. The induction of STAT3 phosphorylation is

  7. Aurora A kinase activates YAP signaling in triple-negative breast cancer.

    Science.gov (United States)

    Chang, S-S; Yamaguchi, H; Xia, W; Lim, S-O; Khotskaya, Y; Wu, Y; Chang, W-C; Liu, Q; Hung, M-C

    2017-03-02

    The Yes-associated protein (YAP) is an effector that transduces the output of the Hippo pathway to transcriptional modulation. Considering the role of YAP in cancers, this protein has emerged as a key node in malignancy development. In this study, we determined that Aurora A kinase acts as a positive regulator for YAP-mediated transcriptional machinery. Specifically, YAP associates with Aurora A predominantly in the nucleus. Activation of Aurora A can impinge on YAP activity through direct phosphorylation. Moreover, aberrant expression of YAP and Aurora A signaling is highly correlated with triple-negative breast cancer (TNBC). We herein provide evidence to establish the functional relevance of this newly discovered regulatory axis in TNBC.

  8. Reconstruction of cortical sources activities for online classification of electroencephalographic signals.

    Science.gov (United States)

    Fruitet, Joan; Clerc, Maureen

    2010-01-01

    We compare the results given by different methods to reconstruct cortical sources activity in order to classify EEG in real time. Two motor imagery experiments were performed. The aim was to retrieve from 1-second windows of signal which motor imagery task the subjects were performing. The use of cortical activity reconstruction was compared to Laplacian filtering, which is often used in BCI. A recursive algorithm using Student's t-test was used to select relevant cortical sources. The Beamformer method led to an improvement of the classification for the first experiment, which included six motor imagery tasks. The weighted Minimum-Norm method required the use of a specific head model, extracted from the subject's MRI, to improve the classification. It then gave the best results on the second experiment, achieving a classification rate of 77% compared to 71% for direct use of electrode data and 75% for Laplacian filtering and Beamformer.

  9. Haploinsufficiency of Def activates p53-dependent TGFβ signalling and causes scar formation after partial hepatectomy.

    Directory of Open Access Journals (Sweden)

    Zhihui Zhu

    Full Text Available The metazoan liver exhibits a remarkable capacity to regenerate lost liver mass without leaving a scar following partial hepatectomy (PH. Whilst previous studies have identified components of several different signaling pathways that are essential for activation of hepatocyte proliferation during liver regeneration, the mechanisms that enable such regeneration to occur without accompanying scar formation remain poorly understood. Here we use the adult zebrafish liver, which can regenerate within two weeks following PH, as a new genetic model to address this important question. We focus on the role of Digestive-organ-expansion-factor (Def, a nucleolar protein which has recently been shown to complex with calpain3 (Capn3 to mediate p53 degradation specifically in the nucleolus, in liver regeneration. Firstly, we show that Def expression is up-regulated in the wild-type liver following amputation, and that the defhi429/+ heteroozygous mutant (def+/- suffers from haploinsufficiency of Def in the liver. We then show that the expression of pro-inflammatory cytokines is up-regulated in the def+/- liver, which leads to distortion of the migration and the clearance of leukocytes after PH. Transforming growth factor β (TGFβ signalling is thus activated in the wound epidermis in def+/- due to a prolonged inflammatory response, which leads to fibrosis at the amputation site. Fibrotic scar formation in def+/- is blocked by the over-expression of Def, by the loss-of-function of p53, and by treatment with anti-inflammation drug dexamethasone or TGFβ-signalling inhibitor SB431542. We finally show that the Def- p53 pathway suppresses fibrotic scar formation, at least in part, through the regulation of the expression of the pro-inflammatory factor, high-mobility group box 1. We conclude that the novel Def- p53 nucleolar pathway functions specifically to prevent a scar formation at the amputation site in a normal amputated liver.

