WorldWideScience

Sample records for plastics recycling equipment

  1. Recycling of mixed plastic waste from electrical and electronic equipment. Added value by compatibilization.

    Science.gov (United States)

    Vazquez, Yamila V; Barbosa, Silvia E

    2016-07-01

    Plastic waste from electrical and electronic equipment (WEEE) grows up exponentially fast in the last two decades. Either consumption increase of technological products, like cellphones or computers, or the short lifetime of this products contributes to this rise generating an accumulation of specific plastic materials such ABS (Acrylonitrile-Butadiene-Styrene), HIPS (High impact Polystyrene), PC (Polycarbonate), among others. All of they can be recycled by themselves. However, to separate them by type is neither easy nor economically viable, then an alternative is recycling them together as a blend. Taking into account that could be a deterioration in final properties, to enhance phase adhesion and add value to a new plastic WEEE blend a compatibilization is needed. In this work, a systematical study of different compatibilizers for blends of HIPS and ABS from WEEE was performed. A screening analysis was carried out by adding two different compatibilizer concentration (2wt% and 20wt%) on a HIPS/ABS physical blend 80/20 proportion from plastic e-waste. Three copolymers were selected as possible compatibilizers by their possible affinity with initial plastic WEEE. A complete characterization of each WEEE was performed and compatibilization efficiency was evaluated by comparing either mechanical or morphological blends aspects. Considering blends analyzed in this work, the best performance was achieved by using 2% of styrene-acrylonitrile rubber, obtaining a compatibilized blend with double ultimate strength and modulus respect to the physical blend, and also improve mechanical properties of initial WEEE plastics. The proposed way is a promise route to improve benefit of e-scrap with sustainable, low costs and easy handling process. Consequently, social recycling interest will be encouraged by both ecological and economical points of view.

  2. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  3. Chemical Recycle of Plastics

    Directory of Open Access Journals (Sweden)

    Sara Fatima

    2014-11-01

    Full Text Available Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  4. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  5. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  6. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  7. Report: recycling of flame-retarded plastics from waste electric and electronic equipment (WEEE).

    Science.gov (United States)

    Schlummer, Martin; Mäurer, Andreas; Leitner, Thomas; Spruzina, Walter

    2006-12-01

    Shredder residues produced in plants processing waste electric and electronic equipment are excluded from material recycling due to a variety of polymeric materials and the presence of brominated flame retardants (BFR), which might contain banned polybrominated diphenyl ethers or toxic polybrominated dioxins and furans (PBDD/F). Herein we present a technological approach to transfer a significant portion of the shredder residue into recycled polymers. The technological approach consists of a density-based enrichment of styrenics, which are subjected to a solvolysis process (CreaSolv process) in a second stage. This stage allows the elimination of non-target polymers and extraction of BFR and PBDD/F. Pilot processing of 11.5 and 50 kg shredder residues indicated a material yield of about 50% in the density stage and 70-80% in the CreaSolv process, and an effective removal of BFR additives. The recycled products were proved to comply with threshold values defined by the European directive on the restriction of hazardous substances (RoHS) and the German Chemikalienverbotsverordnung. Mechanical material properties exhibited high tensile and flexural modules as well as slight impact strength, which qualify the products for applications in new electronic equipment.

  8. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    Science.gov (United States)

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  9. High Value Recycling of Plastics in Electrical and Electronic Equipment%电子电器用塑料的高值化再利用

    Institute of Scientific and Technical Information of China (English)

    杜拴丽; 李迎春; 李洁; 王志强

    2012-01-01

    The characteristics of plastics in electrical and electronic equipment, the prospects and process route for re-use and recycling technology of the plastics were discussesed. Respectively according to thermosetting plastics and thermoplastics among the plastics, different recycling methods were used to achieve the high value recycling of the electrical and electronic equipment plastics .%介绍了电子电器用塑料的特点、回收再利用的前景以及回收再利用的工艺流程.分别针对其中的热固性塑料和热塑性塑料,采用不同的回收再利用的方法,实现了电子电器用塑料的高值化回收再利用.

  10. WE(EE) Demand - Recycled Plastic

    OpenAIRE

    Førby, Marie; Pedersen, Jakob; Borgen, Nanna; Hansen, Rasmus Nør

    2015-01-01

    Plastic management – from production to waste – has massive negative effects on the environment of which one of the main problems are the CO2 released from the fossil fuels. The focus of this paper lies on the possibilities of increasing demand for recycled plastics from electric and electronic equipment (WEEE-plastic) through modifications in the Danish waste systems. Due to the chemical build of plastic, it is not possible to reprocess it with mechanical recycle technologies while keeping t...

  11. Plastics recycling: challenges and opportunities

    National Research Council Canada - National Science Library

    Jefferson Hopewell; Robert Dvorak; Edward Kosior

    2009-01-01

    .... Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public...

  12. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    Energy Technology Data Exchange (ETDEWEB)

    Wäger, Patrick A., E-mail: patrick.waeger@empa.ch; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses.

  13. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant.

    Science.gov (United States)

    Wäger, Patrick A; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6-10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail.

  14. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  15. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  16. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  17. Making sense of plastics recycling

    NARCIS (Netherlands)

    Van Bruggen, E.; Koster, R.P.; Rageart, K.; Cardon, L.; Moerman, M.; Blessing, E.

