WorldWideScience

Sample records for plastics recycling industry

  1. A survey of economic indices of plastic wastes recycling industry

    Directory of Open Access Journals (Sweden)

    Malek Hassanpour

    2015-11-01

    Full Text Available Numerous small recycling units of plastic wastes have been currently constructed heedless to study of economic indices in Iran. Pay attention to the prominent performance of the industrial sector for economic development and its priority for fortifying other sectors to implement job opportunities, survey of the economic indices beckon the stakeholders and industries owners. The main objective of this study was a survey of economic indices in small recycling unit of plastic wastes. Therefore, the practice of computing the economic indices was performed using empirical equations, professional experiences and observations in site of the industry in terms of sustainability performance. Current study had shown the indices values such as value-added percent, profit, annual income, breakeven point, value-added, output value, data value, variable cost of good unit and production costs were found 62%, $ 366558, $ 364292.6, $ 100.34, $ 423451.25, $ 255335.75, $ 678787, $ 389.65 and $ 314494.4 respectively. The breakeven point about 15.93%, the time of return on investment about 1.12 (13.7 months were represented that this industry slightly needs long time to afford the employed capital and starts making a profit.

  2. Decision aid tool and design approach for plastic recycling chain integration in the automotive industry

    OpenAIRE

    Maudet-Charbuillet, Carole; Bertoluci, Gwenola

    2012-01-01

    The many uses of plastics in our society are now compromised because of the social and environmental impacts they generate: exhaustion of petroleum resources, waste management... Plastics recycling appears to be one of the best ways to solve these problems. But Plastics Recycling Chains (PRC) are still emerging system. The automotive industry is directly concerned by plastic recycling through the End of Life Vehicles (ELV) directive which compels it to respect recycling rate for their product...

  3. Chemical Recycle of Plastics

    Directory of Open Access Journals (Sweden)

    Sara Fatima

    2014-11-01

    Full Text Available Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  4. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  5. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large...... recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...... product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications...

  6. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  7. TRANSPORT PLANNING MODEL FOR WIDE AREA RECYCLING SYSTEM OF INDUSTRIAL WASTE PLASTIC

    Science.gov (United States)

    Arai, Yasuhiro; Kawamura, Hisashi; Koizumi, Akira; Mogi, Satoshi

    To date, the majority of industrial waste plastic generated in an urban city has been processed into landfill. However, it is now necessary to actively utilize that plastic as a useful resource to create a recycling society with a low environment influence. In order to construct a reasonable recycling system, it is necessary to address the "transportation problem," which means determining how much industrial waste plastic is to be transported to what location. With the goal of eliminating landfill processing, this study considers a transport planning model for industrial waste plastic applying linear programming. The results of running optimized calculations under given scenarios clarified not only the possibilities for recycle processing in the Metropolitan area, but also the validity of wide area recycling system.

  8. Recycling of plastic waste: Presence of phthalates in plastics from households and industry.

    Science.gov (United States)

    Pivnenko, K; Eriksen, M K; Martín-Fernández, J A; Eriksson, E; Astrup, T F

    2016-08-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large volumes and are commonly used as plasticisers in plastics manufacturing. Potential impacts on human health require restricted use in selected applications and a need for the closer monitoring of potential sources of human exposure. Although the presence of phthalates in a variety of plastics has been recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP had the highest frequency of detection in the samples analysed, with 360μg/g, 460μg/g and 2700μg/g as the maximum measured concentrations, respectively. Among other, statistical analysis of the analytical results suggested that phthalates were potentially added in the later stages of plastic product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications is recommended if recycled plastics are to be used as raw material in production.

  9. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry.

    Science.gov (United States)

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chong-Qing; Wang, Hui, E-mail: huiwang1968@163.com; Liu, You-Nian

    2015-01-15

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L{sub 9} (3{sup 4}) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics.

  11. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  12. APPLICATION OF PROFITABILITY CONCEPT: A CASE IN THE PLASTIC RECYCLING INDUSTRY

    Directory of Open Access Journals (Sweden)

    S.A. Oke

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT:In this article the principles of industrial engineering are applied to maximize the profitability of the recycling industry. A case in the plastic recycling industry is presented to demonstrate the practical application of the financial calculation functions developed in the paper. In particular, the profitability maximization concept for the plastic recycling industry was examined, based on the theory of demand and supply. By estimating the profit realizable on regular as well as high product demand, part of the objective of the paper was achieved. Inventory principles were further applied to determine optimum inventory levels.

    AFRIKAANSE OPSOMMING: Die beginsels van bedryfsingenieurswese word in die artikel toegepas om die maksimisering van winsgewendheid by herwinbaarheidsvraagstukke te bewerkstellig. 'n Voorbeeld wat voorkom by die herwinbaarheid van plastiek word voorgehou om te toon hoedat finansiële modellering aangewend kan word. Voorraadhouding onder toestande van stabiele en toenemende vraag word behandel en in besonderheid ondersoek.

  13. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study.

    Science.gov (United States)

    Gu, Fu; Guo, Jianfeng; Zhang, Wujie; Summers, Peter A; Hall, Philip

    2017-12-01

    Mechanical recycling of waste plastics is an environmental solution to the problem of waste plastic disposal, and has already become a common practice in industry. However, limited information can be found on either the industralised plastic recycling or the recycled materials, despite the use of recycled plastics has already extended to automobile production. This study investigates the life cycle environmental impacts of mechanical plastic recycling practice of a plastic recycling company in China. Waste plastics from various sources, such as agricultural wastes, plastic product manufacturers, collected solid plastic wastes and parts dismantled from waste electric and electronic equipments, are processed in three routes with products end up in different markets. The results of life cycle assessments show that the extrusion process has the largest environmental impacts, followed by the use of fillers and additives. Compared to production of virgin plastics and composites, the mechanical recycling is proved to be a superior alternative in most environmental aspects. Substituting virgin plastic composites with recycled plastic composites has achieved the highest environmental benefits, as virgin composite production has an impact almost 4 times higher that of the recycled composite production in each ReCiPe endpoint damage factor. Sensitivity analysis shows that the coverage of collecting network contribute affect little to overall environmental impact, and centralisation plays an important role in reducing overall environmental impacts. Among the fillers and additives, impact modifiers account for the most significant contributions to the environmental impacts of recycled composites. This study provides necessary information about the existing industrialised plastic recycling practice, and recommendations are given. Research implications are presented with the purpose to achieve higher substitution rate and lower environmental impact. Copyright © 2017 Elsevier B

  14. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  15. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  16. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  17. Plastics recycling: challenges and opportunities

    National Research Council Canada - National Science Library

    Jefferson Hopewell; Robert Dvorak; Edward Kosior

    2009-01-01

    .... Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public...

  18. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  19. Determinants of recycling common types of plastic product waste in environmental horticulture industry: The case of Georgia.

    Science.gov (United States)

    Meng, Ting; Klepacka, Anna M; Florkowski, Wojciech J; Braman, Kristine

    2016-02-01

    Environmental horticulture firms provide a variety of commercial/residential landscape products and services encompassing ornamental plant production, design, installation, and maintenance. The companies generate tons of waste including plastic containers, trays, and greenhouse/field covers, creating the need to reduce and utilize plastic waste. Based on survey data collected in Georgia in 2013, this paper investigates determinants of the environmental horticulture firms' recycling decision (plastic containers, flats, and greenhouse poly). Our findings indicate that the decision to discard vs. recycle plastic containers, flats, and greenhouse poly is significantly influenced by firm scope, size, location, and partnership with recycling providers, as well as whether recycling providers offer additional waste pickup services. Insights from this study are of use to local governments and environmental organizations interested in increasing horticultural firm participation in recycling programs and lowering the volume of plastic destined for landfills.

  20. Making sense of plastics recycling

    NARCIS (Netherlands)

    Van Bruggen, E.; Koster, R.P.; Rageart, K.; Cardon, L.; Moerman, M.; Blessing, E.

    2012-01-01

    Major benefits of plastics recycling are reduced depletion of non-renewable resources and reduction of world-wide waste. Traditional thermo-mechanical recycling causes reduction of mechanical properties for most thermoplastics. Down-cycled materials may nevertheless be suited for certain useful appl

  1. Research on the recycling industry development model for typical exterior plastic components of end-of-life passenger vehicle based on the SWOT method.

    Science.gov (United States)

    Zhang, Hongshen; Chen, Ming

    2013-11-01

    In-depth studies on the recycling of typical automotive exterior plastic parts are significant and beneficial for environmental protection, energy conservation, and sustainable development of China. In the current study, several methods were used to analyze the recycling industry model for typical exterior parts of passenger vehicles in China. The strengths, weaknesses, opportunities, and challenges of the current recycling industry for typical exterior parts of passenger vehicles were analyzed comprehensively based on the SWOT method. The internal factor evaluation matrix and external factor evaluation matrix were used to evaluate the internal and external factors of the recycling industry. The recycling industry was found to respond well to all the factors and it was found to face good developing opportunities. Then, the cross-link strategies analysis for the typical exterior parts of the passenger car industry of China was conducted based on the SWOT analysis strategies and established SWOT matrix. Finally, based on the aforementioned research, the recycling industry model led by automobile manufacturers was promoted.

  2. Sorting Techniques for Plastics Recycling

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents the basic principles of three different types of separating methods and a general guideline for choosing the most effective method for sorting plastic mixtures. It also presents the results of the tests carried out for separation of PVC, ABS and PET from different kinds of plastic mixtures in order to improve the grade of the raw input used in mechanical or feedstock recycling.

  3. Interpretation on Recycling Plastics from Shredder Residue

    Science.gov (United States)

    EPA is considering an interpretation of its regulations that would generally allow for recycling of plastic separated from shredder residue under the conditions described in the Voluntary Procedures for Recycling Plastics from Shredder Residue.

  4. New plastic recycling technology

    Science.gov (United States)

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  5. Life cycle perspective of plastic recycling

    Energy Technology Data Exchange (ETDEWEB)

    Ballhorn, R. [Targeted Research on Waste Minimization and Recycling Project, Darmstadt (Germany)

    2001-07-01

    Some recent European Union directives on recycling plastics are discussed, with particular reference to the automobile industry, highlighting developing chemical technologies such as selective solution/precipitation approaches, to increase the fraction of high quality recyclates. Some promising technologies, including separation by tribo-electrical charging, sorting by optical means, separation by gasification, dissolution, hydrogenation and co-processing with heavy oil residues are described, with examples involving the conversion of mixed plastic waste by gasification, and the production of PA6 monomer from carpet waste. Conclusion based on study results to date indicate that with regard to 'end of life' vehicles the driving force for dismantling is the recovery of resalable parts and metal, not plastic. Technologies for dismantling are seen as relatively crude. Moreover, the large investment required to construct a full dismantling facility and the lack of a well-developed 'after market' for recycled products makes it unlikely that such a facility will be built in the near future. The most promising way to cope with the economic and ecological challenges appears to be a combination of chemical recycling and energy recovery, accompanied by an aggressive effort to develop the 'after market' for the recycled products. 5 refs., 9 figs.

  6. Development of a Prototype Automated Sorting System for Plastic Recycling

    Directory of Open Access Journals (Sweden)

    D. A. Wahab

    2006-01-01

    Full Text Available Automated sorting for plastic recyclables has been seen as the way forward in the plastic recycling industry. Automated sorting provides significant improvements in terms of efficiency and consistency in the sorting process. In the case of macro sorting, which is the most common type of automated sorting, efficiency is determined by the mechanical details of the material handling system as well as the detection system. This paper provides a review on the state of-the-art technologies that have been deployed by some of the recycling facilities abroad. The design and development of a cost effective prototype automated system for sorting plastic recyclables is proposed and discussed.

  7. Flotation separation of waste plastics for recycling-A review.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Fu, Jian-gang; Liu, You-nian

    2015-07-01

    The sharp increase of plastic wastes results in great social and environmental pressures, and recycling, as an effective way currently available to reduce the negative impacts of plastic wastes, represents one of the most dynamic areas in the plastics industry today. Froth flotation is a promising method to solve the key problem of recycling process, namely separation of plastic mixtures. This review surveys recent literature on plastics flotation, focusing on specific features compared to ores flotation, strategies, methods and principles, flotation equipments, and current challenges. In terms of separation methods, plastics flotation is divided into gamma flotation, adsorption of reagents, surface modification and physical regulation.

  8. Emulsified industrial oils recycling

    Energy Technology Data Exchange (ETDEWEB)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  9. Research and Development of a New Waste Collection Bin to Facilitate Education in Plastic Recycling

    Science.gov (United States)

    Chow, Cheuk-fai; So, Wing-Mui Winnie; Cheung, Tsz-Yan

    2016-01-01

    Plastic recycling has been an alternative method for solid waste management apart from landfill and incineration. However, recycling quality is affected when all plastics are discarded into a single recycling bin that increases cross contaminations and operation cost to the recycling industry. Following the engineering design process, a new…

  10. Research and Development of a New Waste Collection Bin to Facilitate Education in Plastic Recycling

    Science.gov (United States)

    Chow, Cheuk-fai; So, Wing-Mui Winnie; Cheung, Tsz-Yan

    2016-01-01

    Plastic recycling has been an alternative method for solid waste management apart from landfill and incineration. However, recycling quality is affected when all plastics are discarded into a single recycling bin that increases cross contaminations and operation cost to the recycling industry. Following the engineering design process, a new…

  11. Development of a new approach based on midwave infrared spectroscopy for post-consumer black plastic waste sorting in the recycling industry.

    Science.gov (United States)

    Rozenstein, Offer; Puckrin, Eldon; Adamowski, Jan

    2017-10-01

    Waste sorting is key to the process of waste recycling. Exact identification of plastic resin and wood products using Near Infrared (NIR, 1-1.7µm) sensing is currently in use. Yet, dark targets characterized by low reflectance, such as black plastics, are hard to identify by this method. Following the recent success of Midwave Infrared (MWIR, 3-12µm) measurements to identify coloured plastic polymers, the aim of this study was to assess whether this technique is applicable to sorting black plastic polymers and wood products. We performed infrared reflectance contact measurements of 234 plastic samples and 29 samples of wood and paper products. Plastic samples included black, coloured and transparent Polyethylene Terephthalate (PET), Polyethylene (PE), Polyvinyl Chloride (PVC), Polypropylene (PP), Polylactic acid (PLA) and Polystyrene (PS). The spectral signatures of the black and coloured plastic samples were compared with clear plastic samples and signatures documented in the literature to identify the polymer spectral features in the presence of coloured material. This information was used to determine the spectral bands that best suit the sorting of black plastic polymers. The main NIR-MWIR absorption features of wood, cardboard and paper were identified as well according to the spectral measurements. Good agreement was found between our measurements and the absorption features documented in the literature. The new approach using MWIR spectral features appears to be useful for black plastics as it overcomes some of the limitations in the NIR region to identify them. The main limitation of this technique for industrial applications is the trade-off between the signal-to-noise ratio of the sensor operating in standoff mode and the speed at which waste is moved under the sensor. This limitation can be resolved by reducing the system's spectral resolution to 16cm(-1), which allows for faster spectra acquisition while maintaining a reasonable signal-to-noise ratio

  12. Use of recycled plastics in wood plastic composites - a review.

    Science.gov (United States)

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs.

  13. Recycling of plastic waste by density separation: prospects for optimization.

    Science.gov (United States)

    Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Diego, Isidro

    2009-03-01

    A review of existing industrial processing and results of alternative processing investigations for separating solid mixtures and specifically recycling plastic waste by density separation is presented. Media density separation is shown to be fundamental for separation and/or pre-concentration in the recycling of plastics. The current use of static media processes limits the capacity and size of material that can be treated commercially. Investigations have shown that the hydroscopic properties of plastics can be reduced to improve such separations. This indicates that an alternative processing method is required to increase the commercial recovery of recyclable plastics. Cylindroconical and cylindrical cyclone-type media separators, such as those used for processing coal, are reviewed and suggested as a potential substitute. Both have superior production capacities and are able to process a larger range in particle sizes treated. A summary of results of investigations with cyclone media devices for recycling plastics is presented.

  14. Economical and Ecological Fesasibility of Plastic Recycling

    OpenAIRE

    Hirschpold, Andrew; Juctye, Kristina; Renzhong, Jiang; Debin, LIU; Varona, Hector P.; Kevelaitis, Karolis

    2005-01-01

    #Group 3 International Nat Bas Economical and Ecological Feasibility of Plastic Recycling Abstract This project is carried out as the final project for the first semester of Bachelor of Science studies. Our project will aim on plastic recycling. Plastic is a manmade material which covers a range of synthetic or semi-synthetic products made thru polymerization. The development of plastic products has accompanied the development of human’s history since it was invented while they ...

  15. WE(EE) Demand - Recycled Plastic

    OpenAIRE

    Førby, Marie; Pedersen, Jakob; Borgen, Nanna; Hansen, Rasmus Nør

    2015-01-01

    Plastic management – from production to waste – has massive negative effects on the environment of which one of the main problems are the CO2 released from the fossil fuels. The focus of this paper lies on the possibilities of increasing demand for recycled plastics from electric and electronic equipment (WEEE-plastic) through modifications in the Danish waste systems. Due to the chemical build of plastic, it is not possible to reprocess it with mechanical recycle technologies while keeping t...

  16. Economical and Ecological Fesasibility of Plastic Recycling

    OpenAIRE

    Hirschpold, Andrew; Juctye, Kristina; Renzhong, Jiang; Debin, Liu; Varona, Hector P.; Kevelaitis, Karolis

    2005-01-01

    #Group 3 International Nat Bas Economical and Ecological Feasibility of Plastic Recycling Abstract This project is carried out as the final project for the first semester of Bachelor of Science studies. Our project will aim on plastic recycling. Plastic is a manmade material which covers a range of synthetic or semi-synthetic products made thru polymerization. The development of plastic products has accompanied the development of human’s history since it was invented while they ...

  17. Influence of RFID tags on recyclability of plastic packaging.

    Science.gov (United States)

    Aliaga, César; Ferreira, Beatriz; Hortal, Mercedes; Pancorbo, María Ángeles; López, José Manuel; Navas, Francisco Javier

    2011-06-01

    The use of Radio Frequency IDentification Technology (RFID) in the packaging sector is an important logistical improvement regarding the advantages offered by this technology in comparison with barcodes. Nevertheless, the presence of these devices in plastic packaging, and consequently in plastic waste, can cause several problems in the recycling plants due to the materials included in these devices. In this study, the mentioned recycling constraints have been experimentally identified in a pilot scale recycling study consisting in three recycling tests with an increasing presence of RFID tags. Differences in each test were evaluated. Furthermore, the quality of the recycled material of each test was studied through the injection and testing of tests probes. The results of the pilot scale recycling tests did not show a decrease in the quality of the recycled plastic due to the presence of RFID tags. Nevertheless, several operational problems during the recycling process were observed such as the obstruction of the screens, which lessened the process yield and created process interruptions, as well as the loss of extruded plastic during the process. These recycling constraints cannot be directly extrapolated to the industrial plants due to the different working scales. Nevertheless, technological solutions are proposed in order to avoid these recycling constraints if they appear.

  18. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    Directory of Open Access Journals (Sweden)

    Lindsay Miller

    2014-08-01

    Full Text Available Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products.

  19. Challenges and Alternatives to Plastics Recycling in the Automotive Sector.

    Science.gov (United States)

    Miller, Lindsay; Soulliere, Katie; Sawyer-Beaulieu, Susan; Tseng, Simon; Tam, Edwin

    2014-08-15

    Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products.

  20. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    Science.gov (United States)

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  1. Plastic Recycling Experiments in Materials Education

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  2. Recycling of plastic: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas Højlund

    2009-01-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plasti...... to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming....

  3. Mechanical and chemical recycling of solid plastic waste.

    Science.gov (United States)

    Ragaert, Kim; Delva, Laurens; Van Geem, Kevin

    2017-08-17

    This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling. The principles of these recycling pathways are framed against current-day industrial reality, by discussing predominant industrial technologies, design strategies and recycling examples of specific waste streams. Starting with an overview on types of solid plastic waste (SPW) and their origins, the manuscript continues with a discussion on the different valorisation options for SPW. The section on mechanical recycling contains an overview of current sorting technologies, specific challenges for mechanical recycling such as thermo-mechanical or lifetime degradation and the immiscibility of polymer blends. It also includes some industrial examples such as polyethylene terephthalate (PET) recycling, and SPW from post-consumer packaging, end-of-life vehicles or electr(on)ic devices. A separate section is dedicated to the relationship between design and recycling, emphasizing the role of concepts such as Design from Recycling. The section on chemical recycling collects a state-of-the-art on techniques such as chemolysis, pyrolysis, fluid catalytic cracking, hydrogen techniques and gasification. Additionally, this review discusses the main challenges (and some potential remedies) to these recycling strategies and ground them in the relevant polymer science, thus providing an academic angle as well as an applied one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Engineered Plastics Containing Recycled Rubber

    Institute of Scientific and Technical Information of China (English)

    Dong Yang Wu

    2000-01-01

    @@ 1. Introduction In Australia 10.5 million rubber tyres are discarded annually, representing 120,000 tonnes of wasted rubber resource. Growing local and global concern about the impact of this waste on the environment requires action for the management and recycling of this highly valuable resource through the development of recycling technologies and innovative recycled/recyclable products.

  5. Reúso de água em indústria de reciclagem de plástico tipo PEAD Water reuse on HDPE plastics recycling pack industry

    Directory of Open Access Journals (Sweden)

    Angela Cristina Orsi Bordonalli

    2009-06-01

    Full Text Available A discussão acerca da viabilidade técnica, econômica e ambiental do reúso da água em processos industriais tem sido uma preocupação constante. Neste trabalho propõe-se uma alternativa simplificada para o tratamento de efluentes com vistas ao seu reúso em uma indústria de reciclagem de plásticos. A água, no presente caso, é componente fundamental para o processo, já que participa como elemento de remoção de detritos e impurezas que contaminam a matriz da matéria-prima utilizada, proveniente, principalmente, de aterros sanitários e lixões. As embalagens plásticas recicladas pela indústria em questão são, em sua grande maioria, de uso doméstico e, em menor escala, frascos contaminados com óleos lubrificantes. Os resultados demonstraram a viabilidade do tratamento através de processo físico-químico por coagulação, floculação, decantação e filtração em manta geotêxtil, com o uso do hidroxicloreto de alumínio (PAC como coagulante, soda cáustica (50% como alcalinizante e polieletrólito como auxiliar de floculação e desidratação do lodo, bem como a exequibilidade do reúso dos efluentes em circuito fechado.The discussion about technical, economical and environmental feasibility of water reuse in industrial process has been a constant concern. This paper purposes a simplified choice for waste water treatment seeking reuse in a plastic recycle industry. The water, in this case, is a prime component because it is the main element for the debris and impurities removal that contaminates the matrix of plastic raw material, which comes, mostly, from landfill and waste disposals. The recycled plastic packages, from the company that had been used for this research, come mostly from domestic use and, in a minor scale, the plastic package contaminated by lubricant oil. The final results show feasible for the treatment through physical-chemical process by coagulation, flocculation, decantation and filtration on geotextile

  6. Use of recycled plastic in concrete: a review.

    Science.gov (United States)

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

  7. Plastics recycling: challenges and opportunities

    OpenAIRE

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to pro...

  8. Triboelectrostatic separation for granular plastic waste recycling: a review.

    Science.gov (United States)

    Wu, Guiqing; Li, Jia; Xu, Zhenming

    2013-03-01

    The world's plastic consumption has increased incredibly in recent decades, generating more and more plastic waste, which makes it a great public concern. Recycling is the best treatment for plastic waste since it cannot only reduce the waste but also reduce the consumption of oil for producing new virgin plastic. Mechanical recycling is recommended for plastic waste to avoid the loss of its virgin value. As a mechanical separation technology, triboelectrostatic separation utilizes the difference between surface properties of different materials to get them oppositely charged, deflected in the electric field and separately collected. It has advantages such as high efficiency, low cost, no concern of water disposal or secondary pollution and a relatively wide processing range of particle size especially suitable for the granular plastic waste. The process of triboelectrostatic separation for plastic waste is reviewed in this paper. Different devices have been developed and proven to be effective for separation of plastic waste. The influence factors are also discussed. It can be concluded that the triboelectrostatic separation of plastic waste is a promising technology. However, more research is required before it can be widely applied in industry.

  9. optimization of the development of a plastic recycling machine

    African Journals Online (AJOL)

    machine and shows that at a speed of 268 rpm the machine functions effectively ... Keywords: recycling machine, plastics-recycling, recyclability/efficiency, throughput/capacity, ...... cycling such as the sorting and cleaning should be efficient so ...

  10. Globally Oriented Chinese Plastics Industry

    Institute of Scientific and Technical Information of China (English)

    Liao Zhengpin

    2004-01-01

    @@ Through continued endeavor and persistent opening to the whole world the Chinese plastics industry has been developed into a comprehensive industrial system that forms the basic material industries side by side with the steel, cement and the timber industry.

  11. An Investigation on Thermal Recycling of Recycled Plastic Resin

    Science.gov (United States)

    Yamakita, Ryuji; Miura, Katsuya; Ishino, Yojiro; Ohiwa, Norio

    Thermal recycling of recycled plastic resin is focused in this investigation. Fine grinding of plastic resin and preparation of high temperature oxidizing atmosphere are indispensable for effective and successful burn-up of plastic resin. Polyethylene terephthalate resin powder is employed and high temperature oxidizing atmosphere is generated downstream an annular burner. Through a circular nozzle set coaxially in the closed bottom end of the annular burner, PET-powder and propane-air mixture are issued vertically upward into the high temperature oxidizing atmosphere. Temperature and O2 concentration fields downstream the annular burner are first examined by varying the circular jet equivalence ratio with the air flow rate kept constant and without PET-powder supply. PET-powder having a mass-median diameter of either 89.7µm or 145µm is then issued into the high temperature region along with propane-air mixture by varying the PET-powder mass flow rate. Appearances of the PET-powder flame are observed using a high-speed CCD video camera and unburnt PET particles are traced during their passages in the high temperature region. Variation of O2 concentration fields due to PET-powder combustion is also measured in the PET flame. According to the results, overall limit conditions for effective burn-up of PET-powder are finally discussed.

  12. Technical specifications for mechanical recycling of agricultural plastic waste.

    Science.gov (United States)

    Briassoulis, D; Hiskakis, M; Babou, E

    2013-06-01

    Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project "LabelAgriWaste" revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process ("Quality I") and another one for plastic profile production process ("Quality II"). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.

  13. Investment-Cost Optimization of Plastic Recycling System under Reliability Constraints

    Directory of Open Access Journals (Sweden)

    Abdelkader ZEBLAH

    2008-06-01

    Full Text Available This paper describes and uses an ant colony meta-heuristic optimization method to solve the redundancy optimization problem in plastic recycling industry. This problem is known as total investment-cost minimization of series-parallel plastic recycling system. Redundant components are included to achieve a desired level of availability. System availability is represented by a multi-state availability function. The plastic machines are characterized by their capacity, availability and cost. These machines are chosen among a list of products available on the market. The proposed meta-heuristic seeks to find the best minimal cost plastic recycling system configuration with desired availability. To estimate the series-parallel plastic machines availability, a fast method based on universal moment generating function (UMGF is suggested. The ant colony approach is used as an optimization technique. An example of plastic recycling system is presented.

  14. EVALUATION OF RECYCLED PLASTIC LUMBER FOR MARINE APPLICATIONS

    Science.gov (United States)

    This report presents an evaluation of the recycled plastic materials (RPM) produced by California Recycling Company (CRC). This evaluation is performed under the Municipal Waste Innovative Technology Evaluation (MITE) Program of the U.S. EPA, Risk Reduction Engineering Laboratory...

  15. EVALUATION OF RECYCLED PLASTIC LUMBER FOR MARINE APPLICATIONS

    Science.gov (United States)

    This report presents an evaluation of the recycled plastic materials (RPM) produced by California Recycling Company (CRC). This evaluation is performed under the Municipal Waste Innovative Technology Evaluation (MITE) Program of the U.S. EPA, Risk Reduction Engineering Laboratory...

  16. The siderulgical process as way of recycling plastic residues

    Directory of Open Access Journals (Sweden)

    M.A. Diez

    2012-06-01

    Full Text Available The development of new recycling ways to allow therecovery of plastics from municipal wastes is of greatinterest in order to keep as many options open,especially when the co-processing with raw materialscan be performed in consolidate industrial processes.In this context, integrated steel plants can beconsidered as an option for those wastes withtechnical limitations for conventional mechanicalrecycling. The combination of the blast furnace routeand coke plant in the steel industry provide a wayto expand feedstock recycling with severalenvironmental benefits such as saving fossil fuels,reducing landfill of the wastes and reducing solidparticles, SO2 and CO2 emissions. This paper is anattempt to compile some relevant advances in theserecycling routes.

  17. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Irena Kania-Surowiec

    2014-10-01

    Full Text Available In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the right concept and a prototype for a particular processing plant, plastic processing plant. It is possible to determine the parameters that will increase the efficiency of sewage treatment while minimizing the financial effort on the part of the Company. Selection methods of wastewater treatment is also associated with the environmental strategy of the country at the enterprise level specified in the Environmental Policy. This is an additional argument for the use of biological methods in the treatment of industrial waste water.

  18. The prospects and challenges of plastic industries in Bangladesh

    OpenAIRE

    Pintu, MD. Nazmul Hossain

    2016-01-01

    Plastic is one of the most used engineered material in Bangladesh that has come out as im-portant industrial sector during the last few decades. The size of Domestic market is more than thousands of billions euros. The available cheap labor, vast population and fast development of plastics wastes recycling industries have given Bangladesh a huge potential advantages to compete in the global market. Although, plastics sector is one of the most growing markets in Bangladesh, but still it is fac...

  19. A new hyperspectral imaging based device for quality control in plastic recycling

    Science.gov (United States)

    Bonifazi, G.; D'Agostini, M.; Dall'Ava, A.; Serranti, S.; Turioni, F.

    2013-05-01

    The quality control of contamination level in the recycled plastics stream has been identified as an important key factor for increasing the value of the recycled material by both plastic recycling and compounder industries. Existing quality control methods for the detection of both plastics and non-plastics contaminants in the plastic waste streams at different stages of the industrial process (e.g. feed, intermediate and final products) are currently based on the manual collection from the stream of a sample and on the subsequent off-line laboratory analyses. The results of such analyses are usually available after some hours, or sometimes even some days, after the material has been processed. The laboratory analyses are time-consuming and expensive (both in terms of equipment cost and their maintenance and of labour cost).Therefore, a fast on-line assessment to monitor the plastic waste feed streams and to characterize the composition of the different plastic products, is fundamental to increase the value of secondary plastics. The paper is finalized to describe and evaluate the development of an HSI-based device and of the related software architectures and processing algorithms for quality assessment of plastics in recycling plants, with particular reference to polyolefins (PO). NIR-HSI sensing devices coupled with multivariate data analysis methods was demonstrated as an objective, rapid and non-destructive technique that can be used for on-line quality and process control in the recycling process of POs. In particular, the adoption of the previous mentioned HD&SW integrated architectures can provide a solution to one of the major problems of the recycling industry, which is the lack of an accurate quality certification of materials obtained by recycling processes. These results could therefore assist in developing strategies to certify the composition of recycled PO products.

  20. Recycling liquid effluents in a ceramic industry

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Almeida, B.; Almeida, M.; Martins, S.; Alexandra Macarico, V.; Tomas da Fonseca, A.

    2016-08-01

    In this work is presented a study on the recycling of liquid effluents in a ceramic installation for sanitary industry. The effluents were characterized by X-ray diffraction and inductively coupled plasma to evaluate their compositions. It was also assessed the daily production rate. Several glaze-slurry mixtures were prepared and characterized according to procedures and equipment of the company's quality laboratory. The results show that for most of the properties, the tested mixtures exhibited acceptable performance. However, the pyro plasticity parameter is highly influenced by the glaze content and imposes the separation of glaze and slurry liquid effluents. In addition, it is necessary to invest on a storage plant, including tanks with constant stirring and a new pipeline structure to implement the reincorporation method on the slurry processing. (Author)

  1. Some Problems of Recycling Industrial Materials

    Institute of Scientific and Technical Information of China (English)

    CAI Jiu-ju; LU Zhong-wu; YUE Qiang

    2008-01-01

    The industrial system should learn from the natural ecosystem.The resource utilization efficiency should be increased and the environmental load should be decreased,depending on the materials recycled in the system.The classification of industrial materials from the viewpoint of large-scale recycling was stated.Recycling of materials,on three different levels,was introduced in the industrial system.The metal flow diagram in the life cycle of products,in the case of no materials recycled,materials partially recycled,and materials completely recycled,was given.The natural resource conservation and the waste emission reduction were analyzed under the condition of materials completely recycled.The expressions for the relation between resource efficiency and material recycling rate,and the relation between eco-effieiency and material recycling rate were derived,and the curves describing the relationship between them were protracted.The diagram of iron flow in the life cycle of iron and steel products in China,in 2001,was given,and the iron resource efficiency,material recycling rate,and iron coo-efficiency were analyzed.The variation of iron resource efficiency with the material recycling rate was analyzed for two different production ratios.

  2. Multimodal network design for sustainable household plastic recycling

    NARCIS (Netherlands)

    Bing Xiaoyun, Xiaoyun; Groot, J.J.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2013-01-01

    Purpose – This research studies a plastic recycling system from a reverse logistics angle and investigates the potential benefits of a multimodality strategy to the network design of plastic recycling. This research aims to quantify the impact of multimodality on the network, to provide decision

  3. Multimodal network design for sustainable household plastic recycling

    NARCIS (Netherlands)

    Bing Xiaoyun, Xiaoyun; Groot, J.J.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2013-01-01

    Purpose – This research studies a plastic recycling system from a reverse logistics angle and investigates the potential benefits of a multimodality strategy to the network design of plastic recycling. This research aims to quantify the impact of multimodality on the network, to provide decision sup

  4. 78 FR 20640 - Polychlorinated Biphenyls (PCBs); Recycling Plastics from Shredder Residue

    Science.gov (United States)

    2013-04-05

    ... AGENCY Polychlorinated Biphenyls (PCBs); Recycling Plastics from Shredder Residue AGENCY: Environmental... will generally allow for the recycling of plastic separated from shredder residue under the conditions described in the Voluntary Procedures for Recycling Plastics from Shredder Residue, relying principally...

  5. 77 FR 74006 - Polychlorinated Biphenyls (PCBs); Recycling Plastics From Shredder Residue

    Science.gov (United States)

    2012-12-12

    ... AGENCY Polychlorinated Biphenyls (PCBs); Recycling Plastics From Shredder Residue AGENCY: Environmental..., Plastic, Polychlorinated biphenyls, Recycling, Shredder residue. ] Dated: November 29, 2012. Louise P... certain food contact and medical applications, these recycled plastics are not expected to make large...

  6. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    OpenAIRE

    Lindsay Miller; Katie Soulliere; Susan Sawyer-Beaulieu; Simon Tseng; Edwin Tam

    2014-01-01

    Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technolog...

  7. Use of recycled plastics in concrete: A critical review.

    Science.gov (United States)

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics.

  8. Modern recycling methods in metallurgical industry

    Directory of Open Access Journals (Sweden)

    M. Maj

    2010-04-01

    Full Text Available The contamination of environment caused by increased industrial activities is the main topic of discussions in Poland and in the world. The possibilities of waste recovery and recycling vary in different sectors of the industry, and the specific methods, developed and improved all the time, depend on the type of the waste. In this study, the attention has been focussed mainly on the waste from metallurgical industry and on the available techniques of its recycling

  9. The recycling industries : a Canadian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, L. [CARI, Almonte, ON (Canada); Lakshmanan, V.I. [Ortech International, Mississauga, ON (Canada)

    2000-07-01

    The economic and environmental benefits that the recycling sector has to offer in terms of resource conservation benefits was discussed with particular focus on the synergies that exist between major mining and metallurgical industries and end users. The main objective of recycling is to conserve natural resources, reducing primary process waste as well as air and water effluent generated by these processes. Recycling provides energy conservation, creates jobs and reduces the demand for sanitary landfills. The main concerns that exist within the recycling industry is the government's actions through laws, regulations and taxes which sometimes discourage recycling. The need for the public to become more informed about the benefits of recycling was emphasized. It was also noted that manufacturers should consider the final disposition of a product in their product design and manufacture. 1 tab.

  10. Recycling disposable cups into paper plastic composites.

    Science.gov (United States)

    Mitchell, Jonathan; Vandeperre, Luc; Dvorak, Rob; Kosior, Ed; Tarverdi, Karnik; Cheeseman, Christopher

    2014-11-01

    The majority of disposable cups are made from paper plastic laminates (PPL) which consist of high quality cellulose fibre with a thin internal polyethylene coating. There are limited recycling options for PPLs and this has contributed to disposable cups becoming a high profile, problematic waste. In this work disposable cups have been shredded to form PPL flakes and these have been used to reinforce polypropylene to form novel paper plastic composites (PPCs). The PPL flakes and polypropylene were mixed, extruded, pelletised and injection moulded at low temperatures to prevent degradation of the cellulose fibres. The level of PPL flake addition and the use of a maleated polyolefin coupling agent to enhance interfacial adhesion have been investigated. Samples have been characterised using tensile testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis. Use of a coupling agent allows composites containing 40 wt.% of PPL flakes to increase tensile strength of PP by 50% to 30 MPa. The Young modulus also increases from 1 to 2.5 GPa and the work to fracture increases by a factor of 5. The work demonstrates that PPL disposable cups have potential to be beneficially reused as reinforcement in novel polypropylene composites.

  11. Recycling of plastic waste: Screening for brominated flame retardants (BFRs)

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Granby, Kit; Eriksson, Eva

    2017-01-01

    on the other hand, has resulted in dispersion and accumulation of selected BFRs in the environment and receiving biota. A wide range of plastic products may contain BFRs. This affects the quality of waste plastics as secondary resource: material recycling may potentially reintroduce the BFRs into new plastic......,4,6-TBP)), hexabromocyclododecane stereoisomers (α-, β-, and γ-HBCD), as well as selected polybrominated diphenyl ethers (PBDEs) in samples of household waste plastics, virgin and recycled plastics. A considerable number of samples contained BFRs, with highest concentrations associated with acrylonitrile...... flame retardants (PBDEs and HBCD) identified in the plastic samples illustrates that circular material flows may be contaminated for extended periods. The screening clearly showed a need for improved documentation and monitoring of the presence of BFRs in plastic waste routed to recycling....

  12. Urban Trash Containers Made of Recycled Plastic Lumber

    Directory of Open Access Journals (Sweden)

    Jose Gilberto Ledur

    2013-12-01

    Full Text Available A low-cost and easy-to-handle manufacturing procedure for urban trash containers, made of recycled plastic lumber, was developed focusing on the following aspects: materials selection, materials compounding, plastic sheet manufacturing and mechanical testing, urban trash container design and assembly, and a pilot test. The material, a composite of polyethylene (PE urban waste, ethylene-vinyl acetate copolymer (EVA industrial waste and calcium carbonate, was prepared in a Drais batch mixer. The mixture was hot compression molded as rectangular-shaped sheets of 900 mm length, 600 mm width and 12 mm or 7 mm thickness. These sheets were characterized with regard to mechanical properties, microstructure and UV resistance. An urban trash container prototype was prepared from the plastic sheets and a hundred trash containers were submitted to a pilot test. All the steps, material compounding, plastic sheet processing, and trash container design and manufacturing were optimized in order to give the required physico-mechanical properties, functional characteristics and finish of the urban trash containers.

  13. Recycling of plastic: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas H

    2009-11-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO(2)-eq. tonne( -1) of plastic waste depending on treatment at the MRF and CO(2) emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60- 1600 kg CO(2)-eq. tonne( -1) of plastic waste depending on substitution ratios and CO(2) emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.

  14. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    Science.gov (United States)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  15. finite element analysis of plastic recycling machine designed

    African Journals Online (AJOL)

    user

    This paper presents the conceptual design of plastic recycling machine for production of thin filament coil. The machine ... waste management system to curb the menace of the ... temperature distribution across the die. ... 2.1 Design Concept.

  16. Consumer Education: The Key to Successful Plastics Recycling.

    Science.gov (United States)

    Cutler, Alan; Moore, Susan

    1995-01-01

    Examines consumer education strategies for decreasing contamination in plastics collected for recycling. Discusses research that suggests the problem may not be consumers ignoring rules but rather that consumers appear to be adhering diligently to rules of their own invention. (LZ)

  17. Serbia: A new process for waste rubber and plastic recycling

    Directory of Open Access Journals (Sweden)

    Ozren Ocic

    2010-02-01

    Full Text Available This paper intends to describe a new technological process for waste rubber and plastic recycling up to the commercial components in safe environmental friendly way. Researches and all relevant technical-technological data related to this process are checked at constructed pilot plant. The future construction of these units for waste rubber and plastic recycling will allow interested parties to achieve the environmental effectiveness and economic efficiency.

  18. CHALLENGES FOR PROCESS INDUSTRIES IN RECYCLING

    Institute of Scientific and Technical Information of China (English)

    Lothar Reh

    2006-01-01

    Increasing population and individual wealth have led to a higher demand for energy and raw material resources as well as for steady improvement of processing technology in view of efficient use of resources and avoiding emissions in production and recycling processes. Present situation and future trend of recycling processing are discussed by examples from the aluminium and steel industries, recycling of cars and post-consumer municipal recovery.The importance of more intense observance of thermodynamic laws and of a 4E strategy "Economy, Energy, Environment and Education" is outlined.

  19. Recycling bin concepts for hotels on Zanzibar Island : - Efficient and sustainable recycling for one of Zanrec Plastics Ltd. customer groups

    OpenAIRE

    Gobena, Elina; Lundén, Hanna

    2012-01-01

    This report presents a developed recycling bin concept for Zanrec Plastics Ltd. (Zanrec Plastics in this report), a Swedish company that is about to implement a solid waste recycling system on Zanzibar Island, Tanzania. Zanrec Plastics will negotiate waste management with the hotels, that produce a large part of the recyclable garbage on the island, and the project aim is to develop a concept that will help Zanrec Plastics in these negotiations. Zanrec Plastics requirements on the concepts re...

  20. The Story of the Plastics Industry.

    Science.gov (United States)

    Masson, Don, Ed.

    This is an illustrated informative booklet, designed to serve members of the Society of the Plastics Industry, Inc., and the plastics industry as a whole. It provides basic information about the industry's history and growth, plastics raw materials, typical uses of plastics, properties, and methods of processing and fabricating. (Author/DS)

  1. Innovative Design of Plastic Bottle Recycling Box Based on ARM

    Directory of Open Access Journals (Sweden)

    Yuedong Xiong

    2014-04-01

    Full Text Available Aiming at the problems of on-site plastic bottles recycling and the reuse of waste, the automatic recycling system was developed on the basis of ARM. As the main controller, ARM not only controls the mechanical system of the collector to recover and break plastic bottles, but also communicates with and rewards the user by the automatic reward system through the wireless network. The experimental prototype test results show: post treated fragments of plastic bottles are small, which are convenient to transport and take advantage of; the operation of recovery is easy, and the interface of man-machine interaction is friendly which is easy to expand functions.

  2. Mechanics recycling of plastics in Spain; El reciclado mecanico de materiales plasticos en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Alegre, J. M.

    2002-07-01

    In Spain, the mechanic recycling of plastics has been made from 1960. At the moment, 130 companies compose the industrial sector where the legislation on waste forces to change the policies to companies of free market in order to behave like companies of services for the waste management. A greater growth of this sector requires the development of new markets of applications. (Author)

  3. Car plastic fuel tanks: closed loop recycling process, design and lifecycle assessment (RECAFUTA)

    Energy Technology Data Exchange (ETDEWEB)

    Yernaux, J-M. [SOLVAY SA, Research and Technology, Brussels (Belgium)

    2001-07-01

    A cooperative European Union-sponsored project to recycle high density plastic material from used automobile fuel tanks back into the original application is discussed. The goal of the project was to introduce 40 per cent of regenerate into new plastic fuel tanks. The project involved the development of design-for-recycling guidelines, development of a process for efficient recovery of the material by using super-critical carbon dioxide directly in the extruder, development of a process for upgrading the recycled material, and life cycle assessment to determine the reliability of the recycling process by comparing it to other alternatives such as landfilling or energy recovery. The project was recently completed and international validation tests are currently underway. The feasibility of upgrading the laboratory extrusion facility to industrial scale is in the process of being evaluated, concurrently with the development of an appropriate business plan. 7 figs.

  4. Study on the Plastic Bottle Recycling Based on Evolution Tree for Technical System

    OpenAIRE

    Yuedong Xiong; Huadong Huang

    2014-01-01

    Technical system theory of evolution tree was used in the study of the plastic bottle recycling, and established the evolutionary line of plastic bottle recycling on the basis of the analysis of plastic bottle recycling recovery evolution tree, and summed up a new smart plastic bottle recycling program. The new recovery recovers and smashes the plastic bottles through technical system, and communicates with users through automatically reward system and rewards the latter. The experimental pro...

  5. Recycling of plastic waste: Screening for brominated flame retardants (BFRs).

    Science.gov (United States)

    Pivnenko, K; Granby, K; Eriksson, E; Astrup, T F

    2017-08-30

    Flame retardants are chemicals vital for reducing risks of fire and preventing human casualties and property losses. Due to the abundance, low cost and high performance of bromine, brominated flame retardants (BFRs) have had a significant share of the market for years. Physical stability on the other hand, has resulted in dispersion and accumulation of selected BFRs in the environment and receiving biota. A wide range of plastic products may contain BFRs. This affects the quality of waste plastics as secondary resource: material recycling may potentially reintroduce the BFRs into new plastic product cycles and lead to increased exposure levels, e.g. through use of plastic packaging materials. To provide quantitative and qualitative data on presence of BFRs in plastics, we analysed bromophenols (tetrabromobisphenol A (TBBPA), dibromophenols (2,4- and 2,6-DBP) and 2,4,6-tribromophenol (2,4,6-TBP)), hexabromocyclododecane stereoisomers (α-, β-, and γ-HBCD), as well as selected polybrominated diphenyl ethers (PBDEs) in samples of household waste plastics, virgin and recycled plastics. A considerable number of samples contained BFRs, with highest concentrations associated with acrylonitrile butadiene styrene (ABS, up to 26,000,000ngTBBPA/g) and polystyrene (PS, up to 330,000ng∑HBCD/g). Abundancy in low concentrations of some BFRs in plastic samples suggested either unintended addition in plastic products or degradation of higher molecular weight BFRs. The presence of currently restricted flame retardants (PBDEs and HBCD) identified in the plastic samples illustrates that circular material flows may be contaminated for extended periods. The screening clearly showed a need for improved documentation and monitoring of the presence of BFRs in plastic waste routed to recycling. Copyright © 2017. Published by Elsevier Ltd.

  6. They're plastic, but they recycle.

    Science.gov (United States)

    Halpain, Shelley

    2006-12-07

    Dendritic spines form and grow during hippocampal long-term potentiation (LTP). In this issue of Neuron, a new study by Park et al. uses both serial reconstruction electron microscopy and time-lapse imaging to show that plasma membrane for such spine expansion is trafficked from recycling endosomes that reside locally at the spines themselves.

  7. A Research Needs Assessment for waste plastics recycling: Volume 1, Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This first volume provides a summary of the entire project. The study utilized the talents of a large number of participants, including a significant number of peer reviewers from industrial companies, government agencies, and research institutes. in addition, an extensive analysis of relevant literature was carried out. In considering the attractiveness of recycling technologies that are alternatives to waste-to-energy combustion units, a systems approach was utilized. Collection of waste streams containing plastics, sortation, and reclamation of plastics and plastic mixtures, reprocessing or chemical conversion of the reclaimed polymers, and the applicability of the products to specific market segments have been analyzed in the study.