  10. Signal transducer and activator of transcription 5B (STAT5B) modulates adipocyte differentiation via MOF.

    Science.gov (United States)

    Gao, Peng; Zhang, Yuchao; Liu, Yuantao; Chen, Jicui; Zong, Chen; Yu, Cong; Cui, Shang; Gao, Weina; Qin, Dandan; Sun, Wenchuan; Li, Xia; Wang, Xiangdong

    2015-12-01

    The role and mechanism of signal transducer and activator of transcription 5B (STAT5B) in adipogenesis remain unclear. In this study, our data showed that Males absent on the first (MOF) protein expression was increased during 3 T3-L1 preadipocytes differentiation accompanied with STAT5B expression increasing. Over-expression STAT5B enhanced MOF promoter trans-activation in HeLa cells. Mutagenesis assay and ChIP analysis exhibited that STAT5B was able to bind MOF promoter. Knocking-down STAT5B in 3 T3-L1 preadipocytes led to decreased expression of MOF, but resulted in increased expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα) and fatty acid-binding protein 4 (Fabp4), which were important factors or enzymes for adipogenesis. We also found that knocking-down MOF in 3 T3-L1 preadipocytes resulted in increased expression of PPARγ, C/EBPα and Fabp4, which was in the same trend as STAT5B knocking-down. Over-expression MOF resulted in reduced promoter trans-activation activity of C/EBPα. These results suggest that STAT5B and MOF work as negative regulators in adipogenesis, and STAT5B modulates preadipocytes differentiation partially by regulating MOF expression.

  11. Irreversible catalyst activation enables hyperpolarization and water solubility for NMR signal amplification by reversible exchange.

    Science.gov (United States)

    Truong, Milton L; Shi, Fan; He, Ping; Yuan, Bingxin; Plunkett, Kyle N; Coffey, Aaron M; Shchepin, Roman V; Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; Waddell, Kevin W; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-12-04

    Activation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene)] for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst-activation process, the COD moiety undergoes hydrogenation that leads to its complete removal from the Ir complex. A transient hydride intermediate of the catalyst is observed via its hyperpolarized signatures, which could not be detected using conventional nonhyperpolarized solution NMR. SABRE enhancement of the pyridine substrate can be fully rendered only after removal of the COD moiety; failure to properly activate the catalyst in the presence of sufficient substrate can lead to irreversible deactivation consistent with oligomerization of the catalyst molecules. Following catalyst activation, results from selective RF-saturation studies support the hypothesis that substrate polarization at high field arises from nuclear cross-relaxation with hyperpolarized (1)H spins of the hydride/orthohydrogen spin bath. Importantly, the chemical changes that accompanied the catalyst's full activation were also found to endow the catalyst with water solubility, here used to demonstrate SABRE hyperpolarization of nicotinamide in water without the need for any organic cosolvent--paving the way to various biomedical applications of SABRE hyperpolarization methods.

  12. A Computational Study of the Effects of Syk Activity on B Cell Receptor Signaling Dynamics

    Directory of Open Access Journals (Sweden)

    Reginald L. McGee

    2015-02-01

    Full Text Available The kinase Syk is intricately involved in early signaling events in B cells and isrequired for proper response when antigens bind to B cell receptors (BCRs. Experimentsusing an analog-sensitive version of Syk (Syk-AQL have better elucidated its role, buthave not completely characterized its behavior. We present a computational model for BCRsignaling, using dynamical systems, which incorporates both wild-type Syk and Syk-AQL.Following the use of sensitivity analysis to identify significant reaction parameters, we screenfor parameter vectors that produced graded responses to BCR stimulation as is observedexperimentally. We demonstrate qualitative agreement between the model and dose responsedata for both mutant and wild-type kinases. Analysis of our model suggests that the level of NF-KB activation, which is reduced in Syk-AQL cells relative to wild-type, is more sensitiveto small reductions in kinase activity than Erkp activation, which is essentially unchanged.Since this profile of high Erkp and reduced NF-KB is consistent with anergy, this implies thatanergy is particularly sensitive to small changes in catalytic activity. Also, under a range offorward and reverse ligand binding rates, our model of Erkp and NF-KB activation displaysa dependence on a power law affinity: the ratio of the forward rate to a non-unit power of thereverse rate. This dependence implies that B cells may respond to certain details of bindingand unbinding rates for ligands rather than simple affinity alone.