    2012-01-01

    Major benefits of plastics recycling are reduced depletion of non-renewable resources and reduction of world-wide waste. Traditional thermo-mechanical recycling causes reduction of mechanical properties for most thermoplastics. Down-cycled materials may nevertheless be suited for certain useful appl

  18. Sorting Techniques for Plastics Recycling

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents the basic principles of three different types of separating methods and a general guideline for choosing the most effective method for sorting plastic mixtures. It also presents the results of the tests carried out for separation of PVC, ABS and PET from different kinds of plastic mixtures in order to improve the grade of the raw input used in mechanical or feedstock recycling.

  19. Interpretation on Recycling Plastics from Shredder Residue

    Science.gov (United States)

    EPA is considering an interpretation of its regulations that would generally allow for recycling of plastic separated from shredder residue under the conditions described in the Voluntary Procedures for Recycling Plastics from Shredder Residue.

  20. Flotation separation of waste plastics for recycling-A review.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Fu, Jian-gang; Liu, You-nian

    2015-07-01

    The sharp increase of plastic wastes results in great social and environmental pressures, and recycling, as an effective way currently available to reduce the negative impacts of plastic wastes, represents one of the most dynamic areas in the plastics industry today. Froth flotation is a promising method to solve the key problem of recycling process, namely separation of plastic mixtures. This review surveys recent literature on plastics flotation, focusing on specific features compared to ores flotation, strategies, methods and principles, flotation equipments, and current challenges. In terms of separation methods, plastics flotation is divided into gamma flotation, adsorption of reagents, surface modification and physical regulation.

  1. New plastic recycling technology

    Science.gov (United States)

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  2. Use of recycled plastics in wood plastic composites - a review.

    Science.gov (United States)

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs.

  3. Economical and Ecological Fesasibility of Plastic Recycling

    OpenAIRE

    Hirschpold, Andrew; Juctye, Kristina; Renzhong, Jiang; Debin, LIU; Varona, Hector P.; Kevelaitis, Karolis

    2005-01-01

    #Group 3 International Nat Bas Economical and Ecological Feasibility of Plastic Recycling Abstract This project is carried out as the final project for the first semester of Bachelor of Science studies. Our project will aim on plastic recycling. Plastic is a manmade material which covers a range of synthetic or semi-synthetic products made thru polymerization. The development of plastic products has accompanied the development of human’s history since it was invented while they ...

  4. Economical and Ecological Fesasibility of Plastic Recycling

    OpenAIRE

    Hirschpold, Andrew; Juctye, Kristina; Renzhong, Jiang; Debin, Liu; Varona, Hector P.; Kevelaitis, Karolis

    2005-01-01

    #Group 3 International Nat Bas Economical and Ecological Feasibility of Plastic Recycling Abstract This project is carried out as the final project for the first semester of Bachelor of Science studies. Our project will aim on plastic recycling. Plastic is a manmade material which covers a range of synthetic or semi-synthetic products made thru polymerization. The development of plastic products has accompanied the development of human’s history since it was invented while they ...

  5. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    Science.gov (United States)

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  6. Plastic Recycling Experiments in Materials Education

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  7. Engineered Plastics Containing Recycled Rubber

    Institute of Scientific and Technical Information of China (English)

    Dong Yang Wu

    2000-01-01

    @@ 1. Introduction In Australia 10.5 million rubber tyres are discarded annually, representing 120,000 tonnes of wasted rubber resource. Growing local and global concern about the impact of this waste on the environment requires action for the management and recycling of this highly valuable resource through the development of recycling technologies and innovative recycled/recyclable products.

  8. Plastics recycling: challenges and opportunities

    OpenAIRE

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to pro...

  9. optimization of the development of a plastic recycling machine

    African Journals Online (AJOL)

    machine and shows that at a speed of 268 rpm the machine functions effectively ... Keywords: recycling machine, plastics-recycling, recyclability/efficiency, throughput/capacity, ...... cycling such as the sorting and cleaning should be efficient so ...

  10. Life cycle perspective of plastic recycling

    Energy Technology Data Exchange (ETDEWEB)

    Ballhorn, R. [Targeted Research on Waste Minimization and Recycling Project, Darmstadt (Germany)

    2001-07-01

    Some recent European Union directives on recycling plastics are discussed, with particular reference to the automobile industry, highlighting developing chemical technologies such as selective solution/precipitation approaches, to increase the fraction of high quality recyclates. Some promising technologies, including separation by tribo-electrical charging, sorting by optical means, separation by gasification, dissolution, hydrogenation and co-processing with heavy oil residues are described, with examples involving the conversion of mixed plastic waste by gasification, and the production of PA6 monomer from carpet waste. Conclusion based on study results to date indicate that with regard to 'end of life' vehicles the driving force for dismantling is the recovery of resalable parts and metal, not plastic. Technologies for dismantling are seen as relatively crude. Moreover, the large investment required to construct a full dismantling facility and the lack of a well-developed 'after market' for recycled products makes it unlikely that such a facility will be built in the near future. The most promising way to cope with the economic and ecological challenges appears to be a combination of chemical recycling and energy recovery, accompanied by an aggressive effort to develop the 'after market' for the recycled products. 5 refs., 9 figs.