  8. Recyclability assessment of nano-reinforced plastic packaging

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, C., E-mail: csanchez@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Hortal, M., E-mail: mhortal@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Aliaga, C., E-mail: caliaga@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Devis, A., E-mail: adevis@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Cloquell-Ballester, V.A., E-mail: cloquell@dpi.upv.es [Dpto. Proyectos de Ingeniería, Universitat Politècnica de València, Camino de Vera, 46022 Valencia (Spain)

    2014-12-15

    Highlights: • The study compares the recyclability of polymers with and without nanoparticles. • Visual appearance, material quality and mechanical properties are evaluated. • Minor variations in mechanical properties in R-PE and R-PP with nanoparticles. • Slight degradation of R-PET which affect mechanical properties. • Colour deviations in recycled PE, PP and PET in ranges higher that 0.3 units. - Abstract: Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO{sub 3}), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE–Nanoclay1, PE–CaCO{sub 3}, PP–Ag, PET–ZnO, PET–Ag, PET–Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET–Ag) could influence important properties of the recycled material, due to a

  9. Preparing Attitude Scale to Define Students' Attitudes about Environment, Recycling, Plastic and Plastic Waste

    Science.gov (United States)

    Avan, Cagri; Aydinli, Bahattin; Bakar, Fatma; Alboga, Yunus

    2011-01-01

    The aim of this study is to introduce an attitude scale in order to define students? attitudes about environment, recycling, plastics, plastic waste. In this study, 80 attitude sentences according to 5-point Likert-type scale were prepared and applied to 492 students of 6th grade in the Kastamonu city center of Turkey. The scale consists of…

  10. ELETROCOAGULATION-FLOTATION APPLIED TO THE TREATMENT OF WASTEWATER GERATED IN PLASTIC RECYCLING INDUSTRY = ELETROCOAGULAÇÃO-FLOTAÇÃO APLICADA AO TRATAMENTO DE EFLUENTES GERADOS NA INDÚSTRIA DE RECICLAGEM DE PLÁSTICOS

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cuba Teran

    2009-01-01

    Full Text Available An alternative for final disposal of the growing amount of plastic residues produced by the population has been their mechanical recycling witch demands washing plastic foils prior to industrial process. The produced wastewater is reused in the same industrial process. The present study presents Eletro-coagulation-Flotação (ECF as a form of treatment of effluents of recycling of plastics, the treatment is based on the electrolysis, coagulation and flotation with coagulant production in situ. This study used a pilot scale system in which chemical coagulation take place, starting from the passage of electric current for aluminum electrodes followed by sludge flakes formation. These solids were separated from the liquid phase by flotation due to the formation of micro bubbles of hydrogen, generated in the electrolysis of the water. The efficiency of the treatment was verified in terms of removal of Chemical Oxygen Demand (COD, ammonia nitrogen and turbidity, values obtained were of 80%, 80% and 90% respectively. There was also disinfection, being this an additional favorable characteristic of the process. The responsible factors for the efficiency were related to under current effluent hydraulic detention time, distance between the electrodes, pH and intensity of the electric current. = Uma alternativa para disposição da crescente quantidade de resíduos plásticos produzida pela população tem sido a reciclagem mecânica dos mesmos exigindo lavagem das embalagens a serem recicladas. O efluente produzido é reutilizado no próprio processo industrial. O presente estudo traz a Eletro-Coagulação-Flotação (ECF como forma de tratamento de efluente de reciclagem de plásticos. O tratamento é baseado na eletrólise, coagulação e flotação com produção in situ de coagulante. Neste estudo foi utilizado um sistema em escala piloto, no qual ocorreu a coagulação química, a partir da passagem de corrente elétrica por eletrodos de alum

  11. China Plastics Industry (2011) China Plastics Processing Industry Association

    Institute of Scientific and Technical Information of China (English)

    Li Ying

    2012-01-01

    General situation of China plastics industry in 2011 was reviewed, including the output and export/import of plastics products, synthetic resins,and plastics processing machinery, as well as major economic data, such as the total industrial values, sales and profits of plastics products, etc. Analysis of the market of plastics products in 2011 was made, and the developing trend of China plastics industry in 2012 was proposed.

  12. Plastic Solid Waste Assessment in the State of Kuwait and Proposed Methods of Recycling

    Directory of Open Access Journals (Sweden)

    S. Al-Salem

    2007-01-01

    Full Text Available A proper assessment of Solid Plastic Waste (SPW in Kuwait will provide a greater understanding to the industry of plastic manufacturing and manufacturers as well as direct the strategic future plans proposed into execution. This research show the results obtained after a years survey and study of plastic solid waste in the state of Kuwait and the surrounding region in order to create a database that can be used in future plans and research projects. Major manufacturers in the area were asked to complete a questionnaire to create a complete database. Recycling methods were studied and tested in order to evaluate the best solutions and schemes available to overcome the increasing rate of municipal plastic waste. From the current study it, Kuwait ranked in second behind Qatar in plastic waste but land filling rates in Kuwait are almost double than any other oil dependant country in the west Asia region.

  13. Recyclability assessment of nano-reinforced plastic packaging.

    Science.gov (United States)

    Sánchez, C; Hortal, M; Aliaga, C; Devis, A; Cloquell-Ballester, V A

    2014-12-01

    Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO3), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE-Nanoclay1, PE-CaCO3, PP-Ag, PET-ZnO, PET-Ag, PET-Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET-Ag) could influence important properties of the recycled material, due to a slight degradation of the polymer, such as increasing pinholes, degradation fumes and elongation at break. Moreover, it should be noted that colour deviations were visible in most of the samples (PE, PP and PET) in levels higher than 0.3 units (limit perceivable by the human eye). The acceptance of these changes in the properties of recycled PE, PP and PET will depend on the specific applications considered (e.g. packaging applications are more

  14. Chemical recycle of plastics waste; Hai purasuchikku no kemikaru risaikuru

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, A. [Sumitomo Chemical Co. Ltd., Osaka (Japan)

    1997-11-01

    Chemical recycling of the wasted plastics contains from regeneration to monomer as a constructing component in the case of single element polymer to conversion to fuel oil through thermal decomposition of the mixed wasted plastics and application to chemical raw material. Polymethyl methacrylate (PMMA) decomposes to methylmethacrylate (MMA) monomer with high selection rate at max temperature of 400{+-}50degC. The Mitsubishi Rayon Co., Ltd. Signed a cooperative development contract on the recycling technique of PMMA The ICI., Ltd., Great Britain. Depolymerization technique of Polyethylene terephthalate (PET) is already used actually on methanolysis with Coca-Cola Corp. (Hoechst-Celanese Corp.) and glycolysis with Pepsi-Cola Corp. (Goodyear Inc.). The chemical recycle due to thermal decomposition of the mixed wasted plastics is established as a technique of gasification of the mixed wasted plastics to generate methanol in Japan by the Mitsubishi Heavy Ind., Ltd., and is operated in a pilot plant of 2 ton/day. Here was summarized on these trends in and out of Japan. 29 refs., 5 figs., 4 tab.

  15. Creating Methane from Plastic: Recycling at a Lunar Outpost

    Science.gov (United States)

    Santiago-Maldonado, Edgardo; Captain, Janine; Devor, Robert; Gleaton, Jeremy

    2010-01-01

    The high cost of re-supply from Earth demands resources to be utilized to the fullest extent for exploration missions. The ability to refuel on the lunar surface would reduce the vehicle mass during launch and provide excess payload capability. Recycling is a key technology that maximizes the available resources by converting waste products into useful commodities. One example of this is to convert crew member waste such as plastic packaging, food scraps, and human waste into fuel. This process thermally degrades plastic in the presence of oxygen producing CO2 and CO. The CO2 and CO are then reacted with hydrogen over catalyst (Sabatier reaction) producing methane. An end-to-end laboratory-scale system has been designed and built to produce methane from plastic, in this case polyethylene. This first generation system yields 12-16% CH4 by weight of plastic used.

  16. A Cost-Effectiveness Analysis for Incineration or Recycling of Dutch Household Plastics

    OpenAIRE

    Gradus, Raymond; van Koppen, Rick; Dijkgraaf, Elbert; Nillesen, Paul

    2016-01-01

    The cost-effectiveness of plastic recycling is compared to energy recovery from plastic incineration in a waste-to-energy plant using data for the Netherlands. Both options have specific benefits and costs. The benefits of recycling are the avoidance of both CO2 that otherwise would be emitted during incineration and the production of virgin (new) material. There are significant costs, such as collection costs and recycling costs involved for plastic recycling by municipalities. The benefits ...

  17. Closed Loop Recycling of Plastic Housing for Flat Screen TVs

    OpenAIRE

    2012-01-01

    The treatment of the rapidly increasing number of End-of-Life (EoL) Flat screen Televisions (FTVs) presents major challenges and opportunities. Closing loops in plastic housing material flows remains a particular technical challenge because of the presence of additives, such as Flame Retardants (FR) in recovered housings. In the framework of a collaborative project PRIME with TP Vision the TV development site for Philips TVs and a Van Gansewinkel first level recycling plant, series of experim...

  18. Flammability Properties of Composites of Wood Fiber and Recycled Plastic

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flammability properties of composites of wood fiber and recycled plastic were evaluated by the cone calorimeter and oxygen index chamber. Results were shown as follows: 1) Wood-PVC composite showed worse thermal stability on time to ignition (TTI) and mean heat release rate (MHRR), but better performance on heat release rate (HRR) and mean efficient heat of combustion (MEHC); wood-PP composite had better thermal stability properties, but was worse on other fire performance; 2) Compared with wood-PVC composi...

  19. Closed Loop Recycling of Plastic Housing for Flat Screen TVs

    OpenAIRE

    Peeters, Jef; VANEGAS Paul; Devoldere, Tom; Dewulf, Wim; Duflou, Joost

    2012-01-01

    The treatment of the rapidly increasing number of End-of-Life (EoL) Flat screen Televisions (FTVs) presents major challenges and opportunities. Closing loops in plastic housing material flows remains a particular technical challenge because of the presence of additives, such as Flame Retardants (FR) in recovered housings. In the framework of a collaborative project PRIME with TP Vision the TV development site for Philips TVs and a Van Gansewinkel first level recycling plant, series of experim...

  20. Oxidative status in workers engaged in recycling of plastic: occupational hazard.

    Science.gov (United States)

    Sati, Prakash Chandra; Kaushik, Ravi; Kumar, Vinod; Khaliq, Farah; Vaney, Neelam

    2012-01-01

    Recycling plastic industry is on rise. Plastic waste in environment is a pollutant so recycling of it can save environment and is economical too. However its recycling is associated with harmful effects on workers engaged in it. The present study was designed to elucidate the role of free radicals and cytochrome c in pathogenesis of polypropylene associated diseases. Thirty workers from plastic recycling factory occupationally exposed to polypropylene between the age of 18-40 years and working for atleast 8 hours a day for more than a year but less than 10 years were selected for the study. A trend in increase of FRAP and decrease of MDA was observed but they could not reach the level of significance. The level of serum cytochrome c, which is an indirect marker of oxidative stress, was also detectable in only two subjects. Since the number of subjects in the study was less, the result needs to be confirmed on larger number. More over cause of pulmonary dysfunction and carcinomas in these workers needs to be investigated.

  1. Recycling and recovery of post-consumer plastic solid waste in a European context

    Directory of Open Access Journals (Sweden)

    Dewil Raf

    2012-01-01

    Full Text Available The disposal of waste plastics has become a major worldwide environmental problem. The USA, Europe and Japan generate annually about 50 million tons of post-consumer plastic waste, previously landfilled, generally considered as a non-sustainable and environmentally questionable option. Landfill sites and their capacity are, moreover, decreasing rapidly, and legislation is stringent. Several European Directives and US legislation concern plastic wastes and the required management. They are briefly discussed in this paper. New processes have emerged, i.e., advanced mechanical recycling of plastic waste as virgin or second grade plastic feedstock, and thermal treatments to recycle the waste as virgin monomer, as synthetic fuel gas, or as heat source (incineration with energy recovery. These processes avoid land filling, where the non-biodegradable plastics remain a lasting environmental burden. The paper reviews these alternative options through mostly thermal processing (pyrolysis, gasification and waste-to-energy. Additional research is, however, still needed to confirm the potential on pilot and commercial scale. [Acknowledgments. The research was partly funded by the Fundamental Research Funds for the Central Universities RC1101 (PR China and partly funded by Project KP/09/005 (SCORES4CHEM Knowledge Platform of the Industrial Research Council of the KU Leuven (Belgium.

  2. The use of plasticizing additives based on recycled raw materials in the petrochemical rubber mixtures

    Directory of Open Access Journals (Sweden)

    Z. S. Shashok

    2016-01-01

    Full Text Available At present, the development of alternative products for elastomers based on recycling petrochemical raw materials is a new trend of the rubber industry progress. Petrochemical raw materials include spent lubricants and motor oils are among such recycling products. In this context, the influence of the products of recycling waste engine oil (DVCH and RA in comparison with industrial oil (I-20 on the technological properties of filled elastomeric compositions was investigated. The elastomeric compositions were based on poly isoprene and divinyl rubbers. The plasticizing components were manufactured by IOOO “DVCH-Menedzhment”. They are mixture of hydro-carbons, C16–C20 and differ from each other in the content of linear and branched paraffin. Plastic-elastic properties of rubber compounds on the shear disk viscometer MV2000 in accordance with GOST 10722–76 was carried out. Kinetics of vulcanization on the rheometer ODR2000 according to GOST 12535–84 was defined. It is shown that the introduction of RA test plasticizing component provides a significant effect on Mooney viscosity, as compared to elastomeric compositions containing a plasticizer and I-20 and plasticizing additive DVCH. It revealed that the administration of all components in the studied plasticizing elastomer compositions based on a combination poly isoprene and divinyl rubbers has no significant effect on the rate of relaxation of stress of rubber compounds. It is found that elastomeric compositions containing as additives investigated processing waste oil products (DVCH and RA are characterized by a slightly smaller value of time to reach an optimal degree of vulcanization.

  3. "New" Compounds from Old Plastics: Recycling PET Plastics via Depolymerization. An Activity for the Undergraduate Organic Lab

    Science.gov (United States)

    Kaufman, Don; Wright, Geoff; Kroemer, Ryan; Engel, Josh

    1999-11-01

    This paper describes work done to develop a meaningful undergraduate organic lab activity that illustrates chemistry of the real world while utilizing reactions typically included in the organic lecture and lab. We show how a common plastic can be converted into several compounds using ester hydrolysis and SN2 reactions. Contributing to the critical shortage of landfill space faced by many communities is the large quantity of plastic refuse. Thus, there is a real need to recycle plastic products. One way to recycle plastics such as polyethyleneterephthalate (PET), the polyester from which numerous consumer products such as 2-liter soda bottles are made, is to depolymerize them and then to use the resulting monomers to produce new products. PET is industrially depolymerized via an acid-catalyzed transesterification reaction conducted under conditions of high temperature and pressure that are not feasible in the undergraduate lab. Despite literature reports that PET is remarkably resistant to hydrolysis, we found that PET can be readily hydrolyzed by refluxing with potassium hydroxide or potassium tert-butoxide in amyl alcohol to give terephthalic acid in high yield. It is then possible to readily synthesize terephthalate diesters via SN2 reactions of ammonium terephthalate salts with alkyl halides. Fischer esterification can also be used to prepare the diesters, but yields are significantly lower.

  4. Development of recycled plastic composites for structural applications from CEA plastics

    Science.gov (United States)

    Bhalla, Agrim

    Plastic waste from consumer electronic appliances (CEAs) such as computer and printer parts including Polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), Polystyrene (PS) and PC/ABS were collected using handheld FTIR Spectrophotometer. The blends of these plastics with High Density Polyethylene (HDPE) are manufactured under special processing conditions in a single screw compounding injection molding machine. The blends are thermoplastics have high stiffness and strength, which may enhance the mechanical properties of HDPE like tensile modulus, ultimate tensile strength, tensile break and tensile yield. These composites have a potential to be used for the future application of recycled plastic lumber, thus replacing the traditional wood lumber.

  5. Creating Methane from Plastics: Recycling at a Lunar Outpost

    Science.gov (United States)

    Captain, Janine; Santiago, Eddie; Wheeler, Ray; Strayer, RIchard; Garland, Jay; Parrish, Clyde

    2010-01-01

    The high cost of re-supply from Earth demands resources to be utilized to the fullest extent for exploration missions. Recycling is a key technology that maximizes the available resources by converting waste products into useful commodities. One example of this is to convert crew member waste such as plastic packaging, food scraps, and human waste, into fuel. The ability to refuel on the lunar surface would reduce the vehicle mass during launch and provide excess payload capability. The goal of this project is to determine the feasibility of recycling waste into methane on the lunar outpost by performing engineering assessments and lab demonstrations of the technology. The first goal of the project was to determine how recycling could influence lunar exploration. Table I shows an estimation of the typical dried waste stream generated each day for a crew of four. Packaging waste accounts for nearly 86% of the dry waste stream and is a significant source of carbon on the lunar surface. This is important because methane (CH4) can be used as fuel and no other source of carbon is available on the lunar surface. With the initial assessment indicating there is sufficient resources in the waste stream to provide refueling capabilities, the project was designed to examine the conversion of plastics into methane.

  6. Small WEEE: determining recyclables and hazardous substances in plastics.

    Science.gov (United States)

    Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos

    2009-01-30

    An examination regarding the determination of recyclables and hazardous substances in small waste electrical and electronic equipment (WEEE) found in the residual household waste stream of the city of Dresden, Germany, is described. Firstly, attitudes towards the disposal of small WEEE in the latter are assessed, and product types and categories which mostly contribute to its composition are identified. Physical parameters which could be used as mechanical sorting criteria are measured, and the material composition of the small WEEE found is determined. The hazardous substances' "base" charge in the residual waste is established by means of atomic absorption spectrometry and ionic chromatography, as a first step in estimating the contribution of small WEEE to its pollutant load. Consequently, the content of small WEEE plastics in key heavy metals and halogens is determined. Key conclusions are drawn concerning the future strategic development and practical implementation of the 2002/96/EC Directive, in relation to small WEEE management and recycling.

  7. Evaluation of solid waste recycling in Khazra Industrial estate, Iran

    Directory of Open Access Journals (Sweden)

    Hossein Jafari Mansoorian

    2014-01-01

    Conclusion: Overall, our findings suggest that the total amount and the variety of waste generated, and the availability of waste-recycling units in the park hinder the establishment of any recycling and processing units in the Khazra Industrial Park as they are not economically efficient. Therefore if the park development plans get going and by using economic initiatives, the foundation of processing and recycling units in this industrial park is recommended and will have economic and environmental benefits.

  8. Recycling In The U.S. Pallet Industry: 1993

    Science.gov (United States)

    Bruce G. Hansen; Robert Bush; John Punches; Philip A. Araman

    1995-01-01

    This report provides the details of a study which investigated pallet recycling activity in the United States pallet industry (Standard Industrial Classification 2448) during 1993. The study was conducted by the Center for Forest Products Marketing at Virginia Tech and replicates a similar study that investigated pallet recycling during 1992. The report provides the...

  9. Toxicity tests of soil contaminated by recycling of scrap plastics.

    Science.gov (United States)

    Wong, M H; Chui, V W

    1990-03-01

    The present investigation studied the toxicity of soil contaminated by untreated discharge from a factory that recycles used plastics. The nearby agricultural areas and freshwater fish ponds were polluted with high concentrations of Cu, Ni, and Mn. Water extracts from the contaminated soil retarded root growth of Brassica chinensis (Chinese white cabbage) and Cynodon dactylon (Bermuda grass) where their seeds were obtained commercially. The contaminated populations of C. dactylon, Panicum repen (panic grass), and Imperata cylindrica (wooly grass) were able to withstand higher concentrations of Cu, Ni, and Mn, especially C. dactylon, when compared with their uncontaminated counterparts.

  10. Possibilities and limits of pyrolysis for recycling plastic rich waste streams rejected from phones recycling plants.

    Science.gov (United States)

    Caballero, B M; de Marco, I; Adrados, A; López-Urionabarrenechea, A; Solar, J; Gastelu, N

    2016-11-01

    The possibilities and limits of pyrolysis as a means of recycling plastic rich fractions derived from discarded phones have been studied. Two plastic rich samples (⩾80wt% plastics) derived from landline and mobile phones provided by a Spanish recycling company, have been pyrolysed under N2 in a 3.5dm(3) reactor at 500°C for 30min. The landline and mobile phones yielded 58 and 54.5wt% liquids, 16.7 and 12.6wt% gases and 28.3 and 32.4wt% solids respectively. The liquids were a complex mixture of organic products containing valuable chemicals (toluene, styrene, ethyl-benzene, etc.) and with high HHVs (34-38MJkg(-1)). The solids were composed of metals (mainly Cu, Zn, and Al) and char (≈50wt%). The gases consisted mainly of hydrocarbons and some CO, CO2 and H2. The halogens (Cl, Br) of the original samples were mainly distributed between the gases and solids. The metals and char can be easily separated and the formers may be recycled, but the uses of the char will be restricted due to its Cl/Br content. The gases may provide the energy requirements of the processing plant, but HBr and HCl must be firstly eliminated. The liquids could have a potential use as energy or chemicals source, but the practical implementation of these applications will be no exempt of great problems that may become insurmountable (difficulty of economically recovering pure chemicals, contamination by volatile metals, etc.).

  11. Exhaust Gas Pollution and Control of Import Waste Plastics Recycling Industry%进口废塑料再生加工行业废气污染及防治对策

    Institute of Scientific and Technical Information of China (English)

    陈瑜; 赵艳

    2015-01-01

    With large quantities of China’s import waste plastics, exhaust gas could be produced in the recycling process of waste plastics. Without effective treatment, the production will bring great harm to the environment. Typical regeneration of waste plastics process and the production process were analyzed. The main sources and types of waste gas were identified. Effective treatments and countermeasures of organic waste gas, dust and odor pollution produced in the process of hot-melt granulation, crushing were presented.%我国进口废塑料数量大,废塑料再生加工生产过程中伴随着工艺废气的产生,若不进行处理将对环境带来较大的危害。通过分析典型的废塑料再生加工工艺及产污环节,识别主要工艺废气来源及种类,提出了有效处理热熔造粒、破碎等加工过程产生的有机废气、粉尘及恶臭等废气污染物的防治对策与措施。

  12. STUDY ON THE RECYCLING SYSTEM OF WASTE PLASTICS AND MIXED PAPER FROM A LONG-TERM PERSPECTIVE

    Science.gov (United States)

    Fujii, Minoru; Fujita, Tsuyoshi; Chen, Xudong; Ohnishi, Satoshi; Osako, Masahiro; Moriguchi, Yuichi; Yamaguchi, Naohisa

    Plastics and mixed paper in municipal solid waste are valuable resources with high calorific value. However, the recycling cost to utilize them tends to be expensive. In addition, recycling system has to be consistent with the reduce of wastes on which should be put higher-priority to lower carbon emission and save resources in the long term. In this paper, we proposed a recycling system (smart recycling system) which consists of a local center an d existing facilities in arterial industries. In the local center, collected waste plastics and mixed paper from household are processed on the same line into a form suitable for transportation and handling in a facility of arterial in dustry which can utilize those wastes effectively. At the same time, a part of plastics with high quality is processed into a recycled resin in the center. It was suggested that, by utilizing existing facilities in arterial industries which have enough and flexible capacity to accept those wastes, the system can be a robust system even if the amount of wastes generation fluctuates widely. The effect of CO2 reduction and cost by installing the system were calculated and it was estimated that 3.5 million ton of additional annual CO2 reduction could be brought in Tokyo and surrounding three prefectures without co nsiderable increase in cost.

  13. A Cost-Effectiveness Analysis for Incineration or Recycling of Dutch Household Plastics

    NARCIS (Netherlands)

    R.H.J.M. Gradus (Raymond); R. van Koppen (Rick); E. Dijkgraaf (Elbert); P. Nillesen (Paul)

    2016-01-01

    textabstractThe cost-effectiveness of plastic recycling is compared to energy recovery from plastic incineration in a waste-to-energy plant using data for the Netherlands. Both options have specific benefits and costs. The benefits of recycling are the avoidance of both CO2 that otherwise would be e

  14. A Cost-Effectiveness Analysis for Incineration or Recycling of Dutch Household Plastics

    NARCIS (Netherlands)

    R.H.J.M. Gradus (Raymond); R. van Koppen (Rick); E. Dijkgraaf (Elbert); P. Nillesen (Paul)

    2016-01-01

    textabstractThe cost-effectiveness of plastic recycling is compared to energy recovery from plastic incineration in a waste-to-energy plant using data for the Netherlands. Both options have specific benefits and costs. The benefits of recycling are the avoidance of both CO2 that otherwise would be

  15. Effects of Number and Location of Bins on Plastic Recycling at a University

    Science.gov (United States)

    O'Connor, Ryan T.; Lerman, Dorothea C.; Fritz, Jennifer N.; Hodde, Henry B.

    2010-01-01

    The proportion of plastic bottles that consumers placed in appropriate recycling receptacles rather than trash bins was examined across 3 buildings on a university campus. We extended previous research on interventions to increase recycling by controlling the number of recycling receptacles across conditions and by examining receptacle location…

  16. Recycling plastics and polymeric wastes. (Latest citations from the EI compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The bibliography contains citations concerning the recycling and uses of plastic and polymeric scraps and wastes. Topics include communition or grinding of scrap, degradation by heat or chemical reaction, compatibility of various plastics with one another, sorting problems, physical properties of reprocessed materials, economics, public awareness, waste minimization, waste re-use, and foreign experience in plastics recycling. New products made from recycled materials, and products expressly made to be recyclable are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, A.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2001-01-01

    The feasibility of phosphate recycling in the white phosphorus production process is discussed. Several types of materials may be recycled, provided they are dry inorganic materials, low in iron, copper and zinc. Sewage sludge ash may be used if no iron is used for phosphate precipitation in the tre

  18. Recycling In The U.S. Pallet Industry: 1995

    Science.gov (United States)

    Robert J. Bush; Vijay S. Reddy; Matthew S Bumgardner; James L. Chamberlain; Philip A. Araman

    1997-01-01

    This report provides the results of a study that investigated recovery and recycling of pallets by U.S. manufacturers listed under the Standard Industrial Classification (SIC) code 2448. In Spring 1996, data were collected using a mail survey of 1,687 pallet companies across the United States. Using these data we estimated the volume and type of recycling being done by...

  19. Development potential of e-waste recycling industry in China.

    Science.gov (United States)

    Li, Jinhui; Yang, Jie; Liu, Lili

    2015-06-01

    Waste electrical and electronic equipment (WEEE or e-waste) recycling industries in China have been through several phases from spontaneous informal family workshops to qualified enterprises with treatment fund. This study attempts to analyse the development potential of the e-waste recycling industry in China from the perspective of both time and scale potential. An estimation and forecast of e-waste quantities in China shows that, the total e-waste amount reached approximately 5.5 million tonnes in 2013, with 83% of air conditioners, refrigerators, washing machines, televisions sand computers. The total quantity is expected to reach ca. 11.7 million tonnes in 2020 and 20 million tonnes in 2040, which indicates a large increase potential. Moreover, the demand for recycling processing facilities, the optimal service radius of e-waste recycling enterprises and estimation of the profitability potential of the e-waste recycling industry were analysed. Results show that, based on the e-waste collection demand, e-waste recycling enterprises therefore have a huge development potential in terms of both quantity and processing capacity, with 144 and 167 e-waste recycling facilities needed, respectively, by 2020 and 2040. In the case that e-waste recycling enterprises set up their own collection points to reduce the collection cost, the optimal collection service radius is estimated to be in the range of 173 km to 239 km. With an e-waste treatment fund subsidy, the e-waste recycling industry has a small economic profit, for example ca. US$2.5/unit for television. The annual profit for the e-waste recycling industry overall was about 90 million dollars in 2013.

  20. The potential environmental gains from recycling waste plastics: simulation of transferring recycling and recovery technologies to Shenyang, China.

    Science.gov (United States)

    Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi

    2011-01-01

    With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

  1. Integrated Index in Consideration of Appropriate Plastic Recycling System in Waste Bank Operation

    OpenAIRE

    Firdaus Pambudi Noorhan; Dowaki Kiyoshi; Adhiutama Akbar

    2016-01-01

    Several appropriate technology had been developed to maintain plastic waste in society according to minimize environmental impact. Landfill is no longer appropriate to maintain plastic waste based on the environmental impact that might be occurred for instance. However in developing countries such as Indonesia, although plastic recycling technology have been promoted by maintain waste bank policy for support community willingness to exchange their recyclable waste with certain monetary values...

  2. The pollution characteristics of odor, volatile organochlorinated compounds and polycyclic aromatic hydrocarbons emitted from plastic waste recycling plants.

    Science.gov (United States)

    Tsai, Chung-Jung; Chen, Mei-Lien; Chang, Keng-Fu; Chang, Fu-Kuei; Mao, I-Fang

    2009-02-01

    Plastic waste treatment trends toward recycling in many countries; however, the melting process in the facilities which adopt material recycling method for treating plastic waste may emit toxicants and cause sensory annoyance. The objectives of this study were to analyze the pollution characteristics of the emissions from the plastic waste recycling plants, particularly in harmful volatile organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs), odor levels and critical odorants. Ten large recycling plants were selected for analysis of odor concentration (OC), volatile organic compounds (VOCs) and PAHs inside and outside the plants using olfactometry, gas chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detector, respectively. The olfactometric results showed that the melting processes used for treating polyethylene/polypropylene (PE/PP) and polyvinyl chloride (PVC) plastic waste significantly produced malodor, and the odor levels at downwind boundaries were 100-229 OC, which all exceeded Taiwan's EPA standard of 50 OC. Toluene, ethylbenzene, 4-methyl-2-pentanone, methyl methacrylate and acrolein accounted for most odors compared to numerous VOCs. Sixteen organochlorinated compounds were measured in the ambient air emitted from the PVC plastic waste recycling plant and total concentrations were 245-553 microg m(-3); most were vinyl chloride, chloroform and trichloroethylene. Concentrations of PAHs inside the PE/PP plant were 8.97-252.16 ng m(-3), in which the maximum level were 20-fold higher than the levels detected from boundaries. Most of these recycling plants simply used filter to treat the melting fumes, and this could not efficiently eliminate the gaseous compounds and malodor. Improved exhaust air pollution control were strongly recommended in these industries.

  3. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  4. Direction of CRT waste glass processing: electronics recycling industry communication.

    Science.gov (United States)

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  5. Preparing Attitude Scale to Define Students‟ Attitudes about Environment, Recycling, Plastic andPlastic Waste

    Directory of Open Access Journals (Sweden)

    Cagri AVAN

    2011-01-01

    Full Text Available The aim of this study is to introduce an attitude scale in order to define students‟ attitudes about environment, recycling, plastics, plastic waste. In this study, 80 attitude sentences according to 5-point Likert-type scale were prepared and applied to 492 students of 6th grade in the Kastamonu city center of Turkey. The scale consists of cognitive, affective, and psychomotor skills domains. After the factor analysis it was found that they have 3, 4 and 5 factors accordingly. After the reliability analysis the alpha values for cognitive, affective and psychomotor scales are .854, .871 and .826 respectively. As a result, it is found that the scale can be used to define cognitive, affective and psychomotor attitudes.

  6. Sustainable Materials Management (SMM) Web Academy Webinar: Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  7. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions

    DEFF Research Database (Denmark)

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr

    2013-01-01

    to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose......Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated...... wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50. °C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50. °C, though ideal for ethanol yield, should be kept short or carried out at lower temperature...

  8. Particulate Filled Composite Plastic Materials from Recycled Glass Fibre Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Aare ARUNIIT

    2011-09-01

    Full Text Available Glass fibre reinforced plastic (GFRP scrap consisted of acrylic plastic with glass fibre reinforcement in polyester resin matrix was used in our experiments. The multi-functional DS-series disintegrator mills were used for mechanical processing of GFRP scrap. Preceding from the results characterization of the milled powder particles size, shape and other properties the numerical algorithm for modelling of the density of the new filler material was developed. The main goal of the current study is to develop new particulate filled composite plastic material from recycled GFRP scrap. With recovered plastic powder material the higher filler content in polyester resin matrix can be achieved. The new composite is modelled on basis of the properties of new material. Such an approach requires tests of the new material. The considered target characteristics of the new material are the tensile strength, elongation at break and the cost. The multicriteria optimization problem has been formulated and solved by use of physical programming techniques and Pareto optimality concept. The designed new composites were manufactured in different mixing ratios of powder and binder agent. The strength and stiffness properties of new composite material were tested. http://dx.doi.org/10.5755/j01.ms.17.3.593

  9. DMS cyclone separation processes for optimization of plastic wastes recycling and their implications.

    Science.gov (United States)

    Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Torno, Susana

    2011-06-01

    It is demonstrated that substantial reductions in plastics presently disposed of in landfills can be achieved by cyclone density media separation (DMS). In comparison with the size fraction of plastics presently processed by industrial density separations (generally 6.4 to 9.5 mm), cyclone DMS methods are demonstrated to effectively process a substantially greater range of particle sizes (from 0.5 up to 120 mm). The purities of plastic products and recoveries obtained with a single stage separation using a cylindrical cyclone are shown to attain virtually 100% purity and recoveries >99% for high-density fractions and >98% purity and recoveries were obtained for low-density products. Four alternative schemas of multi-stage separations are presented and analyzed as proposed methods to obtain total low- and high-density plastics fraction recoveries while maintaining near 100% purities. The results of preliminary tests of two of these show that the potential for processing product purities and recoveries >99.98% of both density fractions are indicated. A preliminary economic comparison of capital costs of DMS systems suggests cyclone DMS methods to be comparable with other DMS processes even if the high volume capacity for recycling operations of these is not optimized.

  10. Integrated Index in Consideration of Appropriate Plastic Recycling System in Waste Bank Operation

    Directory of Open Access Journals (Sweden)

    Firdaus Pambudi Noorhan

    2016-01-01

    Full Text Available Several appropriate technology had been developed to maintain plastic waste in society according to minimize environmental impact. Landfill is no longer appropriate to maintain plastic waste based on the environmental impact that might be occurred for instance. However in developing countries such as Indonesia, although plastic recycling technology have been promoted by maintain waste bank policy for support community willingness to exchange their recyclable waste with certain monetary values, there is no guarantee that community will fully accept plastic recycling technology. This research aims to assess the performance of plastic recycling in environmental and social aspects as its integrated index. From that assessment, appropriate strategies in plastic recycling will be delivered in this research. Environmental aspects will be assessed by using life cycle assessment (LCA through MiLCA software and selected by using data envelopment analysis (DEA. Social aspects will be analyzed by using qualitative and quantitative methodology such as observation, interview, secondary data, and questionnaires. Simulation and modelling will also developed by using agent-based modelling (ABM to describe social dynamic of community in supporting waste bank policy. The appropriate system of plastic recycling will be promoted as expected results for this research.

  11. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP).

    Science.gov (United States)

    Achilias, D S; Roupakias, C; Megalokonomos, P; Lappas, A A; Antonakou, Epsilon V

    2007-11-19

    The recycling of either model polymers or waste products based on low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP) is examined using the dissolution/reprecipitation method, as well as pyrolysis. In the first technique, different solvents/non-solvents were examined at different weight percent amounts and temperatures using as raw material both model polymers and commercial products (packaging film, bags, pipes, food-retail outlets). The recovery of polymer in every case was greater than 90%. FT-IR spectra and tensile mechanical properties of the samples before and after recycling were measured. Furthermore, catalytic pyrolysis was carried out in a laboratory fixed bed reactor with an FCC catalyst using again model polymers and waste products as raw materials. Analysis of the derived gases and oils showed that pyrolysis gave a mainly aliphatic composition consisting of a series of hydrocarbons (alkanes and alkenes), with a great potential to be recycled back into the petrochemical industry as a feedstock for the production of new plastics or refined fuels.

  12. Technologies for recycling of plastic wastes; Tecnologias para el reciclado de residuos plasticos

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, R.; Garcia, E.; Larraurim, E.

    1996-12-01

    The present article presents the last technologies to recycle the plastic wastes. the work is developed by Gaiker Center under the umbrella of Brite Euram project. The activities include the minimization, classification, and separation of wastes. (Author)

  13. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.

    Science.gov (United States)

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2012-03-06

    Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally.

  14. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  15. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  16. Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling.

    Science.gov (United States)

    Wang, Chongqing; Wang, Hui; Fu, Jiangang; Zhang, Lingling; Luo, Chengcheng; Liu, Younian

    2015-11-01

    Surface modification with potassium permanganate (KMnO4) solution was developed for separation of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) waste plastics. The floatability of PVC decreases with increasing of KMnO4 concentration, treatment time, temperature and stirring rate, while that of PET is unaffected. Fourier transform infrared (FT-IR) analysis confirms that mechanism of surface modification may be due to oxidization reactions occurred on PVC surface. The optimum conditions are KMnO4 concentration 1.25 mM/L, treatment time 50 min, temperature 60°C, stirring rate 300 r/min, frother concentration 17.5 g/L and flotation time 1 min. PVC and PET with different particle sizes were separated efficiently through two-stage flotation. Additionally, after ultrasonic assisted surface modification, separation of PVC and PET with different mass ratios was obtained efficiently through one-stage flotation. The purity and the recovery of the obtained products after flotation separation are up to 99.30% and 99.73%, respectively. A flotation process was designed for flotation separation of PVC and PET plastics combined with surface modification. This study provides technical insights into physical separation of plastic wastes for recycling industry.

  17. Recyclable plastics as substrata for settlement and growth of bryozoans Bugula neritina and barnacles Amphibalanus amphitrite.

    Science.gov (United States)

    Li, Heng-Xiang; Orihuela, Beatriz; Zhu, Mei; Rittschof, Daniel

    2016-11-01

    Plastics are common and pervasive anthropogenic debris in marine environments. Floating plastics provide opportunities to alter the abundance, distribution and invasion potential of sessile organisms that colonize them. We selected plastics from seven recycle categories and quantified settlement of (i) bryozoans Bugula neritina (Linnaeus, 1758) in the lab and in the field, and of (ii) barnacles Amphibalanus (= Balanus) amphitrite (Darwin, 1854) in the field. In the laboratory we cultured barnacles on the plastics for 8 weeks and quantified growth, mortality, and breaking strength of the side plates. In the field all recyclable plastics were settlement substrata for bryozoans and barnacles. Settlement depended on the type of plastic. Fewer barnacles settled on plastic surfaces compared to glass. In the lab and in the field, bryozoan settlement was higher on plastics than on glass. In static laboratory rearing, barnacles growing on plastics were initially significantly smaller than on glass. This suggested juvenile barnacles were adversely impacted by materials leaching from the plastics. Barnacle mortality was not significantly different between plastic and glass surfaces, but breaking strength of side plates of barnacles on polyvinyl chloride (PVC) and polycarbonate (PC) were significantly lower than breakage strength on glass. Plastics impact marine ecosystems directly by providing new surfaces for colonization with fouling organisms and by contaminants shown previously to leach out of plastics and impact biological processes.

  18. Upgrading of recycled plastics obtained from flexible packaging waste by adding nanosilicates

    Science.gov (United States)

    Garofalo, E.; Claro, M.; Scarfato, P.; Di Maio, L.; Incarnato, L.

    2015-12-01

    Currently, the growing consumption of polymer products creates large quantities of waste materials resulting in public concern in the environment and people life. The efficient treatment of polymer wastes is still a difficult challenge and the recycling process represents the best way to manage them. Recently, many researchers have tried to develop nanotechnology for polymer recycling. The products prepared through the addition of nanoparticles to post-used plastics could offer the combination of improved properties, low weight, easy of processing and low cost which is not easily and concurrently found by other methods of plastic recycling. In this study materials, obtained by the separation and mechanical recycling of post-consumer packaging films of small size (organic modifier, were melt compounded with the recycled materials in a twin-screw extruder. The morphological, thermal, rheological and mechanical properties of the prepared nanocomposites were extensively discussed.

  19. Recycling and reuse of chosen kinds of waste materials in a building industry

    Science.gov (United States)

    Ferek, B.; Harasymiuk, J.; Tyburski, J.

    2016-08-01

    The article describes the current state of knowledge and practice in Poland concerning recycling as a method of reuse of chosen groups of waste materials in building industry. The recycling of building scraps is imposed by environmental, economic and technological premises. The issue of usage of sewage residues is becoming a problem of ever -growing gravity as the presence of the increasing number of pernicious contaminants makes their utilization for agricultural purposes more and more limited. The strategies of using waste materials on Polish building sites were analyzed. The analysis of predispositions to salvage for a group of traditional materials, such as: timber, steel, building debris, insulation materials, plastics, and on the example of new materials, such as: artificial light aggregates made by appropriate mixing of siliceous aggregates, glass refuses and sewage residues in order to obtain a commodity which is apt for economic usage also was made in the article. The issue of recycling of waste materials originating from building operations will be presented in the context of the binding home and EU legal regulations. It was proved that the level of recycling of building wastes in Poland is considerably different from one which is achieved in the solid market economies, both in quantity and in assortment. The method of neutralization of building refuses in connection with special waste materials, which are sewage sludge that is presented in the article may be one of the alternative solutions to the problem of recycling of these wastes not only on the Polish scale.

  20. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    Energy Technology Data Exchange (ETDEWEB)

    Wäger, Patrick A., E-mail: patrick.waeger@empa.ch; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses.

  1. Usage of Recycled Pet

    Directory of Open Access Journals (Sweden)

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  2. Field evaluation of recycled plastic lumber (RPL) pallets. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswamy, P.; Miele, C.R.; Francini, R.B. [Battelle, Columbus, OH (United States); Yuracko, K. [Oak Ridge National Lab., TN (United States); Yerace, P. [Dept. of Energy, Fernald, OH (United States)

    1997-10-01

    One significant component of the waste stream, discarded plastic products and packaging, continues to be a growing portion of the municipal solid waste (MSW). There has been considerable work done in characterizing the quantity and types of plastics in different waste streams, collection methods, separation, sorting as well as technologies for processing post-consumer mixed plastics. The focus in recent years has been the development of markets for recycled plastic products, which constitutes the second half of the material flow diagram cycle shown in Figure 1. One key product that holds significant promise for plastics recycling to be both technically feasible and economically viable is Recycled Plastic Lumber (RPL). The contents of this report forms the second phase of a two-phase pilot project on developing specifications and standards for a product fabricated from RPL. Such standards and specifications are needed to prepare procurement guidelines for state and federal agencies interested in purchasing products made from recycled materials. The first phase focused on establishing a procedure to evaluate RPL product,s such as pallets, in a laboratory setting while this phase focuses on field evaluation of RPL pallets in service. This effort is critical in the development of new markets for RPL products. A brief summary of the findings from Phase 1 of this effort is presented next.

  3. Institute of Plastics Processing and Application of Light Industry

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Institute of Plastics Processing and processing center sponsored by UNDP. University. Application of Light Industry was Since 1999, it has been attached set up in 1983, based on the plastics to Beijing Technology and Business

  4. Solar detoxification plant for a hazardous plastic bottle recycling plant in El Ejido: feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S. [CIEMAT, Plataforma Solar de Almeria (PSA), Tabernas (Spain); Richter, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)

    1997-12-31

    The removal of persistent organic chemicals from water is a pressing ecological problem. Persistent contaminants, such as pesticides, solvents, detergents and a variety of industrial chemicals, are capable of deep penetration into the soil and reach groundwater due to combination of chemical stability, resistance to biodegradation and sufficient water solubility. The Spanish province of Almeria has experienced an important economical growth during the last 20 years due to the installation of a large number of greenhouses, which benefit from the extremely sunny climate for production of vegetables and fruits. Unfortunately, this development is accompanied by an intensive use of a wide variety of pesticides with the subsequent problem of empty plastic bottles. Unitl now these plaguicide containers have usually been burnt or buried. Since the problem has been growing in the last years, a parallel environmental consciousness has been rising in the region concerning the recycling of these pesticide bottles; this process includes washing of the shredded plastic containers, which gives rise to relatively small quantities of water contaminated with toxic and persistent compounds at a concentration level of some hundred mg/l of total organic carbon content. This appears to be a very promising application for TiO{sub 2} - Solar Photocatalytic Detoxification, which provides an adequate solution as there is no clear alternative way to solve the problem. (orig.)

  5. The Research of Scrapped Automobiles Recycling and Disassembling Industry Development Based on Auto Industry Chain

    Directory of Open Access Journals (Sweden)

    linhua Pang

    2015-01-01

    Full Text Available The number of China’s scrapped car is on an explosively growing trend, and the development of scrapped car recycling industry has a golden prospect. The current scrapped car recycling system is not perfect in our country, because related industries driven by market develop slowly, and there are some outstanding problems such as potential safety risks, environmental pollution and resource waste. The paper analyzes and studies the existing problems and countermeasures to investigate the development strategy of scrapped car recycling industry according to the whole automobile industry chain construction, technology and equipment conditions, policy guidance, etc. and at last explore the new industrial development pattern of serving automobile reverse design.

  6. Separating and Recycling Plastic, Glass, and Gallium from Waste Solar Cell Modules by Nitrogen Pyrolysis and Vacuum Decomposition.

    Science.gov (United States)

    Zhang, Lingen; Xu, Zhenming

    2016-09-06

    Many countries have gained benefits through the solar cells industry due to its high efficiency and nonpolluting power generation associated with solar energy. Accordingly, the market of solar cell modules is expanding rapidly in recent decade. However, how to environmentally friendly and effectively recycle waste solar cell modules is seldom concerned. Based on nitrogen pyrolysis and vacuum decomposition, this work can successfully recycle useful organic components, glass, and gallium from solar cell modules. The results were summarized as follows: (i) nitrogen pyrolysis process can effectively decompose plastic. Organic conversion rate approached 100% in the condition of 773 K, 30 min, and 0.5 L/min N2 flow rate. But, it should be noted that pyrolysis temperature should not exceed 773 K, and harmful products would be increased with the increasing of temperature, such as benzene and its derivatives by GC-MS measurement; (ii) separation principle, products analysis, and optimization of vacuum decomposition were discussed. Gallium can be well recycled under temperature of 1123 K, system pressure of 1 Pa and reaction time of 40 min. This technology is quite significant in accordance with the "Reduce, Reuse, and Recycle Principle" for solid waste, and provides an opportunity for sustainable development of photovoltaic industry.

  7. Eco-efficiency in Recycling Systems: Evaluation Methods & Case Studies for Plastic Packaging

    OpenAIRE

    Eik, Arne; Steinmo, Solveig; Solem, Håvard; Brattebø, Helge; Saugen, Bernt

    2002-01-01

    Focus on the so-called waste hierarchy, which claims that the prevention of waste is the most environmental friendly option, followed by reuse, remanufacturing, mechanical recycling, feedstock recycling, energy recovery, incineration and landfill, is considered to be an important strategy towards sustainable development. Increased use of plastic packaging for various products and the corresponding increase in waste generated are important challenges that must be dealt with from a waste-hierar...

  8. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  9. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant.

    Science.gov (United States)

    Wäger, Patrick A; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6-10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail.

  10. Recycling and Utilization of Waste Glass Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Feng Yan-chao

    2016-01-01

    Full Text Available This paper mainly introduced the recovery method, classification and comprehensive utilization process of waste glass fiber reinforced plastics (GFRP. Among the current methods of utilization, the physical method is most promising. After pre-processing of waste GFRP, the short glass fiber can be used in gypsum block to improve the anti-cracking and operation performance of the material; waste GFRP powder can be used in plastic fiber reinforced manhole covers to increase the mechanical strength, and the products conformed to JC 1009-2006. Based on these studies, we also point out some problems concerning the utilization of waste glass fiber reinforced plastics.

  11. Increased urinary 8-hydroxy-2'-deoxyguanosine levels in workers exposed to di-(2-ethylhexyl) phthalate in a waste plastic recycling site in China.

    Science.gov (United States)

    Wang, Qian; Wang, Li; Chen, Xi; Rao, Kai Min; Lu, Shao You; Ma, Sheng Tao; Jiang, Pu; Zheng, Dan; Xu, Shun Qing; Zheng, Hong Yan; Wang, Jian Shu; Yu, Zhi Qiang; Zhang, Rong; Tao, Yong; Yuan, Jing

    2011-07-01

    Di-(2-ethylhexyl) phthalate (DEHP) is a common plasticizer used in industrial and diverse consumer products. Animal studies indicate DEHP caused developmental, reproductive, and hepatic toxicities. However, human studies of the potential effects of DEHP are limited. The exposed site with a history of over 20 years of waste plastic recycling was located in Hunan Province, China. The reference site without known DEHP pollution source was about 50 km far away from the exposed site. In this study, 181 workers working in plastic waste recycling and 160 gender-age matched farmers were recruited. DEHP concentrations in water and cultivated soil samples, serum thyroid-stimulating hormone, malondialdehyde (MDA), superoxide dismutase (SOD), urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and micronuclei frequency in human capillary blood lymphocytes were analyzed. Mean levels of DEHP were greater in environment at the recycling site than at reference site (industry wastewater for the exposed: 42.43 μg/l; well water: 14.20 vs. 0.79 μg/l, pond water: 135.68 vs. 0.37 μg/l, cultivated soil: 13.07 vs. 0.81 mg/kg, p waste plastic recycling was an independent risk factor for the increased urinary 8-OHdG levels in the male workers (p < 0.01). The occupational DEHP exposure might contribute to oxidative deoxyribonucleic acid damage in the male workers.

  12. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential.

    Science.gov (United States)

    Briassoulis, D; Hiskakis, M; Babou, E; Antiohos, S K; Papadi, C

    2012-06-01

    A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European research project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a "very good quality" for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries.

  13. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites.

    Science.gov (United States)

    Sommerhuber, Philipp F; Welling, Johannes; Krause, Andreas

    2015-12-01

    The market share of Wood-Plastic Composites (WPC) is small but expected to grow sharply in Europe. This raises some concerns about suitable wood particles needed in the wood-based panels industry in Europe. Concerns are stimulated by the competition between the promotion of wooden products through the European Bioeconomy Strategy and wood as an energy carrier through the Renewable Energy Directive. Cascade use of resources and valorisation of waste are potential strategies to overcome resource scarcity. Under experimental design conditions, WPC made from post-consumer recycled wood and plastic (HDPE) were compared to WPC made from virgin resources. Wood content in the polymer matrix was raised in two steps from 0% to 30% and 60%. Mechanical and physical properties and colour differences were characterized. The feasibility of using cascaded resources for WPC is discussed. Results indicate the technical and economic feasibility of using recycled HDPE from packaging waste for WPC. Based on technical properties, 30% recycled wood content for WPC is feasible, but economic and political barriers of efficient cascading of biomass need to be overcome.