  13. Activation of the TOR Signalling Pathway by Glutamine Regulates Insect Fecundity.

    Science.gov (United States)

    Zhai, Yifan; Sun, Zhongxiang; Zhang, Jianqing; Kang, Kui; Chen, Jie; Zhang, Wenqing

    2015-05-29

    The target of rapamycin (TOR) positively controls cell growth in response to nutrients such as amino acids. However, research on the specific nutrients sensed by TOR is limited. Glutamine (Gln), a particularly important amino acid involved in metabolism in organisms, is synthesised and catalysed exclusively by glutamine synthetase (GS), and our previous studies have shown that Gln may regulate fecundity in vivo levels of the brown planthopper (BPH) Nilaparvata lugens. Until now, it has remained unclear whether Gln activates or inhibits the TOR signalling pathway. Here, we performed the combined analyses of iTRAQ (isobaric tags for relative and absolute quantification) and DGE (tag-based digital gene expression) data in N. lugens at the protein and transcript levels after GS RNAi, and we found that 52 pathways overlap, including the TOR pathway. We further experimentally demonstrate that Gln activates the TOR pathway by promoting the serine/threonine protein kinase AKT and inhibiting the 5'AMP-activated protein kinase AMPK phosphorylation activity in the pest. Furthermore, TOR regulates the fecundity of N. lugens probably by mediating vitellogenin (Vg) expression. This work is the first report that Gln activates the TOR pathway in vivo.

  14. Switching-on of serotonergic calcium signaling in activated hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Kyu-Sang Park; Pyo-Jin Sin; Dong Hyeon Lee; Seung-Kuy Cha; Min-Jeong Kim; Na-Hyun Kim; Soon-Koo Baik; Seong-Woo Jeong; In Deok Kong

    2011-01-01

    AIM: To investigate serotonergic Ca2+ signaling and the expression of 5-hydroxytryptamine (5-HT) receptors,as well as Ca2+ transporting proteins, in hepatic stellate cells (HSCs).METHODS: The intracellular Ca2+ concentration ([Ca2+]i)of isolated rat HSCs was measured with a fluorescence microscopic imaging system. Quantitative PCR was performed to determine the transcriptional levels of 5-HT receptors and endoplasmic reticulum (ER) proteins involved in Ca2+ storage and release in cultured rat HSCs.RESULTS: Distinct from quiescent cells, activated HSCs exhibited [Ca2+]i transients following treatment with 5-HT, which was abolished by U-73122, a phospholipase C inhibitor. Upregulation of 5-HT2A and 5-HT2B receptors,but not 5-HT3, was prominent during trans-differentiation of HSCs. Pretreatment with ritanserin, a 5-HT2 antagonist, inhibited [Ca2+]i changes upon application of 5-HT. Expression of type 1 inositol-5'-triphosphate receptor and type 2 sarcoplasmic/endoplasmic reticulum Ca2+ ATPase were also increased during activation of HSCs and serve as the major isotypes for ER Ca2+ storage and release in activated HSCs. Ca2+ binding chaperone proteins of the ER, including calreticulin, calnexin and calsequestrin, were up-regulated following activation of HSCs.CONCLUSION: The appearance of 5-HT-induced [Ca2+]i response accompanied by upregulation of metabotropic 5-HT2 receptors and Ca2+ transporting/chaperone ER proteins may participate in the activating process of HSCs.

  15. Temporal protein expression pattern in intracellular signalling cascade during T-cell activation: A computational study

    Indian Academy of Sciences (India)

    Piyali Ganguli; Saikat Chowdhury; Rupa Bhowmick; Ram Rup Sarkar

    2015-10-01

    Various T-cell co-receptor molecules and calcium channel CRAC play a pivotal role in the maintenance of cell’s functional responses by regulating the production of effector molecules (mostly cytokines) that aids in immune clearance and also maintaining the cell in a functionally active state. Any defect in these co-receptor signalling pathways may lead to an altered expression pattern of the effector molecules. To study the propagation of such defects with time and their effect on the intracellular protein expression patterns, a comprehensive and largest pathway map of T-cell activation network is reconstructed manually. The entire pathway reactions are then translated using logical equations and simulated using the published time series microarray expression data as inputs. After validating the model, the effect of in silico knock down of co-receptor molecules on the expression patterns of their downstream proteins is studied and simultaneously the changes in the phenotypic behaviours of the T-cell population are predicted, which shows significant variations among the proteins expression and the signalling routes through which the response is propagated in the cytoplasm. This integrative computational approach serves as a valuable technique to study the changes in protein expression patterns and helps to predict variations in the cellular behaviour.