  11. An Investigation on Thermal Recycling of Recycled Plastic Resin

    Science.gov (United States)

    Yamakita, Ryuji; Miura, Katsuya; Ishino, Yojiro; Ohiwa, Norio

    Thermal recycling of recycled plastic resin is focused in this investigation. Fine grinding of plastic resin and preparation of high temperature oxidizing atmosphere are indispensable for effective and successful burn-up of plastic resin. Polyethylene terephthalate resin powder is employed and high temperature oxidizing atmosphere is generated downstream an annular burner. Through a circular nozzle set coaxially in the closed bottom end of the annular burner, PET-powder and propane-air mixture are issued vertically upward into the high temperature oxidizing atmosphere. Temperature and O2 concentration fields downstream the annular burner are first examined by varying the circular jet equivalence ratio with the air flow rate kept constant and without PET-powder supply. PET-powder having a mass-median diameter of either 89.7µm or 145µm is then issued into the high temperature region along with propane-air mixture by varying the PET-powder mass flow rate. Appearances of the PET-powder flame are observed using a high-speed CCD video camera and unburnt PET particles are traced during their passages in the high temperature region. Variation of O2 concentration fields due to PET-powder combustion is also measured in the PET flame. According to the results, overall limit conditions for effective burn-up of PET-powder are finally discussed.

  12. EVALUATION OF RECYCLED PLASTIC LUMBER FOR MARINE APPLICATIONS

    Science.gov (United States)

    This report presents an evaluation of the recycled plastic materials (RPM) produced by California Recycling Company (CRC). This evaluation is performed under the Municipal Waste Innovative Technology Evaluation (MITE) Program of the U.S. EPA, Risk Reduction Engineering Laboratory...

  13. EVALUATION OF RECYCLED PLASTIC LUMBER FOR MARINE APPLICATIONS

    Science.gov (United States)

    This report presents an evaluation of the recycled plastic materials (RPM) produced by California Recycling Company (CRC). This evaluation is performed under the Municipal Waste Innovative Technology Evaluation (MITE) Program of the U.S. EPA, Risk Reduction Engineering Laboratory...

  14. Small WEEE: determining recyclables and hazardous substances in plastics.

    Science.gov (United States)

    Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos

    2009-01-30

    An examination regarding the determination of recyclables and hazardous substances in small waste electrical and electronic equipment (WEEE) found in the residual household waste stream of the city of Dresden, Germany, is described. Firstly, attitudes towards the disposal of small WEEE in the latter are assessed, and product types and categories which mostly contribute to its composition are identified. Physical parameters which could be used as mechanical sorting criteria are measured, and the material composition of the small WEEE found is determined. The hazardous substances' "base" charge in the residual waste is established by means of atomic absorption spectrometry and ionic chromatography, as a first step in estimating the contribution of small WEEE to its pollutant load. Consequently, the content of small WEEE plastics in key heavy metals and halogens is determined. Key conclusions are drawn concerning the future strategic development and practical implementation of the 2002/96/EC Directive, in relation to small WEEE management and recycling.

  15. Multimodal network design for sustainable household plastic recycling

    NARCIS (Netherlands)

    Bing Xiaoyun, Xiaoyun; Groot, J.J.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2013-01-01

    Purpose – This research studies a plastic recycling system from a reverse logistics angle and investigates the potential benefits of a multimodality strategy to the network design of plastic recycling. This research aims to quantify the impact of multimodality on the network, to provide decision

  16. Multimodal network design for sustainable household plastic recycling

    NARCIS (Netherlands)

    Bing Xiaoyun, Xiaoyun; Groot, J.J.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2013-01-01

    Purpose – This research studies a plastic recycling system from a reverse logistics angle and investigates the potential benefits of a multimodality strategy to the network design of plastic recycling. This research aims to quantify the impact of multimodality on the network, to provide decision sup

  17. Development of a Prototype Automated Sorting System for Plastic Recycling

    Directory of Open Access Journals (Sweden)

    D. A. Wahab

    2006-01-01

    Full Text Available Automated sorting for plastic recyclables has been seen as the way forward in the plastic recycling industry. Automated sorting provides significant improvements in terms of efficiency and consistency in the sorting process. In the case of macro sorting, which is the most common type of automated sorting, efficiency is determined by the mechanical details of the material handling system as well as the detection system. This paper provides a review on the state of-the-art technologies that have been deployed by some of the recycling facilities abroad. The design and development of a cost effective prototype automated system for sorting plastic recyclables is proposed and discussed.

  18. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study.

    Science.gov (United States)

    Gu, Fu; Guo, Jianfeng; Zhang, Wujie; Summers, Peter A; Hall, Philip

    2017-12-01

    Mechanical recycling of waste plastics is an environmental solution to the problem of waste plastic disposal, and has already become a common practice in industry. However, limited information can be found on either the industralised plastic recycling or the recycled materials, despite the use of recycled plastics has already extended to automobile production. This study investigates the life cycle environmental impacts of mechanical plastic recycling practice of a plastic recycling company in China. Waste plastics from various sources, such as agricultural wastes, plastic product manufacturers, collected solid plastic wastes and parts dismantled from waste electric and electronic equipments, are processed in three routes with products end up in different markets. The results of life cycle assessments show that the extrusion process has the largest environmental impacts, followed by the use of fillers and additives. Compared to production of virgin plastics and composites, the mechanical recycling is proved to be a superior alternative in most environmental aspects. Substituting virgin plastic composites with recycled plastic composites has achieved the highest environmental benefits, as virgin composite production has an impact almost 4 times higher that of the recycled composite production in each ReCiPe endpoint damage factor. Sensitivity analysis shows that the coverage of collecting network contribute affect little to overall environmental impact, and centralisation plays an important role in reducing overall environmental impacts. Among the fillers and additives, impact modifiers account for the most significant contributions to the environmental impacts of recycled composites. This study provides necessary information about the existing industrialised plastic recycling practice, and recommendations are given. Research implications are presented with the purpose to achieve higher substitution rate and lower environmental impact. Copyright © 2017 Elsevier B