  14. The application of recycled aluminum and plastics in environmental protection

    OpenAIRE

    G. Tepić; T. Pejakov; Lalić, B.; V. Vukadinović; Milisavljević, S.

    2013-01-01

    Environmental protection is a serious problem facing the modern world. Precisely for this reason, in this work, the authors explore its different aspects. From the perspective of conservation of natural resources and energy savings, the replacement of primary materials through recycling is explored as a potential solution in the elementary processes related to the parasol production. Such parasols would be used in designing “urban forest” solutions, which significantly contribute to the prote...

  15. Characterisation of plastic packaging waste for recycling: problems related to current approaches

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    2013-01-01

    criteria of recycling processes. A lack of information in current waste characterisation practise on polymer resin composition, black coloured material content and the influence of surface adherent material on physico-chemical characteristics of plastic packaging waste were identified. These shortcomings...

  16. 国内外塑料包装材料回收法律体系概况%The Overview of Legal System about Recycling Plastic Packaging Material at Home and Abroad

    Institute of Scientific and Technical Information of China (English)

    张玉霞; 张岩; 李东萱; 俞婧; 王洪涛

    2011-01-01

    介绍了中国和欧、美、日等发达国家塑料包装材料同收立法现状,其中包括同收塑料用于食品包装的概况.塑料包装T业要实现可持续发展,当务之急是加快包装材料回收立法,尤其是食品塑料包装回收立法工作.%This article described the legislative status of recycling of plastic packaging materials in China, Europe, America and Japan, including recycled plastics for food packaging profiles. To achieve sustainable development of plastic packaging industry, it is imperative to speed up packaging recycling legislation, in particular for food plastic packaging recycling legislation.

  17. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.

  18. Optimized Time-Gated Fluorescence Spectroscopy for the Classification and Recycling of Fluorescently Labeled Plastics.

    Science.gov (United States)

    Fomin, Petr; Zhelondz, Dmitry; Kargel, Christian

    2016-08-29

    For the production of high-quality parts from recycled plastics, a very high purity of the plastic waste to be recycled is mandatory. The incorporation of fluorescent tracers ("markers") into plastics during the manufacturing process helps overcome typical problems of non-tracer based optical classification methods. Despite the unique emission spectra of fluorescent markers, the classification becomes difficult when the host plastics exhibit (strong) autofluorescence that spectrally overlaps the marker fluorescence. Increasing the marker concentration is not an option from an economic perspective and might also adversely affect the properties of the plastics. A measurement approach that suppresses the autofluorescence in the acquired signal is time-gated fluorescence spectroscopy (TGFS). Unfortunately, TGFS is associated with a lower signal-to-noise (S/N) ratio, which results in larger classification errors. In order to optimize the S/N ratio we investigate and validate the best TGFS parameters-derived from a model for the fluorescence signal-for plastics labeled with four specifically designed fluorescent markers. In this study we also demonstrate the implementation of TGFS on a measurement and classification prototype system and determine its performance. Mean values for a sensitivity of [Formula: see text] = 99.93% and precision [Formula: see text] = 99.80% were achieved, proving that a highly reliable classification of plastics can be achieved in practice.

  19. Assessing the benefits of design for recycling for plastics inelectronics: A case study of computer enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric; Horvath, Arpad

    2007-12-31

    With the emergence of extended producer responsibilityregulations for electronic devices, it is becoming increasingly importantfor electronics manufacturers to apply design for recycling (DFR) methodsin the design of plastic enclosures. This paper presents an analyticalframework for quantifying the environmental and economic benefits of DFRfor plastic computer enclosures during the design process, usingstraightforward metrics that can be aligned with corporate environmentaland financial performance goals. The analytical framework is demonstratedvia a case study of a generic desktop computer enclosure design, which isrecycled using a typical US "take-back" system for plastics from wasteelectronics. The case study illustrates how the analytical framework canbe used by the enclosure designer to quantify the environmental andeconomic benefits of two important DFR strategies: choosing high-valueresins and minimizing enclosure disassembly time. Uncertainty analysis isperformed to quantify the uncertainty surrounding economic conditions inthe future when the enclosure is ultimately recycled.

  20. The application of recycled aluminum and plastics in environmental protection

    Directory of Open Access Journals (Sweden)

    G. Tepić

    2013-07-01

    Full Text Available Environmental protection is a serious problem facing the modern world. Precisely for this reason, in this work, the authors explore its different aspects. From the perspective of conservation of natural resources and energy savings, the replacement of primary materials through recycling is explored as a potential solution in the elementary processes related to the parasol production. Such parasols would be used in designing “urban forest” solutions, which significantly contribute to the protection of the planet from global warming, as well as the preservation of life and survival.

  1. Composite Fibers from Recycled Plastics Using Melt Centrifugal Spinning.

    Science.gov (United States)

    Zander, Nicole E; Gillan, Margaret; Sweetser, Daniel

    2017-09-06

    New methods are being developed to enable the production of value-added materials from high-volume, low-cost feedstocks arising from domestic recycling streams. In this work, recycled bottle-grade polyethylene terephthalate, polystyrene, and polypropylene were spun into fibers from the melt using a centrifugal spinning technique. Mono-component fibers and 50/50 blends of each polymer and a 33/33/33 blend of all three polymers were evaluated. Fiber morphology, chemistry, thermal, and mechanical properties were probed. Fiber diameters ranged from ca. 1 to over 12 µm, with polypropylene fibers having the smallest fiber diameters. Mono-component fibers were generally defect-free, while composite fibers containing polypropylene were beady. Fibers made from polyethylene terephthalate had the highest tensile strength, and the addition of polyethylene terephthalate to the other polymers improved the mechanical properties of the blends. Nano- and micro-fibers from both pure and mixed waste streams are expected to have applications in myriad areas such as ultra/micro-filtration, composites, and insulation.

  2. Chemical Recycling of Pop Bottles: The Synthesis of Dibenzyl Terephthalate from the Plastic Polyethylene Terephthalate

    Science.gov (United States)

    Donahue, Craig J.; Exline, Jennifer A.; Warner, Cynthia

    2003-01-01

    A laboratory procedure involving the chemical recycling of the plastic polyethylene terephthalate (PET or PETE) from 2-L pop bottles is described. A transesterification reaction is employed to depolymerize PET. At atmospheric pressure in refluxing benzyl alcohol in the presence of a catalyst, PET is converted to dibenzyl terephthalate in moderate yields. This procedure models an industrial process that involves the transesterification reaction of PET with methanol at high temperature and pressure, conditions not normally accessible in an undergraduate laboratory, to yield dimethyl terephthalate and ethylene glycol. A second method of preparing dibenzyl terephthalate starting with terephthaloyl chloride is also described. The diester from these two approaches is characterized using melting points, TLC, and IR and NMR spectroscopy. This experiment has been used in a general chemistry sequence that has sections on organic chemistry and polymer chemistry, but is also well suited for an introductory organic chemistry laboratory course or a polymer chemistry laboratory course. This lab experiment is part of a larger effort to develop a general chemistry sequence for engineering students using the theme of chemistry and the automobile. Student results are presented.

  3. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?

    Science.gov (United States)

    Wei, Ren; Zimmermann, Wolfgang

    2017-03-28

    Petroleum-based plastics have replaced many natural materials in their former applications. With their excellent properties, they have found widespread uses in almost every area of human life. However, the high recalcitrance of many synthetic plastics results in their long persistence in the environment, and the growing amount of plastic waste ending up in landfills and in the oceans has become a global concern. In recent years, a number of microbial enzymes capable of modifying or degrading recalcitrant synthetic polymers have been identified. They are emerging as candidates for the development of biocatalytic plastic recycling processes, by which valuable raw materials can be recovered in an environmentally sustainable way. This review is focused on microbial biocatalysts involved in the degradation of the synthetic plastics polyethylene, polystyrene, polyurethane and polyethylene terephthalate (PET). Recent progress in the application of polyester hydrolases for the recovery of PET building blocks and challenges for the application of these enzymes in alternative plastic waste recycling processes will be discussed. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Histogram of Intensity Feature Extraction for Automatic Plastic Bottle Recycling System Using Machine Vision

    Directory of Open Access Journals (Sweden)

    Suzaimah Ramli

    2008-01-01

    Full Text Available Currently, many recycling activities adopt manual sorting for plastic recycling that relies on plant personnel who visually identify and pick plastic bottles as they travel along the conveyor belt. These bottles are then sorted into the respective containers. Manual sorting may not be a suitable option for recycling facilities of high throughput. It has also been noted that the high turnover among sorting line workers had caused difficulties in achieving consistency in the plastic separation process. As a result, an intelligent system for automated sorting is greatly needed to replace manual sorting system. The core components of machine vision for this intelligent sorting system is the image recognition and classification. In this research, the overall plastic bottle sorting system is described. Additionally, the feature extraction algorithm used is discussed in detail since it is the core component of the overall system that determines the success rate. The performance of the proposed feature extractions were evaluated in terms of classification accuracy and result obtained showed an accuracy of more than 80%.

  5. Society of the plastic industry process emission initiatives

    Science.gov (United States)

    Mcdermott, Joseph

    1994-01-01

    At first view, plastics process emissions research may not seem to have much bearing on outgassing considerations relative to advanced composite materials; however, several parallel issues and cross currents are of mutual interest. The following topics are discussed: relevance of plastics industry research to aerospace composites; impact of clean air act amendment requirements; scope of the Society of the Plastics Industry, Inc. activities in thermoplastic process emissions and reinforced plastics/composites process emissions; and utility of SPI research for advanced polymer composites audiences.

  6. Chemical recycling of mixed waste plastics by selective pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tatsumoto, K.; Meglen, R.; Evans, R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The goal of this work is to use selective pyrolysis to produce high-value chemicals from waste plastics mixtures. Selectivity is achieved by exploiting differences in reaction rates, catalysis, and coreactants. Target wastes are molecular mixtures such as; blends or composites, or mixtures from manufactured products such as; carpets and post-consumer mixed-plastic wastes. The experimental approach has been to use small-scale experiments using molecular beam mass spectrometry (MBMS), which provides rapid analysis of reaction products and permits rapid screening of process parameters. Rapid screening experiments permit exploration of many potential waste stream applications for the selective pyrolysis process. After initial screening, small-scale, fixed-bed and fluidized-bed reactors are used to provide products for conventional chemical analysis, to determine material balances, and to test the concept under conditions that will be used at a larger scale. Computer assisted data interpretation and intelligent chemical processing are used to extract process-relevant information from these experiments. An important element of this project employs technoeconomic assessments and market analyses of durables, the availability of other wastes, and end-product uses to identify target applications that have the potential for economic success.

  7. Multicomponent recycled plastics: considerations about their use in food contact applications.

    Science.gov (United States)

    Nerín, C; Salafranca, J; Rubio, C; Cacho, J

    1998-10-01

    Two multicomponent post-use recycled plastics named as NPP40A3 (formulated with 85% HDPE and 15% of a PP-PS-PVC mixture) and NPP40A6 (formulated with 80% NPP40A3, 10% ABS and 10% HIPS), both of them with 3.1% of plasticizer and 0.6% of stabilizer to obtain a better final product, have been analysed. Plastics were extracted both with dichloromethane and methylbenzene, and analysed by HPLC and GC-MS to identify the maximum possible number of compounds. Major additives quantified were di(ethylhexyl)phthalate (3.262% and 2.955% respectively) and Irganox 1010 (0.473% and 0.498% respectively). Several degradation compounds have been detected. In order to check if these plastics could be used in food contact applications, global and specific migration tests have been applied. The results obtained are discussed.

  8. Characterisation of plastic packaging waste for recycling: problems related to current approaches

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    2013-01-01

    were addressed by a resin type-based sorting analysis and a washing test for plastic packaging material from Danish household waste. Preliminary results show that, for a quarter of the hand sorted material, no resin type could be identified and that Polypropylene and Polyethylene terephthalate were...... criteria of recycling processes. A lack of information in current waste characterisation practise on polymer resin composition, black coloured material content and the influence of surface adherent material on physico-chemical characteristics of plastic packaging waste were identified. These shortcomings...... the dominating resin types in plastic packaging. The suggested washing procedure caused a decrease of 70% of the ash content of the plastic material. The analysed metals and nutrients were reduced by up to 24%...

  9. Recycling of mixed plastic waste from electrical and electronic equipment. Added value by compatibilization.

    Science.gov (United States)

    Vazquez, Yamila V; Barbosa, Silvia E

    2016-07-01

    Plastic waste from electrical and electronic equipment (WEEE) grows up exponentially fast in the last two decades. Either consumption increase of technological products, like cellphones or computers, or the short lifetime of this products contributes to this rise generating an accumulation of specific plastic materials such ABS (Acrylonitrile-Butadiene-Styrene), HIPS (High impact Polystyrene), PC (Polycarbonate), among others. All of they can be recycled by themselves. However, to separate them by type is neither easy nor economically viable, then an alternative is recycling them together as a blend. Taking into account that could be a deterioration in final properties, to enhance phase adhesion and add value to a new plastic WEEE blend a compatibilization is needed. In this work, a systematical study of different compatibilizers for blends of HIPS and ABS from WEEE was performed. A screening analysis was carried out by adding two different compatibilizer concentration (2wt% and 20wt%) on a HIPS/ABS physical blend 80/20 proportion from plastic e-waste. Three copolymers were selected as possible compatibilizers by their possible affinity with initial plastic WEEE. A complete characterization of each WEEE was performed and compatibilization efficiency was evaluated by comparing either mechanical or morphological blends aspects. Considering blends analyzed in this work, the best performance was achieved by using 2% of styrene-acrylonitrile rubber, obtaining a compatibilized blend with double ultimate strength and modulus respect to the physical blend, and also improve mechanical properties of initial WEEE plastics. The proposed way is a promise route to improve benefit of e-scrap with sustainable, low costs and easy handling process. Consequently, social recycling interest will be encouraged by both ecological and economical points of view.

  10. Technological Proposals for Recycling Industrial Wastes for Environmental Applications

    Directory of Open Access Journals (Sweden)

    Isabel Romero-Hermida

    2014-08-01

    Full Text Available A two-fold objective is proposed for this research: removing hazardous and unpleasant wastes and mitigating the emissions of green house gasses in the atmosphere. Thus, the first aim of this work is to identify, characterize and recycle industrial wastes with high contents of calcium or sodium. This involves synthesizing materials with the ability for CO2 sequestration as preliminary work for designing industrial processes, which involve a reduction of CO2 emissions. In this regard, phosphogypsum from the fertilizer industry and liquid wastes from the green olive and bauxite industries have been considered as precursors. Following a very simple procedure, Ca-bearing phosphogypsum wastes are mixed with Na-bearing liquid wastes in order to obtain a harmless liquid phase and an active solid phase, which may act as a carbon sequestration agent. In this way, wastes, which are unable to fix CO2 by themselves, can be successfully turned into effective CO2 sinks. The CO2 sequestration efficiency and the CO2 fixation power of the procedure based on these wastes are assessed.

  11. Effects of Mixing Temperature and Wood Powder Size on Mechanical Properties of Wood Plastic Recycled Composite

    Science.gov (United States)

    Miki, Tsunehisa; Sugimoto, Hiroyuki; Kojiro, Keisuke; Kanayama, Kozo; Yamamoto, Ken

    In this study, wood (cedar) powder ranging from 53 µm to 1 mm sizes, recycled polypropylene (PP) / polyethylene (PE) and acid-modified PP as a compatibilization agent were used to produce a wood-plastic recycled composite (WPRC). For discussing the effects of the wood powder sizes on the mechanical properties of the WPRC, a mixing process of the wood powder and the plastics in a constant wood content of 50% weight was firstly performed by a mixing machine controlled temperature and rotation of mixing blade. And then, to obtain WPRC panels the wood and plastics mixtures were compressed in a mould under a constant pressure and a temperature for a certain holding time. WPRC specimens for mechanical tests were cut from the WPRC panels, and a tensile strength and a size-stability were acquired. The results show that the successful mixing process runs above 180°C, where the mixing torque required compounding keeps constant or slightly increases. The tensile strength of the WPRC increases when the smaller size of wood powder is used for wood/plastic compound under successful mixing conditions. It is shown from thickness change rate of specimens that mixing temperature of wood/plastic compound affects a size stability of the WPRC.

  12. Characteristics of wood-fiber plastic composites made of recycled materials.

    Science.gov (United States)

    Ashori, Alireza; Nourbakhsh, Amir

    2009-04-01

    This study investigates the feasibility of using recycled high density polyethylene (rHDPE), polypropylene (rPP) and old newspaper (rONP) fiber to manufacture experimental composite panels. The panels were made through air-forming and hot press. The effects of the fiber and coupling agent concentration on tensile, flexural, internal bond properties and water absorption and thickness swelling of wood-fiber plastic composites were studied. The use of maleated polypropylene as coupling agent improved the compatibility between the fiber and both plastic matrices and mechanical properties of the resultant composites compared well with those of non-coupled ones. Based on the findings in this work, it appears that recycled materials can be used to manufacture value-added panels without having any significant adverse influence on board properties. It was also found that composites with rHDPE provided moderately superior properties, compared with rPP samples.

  13. Assessing the suitability of recycled plastics used as agricultural soil covers: migration study and experimental harvest.

    Science.gov (United States)

    Nerín, C; Batlle, R

    1999-01-01

    The present work is focused on evaluating the suitability of recycling postconsumer agricultural plastic films again for the same use. The criteria to assess the suitability was based on migration study. Both overall and specific migration tests were performed, and the results obtained (ranging from 0.14 to 1.27 mg/dm(2) for overall migration and from not detectable to 6.98 microg/dm(2) for specific migration) show how, from this point of view, the recycled material can be safely proposed to be used again as agricultural soil covers. A theoretical discussion about the migration process is also presented and a simple mathematical model was applied to the data obtained, showing how total migration which is experimentally detected is theoretically predictable. These conclusions found were used to design and develop a controlled crop of tomato by using this recycled film. The use of the recycled plastic in the whole process and the behavior and properties of the pesticides absorbed in the postconsumer film are discussed.

  14. Plates made with solid waste from the recycled paper industry.

    Science.gov (United States)

    Pelegrini, M; Gohr Pinheiro, I; Valle, J A B

    2010-02-01

    The results of assays carried out on plates used in the construction industry, manufactured entirely with solid wastes of a recycled paper plant, are presented and compared with the results obtained using agglomerated wood and plywood plates. Previous results had shown that wastes are composed essentially of polymers when these wastes are generated by recycled paper produced with the "waved type II" shavings. These solid wastes were placed in a mold that was heated and pressed with a hydraulic press in order to obtain the plates. The waste-produced plates were submitted to tests for humidity, swelling, water absorption, density, modulus of rupture-static bending, modulus of elasticity and direct screw withdrawal. These same assays had been carried out on two types of commercial wood plates, agglomerated wood and plywood, in order to compare the results with those obtained with the waste plate. Waste plates had similar behavior to the agglomerated wood plate, but it was possible to distinguish greater flexibility in the waste-produced plate and a significant difference in the tests for swelling and water absorption which showed the waste plate had a better performance than the agglomerated wood and plywood plates.

  15. A new classification scheme of plastic wastes based upon recycling labels

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Kemal, E-mail: kozkan@ogu.edu.tr [Computer Engineering Dept., Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Ergin, Semih, E-mail: sergin@ogu.edu.tr [Electrical Electronics Engineering Dept., Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Işık, Şahin, E-mail: sahini@ogu.edu.tr [Computer Engineering Dept., Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Işıklı, İdil, E-mail: idil.isikli@bilecik.edu.tr [Electrical Electronics Engineering Dept., Bilecik University, 11210 Bilecik (Turkey)

    2015-01-15

    Highlights: • PET, HPDE or PP types of plastics are considered. • An automated classification of plastic bottles based on the feature extraction and classification methods is performed. • The decision mechanism consists of PCA, Kernel PCA, FLDA, SVD and Laplacian Eigenmaps methods. • SVM is selected to achieve the classification task and majority voting technique is used. - Abstract: Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher’s Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple

  16. Development trends and market analysis of China's plastics industry

    Institute of Scientific and Technical Information of China (English)

    LIAO Zheng-Pin

    2008-01-01

    @@ China's plastics industry has witnessed the leap-forward development with the stable and sound growth of national economy,having increased its economic and technical indicators stably and greatly for consecutive ten years.

  17. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  18. A new classification scheme of plastic wastes based upon recycling labels.

    Science.gov (United States)

    Özkan, Kemal; Ergin, Semih; Işık, Şahin; Işıklı, Idil

    2015-01-01

    Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher's Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification

  19. Biological treatment: potential reusing of recycled plastics from grenhouses; La depuracin biolgica: posible reutilizacin de plsticos reciclados procedentes de invernaderos

    Energy Technology Data Exchange (ETDEWEB)

    Zamorano, M.; Hontaria, E. [Universidad de Granada (Spain)

    1997-12-31

    The purpose of this study was to investigate recycled plastic used to cover crops as support beds in submerged biofilters for the purification of residual water, which also permit the re-used of recycled or waste products and the clarification and improvement of the effluent flow from the filter. The recycled plastic shows that the efficiency was 88% COD-removal and 84% SS-removal, without secondary clarification. The functioning of the system with this material has not improved 100%, this study has opened up a new field of investigation that will perfect the system and materials. (Author) 10 refs.

  20. Assessment of plastic waste generation and its potential recycling of household solid waste in Can Tho City, Vietnam.

    Science.gov (United States)

    Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi

    2011-04-01

    Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.

  1. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    Science.gov (United States)

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  2. Recycling and recovery routes of plastic solid waste (PSW): a review.

    Science.gov (United States)

    Al-Salem, S M; Lettieri, P; Baeyens, J

    2009-10-01

    Plastic solid waste (PSW) presents challenges and opportunities to societies regardless of their sustainability awareness and technological advances. In this paper, recent progress in the recycling and recovery of PSW is reviewed. A special emphasis is paid on waste generated from polyolefinic sources, which makes up a great percentage of our daily single-life cycle plastic products. The four routes of PSW treatment are detailed and discussed covering primary (re-extrusion), secondary (mechanical), tertiary (chemical) and quaternary (energy recovery) schemes and technologies. Primary recycling, which involves the re-introduction of clean scrap of single polymer to the extrusion cycle in order to produce products of the similar material, is commonly applied in the processing line itself but rarely applied among recyclers, as recycling materials rarely possess the required quality. The various waste products, consisting of either end-of-life or production (scrap) waste, are the feedstock of secondary techniques, thereby generally reduced in size to a more desirable shape and form, such as pellets, flakes or powders, depending on the source, shape and usability. Tertiary treatment schemes have contributed greatly to the recycling status of PSW in recent years. Advanced thermo-chemical treatment methods cover a wide range of technologies and produce either fuels or petrochemical feedstock. Nowadays, non-catalytic thermal cracking (thermolysis) is receiving renewed attention, due to the fact of added value on a crude oil barrel and its very valuable yielded products. But a fact remains that advanced thermo-chemical recycling of PSW (namely polyolefins) still lacks the proper design and kinetic background to target certain desired products and/or chemicals. Energy recovery was found to be an attainable solution to PSW in general and municipal solid waste (MSW) in particular. The amount of energy produced in kilns and reactors applied in this route is sufficiently

  3. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    Energy Technology Data Exchange (ETDEWEB)

    Gug, JeongIn, E-mail: Jeongin_gug@student.uml.edu; Cacciola, David, E-mail: david_cacciola@student.uml.edu; Sobkowicz, Margaret J., E-mail: Margaret_sobkowiczkline@uml.edu

    2015-01-15

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  4. Recycling industrial architecture : the redefinition of the recycling principles in the context of sustainable architectural design

    OpenAIRE

    Šijaković, Milan

    2015-01-01

    The aim of this thesis is the elucidation of the concept of architectural recycling as an environmentally sustainable alternative to demolition and preservation. More precisely, the research aim relates to the redefinition of recycling design principles in the context of the sustainable architectural design. The process of architectural recycling was placed in the context of a sustainable architectural design, as the global concept of sustainable development is imposed as a general context fo...

  5. Screening adulteration of polypropylene bottles with postconsumer recycled plastics for oral drug package by near-infrared spectroscopy.

    Science.gov (United States)

    Xie, Lan-Gui; Sun, Hui-Min; Jin, Shao-Hong

    2011-11-14

    Adulteration of pharmaceutical packaging containers with postconsumer recycled plastic materials was considerably difficult to identify due to the similar chemical compositions of virgin and recycled plastics. In the present study, near-infrared (NIR) spectroscopy coupled with conformity test was proposed to screen the adulteration of pharmaceutical packaging containers. Two kinds of representative screening models were investigated on polypropylene (PP) bottles for oral drug package. The reliability of the screening models was validated through studying the identification reliability, specificity, and robustness of the methods. The minimum spiking level of two modeled adulterants at the proportion of 20% could be detected, and the unqualified sample from a domestic manufacturer was rejected by this developed method. This strategy represents a rapid and promising analytical method for screening the adulteration of pharmaceutical plastic packaging containers with postconsumer recycled plastics.

  6. Recycling of polyethylene terephthalate (PET plastic bottle wastes in bituminous asphaltic concrete

    Directory of Open Access Journals (Sweden)

    Adebayo Olatunbosun Sojobi

    2016-12-01

    Full Text Available This research sheds light on the concept of eco-friendly road construction which comprises eco-design, eco-extraction, eco-manufacturing, eco-construction, eco-rehabilitation, eco-maintenance, eco-demolition, and socioeconomic empowerment. It also revealed the challenges being faced in its adoption and the benefits derivable from its application. Furthermore, the effects of recycling PET plastic bottle wastes produced in North Central Nigeria in bituminous asphaltic concrete (BAC used in flexible pavement construction were also evaluated. The mix design consists of 60/70 penetration-grade asphaltic concrete (5%, 68% coarse aggregate, 6% fine aggregate, and 21% filler using the dry process at 170°C. The optimum bitumen content (OBC for conventional BAC was obtained as 4% by weight of total aggregates and filler. Polymer-coated aggregate (PCA-modified BAC seems preferable because it has the potential to utilize more plastic wastes with a higher optimum plastic content (OPC of 16.7% by weight of total aggregates and filler compared to that of 9% by weight of OBC achieved by PMB-BAC. For both PMB- and PCA-modified BAC, an increase in air void, void in mineral aggregate, and Marshall stability were observed. Eco-friendly road construction which recycles PET wastes should be encouraged by government considering its potential environmental and economic benefits.

  7. Production of recyclates – compared with virgin Plastics – a LCA Study

    Directory of Open Access Journals (Sweden)

    Storm Birgit Kjærside

    2017-01-01

    Full Text Available Plastix A/S is a Danish cleantech company transforming discarded fishing trawls and nets into valuable green raw materials. Plastix– technology and processes solve a maritime waste problem and contribute to a more circular green economy and reduce landfilling, marine pollution, CO2 emissions and especially loss of valuable resources. Plastix– recycling technology enables recovery of discarded fishing trawls and nets via mechanical and thermal processes transforming the waste into valuable recycles which can be converted into plastic products replacing virgin raw materials. The performance has been proved through a Life Cycle Assessment (LCA study. The results from the LCA study are compared with the production of virgin materials. The results of the LCA show that especially the carbon footprint is remarkable better for Oceanix than for virgin plastics. Oceanix HDPE is 5 times better than virgin HDPE, when talking about the carbon foot print, and the results for Oceanix PP and Oceanix PA6 are 5 times and 20 times better compared with virgin PP and PA6. Also other environmental indicators are better for Oceanix compared with virgin plastics.

  8. Case study: apparel industry waste management: a focus on recycling in South Africa.

    Science.gov (United States)

    Larney, M; van Aardt, A M

    2010-01-01

    The need for effective apparel waste management is motivated by the increasing cost and decreasing availability of landfill space and the dwindling of natural resources. The aim of this study was to identify the current solid waste disposal and recycling practices of the apparel industry in South Africa and to determine their attitude and willingness towards recycling, their perception of the feasibility thereof, barriers to recycling and marketing strategies that would be appropriate for products made from recycled materials. A structured questionnaire was mailed to apparel manufacturers in South Africa. The results indicated that most apparel manufacturers use landfills to dispose of their waste, while approximately half recycle some of the waste. They are fairly positive towards recycling, with consideration of economical feasibility. Phi-coefficients show no practically significant relationship between company size and the use of recycled materials. The most important barriers to recycling are lack of equipment and technology, lack of material to recycle and lack of consumer awareness. Marketing strategies for recycled products are recommended. It is concluded that consumer awareness and knowledge regarding recycled apparel products should be developed in order to ensure a market and that apparel manufacturers should be encouraged to recycle more extensively, in order to ensure that resources will not be exhausted unnecessarily and the environment will be preserved optimally.

  9. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications.

    Science.gov (United States)

    Gualtieri, Alessandro F; Giacobbe, Carlotta; Sardisco, Lorenza; Saraceno, Michele; Gualtieri, Magdalena Lassinantti; Lusvardi, Gigliola; Cavenati, Cinzia; Zanatto, Ivano

    2011-01-01

    Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 °C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY·AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY·AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca(3)Cr(2)(SiO(4))(3)] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO(5)]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY·AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.

  10. Recycling of Plastic Packaging Wastes%塑料包装废弃物的再生利用

    Institute of Scientific and Technical Information of China (English)

    贺全国; 聂立波

    2011-01-01

    塑料包装在整个包装产业中占有极大比例,其废弃物的处理给国际社会减碳减排发展带来了巨大挑战。结合国内外对塑料包装废弃物的管理现状,分析了塑料包装废弃物的来源、分类和化学组成,阐述了国外塑料包装废弃物的回收分离技术和设备及国内相应研究现状;对塑料包装废弃物的再生利用途径进行深入解析,较全面地阐述了塑料包装废弃物再生利用的原理与研究现状;提出了塑料包装废弃物再生利用的基本策略建议。%The plastic packaging accounts for a very great proportion in the packaging industry,and the plastic packaging wastes(PPW) disposal brings great confrontation and challenge for global carbon emission reduction development.Based on the international practical PPW management,analyzes the source,classification and chemical composition for PPW and expounds the recycling separation technology and apparatus at aboard and the domestic research status;Resolves various PPW disposal approaches and elaborates comprehensively PPW regeneration principles and practices;Presents strategic suggestions on recycling and utilization of PPW.

  11. Using sieving and pretreatment to separate plastics during end-of-life vehicle recycling.

    Science.gov (United States)

    Stagner, Jacqueline A; Sagan, Barsha; Tam, Edwin Kl

    2013-09-01

    Plastics continue to be a challenge for recovering materials at the end-of-life for vehicles. However, it may be possible to improve the recovery of plastics by exploiting material characteristics, such as shape, or by altering their behavior, such as through temperature changes, in relation to recovery processes and handling. Samples of a 2009 Dodge Challenger front fascia were shredded in a laboratory-scale hammer mill shredder. A 2 × 2 factorial design study was performed to determine the effect of sample shape (flat versus curved) and sample temperature (room temperature versus cryogenic temperature) on the size of the particles exiting from the shredder. It was determined that sample shape does not affect the particle size; however, sample temperature does affect the particle size. At cryogenic temperatures, the distribution of particle sizes is much narrower than at room temperature. Having a more uniform particle size could make recovery of plastic particles, such as these more efficient during the recycling of end-of-life vehicles. Samples of Chrysler minivan headlights were also shredded at room temperature and at cryogenic temperatures. The size of the particles of the two different plastics in the headlights is statistically different both at room temperature and at cryogenic temperature, and the particles are distributed narrowly. The research suggests that incremental changes in end-of-life vehicle processing could be effective in aiding materials recovery.

  12. Health hazards among workers in plastic industry.

    Science.gov (United States)

    Helal, Sawsan Farouk; Elshafy, Wessam Sabry

    2013-10-01

    Styrene is a basic building block for manufacturing thousands of products throughout the world. The present study aimed to (1) detect the presence of styrene and/or its metabolites in the workers in one of the Egyptian plastic factories; (2) demonstrate some common health effects of styrene exposure among the same group by some laboratory investigations and compare them with the unexposed healthy individuals; and (3) correlate the duration of styrene exposure and its level in the blood with the severity of the demonstrated health effects. This study was conducted in one of Egyptian plastic factories. The exposed group was 40 male workers, ranging in age from 18 to 33 years (23.20 ± 4.09), working 12 h/day with 1 day off, and working without any protective equipment. A control group of 50 unexposed healthy males matched with the exposed group for age (21-35 yrs (23.40 ± 4.05)), sex, socioeconomic status, and smoking habit is selected. Written individual consent is obtained from all participants followed by (a) a full medical and occupational history and full clinical examination; (b) ventilatory function tests: forced vital capacity (FVC), slow vital capacity, forced expiratory volume in the 1st second (FEV₁)%, FEV₁/FVC%, peak expiratory flow, and mid-expiratory flow 25-75%; (c) analyses of β₂ microglobulin; blood styrene level; and urinary mandelic acid; and (d) cytogenetic study. The study results showed a statistically significant difference between the exposed and the control groups as regard the blood styrene level, urinary mandelic acid level, β₂ microgloblin in urine, and chromosomal study. The study also showed a statistically significant correlation between the duration of styrene exposure and ventilatory function parameters, also between the duration of styrene exposure and some detectable chromosomal aberrations. Our study recommends the implementation of preemployment and periodic medical examinations and health education programs using

  13. Application of automated image analysis to the identification and extraction of recyclable plastic bottles

    Institute of Scientific and Technical Information of China (English)

    Edgar SCAVINO; Dzuraidah Abdul WAHAB; Aini HUSSAIN; Hassan BASRI; Mohd Marzuki MUSTAFA

    2009-01-01

    An experimental machine vision apparatus was used to identify and extract recyclable plastic bottles out of a conveyor belt. Color images were taken with a commercially available Webcam, and the recognition was performed by our homemade software, based on the shape and dimensions of object images. The software was able to manage multiple bottles in a single image and was additionally extended to cases involving touching bottles. The identification was fulfilled by comparing the set of measured features with an existing database and meanwhile integrating various recognition techniques such as minimum distance in the feature space, self-organized maps, and neural networks. The recognition system was tested on a set of 50 different bottles and provided so far an accuracy of about 97% on bottle identification. The extraction of the bottles was performed by means of a pneumatic arm, which was activated according to the plastic type; polyethylene-terephthalate (PET) bottles were left on the conveyor belt, while non-PET boules were extracted. The software was designed to provide the best compromise between reliability and speed for real-time applications in view of the commercialization of the system at existing recycling plants.

  14. Characterisation of recycled mixed plastic solid wastes: Coupon and full-scale investigation.

    Science.gov (United States)

    Bajracharya, Rohan Muni; Manalo, Allan C; Karunasena, Warna; Lau, Kin-Tak

    2016-02-01

    In Australia, the plastic solid waste (PSW) comprises 16% by weight of municipal solid waste but only about one-fourth are recycled. One of the best options to increase the recycling rate of mixed PSW is to convert them into products suitable for construction. However, a comprehensive understanding on the mechanical behaviour of mixed PSW under different loading conditions is important for their widespread use as a construction material. This study focuses on investigating the mechanical behaviour of recycled mixed PSW containing HDPE, LDPE and PP using coupon and full-scale specimens. From coupon test, the strength values were found to be 14.8, 19.8, 20, 5.6MPa in tension, compression, flexure and shear respectively, while the modulus of elasticity are 0.91, 1.03, 0.72GPa in tension, compression and flexure respectively. The coefficient of variance of the measured properties for coupon and fullscale specimens was less than 10% indicating that consistent material properties can be obtained for mixed PSW. More importantly, the strength properties of mixed PSW are comparable to softwood structural timber. The flexural behaviour of full-scale specimens was also predicted using fibre model analysis and finite element modelling. Comparison showed that using coupon specimen's properties, the flexural behaviour of the full-scale specimens can be predicted reliably which can eliminate the costly and time consuming arrangements for full-scale experimental tests.

  15. Recycling industrial waste in brick manufacture. Part 1

    Directory of Open Access Journals (Sweden)

    Andreola, F.

    2005-12-01

    Full Text Available The ongoing accumulation of industrial waste speaks to the need to seek cost-effective disposal methods. Brick manufacture would appear to be particularly promising in this regard. The present study analyzes the possibility of recycling the sludge generated in porcelain tile polishing, as well as coal, steel and municipal incinerator ash to make a special type of facing brick whose properties readily accommodate a full analysis of all the problems deriving from the incorporation of residue in its manufacture. Physical-chemical, mechanical and structural analyses were performed on bricks made with varying percentages of the different types of waste considered. This first paper reports the results of the physical arid technological characterization of the products; the second part of the research will address their chemical, mechanical and structural properties.

    El continuo aumento de la cantidad de residuos (desechos que se generan en los procesos industriales induce a buscar nuevos métodos alternativos a la disposición final que sean altamente eficientes y a bajo costo. La industria manufac turera de ladrillos resulta muy prometedora desde este punto de vista. En este trabajo ha sido investigada la posibilidad de usar distintos residuos industriales, entre ellos barros de pulido del gres porcelánico. cenizas de carbón, cenizas de acerías y de incinerador municipal para la fabricación de ladrillos de exteriores. Fueron analizados los problemas que podrían derivar al introducir estos residuos en la pasta. En particular, en esta primera parte del trabajo se muestran los resultados derivados de la introducción de los residuos considerados, en distintos porcentajes, sobre las propiedades físicas y tecnológicas del producto final. En la segunda parte se desarrollarán los efectos causados sobre las propiedades químicas, mecánicas y microestructurales.

  16. Melt rheology and its applications in the plastics industry

    CERN Document Server

    Dealy, John M

    2013-01-01

    This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that wil...

  17. Solid-shape energy fuels from recyclable municipal solid waste and plastics

    Science.gov (United States)

    Gug, Jeongin

    Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have

  18. Cross-cultural comparison of concrete recycling decision-making and implementation in construction industry.

    Science.gov (United States)

    Tam, Vivian W Y; Tam, Leona; Le, Khoa N

    2010-02-01

    Waste management is pressing very hard with alarming signals in construction industry. Concrete waste constituents major proportions of construction and demolition waste of 81% in Australia. To minimize concrete waste generated from construction activities, recycling concrete waste is one of the best methods to conserve the environment. This paper investigates concrete recycling implementation in construction. Japan is a leading country in recycling concrete waste, which has been implementing 98% recycling and using it for structural concrete applications. Hong Kong is developing concrete recycling programs for high-grade applications. Australia is making relatively slow progress in implementing concrete recycling in construction. Therefore, empirical studies in Australia, Hong Kong, and Japan were selected in this paper. A questionnaire survey and structured interviews were conducted. Power spectrum was used for analysis. It was found that "increasing overall business competitiveness and strategic business opportunities" was considered as the major benefit for concrete recycling from Hong Kong and Japanese respondents, while "rising concrete recycling awareness such as selecting suitable resources, techniques and training and compliance with regulations" was considered as the major benefit from Australian respondents. However, "lack of clients' support", "increase in management cost" and "increase in documentation workload, such as working documents, procedures and tools" were the major difficulties encountered from Australian, Hong Kong, and Japanese respondents, respectively. To improve the existing implementation, "inclusion of concrete recycling evaluation in tender appraisal" and "defining clear legal evaluation of concrete recycling" were major recommendations for Australian and Hong Kong, and Japanese respondents, respectively.

  19. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China.

    Science.gov (United States)

    Tang, Zhenwu; Zhang, Lianzhen; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2015-12-01

    Plastic wastes are increasingly being recycled in many countries. However, available information on the metals released into the environment during recycling processes is rare. In this study, the contamination features and risks of eight heavy metals in soils and sediments were investigated in Wen'an, a typical plastic recycling area in North China. The surface soils and sediments have suffered from moderate to high metal pollution and in particular, high Cd and Hg pollution. The mean concentrations of Cd and Hg were 0.355 and 0.408 mg kg(-1), respectively, in the soils and 1.53 and 2.10 mg kg(-1), respectively, in the sediments. The findings suggested that there is considerable to high potential ecological risks in more than half of the soils and high potential ecological risk in almost all sediments. Although the health risk levels from exposure to soil metals were acceptable for adults, the non-carcinogenic risks to local children exceeded the acceptable level. Source assessment indicated that heavy metals in soils and sediments were mainly derived from inputs from poorly controlled plastic waste recycling operations in this area. The results suggested that the risks associated with heavy metal pollution from plastic waste recycling should be of great concern.

  20. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops.

    Science.gov (United States)

    He, Zhigui; Li, Guiying; Chen, Jiangyao; Huang, Yong; An, Taicheng; Zhang, Chaosheng

    2015-04-01

    The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were <1.0, whereas the total HI in the PS recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops.

  1. Bromine in plastic consumer products - Evidence for the widespread recycling of electronic waste.

    Science.gov (United States)

    Turner, Andrew; Filella, Montserrat

    2017-12-01

    A range of plastic consumer products and components thereof have been analysed by x-ray fluorescence (XRF) spectrometry in a low density mode for Br as a surrogate for brominated flame retardant (BFR) content. Bromine was detected in about 42% of 267 analyses performed on electronic (and electrical) samples and 18% of 789 analyses performed on non-electronic samples, with respective concentrations ranging from 1.8 to 171,000μgg(-1) and 2.6 to 28,500μgg(-1). Amongst the electronic items, the highest concentrations of Br were encountered in relatively small appliances, many of which predated 2005 (e.g. a fan heater, boiler thermostat and smoke detector, and various rechargers, light bulb collars and printed circuit boards), and usually in association with Sb, a component of antimony oxide flame retardant synergists, and Pb, a heavy metal additive and contaminant. Amongst the non-electronic samples, Br concentrations were highest in items of jewellery, a coffee stirrer, a child's puzzle, a picture frame, and various clothes hangers, Christmas decorations and thermos cup lids, and were often associated with the presence of Sb and Pb. These observations, coupled with the presence of Br at concentrations below those required for flame-retardancy in a wider range of electronic and non-electronic items, are consistent with the widespread recycling of electronic plastic waste. That most Br-contaminated items were black suggests the current and recent demand for black plastics in particular is met, at least partially, through this route. Given many Br-contaminated items would evade the attention of the end-user and recycler, their disposal by conventional municipal means affords a course of BFR entry into the environment and, for food-contact items, a means of exposure to humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Application of electrostatic separation to the recycling of plastic wastes: separation of PVC, PET, and ABS.

    Science.gov (United States)

    Park, Chul-Hyun; Jeon, Ho-Seok; Yu, Hyo-Shin; Han, Oh-Hyung; Park, Jai-Koo

    2008-01-01

    Plastics are widely used in everyday life as a useful material, and thus their consumption is growing at a rate of about 5% per year in Korea. However, the constant generation of plastic wastes and their disposal generates environmental problems along with economic loss. In particular, mixed waste plastics are difficult to recycle because of their inferior characteristics. A laboratory-scale triboelectrostatic separator unit has been designed and assembled for this study. On the basis of the control of electrostatic charge, the separation of three kinds of mixed plastics, polyvinyl chloride (PVC), poly(ethylene terephthalate) (PET), and acrylonitrile-butadiene-styrene (ABS), in a range of similar gravities has been performed through a two-stage separation process. Polypropylene (PP) and high-impact polystyrene (HIPS) were found to be the most effective materials for a tribo-charger in the separation of PVC, PET, and ABS. The charge-to-mass ratio (nC/g) of plastics increased with increasing air velocity in the tribo charger. In the first stage, using the PP cyclone charger, the separation efficiency of particles considerably depended on the air velocity (10 m/s), the relative humidity ( 20 kV), and the splitter position (+2 cm from the center) in the triboelelctrostatic separator unit. At this time, a PVC grade of 99.40% and a recovery of 98.10% have successfully been achieved. In the second stage, using the HIPS cyclone charger, a PET grade of 97.80% and a recovery of 95.12% could be obtained under conditions of 10 m/s, over 25 kV, a central splitter position, and less than 40% relative humidity. In order to obtain 99.9% PVC grade and 99.3% PET grade, their recoveries should be sacrificed by 20.9% and 27%, respectively, with moving the splitter from the center to a (+)6 cm position.

  3. PRIME - Plastics Research and Innovation for Museums and Industry; extreme user innovation

    DEFF Research Database (Denmark)

    Cone, Louise

    A research project by artists industrial plastics develpers, polymer scientists and art conservators, 2011-13......A research project by artists industrial plastics develpers, polymer scientists and art conservators, 2011-13...

  4. PRIME: Plastics Research and Innovation for Museums and Industry; extreme user innovation

    DEFF Research Database (Denmark)

    Lundbye, Lars; Cone, Louise

    A research project by artists industrial plastics develpers, polymer scientists and art conservators, 2011-13......A research project by artists industrial plastics develpers, polymer scientists and art conservators, 2011-13...

  5. Synthesis of readily recyclable biobased plastics by Diels-Alder reaction.

    Science.gov (United States)

    Ishida, Kazuki; Yoshie, Naoko

    2008-10-08

    Readily recyclable biobased plastics were designed and synthesized utilizing the thermally reversible DA reaction. Furyl-telechelic poly(butylene succinate) prepolymers (PBSF(2)) were extended with bis- and tris-maleimide linkers (M(2) and M(3)) by the DA reaction in the bulk state to produce linear and network polymers, respectively. The DA reaction was able to proceed at 25-80 degrees C, at which crystalline domains of PBSF(2) were present. In the linear polymer system, the molecular weight in the reaction equilibrium was dependent on the chain length of the prepolymer, but almost independent of the reaction temperature. The cycle of DA and retro-DA reactions was repeatable with no prepolymer deterioration.

  6. The effect of recycled plastics and cooking oil on coke quality.

    Science.gov (United States)

    Lange, Liséte Celina; Ferreira, Alison Frederico Medeiros

    2017-03-01

    This study assessed the effects of adding plastics and waste vegetable oil on the quality of coke in the coking process, on a pilot scale. A typical composition of the main plastics found in municipal solid waste was prepared using 33% HDPE, 5% LDPE, 10% PP, 21% PET, 24.8% PS, 5.2% PVC, 1% cellulose and also a 0.5% waste vegetable oil was added. The wastes were added to the coal blends in the proportions of 1%, 2% and 3% for plastics and 0.5% for vegetable oil. Two types of experiments were performed. The first was carried out in a hearth heating furnace (HHF) at temperatures of up to 900°C for a 7 h period. The second was a box test, which consists of heating coal blends in 18L cans using a pilot coking oven, for approximately 20 h at temperatures between 1050 and 1100°C. The quality parameters used for the assessment were the CSR (coke strength after reaction), CRI (coke reactivity index), ash, volatile matter and sulfur in order to identify the effect of plastic and vegetable oil on coke quality. Results for CSR in the HHF averaged 52.3%, and 56.63% in box test trials. The CRI results ranged from 26.6% to 35.7%. Among the different percentages of plastics used, 3% plastic blends provided the most stable CSR results. The industrial furnaces work at temperatures between 1100 and 1350°C and time coking 21-24h, compared to the test conditions achieved in the HHF and pilot furnace with box test. It was concluded that the results of CSR and CRI are consistent with the tests confirming the feasibility of using plastic in the steelmaking process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A new technology for automatic identification and sorting of plastics for recycling.

    Science.gov (United States)

    Ahmad, S R

    2004-10-01

    A new technology for automatic sorting of plastics, based upon optical identification of fluorescence signatures of dyes, incorporated in such materials in trace concentrations prior to product manufacturing, is described. Three commercial tracers were selected primarily on the basis of their good absorbency in the 310-370 nm spectral band and their identifiable narrow-band fluorescence signatures in the visible band of the spectrum when present in binary combinations. This absorption band was selected because of the availability of strong emission lines in this band from a commercial Hg-arc lamp and high fluorescence quantum yields of the tracers at this excitation wavelength band. The plastics chosen for tracing and identification are HDPE, LDPE, PP, EVA, PVC and PET and the tracers were compatible and chemically non-reactive with the host matrices and did not affect the transparency of the plastics. The design of a monochromatic and collimated excitation source, the sensor system are described and their performances in identifying and sorting plastics doped with tracers at a few parts per million concentration levels are evaluated. In an industrial sorting system, the sensor was able to sort 300 mm long plastic bottles at a conveyor belt speed of 3.5 m.sec(-1) with a sorting purity of -95%. The limitation was imposed due to mechanical singulation irregularities at high speed and the limited processing speed of the computer used.

  8. Influence of lubricant oil residual fraction on recycled high density polyethylene properties and plastic packaging reverse logistics proposal

    Directory of Open Access Journals (Sweden)

    Harley Moraes Martins

    2015-10-01

    Full Text Available Abstract To recycle post-consumer HDPE contaminated with waste lubricating oils, companies include prior washing and drying in the process. This consumes large amounts of water and energy, generates significant effluent requiring treatment. This study assesses lubricating oil influence on HDPE properties to evaluate the feasibility of its direct mechanical recycling without washing. The current lubricating oil packaging reverse logistics in Rio de Janeiro municipality is also analyzed. HDPE bottle samples were processed with seven oil contents ranging from 1.6-29.4 (wt%. The results indicated the possibility to reprocess the polymer with oily residue not exceeding 3.2%. At higher levels, the external oil lubricating action affects the plastic matrix processing in the extruder and injection, and the recycled material has a burnt oil odor and free oil on the surface. Small residual oil amounts retain the plastic properties comparable to the washed recycled polymer and exhibited benefits associated with the oil plasticizer action. However, oil presence above 7.7% significantly changes the properties and reduces the elasticity and flexural modulus and the plastic matrix crystallinity.