  16. Targeting IL-8 signalling to inhibit breast cancer stem cell activity.

    Science.gov (United States)

    Singh, Jagdeep K; Simões, Bruno M; Clarke, Robert B; Bundred, Nigel J

    2013-11-01

    Although survival from breast cancer has improved significantly over the past 20 years, disease recurrence remains a significant clinical problem. The concept of stem-like cells in cancer has been gaining currency over the last decade or so, since evidence for stem cell activity in human leukaemia and solid tumours, including breast cancer, was first published. Evidence indicates that this sub-population of cells, known as cancer stem-like cells (CSCs), is responsible for driving tumour formation and disease progression. In breast cancer, there is good evidence that CSCs are intrinsically resistant to conventional chemo-, radio- and endocrine therapies. By evading the effects of these treatments, CSCs are held culpable for disease recurrence. Hence, in order to improve treatment there is a need to develop CSC-targeted therapies. Interleukin-8 (IL-8), an inflammatory cytokine, is upregulated in breast cancer and associated with poor prognostic factors. Accumulating evidence demonstrates that IL-8, through its receptors CXCR1/2, is an important regulator of breast CSC activity. Inhibiting CXCR1/2 signalling has proved efficacious in pre-clinical models of breast cancer providing a good rationale for targeting CXCR1/2 clinically. Here, we discuss the role of IL-8 in breast CSC regulation and development of novel therapies to target CXCR1/2 signalling in breast cancer.

  17. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2016-05-01

    Full Text Available Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ loci occludin and zona occludens (ZO-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health.

  18. Fisetin provides antidepressant effects by activating the TrkB signal pathway in mice.

    Science.gov (United States)

    Wang, Yamin; Wang, Bin; Lu, Jiaqi; Shi, Haixia; Gong, Siyi; Wang, Yufan; Hamdy, Ronald C; Chua, Balvin H L; Yang, Lingli; Xu, Xingshun

    2017-09-25

    Depression has been associated with a low-grade chronic inflammatory state, suggesting a potential therapeutic role for anti-inflammatory agents. Fisetin is a naturally occurring flavonoid in strawberries that has anti-inflammatory activities, but whether fisetin has antidepressant effects is unknown. In this study, we exposed mice to spatial restraint for 2 weeks with or without treatment with fisetin. Immobility time in the forced swimming and tail suspension test after this restraint increased in the untreated group, but this increase did not occur in the fisetin group. We administered fisetin to Abelson helper integration site-1 (Ahi1) knockout mice, which have depressive phenotypes. We found that fisetin attenuated the depressive phenotype of these Ahi1 knockout mice. We further investigated the potential mechanism of fisetin's antidepressant effects. Because TrkB is a critical signaling pathway in the mechanisms of depression, we examined whether phosphorylated TrkB was involved in the antidepressant effects of fisetin. We found that fisetin increased phosphorylated TrkB level without altering total TrkB; this increase was attenuated by K252a, a specific TrkB inhibitor. Taken together, our results demonstrated that fisetin may have therapeutic potential for treating depression and that this antidepressant effect may be mediated by the activation of the TrkB signaling pathway. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling.

    Science.gov (United States)

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A; Topping, David L

    2016-05-07

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health.

  20. Dung biomass smoke activates inflammatory signaling pathways in human small airway epithelial cells.

    Science.gov (United States)

    McCarthy, Claire E; Duffney, Parker F; Gelein, Robert; Thatcher, Thomas H; Elder, Alison; Phipps, Richard P; Sime, Patricia J

    2016-12-01

    Animal dung is a biomass fuel burned by vulnerable populations who cannot afford cleaner sources of energy, such as wood and gas, for cooking and heating their homes. Exposure to biomass smoke is the leading environmental risk for mortality, with over 4,000,000 deaths each year worldwide attributed to indoor air pollution from biomass smoke. Biomass smoke inhalation is epidemiologically associated with pulmonary diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and respiratory infections, especially in low and middle-income countries. Yet, few studies have examined the mechanisms of dung biomass smoke-induced inflammatory responses in human lung cells. Here, we tested the hypothesis that dung biomass smoke causes inflammatory responses in human lung cells through signaling pathways involved in acute and chronic lung inflammation. Primary human small airway epithelial cells (SAECs) were exposed to dung smoke at the air-liquid interface using a newly developed, automated, and reproducible dung biomass smoke generation system. The examination of inflammatory signaling showed that dung biomass smoke increased the production of several proinflammatory cytokines and enzymes in SAECs through activation of the activator protein (AP)-1 and arylhydrocarbon receptor (AhR) but not nuclear factor-κB (NF-κB) pathways. We propose that the inflammatory responses of lung cells exposed to dung biomass smoke contribute to the development of respiratory diseases.