  19. 78 FR 20640 - Polychlorinated Biphenyls (PCBs); Recycling Plastics from Shredder Residue

    Science.gov (United States)

    2013-04-05

    ... AGENCY Polychlorinated Biphenyls (PCBs); Recycling Plastics from Shredder Residue AGENCY: Environmental... will generally allow for the recycling of plastic separated from shredder residue under the conditions described in the Voluntary Procedures for Recycling Plastics from Shredder Residue, relying principally...

  20. 77 FR 74006 - Polychlorinated Biphenyls (PCBs); Recycling Plastics From Shredder Residue

    Science.gov (United States)

    2012-12-12

    ... AGENCY Polychlorinated Biphenyls (PCBs); Recycling Plastics From Shredder Residue AGENCY: Environmental..., Plastic, Polychlorinated biphenyls, Recycling, Shredder residue. ] Dated: November 29, 2012. Louise P... certain food contact and medical applications, these recycled plastics are not expected to make large...

  1. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    OpenAIRE

    Lindsay Miller; Katie Soulliere; Susan Sawyer-Beaulieu; Simon Tseng; Edwin Tam

    2014-01-01

    Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technolog...

  2. A new hyperspectral imaging based device for quality control in plastic recycling

    Science.gov (United States)

    Bonifazi, G.; D'Agostini, M.; Dall'Ava, A.; Serranti, S.; Turioni, F.

    2013-05-01

    The quality control of contamination level in the recycled plastics stream has been identified as an important key factor for increasing the value of the recycled material by both plastic recycling and compounder industries. Existing quality control methods for the detection of both plastics and non-plastics contaminants in the plastic waste streams at different stages of the industrial process (e.g. feed, intermediate and final products) are currently based on the manual collection from the stream of a sample and on the subsequent off-line laboratory analyses. The results of such analyses are usually available after some hours, or sometimes even some days, after the material has been processed. The laboratory analyses are time-consuming and expensive (both in terms of equipment cost and their maintenance and of labour cost).Therefore, a fast on-line assessment to monitor the plastic waste feed streams and to characterize the composition of the different plastic products, is fundamental to increase the value of secondary plastics. The paper is finalized to describe and evaluate the development of an HSI-based device and of the related software architectures and processing algorithms for quality assessment of plastics in recycling plants, with particular reference to polyolefins (PO). NIR-HSI sensing devices coupled with multivariate data analysis methods was demonstrated as an objective, rapid and non-destructive technique that can be used for on-line quality and process control in the recycling process of POs. In particular, the adoption of the previous mentioned HD&SW integrated architectures can provide a solution to one of the major problems of the recycling industry, which is the lack of an accurate quality certification of materials obtained by recycling processes. These results could therefore assist in developing strategies to certify the composition of recycled PO products.

  3. Use of recycled plastics in concrete: A critical review.

    Science.gov (United States)

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics.

  4. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large...... recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...... product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications...

  5. Recycling disposable cups into paper plastic composites.

    Science.gov (United States)

    Mitchell, Jonathan; Vandeperre, Luc; Dvorak, Rob; Kosior, Ed; Tarverdi, Karnik; Cheeseman, Christopher

    2014-11-01

    The majority of disposable cups are made from paper plastic laminates (PPL) which consist of high quality cellulose fibre with a thin internal polyethylene coating. There are limited recycling options for PPLs and this has contributed to disposable cups becoming a high profile, problematic waste. In this work disposable cups have been shredded to form PPL flakes and these have been used to reinforce polypropylene to form novel paper plastic composites (PPCs). The PPL flakes and polypropylene were mixed, extruded, pelletised and injection moulded at low temperatures to prevent degradation of the cellulose fibres. The level of PPL flake addition and the use of a maleated polyolefin coupling agent to enhance interfacial adhesion have been investigated. Samples have been characterised using tensile testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis. Use of a coupling agent allows composites containing 40 wt.% of PPL flakes to increase tensile strength of PP by 50% to 30 MPa. The Young modulus also increases from 1 to 2.5 GPa and the work to fracture increases by a factor of 5. The work demonstrates that PPL disposable cups have potential to be beneficially reused as reinforcement in novel polypropylene composites.

  6. Recycling of plastic waste: Screening for brominated flame retardants (BFRs)

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Granby, Kit; Eriksson, Eva

    2017-01-01

    on the other hand, has resulted in dispersion and accumulation of selected BFRs in the environment and receiving biota. A wide range of plastic products may contain BFRs. This affects the quality of waste plastics as secondary resource: material recycling may potentially reintroduce the BFRs into new plastic......,4,6-TBP)), hexabromocyclododecane stereoisomers (α-, β-, and γ-HBCD), as well as selected polybrominated diphenyl ethers (PBDEs) in samples of household waste plastics, virgin and recycled plastics. A considerable number of samples contained BFRs, with highest concentrations associated with acrylonitrile...... flame retardants (PBDEs and HBCD) identified in the plastic samples illustrates that circular material flows may be contaminated for extended periods. The screening clearly showed a need for improved documentation and monitoring of the presence of BFRs in plastic waste routed to recycling....