  9. Prospect of Technology of Recycling Waste Plastics%废旧塑料回收利用技术展望

    Institute of Scientific and Technical Information of China (English)

    董莲枝; 郭健; 靳新慧

    2012-01-01

    In this paper, the authors introduced progress technologies of recycling common waste plastics, and put forward ex- isting problems of waste plastics and cross-linking agent in chemical modification of waste plastics.%介绍了常见的废旧塑料回收利用和回收方式的技术进展,提出在废旧塑料的化学改性中存在的问题及交联剂的选择。

  10. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry.

    Science.gov (United States)

    Ceballos, Diana M; Gong, Wei; Page, Elena

    2015-01-01

    The National Institute for Occupational Safety and Health (NIOSH) surveyed a randomly selected sample of electronic scrap (e-scrap) recycling facilities nationwide to characterize work processes, exposures, and controls. Despite multiple attempts to contact 278 facilities, only 47 responded (17% response rate). Surveyed facilities reported recycling a wide variety of electronics. The most common recycling processes were manual dismantling and sorting. Other processes included shredding, crushing, and automated separation. Many facilities reported that they had health and safety programs in place. However, some facilities reported the use of compressed air for cleaning, a practice that can lead to increased employee dust exposures, and some facilities allowed food and drinks in the production areas, a practice that can lead to ingestion of contaminants. Although our results may not be generalizable to all US e-scrap recycling facilities, they are informative regarding health and safety programs in the industry. We concluded that e-scrap recycling has the potential for a wide variety of occupational exposures particularly because of the frequent use of manual processes. On-site evaluations of e-scrap recyclers are needed to determine if reported work processes, practices, and controls are effective and meet current standards and guidelines. Educating the e-scrap recycling industry about health and safety best practices, specifically related to safe handling of metal dust, would help protect employees.

  11. Continuation of Research, Commercialization, and Workforce Development in the Polymer/Electronics Recycling Industry

    Energy Technology Data Exchange (ETDEWEB)

    Mel Croucher; Rakesh Gupta; Hota GangaRao; Darran Cairns; Jinzing Wang; Xiaodong Shi; Jason Linnell; Karen Facemyer; Doug Ritchie; Jeff Tucker

    2009-09-30

    The MARCEE Project was established to understand the problems associated with electronics recycling and to develop solutions that would allow an electronics recycling industry to emerge. While not all of the activities have been funded by MARCEE, but through private investment, they would not have occurred had the MARCEE Project not been undertaken. The problems tackled and the results obtained using MARCEE funds are discussed in detail in this report.

  12. [Investigation and analysis of factors that affect the health of children in the plastic recycling and regeneration processing region].

    Science.gov (United States)

    Wang, Juanli; Li, Liping; Lu, Yaogui

    2014-09-01

    To investigate the main influential factors for the health of children in the plastic waste recovery and recycling area. A cross-sectional survey was performed among children aged 9∼17 years from three natural villages engaged in plastic waste recovery and recycling and four control villages engaged in planting. The health status of children was investigated by random household survey using a face-to-face questionnaire, and the main influential factors were analyzed accordingly. The incidence rates of respiratory symptoms (cough and expectoration, nasal congestion, and sore throat) (78.4%, 69/88) and digestive diseases (gastrointestinal disease and liver disease) (14.8%, 13/88) in the waste processing area were significantly higher than those in the control area (64.0%, 71/111; 6.3%, 7/111) (P plastic can be smelt around the residential area.

  13. Recycling of Phenolic Plastics%酚醛塑料的再生利用

    Institute of Scientific and Technical Information of China (English)

    贾有青

    2012-01-01

    Phenolic plastics is a three-dimensional mesh of insoluble cross-linked molecules, with rigidity, hardness, flame retardant, electrical insulation, heat resistance, solvent resistance, creep resistance, and many other advantages, and it has been used in electric apparatus, building materials, sealing ele- ments, tableware, etc. The recycling methods for commonly used waste phenolic plastics are presented, and the existing problems and developing prospect are discussed.%酚醛塑料是一种网状立体交联的分子,具有良好的耐酸性能、力学性能,硬度大,阻燃性、电绝缘性好,耐热、耐溶剂,抗蠕变等优点,应用在电器、建筑材料、密封元件、餐具等。介绍了废酚醛塑料常用再生方法,并对现存的问题和发展前景进行分析。

  14. CARBON DIOXIDE EMISSION ASSOCIATED WITH THE PRODUCTION OF PLASTICS - A COMPARISON OF PRODUCTION FROM CRUDE OIL AND RECYCLING FOR THE DUTCH CASE

    DEFF Research Database (Denmark)

    Rem, Peter C.; Olsen, Stig Irving; Welink, Jan-Henk

    2009-01-01

    Literature data show that in general, plastics produced through the mechanical recycling route involve less carbon dioxide emission than when produced from crude oil. A review of readily available data shows that road transport of untreated waste plastics account for a significant portion...... of the carbon dioxide emission generated during recycling. Therefore, much carbon dioxide emission can be saved by optimizing the logistics in the recycling of plastics. On the example of polyolefins originating from household packaging waste, this paper attempts to compare two different scenarios of mechanical...... recycling to the production of plastics from crude oil as a reference. The first scenario deals with packaging waste from selective collection, in which data from the current practice of the German DSD system were translated for the Dutch situation. In the second scenario, plastic packaging recovered from...

  15. Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries.

    Science.gov (United States)

    Junqua, Guillaume; Spinelli, Sylvie; Gonzalez, Catherine

    2015-05-01

    Acrylamide is a hazardous substance having irritant and toxic properties as well as carcinogen, mutagen, and impaired fertility possible effects. Acrylamide might be found in the environment as a consequence of the use of polyacrylamides (PAMs) widely added as a flocculant for water treatment. Acrylamide is a monomer used to produce polyacrylamide (PAM) polymers. This reaction of polymerization can be incomplete, and acrylamide molecules can be present as traces in the commercial polymer. Thus, the use of PAMs may generate a release of acrylamide in the environment. In aggregate industries, PAM is widely involved in recycling process and water reuse (aggregate washing). Indeed, these industries consume large quantities of water. Thus, European and French regulations have favored loops of recycling of water in order to reduce water withdrawals. The main goal of this article is to study the occurrence and fate of acrylamide in water-recycling process as well as in the sludge produced by the flocculation treatment process in aggregate production plants. Moreover, to strengthen the relevance of this article, the objective is also to demonstrate if the recycling system leads to an accumulation effect in waters and sludge and if free acrylamide could be released by sludge during their storage. To reach this objective, water sampled at different steps of recycling water process has been analyzed as well as different sludge corresponding to various storage times. The obtained results reveal no accumulation effect in the water of the water-recycling system nor in the sludge.

  16. Recycling cellulase towards industrial application of enzyme treatment on hardwood kraft-based dissolving pulp.

    Science.gov (United States)

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ji, Xingxiang; Ni, Yonghao

    2016-07-01

    Cost-effectiveness is vital for enzymatic treatment of dissolving pulp towards industrial application. The strategy of cellulase recycling with fresh cellulase addition was demonstrated in this work to activate the dissolving pulp, i.e. decreasing viscosity and increasing Fock reactivity. Results showed that 48.8-35.1% of cellulase activity can be recovered from the filtered liquor in five recycle rounds, which can be reused for enzymatic treatment of dissolving pulp. As a result, the recycling cellulase with addition fresh cellulase of 1mg/g led to the pulp of viscosity 470mL/g and Fock reactivity 80%, which is comparable with cellulase charge of 2mg/g. Other pulp properties such as alpha-cellulose, alkaline solubility and molecular weight distribution were also determined. Additionally, a zero-release of recycling cellulase treatment was proposed to integrate into the dissolving pulp production process.

  17. Applications of terahertz spectroscopy in the plastics industry

    Science.gov (United States)

    Wietzke, S.; Rutz, F.; Jördens, C.; Krumbholz, N.; Vieweg, N.; Jansen, C.; Wilk, R.; Koch, M.

    2008-03-01

    The worldwide production volume of polymers is still rising exponentially and the number of applications for plastic components steadily increases. Yet, many branches within the polymer industry are hardly supported by non-destructive testing techniques. We demonstrate that terahertz (THz) spectroscopy could be the method of choice to ensure high-quality polymer products. Applications range from the in-line monitoring of extrusion processes and the quality control of commodities in a mass production up to a total inspection of high-tech safety relevant products. Furthermore, we present an extension to THz time-domain spectroscopy in the form of a new data extraction algorithm, which derives the absorption coefficient, the refractive index and the thickness of a sample with very high precision in a single pass. Apart from that, we discuss the ability of THz systems for quality control of polymeric compounds. Here, it is essential to monitor the additive content as well as additive inhomogeneities within the mixture. Recently, we built a fiber-coupled THz spectrometer for in-line monitoring of compounding processes. Additionally, we demonstrate the potential of THz systems for the non-destructive and contactless testing of structural components. THz imaging is capable of analyzing material thicknesses, superstructures, the quality of plastic weld joints, and of detecting flaws in components. Plastics and THz form a very fruitful symbiosis. In return, plastics industry can provide THz systems with custom-tailored components, which have very attractive properties and extremely low costs. Examples of this development are photonic crystals or polymeric Bragg filters, which have recently been demonstrated.

  18. Plastic optical fibre sensor for quality control in food industry

    Science.gov (United States)

    Novo, C.; Bilro, L.; Ferreira, R.; Alberto, N.; Antunes, P.; Leitão, C.; Nogueira, R.; Pinto, J. L.

    2013-05-01

    The present work addresses the need for new devices felt in the context of quality control, especially in the food industry. Due to the spectral dependence of the attenuation coefficient, a novel dual-parameter sensor for colour and refractive index was developed and tested. The sensor employs plastic optical fibres to measure the transmitted optical power in three measurement cells each with a different incident wavelength. The performance of the sensor was tested using several dyes at different concentrations and aqueous solutions of glycerine and ethanol. Results show that this technique allows the monitoring of refractive index and colour without cross-sensitivity.

  19. Tendências e desafios da reciclagem de embalagens plásticas Trends and challenges in recycling plastic packages

    Directory of Open Access Journals (Sweden)

    Amélia S. F. Santos

    2004-12-01

    Full Text Available No gerenciamento do resíduo sólido urbano (RSU, a reciclagem surge como uma das vias para reduzir os resíduos sólidos aterrados em solo. Os plásticos constituem uma das classes de materiais com menor índice de reciclagem. Neste trabalho, as principais dificuldades encontradas em diversos países para aumentar os índices de reciclagem dos plásticos e as propostas que estão sendo utilizadas para mudar este cenário foram apresentadas. Por último, também foi apresentado um panorama geral sobre as exigências e limitações do retorno do plástico reciclado para alimentos. Este segmento representa todo um nicho de mercado que pode agregar valor e, principalmente, aumentar os índices de reciclagem de modo sustentável desde que haja investimentos em tecnologias inovadoras e economicamente viáveis.In the management of municipal solid waste (MSW, recycling emerges as one of the ways to reduce the solid wastes deposited in landfills. Plastics are one of the classes of materials with the lowest recycling index. The present study deals with the main difficulties encountered in different countries to increase plastics recycling and the procedures adopted to change this scenario. Additionally, the general requirements and the restrictions about the use of recycled plastic for food contact are presented. This application represents a whole market share to be explored, which could add value and increase the recycling indexes in a sustainable way, provided that investments in innovative technologies are made.

  20. Break-through of Mass Integration in Textile Industry through Development of Generic Water Recycle Schemes

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2003-01-01

    As a result of a long term South African – Danish research co-operation on Cleaner Production in textile industry, a number of generic and widely applicable water recycle schemes for textile wet processing has been developed, and the first break-through of water recycling has been achieved. Textile...... processing is one of the largest and oldest industries world-wide and responsible for a substantial resource consumption and pollution. Especially the wet processing part of the industry, i.e. pre-treatment, dyeing, printing and finishing, is polluting and resource consuming in terms of both water, energy...... and chemicals. It entails a vast variety of water consuming processes, and like in most industries, fresh water is used in all processes with almost no exceptions. Between researchers, it was known for many years that fresh water is not needed by all processes taking place in textile wet treatment. But sound...

  1. Application of a recyclable plastic bulking agent for sewage sludge composting.

    Science.gov (United States)

    Zhou, Hai-Bin; Ma, Chuang; Gao, Ding; Chen, Tong-Bin; Zheng, Guo-Di; Chen, Jun; Pan, Tian-Hao

    2014-01-01

    A recyclable plastic bulking agent (RPBA) that can be screened and reused was developed to improve sludge composting and to reduce costs. Two RPBAs were developed: RPBA35 (35 mm in diameter) and RPBA50 (50mm in diameter). The objective was to study the influence of size and quantity of RPBA on temperature, oxygen content, water removal during sludge composting, and phytotoxicity of the compost. RPBAs of both sizes improved the temperature, oxygen supply, and water removal compared with the treatment with no RPBA, and obtained phytotoxic-free compost. RPBA50 more effectively removed water than RPBA35. Oxygen diffusion rate in the composting pile containing RPBA50 was higher than in the treatment with no RPBA. When the RPBA50: sludge mixture ratio was above 1:1.5, the period over which the temperature exceeded 55 °C was insufficient to meet the harmless treatment requirement. The water evaporation rate was highest at a ratio of 1:2.

  2. Recycling of plastics from stockpiles performed by means of low-pressure injection

    Directory of Open Access Journals (Sweden)

    J. Gintowt

    2010-07-01

    Full Text Available A viability analysis of manufacturing goods out of plastics, from stockpiles and municipal residues, has been carried out. The analysispertains goods in the form of inserts manufactured in light molds of big-sizes, by means of low-pressure injection. The cost analysis of the investment and manufacturing suggests that those goods are not price-competitive, as compared to other ones used in similar situations. Exploitation analysis proves that the goods, used outdoors are easily damaged on the surface by UV exposure, temperature differences of 24-hour cycle, as well as by water and plants. Re-recycling, and especially, the grinding of the product poses another challenge in the future. An analysis of the environmental impact of energy acquisition during the manufacturing of those goods was also carried out. The analysis also pertains the method of identifying the type of raw-material, in the process of segregation that stems from the necessity of a complex content training of staff running waste segregation posts.

  3. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    Science.gov (United States)

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  4. Recycling and the Use of Wood Materials by the U.S. Pallet Industry

    Science.gov (United States)

    Robert J. Bush; Eric Hansen; Philip A. Araman

    1994-01-01

    Estimates of the use of new and recycled wood materials by the U.S. pallet industry are presented. The industry (including SICs 2441, 2448, 2449) consumed 4.74 billion board feet of solid hardwoods and 2.15 billion board feet of solid softwoods in 1992. The most common individual hardwood species were oak and yellow-poplar. Douglas-fir and southern yellow pine were the...

  5. Caracterização mecânica de polipropileno reciclado para a indústria automotiva Mechanical characterization of recycled polypropylene for automotive industry

    Directory of Open Access Journals (Sweden)

    Beatriz L. Fernandes

    2007-06-01

    Full Text Available A indústria automotiva responde, atualmente, por uma grande parte do mercado de consumo de plásticos, por isso existe um crescente interesse no investimento em processos de reciclagem, inclusive devido à vinculação às atividades relacionadas à proteção ambiental. Dentre as peças automotivas, os pára-choques são relativamente fáceis de serem reciclados devido às suas dimensões e por constituírem, geralmente, de um único material, o polipropileno (PP. Neste trabalho, analisaram-se as propriedades mecânicas de misturas de PP virgem e reciclado, em três porcentagens diferentes, a fim de detectar as alterações das mesmas, relacionando-as à qualidade do produto. Concluiu-se que porcentagens de reciclado acima de 30% causam deterioração das propriedades mecânicas do produto. Este estudo visa a fornecer uma contribuição para o aumento na utilização de plásticos reciclados na indústria automotiva.The automotive industry is now responsible for a large share of plastic consumption, which prompted increasing investments in recycling processes, also due to the need of ambient protection. Among the automotives parts, bumpers are relatively easy to be recycled due to their dimensions and because they are made of a single material, polypropylene (PP. In this work, the mechanical properties of mixtures of virgin and recycled PP, in three different percentages, were analyzed in order to detect alterations and associate them with the product quality. It was concluded that percentages of recycled material above 30% deteriorate the mechanical properties of the product. This study aims to provide a contribution to the increase in the recycled plastic use in the automotive industry.

  6. MIIT:Focus of Nonferrous Metal Industry Shift to Recycling

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>According to experts,in the 11th five year plan,China’s total nonferrous metal output increased significantly,with the increasing proportion of secondary nonferrous metal output. Technology,equipment,energy conservation and environmental protection capabilities have kept improving. Metal melting recovery rate and product mix have also seen great improvements. The industry has experienced rapid development.

  7. High Value Recycling of Plastics in Electrical and Electronic Equipment%电子电器用塑料的高值化再利用

    Institute of Scientific and Technical Information of China (English)

    杜拴丽; 李迎春; 李洁; 王志强

    2012-01-01

    The characteristics of plastics in electrical and electronic equipment, the prospects and process route for re-use and recycling technology of the plastics were discussesed. Respectively according to thermosetting plastics and thermoplastics among the plastics, different recycling methods were used to achieve the high value recycling of the electrical and electronic equipment plastics .%介绍了电子电器用塑料的特点、回收再利用的前景以及回收再利用的工艺流程.分别针对其中的热固性塑料和热塑性塑料,采用不同的回收再利用的方法,实现了电子电器用塑料的高值化回收再利用.

  8. Recycling Growth Reducing Pallet Industry's Need for New Wood

    Science.gov (United States)

    Robert J. Bush; Philip A. Araman

    1997-01-01

    This is the second part of a two-part article. In 1994, the authors reported in the Pallet Enterprise on their study of new and recovered wood use for pallets and containers. In part one of this article, published in September's Pallet Enterprise, they reported on the results of a new survey in 1996 of new wood use by the pallet and container industry, comparing...

  9. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    Science.gov (United States)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2017-08-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  10. Packaging waste recycling in Europe: is the industry paying for it?

    Science.gov (United States)

    da Cruz, Nuno Ferreira; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-02-01

    This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the "recycling system" are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and

  11. Recycling of plastic wastes from electric and electronic sector new developments; Reciclado de residuos plasticos del sector electrico y electronico. Nuevos desarrollos

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, R.; Larrauri, E.; Cacho, I.

    1999-07-01

    Automated technologies for the identification and sorting of plastic wastes have been developed to get an adequate and cost-effective recycling. When dealing with plastics from end-of-live electric and electronic equipment not only the polymeric matrix but also fillers and/or flame retardant additives and/or pigments, need to be taken in account. At present, several specific projects are being carried out by GAIKER in order to solve the technological challenge of recycling plastics from the electric and electronic sector. (Author)

  12. Waste Generation and Recycling: Comparison of Conventional and Industrialized Building Systems

    Directory of Open Access Journals (Sweden)

    Rawshan A. Begum

    2010-01-01

    Full Text Available Problem statement: In the Malaysian construction industry, there is a pressing issue of minimizing construction waste, which cause significant impacts on the environment. With the increasing demand for major infrastructure projects, commercial buildings and housing development programmers, a large amount of construction waste is being produced. Adoption of prefabrication and industrialized building systems is now a priority in the industry and also an important means of reducing waste. Approach: Discussion of the prefabrication adoption were based on a comprehensive review of literatures and studies that contained data, information, findings and evidences related to prefabrication and industrial building systems in Malaysia. This study also highlighted a comparative study of material wastage and recycling based on two project sites e.g., conventional and prefabrication construction. Results: In the Malaysia construction industry, adoption of prefabrication and IBS is strongly encouraged to reduce construction time as well as the industry’s dependency on foreign workers. In addition, this study confirms that a huge amount of material wastage can be reduced by the adoption of prefabrication. This study also revealed that the rates of reused and recycled waste materials are relatively higher in projects that adopt prefabrication. Conclusion: Thus, the adoption of prefabrication and IBS has potential in the reduction of huge waste generation and management problems in the construction sector of Malaysia although there are some challenges in the adoption of prefabrication.

  13. Infrared technology and its applications in textile recycling technology : improving sustainability in clothing Industry

    OpenAIRE

    Ishfaq, Muhammad

    2015-01-01

    The textile industry is the oldest branch of consumer goods manufacturing, it is a diverse and heterogeneous sector which consume natural resources to fulfil the requirements. Virgin and raw materials are required to make new clothes and textiles. The production of virgin fibres while utilizing natural resources are not efficient and environmental friendly in anyway. Thus, to meet the present and future demand of textile managing textile’s waste and recycling it in efficiently is demand at th...

  14. An econometric model of the U.S. secondary copper industry: Recycling versus disposal

    Science.gov (United States)

    Slade, M.E.

    1980-01-01

    In this paper, a theoretical model of secondary recovery is developed that integrates microeconomic theories of production and cost with a dynamic model of scrap generation and accumulation. The model equations are estimated for the U.S. secondary copper industry and used to assess the impacts that various policies and future events have on copper recycling rates. The alternatives considered are: subsidies for secondary production, differing energy costs, and varying ore quality in primary production. ?? 1990.

  15. Processing and Validation of Whey-Protein-Coated Films and Laminates at Semi-Industrial Scale as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    E. Bugnicourt

    2013-01-01

    Full Text Available A biopolymer coating for plastic films was formulated based on whey protein, and its potential to replace current synthetic oxygen barrier layers used in food packaging such as ethylene vinyl alcohol copolymers (EVOH was tested. The whey-coating application was performed at semi-industrial scale. High barrier to oxygen with transmission rate down to ranges of 1 cm3 (STP m−2 d−1 bar−1 at and 50% relative humidity (r.h. but interesting humidity barrier down to ranges of 3 g m−2 d−1 (both normalized to 100 μm thickness were reached, outperforming most existing biopolymers. Coated films were validated for storing various food products showing that the shelf life and sensory attributes were maintained similar to reference packaging films while complying with food safety regulations. The developed whey coating could be enzymatically removed within 2 hours and is therefore compatible with plastic recycling operations to allow multilayer films to become recyclable by separating the other combined layers. A life cycle assessment was performed showing a significant reduction in the environmental impact of the packaging thanks in particular to the possibility of recycling materials as opposed to incinerating those containing EVOH or polyamide (PA, but due to the use of biosourced raw materials.

  16. Recycling rare earth elements from industrial wastewater with flowerlike nano-Mg(OH)(2).

    Science.gov (United States)

    Li, Chaoran; Zhuang, Zanyong; Huang, Feng; Wu, Zhicheng; Hong, Yangping; Lin, Zhang

    2013-10-09

    Treatment of wastewater containing low-concentration yet highly-expensive rare earth elements (REEs) is one of the vital issues in the REEs separation and refining industry. In this work, the interaction and related mechanism between self-supported flowerlike nano-Mg(OH)2 and low-concentration REEs wastewater were investigated. More than 99% REEs were successfully taken up by nano-Mg(OH)2. Further analysis revealed that the REEs could be collected on the surface of Mg(OH)2 as metal hydroxide nanoparticles (recycling of valuable REEs in practical industrial applications.

  17. Efficient conversion of polyamides to ω-hydroxyalkanoic acids: a new method for chemical recycling of waste plastics.

    Science.gov (United States)

    Kamimura, Akio; Ikeda, Kosuke; Suzuki, Shuzo; Kato, Kazunari; Akinari, Yugo; Sugimoto, Tsunemi; Kashiwagi, Kohichi; Kaiso, Kouji; Matsumoto, Hiroshi; Yoshimoto, Makoto

    2014-09-01

    An efficient transformation of polyamides to ω-hydroxy alkanoic acids was achieved. Treatment of nylon-12 with supercritical MeOH in the presence of glycolic acid gave methyl ω-hydroxydodecanoate in 85% yield and the alcohol/alkene selectivity in the product was enhanced to up to 9.5:1. The use of (18)O-enriched acetic acid for the reaction successfully introduced an (18)O atom at the alcoholic OH group in the product. This strategy may provide a new and economical solution for the chemical recycling of waste plastics.

  18. Study of Material Used in Nanotechnology for the Recycling of Industrial Waste Water

    Science.gov (United States)

    Larbi, L.; Fertikh, N.; Toubal, A.

    The objective of our study is to recycle the industrial waste water of a industrial Complex after treatment by the bioprocess MBR (membrane bioreactor). In order to apply this bioprocess, the water quality in question was first of all studied. To characterize this industrial waste water, a series of physicochemical analysis was carried out according to standardized directives and methods. Following-up the water quality to meet the regulatory requirements with rejection of this industrial waste water, a study was done thanks to the permanently monitoring of the following relevant parameters(P): the flow, the potential of hydrogen (pH), the total suspended solids(TSS), the turbidity (Turb), the chemical oxygen demand (COD),the biochemical oxygen demand (BOD), the Kjeldahl total nitrogen (KTN) and ammonia (NH4+), the total phosphorus (Ptot), the fluorine (F), the oils (O), the fats (F) and the phenols (Ph). According to collected information, it was established the sampling rates to which the quality control was done, the selected analytical methods were validated by the control charts and the analysis test number was determined by the Cochran test. The results of the quality control show that some rejected water contents are not in the Algerian standards, but, in our case, the objective is the preoccupation for a standard setting of these industrial water parameters so as to recycle it. The process adopted by MBR for waste water treatment is being studied, first in the development of the experimental characterizing of the reactor and the selected membrane.

  19. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.

    Science.gov (United States)

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr; Jørgensen, Henning; Felby, Claus

    2013-11-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling.

  20. Modeling of Thermochemical Behavior in an Industrial-Scale Rotary Hearth Furnace for Metallurgical Dust Recycling

    Science.gov (United States)

    Wu, Yu-Liang; Jiang, Ze-Yi; Zhang, Xin-Xin; Xue, Qing-Guo; Yu, Ai-Bing; Shen, Yan-Song

    2017-10-01

    Metallurgical dusts can be recycled through direct reduction in rotary hearth furnaces (RHFs) via addition into carbon-based composite pellets. While iron in the dust is recycled, several heavy and alkali metal elements harmful for blast furnace operation, including Zn, Pb, K, and Na, can also be separated and then recycled. However, there is a lack of understanding on thermochemical behavior related to direct reduction in an industrial-scale RHF, especially removal behavior of Zn, Pb, K, and Na, leading to technical issues in industrial practice. In this work, an integrated model of the direct reduction process in an industrial-scale RHF is described. The integrated model includes three mathematical submodels and one physical model, specifically, a three-dimensional (3-D) CFD model of gas flow and heat transfer in an RHF chamber, a one-dimensional (1-D) CFD model of direct reduction inside a pellet, an energy/mass equilibrium model, and a reduction physical experiment using a Si-Mo furnace. The model is validated by comparing the simulation results with measurements in terms of furnace temperature, furnace pressure, and pellet indexes. The model is then used for describing in-furnace phenomena and pellet behavior in terms of heat transfer, direct reduction, and removal of a range of heavy and alkali metal elements under industrial-scale RHF conditions. The results show that the furnace temperature in the preheating section should be kept at a higher level in an industrial-scale RHF compared with that in a pilot-scale RHF. The removal rates of heavy and alkali metal elements inside the composite pellet are all faster than iron metallization, specifically in the order of Pb, Zn, K, and Na.

  1. Break-through of Mass Integration in Textile Industry through Development of Generic Water Recycle Schemes

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2003-01-01

    processing is one of the largest and oldest industries world-wide and responsible for a substantial resource consumption and pollution. Especially the wet processing part of the industry, i.e. pre-treatment, dyeing, printing and finishing, is polluting and resource consuming in terms of both water, energy...... and chemicals. It entails a vast variety of water consuming processes, and like in most industries, fresh water is used in all processes with almost no exceptions. Between researchers, it was known for many years that fresh water is not needed by all processes taking place in textile wet treatment. But sound......, and the system for acrylic is being tested. The research has resulted in a number of generic solutions for water recycling in the wet treatment of polyester, cotton and acrylic being generally applicable in textile wet processing world-wide. The industry and the dissemination potentials are huge....

  2. INFLUENCE OF IMPACT MODIFIER AND COUPLING AGENT ON IMPACT STRENGTH OF WOOD FLOUR / RECYCLED PLASTIC COMPOSITES

    OpenAIRE

    Saman GHAHRI; Saeed KAZEMI NAJAFI; Mohebby, Behbood

    2014-01-01

    In this research, the improvement of impact strength of wood flour/recycled polypropylene (PP) composites was investigated. The PP (virgin and recycled polypropylene) and wood flour (WF) were compounded at 50% by weight wood flour loading in a counter-rotating twin-screw extruder in the presence MAPP and two types of impact modifiers (ethylene vinyl acetate (EVA) and ethylene/propylene/diene terpolymer (EPDM)), to produce wood flour-PP composites specimen. The results showed t...

  3. INFLUENCE OF IMPACT MODIFIER AND COUPLING AGENT ON IMPACT STRENGTH OF WOOD FLOUR / RECYCLED PLASTIC COMPOSITES

    Directory of Open Access Journals (Sweden)

    Saman GHAHRI

    2014-03-01

    Full Text Available In this research, the improvement of impact strength of wood flour/recycled polypropylene (PP composites was investigated. The PP (virgin and recycled polypropylene and wood flour (WF were compounded at 50% by weight wood flour loading in a counter-rotating twin-screw extruder in the presence MAPP and two types of impact modifiers (ethylene vinyl acetate (EVA and ethylene/propylene/diene terpolymer (EPDM, to produce wood flour-PP composites specimen. The results showed that the composites containing recycled PP exhibited significantly lower impact strength values than those of containing virgin PP. The addition of MAPP, EVA and EPDM in the specimens increased their impact strength. In the presence of MAPP, higher increase in impact strength of the recycled PP/WF composites was observed due to impact modifiers. Both impact modifiers increased the impact strength of the PP/WF composites but the addition of EVA gave the greatest improvements in impact strength. Although the addition of impact modifiers and MAPP increased the impact strength of composites containing recycled PP, such values were still significantly lower than those of containing virgin PP (not modified with MAPP or impact modifier. The use of impact modifiers decreased the flexural properties of the recycled PP/WF composites

  4. Composting of de-inking sludge from the recycled paper manufacturing industry.

    Science.gov (United States)

    Gea, Teresa; Artola, Adriana; Sánchez, Antoni

    2005-07-01

    Composting of two different types of sludge from the recycled paper manufacturing industry was carried out at laboratory scale. Physico-chemical sludge (PCS) from the de-inking process and biological sludge (BS) from the wastewater treatment plant were composted and co-composted with and without addition of a bulking material. Despite its poor initial characteristics (relatively high C/N ratio, low organic content and moisture), PCS showed excellent behaviour in the composting process, reaching and maintaining thermophilic temperatures for more than 7 days at laboratory scale, and therefore complete hygienization. Pilot scale composting of PCS was also studied, and a respiratory quotient of 1.19 was obtained, indicating a full aerobic biological process. Respiration tests showed a complete stabilization of the material, with final values of the static respiration index in the range of 1.1 mg O2gTOM(-1)h(-1). Composting is proposed as a suitable technology for the effective recycling of this type of sludge from the recycled paper manufacturing industry.

  5. Thermal comfort study of plastics manufacturing industry in converting process

    Directory of Open Access Journals (Sweden)

    Sugiono Sugiono

    2017-09-01

    Full Text Available Thermal comfort is one of ergonomics factors that can create a significant impact to workers performance. For a better thermal comfort, several environment factors (air temperature, wind speed and relative humidity should be considered in this research. The object of the study is a building for converting process of plastics manufacturing industry located in Malang, Indonesia. The maximum air temperature inside the building can reach as high as 36°C. The result of this study shows that heat stress is dominantly caused by heat source from machine and wall building. The computational fluid dynamics (CFD simulation is used to show the air characteristic through inside the building. By using the CFD simulation, some scenarios of solution are successfully presented. Employees thermal comfort was investigated based on predicted mean vote model (PMV and predicted percentage of dissatisfied model (PPD. Existing condition gives PMV in range from 1.83 to 2.82 and PPD in range from 68.9 to 98%. Meanwhile, modification of ventilation and replacing ceiling material from clear glass into reflective clear glass gave significant impact to reduce PMV into range from 1.63 to 2.18 and PPD into range from 58.2 to 84.2%. In sort, new design converting building process has more comfortable for workers.

  6. 我国废塑料回收和进口现状浅析%Discussion on recycling and import of waste plastic in China

    Institute of Scientific and Technical Information of China (English)

    胡守仁

    2012-01-01

    Waste plastic is one of the main recyclable resources in China, with a large amount and variety from recycling and import. This paper demonstrated the kinds, quantity and location of waste plastics from recycling and import, as well as the recycling sources and methods.%废塑料是我国四大再生资源品种之一.废塑料国内回收和进口数量大、种类多。对我国废塑料国内产生和进口的种类、数量和地域,以及国内废塑料的回收渠道和方式进行了阐述。

  7. Toward zero waste to landfill: an effective method for recycling zeolite waste from refinery industry

    Science.gov (United States)

    Homchuen, K.; Anuwattana, R.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    One-third of landfill waste of refinery plant in Thailand was spent chloride zeolite, which wastes a huge of land, cost and time for handling. Toward zero waste to landfill, this study was aimed at determining an effective method for recycling zeolite waste by comparing the chemical process with the electrochemical process. To investigate the optimum conditions of both processes, concentration of chemical solution and reaction time were carried out for the former, while the latter varied in term of current density, initial pH of water, and reaction time. The results stated that regenerating zeolite waste from refinery industry in Thailand should be done through the chemical process with alkaline solution because it provided the best chloride adsorption efficiency with cost the least. A successful recycling will be beneficial not only in reducing the amount of landfill waste but also in reducing material and disposal costs and consumption of natural resources as well.

  8. Research, Commercialization, & Workforce Development in the Polymer/Electronics Recycling Industry

    Energy Technology Data Exchange (ETDEWEB)

    Carl Irwin; Rakesh Gupta; Richard Turton; GangaRao Hota; Cyril Logar; Tom Ponzurick; Buddy Graham; Walter Alcorn; Jeff Tucker

    2006-02-01

    The Mid-Atlantic Recycling Center for End-of-Life Electronics (MARCEE) was set up in 1999 in response to a call from Congressman Alan Mollohan, who had a strong interest in this subject. A consortium was put together which included the Polymer Alliance Zone (PAZ) of West Virginia, West Virginia University (WVU), DN American and Ecolibrium. The consortium developed a set of objectives and task plans, which included both the research issues of setting up facilities to demanufacture End-of-Life Electronics (EoLE), the economics of the demanufacturing process, and the infrastructure development necessary for a sustainable recycling industry to be established in West Virginia. This report discusses the work of the MARCEE Project Consortium from November 1999 through March 2005. While the body of the report is distributed in hard-copy form the Appendices are being distributed on CD's.

  9. Recycling and recovery of post-consumer plastic solid waste in a European context

    OpenAIRE

    Dewil Raf; Baeyens Jan; Brems Anke

    2012-01-01

    The disposal of waste plastics has become a major worldwide environmental problem. The USA, Europe and Japan generate annually about 50 million tons of post-consumer plastic waste, previously landfilled, generally considered as a non-sustainable and environmentally questionable option. Landfill sites and their capacity are, moreover, decreasing rapidly, and legislation is stringent. Several European Directives and US legislation concern plastic wastes and the required management. They a...

  10. The impact of policy interactions on the recycling of plastic packaging waste in Germany

    OpenAIRE

    Gandenberger, Carsten; Orzanna, Robert; Klingenfuß, Sara; Sartorius, Christian

    2014-01-01

    Due to the environmental challenges associated with the strong growth of plastic waste worldwide, the EU Commission recently published a green paper on a European Strategy on Plastic Waste in the Environment (COM (2013), 123 final), which highlights the challenges and opportunities that arise from improving the management of plastic waste in the EU. The European Waste Directive (2008/98/EC) which was transposed into German law through the Kreislaufwirtschaftsgesetz (KrWG) established the so-c...

  11. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.

    Science.gov (United States)

    Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M

    2015-05-01

    Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.

  12. 废旧酚醛塑料回收和再利用方法研究%Study on Recycling Method of Waste Phenolic Plastics

    Institute of Scientific and Technical Information of China (English)

    何平; 吴仲伟; 潘绍波; 陈从升; 李辉

    2013-01-01

    介绍目前废旧塑料回收再利用技术的主要方法和不足之处,提出基于机械物理法的热固性塑料回收再利用方法,确定热固性塑料回收再利用的工艺流程。通过对热固性酚醛塑料回收再生试验,验证了机械物理法回收再生的可行性,最后对再生试样进行力学性能测试。结果表明,回收再生酚醛/聚丙烯共混料的拉伸强度与弯曲强度分别达到6 MPa和13 MPa以上,能满足回收再利用的要求。%Main methods and shortcomings about recycling technology of waste plastics were introduced,and the recycling mechanism of the waste thermosetting plastics based on mechanical and physical method was presented. Accordingly,the recycling process of waste thermosetting plastics was determined. By means of recycling and regeneration experiment on thermosetting phenolic plastics,the feasibility of recycling and regeneration based on mechanical and physical method was verified.At last,the mechanical properties of regeneration specimens were tested. The results show that tensile strength and bending strength of recycling phenolic/polypropylene plastics can reach 6 MPa and 13 MPa respectively,and it meets the recycling requirements.

  13. Ionizing radiation effect study by electron beam on ultra high molecular weight polyethylene virgin and recycled industrial; Estudo do efeito da radiacao ionizante por feixe de eletrons sobre o polietileno de ultra alto peso molecular virgem e reciclado industrial

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, Salmo Cordeiro do

    2006-07-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) is an engineering plastic which has several applications, chiefly, in specific areas of the industry and medicine. UHMWPE can be even for other applications such as: port fenders, current guide, bucket coating, silos and gutters, plugs, pulleys and surgical prosthesis. This range of applications is due to the excellent technical characteristics that this material owns, such as; high resistance to wear, high resistance to impact, anti-adherence, non toxic, excellent chemical resistance, low specific weight, easy mill processing, and high resistance to fatigue. The UHMWPE type used in this work were UTEC 3041 and UTEC 6541 of the Braskem. The recycling process of UHMWPE raised much interest, because the utilization of this raw material grew over 600% in the last decade, becoming one of the most used engineering plastics for attainment of mill processed parts after polyamide. As the utilization of this polymer in the manufacturing of parts for machinery has grown, its waste is very big, because the rest of this material is thrown out, usually not being reused. The goal of this work is to recycle the UHMWPE UTEC 3041 and study the properties of this recycled and virgin material and compare the results between both with these materials submitted to different radiation dose. (author)

  14. Comparison of the U.S. lead recycling industry in 1998 and 2011

    Science.gov (United States)

    Wilburn, David R.

    2014-01-01

    Since 1998, the structure of the lead recycling industry has changed and trade patterns of the domestic lead recycling industry have shifted. Although the domestic demand for lead has remained relatively constant since 1998, production of lead has increasingly shifted to the domestic secondary lead industry. The last primary lead smelter in the United States closed at the end of 2013, at which time the secondary lead industry became the sole source of domestic lead production. The amount of lead recovered annually from scrap batteries generally increased from about 900,000 metric tons in 1995 to more than 1,100,000 metric tons in 2012. The percentage of total U.S. lead production attributed to battery scrap increased from 65 percent in 1995 to 87 percent in 2012. Since the North American Free Trade Agreement took effect in 1994, trade patterns among the United States, Canada, and Mexico have changed for recycled lead products. In the late 1990s, the principal sources of lead waste and scrap not derived from batteries were Canada, Mexico, and South America; by 2011, the principal sources were Central America and Asia, with decreasing amounts from Canada and South America. Since 1998, the amount of lead derived from imported batteries and scrap from Canada has ranged from 50 to 90 percent, and the amount imported from Mexico has ranged from 3 to 20 percent. Canada received about 50 percent of the lead contained in spent lead-acid batteries and scrap exported from the United States in 1998, and Mexico received about 4 percent. By 2012, however, the amount of lead scrap exported to Canada had decreased to about 10 percent, and the amount of lead-based scrap products, primarily batteries, exported to Mexico from the United States had increased to 47 percent. Vertical integration of the domestic secondary lead industry and higher costs required to implement more stringent ambient air standards in the United States have led some companies to shift lead recycling

  15. Managing plastic waste in urban Kenya: niche innovations in production and recycling

    NARCIS (Netherlands)

    Ombis, L.O.

    2012-01-01

    The problems with plastic waste in Kenyan cities are increasing to alarming levels. Especially disposable packaging made of very light plastic materials continues to burden the environment as well as compromise management capacities for waste by city authorities. In light of this, major cities of

  16. Managing plastic waste in urban Kenya: niche innovations in production and recycling

    NARCIS (Netherlands)

    Ombis, L.O.

    2012-01-01

    The problems with plastic waste in Kenyan cities are increasing to alarming levels. Especially disposable packaging made of very light plastic materials continues to burden the environment as well as compromise management capacities for waste by city authorities. In light of this, major cities of Ke

  17. Potential environmental benefits of improving recycling of polyolefines – LCA of Magnetic density separation (MDS) developed in the EU FP7 funded project W2Plastic

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Bonou, Alexandra

    2012-01-01

    The core of the EU FP7 funded project W2Plastic is development of a magnetic density separation (MDS) of polyolefines in order to improve the sorting efficiency of these polymer types in different waste fractions. As part of the project a life cycle assessment is performed in order to firstly...... identify eco-design criteria for the development and secondly to document the potential environmental improvement of polyolefin recycling using the MDS technology. A preliminary study focusing solely on the carbon footprint benefits of recycling plastic waste compared to virgin production of polymers...

  18. A Study on the Waste Water Treatment Technology for Steel Industry: Recycle And Reuse.

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Sinha

    2016-08-01

    Full Text Available The steel industry is one of the most important and vital Industry of the present and the future. It is the asset of a nation. Steel plants use a tremendous amount of water for waste transfer, cooling and dust control. The steel plants have sintering mills, coke plants, blast furnaces, chemical byproducts and chemical processes, water cooled rolls, pumps, extrusion experiment, transfer lines for sludges and slurries. All these plants use a tremendous amount of water to cool the products and flush the impurities away from the finished stock. Wastewater is generated in huge quantity in steel industries. It contains many dissolved, undisclosed substances and chemicals in the wastewater. The steel industries produce wastewater and sludge during different industrial processes. The development of innovative technologies for treatment of wastewaters from steel industries is a matter of alarming concern for us. Although many research papers have been reported on wastewater pollution control studies, but a very few research work is carried out for treatment of wastewater of steel industries, especially in reference to development of design of industrial effluent Treatment Plants (ETP system. Another beneficial aspect of this research work will be recycling, reuse of water and sludge from steel industry The whole technologies for treating industrial wastewater can be divided into four categories: - Chemical, Physical, Biological and mathematical approaches. Physical treatment methods include sedimentation, Floatation , filtering , stripping, ion – exchange, adsorption and other processes that accomplish removal of dissolved and undisclosed substances without necessarily changing their chemical structure. The mathematical approaches are very useful and more realistic for developing a well operating cost–effective treatment system for industrial wastewater treatment.

  19. PIXE characterization of by-products resulting from the zinc recycling of industrial cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Freemantle, C.S. [School of Chemical & Metallurgical Engineering and DST-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, P/Bag 3, Wits 2050 (South Africa); Pilot Tools (Pty) (Ltd), P.O. Box 27420, Benrose 2011 (South Africa); Sacks, N. [School of Chemical & Metallurgical Engineering and DST-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, P/Bag 3, Wits 2050 (South Africa); Topic, M. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health & Wellness Sciences, CPUT, Bellville (South Africa)

    2015-11-15

    By-product materials of the widely used zinc recycling process of cemented carbides have been studied. Scanning electron microscopy and micro-PIXE techniques have identified elemental concentrations, distributions and purity of by-product materials from an industrial zinc recycling plant. Cobalt surface enrichment, lamellar microstructures of varying composition, including alternating tungsten carbide (WC) grains and globular cobalt, and regions of excess zinc contamination were found in materials with incomplete zinc penetration. Liquid Co–Zn formation occurred above 72 wt.% Zn at the furnace temperature of 930 °C, and was extracted towards the surface of poorly zinc infiltrated material, primarily by the vacuum used for zinc distillation. Surface enrichment was not observed in material that was zinc infiltrated to the sample center, which was more friable and exhibited more homogeneous porosity and elemental concentrations. The result of incomplete zinc infiltration was an enriched surface zone of up to 60 wt.% Co, compared to an original sample composition of ∼10–15 wt.% Co. The impact on resulting powders could be higher or inhomogeneous cobalt content, as well as unacceptably high zinc concentrations. PIXE has proven it can be a powerful technique for solving industrial problems in the cemented carbide cutting tool industry, by identifying trace elements and their locations (such as Zn to 0.1 wt.% accuracy), as well as the distribution of major elements within WC–Co materials.

  20. Kajian penerapan recycle, reuse dan recovery untuk proses produksi kulit web blue pada industri penyamakan kulit

    Directory of Open Access Journals (Sweden)

    Prayitno Prayitno

    2009-06-01

    Full Text Available Leather tanning industries are industries that process skin to produce finish leather product by using many stages of process in which for every stage of process will generate a huge amount either liquid or solid waste. If waste are not to be treated properly, it will cause environmental pollution. Implementation of 3R programs i.e. recycle, reuse and recovery will give impact on minimizing of waste problem. In leather tanning industries for producing wet blue leather however, 3R programs have to be implemented in processes of desalting, washing liquor, flesh and fat, chrome liquor and chrome-tanned waste. In implementing 3 R the waste generated can be either reused, recycled or recoveried as follow salt as swelling agent preventing in pickling process; washing liquor waste as washing liquor for dirt washing; flesh and fat as raw material for producing tallow, soap, fertilizer and livestock fodder; chrome liquor waste as chrome agent for chrome tanning and chrome-tanned waste as filler for producing material building or livestock fodder as protein sources.

  1. Lead remotion of automotive batteries recycling industry wastewater by the aquatic macrofit eichhornia crassipes

    Directory of Open Access Journals (Sweden)

    Franciele Aní Caovilla Follador

    2009-08-01

    Full Text Available The objective of this work was to evaluate the efficiency of the lead absorption by the aquatic macrofit Eichhornia crassipes in the wastewater treatment of an automotive batteries recycling industry located at county of Paula de Freitas, state of Paraná, Brazil. For that, the relation of humid green mass of water hyacinth by solution volume was optimized and, in follow the method was employed in the industrial wastewater treatment. The results permitted to conclude that the lead and other metals (Fe, Cu, Zn e Cr absorption efficiency depends straightly of the water hyacinth mass (g by solution volume (L, being 40 and 50 g L-1 the more efficient relations showing equivalents results in wastewaters containing until 30 mg L-1 of contaminant. Factors as pH and temperature in the analyzed values no had an expressive influence. For the treatment of wastewater contaminated by lead of the small and mean industries which recycle automotive batteries, the utilization of water hyacinth is practicable in the optimized conditions. It´s necessary a refined study for the definition of the best alternative of treatment/final disposal of the water hyacinth biomass after the wastewater treatment.Key-words: green house, composting, stabilization lagoon, heavy metal.

  2. PIXE characterization of by-products resulting from the zinc recycling of industrial cemented carbides

    Science.gov (United States)

    Freemantle, C. S.; Sacks, N.; Topic, M.; Pineda-Vargas, C. A.

    2015-11-01

    By-product materials of the widely used zinc recycling process of cemented carbides have been studied. Scanning electron microscopy and micro-PIXE techniques have identified elemental concentrations, distributions and purity of by-product materials from an industrial zinc recycling plant. Cobalt surface enrichment, lamellar microstructures of varying composition, including alternating tungsten carbide (WC) grains and globular cobalt, and regions of excess zinc contamination were found in materials with incomplete zinc penetration. Liquid Co-Zn formation occurred above 72 wt.% Zn at the furnace temperature of 930 °C, and was extracted towards the surface of poorly zinc infiltrated material, primarily by the vacuum used for zinc distillation. Surface enrichment was not observed in material that was zinc infiltrated to the sample center, which was more friable and exhibited more homogeneous porosity and elemental concentrations. The result of incomplete zinc infiltration was an enriched surface zone of up to 60 wt.% Co, compared to an original sample composition of ∼10-15 wt.% Co. The impact on resulting powders could be higher or inhomogeneous cobalt content, as well as unacceptably high zinc concentrations. PIXE has proven it can be a powerful technique for solving industrial problems in the cemented carbide cutting tool industry, by identifying trace elements and their locations (such as Zn to 0.1 wt.% accuracy), as well as the distribution of major elements within WC-Co materials.