  1. Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Wai-Hong Tham

    2015-12-01

    Full Text Available The most severe form of malaria in humans is caused by the protozoan parasite Plasmodium falciparum. The invasive form of malaria parasites is termed a merozoite and it employs an array of parasite proteins that bind to the host cell to mediate invasion. In Plasmodium falciparum, the erythrocyte binding-like (EBL and reticulocyte binding-like (Rh protein families are responsible for binding to specific erythrocyte receptors for invasion and mediating signalling events that initiate active entry of the malaria parasite. Here we have addressed the role of the cytoplasmic tails of these proteins in activating merozoite invasion after receptor engagement. We show that the cytoplasmic domains of these type 1 membrane proteins are phosphorylated in vitro. Depletion of PfCK2, a kinase implicated to phosphorylate these cytoplasmic tails, blocks P. falciparum invasion of red blood cells. We identify the crucial residues within the PfRh4 cytoplasmic domain that are required for successful parasite invasion. Live cell imaging of merozoites from these transgenic mutants show they attach but do not penetrate erythrocytes implying the PfRh4 cytoplasmic tail conveys signals important for the successful completion of the invasion process.

  2. Reduced DPP4 activity improves insulin signaling in primary human adipocytes.

    Science.gov (United States)

    Röhrborn, Diana; Brückner, Julia; Sell, Henrike; Eckel, Jürgen

    2016-03-11

    DPP4 is a ubiquitously expressed cell surface protease which is also released to the circulation as soluble DPP4 (sDPP4). Recently, we identified DPP4 as a novel adipokine oversecreted in obesity and thus potentially linking obesity to the metabolic syndrome. Furthermore, sDPP4 impairs insulin signaling in an autocrine and paracrine fashion in different cell types. However, it is still unknown which functional role DPP4 might play in adipocytes. Therefore, primary human adipocytes were treated with a specific DPP4 siRNA. Adipocyte differentiation was not affected by DPP4 silencing. Interestingly, DPP4 reduction improved insulin responsiveness of adipocytes at the level of insulin receptor, proteinkinase B (Akt) and Akt substrate of 160 kDa. To investigate whether the observed effects could be attributed to the enzymatic activity of DPP4, human adipocytes were treated with the DPP4 inhibitors sitagliptin and saxagliptin. Our data show that insulin-stimulated activation of Akt is augmented by DPP4 inhibitor treatment. Based on our previous observation that sDPP4 induces insulin resistance in adipocytes, and that adipose DPP4 levels are higher in obese insulin-resistant patients, we now suggest that the abundance of DPP4 might be a regulator of adipocyte insulin signaling.

  3. Noncanonical Decapentaplegic Signaling Activates Matrix Metalloproteinase 1 To Restrict Hedgehog Activity and Limit Ectopic Eye Differentiation in Drosophila.

    Science.gov (United States)

    Aggarwal, Poonam; Gera, Jayati; Ghosh, Saikat; Mandal, Lolitika; Mandal, Sudip

    2017-09-01

    One of the pertinent issues associated with cellular plasticity is to understand how the delicate balance between the determined state of cells and the extent to which they can transdetermine is maintained. Employing the well-established model of generating ectopic eyes in developing wing discs of Drosophila by ectopic eyeless expression, we provide evidence for the genetic basis of this mechanism. By both loss-of-function and gain-of-function genetic analyses, we demonstrate that Matrix metalloproteinase 1 (Mmp1) plays an important role in regulating the extent of ectopic ommatidial differentiation. Transcriptional activation of ectopic Mmp1 by the morphogen Decapentaplegic (Dpp) is not triggered by its canonical signaling pathway which involves Mad. Rather, Dpp activates an alternate cascade involving dTak1 and JNK, to induce ectopic Mmp1 expression. Mutational analyses reveal that Mmp1 negatively regulates ectopic eye differentiation by restricting the rate of proliferation and the levels of expression of retinal-determining genes dachshund and eyes absent This is primarily achieved by restricting the range of Hedgehog (Hh) signaling. Importantly, the increase in proliferation and upregulation of target retinal-determining genes, as observed upon attenuating Mmp1 activity, gets significantly rescued when ectopic eyes are generated in wing discs of hh heterozygous mutants. In conjunction with the previously established instructive and permissive roles of Dpp in facilitating ectopic eye differentiation in wing discs, the outcome of this study sheds light on a mechanism by which Dpp plays a dual role in modulating the delicate balance between the determined state of cells and the extent they can transdetermine. Copyright © 2017 by the Genetics Society of America.