  7. Influence of RFID tags on recyclability of plastic packaging.

    Science.gov (United States)

    Aliaga, César; Ferreira, Beatriz; Hortal, Mercedes; Pancorbo, María Ángeles; López, José Manuel; Navas, Francisco Javier

    2011-06-01

    The use of Radio Frequency IDentification Technology (RFID) in the packaging sector is an important logistical improvement regarding the advantages offered by this technology in comparison with barcodes. Nevertheless, the presence of these devices in plastic packaging, and consequently in plastic waste, can cause several problems in the recycling plants due to the materials included in these devices. In this study, the mentioned recycling constraints have been experimentally identified in a pilot scale recycling study consisting in three recycling tests with an increasing presence of RFID tags. Differences in each test were evaluated. Furthermore, the quality of the recycled material of each test was studied through the injection and testing of tests probes. The results of the pilot scale recycling tests did not show a decrease in the quality of the recycled plastic due to the presence of RFID tags. Nevertheless, several operational problems during the recycling process were observed such as the obstruction of the screens, which lessened the process yield and created process interruptions, as well as the loss of extruded plastic during the process. These recycling constraints cannot be directly extrapolated to the industrial plants due to the different working scales. Nevertheless, technological solutions are proposed in order to avoid these recycling constraints if they appear.

  8. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    Directory of Open Access Journals (Sweden)

    Lindsay Miller

    2014-08-01

    Full Text Available Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products.

  9. Challenges and Alternatives to Plastics Recycling in the Automotive Sector.

    Science.gov (United States)

    Miller, Lindsay; Soulliere, Katie; Sawyer-Beaulieu, Susan; Tseng, Simon; Tam, Edwin

    2014-08-15

    Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products.

  10. Recycling of plastic waste by density separation: prospects for optimization.

    Science.gov (United States)

    Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Diego, Isidro

    2009-03-01

    A review of existing industrial processing and results of alternative processing investigations for separating solid mixtures and specifically recycling plastic waste by density separation is presented. Media density separation is shown to be fundamental for separation and/or pre-concentration in the recycling of plastics. The current use of static media processes limits the capacity and size of material that can be treated commercially. Investigations have shown that the hydroscopic properties of plastics can be reduced to improve such separations. This indicates that an alternative processing method is required to increase the commercial recovery of recyclable plastics. Cylindroconical and cylindrical cyclone-type media separators, such as those used for processing coal, are reviewed and suggested as a potential substitute. Both have superior production capacities and are able to process a larger range in particle sizes treated. A summary of results of investigations with cyclone media devices for recycling plastics is presented.

  11. Recycling of plastic waste: Presence of phthalates in plastics from households and industry.

    Science.gov (United States)

    Pivnenko, K; Eriksen, M K; Martín-Fernández, J A; Eriksson, E; Astrup, T F

    2016-08-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large volumes and are commonly used as plasticisers in plastics manufacturing. Potential impacts on human health require restricted use in selected applications and a need for the closer monitoring of potential sources of human exposure. Although the presence of phthalates in a variety of plastics has been recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP had the highest frequency of detection in the samples analysed, with 360μg/g, 460μg/g and 2700μg/g as the maximum measured concentrations, respectively. Among other, statistical analysis of the analytical results suggested that phthalates were potentially added in the later stages of plastic product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications is recommended if recycled plastics are to be used as raw material in production.

  12. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    Science.gov (United States)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  13. finite element analysis of plastic recycling machine designed

    African Journals Online (AJOL)

    user

    This paper presents the conceptual design of plastic recycling machine for production of thin filament coil. The machine ... waste management system to curb the menace of the ... temperature distribution across the die. ... 2.1 Design Concept.

  14. Consumer Education: The Key to Successful Plastics Recycling.

    Science.gov (United States)

    Cutler, Alan; Moore, Susan

    1995-01-01

    Examines consumer education strategies for decreasing contamination in plastics collected for recycling. Discusses research that suggests the problem may not be consumers ignoring rules but rather that consumers appear to be adhering diligently to rules of their own invention. (LZ)

  15. Serbia: A new process for waste rubber and plastic recycling

    Directory of Open Access Journals (Sweden)

    Ozren Ocic

    2010-02-01

    Full Text Available This paper intends to describe a new technological process for waste rubber and plastic recycling up to the commercial components in safe environmental friendly way. Researches and all relevant technical-technological data related to this process are checked at constructed pilot plant. The future construction of these units for waste rubber and plastic recycling will allow interested parties to achieve the environmental effectiveness and economic efficiency.

  16. Recycling bin concepts for hotels on Zanzibar Island : - Efficient and sustainable recycling for one of Zanrec Plastics Ltd. customer groups

    OpenAIRE

    Gobena, Elina; Lundén, Hanna

    2012-01-01

    This report presents a developed recycling bin concept for Zanrec Plastics Ltd. (Zanrec Plastics in this report), a Swedish company that is about to implement a solid waste recycling system on Zanzibar Island, Tanzania. Zanrec Plastics will negotiate waste management with the hotels, that produce a large part of the recyclable garbage on the island, and the project aim is to develop a concept that will help Zanrec Plastics in these negotiations. Zanrec Plastics requirements on the concepts re...