  3. PHENOLIC RESINS AND THE PLASTICS INDUSTRY: YESTERDAY, TODAY, AND TOMORROW%PHENOLIC RESINS AND THE PLASTICS INDUSTRY:YESTERDAY,TODAY,AND TOMORROW

    Institute of Scientific and Technical Information of China (English)

    Louis Pilato

    2010-01-01

    During 2010,Phenolic Resins celebrate 100years of existence.Dr.Leo Baekeland began commercial production of phenolic resins in May 1910 in Germany and October 1910 in the United States.This activity launched the Plastics Industry as it is recognized today.It is estimated that about 255 million tons of plastics will be produced worldwide in 2010 and consist of thermoplastic,thermosetting and elastomeric materials.Some of these polymeric materials are further transformed into fiber reinforced plastics (FRP) utilizing fibers such as carbon fiber,glass fiber,and organic fibers such as Kevlar,Spectra (ultrahigh molecular weight polyethylene) and others.

  4. Study of mortars with industrial residual plastic scales

    Directory of Open Access Journals (Sweden)

    Magariños, O. E.

    1998-06-01

    Full Text Available This work proposes the utilization of industrial residues of PET (Polyethylene Terephtalate as a partial substitute of arids (sand in mortar making for construction components. Therefore, the environmental impact of large volumes of plastic of urban residues could be decreased. When PET scales were added to mortars in partial replacement of sand, lower unitary weight, acceptable absorption and resistances according to international specifications were achieved. Mortars with 66% of sand replacement by scales and without any additive, showed optimal characteristics to be used in concret block manufacturing.

    Este trabajo de investigación se desarrolla a partir de la hipótesis de utilizar los desechos post-industriales de PET (Tereftalato de Polietileno como sustituto de áridos (arena, ingrediente de morteros, en la fabricación de componentes constructivos. En dicho trabajo se estudian las propiedades físico-químicas de distintos morteros en los que se reemplazó el contenido de árido por escamas de plástico en distintas proporciones. Se compararon y evaluaron las propiedades físico-mecánicas de los morteros en estudio con los convencionales mediante ensayos de resistencia a la flexión, compresión, absorción, durabilidad y microfotografías por barrido electrónico. Estos estudios determinaron que el agregado de PET en morteros puede ser usado como un posible sustituto de áridos, ya que se obtuvieron morteros con 66% de reemplazo de arena por escamas que presentaron menor peso unitario, absorción aceptable y resistencias acordes a las exigidas por normas.

  5. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    Science.gov (United States)

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-04-01

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  6. Effect of Recycled Plastics on Cotton Stalk/Plastic Composite Properties%废弃塑料对棉秆/塑料复合板材性能的影响

    Institute of Scientific and Technical Information of China (English)

    蔺焘; 郭文静; 常亮; 高黎; 王正

    2011-01-01

    Recycled plastic with different particle size and impurity content were compounded with cotton stalk particles, after which the mixture was used to make cotton stalk/plastic composites through hot pressing. The effects of size and impurity of the recycled plastic on the composite properties were evaluated. The results show that; 1) the physical and mechanical properties of composites made with smaller plastic sizes perform better than those made with larger plastic sizes; 2) cleaning the recycled plastic with water is more effective for improving the composite properties than increasing the waste plastic content.%采用不同塑料纯度和形态的废弃聚乙烯塑料与棉秆刨花复合,制备棉秆/塑料复合板材,研究废弃塑料的形态和塑料纯度对复合板材性能的影响.结果表明:1)采用重均粒径较小的废弃塑料与棉秆复合时,板材的性能较优;2)相对于增加复合板材中废弃塑料的比例,对废弃塑料进行彻底的清洗,是提高复合板材性能的有效手段.

  7. DEVELOPMENT OF SMALL INJECTION MOULDING MACHINE FOR FORMING SMALL PLASTIC ARTICLES FOR SMALL-SCALE INDUSTRIES

    OpenAIRE

    OYETUNJI, A.

    2010-01-01

    Development of small injection moulding machine for forming small plastic articles in small-scale industries was studied. This work which entailed design, construction and test small injection moulding machine that was capable of forming small plastic articles by injecting molten resins into a closed, cooled mould, where it solidifies to give the desired products was developed. The machine was designed and constructed to work as a prototype for producing very small plastic components. Design ...

  8. The role and linkages of buy-back centres in the recycling industry: Pretoria and Bloemfontein (South Africa

    Directory of Open Access Journals (Sweden)

    J. M.M. Viljoen

    2012-12-01

    Full Text Available Purpose/objectives: The aim of this paper is to get a better understanding of the role and linkages of buy-back centres (BBCs in the recycling industry. The first objective is to analyse the institutional profile of the BBCs in two different geographical areas - namely, Pretoria and Bloemfontein. The second objective is to discuss the role and linkages of BBCs with the informal sector activities and specifically the activities of street waste pickers. The third objective is to explain the linkages that exist between BBCs and recycling companies. Problem investigated: Recycling, and specifically the collection and sorting of waste, is currently receiving much attention on the national as well as municipal level. To understand the recycling industry, and to make informed policy decisions concerning the recycling industry, policy makers need to have an understanding of the role and crucial link of all role players in the industry. Knowledge on the BBCs, who act as a link between the formal and informal sector activities in the recycling industry, is of the utmost importance. Design/Methodology/Approach: A mixed method approach consisting of a quantitative survey coupled with qualitative questions was used. The mixed method approach is used to collect as much data as possible from the BBCs, which is beyond the scope of what a structured questionnaire on its own can achieve. A lack of accurate location information on BBCs necessitated an intensive search for BBCs in the two areas. Findings/Implications: The BBCs in Pretoria and Bloemfontein act as an important link between informal sector activities and recycling companies and therefore promote informal and formal job opportunities. Formal job opportunities are created at the BBC sites as well as formal jobs at the upper end of the recycling chain, namely at formal recycling companies. Informal income generating opportunities are created for the informal waste collectors. Any changes in the formal or

  9. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    OpenAIRE

    L. Shen

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable plastics waste, and (iii) greenhouse gas emissions caused by combusting fossil fuels. To tackle these sustainability challenges, two strategies have been proposed. First, use bio-based polymers to repl...

  10. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    OpenAIRE

    Shen, L.

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable plastics waste, and (iii) greenhouse gas emissions caused by combusting fossil fuels. To tackle these sustainability challenges, two strategies have been proposed. First, use bio-based polymers to repl...

  11. 食品用塑料制品掺杂回收塑料鉴别方法的研究%Research on the Identification Methods Adopting Recycled Plastics in Food-related Plastic Products

    Institute of Scientific and Technical Information of China (English)

    刘洪斌; 王磊

    2012-01-01

    To demonstrate the feasibility of the identification methods adopting recycled plastics in food-related plastic products.To adopt the test methods of IR、NMR、TG、DSC to identify whether the food-related plastic products adopt recycled plastics and provide technical support to the risk assessment of public food safety.%论证了鉴别食品用塑料制品掺杂回收塑料方法的可行性。采用IR、NMR、TG、DSC等手段进行检测,用于鉴别食品用塑料制品是否掺杂回收塑料,从而为食品公共安全风险评估提供技术支撑。

  12. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    Energy Technology Data Exchange (ETDEWEB)

    Name, No

    2014-10-01

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  13. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    No Name

    2014-10-01

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  14. Management status of end-of-life vehicles and development strategies of used automotive electronic control components recycling industry in China.

    Science.gov (United States)

    Wang, Junjun; Chen, Ming

    2012-11-01

    Recycling companies play a leading role in the system of end-of-life vehicles (ELVs) in China. Automotive manufacturers in China are rarely involved in recycling ELVs, and they seldom provide dismantling information for recycling companies. In addition, no professional shredding plant is available. The used automotive electronic control components recycling industry in China has yet to take shape because of the lack of supporting technology and profitable models. Given the rapid growth of the vehicle population and electronic control units in automotives in China, the used automotive electronic control components recycling industry requires immediate development. This paper analyses the current recycling system of ELVs in China and introduces the automotive product recycling technology roadmap as well as the recycling industry development goals. The strengths, weaknesses, opportunities and challenges of the current used automotive electronic control components recycling industry in China are analysed comprehensively based on the 'strengths, weaknesses, opportunities and threats' (SWOT) method. The results of the analysis indicate that this recycling industry responds well to all the factors and has good opportunities for development. Based on the analysis, new development strategies for the used automotive electronic control components recycling industry in accordance with the actual conditions of China are presented.

  15. Implications of Canada's GHG programs for metals and recycling industries

    Energy Technology Data Exchange (ETDEWEB)

    Sage, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2003-07-01

    When Canada ratified the Kyoto Protocol in 2002, it agreed to reduce carbon dioxide equivalent (CO2-e) emissions to 571 metric tonnes (Mt) by 2010, from the current level of 725 Mt. The amount of greenhouse gases that come from Canada's mining and metals industries was summarized. This presentation reviewed some of the measures that have been implemented for achieving reductions of those emissions by the mining and metals industries. The author indicated that the enhanced recycling of steel and aluminum would go a long way toward Canada's goal. An argument was also made for the development of fuel cells for mining vehicles. The technology would lead to a decrease of GHG emissions, assuming that the hydrogen could be generated from renewable energy sources. figs.

  16. Minimizing Waste from the Oil Industry: Scale Treatment and Scrap Recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, M.

    2002-02-26

    Naturally occurring radioactive material is technologically concentrated in the piping in systems in the oil and gas industry, especially in the offshore facilities. The activity, mainly Ra-226, in the scales in the systems are often at levels classified as low level radioactive waste (LSA) in the industry. When the components and pipes are descaled for maintenance or recycling purposes, usually by high-pressure water jetting, the LSA scales arising constitute a significant quantity of radioactive waste for disposal. A new process is under development for the treatment of scales, where the radioactive solids are separated from the inactive. This would result in a much smaller fraction to be deposited as radioactive waste. The radioactive part recovered from the scales will be reduced to a stable non-metallic salt and because the volume is significantly smaller then the original material, will minimize the cost for disposal. The pipes, that have been cleaned by high pressure water jetting can either be reused or free released by scrapping and melting for recycling.

  17. Foundry waste recycling in moulding operations and in the ceramic industry.

    Science.gov (United States)

    Zanetti, Maria Chiara; Fiore, Silvia

    2003-06-01

    An industrial treatment was performed by the Sasil plant of Brusnengo (Biella, Northern Italy), which is part of the Gruppo Minerali S.p.A. (Novara, Northern Italy), to consider the reclamation of bentonite bonded moulding sands obtained from the Teksid Italia S.p.A. cast iron foundry plant in Crescentino (Vercelli, Northern Italy). An evaluation of the fine particles produced by the wet-mechanical regeneration treatment was made with the purpose of proposing their recycling as binding agents in moulding operations in the cast iron foundry and for the production of tiles in the ceramic industry. The pre-mixed product sold by bentonite suppliers (35% coal dust and 65% bentonite, 0.15 Euro/kg) could be made from the recovered fine fraction below 0.025 mm with the addition of active clay and coal dust, thus obtaining a product that will have physico-chemical properties similar to those of calcic bentonite. The improvements due to the addition of the fine particles to the usually employed clay for tile production were also underlined from the results of several baking tests. The recovery and recycling of sands and fine particles obtained from the reclamation of bentonite moulding sands will lead to a saving of raw materials and landfill space, with economic and environmental advantages.

  18. Use of recycling through medium size granular filters to treat small food processing industry effluents.

    Science.gov (United States)

    Ménoret, C; Boutin, C; Liénard, A; Brissaud, F

    2002-01-01

    Currently there are no suitable wastewater treatment systems for effluents from small food processing industries (dairy, cheese, wine production). Such raw sewages are characterized by high organic matter concentrations (about 10 g COD L-1) and relatively low daily volumes (about 2 m3). An adaptation of attached-growth cultures on fine media processes, known to be easy and inexpensive to use, could fit both the technical and economical context of those industries. Coarser filter particle size distributions than those normally used allow a better aeration and reduce clogging risk. The transit time of the effluent through the porous filter materials is shortened and requires recycling to increase the contact time between the biomass and the substrate. A pilot plant was built to compare the efficiency of two kinds of filter materials, gravel (2-5 mm) and pozzolana (3-7 mm). Two measurement campaigns were undertaken on a full-scale unit dealing with cheese dairy effluents. Both pilot-scale and full-scale plants show high COD removal rates (> 95%). Pilot-scale experiments show that accumulation of organic matter leads to the clogging of the recycling filter. To prevent early clogging, a better definition of feeding cycles is needed.

  19. Industrialization of Technology on Bio-degradable Plastics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ On August 14, 2004, aresearch project titled "Preparation of Aliphatic Ester Polycarbonate and Degradable Foam Plastics by Using Carbon Dioxide" passed its technical appraisal by experts under the sponsorship of the National Bureau of Environmental Protection.

  20. The environment and product development: a study of the plastic recycling

    Directory of Open Access Journals (Sweden)

    Leandro José Morilhas

    2008-09-01

    Full Text Available In this work, it is aimed to identify how the companies have been developing products through the use of recycled materials. It was veriied which challenges the manufacturers face in their productive chain and how the organizations use such products as a strategic tool. The information presented in this article was obtained through a ield research that made use of a questionnaire sent to companies located in the metropolitan area of São Paulo city and through websites of companies of the area. The results of this study show that the process of product development should improve in an accelerated way in order to assist the desires and needs of the market. In this context, it is up to the companies of the area to update themselves by recycling their products, as well as their processes and management.

  1. Report: recycling of flame-retarded plastics from waste electric and electronic equipment (WEEE).

    Science.gov (United States)

    Schlummer, Martin; Mäurer, Andreas; Leitner, Thomas; Spruzina, Walter

    2006-12-01

    Shredder residues produced in plants processing waste electric and electronic equipment are excluded from material recycling due to a variety of polymeric materials and the presence of brominated flame retardants (BFR), which might contain banned polybrominated diphenyl ethers or toxic polybrominated dioxins and furans (PBDD/F). Herein we present a technological approach to transfer a significant portion of the shredder residue into recycled polymers. The technological approach consists of a density-based enrichment of styrenics, which are subjected to a solvolysis process (CreaSolv process) in a second stage. This stage allows the elimination of non-target polymers and extraction of BFR and PBDD/F. Pilot processing of 11.5 and 50 kg shredder residues indicated a material yield of about 50% in the density stage and 70-80% in the CreaSolv process, and an effective removal of BFR additives. The recycled products were proved to comply with threshold values defined by the European directive on the restriction of hazardous substances (RoHS) and the German Chemikalienverbotsverordnung. Mechanical material properties exhibited high tensile and flexural modules as well as slight impact strength, which qualify the products for applications in new electronic equipment.

  2. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2014-11-15

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  3. 废旧蜜胺塑料对聚丙烯的改性作用%Effects of Recycled Melamine-formaldehyde Plastic on Properties of Polypropylene

    Institute of Scientific and Technical Information of China (English)

    杨明; 李林楷; 罗海平

    2012-01-01

    The modification process of recycled melamine-formaldehyde(MF) plastic on polypropylene(PP) has been studied,and the optimal compounding parameters were obtained by twin extruding system in the paper.The results showed that with increasing of recycled MF plastic in PP,the tensile strength,elongation at break,molding shrinkage and impact strength decreased,the modulus,heat distortion temperature and melt flow rate increased,which indicates that the addition of recycled MF plastic can improve rigidity,heat resistance and flowability of PP.More importantly,the oxygen index of PP was increased with the addition of recycled MF plastic,which indicates that recycled MF plastic can improve the flame-retardant property of PP.%文章研究了废旧蜜胺塑料对聚丙烯的改性作用及效果,获得了较佳的制备配方和工艺,结果表明,随着废旧蜜胺塑料在体系中的含量增大,材料的拉伸强度、断裂伸长率、成型收缩率、冲击强度下降,但材料的刚性、热变形温度增大,熔体流动速率在废旧蜜胺含量20 wt%之前增大。重要的是,随着废旧密胺塑料添加量的增大,材料的氧指数增加,说明废旧密胺塑料的加入可以提高聚丙烯的刚性、尺寸稳定性、加工流动性和阻燃性。

  4. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    NARCIS (Netherlands)

    Shen, L.|info:eu-repo/dai/nl/310872022

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable

  5. Energy and raw material saving through recycling of plastics materials extracted from urban waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Michaux, J.

    The study is divided into 3 parts: Technical feasibility study, economic feasibility study, study of a factory handling 2,400 tons/year of plastics waste, and technico-economic feasibility study and market research, with an analysis of energy savings.

  6. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    NARCIS (Netherlands)

    Shen, L.

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable plas

  7. Polybrominated diphenyl ethers in plastic products, indoor dust, sediment and fish from informal e-waste recycling sites in Vietnam: a comprehensive assessment of contamination, accumulation pattern, emissions, and human exposure.

    Science.gov (United States)

    Anh, Hoang Quoc; Nam, Vu Duc; Tri, Tran Manh; Ha, Nguyen Manh; Ngoc, Nguyen Thuy; Mai, Pham Thi Ngoc; Anh, Duong Hong; Minh, Nguyen Hung; Tuan, Nguyen Anh; Minh, Tu Binh

    2016-08-19

    Residue concentrations of polybrominated diphenyl ethers (PBDEs) in different kinds of samples including consumer products, indoor dust, sediment and fish collected from two e-waste recycling sites, and some industrial, urban and suburban areas in Vietnam were determined to provide a comprehensive assessment of the contamination levels, accumulation pattern, emission potential and human exposure through dust ingestion and fish consumption. There was a large variation of PBDE levels in plastic parts of obsolete electronic equipment (from 1730 to 97,300 ng/g), which is a common result observed in consumer plastic products reported elsewhere. PBDE levels in indoor dust samples collected from e-waste recycling sites ranged from 250 to 8740 ng/g, which were markedly higher than those in industrial areas and household offices. Emission rate of PBDEs from plastic parts of disposed electronic equipment to dust was estimated to be in a range from 3.4 × 10(-7) to 1.2 × 10(-5) (year(-1)) for total PBDEs and from 2.9 × 10(-7) to 7.2 × 10(-6) (year(-1)) for BDE-209. Some fish species collected from ponds in e-waste recycling villages contained elevated levels of PBDEs, especially BDE-209, which were markedly higher than those in fish previously reported. Overall, levels and patterns of PBDE accumulation in different kinds of samples suggest significant emission from e-waste sites and that these areas are potential sources of PBDE contamination. Intakes of PBDEs via fish consumption were generally higher than those estimated through dust ingestion. Intake of BDE-99 and BDE-209 through dust ingestion contributes a large proportion due to higher concentrations in dust and fish. Body weight normalized daily intake through dust ingestion estimated for the e-waste recycling sites (0.10-3.46 ng/day/kg body wt.) were in a high range as compared to those reported in other countries. Our results highlight the potential releases of PBDEs from informal recycling activities

  8. Discussion on the Harm of Plastic Film and Its Recycling Measures%地膜危害及其回收利用措施探讨

    Institute of Scientific and Technical Information of China (English)

    马永波

    2015-01-01

    介绍台安县的地膜使用及回收现状,探讨残留地膜对土壤理化性质、作物生长发育及环境的不利影响,根据台安县的生产实际,论述促进残膜回收的主要措施,为确保农业高产稳产提供有益借鉴。%The article introduces the application of plastic film and its recycling status in Tai'an county, discusses the harmful influence of residual plastic film to soil properties, crops growth and environment, and expounds main measures of promoting the recycling of residual plastic film based on the practice in Tai’an county, provides a beneficial reference for assuring stable and high yield for agri-culture.

  9. Improving the quality of polymer-coated urea with recycled plastic, proper additives, and large tablets.

    Science.gov (United States)

    Yang, Yue-Chao; Zhang, Min; Li, Yuncong; Fan, Xiao-Hui; Geng, Yu-Qing

    2012-11-14

    Polymer-coated urea (PCU) has great potential for increasing crop production and enhancing nitrogen (N) fertilizer use efficiency, benefiting the ecosystem. However, current PCUs are used only in a limited market, and the main obstacle to the wider use of PCUs is high cost compared to that of conventional N fertilizers. In this study, the low cost PCU and large tablet polymer-coated urea (LTPCU) were prepared by using recycling polystyrene foam and various sealants as the coating materials. The structural and chemical characteristics of the coating shells of the coated fertilizers were examined. The N release characteristics of coated fertilizers were determined in 25 °C water under laboratory conditions. The relationship between the N release longevity and the amount of coating material and the percentage of different sealants were evaluated. The results indicated that recycling polystyrene foam was the ideal coating material of the controlled release fertilizer. The polyurethane that was synthesized by the reaction of castor oil and isocyanate was better than the wax as the additive to delay the N release rate of coated urea. The coating material used for LTPCU was 70-80% less than those used for commercial PCUs under the same N release longevity. The cost of the recycling polystyrene foam used for coating one ton of pure N of the LTPCU was about one-seventh to one-eighth of the cost of the traditional polymer used for the commercial PCU. The experimental data showed that the LTPCU with good controlled-release capacities, being economical and eco-friendly, could be promising for wide use in agriculture and horticulture.

  10. A new technology proposed to recycle waste plastics into hydrocarbon fuel in USA

    Directory of Open Access Journals (Sweden)

    Moinuddin Sarker, Mohammad Mamunor Rashid, Mohammed Molla, Muhammad Sadikur Rahman

    2012-01-01

    Full Text Available Energy crisis and environmental degradation by polymer wastes have been imperative to find and propose technologies for recovery of raw materials and energy from non-conventional sources like plastic wastes. A variety of methods and processes connected with global or national policies have been proposed worldwide. A new type of steel reactor is proposed for conversion of waste plastics to fuel like mixture of hydrocarbons. The results of the thermal degradation of waste plastics in the laboratory scale set-up based on this process in the paper. The melting and thermal cracking processes were carried out in a single batch process at the temperature range is 200–420 ºC. The final product consisted of light gas 6.3 % and liquid product 90%. 3.7% solid black products were produced. The light, ‘‘gas” fraction of the hydrocarbons mixture (C1–C4 and rest of liquid fuel made over 90% of the liquid product. It may be used for fuel production refinery or electricity generation.

  11. Research on Manufacturing the 1 MSF-2 Plastic Flim Recycling Machine%1 MSF-2型立秆式地膜回收机的研制

    Institute of Scientific and Technical Information of China (English)

    任萍; 胡斌; 罗昕

    2016-01-01

    针对秋后棉田的地膜回收率低、适应性差、人工卸膜效率低及强度大等技术问题,在整体仿形搂膜机基础上,设计研制了一种具有单体动态仿形搂膜、自动卸膜、起边膜和株间断膜等功能的1 MSF-2立秆式地膜回收机。介绍了其总体结构和工作原理,分析确定了该机悬挂机架、双立轴四杆仿形机构、双排弹齿搂膜机构、液力式转轴卸膜机构、仿形护禾板,以及起膜边机构等关键部件的结构及参数,并进行了田间性能试验。试验结果表明:该机在平均作业速度为7.4km/h的情况下,平均地膜回收率为88.1%,平均生产效率可达到5hm2/h,各指标均达到设计要求。该机能实现单行独立仿形残膜回收作业,适应机采棉种植模式下秋后棉田立秆回收残膜的农艺技术要求。%To solve the technical problem of low plastic film recycling rate, poor adaptability, low efficiency and big in-tensity artificial unloading residual plastic film on residual plastic film in cotton field after the autumn harvest, a 1MSF-2 vertical stem type of plastic film recycling machine with the functions of separate individual imitation hugging up the plastic film, automatic unloading the plastic film, stirring up the edge of plastic film and cutting off between plants has been developed.Introducing the overall structure and working principle, analysis to determine the structure and parame-ters of key components of the suspension frame, the double vertical shaft four-link imitation institutions, the double elas-tic tooth recycling institutions, the hydraulic type turned shaft unloading plastic film institutions, imitation protected plants plates, the recycling edge of plastic film institutions.The field experiment was carried out, the results show that the when the machine with the average operating speed is 7.4 km/h.the plastic film recycling rate was 88.1%, the produc-tion efficiency could

  12. Treatment techniques for the recycling of bottle washing water in the soft drinks industry.

    Science.gov (United States)

    Ramirez Camperos, E; Mijaylova Nacheva, P; Diaz Tapia, E

    2004-01-01

    The soft drink production is an important sector in the manufacturing industry of Mexico. Water is the main source in the production of soft drinks. Wastewater from bottle washing is almost 50% of the total wastewater generated by this industry. In order to reduce the consumption of water, the water of the last bottle rinse can be reused in to the bottle pre-rinse and pre-washing cycles. This work presents the characterization of the final bottle washing rinse discharge and the treatability study for the most appropriate treatment system for recycling. Average characteristics of the final bottle wash rinse were as follows: Turbidity 40.46 NTU, COD 47.7 mg/L, TSS 56 mg/L, TS 693.6 mg/L, electrical conductivity 1,194 microS/cm. The results of the treatability tests showed that the final rinse water can be used in the pre-rinse and pre-washing after removing the totality of the suspended solids, 80% of the COD and 75% of the dissolved solids. This can be done using the following treatment systems: filtration-adsorption-reverse osmosis, or filtration-adsorption-ion exchange. The installation of these treatment techniques in the soft drink industry would decrease bottle washing water consumption by 50%.

  13. Effects of mechanical tensile properties of plastic film on plastic recycling method%农田地膜拉伸性能变化对缠绕式回收的影响

    Institute of Scientific and Technical Information of China (English)

    张佳喜; 王学农; 张丽; 喻晨; 蒋永新; 张海春; 刘旋峰; 乔园园; 王祥金

    2015-01-01

    农田长期覆膜种植产生的大量地膜对农田土壤质量、作物生长及环境造成严重的影响,为解决这一问题,于 2014年3月至2014年10月在新疆库尔勒尉犁县达西村开展大田试验,对比不同厚度、不同时间及不同位置地膜拉伸性能的变化规律,并针对0.01 mm地膜进行缠绕式回收试验.结果表明:地膜铺放后的30~60 d期间,由于受到风和紫外线照射等因素,拉伸强度有明显的下降,下降幅度较大;当地膜回收的时候,0.01 mm地膜最大拉伸力在近株端和远株端分别为1.52 N和1.305 N,是0.008 mm地膜的1.4倍和1.22倍.显然0.01 mm地膜的拉伸性能较0.008 mm拉伸性能有了一定的提升,这对地膜回收有一定的积极作用,但是经过理论计算及田间试验0.01 mm地膜的拉伸性能还是不足以采用简单缠绕的方式进行回收.本研究揭示了地膜拉伸性能在不同时间、不同厚度及不同位置受到紫外线等影响的变化规律,为地膜回收机的研制提供了理论依据.%Plastic mulching technology has brought huge economic benefits, while the residual plastic film produced series of serious problems such as pollution on land. A large number of plastic recycling is becoming urgent and important task in our country. A large amount and long term of used plastic film on soil has caused great serious influence on the high quality of farmland planting, crop growth, the rural ecological environment and new rural construction, which has attracted more and more attention. Now, the research on the recovery mechanism is limited to equipment of plastic film enwinding recycling, and there are few studies on the variation rule of the tensile properties of used plastic film and the impact. During our practical research work, performance such as unstable recycling capability, low film recovery rate and work parts deformation often appears in the used plastic film recycling. To address these problems, we carried out some

  14. Applying the three R's: Reduce, reuse, and recycle in the chemical industry.

    Science.gov (United States)

    Mostafa, Mohamed K; Peters, Robert W

    2017-03-01

    Pollution prevention (P2) assessment was conducted by applying the three R's, reduce, reuse, and recycle, in a chemical industry for the purpose of reducing the amount of wastewater generated, reusing paint wastewater in the manufacture of cement bricks, recycling cooling water, and improving water usage efficiency. The results of this study showed that the annual wastewater flow generated from the paint manufacturing can be reduced from 1,100 m(3) to 488.4 m(3) (44.4% reduction) when a high-pressure hose is used. Two mixtures were prepared. The first mixture (A) contains cement, coarse aggregate, fine aggregate, Addicrete BVF, and clean water. The second mixture (B) contains the same components used in the first mixture, except that paint wastewater was used instead of the clean water. The prepared samples were tested for water absorption, toxicity, reactivity, compressive strength, ignitability, and corrosion. The tests results indicated that using paint wastewater in the manufacture of the cement bricks improved the mechanical properties of the bricks. The toxicity test results showed that the metals concentration in the bricks did not exceed the U.S. EPA limits. This company achieved the goal of zero liquid discharge (ZLD), especially after recycling 2,800 m(3) of cooling water. The total annual saving could reach $42,570 with a payback period of 41 days. This research focused on improving the water usage efficiency, reducing the quantity of wastewater generated, and potentially reusing wastewater in the manufacture of cement bricks. Reusing paint wastewater in the manufacture of the bricks prevents the hazardous pollutants in the wastewater (calcium carbonate, styrene acrylic resins, colored pigments, and titanium dioxide) from entering and polluting the surface water and the environment. We think that this paper will help to find the most efficient and cost-effective way to manage paint wastewater and conserve fresh water resources. We also believe that this

  15. 废旧聚苯乙烯塑料再生再利用技术现状%Research on Techniques of Waste Polystyrene Plastics Recycling and Reusing

    Institute of Scientific and Technical Information of China (English)

    邓亮; 徐海萍; 谢华清; 李志杰

    2014-01-01

    主要介绍了废旧聚苯乙烯塑料的回收再生、再利用技术现状,涵盖了在涂料、胶黏剂、化工产品、建筑材料等领域的再生应用,重点讨论了熔融法再生和用于生产仿木建材的关键技术。通过分析和比较不同的再生再利用工艺技术,期望对未来废旧聚苯乙烯塑料资源化的发展方向有一定的指导意义。%The recycling and reusing techniques of waste polystyrene plastic, including the polystyrene foamed plastics, were intro-duced in this paper. It included the current situation of making coating, adhesive, chemistry products, building materials and pyrolytic technique, and mainly discussed the key techniques of melt extrusion and making wood-like plastics. Especially, the performance of different techniques of recycling and reusing process were also analyzed and compared. And the future development direction of waste polystyrene plastics recycling had been looked to.

  16. Curriculums in Industrial Technology. Plastics Technology. Industrial Maintenance. Computer Numerical Control. Teacher's Manuals and Student Learning Guides.

    Science.gov (United States)

    El Paso Community Coll., TX.

    Curriculum guides are provided for plastics technology, industrial maintenance, and computer numerical control. Each curriculum is divided into a number of courses. For each course these instructor materials are presented in the official course outline: course description, course objectives, unit titles, texts and materials, instructor resources,…

  17. Increased incidence of infertility treatment among women working in the plastics industry

    DEFF Research Database (Denmark)

    Hougaard, K.S.; Hannerz, H.; Feveile, H.

    2009-01-01

    Several plastic chemicals adversely affect reproductive ability. This study examined the possible association between employment in the plastics industry and infertility. Dynamic cohorts of economically active women and men were followed for hospital contacts due to infertility in the Danish...... infertility were observed among female plastic workers, as opposed to an expected 87.15 cases, i.e. relative risk was 1.23 (95% CI: 1.01-1.48). For male workers the numbers were 41 respectively 49.9 cases, with relative risk being 0.82 (95% CI: 0.59-1.11). The increased incidence of infertility treatment...

  18. Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India.

    Science.gov (United States)

    Pradhan, Jatindra Kumar; Kumar, Sudhir

    2014-01-01

    Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.

  19. Smart Natural Fiber Reinforced Plastic (NFRP) Composites Based On Recycled Polypropylene in The Presence Kaolin

    Science.gov (United States)

    Suharty, N. S.; Ismail, H.; Diharjo, K.; Handayani, D. S.; Lestari, W. A.

    2017-07-01

    Composites contain double filler material which act as reinforcement and flame retardants of recycled polypropylene (rPP)/kaolin(Kao)/palm oil empty bunch fiber (PEBF) have been succesfully prepared. The composites were synthesized through reactively solution method, using coupling agent PP-g-AA and compatibilizer DVB. The effect of double filler [Kao/PEBF] were investigated flexural strength (FS), inflammability, and morphology. Mechanical testing result in accordance to ASTM D790, the FS of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was 48% higher than that of rPP matrix. Moreover, flexural modulus (FM) was significantly improved by 56% as compared to that of rPP matrix. The scanning electron images (SEM) shown good dispersion of [Ka/PEBF] and good filler-matrix interaction. The inflammability testing result which is tested using ASTM D635, showed that the flame resistance of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was improve by increasing of time to ignition (TTI) about 857% and burning rate (BR) decreasing to 66% compared to the raw material rPP matrix. In the same time, the addition of 20% (w/w) PEBF as a second filler to form rPP/DVB/PP-g-AA/Kao+ZB/PEBF composites (F5) is able to increase: the FS by 17.5%, the FM by 19%, the TTI by 7.6% and the BR by 3.7% compared to the composite without PEBF (F2).

  20. Does open-air exposure to volatile organic compounds near a plastic recycling factory cause health effects?

    Science.gov (United States)

    Yorifuji, Takashi; Noguchi, Miyuki; Tsuda, Toshihide; Suzuki, Etsuji; Takao, Soshi; Kashima, Saori; Yanagisawa, Yukio

    2012-01-01

    After a plastic reprocessing factory began to operate in August 2004, the residents around the factory in Neyagawa, Osaka, Japan, began to complain of symptoms. Therefore, we conducted an exposure assessment and a population-based epidemiological study in 2006. To assess exposure, volatile organic compounds (VOCs) and total VOCs were measured at two locations in the vicinity of the factory. In the population-based study, a total of 3,950 residents were targeted. A self-administered questionnaire was used to collect information about subjects' mucocutaneous or respiratory symptoms. Using logistic regression models, we compared the prevalence of symptoms in July 2006 by employing the farthest area from the factory as a reference, and prevalence odds ratios (PORs) and their 95% confidence intervals (CIs) were estimated. The concentration of total VOCs was higher in the vicinity of the factory. The prevalence of mucocutaneous and respiratory symptoms was the highest among the residents in the closest area to the factory. Some symptoms were significantly increased among the residents within 500 m of the factory compared with residents of an area 2800 m from the factory: e.g., sore throat (POR=3.2, 95% CI: 1.3-8.0), eye itch (POR=3.0, 95% CI: 1.5-6.0), eye discharge (POR=6.0, 95% CI: 2.3-15.9), eczema (POR=3.0, 95% CI: 1.1-7.9) and sputum (POR=2.4, 95% CI: 1.1-5.1). Despite of the limitations of this study, these results imply a possible association of open-air VOCs with mucocutaneous and respiratory symptoms. Because this kind of plasticre cycling factory only recently came into operation, more attention should be paid to the operation of plastic recycling factories in the environment.

  1. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull. 2007; 6(4: 307-312

  2. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities

    Directory of Open Access Journals (Sweden)

    Kristýna Černá

    2017-02-01

    Full Text Available Background: In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Material and Methods: Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Results: Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103–9.0×105 colony-forming units (CFU/m3, while the lowest ones in winter (2.7×103–2.9×105 CFU/m3. The concentration increased from the beginning of the work shift and reached a plateau after 6–7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Conclusions: Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1:1–9

  3. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities.

    Science.gov (United States)

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2017-02-28

    In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103-9.0×105 colony-forming units (CFU)/m3), while the lowest ones in winter (2.7×103-2.9×105 CFU/m3). The concentration increased from the beginning of the work shift and reached a plateau after 6-7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1):1-9.

  4. Reliable liquid chromatography-mass spectrometry method for investigation of primary aromatic amines migration from food packaging and during industrial curing of multilayer plastic laminates.

    Science.gov (United States)

    Lambertini, Francesca; Di Lallo, Valentina; Catellani, Dante; Mattarozzi, Monica; Careri, Maria; Suman, Michele

    2014-09-01

    Primary aromatic amines (PAAs) can migrate from packaging into food from different sources such as polyurethanic adhesives used for the manufacture of multilayer films, which may contain residual aromatic isocyanates, or recycled paperboard, because of the presence of azo dyes in the printed paper massively used in the recycling process. In the present work, a reliable analytical method, exploiting a conventional high-performance liquid chromatography-(selected ion monitoring)-mass spectrometry system, for PAAs compliance assessment in food contact materials was developed as an effective alternative to the current standard spectrophotometric one, moving in this way from the screening to the accurate and selective quantitation perspective for the analysis of PAAs both in aqueous and acidic food simulants. The main validation parameters were verified achieving very satisfactory results in terms of linearity range, limit of detection (ranging from 0.1 to 1.0 µg kg(-1)) and quantitation (ranging from 0.1 to 3.6 µg kg(-1)), repeatability and accuracy. Suitability of the method was demonstrated for a wide range of commercial samples, chosen among different producers of the most common used food packaging plastic and paperboard categories and then analyzed to assess the risk related to PAAs migration. Finally, the method was also successfully exploited to monitor the evolution of potential PAAs migration during the industrial curing process of multilayer plastic laminates, prior to their release for delivery to the food industry end user.

  5. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging.

    Science.gov (United States)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-11-01

    This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further "sustainable" recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both "traditional" (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  6. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties.

    Science.gov (United States)

    Rahman, Khandkar-Siddikur; Islam, Md Nazrul; Rahman, Md Mushfiqur; Hannan, Md Obaidullah; Dungani, Rudi; Khalil, Hps Abdul

    2013-01-01

    This study deals with the fabrication of composite matrix from saw dust (SD) and recycled polyethylene terephthalate (PET) at different ratio (w/w) by flat-pressed method. The wood plastic composites (WPCs) were made with a thickness of 6 mm after mixing the saw dust and PET in a rotary type blender followed by flat press process. Physical i.e., density, moisture content (MC), water absorption (WA) and thickness swelling (TS), and mechanical properties i.e., Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) were assessed as a function of mixing ratios according to the ASTM D-1037 standard. WA and TS were measured after 24 hours of immersion in water at 25, 50 and 75°C temperature. It was found that density decreased 18.3% when SD content increased from 40% to 70% into the matix. WA and TS increased when the PET content decreased in the matrix and the testing water temperature increased. MOE and MOR were reached to maximum for the fabricated composites (2008.34 and 27.08 N/mm(2), respectively) when the SD content were only 40%. The results indicated that the fabrication of WPCs from sawdust and PET would technically feasible; however, the use of additives like coupling agents could further enhance the properties of WPCs.

  7. Wood-plastic composites as promising green-composites for automotive industries!

    Science.gov (United States)

    Ashori, Alireza

    2008-07-01

    Wood-plastic composite (WPC) is a very promising and sustainable green material to achieve durability without using toxic chemicals. The term WPCs refers to any composites that contain plant fiber and thermosets or thermoplastics. In comparison to other fibrous materials, plant fibers are in general suitable to reinforce plastics due to relative high strength and stiffness, low cost, low density, low CO2 emission, biodegradability and annually renewable. Plant fibers as fillers and reinforcements for polymers are currently the fastest-growing type of polymer additives. Since automakers are aiming to make every part either recyclable or biodegradable, there still seems to be some scope for green-composites based on biodegradable polymers and plant fibers. From a technical point of view, these bio-based composites will enhance mechanical strength and acoustic performance, reduce material weight and fuel consumption, lower production cost, improve passenger safety and shatterproof performance under extreme temperature changes, and improve biodegradability for the auto interior parts.

  8. Some exploitation properties of wood plastic composites (WPC), based on high density polyethylene and timber industry waste

    OpenAIRE

    janis kajaks

    2015-01-01

    Abstract: In this study, the influence of wood fiber content (40, 50 and 60 wt.%) and coupling agent concentration (3 and 5 wt.%) on the mechanical properties of wood-plastic composites (WPCs) was investigated. Two types of plastic (high-density-polyethylene (HDPE) and recycled high-density-polyethylene (rHDPE)) were used as polymer matrices for preparing WPC. As reinforcement, prior grinded (fiber length < 0.5 mm) coniferous wood shavings were utilized. Overall trend showed, that by addin...

  9. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model.

    Science.gov (United States)

    Liang, Sai; Zhang, Tianzhu; Xu, Yijian

    2012-03-01

    Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Theoretical Analysis and Experimental Study on the Coating Removal from Passenger-Vehicle Plastics for Recycling by Using Water Jet Technology

    Science.gov (United States)

    Zhang, Hongshen; Chen, Ming

    2015-11-01

    The recovery and utilization of automotive plastics are a global concern because of the increasing number of end-of-life vehicles. In-depth studies on technologies for the removal of coatings from automotive plastics can contribute to the high value-added levels of the recycling and utilization of automotive plastic. The liquid waste generated by removing chemical paint by using traditional methods is difficult to handle and readily produces secondary pollution. Therefore, new, clean, and highly efficient techniques of paint removal must be developed. In this article, a method of coating removal from passenger-vehicle plastics was generated based on high-pressure water jet technology to facilitate the recycling of these plastics. The established technology was theoretically analyzed, numerically simulated, and experimentally studied. The high-pressure water jet equipment for the removal of automotive-plastic coatings was constructed through research and testing, and the detailed experiments on coating removal rate were performed by using this equipment. The results showed that high-pressure water jet technology can effectively remove coatings on the surfaces of passenger-vehicle plastics. The research also revealed that the coating removal rate increased as jet pressure ( P) increased and then decreased when jet moving speed ( Vn) increased. The rate decreased as the distance from nozzle to work piece ( S nw ) and the nozzle angle ( Φ) increased. The mathematical model for the rate of removal of coatings from bumper surfaces by water jet was derived based on the experiment data and can effectively predict coating removal rate under different operating conditions.

  11. Plastics - the sustainable way to use Oil and Gas

    Energy Technology Data Exchange (ETDEWEB)

    Siebourg, Wolfgang

    2009-07-01

    Conclusions (drawn by the author): Plastics are a sustainable use of oil and gas - Plastic products enable significant savings of energy and GHG emissions particularly in the use phase; - Plastic products help use resources in the most efficient way. Restricting plastics relative growth would result in increased energy consumption. Diversion from landfill would increase resource efficiency. Waste-to-Energy is an additional resource and is complementary to mechanical recycling. Plastics producers and the Oil and Gas industry should cooperate to produce reliable consumption data. Oil and Gas industry should develop and maintain European (world) eco-profiles (cradle to gate) for their respective industry. (author)

  12. Recycling of modules: the industry meets the demand; Recyclage des modules: la filiere s'organise

    Energy Technology Data Exchange (ETDEWEB)

    Houot, G.

    2011-04-15

    In a few years the number of photovoltaic plants to be decommissioned will begin to grow dramatically which will generate a huge need for the collect and recycling of old solar panels. A European association PV-Cycle proposes to set up a dedicated waste processing industry that will be able to recycle up to 85% of the wastes from old solar panels. 23 spots for recovering solar panels have been installed throughout Europe, the recovery of about 1000 to 1500 tons of equipment is expected for 2011. The German Sunicon enterprise has set up an automated process that combines thermal, mechanical and chemical processes in order to allow an almost complete recycling of glass and silicon into the solar panel industry. In a near future the capacity of Sunicon will pass from 800 tons to 20.000 tons a year. The American company First Solar organizes itself the recovery and recycling of the CdTe solar panels it manufactured. (A.C.)

  13. Developing environmental legislation to promote recycling of industrial by-products - an endless story?

    Science.gov (United States)

    Sorvari, Jaana

    2008-01-01

    In Finland during the last few decades, mineral industrial residues (by-products) have been used in earthworks, but only to a limited extent relative to their total volume. The most important barrier to efficient recycling of by-products has been the need for a site-specific environmental permit, since the permit process tends to be time-consuming and laborious. In 2000 a working group was set up to prepare national legislation, i.e., a Government decree, in order to promote the use of by-products in earth construction. The aim was to exempt certain residues from the environmental permit obligation. At the first stage, the working group determined specific decision criteria for the selection of the by-products to be included. For the selected residues, the acceptable construction applications and material-specific environmental standards were defined. Various difficulties were encountered during the preparation of the decree. These were mainly caused by the lack of data and by some ongoing changes in environmental regulations. Furthermore, the draft decree received several critical and partly contradictory comments and proposals for amendments. This resulted in considerable delay in implementation.

  14. Carbon dioxide recycling: emerging large-scale technologies with industrial potential.

    Science.gov (United States)

    Quadrelli, Elsje Alessandra; Centi, Gabriele; Duplan, Jean-Luc; Perathoner, Siglinda

    2011-09-19

    This Review introduces this special issue of ChemSusChem dedicated to CO(2) recycling. Its aim is to offer an up-to-date overview of CO(2) chemical utilization (inorganic mineralization, organic carboxylation, reduction reactions, and biochemical conversion), as a continuation and extension of earlier books and reviews on this topic, but with a specific focus on large-volume routes and projects/pilot plants that are currently emerging at (pre-)industrial level. The Review also highlights how some of these routes will offer a valuable opportunity to introduce renewable energy into the existing energy and chemical infrastructure (i.e., "drop-in" renewable energy) by synthesis of chemicals from CO(2) that are easy to transport and store. CO(2) conversion therefore has the potential to become a key pillar of the sustainable and resource-efficient production of chemicals and energy from renewables. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Shanxi Provincial Government and CHINALCO Signed Strategic Cooperation Framework Agreement For the Construction of Aluminum Recycling Industry Base

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On May 16,Shanxi Provincial Government and CHINALCO held agreement-signing ceremony for the"Strategic Cooperation Framework Agreement for Building CHINALCO Shanxi Aluminum Recycling Industry Base"in Taiyuan;Li Xiaopeng,Governor of Shanxi Province,attended the meeting.Guo Yingguang,Vice Governor of Shanxi Province,and Sun Zhaoxue,General Manager of CHINALCO,signed the agreement on behalf of both sides.

  16. Securing the metal recycling chain for the steel industry by detecting orphan radioactive sources in scrap metal

    Science.gov (United States)

    Pesente, S.; Vanini, S.; Benettoni, M.; Bonomi, G.; Calvini, P.; Checchia, P.; Conti, E.; Gonella, F.; Nebbia, G.; Squarcia, S.; Viesti, G.; Zenoni, A.; Zumerle, G.

    2010-08-01

    Experimental tests are reported for the detection of the heavy metal shielding of orphan sources hidden inside scrap metal by using a recently developed muon tomography system. Shielded sources do not trigger alarm in radiation portal commonly employed at the entrance of steel industry using scrap metal. Future systems integrating radiation portals with muon tomography inspection gates will substantially reduce the possibility of accidental melting of radioactive sources securing the use of recycled metal.

  17. Rethink, Rework, Recycle.

    Science.gov (United States)

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  18. The recycling is moving

    CERN Multimedia

    GS Department

    2011-01-01

    The recycling site currently situated near building 133 has been transferred to the car park of building 156. The site is identified by the sign “RECYCLING” and the above logo. In this new, more accessible site, you will find recycling bins for the following waste: PET (recyclable plastic bottles); Aluminium cans; Nespresso coffee capsules.  

  19. 新疆兵团残膜回收政策机制的探讨与分析%Discussion and Analysis On Plastic Film Residue Recycling Policy Mechanisms in Xinjiang Crops

    Institute of Scientific and Technical Information of China (English)

    李华; 王鹏; 赵永满

    2014-01-01

    文章通过与新疆地方上残膜回收政策、措施对比分析,找出兵团地区残膜回收存在的问题,提出了关于扶持、激励及补贴等政策的建议,通过技术创新、回收再利用、监督及残膜回收考核等机制的建立,为残膜污染治理提供参考。%the paper found out the existing recycling problems through the recycling policies, measures and comparative analysis on plastic film residue recycling in Xinjiang Corps and raised the suggestions such as support, incentives and subsidies, as well as provide reference for plastic fill treatment after technical innovation, recycling and reusing, supervision and establishment of recycling check.

  20. Copper removal from an effluent generated by a plastics chromium-plating industry using a rotating cylinder electrode (RCE) reactor.

    Science.gov (United States)

    Rivera, F F; González, I; Nava, J L

    2008-08-01

    This work shows the application of a rotating cylinder electrode (RCE) in the removal of Cu(II) content from an effluent generated by a plastics chromium-plating industry, on the laboratory scale; in particular, it deals with rinse water from the electrolytic copper process. This process was designed to convert cupric ions in solution to metal powder. The generation of metal powders in the RCE was achieved at Reynolds numbers between 52925 and 83183 and limiting current densities (J(L)) in the range of 17 to 25 mA cm(-2). The removal of Cu(II) (initially 922 ppm) reached 43 ppm in 10 minutes of electrolysis for Re = 83183 and J = 25 mA cm(-2), with a space-time yield of 88 mg Cu(II) L(-1) min(-1), 95% current efficiency, and energy consumption of 5.3 KWh m(-3). The electrochemical treatment applied to waste rinse water at the RCE allows this treated water to be recycled back to the same rinsing process, avoiding additional consumption and discharge of this liquid.

  1. Waste Plastics Recycling and Reuse Technology Situation and Development Trend in China%我国废旧塑料的资源再利用现状与发展趋势

    Institute of Scientific and Technical Information of China (English)

    张雪; 张承龙

    2014-01-01

    通过对当前我国废旧塑料资源再利用现状的研究,分析和对比了不同废旧塑料资源再利用方法的工艺和特点,并且对废旧塑料处理的发展趋势做出了预测。%Through the study of the current status of waste plastic recycling, the processes and characteristics of different methods of recycling waste plastics are analyzed and compared, and the development trend of waste plastics processing is forecast.