  4. Curcumin Inhibits Apoptosis of Chondrocytes through Activation ERK1/2 Signaling Pathways Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Xiaodong Li

    2017-04-01

    Full Text Available Osteoarthritis (OA is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective in treating pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe, and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Curcumin, the principal curcuminoid and the most active component in turmeric, is a biologically active phytochemical. Evidence from several recent in vitro studies suggests that curcumin may exert a chondroprotective effect through actions such as anti-inflammatory, anti-oxidative stress, and anti-catabolic activity that are critical for mitigating OA disease pathogenesis and symptoms. In the present study, we investigated the protective mechanisms of curcumin on interleukin 1β (IL-1β-stimulated primary chondrocytes in vitro. The treatment of interleukin (IL-1β significantly reduces the cell viability of chondrocytes in dose and time dependent manners. Co-treatment of curcumin with IL-1β significantly decreased the growth inhibition. We observed that curcumin inhibited IL-1β-induced apoptosis and caspase-3 activation in chondrocytes. Curcumin can increase the expression of phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2, autophagy marker light chain 3 (LC3-II, and Beclin-1 in chondrocytes. The expression of autophagy markers could be decreased when the chondrocytes were incubated with ERK1/2 inhibitor U0126. Our results suggest that curcumin suppresses apoptosis and inflammatory signaling through its actions on the ERK1/2-induced autophagy in chondrocytes. We propose that curcumin should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.

  5. Polyoxygenated Cholesterol Ester Hydroperoxide Activates TLR4 and SYK Dependent Signaling in Macrophages

    Science.gov (United States)

    Choi, Soo-Ho; Yin, Huiyong; Ravandi, Amir; Armando, Aaron; Dumlao, Darren; Kim, Jungsu; Almazan, Felicidad; Taylor, Angela M.; McNamara, Coleen A.; Tsimikas, Sotirios; Dennis, Edward A.; Witztum, Joseph L.; Miller, Yury I.

    2013-01-01

    Oxidation of low-density lipoprotein (LDL) is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL) induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs) were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography – tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE) as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis. PMID:24376657

  6. Polyoxygenated cholesterol ester hydroperoxide activates TLR4 and SYK dependent signaling in macrophages.

    Directory of Open Access Journals (Sweden)

    Soo-Ho Choi

    Full Text Available Oxidation of low-density lipoprotein (LDL is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography - tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis.

  7. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj [Department of Physiology, University of Tübingen, Tübingen (Germany); Schönberger, Tanja [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Noegel, Angelika A. [Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Köln (Germany); Gawaz, Meinrad [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen, Tübingen (Germany)

    2014-02-28

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{sup +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.

  8. Mitogen activated protein kinase signaling pathways participate in the active principle region of Buyang Huanwu decoction-induced differentiation of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Jinghui Zheng; Jian Liang; Xin Deng; Xiaofeng Chen; Fasheng Wu; Xiaofang Zhao; Yuan Luo; Lei Fu; Zuling Jiang

    2012-01-01

    Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively. mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.

  9. MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling.

    Science.gov (United States)

    Zhao, Yu; Zhang, Yu; Li, Jia; Zheng, Nana; Xu, Xiaoting; Yang, Jing; Xia, Guoliang; Zhang, Meijia

    2017-02-20

    The majority of ovarian primordial follicles are preserved in a dormant state to maintain the female reproductive lifespan, and only a few primordial follicles are activated to enter the growing follicle pool in each wave. Recent studies have shown that primordial follicular activation depends on mammalian target of rapamycin complex 1 (mTORC1)-KIT ligand (KITL) signaling in pre-granulosa cells and its receptor (KIT)-phosphoinositol 3 kinase (PI3K) signaling in oocytes. However, the upstream regulator of mTORC1 signaling is unclear. The results of the present study showed that the phosphorylated mitogen-activated protein kinase3/1 (MAPK3/1) protein is expressed in some primordial follicles and all growing follicles. Culture of 3 days post-parturition (dpp) ovaries with the MAPK3/1 signaling inhibitor U0126 significantly reduced the number of activated follicles and was accompanied by dramatically reduced granulosa cell proliferation and incr