  17. Innovative Design of Plastic Bottle Recycling Box Based on ARM

    Directory of Open Access Journals (Sweden)

    Yuedong Xiong

    2014-04-01

    Full Text Available Aiming at the problems of on-site plastic bottles recycling and the reuse of waste, the automatic recycling system was developed on the basis of ARM. As the main controller, ARM not only controls the mechanical system of the collector to recover and break plastic bottles, but also communicates with and rewards the user by the automatic reward system through the wireless network. The experimental prototype test results show: post treated fragments of plastic bottles are small, which are convenient to transport and take advantage of; the operation of recovery is easy, and the interface of man-machine interaction is friendly which is easy to expand functions.

  18. Mechanical and chemical recycling of solid plastic waste.

    Science.gov (United States)

    Ragaert, Kim; Delva, Laurens; Van Geem, Kevin

    2017-08-17

    This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling. The principles of these recycling pathways are framed against current-day industrial reality, by discussing predominant industrial technologies, design strategies and recycling examples of specific waste streams. Starting with an overview on types of solid plastic waste (SPW) and their origins, the manuscript continues with a discussion on the different valorisation options for SPW. The section on mechanical recycling contains an overview of current sorting technologies, specific challenges for mechanical recycling such as thermo-mechanical or lifetime degradation and the immiscibility of polymer blends. It also includes some industrial examples such as polyethylene terephthalate (PET) recycling, and SPW from post-consumer packaging, end-of-life vehicles or electr(on)ic devices. A separate section is dedicated to the relationship between design and recycling, emphasizing the role of concepts such as Design from Recycling. The section on chemical recycling collects a state-of-the-art on techniques such as chemolysis, pyrolysis, fluid catalytic cracking, hydrogen techniques and gasification. Additionally, this review discusses the main challenges (and some potential remedies) to these recycling strategies and ground them in the relevant polymer science, thus providing an academic angle as well as an applied one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Tantalum recycling from waste of electrical and electronic equipment

    Directory of Open Access Journals (Sweden)

    Piotrowicz Andrzej

    2016-01-01

    Full Text Available The possibility of tantalum recycling from waste of electrical and electronic equipment was investigated. Study was carried out using basic physical and chemical methods, ie. mechanical separation via crushing, leaching of silver layer in diluted HNO3, grinding and oxidation of anodes and thermic reduction with metallic reducing agent. A recovery rate of anodes was determined at 96%, and recycling efficiency of tantalum to pure form was determined more than 50%. Also was made mass balance.

  20. Mechanical recycling of waste electric and electronic equipment: a review.

    Science.gov (United States)

    Cui, Jirang; Forssberg, Eric

    2003-05-30

    The production of electric and electronic equipment (EEE) is one of the fastest growing areas. This development has resulted in an increase of waste electric and electronic equipment (WEEE). In view of the environmental problems involved in the management of WEEE, many counties and organizations have drafted national legislation to improve the reuse, recycling and other forms of recovery of such wastes so as to reduce disposal. Recycling of WEEE is an important subject not only from the point of waste treatment but also from the recovery of valuable materials.WEEE is diverse and complex, in terms of materials and components makeup as well as the original equipment's manufacturing processes. Characterization of this waste stream is of paramount importance for developing a cost-effective and environmentally friendly recycling system. In this paper, the physical and particle properties of WEEE are presented. Selective disassembly, targeting on singling out hazardous and/or valuable components, is an indispensable process in the practice of recycling of WEEE. Disassembly process planning and innovation of disassembly facilities are most active research areas. Mechanical/physical processing, based on the characterization of WEEE, provides an alternative means of recovering valuable materials. Mechanical processes, such as screening, shape separation, magnetic separation, Eddy current separation, electrostatic separation, and jigging have been widely utilized in recycling industry. However, recycling of WEEE is only beginning. For maximum separation of materials, WEEE should be shredded to small, even fine particles, generally below 5 or 10mm. Therefore, a discussion of mechanical separation processes for fine particles is highlighted in this paper. Consumer electronic equipment (brown goods), such as television sets, video recorders, are most common. It is very costly to perform manual dismantling of those products, due to the fact that brown goods contain very low

  1. Study on the Plastic Bottle Recycling Based on Evolution Tree for Technical System

    OpenAIRE

    Yuedong Xiong; Huadong Huang

    2014-01-01

    Technical system theory of evolution tree was used in the study of the plastic bottle recycling, and established the evolutionary line of plastic bottle recycling on the basis of the analysis of plastic bottle recycling recovery evolution tree, and summed up a new smart plastic bottle recycling program. The new recovery recovers and smashes the plastic bottles through technical system, and communicates with users through automatically reward system and rewards the latter. The experimental pro...