  2. Phosphogypsum recycling in the building materials industry: assessment of the radon exhalation rate.

    Science.gov (United States)

    Campos, M P; Costa, L J P; Nisti, M B; Mazzilli, B P

    2017-06-01

    Phosphogypsum can be classified as a Naturally Occurring Radioactive Material (NORM) residue of the phosphate fertilizer industry. One of the main environmental concerns of its use as building material is the radon exhalation. The aim of this study is to measure the radon exhalation rate from plates and bricks manufactured with phosphogypsum from three installations of the main Brazilian producer, Vale Fertilizantes, in order to evaluate the additional health risk to dwellers. A simple and reliable accumulator method involving a PVC pipe sealed with a PVC pipe cover commercially available with CR-39 radon detector into a diffusion chamber was used for measuring radon exhalation rate from phosphogypsum made plates and bricks. The radon exhalation rate from plates varied from 0.19 ± 0.06 Bq m(-2) h(-1), for phosphogypsum from Bunge Fertilizers, from 1.3 ± 0.3 Bq m(-2) h(-1), for phosphogypsum from Ultrafertil. As for the bricks, the results ranged from 0.11 ± 0.01 Bq m(-2) h(-1), for phosphogypsum from Bunge Fertilizers, to 1.2 ± 0.3 Bq m(-2) h(-1), for phosphogypsum from Ultrafertil. The results obtained in this study for the radon exhalation rate from phosphogypsum plates and bricks are of the same order of magnitude than those from ordinary building materials. So, it can be concluded that the recycling of phosphogypsum as building material is a safe practice, since no additional health risk is expected from the radiological point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pollution characteristics of volatile organic compounds, polycyclic aromatic hydrocarbons and phthalate esters emitted from plastic wastes recycling granulation plants in Xingtan Town, South China

    Science.gov (United States)

    Huang, De-Yin; Zhou, Shun-Gui; Hong, Wei; Feng, Wei-Feng; Tao, Liang

    2013-06-01

    With the aim to investigate the main pollution characteristics of exhaust gases emitted from plastic waste recycling granulation plants, mainly volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) were analyzed in Xingtan Town, the largest distribution center of plastic waste recycling in China. Both inside and outside the plants, the total concentrations of volatile monocyclic aromatic hydrocarbons (MAHs), PAHs and PAEs ranged from 2000 to 3000 μg m-3, 450 to 1200 ng m-3, and 200 to 1200 ng m-3, respectively. Their concentration levels inside the plants were higher than those outside the plants, and PAHs and PAEs were mainly distributed in the gas-phase. Notably, highly toxic benzo[a]pyrene (BaP) could be detected inside the plants, and harmful PAEs could be detected not only inside but also outside the plants, although PAEs are non-volatile. The exhaust gas composition and concentration were related to the plastic feedstock and granulation temperature.

  4. 工业循环经济的4R原则%The 4R-Rules of Recycling Economy in Industry

    Institute of Scientific and Technical Information of China (English)

    张录强

    2005-01-01

    Traditional 3R-rules have been regarded as behaviour rules for developing recycling economy. However. with the development of modern advanced manufacturing techniques, the important value of remanufacturtng in promoting recycling economy has been given more and more attention to in recent years. Remanufacturing engineering technology, which utilizes advanced surface engineering and forming technology, produces directly with useable components of scraped machines. It can conserve the most of materials (about 85%-95%) and energy (about 80-85%) of original products with less pollution. By remanufacturing, we can reduce resources' consumption under the condition of meeting the needs of social and economic development. Remanufacturing is an advanced method for recycling economy in industry. Therefore, we think that the rules of recycling economy in industry could be extended from 3R-rules to 4R-rules. The 4R-rules' optimal sequence would be reduce,reuse, remanufacture, and recycle.

  5. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hooseok, E-mail: hooseok.lee@gmail.com; Ohsawa, Isamu; Takahashi, Jun

    2015-02-15

    Highlights: • Plasma treatment was used to improve the adhesion property between the recycled CF and polymer matrix. • In order to evaluate the adhesion between plasma treated recycled CF and polymer, micro droplet test was conducted. • The interfacial shear strength and the interfacial adhesion of recycled carbon fiber increased. - Abstract: We studied the effects of plasma surface treatment of recycled carbon fiber on adhesion of the fiber to polymers after various treatment times. Conventional surface treatment methods have been attempted for recycled carbon fiber, but most require very long processing times, which may increase cost. Hence, in this study, plasma processing was performed for 0.5 s or less. Surface functionalization was quantified by X-ray photoelectron spectroscopy. O/C increased from approximately 11% to 25%. The micro-droplet test of adhesion properties and the mechanical properties of CFRP were also investigated.

  6. Material recycling of post-consumer polyolefin bulk plastics: Influences on waste sorting and treatment processes in consideration of product qualities achievable.

    Science.gov (United States)

    Pfeisinger, Christian

    2017-02-01

    Material recycling of post-consumer bulk plastics made up of polyolefins is well developed. In this article, it is examined which effects on waste sorting and treatment processes influence the qualities of polyolefin-recyclats. It is shown that the properties and their changes during the product life-cycle of a polyolefin are defined by its way of polymerisation, its nature as a thermoplast, additives, other compound and composite materials, but also by the mechanical treatments during the production, its use where contact to foreign materials is possible and the waste sorting and treatment processes. Because of the sum of the effects influencing the quality of polyolefin-recyclats, conclusions are drawn for the material recycling of polyolefins to reach high qualities of their recyclats. Also, legal requirements like the EU regulation 1907/2006 concerning the registration, evaluation, authorisation and restrictions on chemicals are considered.

  7. THE EFFECT OF THE SLUDGE RECYCLE RATIO IN AN ACTIVATED SLUDGE SYSTEM FOR THE TREATMENT OF AMOL'S INDUSTRIAL PARK WASTEWATER

    Directory of Open Access Journals (Sweden)

    BAHAR HOSSEINI

    2008-09-01

    Full Text Available An activated sludge aeration tank and a sedimentation basin were used to treat Amol’s industrial park effluents originating from all industrial units. A continuous system was implemented and the kinetic parameters were measured.The parameters such as rate constant, substrate utilization rate constant, yield and decay coefficient were 2.12 d-1, 232.4 mg l-1, 0.33 g/g of substrate and 0.096 d−1, respectively. The hydraulic retention times (HRT were in the range of 9 to 27 h. The sludge recycle ratios in the range from 0.3 to 1 were considered. The COD removal, SVI and DO were determined and the optimal values were obtained. It was observed that at HRT of 16 h and the sludge recycle ratio of 0.85, the COD removal and SVI were 95 and 85 %, respectively. The sludge recycle ratio greater than 0.85 had no significant effect on the COD removal.

  8. High density polyethylene (HDPE)/poly(ethylene terephthalate) (PET) polymer blend studies related to recycling co-mingled plastics

    Science.gov (United States)

    Tsai, Pang-Yen

    responsible for the poor performance. Therefore, careful selection of processing conditions to minimize degradation and compatibilization of the PCRs would be recommended for improving the mechanical properties of the recycled plastics where this can be advantageous and cost effective.

  9. GROWTH PERFORMANCE AND PRODUCTIVITY OF RUBBER & PLASTIC PRODUCTS INDUSTRY IN PUNJAB

    Directory of Open Access Journals (Sweden)

    GULSHAN KUMAR

    2010-01-01

    Full Text Available Present study is an endeavour to investigate growth pattern and productivity trends in small scale rubber and plastic products industry of Punjab. The growth of industry has been gauged in terms of variables - number of units, fixed investment, employment and production. Yearly growth rates have been computed to catch year- to- year fluctuations in growth and compound annual growth rates (CAGRs have been worked out to ascertain the impact of the policies of liberalized regime on growth of this industry. Productivity trends have been sketched in terms of partial factor productivities of labour and capital. In order to understand the strengths and weaknesses of the industry, SWOT analysis has been conducted. The study revealed that the liberalisation has promoted the use of capital intensive and labour saving techniques of production leading to a dismal growth of employment and sluggish growth of number of units.

  10. Management strategies on the industrialization road of state-of-the-art technologies for e-waste recycling: the case study of electrostatic separation--a review.

    Science.gov (United States)

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2013-02-01

    Electronic waste (e-waste) management is pressing as global production has increased significantly in the past few years and is rising continuously at a fast rate. Many countries are facing hazardous e-waste mountains, most of which are disposed of by backyard recyclers, creating serious threats to public health and ecosystems. Industrialization of state-of-the-art recycling technologies is imperative to enhance the comprehensive utilization of resources and to protect the environment. This article aims to provide an overview of management strategies solving the crucial problems during the process of industrialization. A typical case study of electrostatic separation for recycling waste printed circuit boards was discussed in terms of parameters optimization, materials flow control, noise assessment, risk assessment, economic evaluation and social benefits analysis. The comprehensive view provided by the review could be helpful to the progress of the e-waste recycling industry.

  11. Is it possible to recycle nuclear wastes? Costs, risks and stakes of the plutonium industry; Peut-on recycler les dechets nucleaires? Couts, risques et enjeux de l'industrie du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This document, published by the French association 'Sortir du nucleaire' (Get out of nuclear), gives some information on the chain reaction from uranium to plutonium, the difference between reprocessing (which does not reduce waste volumes but multiply waste types) and recycling, the high risks associated with plutonium transport, La Hague as the most dangerous nuclear site in France, reprocessing as the alibi for the French nuclear industry, Areva as an expert in propaganda, reprocessing as an absurd world strategy, plutonium as a fuel for proliferation, the myth of unlimited energy with the breeder reactors, and so on

  12. R3DO: A Plastic Recycling System For Creating 3D Printer Feedstock On-Orbit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An automated in-space recycling system for 3D printer feedstock will provide game-changing resupply benefits including but not limited to launch mass reduction,...

  13. Influence of Impact Modifier and Coupling Agent on Impact Strength of Wood Flour/Recycled Plastic Composites

    Directory of Open Access Journals (Sweden)

    Saman GHAHRI

    2014-03-01

    Full Text Available In this research, the improvement of impact strength of wood flour/recycled polypropylene (PP composites was investigated. The PP (virgin and recycled polypropylene and wood flour (WF were compounded at 50% by weight wood flour loading in a counter-rotating twin-screw extruder in the presence MAPP and two types of impact modifiers (ethylene vinyl acetate (EVA and ethylene/propylene/diene terpolymer (EPDM, to produce wood flour-PP composites specimen. The results showed that the composites containing recycled PP exhibited significantly lower impact strength values than those of containing virgin PP. The addition of MAPP, EVA and EPDM in the specimens increased their impact strength. In the presence of MAPP, higher increase in impact strength of the recycled PP/WF composites was observed due to impact modifiers. Both impact modifiers increased the impact strength of the PP/WF composites but the addition of EVA gave the greatest improvements in impact strength. Although the addition of impact modifiers and MAPP increased the impact strength of composites containing recycled PP, such values were still significantly lower than those of containing virgin PP (not modified with MAPP or impact modifier. The use of impact modifiers decreased the flexural properties of the recycled PP/WF composites.

  14. Energetic reuse: the use of energy from organic material from urban waste for plastics recycling; Reaproveitamento energetico: uso de energia proveniente de material organico dos residuos urbanos para reciclar plasticos

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Priscila Alves; Rocha, Carlos Roberto [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2008-07-01

    The population growth and the elevation of the purchasing status due to economic development impel the gradual increase of residues produced a year. The discarding of these residues represents a great economic and environmental challenge, mainly because of discarded plastic concentration with no energetic and economic use, a also because of the organic material that, after decomposing, produces methane, one of the most responsible for global heating when in contact with atmosphere with no control. The recycling of plastic residues is a solution to minimize its discard and to guarantee an environmental improvement for saving raw matter, however the high consumption of energy endears the process, making it difficult its economic viability. This takes the search of new alternatives for attainment of low cost energy. In the problem of discard of the organic matter it can be the solution for the recycling of these residues. The decomposition of the organic matter produces fuel (biogas) useful as power plant for the generation of necessary electricity to the recycling process. The present study analyses an alternative to recycle plastic residues, after being consumed, in some places for discarding and using energy from biogas produced in landfills or biodigestors. Initially it was carried through a data-collecting and analysis of the physical composition of the residues, indispensable to the development of the study, which allowed to daily find the average percentage of plastics (12,9%) and organic matter (41,9%) made use by the involved population. On the basis of the data of organic matter the determination in such a way of the potential of generation of the biogas as of the electric power 'recycled' was possible to leave of that they would be discarded without any use. Data-collecting on equipment used in the plastic recycling had been essential for attainment of the necessary average energy demand to the process in such a way not only for soft plastic and

  15. 废旧线路板中塑料的回收及利用%Recycling and Reusing of Plastic in Waste Printed Circuit Board

    Institute of Scientific and Technical Information of China (English)

    李启胜

    2012-01-01

    总结了废旧线路板中塑料的回收处置方法和废旧线路板中塑料的回收利用现状.重点介绍了废旧线路板中塑料的物理回收法、热解回收法和溶液回收法,在综合比较废旧线路板中塑料回收利用的各种方法的基础上展望了废旧线路板中塑料回收利用的发展趋势.%The recycling technology and comprehensive application-situation of plastic in waste printed circuit board were summarized, and the physical recovery method, pyrolysis recovery method and solution recovery method were mainly introduced. On the basis of comprehensive comparing of the recycling methods, the recyling trends of plastic in waste printed circuit board was prospected.

  16. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2015-01-01

    This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem.

  17. The Use of New and Recycled Wood Materials by the Pallet Industry

    Science.gov (United States)

    Robert J. Bush; Eric Hansen; Philip A. Araman

    1995-01-01

    Few people would argue with the statement that interest in pallet recycling has increased in the last few years. Several trends have lead to this increased interest. First, increased awareness of the environment and activities that affect the environment has caused a previously unconcerned public to ask: What happens to all those pallets? Many pallet producers,...

  18. Neural network modelling and prediction of the flotation deinking behaviour of industrial paper recycling processes

    CSIR Research Space (South Africa)

    Pauck, WJ

    2014-01-01

    Full Text Available The removal of ink from recovered papers by flotation deinking is considered to be the “heart” of the paper recycling process. Attempts to model the deinking flotation process from first principles has resulted in complex and not readily usable...

  19. 高炉喷吹废塑料的先进技术%Establishment of Advanced Recycling Technology for Waste Plastics in Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    王颖

    2012-01-01

    废塑料循环利用技术对于全球环境保护和社会发展都是一个非常重要的课题。JFE制钢公司为了将废塑料作为高炉的还原剂,通过热模燃烧实验;研究了废塑料的燃烧气化率。经过研究,为了改善粗粒废塑料的燃烧性,开发了同时喷吹煤粉或/和天然气的技术,为了提高废塑料的燃烧和气化率及炉内透气性,JFE开发出将废塑料与碳酸钙(CaC03)复合造粒技术。另外,JFE还研究了废塑料精细粉碎技术。此技术已经应用在实际生产中。%The establishment of technology for recycling waste plastics is a highly important issue for global environmental conservation and the society. JFE Steel has pursued the effective use of waste plastics as a reducing agent for injection into blast furnaces, and conducted hot model experiments to study the combustion and gasification behaviour of waste plastics. On the basis of this basic investigation, advanced technologies that can further improve the combustion and gasification efficiency of waste plastics even with low strength has been developed; i.e. in order to improve combustibility of fine waste plastics, technology for simultaneous injection of such plastics with pulverized coal and/or natural gas has been developed. For improved the strength of plastics, technology for combined agglomeration of waste plastics with CaC03 has been developed. In addition, technology for fine crushing of waste plastics has been studied on the basis of new ideas, and this technology has been applied in actual plant operation. These technologies have been successfully applied in actual blast furnaces, contributing to lowering the reducing agent rate.

  20. Sustainable reverse logistics for household plastic waste

    OpenAIRE

    Bing, X

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than that of virgin plastics. Therefore, it is environmentally and economically beneficial to improve the plastic recycling system to ensure more plastic waste from households is properly collected and pr...

  1. Two new cases of liver angiosarcoma: history and perspectives of liver angiosarcoma among plastic industry workers.

    Science.gov (United States)

    Hozo, I; Andelinović, S; Ljutić, D; Bojić, L; Mirić, D; Giunio, L

    1997-01-01

    In this report of two new cases of liver angiosarcoma (ASL) among plastic industry workers, the authors present the history and perspectives of this problem. The first cases of ASL have been registered since 1974, and in 1984, the European register of angiosarcoma was founded. In this register, 11 cases of ASL and one case of haemangiopericytoma have been registered from Croatia, all from a single plastics plant near Split. Two new cases of ASL (in retired autoclave cleaners, who were exposed to a concentration of 500-1000 ppm vinyl chloride monomer (VCM) during the working process) in the same plant are represented. They were detected with combined techniques of ASL detection, and both are still alive. The diagnoses have been histologically confirmed: one of them was surgically treated with segmental liver resection. The appearance of new cases of ASL confirms the perspective presented in the last report by the same authors.

  2. Reciclagem de materiais plásticos: a importância da identificação correta Plastic materials recycling: the importance of the correct identification

    Directory of Open Access Journals (Sweden)

    Leda Coltro

    2008-06-01

    Full Text Available Muitos produtos de material plástico apresentam código de identificação (normalmente um número de 1 a 7 dentro de um triângulo de três setas e sob o mesmo uma abreviatura indicando o tipo de plástico do qual o produto é feito para auxiliar sua separação e posterior reciclagem e revalorização, contribuindo com a recuperação dos materiais plásticos descartados com o resíduo sólido urbano. Como as embalagens têm rotatividade alta, é importante que as mesmas apresentem o símbolo de identificação da resina a fim de facilitar a cadeia de reciclagem do plástico. Neste trabalho, foi feito um levantamento de dados sobre os símbolos de identificação dos materiais plásticos em um total de 177 embalagens plásticas rígidas para o acondicionamento de diversos produtos alimentícios e não alimentícios disponíveis no mercado brasileiro. Apesar da norma brasileira ABNT NBR 13230 já ter 14 anos, há ainda heterogeneidade na identificação das embalagens plásticas. Somente cerca de 80% das embalagens avaliadas apresentaram o símbolo de identificação da resina. Além disso, em alguns casos até 40% das embalagens apresentaram a identificação do material de forma incorreta. Portanto, ainda existe informação errônea no mercado brasileiro sobre o tipo de material da embalagem plástica (incluindo ausência do símbolo de identificação, bem como falta de informação sobre o símbolo correto de identificação da resina, sendo que ambos os fatores prejudicam a cadeia de reciclagem do plástico.Many plastic-based products show a resin identification code - usually a number from 1 to 7 inside a three-arrow triangle above a monogram - to identify the type of plastic used to make the product, for assisting in its separation and later recycling. In other words, to facilitate the recovery of plastics discarded with the municipal solid waste. Since packages have a high rotation, the presence of the resin identification code is

  3. Development of Regeneration Technology and Recycling Technology of Appliances Plastics%家电塑料再生技术和再生利用技术的研究进展

    Institute of Scientific and Technical Information of China (English)

    黄军左; 刘熠纯

    2011-01-01

    家电塑料的再生利用技术与一般塑料再生利用技术并无本质上的区别,其特点在于回收家电塑料需要进行拆卸、分类等前处理.因此,家电再生利用技术是家电塑料回收技术的重要组成部分.本文介绍了当前一些先进的科学研究与回收再生手段,阐述了废旧家电再生技术和再生利用技术.%Recycling technology of appliances plastics and it of general there is no essential difference, Its characteristics is the need of pre - treatment of disassembly and dlassification etc. For plastic appliance recycling. Therefore, the recycling technology of appliances plastics is an important part for recovery technology of appliances plastics. This article describes some of the advanced scientific research and the current recycling methods, described regeneration technology and recycling technology of the waste home appliances.

  4. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties

    Science.gov (United States)

    Lee, Hooseok; Ohsawa, Isamu; Takahashi, Jun

    2015-02-01

    We studied the effects of plasma surface treatment of recycled carbon fiber on adhesion of the fiber to polymers after various treatment times. Conventional surface treatment methods have been attempted for recycled carbon fiber, but most require very long processing times, which may increase cost. Hence, in this study, plasma processing was performed for 0.5 s or less. Surface functionalization was quantified by X-ray photoelectron spectroscopy. O/C increased from approximately 11% to 25%. The micro-droplet test of adhesion properties and the mechanical properties of CFRP were also investigated.

  5. Thermal cracking of recycled hydrocarbon gas-mixtures for re-pyrolysis: Operational analysis of some industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Gal, T. [MOL PETCHEM Division, Tisza Chemical Works Co. Ltd. (TVK), P.O. Box 20, H-3581 Tiszaujvaros (Hungary); Lakatos, B.G. [Department of Process Engineering, University of Pannonia, P.O. Box 158, H-8200 Veszprem (Hungary)

    2008-02-15

    Thermal decomposition process of recycled hydrocarbon gas-mixtures in industrial furnaces is analyzed by computer simulation. The detailed kinetic and mathematical model developed was validated by using the process control laboratory cracked gas analysis of an industrially operated furnace. The effects of feed compositions and operational conditions are examined to select the favorable operating parameters and to achieve the possibly highest online operation period of the furnace. The effect of deposited coke on the lifetime of radiant coils is examined by a heat-transfer model. The simulation study confirmed that temporal variations of the feedstock composition could be harmonized well with the operating parameters of furnaces with the purpose of achieving maximum effectiveness. (author)

  6. A proposal for improving sustainability practice through the implementations of reuse and recycle technique in Malaysian construction industry

    Science.gov (United States)

    Osman, Wan Nadzri; Nawi, Mohd Nasrun Mohd; Saad, Rohaizah; Anuar, Herman Shah; Ibrahim, Siti Halipah

    2016-08-01

    Construction and demolition waste is often seen as the major contributor to the solid waste stream that is going to landfill, hence, making it the area of focus for improvement. In the construction industry, reuse and recycle principles have been promoted in order to reduce waste and protect the environment. Construction and demolition waste including demolished concrete, bricks and masonry, wood and other materials such as dry wall, glass, insulation, roofing, wire, pipe, rock and soil constitute a significant component of the total waste. Without proper reuse and recycle policies, these construction and demolition wastes would quickly fill all the remaining landfill space, which has already been growing in scarce around this region. Based on the feedback received, on average, a third of respondents said they currently have a lotto benefit from the use of reduce and reuse. In addition, they also agreed that the existing policies help and support the min carrying out the reduce and reuse practices. Respondents also agreed that other stakeholders in the construction industry currently have an excellent awareness in term of implementation of the reduce and reuse in their practices.

  7. Impact behaviour of an innovative plasticized poly(vinyl chloride) for the automotive industry

    Science.gov (United States)

    Bernard, C. A.; Bahlouli, N.; Wagner-Kocher, C.; Ahzi, S.; Rémond, Y.

    2015-09-01

    Plasticized poly(vinyl chloride) (PPVC) is widely used in the automotive industry in the design of structural parts for crashworthiness applications. Thus, it is necessary to study and understand the influence of the mechanical response and mechanical properties of PPVC over a wide range of strain rate, from quasi-static to dynamic loadings. The process is also investigated using different sample thicknesses. In this work, the strain rate effect of a new PPVC is investigated over a wide range of strain rates at three temperatures and for three thicknesses. A modelling of the yield stress is also proposed. The numerical prediction is in good agreement with the experimental results.

  8. A Study of Recycling and Reuse of Residual Agricultural Plastic Film in Ningxia%宁夏农田残膜回收与再利用研究

    Institute of Scientific and Technical Information of China (English)

    荣标

    2014-01-01

    In recent years, the residual plastic films in the farmlands are increasing continuously with the increase of film-mulching planting area and resulting in "white pollution" in the farmlands. Research on the recycling and reuse of the farmland plastic films is an effective way to solve the "white pollution" problem. Based on the field research and literature study the basic situation of the farmland plastic film recycling and reuse is better known and the problems currently existing in the work of the plastic film recycling and reuse in Ningxia are summarized. Learning from the advanced experiences from both domestic and abroad, it is suggested that the following measures should be adopted: publicity should be strengthened to create an atmosphere; production should be carried out according to the quality standards; researches and selection should be conducted actively to identify the machine models which are suitable for local area; financial subsidy policy should be strengthened; a scheduling and an examination should be conducted for the work and so on. An long-term effectively oper-ating mechanism and a set of mechanized residual plastic film recycling and re-use equipment and processing technology which would be appropriate for application in Ningxia are made out.%近年来,覆膜种植面积不断增大,农田里残留的各种地膜数量不断增加,造成了农田的“白色污染”。研究农田残膜的回收和再利用是解决“白色污染”问题的有效途径。通过实地调研和文献研究,了解宁夏地区农田残膜回收和再利用工作的基本情况,总结出宁夏农田残膜回收和再利工作中存在的问题。借鉴国内外先进经验,提出:加强宣传,营造氛围;以质量标准规范生产;积极进行研发和选型工作,确定适宜机型;强化财政补贴政策;制定规划、纳入考核项目等农田残膜回收与再利用的方法。并探索确定适宜宁夏应用的残膜机

  9. Process industries - graphic arts, paint, plastics, and textiles: all cousins under the skin

    Science.gov (United States)

    Simon, Frederick T.

    2002-06-01

    The origin and selection of colors in the process industries is different depending upon how the creative process is applied and what are the capabilities of the manufacturing process. The fashion industry (clothing) with its supplier of textiles is the leader of color innovation. Color may be introduced into textile products at several stages in the manufacturing process from fiber through yarn and finally into fabric. The paint industry is divided into two major applications: automotive and trades sales. Automotive colors are selected by stylists who are in the employ of the automobile manufacturers. Trade sales paint on the other hand can be decided by paint manufactureres or by invididuals who patronize custom mixing facilities. Plastics colors are for the most part decided by the industrial designers who include color as part of the design. Graphic Arts (painting) is a burgeoning industry that uses color in image reproduction and package design. Except for text, printed material in color today has become the norm rather than an exception.

  10. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example...

  11. DEVELOPMENT OF SMALL INJECTION MOULDING MACHINE FOR FORMING SMALL PLASTIC ARTICLES FOR SMALL-SCALE INDUSTRIES

    Directory of Open Access Journals (Sweden)

    OYETUNJI, A.

    2010-03-01

    Full Text Available Development of small injection moulding machine for forming small plastic articles in small-scale industries was studied. This work which entailed design, construction and test small injection moulding machine that was capable of forming small plastic articles by injecting molten resins into a closed, cooled mould, where it solidifies to give the desired products was developed. The machine was designed and constructed to work as a prototype for producing very small plastic components. Design concept, operation, and assembly of components parts were made. Also, working drawings and materials selection were made based on calculations of the diameter of injection plunger, number of teeth required for the plunger rack and spur gear, the angular velocity, number of revolution, torque and power obtained from the electric motor selected and the leverage on the handle of the machine. The machine parts/components were then assembled in line with the designed made, thereafter the constructed machine was tested using high density polyethylene and master batch. The results obtained from the test were satisfactory.

  12. Foliar nitrogen, phosphorus and potassium content in trees in environmentally toxic plastic industry area.

    Science.gov (United States)

    Sett, Rupnarayan; Soni, Bhawna

    2013-04-01

    In plants, nitrogen deficiency causes stunted growth and chlorosis or yellowing of the leaves due to decreased levels of chlorophyll, while excess nitrogen uptake may cause dark green overly vigorous foliage which may have increased susceptibility to disease and insect attacks. Phosphorus is an important nutrient in crop production, since many soils in their native state do not have sufficient available phosphorus to maximize crop yield. Potassium deficiency may cause necrosis or interveinal chlorosis. Plastics are synthetic or semi-synthetic moldable organic solids that are organic polymers of high molecular mass, most commonly derived from petrochemicals; these polymers are based on chains of carbon atoms alone or with oxygen, sulfur, or nitrogen. Plastic is a non- biodegradable major toxic pollutant. It pollutes earth and leads to air pollution and water pollution. Merely there is any safe way to dispose the hazardous plastic wastes. The study was targeted to estimate foliar level of NPK content of three plant species, viz. Cassia tora (Herb), Ailanthus excelsa (Tree) and Dalbergia sissoo (Tree) from polluted areas associated to polythene-industries as well as control areas having least pollution, where all the parameters were found to be higher than the control experiments.

  13. Use of plastics in blast furnace processes: A contribution to ecologically and economically acceptable recycling of plastic waste; Kunststoffverwertung im Hochofen - ein Beitrag zum oekologischen und oekonomischen Recycling von Altkunststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Janz, J. [Stahlwerke Bremen GmbH (Germany)

    1996-12-31

    The use of plastics in blast furnace processes has a number of advantages. For one thing, existing facilities can be used with only slight reconstruction measures. Next, the blast furnace process does not necessarily require plastics and therefore is independent of the available plastics volume. Further, it has a high utilisation potential. For example, the Bremen blast furnace No. II has only 8 nozzles out of 32 which are suited for plastics, but it can utilize 70,000 t/a, which is more than 13 percent of the total plastics volume collected by DSD. Indepenent eco-balances have shown that there is no better technology on the market at the moment. (orig) [Deutsch] Mit der Kunststoffverwertung im Hochofen steht ein Verfahren zur Verfuegung, das sich gleich in mehrfacher Hinsicht vor der Konkurrenz auszeichnet. Im Gegensatz zu anderen Verwertungen wird eine bereits vorhandene Anlage genutzt, an der lediglich zusatzeinrichtungen benoetigt werden. Gleichzeitig wird abfallpolitische Flexibilitaet dadurch erreicht, dass der Hochofen nicht auf das Reduktionsmittel Kunststoff angewiesen ist. Von wesentlicher Bedeutung ist auch die hohe Verwertungskapazitaet eines Hochofens. Unabhaengige Oekobilanzen und eigene Messungen haben zweifelsfrei gezeigt, dass ein besseres Verfahren zur Zeit nicht auf dem Markt ist. (orig)

  14. Development of ecologically safe technology of recycling of industrial waste in the production of modified non-autoclave aerated concrete

    Directory of Open Access Journals (Sweden)

    Tkach Evgeniya

    2016-01-01

    Full Text Available The results of environmental monitoring for environmental security within the framework of territorial administration of the Central Federal district of the Russian Federation showed the necessity of developing a new ecological mechanism for rational control of the process of recycling of technogenic wastes. It is established that at increase of industrial production and the growth and accumulation of industrial waste and increases the negative impact on the environment. Determined that the production of phosphorus mineral fertilizers in Russia as a whole is formed 25 million tons per year of phosphogypsum, and utilized only a tenth. In Russia on distilleries waste DDGS is 9-14 million tons per year, not utilized – about 1 million tons. In Russia milk manufacture gives rise to waste of whey in an amount of about 6 million tons per year. Warehousing, industrial waste dumps occupy thousands of hectares. They are washed into sewers, groundwater, reservoirs, result in the earth, causing serious ecological damage to the environment. This requires the disposal of such waste. The most promising method of disposal is considered as the placement of industrial waste in the production of construction materials, particularly aerated concrete products.

  15. Some exploitation properties of wood plastic composites (WPC, based on high density polyethylene and timber industry waste

    Directory of Open Access Journals (Sweden)

    janis kajaks

    2015-09-01

    Full Text Available Abstract: In this study, the influence of wood fiber content (40, 50 and 60 wt.% and coupling agent concentration (3 and 5 wt.% on the mechanical properties of wood-plastic composites (WPCs was investigated. Two types of plastic (high-density-polyethylene (HDPE and recycled high-density-polyethylene (rHDPE were used as polymer matrices for preparing WPC. As reinforcement, prior grinded (fiber length < 0.5 mm coniferous wood shavings were utilized. Overall trend showed, that by adding a wood fiber, flexural properties and microhardness of the composites significantly were enhanced. However, impact strength, water resistance, and fluidity of polymer melts decreased with increase in fiber content. The virgin HDPE-based composites as well as recycled HDPE-based composites, reinforced with fibers from coniferous wood, showed good mechanical properties. Based on the findings in this work, it appears that WPCs based on virgin HDPE, as well as on recycled HDPE, can be used to manufacture value-added panels. Optimal content of wood fibres were 50-60 wt.%.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7283

  16. The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions

    OpenAIRE

    Carné Sánchez , Arnau; Collinson, Simon R.

    2011-01-01

    The glycolysis of postconsumer polyethylene terephthalate (PET) waste was evaluated with catalysts of zinc acetate, zinc stearate and zinc sulfate, showing that zinc acetate was the most soluble and effective. The chemical recycling by solvolysis of polylactic acid (PLA) and PET waste in either methanol or ethanol was investigated. Zinc acetate as a catalyst was found to be necessary to yield an effective depolymerization of waste PLA giving lactate esters, while with the same reaction condit...

  17. Evaluating localism in the management of post-consumer plastic bottles in Honolulu, Hawai'i: perspectives from industrial ecology and political ecology.

    Science.gov (United States)

    Park, Joo Young; Gupta, Clare

    2015-05-01

    Localism or regionalization has become a popular topic in urban design, but recent critics raise the question of whether the local or regional scale is most desirable for industrial ecosystems. As a way to explore the claim that localized metabolism is more sustainable, this study examines the costs and benefits of two differentially scaled strategies for the management of post-consumer polyethylene terephthalate (PET) bottles originating in the city of Honolulu, Hawai'i: local incineration and trans-continental recycling. We first estimate total environmental impacts of two options using life cycle assessment, and then disaggregate them into local versus non-local impacts to examine the spatial distribution of costs and benefits. We further assess the environmental justification for localized waste management in relation to the broader socio-economic motivations that underlie the way that plastics are managed in Honolulu. In doing so we assess the scale at which waste management is optimized from an environmental standpoint as well as the non-environmental considerations such as security and safety that influence the politics of scale involved in urban metabolic design. By illustrating the trade-offs between a local versus global metabolic pathway for plastic waste, the results from our Honolulu case study are globally relevant for communities interested in sustainable urban design and in particular urban waste management.

  18. Polybrominated diphenyl ethers (PBDEs) and heavy metals in road dusts from a plastic waste recycling area in north China: implications for human health.

    Science.gov (United States)

    Tang, Zhenwu; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2016-01-01

    Road dusts were collected from an area where intense mechanical recycling of plastic wastes occurs in Wen'an, north China. These dusts were investigated for polybrominated diphenyl ethers (PBDEs) and heavy metals contamination to assess the health risk related to these components. Decabromodiphenyl ether (BDE-209) and Σ21PBDE concentrations in these dusts ranged from 2.67 to 10,424 ng g(-1) and from 3.23 to 10,640 ng g(-1), respectively. These PBDE concentrations were comparable to those observed in road dust from e-waste recycling areas but were 1-2 orders of magnitude higher than concentrations in outdoor or road dusts from other areas. This indicates that road dusts in the study area have high levels of PBDE pollution. BDE-209 was the predominant congener, accounting for 86.3% of the total PBDE content in dusts. Thus, commercial deca-BDE products were the dominant source. The average concentrations of As, Cd, Cr, Cu, Hg, Pb, Sb, and Zn in these same dust samples were 10.1, 0.495, 112, 54.7, 0.150, 71.8, 10.6, and 186 mg kg(-1), respectively. The geoaccumulation index suggests that road dusts in this area are moderately to heavily polluted with Cd, Hg, and Sb. This study shows that plastic waste processing is a major source of toxic pollutants in road dusts in this area. Although the health risk from exposure to dust PBDEs was low, levels of some heavy metals in this dust exceeded acceptable risk levels for children and are of great concern.

  19. Effectiveness of organoclays as compatibilizers for multiphase polymer blends - A sustainable route for the mechanical recycling of co-mingled plastics

    Science.gov (United States)

    Causa, Andrea; Mistretta, Maria Chiara; Acierno, Domenico; Filippone, Giovanni

    2014-05-01

    We prepare and characterize multiphase systems in which small amounts of recycled polymer, namely polyethylene terephtalate (PET) ground from waste bottles, are dispersed in a co-continuous blend of high-density polyethylene (HDPE) and polypropylene (PP). Some of such ternary systems are also filled with plate-like clay nanoparticles with different polarities, in order to assess their influence on the morphology and mechanical behaviour of the blends. On the basis of preliminary wettability considerations and inspections by means of scanning electron microscopy (SEM), the PET is found to preferentially locate within the PP phase. Such a positioning is desirable in order to minimize the presence of multiple interfaces, which is one of the major issues in the recycling process of co-mingles plastics. By means of SEM, dynamic-mechanical analysis and tensile tests we show that the addition of a filler with low polarity, which locates at the PET-matrix interface, has relevant implications on the structure and properties of the ternary systems, refining their morphology at the micro-scale and enhancing their high-temperature mechanical behaviour.

  20. Effectiveness of organoclays as compatibilizers for multiphase polymer blends – A sustainable route for the mechanical recycling of co-mingled plastics

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Andrea; Acierno, Domenico; Filippone, Giovanni [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale V. Tecchio, 80, 80125 Napoli (Italy); Mistretta, Maria Chiara [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, ed. 6, 90128 Palermo (Italy)

    2014-05-15

    We prepare and characterize multiphase systems in which small amounts of recycled polymer, namely polyethylene terephtalate (PET) ground from waste bottles, are dispersed in a co-continuous blend of high-density polyethylene (HDPE) and polypropylene (PP). Some of such ternary systems are also filled with plate-like clay nanoparticles with different polarities, in order to assess their influence on the morphology and mechanical behaviour of the blends. On the basis of preliminary wettability considerations and inspections by means of scanning electron microscopy (SEM), the PET is found to preferentially locate within the PP phase. Such a positioning is desirable in order to minimize the presence of multiple interfaces, which is one of the major issues in the recycling process of co-mingles plastics. By means of SEM, dynamic-mechanical analysis and tensile tests we show that the addition of a filler with low polarity, which locates at the PET-matrix interface, has relevant implications on the structure and properties of the ternary systems, refining their morphology at the micro-scale and enhancing their high-temperature mechanical behaviour.

  1. Study of radiation portal monitor and its application to metal recycling industry; Estudio de un sistema de deteccion tipo portico para su aplicacion en la industria del metal

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, L.; Lara-Calleja, S.; Suarez-Navarro, M. J.; Gonzalez-Gonzalez, J. A.

    2009-07-01

    The industry of the iron and the steel in one of the most important sectors in Spain for its economic development. the recycling of metallic materials as well as the import of metallic scrap is very significant. Several reports on accidental dispersion or smelting of radioactive sources in metal recycling industries confirm the possibility that radioactive material might be mixed with scrap. In consequence, this type of accident shows the necessity of a rigorous and specific radiation control of the sector. The control of these materials with radioactive content can be carried out with radiation portal monitors installed at the entrance of these industries. The detection of radioactive materials presents special features as the continuous background acquisition or the minimisation of the relatively large number of innocent/nuisance detections. In the present work, we study a radiation portal monitor, the FHT-1388-T Thermo-Eberline. This is one of the usual radiation portal systems installed at the entrance of the metal recycling industry. Se study the characteristics and parameters of this portal monitor to optimise its use. furthermore, we propose some rapid tests for radiation portal systems in metal recycling industry. (Author) 16 refs.

  2. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  3. Interfacial interactions between plastic particles in plastics flotation.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation.

  4. Design and Prototype Test of Hot Air Circulation Molten Plastic Recycling Granulator%热风循环熔融塑料回收造粒机的设计和样机试验

    Institute of Scientific and Technical Information of China (English)

    袁文清; 黄兴元; 王都阳

    2016-01-01

    在分析国内废旧塑料回收现状以及传统塑料回收工艺的基础上,遵循机械设计原理,设计出热风循环熔融废旧塑料回收造粒机,将废旧塑料经热风加热熔融后,再由单螺杆将熔融塑料挤出造粒。其中重点介绍了热风循环熔融塑料系统以及螺杆的几何参数设计。遵循结构设计方案,制造出热风循环熔融塑料回收造粒机的物理样机,并用该样机进行塑料回收试验,试验验证了热风熔融塑料回收的可行性和研究价值,同时针对试验过程中发现的问题提出了一系列解决方法,为后续的改进和进一步研究工作提供了可靠依据。%Based on the analysis of the domestic current situation of the waste plastics recycling and on the basis of traditional plastic recycling technology,following the principleof mechanical design,a molten waste plastic recycling granulator with hot air circulation was designed. The waste plastic was heated and melted by the hot air,and then the molten plastic was extruded and granulated by a single screw. The hot air circulation system and geometric parameters design of the screw were focused on. Follow-ing the structure design project,the physical prototype of hot air circulation molten plastic recycling granulator was produced,and a test of plastic recycling with the prototype was conducted. The test verified the feasibility and research value of hot air molten plastic recycling. At the same time,a series of solutions to the problems found in the test were put forward,which provides the reliable basis for the subsequent improvement work and further research.

  5. 我国进口可再生利用废塑料的现状与发展%Current status and development of import recyclable plastics scrap in China

    Institute of Scientific and Technical Information of China (English)

    李丛志

    2012-01-01

    论述了进口可再生利用废塑料在环保、节能减排等国民经济领域中的重要意义。通过分析统计数据。阐明了我国由于资源匮乏,进口可再生利用废塑料的必要性和迫切性,并简述了我国政府对废塑料进口的监管措施。%The significance of importing recyclable plastic scrap in environment protection, energy-saving and emission-reducing was introduced. The necessity and urgency of importing recyclable plastic scrap for resource deficiency were demonstrated. The supervision measures of plastic scrap were also introduced.

  6. Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic, poly beta-hydroxybutyrate.

    Science.gov (United States)

    Khardenavis, Anshuman A; Suresh Kumar, M; Mudliar, Sandeep N; Chakrabarti, Tapan

    2007-12-01

    Waste activated sludge generated from a combined dairy and food processing industry wastewater treatment plant was evaluated for its potential to produce biodegradable plastic, poly beta-hydroxybutyric acid (PHB). Deproteinized jowar grain-based distillery spentwash yielded 42.3% PHB production (w/w), followed by filtered rice grain-based distillery spentwash (40% PHB) when used as substrates. Addition of di-ammonium hydrogen phosphate (DAHP) resulted in an increase in PHB production to 67% when raw rice grain-based spentwash was used. Same wastewater, after removal of suspended solids by filtration and with DAHP supplementation resulted in lower PHB production (57.9%). However, supplementing other wastes with DAHP led to a substantial decrease in PHB content in comparison to what was observed in the absence of DAHP.

  7. Impact behaviour of an innovative plasticized poly(vinyl chloride for the automotive industry

    Directory of Open Access Journals (Sweden)

    Bernard C.A.

    2015-01-01

    Full Text Available Plasticized poly(vinyl chloride (PPVC is widely used in the automotive industry in the design of structural parts for crashworthiness applications. Thus, it is necessary to study and understand the influence of the mechanical response and mechanical properties of PPVC over a wide range of strain rate, from quasi-static to dynamic loadings. The process is also investigated using different sample thicknesses. In this work, the strain rate effect of a new PPVC is investigated over a wide range of strain rates at three temperatures and for three thicknesses. A modelling of the yield stress is also proposed. The numerical prediction is in good agreement with the experimental results.

  8. Recycling and Reusing Industry of Waste Textiles & Development Prospect%废旧纺织品的回收再利用与展望

    Institute of Scientific and Technical Information of China (English)

    王中珍; 邢桂燕; 丁吉庆

    2012-01-01

    The present situation of waste textil was introduced. The method and process of recycl waste textiles recycling and reusing in the present e recycling and reusing industry at home and abroad ing technologies were discussed. The difficulties of stage of our country were analyzed. According to the present situation of textile industry in China, some suggestions on the recycling and reusing of waste textiles were given from the aspects of laws and regulations, organization, technical innovation, standard and quality, etc. The key technologies on the development of waste textiles recycling and reusing in our country were prospected.%文章介绍了国内外废旧纺织品的回收再利用现状,探讨了回收再利用的方法与工艺,分析了现阶段我国废旧纺织品回收再利用存在的困难,结合我国纺织工业的现状,从法律法规、组织机构、技术改造、标准质量等几方面提出了相应建议,并展望我国废旧纺织品发展的关键技术。

  9. Pollution Characteristics of Polybrominated Diphenyl Ethers in Soils from Waste Plastic Recycling Region in China%典型废旧塑料处置地土壤中多溴联苯醚污染特征

    Institute of Scientific and Technical Information of China (English)

    曾甯; 姚建; 唐阵武; 黄启飞; 金璐; 何洁

    2013-01-01

    Levels, composition and distribution characteristics of 21 polybrominated diphenyl ethers (PBDEs) were investigated in surface soils from a typical waste plastic recycling region in North China. The result showed that the concentrations of total PBDEs ranged from 1. 25 to 3673. 41 ng/g with a mean value of 749. 29 ng/g. BDE209 was the most dominant congener ( > 92% ) of PBDEs in soils. The PBDE levels in the workshop soils were higher than those in the road soils and surrounding soils. The industrial decabromodiphenyl added in plastic was the main source of PBDEs in the soils of the region. Compared with previous studies, the results showed that the PBDE levels in soils in this study were similar to those in some e-waste recycling regions of China. Moreover, the concentrations of PBDEs in this study were 1 to 3 orders of magnitude higher than those reported in other urban soils in China, which should be paid more attention regarding to the potential higher environmental risks of PBDE in these soils.%选择我国北方典型废旧塑料处置地为研究区域,对土壤中21种PBDEs(多溴联苯醚)的含量、同系物组成和分布特征进行了研究.结果表明,该区域土壤中w(∑PBDEs)为1.25 ~3 673.41 ng/g,平均值为749.29 ng/g,其中w(BDE209)占w(∑PBDEs)的92%以上.整体上,处置作坊内土壤中w(∑PBDEs)明显高于作坊间道路土壤和处置地周边土壤.塑料中添加的十溴联苯醚工业品是该区域土壤中PBDEs的主要来源.该区域土壤PBDEs污染水平与我国电子废物集中处置场地相当,高出我国一般城市及工业城市土壤1~3个数量级,是我国另一类PBDEs高污染区,其环境风险性应引起足够的重视.

  10. Recycling of CFRP for high value applications: Effect of sizing removal and environmental analysis of the SuperCritical Fluid Solvolysis

    OpenAIRE

    DAUGUET, Michel; Mantaux, Olivier; Perry, Nicolas; ZHAO, Yaoyao Fiona

    2015-01-01

    The recycling of Carbon Fibers Reinforced Plastics (CFRP) wastes is becoming increasingly important in the aerospace industry. For most of the technologies, the recycled CF (rCF) are discontinuous, misaligned and unsized. Compared to thermal treatments, the orientation, the length and the brittleness of the rCF are better preserved with the SuperCritical Water Solvolysis (SCWS). The effect of the sizing removal on the recycled CFRP behavior is studied by conducting static characterizations. R...

  11. Recycling of CFRP for high value applications: Effect of sizing removal and environmental analysis of the SuperCritical Fluid Solvolysis

    OpenAIRE

    DAUGUET, Michel; Mantaux, Olivier; Perry, Nicolas; ZHAO, Yaoyao Fiona

    2015-01-01

    The recycling of Carbon Fibers Reinforced Plastics (CFRP) wastes is becoming increasingly important in the aerospace industry. For most of the technologies, the recycled CF (rCF) are discontinuous, misaligned and unsized. Compared to thermal treatments, the orientation, the length and the brittleness of the rCF are better preserved with the SuperCritical Water Solvolysis (SCWS). The effect of the sizing removal on the recycled CFRP behavior is studied by conducting static characterizations. R...

  12. Industrial wastewater treatment network based on recycling and rerouting strategies for retrofit design schemes

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Suriyapraphadilok, Uthaiporn; Siemanond, Kitipat

    2015-01-01

    The advent of complex industrial water/wastewater management problems points to a need for effective systematic design for a sustainable solution. The objective of this work is to extend the research in the area of systematic design of water/wastewater management by further developing and extendi...

  13. The industrial metabolism of plastics : analysis of material flows, energy consumption and CO2 emissions in the lifecycle of plastics

    NARCIS (Netherlands)

    Joosten, Ludovicus Antonius Josephus

    2001-01-01

    This thesis deals with the question: Which are promising options for decreasing material consumption, energy consumption and CO2 emissions in the lifecycle of plastics? The research described in this thesis mainly focuses on measures that change the material system, i.e. measures that change the

  14. The industrial metabolism of plastics : analysis of material flows, energy consumption and CO2 emissions in the lifecycle of plastics

    NARCIS (Netherlands)

    Joosten, Ludovicus Antonius Josephus

    2002-01-01

    This thesis deals with the question: Which are promising options for decreasing material consumption, energy consumption and CO2 emissions in the lifecycle of plastics? The research described in this thesis mainly focuses on measures that change the material system, i.e. measures that change the pat

  15. Engineering evaluation of 55-year-old timber columns recycled from an industrial military building

    Science.gov (United States)

    Robert H. Falk; David Green; Douglas Rammer; Scott F. Lantz

    2000-01-01

    A large sample of timber was collected from a 548,000-ft.2 (50,900-m2) World War II era industrial military building containing approximately 1, 875,000 board feet (4,400 m3) of lumber and timber. Sixty 12-foot- (3.6-m-) long, nominal 8- by 8-inches (190-by 190-mm) Douglas-fir columns were tested at the USDA Forest Service, Forest Products Laboratory, and the results...

  16. Experimental and Numerical Analysis of Thermal and Hygrometric Characteristics of Building Structures Employing Recycled Plastic Aggregates and Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Francesco Colangelo

    2013-11-01

    Full Text Available The correct estimation of building energy consumptions is assuming an always increasing importance, and a detailed reproduction of building structures, with all the single components involved, is necessary to achieve this aim. In addition, the current ecological development tries to limit the use of natural raw materials as building components, in favor of alternative (waste materials, which ensure significant advantages from the economic, energetic and environmental point of views. In this work, dynamic heat and vapor transport in a typical three-dimensional (3D building structure, involving different types of environmental-friendly concrete mixtures, have been simulated by using finite elements. In particular, the authors propose to substitute part of the aggregates with plastic waste and to use a fly ash based geopolymeric binder for the production of low conductivity concrete, to be employed in eco-efficient buildings. Concrete produced with natural limestone aggregates has been considered as the reference benchmark. The whole characterization of the different types of concrete tested in the present work has been obtained through laboratory experiments. The structure taken into account in the simulations is a 3D thermal bridge, typical of building envelopes. The thermal and hygrometric transient behavior of this structure, employing plastic waste in different percentages and geopolymer concrete, has been analyzed by the authors.

  17. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than th

  18. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than

  19. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than th

  20. New Life for Old Plastics

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Recycling joint venture utilizes innovative technology to reuse plastics Recycling,despite its green connotations,can be a messy business.In China,more than 400,000 companies are engaged in plastic recycling,but 70 percent of them are family enterprises,

  1. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  2. The changing health care marketplace: current industry trends, new provider organizational structures, and effects on plastic surgeons.

    Science.gov (United States)

    Krieger, L M

    1998-09-01

    Current market forces are driving the health care industry in new directions. The managed care industry is currently undergoing a market shakeout, as manifested by consolidation, increased competition, and lower profits. Medicare is fighting to remain solvent by lowering fees paid to providers, driving patients into managed care plans, and cracking down on billing irregularities. For providers, the combined effect of these trends is lower fees, increased risk-sharing, and increased overhead. Plastic surgeons face new demands in this environment. They must increase their efficiency and form new alliances with other providers. These alliances allow plastic surgeons to maintain a steady stream of patients, to manage risk, to negotiate more lucrative contracts with managed care organizations, and to increase efficiency. To achieve these alliances, plastic surgeons must alter the organizational structure of their practices. Several corporate practice models are becoming more prevalent; these include large group practices, physician practice management companies, and integrated delivery systems. Each structure has advantages for plastic surgeons, but each also requires plastic surgeons to trade varying degrees of financial and professional autonomy for market strength.

  3. Innovative approaches to recycling of small and electric motors from end-of-life vehicles, electric bicycles and industrial machinery

    OpenAIRE

    Link, Rainer

    2016-01-01

    Recycling and recovery of materials and energy from waste is a key factor to mitigate virgin material demands and reduce resource consumption by utilising waste as a resource for new products. However, some critical materials, such as neodymium, are barely recycled because of missing information on amount and disposition of these critical materials within the waste streams. The goal of the study is to quantify recycling potentials from small and electric motors originating from end-of-life ve...

  4. Report: Maximizing recycling participation to reduce waste to landfill: a study of small to medium-sized enterprises in Hobart, Tasmania, Australia.

    Science.gov (United States)

    Parsons, Sam; Kriwoken, Lorne K

    2010-05-01

    Small to medium-sized enterprises (SMEs) in Hobart, Tasmania, Australia face many barriers to recycling participation. This study first investigated the volumes and types of waste produced by SMEs. Significant barriers were then identified and key motivators to recycle examined. Using the Australia New Zealand Standard of Industrial Classification, stratified sampling of SMEs (n = 436) was undertaken. Inadequate storage space, paucity of readily available information on recycling services and the lack of staff allocated to sort and recycle were identified as major barriers. Cardboard, paper and plastic waste were produced in large volumes with only a small percentage being recycled and these were identified as target areas for local government. Recommendations include the appointment of a dedicated recycling officer to maximize recycling participation for the reduction of waste to landfill and to undertake further research on minimizing recycling costs.

  5. Life Cycle Assessment of Internal Recycling Options of Steel Slag in Chinese Iron and Steel Industry%Life Cycle Assessment of Internal Recycling Options of Steel Slag in Chinese Iron and Steel Industry

    Institute of Scientific and Technical Information of China (English)

    CHEN Bo; YANG Jian-xin; OUYANG Zhi-yun

    2011-01-01

    The internal recycling process of BOF slag which is one of the huge solid wastes from iron and steel indus try was emphasized. Based on the four scenarios of different internal recycling strategies for BOF slag, life cycle assessment (LCA) as a valuable t

  6. 我国塑料废弃物回收和再循环及其标准化的现状%Actuality of Recovery and Recycling of Plastics Waste and Standardization of China

    Institute of Scientific and Technical Information of China (English)

    赵平; 张鼎晟子; 刘力荣; 陈敏剑

    2011-01-01

    This article described the overview of recovery and recycling of plastics waste, and the system of the legislative statute and standardization of China. Additionally discussed the problems of recovery and recycling of plastics waste in China by comparing them with oversea.%介绍了我国塑料废弃物回收和再循环的基本情况以及相关法规和标准化体系,并通过对比国外塑料废弃物回收和再循环的基本情况和标准化体系,探讨了我国塑料废弃物回收和再循环目前存在的问题.

  7. Recycling by the brick making industry of ashes from sewage sludge incineration; Verwertung von Aschen der Klaerschlammverbrennung in der Ziegelindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Wiebusch, B.; Seyfried, C.F. [Hannover Univ. (Germany). ISAH Inst. fuer Siedlungswasserwirtschaft und Abfalltechnik

    1998-09-01

    The present project focuses on the recycling of sewage sludge ashes by the brick making industry. The following aspects are dealt with in detail: Overview of the state of the art of sewage sludge combustion in Germany; influence of wastewater and sludge treatment on ash quality (determination of the seasonal course of chemical sewage sludge composition); use of sewage sludge ashes in as loading material in fluidised-bed furnaces or as clay substitute in brick manufacture; semi-technical trials in ceramic laboratories; assessment of the environmental impact of bricks containing sewage sludge ash; performance of leaching experiments; and examination of the mineralogical binding of heavy metals into the ceramic matrix. [Deutsch] Das Projekt konzentriert sich dabei auf eine Verwertung von Klaerschlammaschen in der Ziegelindustrie, wobei die im folgenden genannten Aspekte im Einzelnen bearbeitet werden: - Ueberblick ueber den Stand der Technik bei der Klaerschlammverbrennung in Deutschland - Einfluss der Abwasser- und Schlammbehandlung auf die Aschequalitaet (Ermittlung von Jahresganglinien der chemischen Zusammensetzung von Klaerschlammaschen) - Einsatz von Klaerschlammaschen aus Wirbelschichtoefen als Zuschlagstoff bzw. Tonersatz bei der Ziegelproduktion - halbtechnische Versuche im keramischen Labor - Abschaetzung der Umweltvertraeglichkeit von Ziegeln mit Klaerschlammaschezusatz: Durchfuehrung von Auslangversuchen, Untersuchung einer mineralogischen Einbindung von Schwermetallen in die keramische Matrix. (orig./SR)

  8. Concept for Recycling Waste Biomass from the Sugar Industry for Chemical and Biotechnological Purposes.

    Science.gov (United States)

    Modelska, Magdalena; Berlowska, Joanna; Kregiel, Dorota; Cieciura, Weronika; Antolak, Hubert; Tomaszewska, Jolanta; Binczarski, Michał; Szubiakiewicz, Elzbieta; Witonska, Izabela A

    2017-09-13

    The objective of this study was to develop a method for the thermally-assisted acidic hydrolysis of waste biomass from the sugar industry (sugar beet pulp and leaves) for chemical and biotechnological purposes. The distillates, containing furfural, can be catalytically reduced directly into furfurayl alcohol or tetrahydrofurfuryl alcohol. The sugars present in the hydrolysates can be converted by lactic bacteria into lactic acid, which, by catalytic reduction, leads to propylene glycol. The sugars may also be utilized by microorganisms in the process of cell proliferation, and the biomass obtained used as a protein supplement in animal feed. Our study also considered the effects of the mode and length of preservation (fresh, ensilage, and drying) on the yields of furfural and monosaccharides. The yield of furfural in the distillates was measured using gas chromatography with flame ionization detector (GC-FID). The content of monosaccharides in the hydrolysates was measured spectrophotometrically using enzymatic kits. Biomass preserved under all tested conditions produced high yields of furfural, comparable to those for fresh material. Long-term storage of ensiled waste biomass did not result in loss of furfural productivity. However, there were significant reductions in the amounts of monosaccharides in the hydrolysates.

  9. Recycling of ash from mezcal industry: a renewable source of lime.

    Science.gov (United States)

    Chávez-Guerrero, L; Flores, J; Kharissov, B I

    2010-10-01

    Agave bagasse is a byproduct generated in the mezcal industry. Normally it is burned to reduce its volume, then a byproduct is generated in the form of residual ash, which can contaminate the water in rivers and lakes near the production places called "mezcaleras". This report details measurements of the Agave Salmiana fiber transformation after the burning process. The wasted ash was heated at 950°C, and then hydrolyzed. The compounds were indentified using the X-ray diffraction. The images obtained by scanning electron microscope showed all the morphological transformations of the lime through the whole process. Thermal, elemental and morphological characterization of the agave bagasse were done. Experiments showed that 16% of ash was produced in the burning process of agave bagasse (450°C), and 66% of the ash remains after heating (950°C) in the form of calcium oxide. The results show an important renewable source of calcium compounds, due to the high production of agave based beverages in México. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M.; Fink, J.K. [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  11. RECYCLING BLENDS OF WASTE PLASTICS AND BIOMASS AS REDUCING AGENT FOR THE PRODUCTION OF METALLIC IRON FROM IRON OXIDE

    Directory of Open Access Journals (Sweden)

    JAMES RANSFORD DANKWAH

    2013-12-01

    Full Text Available Laboratory studies on the production of metallic iron from iron oxide using blends of palm nut shells (Elaes Guineanses and waste plastics as reducing agent have been performed through experiments conducted in a horizontal tube furnace. Composite pellets were formed from mixtures of iron oxide and carbonaceous materials consisting of chars of palm nut shells (PNS, high density polyethylene (HDPE and two blends of PNS with HDPE. Two sources of iron oxide were utilised in this investigation; reagent grade iron oxide (96.89 % Fe2O3 and EAF slag (47.1 % FeO. The iron oxide-carbonaceous material composites were heated rapidly at 1500°C in a continuous stream of argon and the off gas was analysed continuously using an infrared (IR gas analyser and a gas chromatographic (GC analyser. Elemental analyses of samples of the reduced metal were performed chemically for its carbon and oxygen contents using a LECO carbon/sulphur and oxygen/nitrogen analysers, respectively. The extent of reduction (after ten and fifteen minutes for reagent grade iron oxide and EAF slag, respectively and the level of carburisation were determined for each carbonaceous reductant. The results indicate that carburised metallic iron can be produced effectively from iron oxide using PNS, HDPE and blends of these carbonaceous materials as reductants. The extent of reduction improved significantly when PNS was blended with HDPE.

  12. 浅谈废铝再生的可持续发展%Consideration on Sustainable Development of Al Scraps Recycling Industry

    Institute of Scientific and Technical Information of China (English)

    孙德勤

    2013-01-01

    再生铝是可持续发展的需要,而提高生产效能以及控制二次污染是废铝再生行业的发展要求.健全废铝回收体系、提高废铝原料分拣水平、加强工艺控制以及先进技术的应用是实现再生铝良性发展的保证.%Al scraps reproduction is the need of sustainable development, and the development demand of Al scraps recycling industry is the improvement of productive efficiency and minimizing pollution. To insure the benign development of Al scraps recycling industry, must establish and strengthen the Al scraps collecting system, improve the inclusions separation technology, enhance the processing control and introduce advanced techniques and equipments.

  13. Recycling technology of sugar industry by-products for animal feeding

    Directory of Open Access Journals (Sweden)

    Yadira Suárez Rodríguez

    2006-01-01

    Full Text Available En este trabajo se presenta el desarrollo de una tecnología de reciclaje y enriquecimiento proteico mediante fermentación en estado sólido de los subproductos de la industria azucarera para su posterior utilización como alimento animal. A partir de un estudio bibliográfico sobre los aspectos más importantes de las tecnologías actuales de fabricación de alimentos para el consumo animal y las herramientas para el desarrollo de tecnologías de fermentaci ón en medios sólidos se ha desarrollado un procedimiento general para el diseño de una planta para la producción de un alimento a partir de bagazo y miel final, enriquecido proteicamente con levadura Candida utilis y que se le ha dado el nombre de Bagames. El diseño cuenta con varias etapas: preparaci ón de las materias primas, fermentación en estado sólido, sistema de aireaci ón, sistema de bombeo y transporte mecánico del producto, secado, humidificaci ón del aire. El diseño de todos los equipos fue realizado en Microsoft Excel. La metodología desarrollada puede ser generalizada a otras plantas del país. Mediante un análisis de prefactibilidad económica se calculó que la inversi ón en el Complejo Agro Industrial "Siboney" es de $72 697,91 con un tiempo de recuperación de 2,44 años. Con un valor del VAN de $219 407, 48 y un TIR de 39,13 %. Se demostró que la tecnología es técnico económicamente factible.

  14. Recycling as moral behaviour

    DEFF Research Database (Denmark)

    Thøgersen, John

    of Reasoned Action (TRA) with regard to understanding recycling behaviour. Further, examples of misleading policy conclusions are discussed suggested that within the framework of cognitive psychology, Schwartz's model of altruistic behaviour offers a more satisfying starting point for understanding recycling......It is argued in this paper that in the affluent, industrial societies, environmental behaviours like recycling are typically classified within ""the domain of morality"" in people's minds. Intentions regarding these types of behaviours are not ba a thorough - conscious or unconscious - calculation...

  15. Efficient paper recycling

    OpenAIRE

    Gregor-Svetec, Diana; Možina, Klemen; Blaznik, Barbara; Urbas, Raša; Vrabič Brodnjak, Urška; Golob, Gorazd

    2013-01-01

    Used paper and paper products are important raw material for paper and board industry. Paper recycling increases the material lifespan and is a key strategy that contributes to savings of primary raw material, reduction of energy and chemicals consumption, reduction of the impact on fresh water and improvement of waste management strategies. The paper recycling rate is still highly inhomogeneous among the countries of Central Europe. Since recovered paper is not only recycled in the country w...

  16. 废旧塑料在复合材料领域中回用技术的研究进展%Research Advances in the Recycling Technologies of Waste Plastics in Composites Field

    Institute of Scientific and Technical Information of China (English)

    张效林; 王汝敏; 王志彤; 冯冰; 付钰

    2011-01-01

    介绍了国内外废旧塑料现状以及废旧塑料在复合材料领域利用新进展,综述了废旧塑料在植物纤维/废旧塑料复合材料、废纸/废塑料复合材料、木塑复合发泡材料、可生物降解塑料复合材料及其他复合材料领域的再利用技术新进展,并分析了废旧塑料在复合材料领域回收再利用技术的发展趋势,提出应进一步探讨不同种类废旧塑料对复合材料力学性能及植物纤维/废旧塑料界面相容性的影响.%The present research status and category of printing and packaging waste plastic are introduced,and research advances in the recycling technology of different kind of waste plastic in composite material field such as plant fibre/recycled thermoplastic composites, wastepaper/thermoplastic polymer composites, wood-plastic foaming composites, eco-friendly biodegradable composites and other composites are discussed. Development trend of the recycling technology of waste plastic in composite material field is pointed out. And further more, research area such as the effect of different waste plastics on the composites interface compatibility is proposed.

  17. Optimization of the Production Mixture of Selected Raw Material for Plastic Production: A Case Study of Louis Carter Plastic Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Okolie Paul Chukwulozie

    2015-11-01

    Full Text Available Statistical experiment design and analysis tools for the production have being developed specifically for the purpose of optimizing mixes, such as plastic products, in which the final product properties depend on the relative proportions of the components rather than their absolute amounts. Although mixture methods have been used in industries to develop products such as gasoline, metal alloys, detergents and foods, they have seen little application in the plastic industry. This paper describes an analysis in which a statistical mixture design tool called response surface design optimization tool was used to optimize the six mixture components of 25mm waste pipe, in order to obtain the optimal mixture ratio and their corresponding product yield. The results obtained show an optimal mixture ratio of PVC (45442.820, Stabilizer (1514.760, Calcium carbonate (0.0, Steric acid (151.480, Titanium (12.120, and Pigment (1.4079 for 25mm waste pipe. The optimal yield and composite desirability for 25mm waste pipe are 51990kg and 0.99990. The objective of the study from the result above was to reduce the wastage of raw materials, so as to increase the profitability of the final products. In addition, the model in use is recommended to the case company for effective utilisation of their various raw material mixes so as to obtain various optimal solutions of their raw materials mix and their various production yields.

  18. 回收塑料/稻壳粉木塑复合材料的制备及性能研究%Study on the Preparation and Properties of Recycled Plastic/Rice Husk Powder Composites

    Institute of Scientific and Technical Information of China (English)

    王春红; 任子龙; 刘胜凯; 徐贵海; 王瑞

    2015-01-01

    Recycled plastic/recycled plastic rice husk powder composites were made by extrusion and injection molding process with rice husk powder and nonmedical recycled plastic. The influence of size,content of rice husk powder and surface treatment on the mechanical properties of the composite were investigated. The morphology of the composite was observed by SEM. The results show that the mechanical properties of the recycled plastic/rice husk powder composites first increase and then decrease with increase of the size of rice husk powder,and increase with increase of the content of rice husk powder. Mechanical properties of the composites are best when the content of the rice husk powder with 425 μm is 50%. Compared with recycled plastic,tensile strength,tensile modulus,flexural strength and flexural modulus of the composites reinforced by glass fibre increased by 82.01%, 414.66%,152.62%,436.99%.%以稻壳粉和非医疗废弃物作为原料,采用挤出–注塑工艺制备回收塑料/稻壳粉木塑复合材料,研究了稻壳粉的粒径、含量以及玻璃纤维对复合材料力学性能的影响,用扫描电子显微镜对复合材料的断面进行了观察。结果表明,回收塑料/稻壳粉木塑复合材料的力学性能随稻壳粉粒径的增加先上升后下降,随稻壳粉含量的增加而提高。当稻壳粉质量分数为50%,粒径为425μm时,回收塑料/稻壳粉木塑复合材料综合力学性能最好。当用偶联剂处理稻壳粉和玻璃纤维后,相对于纯回收塑料,复合材料的拉伸强度提高了82.01%,拉伸弹性模量提高了414.66%,弯曲强度提高了152.62%,弯曲弹性模量提高了436.99%。

  19. Recycling of demolished concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nagataki, S. [Niigata Univ., Niigata (Japan). Dept. of Civil Engineering; Iida, K. [Technology Centre of Taisei Corp., Yokohama (Japan)

    2001-07-01

    There is a significant amount of research being conducted in Japan on ways to recycle demolished concrete. The material is already being used for road bases and foundations, but in the future, the concrete will have to be recycled as concrete aggregate. Recycling may also include the cement in the concrete in order to address the issue of global warming and carbon dioxide reductions. This initiative is in response to predictions that in the future there will be tremendous quantities of demolished concrete to deal with. Recycling of cement is also necessary in terms of resolving environmental problems and promoting sustainable development. The properties of concrete made with recycled aggregates were described and were compared with original concrete made of known materials. The paper also proposed an approach that should be taken to recycling concrete in the twenty-first century in which reduced limestone was used to reclaim cement. Recycled concrete with cement requires more energy, but uses less resources and discharges less carbon dioxide. Currently, recycled aggregate does not meet the Japanese Industrial Standard for concrete aggregate. The resistance to freeze/thaw cycles was not adequate. The amount of mortar adhered to the recycled aggregate had little affect on the strength and durability of recycled concrete. It was concluded that the quality of recycled concrete aggregate depends on the quality of original concrete. 11 refs., 12 tabs., 11 figs.

  20. Orginal Article. Nephritic cell damage and antioxidant status in rats exposed to leachate from battery recycling industry

    Directory of Open Access Journals (Sweden)

    Akintunde Jacob K.

    2016-03-01

    Full Text Available Limited studies have assessed the toxic effect of sub-acute and sub-chronic exposure of leachate (mixture of metals in mammalian kidney. The sub-acute and sub-chronic exposure of mature male Wistar-strain albino rats (200-220 g were given by oral administration with leachate from Elewi Odo municipal battery recycling industry (EOMABRIL for period of 7 and 60 days respectively, at different concentrations (20%, 40%, 60%, 80% and 100%. This was to evaluate its toxic effects on male renal functions using biomarkers of oxidative stress and nephro-cellular damage. Control groups were treated equally, but given distilled water instead of the leachate. All the groups were fed with the same standard food and had free access to drinking water. Following the exposure, results showed that the treatment induced systemic toxicity at the doses tested by causing a significant (p<0.05 alteration in enzymatic antioxidantscatalase (CAT and superoxide dismutase (SOD in the kidneys which resulted into elevated levels of malonaldehyde (MDA. Reduced glutathione (GSH levels were found to be significantly (p<0.05 depleted relative to the control group. Considerable renal cortical congestion and numerous tubules with protein casts were observed in the lumen of EOMABRIL-treated rats. These findings conclude that possible mechanism by which EOMABRIL at the investigated concentrations elicits nephrotoxicity could be linked to the individual, additive, synergistic or antagonistic interactions of this mixture of metals with the renal bio-molecules, alteration of kidney detoxifying enzymes and necrosis of nephritic tubular epithelial cells.

  1. UTILIZATION OF RECYCLED AND WASTE MATERIALS IN VARIOUS CONSTRUCTION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Johnny Bolden

    2013-01-01

    Full Text Available More production equals more waste, more waste creates environmental concerns of toxic threat. An economical viable solution to this problem should include utilization of waste materials for new products which in turn minimize the heavy burden on the nation’s landfills. Recycling of waste construction materials saves natural resources, saves energy, reduces solid waste, reduces air and water pollutants and reduces greenhouse gases. The construction industry can start being aware of and take advantage of the benefits of using waste and recycled materials. Studies have investigated the use of acceptable waste, recycled and reusable materials and methods. The use of swine manure, animal fat, silica fume, roofing shingles, empty palm fruit bunch, citrus peels, cement kiln dust, fly ash, foundry sand, slag, glass, plastic, carpet, tire scraps, asphalt pavement and concrete aggregate in construction is becoming increasingly popular due to the shortage and increasing cost of raw materials. In this study a questionnaire survey targeting experts from construction industry was conducted in order to investigate the current practices of the uses of waste and recycled materials in the construction industry. This study presents an initial understanding of the current strengths and weaknesses of the practice intended to support construction industry in developing effective policies regarding uses of waste and recycled materials as construction materials.

  2. Organizational Heritage and Entrepreneurship: Steven Klepper’s Theories Reflected in the Emergence and Growth of the Plastic Molds Industry in Portugal

    NARCIS (Netherlands)

    Costa, Carla

    2015-01-01

    This paper reviews the history of the emergence of the molds and plastics industries in Portugal, finding that this history fits nicely with the accounts—originally proposed in Steven Klepper’s various works—of new industries emerging from older, related industries, and regional clusters emerging fr

  3. Organizational Heritage and Entrepreneurship: Steven Klepper’s Theories Reflected in the Emergence and Growth of the Plastic Molds Industry in Portugal

    NARCIS (Netherlands)

    Costa, Carla

    2015-01-01

    This paper reviews the history of the emergence of the molds and plastics industries in Portugal, finding that this history fits nicely with the accounts—originally proposed in Steven Klepper’s various works—of new industries emerging from older, related industries, and regional clusters emerging fr

  4. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...... in the metals producing industry is presented and tested on two printed circuit board scrap cases. The underlying idea for the method is that complex scrap should be introduced in the matrix of man-made material flows at recipient points where the scrap constitutes the least environmental problem and where...

  5. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  6. Auditing an intensive care unit recycling program.

    Science.gov (United States)

    Kubicki, Mark A; McGain, Forbes; O'Shea, Catherine J; Bates, Samantha

    2015-06-01

    The provision of health care has significant direct environmental effects such as energy and water use and waste production, and indirect effects, including manufacturing and transport of drugs and equipment. Recycling of hospital waste is one strategy to reduce waste disposed of as landfill, preserve resources, reduce greenhouse gas emissions, and potentially remain fiscally responsible. We began an intensive care unit recycling program, because a significant proportion of ICU waste was known to be recyclable. To determine the weight and proportion of ICU waste recycled, the proportion of incorrect waste disposal (including infectious waste contamination), the opportunity for further recycling and the financial effects of the recycling program. We weighed all waste and recyclables from an 11-bed ICU in an Australian metropolitan hospital for 7 non-consecutive days. As part of routine care, ICU waste was separated into general, infectious and recycling streams. Recycling streams were paper and cardboard, three plastics streams (polypropylene, mixed plastics and polyvinylchloride [PVC]) and commingled waste (steel, aluminium and some plastics). ICU waste from the waste and recycling bins was sorted into those five recycling streams, general waste and infectious waste. After sorting, the waste was weighed and examined. Recycling was classified as achieved (actual), potential and total. Potential recycling was defined as being acceptable to hospital protocol and local recycling programs. Direct and indirect financial costs, excluding labour, were examined. During the 7-day period, the total ICU waste was 505 kg: general waste, 222 kg (44%); infectious waste, 138 kg (27%); potentially recyclable waste, 145 kg (28%). Of the potentially recyclable waste, 70 kg (49%) was actually recycled (14% of the total ICU waste). In the infectious waste bins, 82% was truly infectious. There was no infectious contamination of the recycling streams. The PVC waste was 37% contaminated

  7. Recycling Paper Recycling

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2014-02-01

    Full Text Available What do you do after a product has served its function and is no longer needed? Ideally, you recycle it. What do you do if people have neglected or forgotten so much of what has been learned in recent years about paper recycling? Well, one of the things that someone can do is to write a book. Very little of the contents of such a book may be new. But the book itself can be highly valuable, representing a lot of effort to select and organized material that will be helpful for the current and upcoming generations of papermaking technologists. This editorial describes a new book by Dr. Pratima Bajpai entitled Recycling and Deinking of Recovered Paper. Readers who deal with the recycling of paper will probably want to have a copy of it on a handy shelf.

  8. Information Requirements for Selection of Plastics for Use in Building. Proceedings of Conference of the Building Research Institute, Division of Engineering and Industrial Research (Spring 1960).

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC.

    Several aspects of plastics used in the building industry are discussed, and a general information format for specifying plastics in building construction is given. This format includes--(1) description of product, (2) physical properties, (3) design criteria, (4) installation, (5) maintenance, (6) economics, and (7) case histories. Several uses…

  9. Recycling Pressure-Sensitive Products

    Science.gov (United States)

    Jihui Guo; Larry Gwin; Carl Houtman; Mark Kroll; Steven J. Severtson

    2012-01-01

    The efficient control of contaminants such as metals, plastics, inks and adhesives during the processing of recovered paper products determines the profitability of recycling mills. In fact, it is arguably the most important technical obstacle in expanding the use of recycled paper.1-4 An especially challenging category of contaminants to manage...

  10. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China.

    Science.gov (United States)

    Ma, Jing; Horii, Yuichi; Cheng, Jinping; Wang, Wenhua; Wu, Qian; Ohura, Takeshi; Kannan, Kurunthachalam

    2009-02-01

    Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of

  11. EFFECT OF CERTAIN INDUSTRIAL EFFLUENTS ON PLASTICITY AND SWELLING CHARACTERISTICS OF AN EXPANSIVE SOIL – A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    DR.A.V.NARASIMHA RAO

    2012-10-01

    Full Text Available The rapid growth in population and industrialization cause generation of large quantities of effluents. The bulk effluents generated from industrial activities are discharged either treated or untreated over the soil leading to changes in soil properties causing improvement or degradation of engineering behaviour of soil. If there is an improvement in engineering behaviour of soil, there is a value addition to the industrial wastes serving the three benefits of safe disposal of effluent, using as a stabilizer and return of income on it. If there is degradation of engineering behaviour of soil then solution for decontamination is to be thought of. Expansive soils are mostly found in the arid and semi -arid regions of the world. In India expansive soils are called black cotton soils because of their colour and cotton growing potential. Expansive soils undergo swelling when they come into contact with water and shrink when water is squeezed out. The typical swelling/shrinkage behaviour is due to the basic mineral composition of the montmorillonite. The swelling nature of soil causes lot of damages to the civil engineering structures constructed over them. Hence in this paper the effect of certain industrial effluents on Plasticity and Swelling behaviour of anExpansive Soil has been presented. The soil used in this investigation is classified as “SC” as per I.S. Classification system. It is highly expansive nature as the Differential Free Swell Index is about 255%.In this Investigation tests on Consistency Limits and Swelling Characteristics are conducted on the soil treated withTextile, Tannery and Battery effluents at different percentages from 20 to 100% in increment of 20%.In order to compare the results of admixed soil, tests are also conducted on untreated soil. There is decrease in Plasticity and Swelling characteristics of soil when the soil is treated with Tannery and Textile effluents whereas anincrease Plasticity and Swelling

  12. 弹齿链耙式播前残膜回收机的设计研究%Research on the Spring-tooth-chain-rake Incomplete Plastic Film Recycling Machine

    Institute of Scientific and Technical Information of China (English)

    闫盼盼; 曹肆林; 罗昕; 胡斌; 李俊江; 营雨琨; 卢勇涛; 王敏

    2016-01-01

    With the popularization and application of mulching technology ,white pollution caused by plastic film is getting worse .In order to reduce pollution , does not affect seeding , emergence , design a new type of spring-tooth-chain-rake incomplete plastic film recycling machine before planting machine .It highlights the aircraft's overall structure , working principle, key components such as pick-up chain harrow , spring-tooth, taking off the membrane mechanism for design analysis.Field test showed that the aircraft pure-hour production rate is 0.85hm2/h,recovery of plastic film is 81%.The plastic film recycling can meet the technical requirements and the study results may help solve the problem of plastic film pollution .%随着地膜覆盖技术的推广应用,残膜带来的白色污染越来越严重. 为了减轻污染,不影响播种、出苗,研究设计了新型弹齿链耙式播前残膜回收机. 重点介绍了该机的总体结构、工作原理,以及捡拾链耙、弹齿、脱膜机构等关键部件的设计分析. 田间试验表明:该机生产率为0.85hm2/h,残膜回收率为81%,满足残膜回收的技术要求,研究成果有利于解决残膜污染问题.

  13. Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Buekens, A.G.; Huang, H. [Department of Chemical Engineering and Industrial Chemistry - CHIS 2, Free University of Brussels, Pleinlaan 2, Brussels 1050 (Belgium)

    1998-08-01

    This paper reviews recent developments in plastics cracking, a process developed to recycle plastic wastes into useful petrochemical materials. Under thermal cracking conditions, plastic wastes can be decomposed into three fractions: gas, liquid and solid residue. The liquid products are usually composed of higher boiling point hydrocarbons. By adopting customary fluid cracking catalysts and reforming catalysts, more aromatics and naphthenes in the C{sub 6}-C{sub 8} range can be produced, which are valuable gasoline-range hydrocarbons. More tests are, however, needed to verify the pyrolysis process in a pilot scale particularly for treatment of mixtures of bulk plastics. Plastics cracking is only an elementary conversion technology; its application has to be combined with other technologies such as municipal solid waste collection, classification and pretreatment at the front end, as well as hydrocarbon distillation and purification at the back end. Social, environmental and economic factors are also important in industrial implementation of the technology

  14. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. Recycled Insect Models

    Science.gov (United States)

    Rule, Audrey C.; Meyer, Mary Ann

    2007-01-01

    This article presents an engaging activity in which high school students use a dichotomous key to guide the creation and classification of model insects from recycled plastic lids and containers. Besides teaching the use of a dichotomous key and the effect of evolutionary descent upon groupings of organisms, this activity focuses on an…

  16. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production......Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  17. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  18. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    systematically investigated. This PhD project provided detailed quantitative data following a consistent approach to assess potential limitations for the presence of chemicals in relation to material recycling. Paper and plastics were used as illustrative examples of materials with well-established recycling...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern...... recycling has been recognised as a backbone of circular economy, with constant measures and initiatives being proposed in order to increase the recycling rates of materials being consumed. Material cycles are complex and dynamic systems where chemicals are added and removed in production, manufacturing...

  19. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China.

    Science.gov (United States)

    Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua

    2008-11-15

    Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion

  20. 废弃塑料的回收物流与再利用研究——以中山市为例%Study on Recovery Logistics and Recycling of Waste Plastics: A Case Study of Zhongshan City

    Institute of Scientific and Technical Information of China (English)

    郑平; 何雪君; 王冬良

    2012-01-01

    On the one hand, plastic is convenient to life, on the other hand, it also brings environmental pollution. The biggest problem is the treatment of waste plastics. To achieve sustainable development, we should take the principle of not buried, not bum and without abandoning to avoid secondary pollution. The best method is recycling which not only can solve the pollution problem of abandoned plastic, also can bring new profit growth for enterprise. To reach this purpose, this paper took the analysis on the recycling status of abandoned plastic in Zhongshan as the starting point. After investigation, the paper understood the status and the problems, and made recommendations by referring the abroad success experience.%塑料一方面方便了生活,另一方面也带来了环境污染.最大的问题是废弃塑料的处理,为了可持续发展,应采取不埋、不焚、不丢的原则,避免二次污染.最好的方法是回收再利用,不仅可以解决废弃塑料的污染问题,还为企业带来新的利润增长点,为了达到这一目的,从分析中山市废弃塑料的回收利用现状为切入点,经过调查研究,了解废弃塑料回收物流与再利用的现状,掌握存在的问题,借鉴国外成功经验,提出废弃塑料回收再利用建议.

  1. Recycling, Canadian update

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmanan, V. I. [Process Research ORTECH Inc., Mississauga, ON (Canada); Shaw, L. [Canadian Association of Recycling Industries, Almonte, ON (Canada)

    2001-07-01

    An update on the recycling industry in Canada is provided by way of selected examples involving the recovery of gallium from electronic scrap, magnesium recovery from mine tailings and energy recovery from metal industry processes. These examples have been selected to illustrate the synergy between major mining, metallurgical and utility industries with end users in the building materials, automotive and electronic industries. 1 tab., 1 fig.

  2. Quality Tools and TRIZ Based Quality Improvement Case Study at PT ‘X’ A Plastic Moulding Manufacturing Industry

    Science.gov (United States)

    Wirawan, Christina; Chandra, Fory

    2016-02-01

    Theory of Inventive Problem Solving (TRIZ) is a creative encouraging problem solving method. TRIZ is prepared by Altshuller for product design. Altshuller prepared contradiction matrix and suggestion to solve contradictions usually occur in product design. This paper try to combine TRIZ with quality tools such as Pareto and Fault Tree Analysis (FTA) to solve contradiction in quality improvement problem, neither than product design problem. Pareto used to identify defect priority, FTA used to analysis and identify root cause of defect. When there is contradiction in solving defect causes, TRIZ used to find creative problem solving. As a case study, PT ’X’, a plastic molding manufacturing industry was taken. PT ‘X’ using traditional press machine to produce plastic thread cone. There are 5 defect types that might occur in plastic thread cone production, incomplete form, dirty, mottle, excessive form, rugged. Research about quality improvement effort using DMAIC at PT ‘X’ have been done by Fory Candra. From this research, defect types, priority, root cause from FTA, recommendation from FMEA. In this research, from FTA reviewed, contradictions found among causes troublesome quality improvement efforts. TRIZ used to solve the contradictions and quality improvement effort can be made effectively.

  3. Empirical models for end-use properties prediction of LDPE: application in the flexible plastic packaging industry

    Directory of Open Access Journals (Sweden)

    Maria Carolina Burgos Costa

    2008-03-01

    Full Text Available The objective of this work is to develop empirical models to predict end use properties of low density polyethylene (LDPE resins as functions of two intrinsic properties easily measured in the polymers industry. The most important properties for application in the flexible plastic packaging industry were evaluated experimentally for seven commercial polymer grades. Statistical correlation analysis was performed for all variables and used as the basis for proper choice of inputs to each model output. Intrinsic properties selected for resin characterization are fluidity index (FI, which is essentially an indirect measurement of viscosity and weight average molecular weight (MW, and density. In general, models developed are able to reproduce and predict experimental data within experimental accuracy and show that a significant number of end use properties improve as the MW and density increase. Optical properties are mainly determined by the polymer morphology.

  4. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...... in the metals producing industry is presented and tested on two printed circuit board scrap cases. The underlying idea for the method is that complex scrap should be introduced in the matrix of man-made material flows at recipient points where the scrap constitutes the least environmental problem and where...... resource recovery is largest. It is clearly shown with the two printed circuit board scrap cases that the currently used copper recycling scenario is environmentally inferior to the tin and lead primary production scenarios. The method is a novelty, since no-one has previously put forward a method...

  5. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo, E-mail: kspark@iae.re.kr; Lee, Chan Gi; Hong, Hyun Seon, E-mail: hshong@iae.re.kr

    2015-04-15

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.

  6. Plastics Technology.

    Science.gov (United States)

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  7. Closed loop recycling of lead/acid batteries

    Science.gov (United States)

    Bied-Charreton, B.

    The traditional lead/acid battery is a recycleable product, irrespective whether it is of an automotive, traction or standby design. The product benefits from the traditional lead metallurgy that has been developed for both primary (mines) and secondary (recycling) smelting. Secondary smelting accounts for 60% of total lead production in Europe, and this market lead the most effectively metal. In secondary smelters, scrapped batteries are crushed and smelted. The polypropylene from the boxes is recycled to produce secondary plastic for battery, automotive, or other miscellaneous uses. The lead metal is refined to be re-used in the battery industry. The acid is retreated. Recycling requires a collection network. The lead/acid battery benefits from the traditional collection network that has been established for scrap-iron and non-ferrous metal scrap. In Western Europe, the recycling rate for scrapped batteries is estimated to be 80 to 90%. All participants in the battery recycling loop agree that the process must be a clean cycle for it to be credible. The collection organization is improving the quality of storage and transportation, especially with regard to the acid that can only be neutralized in correctly-controlled facilities, generally located at the smelters. The smelters themselves tend, through local regulations, to run at the optimum level of protection of the environment.

  8. Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant.

    Science.gov (United States)

    Suresh Kumar, M; Mudliar, S N; Reddy, K M K; Chakrabarti, T

    2004-12-01

    Most of the excess sludge from a wastewater treatment plant (60%) is disposed by landfill. As a resource utilization of excess sludge, the production of biodegradable plastics using the sludge has been proposed. Storage polymers in bacterial cells can be extracted and used as biodegradable plastics. However, widespread applications have been limited by high production cost. In the present study, activated sludge bacteria in a conventional wastewater treatment system were induced, by controlling the carbon: nitrogen ratio to accumulate storage polymers. Polymer yield increased to a maximum 33% of biomass (w/w) when the C/N ratio was increased from 24 to 144, where as specific growth yield decreased with increasing C/N ratio. The conditions which are required for the maximum polymer accumulation were optimized and are discussed.

  9. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  10. Group and insidious tetraethyl lead poisoning occurred in industry of plastic weaving: a case report.

    Science.gov (United States)

    Zhang, Feng; Bai, Ying; Zhu, Baoli; Zhu, Wenjing; Ye, Mingxian

    2016-05-01

    Tetraethyl lead (TEL) poisoning has declined sharply with decreasing consumption of gasoil and other chemicals contained TEL. Here we reported group TEL poisoning in the plastic weaving factory. We investigated 16 cases with the typical nerves disorder which is similar to organotin poisoning, and the result suggested that the poisoning may cause by applied "white oil" contented TEL. Despite its rareness, our cases emphasize that clinicians should pay attention to the difference from the treatment of organic tin poisoning.

  11. PREPARATION OF RECYCLING CERAMIC TILES USING CERAMIC INDUSTRIAL WASTE%利用陶瓷工业废料制备再生陶瓷墙地砖

    Institute of Scientific and Technical Information of China (English)

    王功勋

    2011-01-01

    Recycling ceramic tile was made from raw materials using waste ceramic polishing powder(PP),and waste tiles,and using borax was added as a supplementary flux.Effects of PP sintering property on the strength of recycling ceramic tiles were investigated.Effects of PP on microstructure were detected by SEM tests.Results show that PP is beneficial to improve the sintering property because of its fine particle and glass phase.Strength of recycling ceramic tiles is increased by adding PP and borax compound.In the experimental,borax mass fraction of 0.5%,PP mass fraction of 2% and ceramic tile granule mass fraction of 25%,the strength of recycling ceramic tiles is the highest.This treatment technology features large integrated utilization efficiency for ceramic industrial waste and high strength of recycle ceramic tiles.%以废弃陶瓷抛光砖粉、陶瓷墙地砖烧成废料为原材料,硼砂作辅助熔剂制备再生陶瓷墙地砖,研究陶瓷抛光砖粉的高温烧结性能及其对再生墙地砖强度的影响,采用SEM测试分析陶瓷抛光砖粉对再生陶瓷制品微观结构的影响。结果表明:抛光砖粉含玻璃相、颗粒细小,有利坯体烧结密实;复掺少量抛光砖粉和硼砂,可提高制品强度。在硼砂掺量为0.5%,陶瓷抛光砖粉为2%、烧成废料为25%的实验条件下,所得再生陶瓷制品强度最高。该方法具有陶瓷工业废料的综合利用率高,制得的再生陶瓷制品强度高等特点。

  12. Potential Analysis of Industrial Waste Gas Recycling in CO2 Emission Reduction%工业废气再利用的碳减排潜力分析

    Institute of Scientific and Technical Information of China (English)

    都基峻; 田刚; 谭玉玲; 龙红艳; 张凡; 石应杰

    2015-01-01

    There was significant correlation between China′s industrial waste gas emission and carbon emission, and it is necessary to further study the waste gas emission reduction which is the important approach and key breakthrough point to realize carbon emission reduction.A carbon emission reduction calculation method was set up for the waste heat utilization, the waste pressure utilization and the recycling of waste gas with heat value based on the energy balance principle.The current technologies of waste gas recycling of sintering machine, cement kiln cooperative treatment of domestic wastes and municipal sludge, and exhaust gas cascade utilization of electrolytic aluminum industry to coal-fired power plants were introduced.The corresponding carbon emission reductions by waste gas recycling in these industries were calculated and analyzed.The results showed that the industrial waste gas recycling technologies could reduce emission of waste gas volume and thus reduce emission of CO2 , contributing to almost 25%of the total carbon emission reduction in China.The technologies should play an important role in waste gas emission and CO2 emission reduction, and be the important approach to realize carbon emission reduction target in 2020.Therefore, the development of the waste gas recycling technologies should be strengthened.%中国CO2排放量与工业废气排放量之间具有很高的相关性,废气量减排是实现CO2减排的重要手段和切入点,有必要开展深入研究。根据能量平衡的原理,建立了余热利用、余压利用和含热值气体再利用等碳减排计算方法,简述了现有的钢铁烧结机烟气循环技术、水泥窑协同处理生活垃圾和市政污泥技术以及电解铝烟气阶梯利用于火电厂技术,并对以上主要行业废气再利用的碳减排量进行了计算和分析。结果表明,主要工业行业的废气再利用技术可以减少废气量排放,进而减少CO2

  13. 基于多跳路由算法的地膜回收机械装置优化%Optimization of Plastic Film Recycling Mechanism Based on Multi Hop Routing Algorithm

    Institute of Scientific and Technical Information of China (English)

    吴东林; 张玉华

    2016-01-01

    为了增强地膜回收机的通信能力,使其适应不同地膜密度的地块,提高地膜回收机的工作效率,实现多地膜回收机的协同控制,设计了一种新的基于多跳无线网络的地膜回收机和多回收机协同控制系统. 改进后的地膜回收机在起膜铲的轴上装有起膜阻力传感器,可以实时测试起膜阻力,调整起膜机的速度,实现速度的自适应调节. 为了适应不同的起膜机速度,在卷膜机上装有速度传感器,可以对卷膜速度进行控制,提高了起膜和卷膜的作业精度. 同时,设计了5 点的多跳通信网络,利用无线局域网络,实现了地膜机的协同控制. 最后对地膜回收机的性能进行了测试,通过测试发现:残膜机作业的回收率达到了90%以上,其作业时间较短,满足高效残膜回收机的设计需求,可以在其他农业现代化机械控制系统的设计过程中进行推广%In order to enhance the communication capacity of plastic recycling machine the adapt to different plastic film density plots , improve the work efficiency of the mulching film recovery machine , realize the coordinated control of multi-ple plastic film recycling machine , it designed a new multi hop wireless network of plastic recycling machine and re-cy cling machine based on coordination control system .The modified film recycling machine is equipped with a film re-sistance sensor on the shaft of the film ,which can be tested in real time .In order to be adaptive to the speed of the film , the film is equipped with a speed sensor , which can control the film speed and improve the operation accuracy of the film and film .A multi hop communication network with five points was designed , and the cooperative control of plastic film was realized by using wireless local area network .Finally the mulching film recovery machine performance was tested to find that plastic film machine operation recovery rate reached more than 90%, the operating time is

  14. On the Impact of Ship Recycling Convention on Ship Recycling Industry of China%谈拆船公约对我国拆船行业的影响

    Institute of Scientific and Technical Information of China (English)

    刘海强

    2011-01-01

    This article summarizes the "International Convention for the Safe and Environmentally Sound Recycling of Ships "(hereinafter referred to as the Convention),the current state of the Convention and the existing problems,and on this basis puts forward relevant opinions and suggestions.Ship Recycling Convention aims to develop a safe,environment friendly and healthy world standards of ship dismantling,but some principle issues,such as mandatory audits and ship-breaking yards in non-party states have not been resolved because of the special provisions of the Convention.Taking into account the special nature of the Convention,this paper proposes that the state authorities take positive measures to strengthen supervision on ship breaking industries.%本文介绍了《国际安全与环保拆船公约草案》(以下简称公约)的产生及公约目前的状态和存在的问题,并在此基础上提出了具体建议。拆船公约旨在为全世界制定一个安全、环保、健康的船舶拆解标准,由于公约规定范围的特殊性,公约的一些原则性问题,如强制审核、非缔约国拆船厂等至今还没有解决。考虑到公约的特殊性,建议国家有关主管机关采取积极措施应对,并加强对拆船等行业的监管力度。

  15. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  16. Analysis of the treatment of plastic from electrical and electronic waste in the Republic of Serbia and the testing of the recycling potential of non-metallic fractions of printed circuit boards

    Directory of Open Access Journals (Sweden)

    Vučinić Aleksandra S.

    2017-01-01

    Full Text Available This paper presents the analysis of the quantity of plastic and waste printed circuit boards obtained after the mechanical treatment of electrical and electronic waste (E-waste in the Republic of Serbia, as well as the recycling of non-metallic fractions of waste printed circuit boards. The aim is to analyze the obtained recycled material and recommendation for possible application of recyclables. The data on the quantities and treatment of plastics and printed circuit boards obtained after the mechanical treatment of WEEE, were gained through questionnaires sent to the operators who treat this type of waste. The results of the questionnaire analysis showed that in 2014 the dismantling of E-waste isolated 1,870.95 t of plastic and 499.85 t of printed circuit boards. In the Republic of Serbia, E-waste recycling is performed exclusively by using mechanical methods. Mechanical methods consist of primary crushing and separation of the materials which have a utility value as secondary raw materials, from the components and materials that have hazardous properties. Respect to that, the recycling of printed circuit boards using some of the metallurgical processes with the aim of extracting copper, precious metals and non-metallic fraction is completely absent, and the circuit boards are exported as a whole. Given the number of printed circuit boards obtained by E-waste dismantling, and the fact that from an economic point of view, hydrometallurgical methods are very suitable technological solutions in the case of a smaller capacity, there is a possibility for establishing the facilities in the Republic of Serbia for the hydrometallurgical treatment that could be used for metals extraction, and non-metallic fractions, which also have their own value. Printed circuit boards granulate obtained after the mechanical pretreatment and the selective removal of metals by hydrometallurgical processes was used for the testing of the recycling potential

  17. Integrated logistic and recycling planning for industrial products, illustrated by the example of electric batteries; Integrierte Logistik- und Verwertungsplanung beim Produktrecycling - dargestellt am Beispiel von Geraetebatterien

    Energy Technology Data Exchange (ETDEWEB)

    Engels, B.

    2003-07-01

    Current legal, technical and economic boundary conditions are making waste recycling more important than ever. To develop adequate logistic structures, integrated planning is required which takes account of all interdependent steps of waste management logistics. The thesis discusses the example of used electric batteries in Germany. The first step is the selection of sites for battery sorting plants. This problem is solved by a modified warehouse location problem. A new approach for analysis and assessment of new recycling options for zinc batteries in the iron and steel industry, especially electric arc furnaces, is presented as well, and also a process model based on flow chart simulation. [German] Die Ruecknahme und Verwertung von Altprodukten gewinnen durch geaenderte rechtliche, technische und oekonomische Rahmenbedingungen stetig an Bedeutung. Der Aufbau adaequater logistischer Strukturen erfordert integrierte Planungsansaetze, die alle interdependenten Schritte der Entsorgungslogistik gleichermassen beruecksichtigen. Ein derartiger Ansatz wird in dieser Arbeit am Fallbeispiel verbrauchter Geraetebatterien entwickelt und exemplarisch fuer Deutschland angewendet. Ein Schwerpunkt liegt hierbei zunaechst auf der Standortplanung fuer Batteriesortieranlagen, die mit Hilfe eines modifizierten Warehouse-Location-Problems behandelt wird. Gleichermassen wird ein Analyse- und Bewertungsansatz zur Etablierung neuer Verwertungsoptionen fuer zinkhaltige Batterien in der Eisen- und Stahlindustrie, insbesondere im Elektrolichtbogenofen vorgestellt. Hierzu kommt ein verfahrenstechnisches Prozessmodell auf Basis eines Fliessschemasimulationssystems zum Einsatz.