  2. Recycling of plastic waste: Screening for brominated flame retardants (BFRs).

    Science.gov (United States)

    Pivnenko, K; Granby, K; Eriksson, E; Astrup, T F

    2017-08-30

    Flame retardants are chemicals vital for reducing risks of fire and preventing human casualties and property losses. Due to the abundance, low cost and high performance of bromine, brominated flame retardants (BFRs) have had a significant share of the market for years. Physical stability on the other hand, has resulted in dispersion and accumulation of selected BFRs in the environment and receiving biota. A wide range of plastic products may contain BFRs. This affects the quality of waste plastics as secondary resource: material recycling may potentially reintroduce the BFRs into new plastic product cycles and lead to increased exposure levels, e.g. through use of plastic packaging materials. To provide quantitative and qualitative data on presence of BFRs in plastics, we analysed bromophenols (tetrabromobisphenol A (TBBPA), dibromophenols (2,4- and 2,6-DBP) and 2,4,6-tribromophenol (2,4,6-TBP)), hexabromocyclododecane stereoisomers (α-, β-, and γ-HBCD), as well as selected polybrominated diphenyl ethers (PBDEs) in samples of household waste plastics, virgin and recycled plastics. A considerable number of samples contained BFRs, with highest concentrations associated with acrylonitrile butadiene styrene (ABS, up to 26,000,000ngTBBPA/g) and polystyrene (PS, up to 330,000ng∑HBCD/g). Abundancy in low concentrations of some BFRs in plastic samples suggested either unintended addition in plastic products or degradation of higher molecular weight BFRs. The presence of currently restricted flame retardants (PBDEs and HBCD) identified in the plastic samples illustrates that circular material flows may be contaminated for extended periods. The screening clearly showed a need for improved documentation and monitoring of the presence of BFRs in plastic waste routed to recycling. Copyright © 2017. Published by Elsevier Ltd.

  3. Use of recycled plastic in concrete: a review.

    Science.gov (United States)

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

  4. Triboelectrostatic separation for granular plastic waste recycling: a review.

    Science.gov (United States)

    Wu, Guiqing; Li, Jia; Xu, Zhenming

    2013-03-01

    The world's plastic consumption has increased incredibly in recent decades, generating more and more plastic waste, which makes it a great public concern. Recycling is the best treatment for plastic waste since it cannot only reduce the waste but also reduce the consumption of oil for producing new virgin plastic. Mechanical recycling is recommended for plastic waste to avoid the loss of its virgin value. As a mechanical separation technology, triboelectrostatic separation utilizes the difference between surface properties of different materials to get them oppositely charged, deflected in the electric field and separately collected. It has advantages such as high efficiency, low cost, no concern of water disposal or secondary pollution and a relatively wide processing range of particle size especially suitable for the granular plastic waste. The process of triboelectrostatic separation for plastic waste is reviewed in this paper. Different devices have been developed and proven to be effective for separation of plastic waste. The influence factors are also discussed. It can be concluded that the triboelectrostatic separation of plastic waste is a promising technology. However, more research is required before it can be widely applied in industry.

  5. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.

    Science.gov (United States)

    Wang, Ruixue; Xu, Zhenming

    2014-08-01

    The world's waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute

  6. They're plastic, but they recycle.

    Science.gov (United States)

    Halpain, Shelley

    2006-12-07

    Dendritic spines form and grow during hippocampal long-term potentiation (LTP). In this issue of Neuron, a new study by Park et al. uses both serial reconstruction electron microscopy and time-lapse imaging to show that plasma membrane for such spine expansion is trafficked from recycling endosomes that reside locally at the spines themselves.

  7. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2014-08-15

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite

  8. Recyclability assessment of nano-reinforced plastic packaging

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, C., E-mail: csanchez@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Hortal, M., E-mail: mhortal@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Aliaga, C., E-mail: caliaga@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Devis, A., E-mail: adevis@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Cloquell-Ballester, V.A., E-mail: cloquell@dpi.upv.es [Dpto. Proyectos de Ingeniería, Universitat Politècnica de València, Camino de Vera, 46022 Valencia (Spain)

    2014-12-15

    Highlights: • The study compares the recyclability of polymers with and without nanoparticles. • Visual appearance, material quality and mechanical properties are evaluated. • Minor variations in mechanical properties in R-PE and R-PP with nanoparticles. • Slight degradation of R-PET which affect mechanical properties. • Colour deviations in recycled PE, PP and PET in ranges higher that 0.3 units. - Abstract: Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO{sub 3}), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE–Nanoclay1, PE–CaCO{sub 3}, PP–Ag, PET–ZnO, PET–Ag, PET–Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET–Ag) could influence important properties of the recycled material, due to a

  9. Decision aid tool and design approach for plastic recycling chain integration in the automotive industry

    OpenAIRE

    Maudet-Charbuillet, Carole; Bertoluci, Gwenola

    2012-01-01

    The many uses of plastics in our society are now compromised because of the social and environmental impacts they generate: exhaustion of petroleum resources, waste management... Plastics recycling appears to be one of the best ways to solve these problems. But Plastics Recycling Chains (PRC) are still emerging system. The automotive industry is directly concerned by plastic recycling through the End of Life Vehicles (ELV) directive which compels it to respect recycling rate for their product...