  18. Research on Construction of Industrialization Policy System about Recycling the Waste Electrical and Electronic Equipment%废旧电器回收处理产业化政策体系构建

    Institute of Scientific and Technical Information of China (English)

    郭汉丁; 张印贤; 马辉; 李芬芳

    2012-01-01

    The waste electrical and electronic equipment (WEEE) possess rubbish attributes and commodity attributes, and also environmental pollution characteristic and renewable resource characteristic. Hence, it decides recycling WEEE to go the way of industrialization development. The industrialization of recycling WEEE is the demands of the new age to promote economic and social sustainable development, for improving the comprehensive benefits of quantitative business, protecting the environment and ensuring the human health. Recycling Management Regulations on Recycling Waste Electrical and Electronic Equipment constructs the legal platform for industrialized development. It also explicates the bottlenecks, the law, the legal system and the industry chain price of the industry development of recycling WEEE. It will promote the industrial chain of recycling WEEE collaborative operation and promote the industry healthy and orderly developing by establishing technical policy, social policy, economic policy and industrial policy of industrial development of the recycling WEEE.%废旧电器具有垃圾和商品的二重属性,环境污染和可再生资源性的双重特性,这决定了废旧电器回收处理必须走产业化发展之路,废旧电器回收处理业务产业化是经济社会可持续发展,提高规模化经营的综合效益,保护环境和保障人体健康的时代要求.《废旧电器电子产品回收处理管理条例》为产业化发展构建了法律平台,明确了我国废旧电器回收再生利用产业发展的瓶颈、法律法规体系和产业链价格政策,构建废旧电器回收再生利用产业化发展的技术政策、社会政策、经济政策和产业政策,将促进废旧电器回收再生利用产业链的协同运行,推动其产业健康有序发展.

  19. Recycling and recovering waste water in the surface treatment industry; Reciclaje y recuperacion de las aguas residuales en la industria de tratamientos de superficies

    Energy Technology Data Exchange (ETDEWEB)

    Pujadas, A. [USF/Sation (Spain)

    1995-12-31

    The article begins with an introduction to the problems of contaminated waste produced in surface treatment lines and goes on to compare and evaluate the different techniques for cutting down the amount of water required to will down the products while maintaining the optimum quality of the finish. Different types of plant, equipment and technology for use with galvanic lines to reduce water consumption to a minimum are described. Particular attention is given to all the techniques which allow a reduction to be made in disposing of rundown batches by completed recycling them or partially recovering them. The purpose of the article is to provide an overview of the large number of possibilities for reducing, recovering, simplifying and even elimination the dumping of contaminated waste in the surface treatment industry. The eventual aim of all this is to simplify or renew the need for having a waste water treatment plant and to minimize the waste generated. (Author) 5 refs.

  20. A Survey on PET Recycling Problems in Qom City, Iran

    Directory of Open Access Journals (Sweden)

    Gh Omrani, S Nasseri, A H Mahvi, Y Ghafuri

    2004-07-01

    Full Text Available Recycling process is developed in communities to decrease the volume of high solid wastes and prevent environmental pollution. Plastic is one of the most recyclable materials in municipal solid wastes (MSW with a high rate of application during the last decades. PET (poly ethylene therphtalate is one of the basic plastic compounds which are used in a variety of products such as textile fibers, bottles and other containers. Methods for PET recycling include mechanical and chemical processes and PET incineration. In this study which was conducted on MSW analysis in Qom (a city in the central region of Iran, known for increase of population and high migration, environmental pollutions such as high quantity of MSW, industries and vehicle contamination, noise pollution and municipal sewage, physical analysis of MSW was carried out to four geographical sites and in different seasons of the year 2002. Results showed the rate of PET production to be 0.44% of the total MSW production, depending on site characteristics and area, time and cultural specifications. It is concluded that approximately 700 tons of PET plastics are buried per year

  1. Design and test of clamping finger-chain type device for recycling agricultural plastic film%夹指链式残膜回收装置的设计及试验

    Institute of Scientific and Technical Information of China (English)

    段文献; 王吉奎; 李阳; 龚贺贺; 牛海龙; 罗威; 毕新胜

    2016-01-01

    The domestic equipment for recycling agricultural plastic film has the problems of low recovery rate of plastic film, wrapping the film collecting parts by plastics, or difficulty of separating the straw and soil from the film. In addition, film removing for the current methods is poor and high impurity content of recovered plastic film can’t be recycled. In order to solve these problems, the clamping finger-chain type device for recycling agricultural plastic film was designed. The designed device mainly consisted of film collecting device, film removing device, transmission system, side film shoveling, tie rod, transverse beam, residual film box, etc. The film collecting device mainly included film collecting frame, upper film collecting sprocket, under film collecting sprocket, film collecting chain, clamping finger, film cutting saw disk, supporting chain roller, tightening devices, etc. The film removing device mainly included film removing rotation shaft, film removing blade, driving sprocket, film removing bracket, bearing chock, etc. The film collecting device was driven by the ground wheel through the film collecting transmission system and the film removing device was driven by the tractor power output shaft through the film removing transmission. Through the design and mechanical analysis of the clamping finger-chain, the structure size parameters of it were determined, which contained the spacing between two clamping finger-chains was 220 mm, and its working angle was 40°, the effective length of clamping fingerL was 135 mm, and the angle between clamping finger and outer link was 20°. The tension mechanism could make the clamping finger-chain be always in a state of tension in the process of operation. The specification parameters of the selected spring were determined by analysis of the tensioning mechanism. Through the structure size design and motion analysis of film removing device, the film removing blade size was determined, and the length

  2. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  3. Polymer recycling: potential application of radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, Guillermina; Clough, Roger L. E-mail: rlcloug@sandia.gov; Czvikovszky, Tibor; Guven, Olgun; Le Moel, Alain; Liu Weiwei; Singh, Ajit; Yang Jingtian; Zaharescu, Traian

    2002-04-01

    Management of solid waste is an important problem, which is becoming progressively worse as a byproduct of continuing economic growth and development. Polymeric materials (plastics and rubbers) comprise a steadily increasing proportion of the municipal and industrial waste going into landfill. Development of technologies for reducing polymeric waste, which are acceptable from the environmental standpoint, and which are cost-effective, has proven to be a difficult challenge due to complexities inherent in the reuse of polymers. Establishing optimal processes for the reuse/recycling of polymeric materials thus remains a worldwide challenge as we enter the new century. Due to the ability of ionizing radiation to alter the structure and properties of bulk polymeric materials, and the fact that it is applicable to essentially all polymer types, irradiation holds promise for impacting the polymer waste problem. The three main possibilities for use of radiation in this application are: (1) enhancing the mechanical properties and performance of recovered materials or material blends, principally through crosslinking, or through surface modification of different phases being combined; (2) treatment causing or enhancing the decomposition of polymers, particularly through chain scission, leading to recovery of either low molecular weight mixtures, or powders, for use as chemical feedstocks or additives; (3) production of advanced polymeric materials designed for environmental compatibility. This paper provides an overview of the polymer recycling problem, describes the major technological obstacles to the implementation of recycling technologies, and outlines some of the approaches being taken. A review of radiation-based recycling research is then provided, followed by a discussion of future directions where irradiation may be relevant to the problems currently inhibiting the widespread recycling of polymeric materials.

  4. Recycling of Paper and Cardboard

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Paper and cardboard are produced from pulp derived from plant fibers, primarily wood. Paper and cardboard is used for many different products, such as for packaging material, newsprint and advertisements. Most of these products have very short lifetimes and thus constitute a major fraction of most...... waste. Recycling of paper and cardboard production waste and postconsumer waste has a long history in the pulp and paper industry. The recycled material now makes up more than half of the raw material used in European pulp and paper industry (ERPC, 2004). This chapter describes briefly how paper...... and cardboard are produced and how waste paper is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of paper recycling....

  5. Recycling of Paper and Cardboard

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    waste. Recycling of paper and cardboard production waste and postconsumer waste has a long history in the pulp and paper industry. The recycled material now makes up more than half of the raw material used in European pulp and paper industry (ERPC, 2004). This chapter describes briefly how paper...... and cardboard are produced and how waste paper is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of paper recycling.......Paper and cardboard are produced from pulp derived from plant fibers, primarily wood. Paper and cardboard is used for many different products, such as for packaging material, newsprint and advertisements. Most of these products have very short lifetimes and thus constitute a major fraction of most...

  6. Material recycling: Presence of chemicals and their influence on the circular economy concept

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Astrup, Thomas Fruergaard

    2014-01-01

    Linear production concept (extract-convert-use-discard) applied from the times of industrial revolution hascreated a lot of skepticism in the world of limited resources that we live in. As basis to tackle the issue of resource scarcity, circular economy concept has been proposed. The backbone...... of the concept is the pursuit of sustainability through re-use and recycling of products and materials once they have served their purpose. Once such materials (e.g. paper, plastics) are recycled, chemicals that they contain are reintroduced,spread or even accumulate in the newly manufactured products (Figure 1...

  7. Reciclagem de embalagens plásticas flexíveis: contribuição da identificação correta Flexible plastic packaging recycling: the contribution of the correct identification

    Directory of Open Access Journals (Sweden)

    Leda Coltro

    2013-01-01

    , folha de alumínio, é proposta a inclusão da identificação destes materiais na embalagem.Packages have high rotation as they become municipal solid waste just after the consumption of the product. Therefore, packages should be labeled with identification of the material they are made of in order to help the recycling chain. Many products made from plastics show a resin identification code - usually from 1 to 7 inside a three-arrow triangle above a monogram - aimed at identifying the type of plastic the product is made of, and help its separation and later recycling. In other words, one aims to facilitate recovery of plastics discarded with the municipal solid waste. In this study we collected data on the resin identification code in flexible plastic packages to assess whether the guidelines for material identification are being followed. The data collection was performed in a total of 509 flexible plastic packages used for packing food and non-food products available in the Brazilian market. Even though the NBR 13230 Brazilian standard is already in its second revision, the resin identification code in plastic packages is still used in a very heterogeneous fashion. Approximately 50% of the packages had the resin identification code. Up to 30% of some packages showed incorrect material identification code. Therefore, misinformation still occurs in the Brazilian market concerning the type of material for plastic packaging - including lack of the resin identification code and incorrect form of identification code in the plastic packaging. Both of these problems have negative effects on the plastic recycling chain. We propose that other materials used in flexible plastic packages, e.g. aluminum foil, should also be identified, in order to make the separation and recycling easier.

  8. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational...... and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed...... and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought. (C) 2009 Elsevier Ltd. All rights reserved....

  9. Occupational exposure to styrene in the fibreglass reinforced plastic industry: comparison between two different manufacturing processes.

    Science.gov (United States)

    Tranfo, Giovanna; Gherardi, Monica; Paci, E; Gatto, Mariapia; Gordiani, A; Caporossi, Lidia; Capanna, Silvia; Sisto, Renata; Papaleo, B; Fiumalbi, Carla; Garofani, Patrizia

    2012-01-01

    Styrene is used in manufacturing fiberglass reinforced plastics: and occupational exposure was related to neurotoxicology and genotoxicity. The sum of the metabolites mandelic and phenylglyoxylic acids is the ACGIH biomarker for occupational exposure with a BEI of 400 mg/g of creatinine in end shift urine corresponding to a airborne styrene concentration of 85 mg/m3. There are two main molding processes, open and closed, the last more effective at controlling worker's styrene exposure. To compare the open molding process to the compression of fiber reinforced resin foils, a kind of closed molding, monitoring the styrene exposure of workers in two production sites (A and B). Environmental Monitoring was carried out by Radiello samplers and Biological Monitoring by means of the determination of MA and PGA with HPLC/MS/MS in 10 workers at Site A and 14 at Site B. The median values for styrene exposure resulted 31.1 mg/m3 for Site A and 24.4 mg/m for Site B, while the medians for the sum of the two metabolites in the end shift urine were 86.7 e 33.8 mg/g creatinine respectively. There is a significant linear correlation between personal styrene exposure and the excretion of styrene metabolites (R = 0.74). As expected the exposure markers of the workers of the two production sites resulted higher in the open process. The analytical results of both environmental and biological monitoring were all below the occupational exposure limits, confirming the efficacy of the protective devices.

  10. A preliminary investigation of unintentional POP emissions from thermal wire reclamation at industrial scrap metal recycling parks in China.

    Science.gov (United States)

    Nie, Zhiqiang; Zheng, Minghui; Liu, Guorui; Liu, Wenbin; Lv, Pu; Zhang, Bing; Su, Guijin; Gao, Lirong; Xiao, Ke

    2012-05-15

    Thermal wire reclamation is considered to be a potential source of unintentional persistent organic pollutants (unintentional POPs). In this study, unintentional POP concentrations, including PCDD/Fs, dioxin like PCBs (dl-PCBs), polychlorinated naphthalenes (PCNs), hexachlorobenzene (HxCBz) and pentachlorobenzene (PeCBz), were quantified in flue gas and residual ash emissions from thermal wire reclamation at scrap metal dismantling parks in Zhejiang Province, China. The total average TEQ emissions of the investigated unintentional POPs from flue gas and residual ash in two typical scrap metal recycling plants ranged from 13.1 to 48.3ngTEQNm(-3) and 0.08 to 2.8ngTEQg(-1), respectively. The dominant PCDD/F congeners were OCDD, 1,2,3,4,6,7,8-HpCDD, OCDF and 1,2,3,4,6,7,8-HpCDF, while PCB-126 and PCB-169 were the main contributors to the toxicity of the dl-PCBs. There were clear differences in the distribution dl-PCBs congeners contributing to the TEQ concentrations in the flue gas samples from the two plants. The PCN TEQs were dominated by PCN-66/67 and PCN-73. Although thermal wire reclamation in incinerators has been proposed as an alternative to open burning, there are still considerable environmental risks associated with regulated incinerators, and unintentional POP emissions from thermal wire reclamation sites need to be controlled by local government agencies.

  11. Study of Polyolefines Waste Thermo-Destruction in Large Laboratory and in Industrial Installations

    Science.gov (United States)

    2014-12-15

    life time as a useable product. Recycling of polymer waste , mainly polyolefines, which constitute 60% of them, on the technological lines operating...consumption of waste plastic input – quantity of obtained liquid and gaseous product per a month – quantity of industrial waste received per a month. In...preparation of material for thermo-destruction process (cleaning and drying) allowed reduce the amount of water for recycling ( waste ) collected at the

  12. Plastic paradise: transforming bodies and selves in Costa Rica's cosmetic surgery tourism industry.

    Science.gov (United States)

    Ackerman, Sara L

    2010-10-01

    Long popular as a nature tourism destination, Costa Rica has recently emerged as a haven for middle class North Americans seeking inexpensive, state-of-the-art cosmetic surgery. This paper examines "cosmetic surgery tourism" in Costa Rica as a form of medicalized leisure, situated in elite private spaces and yet inextricably linked to a beleaguered national medical program. Through historical context and ethnographic analysis of activities at medical hotels and clinics, I describe how the recovery industry operates on the embodied subjectivities of visiting patients and their local caretakers. Recovery sociality and healing landscapes facilitate patients' transition through a period of post-surgical liminality and provide nostalgic transport to an imagined medical arcadia, while clinicians are attracted by a neoliberal promise of prosperity and autonomy. Ultimately, Costa Rica's transformation into a paradise of medical consumption and self-optimization is contingent on a mythology that obscures growing uncertainties and inequities in the nation's broader medical landscape.

  13. Plastic Bridge

    Institute of Scientific and Technical Information of China (English)

    履之

    1994-01-01

    Already ubiquitous in homes and cars, plastic is now appearing inbridges. An academic-industrial consortium based at the University ofCalifornia in San Diego is launching a three-year research program aimed atdeveloping the world’s first plastic highway bridge, a 450-foot span madeentirely from glass-,carbon,and polymer-fiber-reinforced composite mate-rials, the stuff of military aircraft. It will cross Interstate 5 to connect thetwo sides of the school’s campus.

  14. Path Creation as a Process of Resource Alignment and Anchoring: Industry Formation for On-Site Water Recycling in Beijing

    NARCIS (Netherlands)

    Binz, Christian; Truffer, Bernhard; Coenen, Lars

    2016-01-01

    Where and how new industrial paths emerge are much debated questions in economic geography, especially in light of the recent evolutionary turn. This article contributes to the ongoing debate on path creation with a new analytical framework that specifies the formation of generic resources in embryo

  15. Path Creation as a Process of Resource Alignment and Anchoring: Industry Formation for On-Site Water Recycling in Beijing

    NARCIS (Netherlands)

    Binz, Christian; Truffer, Bernhard|info:eu-repo/dai/nl/6603148005; Coenen, Lars

    2016-01-01

    Where and how new industrial paths emerge are much debated questions in economic geography, especially in light of the recent evolutionary turn. This article contributes to the ongoing debate on path creation with a new analytical framework that specifies the formation of generic resources in

  16. Path Creation as a Process of Resource Alignment and Anchoring: Industry Formation for On-Site Water Recycling in Beijing

    NARCIS (Netherlands)

    Binz, Christian; Truffer, Bernhard|info:eu-repo/dai/nl/6603148005; Coenen, Lars

    2016-01-01

    Where and how new industrial paths emerge are much debated questions in economic geography, especially in light of the recent evolutionary turn. This article contributes to the ongoing debate on path creation with a new analytical framework that specifies the formation of generic resources in embryo

  17. Potential environmental benefits of improving recycling of polyolefines – LCA of Magnetic density separation (MDS) developed in the EU FP7 funded project W2Plastic

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Bonou, Alexandra

    2012-01-01

    The core of the EU FP7 funded project W2Plastic is development of a magnetic density separation (MDS) of polyolefines in order to improve the sorting efficiency of these polymer types in different waste fractions. As part of the project a life cycle assessment is performed in order to firstly...

  18. Comparison of recycling outcomes in three types of recycling collection units.

    Science.gov (United States)

    Andrews, Ashley; Gregoire, Mary; Rasmussen, Heather; Witowich, Gretchen

    2013-03-01

    Commercial institutions have many factors to consider when implementing an effective recycling program. This study examined the effectiveness of three different types of recycling bins on recycling accuracy by determining the percent weight of recyclable material placed in the recycling bins, comparing the percent weight of recyclable material by type of container used, and examining whether a change in signage increased recycling accuracy. Data were collected over 6 weeks totaling 30 days from 3 different recycling bin types at a Midwest University medical center. Five bin locations for each bin type were used. Bags from these bins were collected, sorted into recyclable and non-recyclable material, and weighed. The percent recyclable material was calculated using these weights. Common contaminates found in the bins were napkins and paper towels, plastic food wrapping, plastic bags, and coffee cups. The results showed a significant difference in percent recyclable material between bin types and bin locations. Bin type 2 was found to have one bin location to be statistically different (p=0.048), which may have been due to lack of a trash bin next to the recycling bin in that location. Bin type 3 had significantly lower percent recyclable material (precycling bin and increased contamination due to the combination of commingled and paper into one bag. There was no significant change in percent recyclable material in recycling bins post signage change. These results suggest a signage change may not be an effective way, when used alone, to increase recycling compliance and accuracy. This study showed two or three-compartment bins located next to a trash bin may be the best bin type for recycling accuracy.

  19. Case study on the treatment and recycle of wastewater from automobile industry%汽车工业废水处理及回用工程实例

    Institute of Scientific and Technical Information of China (English)

    董建威; 司马卫平

    2015-01-01

    汽车制造企业排放的机械加工废水具有有机物成分复杂、矿物油浓度较高且具有一定毒性等特点,采用气浮—混凝沉淀—生物法—反渗透工艺进行深度处理后部分回用。工程实践表明:当进水COD为1000 mg/L左右时,在系统维持相对稳定的情况下,反渗透产水可满足企业生产工艺用水水质要求,而反渗透浓水达到了《污水综合排放标准》(GB 8978—1996)三级标准。%The wastewater discharge d from automobile industry are characterized by complicated components ,high concentration of mineral oil and toxicity. After the combined process ,air flotation-coagulation-biological process-reverse osmosis,has been used for the advanced treatment of it,this wastewater can be recycled partly. The practice results show that when the influent COD is about 1 000 mg/L and the system condition maintains relatively stable , the reverse osmosis produced water can meet the water quality requirements for the recycle in production ,and the condensed water from RO system can meet the third class criteria specified in the Integrated Wastewater Discharge Standard(GB 8978—1996).

  20. 炼油污水净化回用工业试验综述%General Description of Industrial Test of Purification and Recycle of Refinery Sewage

    Institute of Scientific and Technical Information of China (English)

    郭洪明

    2001-01-01

    随着我国石油加工业的发展,炼油装置及生产能力不断增加,炼厂对新鲜水的需求量和污水的排放量也在逐年增加。因此如何节约用水和减少污水的排放量,将炼油污水净化回用,是降低企业加工成本,提高企业经济效益,而且进一步利用水资源,提高社会效益和环境效益的重要课题,哈尔滨炼油厂自1997年开始经过小试、中试及工业试验,将炼厂污水净化回用,取得了很好的结果,同时该课题通过了中油股份公司组织的技术鉴定。%Along with the development of oil processing sector, as well as continuous increase of refinery unit and its production capacity, volume of fresh water required and sewage discharged are increasing annually. Therefore, how to save water and reduce the discharged volume of sewage, as well as purification and recycle of refinery sewage are very important factors to reduce the processing cost of enterprise, improve economic benefit of the enterprise, further utilize water resource, improve social benefit and environmental efficiency. Harbin refinery has conducted small scale test, middle scale test and industrial scale test to purify and recycle refinery sewage, achieving good result since 1997. The technology has passed the appraisal organized by PetroChina.

  1. Color metasurfaces in industrial perspective

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Kristensen, Anders

    color modification by laser ablation is briefly described. The environmental benefits are analyzed by life cycle analysis, where the high recyclability leads to reduced environmental impact compared to conventional plastic production. In summary, a promising future is anticipated for plasmonic colors......This doctoral thesis describes the utilization of color metasurfaces in an industrial perspective, where nano-scale textures and contingent post processing replace inks, dyes and pigments in plastic production. The concept of colors by structure arguably reduces the number of raw materials...... and eliminates mechanical color sorting in the recycling stage. First, the development of experimental processes, techniques and equipment is described. A single-spot electron beam lithography scheme for master pattern definition is developed, and optical characterization equipment for both laboratory...

  2. 回收醇净化工艺技术在增塑剂酯化工段中的应用%Purification Technology of Recycled Alcohol in the Plasticizer Esterification Section

    Institute of Scientific and Technical Information of China (English)

    周江云; 张磊

    2012-01-01

    Through discussion on the "back flush", extension the reaction time and the impact on product quality which occurred in the process of production of plasticizer, this paper studies the purification technology of recycled alcohol in the plasticizer esterification Section. The application of this technology improves output and production efficiency significantly, but also reduces the consumption of raw materials, product quality be improved and stable.%针对增塑剂生产中回收醇使用时出现的酯化反应“冲料”、延长酯化时间、影响产品质量等现象。研究了回收醇净化工艺技术在增塑剂酯化工段中的应用。该项技术的应用,明显提高了生产产量及生产效率,还降低了原料消耗,产品质量不仅得到提高还能保持稳定。

  3. Plastics and environmental health: the road ahead.

    Science.gov (United States)

    North, Emily J; Halden, Rolf U

    2013-01-01

    Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.

  4. Plastics and Environmental Health: The Road Ahead

    Science.gov (United States)

    North, Emily J.; Halden, Rolf U.

    2013-01-01

    Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including endocrine-disrupting properties and long-term pollution. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials – such as metal or glass – and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications, such as disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by widespread, unwanted human exposure to endocrine-disrupting bisphenol-A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of ever increasing mass-production of plastic consumer articles. By example of the healthcare sector, this review concentrates on benefits and downsides of plastics and identities opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the healthcare and food industry, and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process. PMID:23337043

  5. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.

    Science.gov (United States)

    Wang, Ruixue; Xu, Zhenming

    2014-08-01

    The world's waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute

  6. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    Energy Technology Data Exchange (ETDEWEB)

    Jody, B. J.; Daniels, E. J.; Energy Systems

    2007-03-21

    with the Vehicle Recycling Partnership (VRP) and the American Plastics Council (APC), is working to develop technology for recycling materials from shredder residue. Several other organizations worldwide are also working on developing technology for recycling shredder residue. Without a commercially viable shredder industry, our nation may face greater environmental challenges and a decreased supply of quality scrap and be forced to turn to primary ores for the production of finished metals. This document presents a review of the state of the art in shredder residue recycling. Available technologies and emerging technologies for the recycling of materials from shredder residue are discussed.

  7. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  8. Recycling Today Makes for a Better Tomorrow.

    Science.gov (United States)

    Raze, Robert E., Jr.

    1992-01-01

    Today's children must be educated about solid waste management and recycling to reduce the amount of waste that goes into landfills. The article describes what can be recycled (newspapers, corrugated cardboard, paper, glass, aluminum, textiles, motor oil, organic wastes, appliances, steel cans, and plastics). It also lists student environment…

  9. Sustainability and the Recycling of Words

    Science.gov (United States)

    Miller, Donna L.; Nilsen, Alleen Pace

    2011-01-01

    With the mention of "sustainability" and "recycling," most people think about reusing paper, plastic, metal, and glass, but what the authors discovered when they embarked on a word-study unit is that the sustainability movement has also brought about the recycling of words. The authors were team-teaching a language awareness class taken by…

  10. Treatment of industry wastewater using thermo-chemical combined processes with copper salt up to recyclable limit

    Directory of Open Access Journals (Sweden)

    Omprakash Sahu

    2016-12-01

    Full Text Available Sugarcane is valuable crop of India and has a major role in foreign exchange. The aim of research work is to investigate the reduction of chemical oxygen demand and color from sugarcane industry effluent by thermolysis and coagulation method. The complete study was done in batch mode to determine the effect of operating parameters. The result shows maximum 73% of chemical oxygen demand and 76% color removal with copper oxide catalyst at 5 kg/m3 massloading, 85 °C reacting temperature, 9 h treatment time and pH 8. Combined study showed 97.6% chemical oxygen demand and 99.9% color removal at pH 6.5 and mass loading 8 mM with copper sulfate salt. The settling and filtration was found to be good at 65 °C and 75 °C with copper oxide treated sugar industry wastewater.

  11. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2014-08-15

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite

  12. Polychlorinated biphenyls in settled dust from informal electronic waste recycling workshops and nearby highways in urban centers and suburban industrial roadsides of Chennai city, India: Levels, congener profiles and exposure assessment.

    Science.gov (United States)

    Chakraborty, Paromita; Prithiviraj, Balasubramanian; Selvaraj, Sakthivel; Kumar, Bhupander

    2016-12-15

    Polychlorinated biphenyls (PCBs) were quantified in settled dust collected from informal electronic waste (e-waste) recycling workshops and nearby highways in the urban centers and roadside dust from the suburban industrial belt of Chennai city in India. Further dust samples were subjected to a high resolution field emission scanning electron microscope equipped with an energy dispersive X-ray spectrometer (FESEM/EDX) to characterize the shape, size and elemental composition of the dust particles. Geomean of total PCB concentration followed the following order: informal e-waste metal recovery workshops (53ngg(-1))>e-waste dismantling sites (3.6ngg(-1))>nearby highways (1.7ngg(-1))>suburban industrial roadsides (1.6ngg(-1)). In e-waste workshops, tetra, penta and hexa-PCB homologs contributed two third of Σ26PCB concentration. Informal e-waste recycling workshops contributed more than 80% concentration of all the PCB congeners loaded in the first principal component. Predominance of dioxin like PCBs, PCB-l14, -118 and -126 in the e-waste metal recovery sites were presumably due to combustion and pyrolytic processes performed during recycling of electrical components. According to the morphology and elemental composition, settled dust from e-waste workshops were irregular particles heavily embedded with toxic metals and industrial roadside dust were distinct angular particles. FESEM revealed that average particle size (in Ferret diameter) increased in the following order: e-waste recycling workshops (0.5μm)industrial sites (4.3μm). Electronic waste recycling workshops engaged in metal recovery were found with maximum toxicity equivalents (TEQs) for dl-PCBs and potential cancer risk (10(-6)-10(-4)) for both adult and children.

  13. Reciclagem de sacolas plásticas de polietileno em termos de inventário de ciclo de vida Recycling of polyethylene plastic bags in terms of life cycle inventory

    Directory of Open Access Journals (Sweden)

    Guilherme de C. Queiroz

    2010-01-01

    Full Text Available O CETEA realizou um estudo de Avaliação de Ciclo de Vida (ACV de sacolas plásticas de polietileno (PE, com ênfase no inventário de ciclo de vida (ICV, coletando dados para o ano 2003. O objetivo deste artigo é apresentar parte deste estudo completo, concentrando-se na influência da taxa de reciclagem de polietileno sobre o ICV das sacolas plásticas de PE no Brasil. Para gerar os dados da média brasileira de eteno, PEAD-APM, PEAD/PELBD e PEBD, os dados foram compilados tendo em conta, respectivamente, 61, 100, 78 e 63% das empresas envolvidas em cada fase do processo de produção. Depois que as empresas concordaram em colaborar com o estudo, questionários apropriados foram preparados e enviados para a coleta de dados. As empresas foram responsáveis tanto pela coleta dos dados como pelo preenchimento dos questionários. O cálculo da média brasileira da reciclagem de polietileno foi realizado considerando os dados fornecidos por sete empresas. O cálculo da média brasileira da produção das sacolas plásticas de PE foi realizado considerando os dados fornecidos por quatro empresas. Levando em conta as categorias de impacto adotadas neste estudo tem-se como resultado a demonstração de que a reciclagem ajuda a melhorar o perfil ambiental das sacolas plásticas de PE medido com dados de ICV.CETEA has conducted a Life Cycle Assessment (LCA study of PE (polyethylene plastic bags with emphasis on the Life Cycle Inventory (LCI, collecting data for the reference year 2003. The goal of this paper is to present part of this complete study, focusing on the influence of polyethylene recycling rate on the LCI of PE plastic bags in Brazil. For generating the Brazilian average data of ethylene, HDPE-HMW, HDPE/LLDPE and LDPE, the data were compiled taking into account, respectively, 61, 100, 78 and 63% of the companies involved in each phase of the production process. After the companies agreed to collaborate with the Project, appropriate

  14. 两种形态棉秆与回收塑料制备复合板材的工艺%Composite Processing Technology from Cotton Stalk Fiber and Particles Combined with Two Types of Recycled Plastics

    Institute of Scientific and Technical Information of China (English)

    蔺焘; 郭文静; 高黎; 常亮; 王正

    2011-01-01

    采用两种形态的棉秆与两种塑料复合,制备棉秆/塑料复合板材,分析棉秆形态、塑料种类及工艺因子对复合板材性能的影响.结果表明:刨花态棉秆复合板材的性能优于搓丝态棉秆,热压温度、聚丙烯比例和板材密度对复合板材的性能有显著影响.优化条件下制成的棉秆搓丝/聚丙烯复合板材性能,超过室外结构用刨花板性能指标要求.%The authors processed cotton stalks into fiber and particles, and combined them with recycled plastics, polypropylene(PP)and polyethylene (PE), to prepare cotton stalk fiber/plastic composites by hot pressing. The composite panel properties were tested to evaluate the effects caused by the cotton stalk shapes and panel processing factors. The results showed that; 1) The composites made from the cotton stalk particles had better properties than those made from cotton stalk fibers; 2) Density, hot-pressing temperature and the cotton stalk/plastic ratio had a great effect on the cotton-stalk-fiber/polypropylene panel properties. Under optimized conditions, the cotton-stalk-fiber /polypropylene panel properties exceeded the specifications of national standard GB/T 4897. 6-2003,GB/T 4897. 7-2003 for structural particleboards.

  15. Recovery of carbon fibres and production of high quality fuel gas from the chemical recycling of carbon fibre reinforced plastic wastes

    OpenAIRE

    Yildirir, E; Onwudili, JA; Williams, PT

    2014-01-01

    A solvolysis process to depolymerize the resin fraction of carbon fibre reinforced plastic waste to recover carbon fibre, followed by hydrothermal gasification of the liquid residual product to produce fuel gas was investigated using batch reactors. The depolymerisation reactions were carried out in ethylene glycol and ethylene glycol/water mixtures at near-critical conditions of the two solvents. With ethylene glycol alone the highest resin removal of 92.1% was achieved at 400 °C. The additi...

  16. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups...... answered the first Danish national survey, PD13[1], investigating the importance of industrial designers’ knowledge in plastics and the collaboration between designers and the polymer industry. The plastics industry and the industrial designers collaborate well, but both groups frequently experience...... that the designers’ lack of knowledge concerning polymer materials and manufacturing methods can be problematic or annoying, and design students from most Danish design universities express the need for more contact with the industry and more competencies and tools to handle even simple topics when designing plastic...

  17. Impacts of the manufacturing process using fiberglass reinforced plastic composite on the environment and occupational health: the automotive industry case

    Directory of Open Access Journals (Sweden)

    Cíntia Madureira Orth

    2012-06-01

    Full Text Available The production of fiberglass reinforced plastic composite parts may cause serious damages to the health of workers and/or the environment, especially due to the generation of process trimmings, noise level and gas emission.  In view of that, this essay aims at assessing the main impacts of the Molding and Finish processes of an automotive plant on the environment and occupational health. It was observed that the open molding method adopted by the studied plant is the main cause of the generation of residues and that the waste of raw materials as trimmings may reach up to 30%. The final destination of those trimmings, which represent 45% of all the residues generated by the factory, is the industrial landfill. It was also observed that, due to the use of open molds, the levels of styrene and fiber dust were above the tolerance limits, presenting risks to the health of the workers.  Therefore, the studied company should consider the possibility of adopting less aggressive technologies, such as that used in closed molds. The reduction of the negative impacts of the productive processes in their source should be part of the company’s policy. Furthermore, the prevention must be continuous and improved every day.

  18. Acoustic barriers obtained from industrial wastes.

    Science.gov (United States)

    Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M

    2008-07-01

    Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building.

  19. Production of Methane and Water from Crew Plastic Waste

    Science.gov (United States)

    Captain, Janine; Santiago, Eddie; Parrish, Clyde; Strayer, Richard F.; Garland, Jay L.

    2008-01-01

    Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.

  20. Journal of CHINA PLASTICS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Journal of CHINA PLASTICS was authorized and approved by The State Committee of Science and Technology of China and The Bureau of News Press of China, and published by The China Plastics Processing Industry Association,Beijing Technology and Business University and The Institute of Plastics Processing and Application of Light Industry, distributed worldwide. Since its birth in 1987, CHINA PLASTICS has become a leading magazine in plastics industry in China, a national Chinese core journal and journal of Chinese scientific and technological article statistics. It is covered by CA.

  1. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    Science.gov (United States)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  2. LIFE CYCLE ANALYSIS OF HAZARDOUS WASTE AND RECYCLABLE ORIGIN OF HOUSEHOLD

    Directory of Open Access Journals (Sweden)

    Patrícia Raquel da Silva Sottoriva

    2011-09-01

    Full Text Available As the sustainable development that the society aims is based on economic, social and environmental factors, it can be said that the environmental crisis has as the component factors: natural resources, population and pollution. To reduce the pressure that human activities have on the environment, it is necessary to know the production process, inputs and outputs, to reduce potential problems such as waste and facilitate opportunities for system optimization. In this context it was investigated the life cycle of waste and household hazardous recyclable items to identify possibilities for reducing impact on supply chains. As a result it was found that the raw material most used by the paper industry is pine and eucalyptus plantations and some industries also use sugar cane. From the growing process until the paper is industrialized, there is a large demand of time. The cutting of eucalyptus should be done between 5 and 7 years, since the pine requires 10 to 12 years. After used, the papers can and should be recycled. When recycling 1 ton of paper 29.2 m3 of water can be saved, 3.51 MWh of electricity 76 and 22 trees when compared to traditional production processes. The cultivation of trees also contributes to carbon capture and sequestration. The eucalyptus ages 2, 4, 6, 8 years fixing concentrations of 11.12, 18.55, 80.91 and 97.86 t / ha, respectively. The paper can also be designed to compost due to biodegradability. The metal, glass and plastics are not biodegradable and inorganic nature needing to be recycled or reused. Recycling 1 ton of plastic is no economy of 5.3 MWh and 500 kg of oil. Even with the gains of environmental, social and economic impacts of recycling compared to traditional processes, in Brazil, the percentage of recycling paper and glass and PET bottles are less than 60%. The recycling of aluminum cans and steel exceeds 90%. Lamps and batteries are materials that are inadequately provide for contamination to the

  3. Recycling and utilisation of industrial solid waste: an explorative study on gold deposit tailings of ductile shear zone type in China.

    Science.gov (United States)

    Liu, Rui; Huang, Fei; Du, Runxiang; Zhao, Chunming; Li, Yongli; Yu, Haoran

    2015-06-01

    Tailings are solid waste arising from mineral processing. This type of waste can cause severe damage to the environment during stockpiling as a result of the leaching of something harmful into the ecosystem. Gold deposit of ductile shear zone type is an important type of gold deposit, and the recycling of its tailings has been challenging researchers for a long time. In this article, the characteristics of this type of tailings were systematically studied by using modern technical means. Considering the characteristics of the tailings, clay was selected to make up for the shortcomings of the tailings and improve their performance. Water and raw materials were mixed to produce green bodies, which are subsequently sintered into ceramic bodies at 980 °C~1020 °C (sintering temperature). The results showed that some new kinds of mineral phases, such as mullite, anorthite and orthoclase, appear in ceramic bodies. Furthermore, the ceramic bodies have a surface hardness of 5 to 6 (Mohs scale), and their water absorption and modulus of rupture can meet some technical requirements of ceramic materials described in ISO 13006-2012 and GB 5001-1985. These gold mine tailings can be made into ceramic tiles, domestic ceramic bodies, and other kinds of ceramic bodies for commercial and industrial purposes after further improvements. © The Author(s) 2015.

  4. Recycling as moral behaviour

    DEFF Research Database (Denmark)

    Thøgersen, John

    of Reasoned Action (TRA) with regard to understanding recycling behaviour. Further, examples of misleading policy conclusions are discussed suggested that within the framework of cognitive psychology, Schwartz's model of altruistic behaviour offers a more satisfying starting point for understanding recycling......It is argued in this paper that in the affluent, industrial societies, environmental behaviours like recycling are typically classified within ""the domain of morality"" in people's minds. Intentions regarding these types of behaviours are not ba a thorough - conscious or unconscious - calculation...... of the balance of costs and benefits. Rather, they are a function of the person's moral beliefs, i.e., beliefs in what is the right or wrong thing to do. The paper gives a brief review of the literature with the intention of uncovering problems and shortcomings in the framework of the SEU-model and the Theory...

  5. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Project feasibility analysis of cross-straits Supply-Marketing recycling industrial park in Fuzhou%福州市海峡供销再生资源产业园区可行性研究

    Institute of Scientific and Technical Information of China (English)

    方明钦

    2012-01-01

    Feasibility analysis was made on Fuzhou cross-straits Supply-Marketing recycling industrial park, in which the background, content, scale, management and benefits were analyzed. As a long-term project, the industrial park will become the demonstrative base of waste goods recycling and utilization in Western Taiwan Straits Economic Zone.%对建设福州市海峡供销再生资源产业园区项目的背景、内容、规模,以及园区开发经营和效益进行可行性分析研究。园区建设作为一个长期项目,将成为海峡西岸经济区重要的废旧商品回收利用示范基地。

  7. Performance evaluation of a granular activated carbon-sequencing batch biofilm reactor pilot plant system used in treating real wastewater from recycled paper industry.

    Science.gov (United States)

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Rahman, Rakmi Abdul; Kadhum, Abdul Amir Hasan

    2012-01-01

    A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed.

  8. The situation and indications of disassembling and recycling vessels industry in Jiangyin City%江阴市船舶拆解与再生利用的现状与启示

    Institute of Scientific and Technical Information of China (English)

    沈敏能; 魏巍; 王波

    2012-01-01

    Disassembling vessels is one of the important aspects of resources recycling and management. The development of disassembling vessels business will promote shipbuilding industry and energy saving. It cart also accumulate resources for recycling and reduce the waste of mineral resources. Based on the research on the disassembling vessels industry in Jiangyin, this article proposes two solutions to the development of disassembling vessels industry in China and the recycling of scrapped vessels%船舶拆解利用是再生资源回收管理的重要环节;发展拆船业有益于促进船舶工业、节能减排,同时获得大量可再利用物资,减少矿产资源消耗。本文通过对江阴市拆船业发展情况的调研,提出我国发展拆船业与促进废钢船再生利用的两点对策。

  9. Research on Social Responsibility Mechanism of Industry Chain Participant on Construction Waste Recycling%建筑废弃物再生利用产业链主体社会责任机理研究

    Institute of Scientific and Technical Information of China (English)

    王毅林; 郭汉丁; 王星; 陶凯

    2016-01-01

    Based on the theoretical research results of general corporate social responsibility at home and abroad, combs construction waste recycling industry development from the two perspectives of theory and practice,sums up the experience of domestic and international construction wasteindustry chain management,and analyzes the inherent law and mechanism of the social responsibility of the construction waste recycling industry chain’s behavior main body,in order to promote our country’s construction waste recycling industry chain running smoothly.%基于国内外一般企业社会责任履行的理论研究成果,从理论与实践两个视角梳理建筑废弃物再生利用产业的发展及研究现状,概括国内外建筑废弃物产业链管理实践经验,探析建筑废弃物再生利用产业链各行为主体社会责任履行的内在规律和机理,以推动我国建筑废弃物再生利用产业链的顺畅运行。

  10. Management options for recycling radioactive scrap metals

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are three basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.

  11. Quality control in the recycling stream of PVC from window frames by hyperspectral imaging

    Science.gov (United States)

    Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Di Maio, Francesco; Rem, Peter

    2013-05-01

    Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.

  12. SEES project - how to improve the recyclability potential of automotive electronics

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.C. [Lear Automotive (EEDS) Spain SL, Valls (Spain); Lichtenvort, K. [Technical Univ. of Berlin, Systems Environmental Engineering, Berlin (Germany); Arnaiz, S. [GAIKER Centro Tecnologico, Zamudio (Spain)

    2004-07-01

    The paper presents the SEES project (Sustainable Electrical and Electronic System for the Automotive Sector) that is being developed under the EU Contract n TST3-CT-2003-506075 inside the Sixth Framework Programme, Priority 6.2. The consortium includes two universities (TU Berlin and Universitat Rovira i Virgili), three industries (FORD, LEAR and Rohm and Haas), two research organisations (GAIKER and CIMA) and four SEMs (Indumetal Recycling, Metall Recycling, Mueller-Guttenbrunn and Salyp). This partnership covers all actors involved in the manufacture and end-of-life steps of product life cycle: suppliers of automotive systems, car manufacturers, car dismantlers, car shredders, metal recyclers and plastic recyclers. The life cycle steps will be analysed using LCA and LCC methodologies to define the most sustainable scenario for the Electrical and Electronic System (EES) of the car from economic and environmental points of view. Aspects considered are the optimisation of the assembly during manufacture and the dismantling, recycling and shredding processes during end-of-life. Further innovation are design guidelines; use of innovative materials; prototyping, testing of illustrative samples and development of methodologies/software tools to support recyclers and designers decisions. (orig.)

  13. Mechanochemical treatment of polymeric materials. A low environmental impact solution for mixed plastic waste recycling; Il trattamento meccanochimico di materiali polimerici: una soluzione a basso impatto ambientale per il riciclaggio di plastiche eterogenee

    Energy Technology Data Exchange (ETDEWEB)

    Padella, F.; Magini, M.; Masci, A. [ENEA Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1999-07-01

    Standard polymeric materials as well as mixtures of them coming from urban wastes, were milled at near room temperature in suitable milling conditions. All the experiments carried out gave a material having a homogeneous fibrous aspect. Structural and thermal analysis of the resulting material clearly shows that the mechanochemical action is able to promote a deep destructuring of the starting networks with a very high energy storage in the milled materials. Further, the fibrous material can be easily consolidated whatever the starting composition of the mixture. preliminary results, coming from mechanical tests on compacted materials, lead to an optimistic conclusion as far as plastic recycling by ball milling is concerned. [Italian] Materiali polimerici standard, cosi' come miscele di materiali plastici provenienti da rifiuti solidi urbani, sono stati macinati a temperatura pressoche' ambiente in opportune condizioni operative. Tutti gli esperimenti hanno prodotto un materiale morfologicamente omogeneo di aspetto fibroso. Le analisi termiche e strutturali condotte sui prodotti mostrano chiaramente come l'azione meccanochimica sia in grado di promuovere una forte destrutturazione del materiale di partenza, accompagnata da un evidente accumulo di energia nel prodotto macinato. In aggiunta, il materiale fibroso puo' essere facilmente consolidato in forme finite, indipendemente dalla composizione di partenza. I risultati preliminari delle prove meccaniche eseguite sui materiali consolidati inducono a conclusioni ottimistiche relativamente all'utilizzo di tecniche di macinazione ad alta energia per il riciclaggio di materiali plastici.

  14. Application of NIR hyperspectral imaging for post-consumer polyolefins recycling

    Science.gov (United States)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-06-01

    An efficient large-scale recycling approach of particulate solid wastes is always accomplished according to the quality of the materials fed to the recycling plant and/or to any possible continuous and reliable control of the different streams inside the processing plants. Processing technologies addressed to recover plastics need to be extremely powerful, since they must be relatively simple to be cost-effective, but also accurate enough to create high-purity products and able to valorize a substantial fraction of the plastic waste materials into useful products of consistent quality in order to be economical. On the other hand, the potential market for such technologies is large and the boost of environmental regulations, and the oil price increase, has made many industries interested both in "general purpose" waste sorting technologies, as well as in developing more specialized sensing devices and/or inspection logics for a better quality assessment of plastic products. In this perspective recycling strategies have to be developed taking into account some specific aspects as i) mixtures complexity: the valuable material has to be extracted from the residue, ii) overall production: the profitability of plastic can be achieved only with mass production and iii) costs: low-cost sorting processes are required. In this paper new analytical strategies, based on hyperspectral imaging in the near infrared field (1000-1700 nm), have been investigated and set up in order to define sorting and/or quality control logics that could be profitably applied, at industrial plant level, for polyolefins recycling.

  15. Chemical recycling of scrap composites

    Science.gov (United States)

    Allred, Ronald E.; Salas, Richard M.

    1994-01-01

    There are no well-developed technologies for recycling composite materials other than grinding to produce fillers. New approaches are needed to reclaim these valuable resources. Chemical or tertiary recycling, conversion of polymers into low molecular weight hydrocarbons for reuse as chemicals or fuels, is emerging as the most practical means for obtaining value from waste plastics and composites. Adherent Technologies is exploring a low-temperature catalytic process for recycling plastics and composites. Laboratory results show that all types of plastics, thermosets as well as thermoplastics, can be converted in high yields to valuable hydrocarbon products. This novel catalytic process runs at 200 C, conversion times are rapid, the process is closed and, thus, nonpolluting, and no highly toxic gas or liquid products have been observed so no negative environmental impact will result from its implementation. Tests on reclamation of composite materials show that epoxy, imide, and engineering thermoplastic matrices can be converted to low molecular weight hydrocarbons leaving behind the reinforcing fibers for reuse as composite reinforcements in secondary, lower-performance applications. Chemical recycling is also a means to dispose of sensitive or classified organic materials without incineration and provides a means to eliminate or reduce mixed hazardous wastes containing organic materials.

  16. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  17. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  18. Other solutions for the plastic residue from the automobile industry and used as additives in the asphaltic bitumens; Alternativas de los residuos plasticos de la automocion y su empleo como aditivos de los betunes asfalticos. Parte I

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Vidriero, E.; Castillo, F. [CEDEX. Ministerio de Fomento. Madrid (Spain)

    1999-08-01

    This article forms part of an investigation which aims to achieve two adjectives. The first is to cooperate in the improvement of the environment by decreasing the amount of plastic residue from the automobile industry. The second is to improve the characteristics of asphaltic bitumens used in roofing and waterproofing in civil engineering, through the addition of plastic residue from the automobile industry. (Author) 4 refs.

  19. Tire Recycling

    Science.gov (United States)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  20. Characterization of plastic blends made from mixed plastics waste of different sources.

    Science.gov (United States)

    Turku, Irina; Kärki, Timo; Rinne, Kimmo; Puurtinen, Ari

    2017-02-01

    This paper studies the recyclability of construction and household plastic waste collected from local landfills. Samples were processed from mixed plastic waste by injection moulding. In addition, blends of pure plastics, polypropylene and polyethylene were processed as a reference set. Reference samples with known plastic ratio were used as the calibration set for quantitative analysis of plastic fractions in recycled blends. The samples were tested for the tensile properties; scanning electron microscope-energy-dispersive X-ray spectroscopy was used for elemental analysis of the blend surfaces and Fourier transform infrared (FTIR) analysis was used for the quantification of plastics contents.