  10. Preparing Attitude Scale to Define Students' Attitudes about Environment, Recycling, Plastic and Plastic Waste

    Science.gov (United States)

    Avan, Cagri; Aydinli, Bahattin; Bakar, Fatma; Alboga, Yunus

    2011-01-01

    The aim of this study is to introduce an attitude scale in order to define students? attitudes about environment, recycling, plastics, plastic waste. In this study, 80 attitude sentences according to 5-point Likert-type scale were prepared and applied to 492 students of 6th grade in the Kastamonu city center of Turkey. The scale consists of…

  11. Research and Development of a New Waste Collection Bin to Facilitate Education in Plastic Recycling

    Science.gov (United States)

    Chow, Cheuk-fai; So, Wing-Mui Winnie; Cheung, Tsz-Yan

    2016-01-01

    Plastic recycling has been an alternative method for solid waste management apart from landfill and incineration. However, recycling quality is affected when all plastics are discarded into a single recycling bin that increases cross contaminations and operation cost to the recycling industry. Following the engineering design process, a new…

  12. Research and Development of a New Waste Collection Bin to Facilitate Education in Plastic Recycling

    Science.gov (United States)

    Chow, Cheuk-fai; So, Wing-Mui Winnie; Cheung, Tsz-Yan

    2016-01-01

    Plastic recycling has been an alternative method for solid waste management apart from landfill and incineration. However, recycling quality is affected when all plastics are discarded into a single recycling bin that increases cross contaminations and operation cost to the recycling industry. Following the engineering design process, a new…

  13. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling.

    Science.gov (United States)

    Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita

    2012-06-01

    This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production.

  14. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review.

    Science.gov (United States)

    Yang, Xiaoning; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng

    2013-02-01

    Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be 'dehalogenating prior to pyrolysing plastics', 'performing dehalogenation and pyrolysis at the same time' or 'pyrolysing plastics first then upgrading pyrolysis oils'. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of

  15. Recycling of plastic: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas Højlund

    2009-01-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plasti...... to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming....

  16. 40 CFR 82.162 - Certification by owners of recovery and recycling equipment.

    Science.gov (United States)

    2010-07-01

    ... lessees of recycling or recovery equipment having their places of business in: Connecticut Maine... 02114-2023. Owners or lessees of recycling or recovery equipment having their places of business in: New... lessees of recycling or recovery equipment having their places of business in: Delaware District...

  17. Technical specifications for mechanical recycling of agricultural plastic waste.

    Science.gov (United States)

    Briassoulis, D; Hiskakis, M; Babou, E

    2013-06-01

    Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project "LabelAgriWaste" revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process ("Quality I") and another one for plastic profile production process ("Quality II"). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.

  18. Recyclability assessment of nano-reinforced plastic packaging.

    Science.gov (United States)

    Sánchez, C; Hortal, M; Aliaga, C; Devis, A; Cloquell-Ballester, V A

    2014-12-01

    Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO3), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE-Nanoclay1, PE-CaCO3, PP-Ag, PET-ZnO, PET-Ag, PET-Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET-Ag) could influence important properties of the recycled material, due to a slight degradation of the polymer, such as increasing pinholes, degradation fumes and elongation at break. Moreover, it should be noted that colour deviations were visible in most of the samples (PE, PP and PET) in levels higher than 0.3 units (limit perceivable by the human eye). The acceptance of these changes in the properties of recycled PE, PP and PET will depend on the specific applications considered (e.g. packaging applications are more

  19. Chemical recycle of plastics waste; Hai purasuchikku no kemikaru risaikuru

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, A. [Sumitomo Chemical Co. Ltd., Osaka (Japan)

    1997-11-01

    Chemical recycling of the wasted plastics contains from regeneration to monomer as a constructing component in the case of single element polymer to conversion to fuel oil through thermal decomposition of the mixed wasted plastics and application to chemical raw material. Polymethyl methacrylate (PMMA) decomposes to methylmethacrylate (MMA) monomer with high selection rate at max temperature of 400{+-}50degC. The Mitsubishi Rayon Co., Ltd. Signed a cooperative development contract on the recycling technique of PMMA The ICI., Ltd., Great Britain. Depolymerization technique of Polyethylene terephthalate (PET) is already used actually on methanolysis with Coca-Cola Corp. (Hoechst-Celanese Corp.) and glycolysis with Pepsi-Cola Corp. (Goodyear Inc.). The chemical recycle due to thermal decomposition of the mixed wasted plastics is established as a technique of gasification of the mixed wasted plastics to generate methanol in Japan by the Mitsubishi Heavy Ind., Ltd., and is operated in a pilot plant of 2 ton/day. Here was summarized on these trends in and out of Japan. 29 refs., 5 figs., 4 tab.

  20. Creating Methane from Plastic: Recycling at a Lunar Outpost

    Science.gov (United States)

    Santiago-Maldonado, Edgardo; Captain, Janine; Devor, Robert; Gleaton, Jeremy

    2010-01-01

    The high cost of re-supply from Earth demands resources to be utilized to the fullest extent for exploration missions. The ability to refuel on the lunar surface would reduce the vehicle mass during launch and provide excess payload capability. Recycling is a key technology that maximizes the available resources by converting waste products into useful commodities. One example of this is to convert crew member waste such as plastic packaging, food scraps, and human waste into fuel. This process thermally degrades plastic in the presence of oxygen producing CO2 and CO. The CO2 and CO are then reacted with hydrogen over catalyst (Sabatier reaction) producing methane. An end-to-end laboratory-scale system has been designed and built to produce methane from plastic, in this case polyethylene. This first generation system yields 12-16% CH4 by weight of plastic used.

  1. A Cost-Effectiveness Analysis for Incineration or Recycling of Dutch Household Plastics

    OpenAIRE

    Gradus, Raymond; van Koppen, Rick; Dijkgraaf, Elbert; Nillesen, Paul

    2016-01-01

    The cost-effectiveness of plastic recycling is compared to energy recovery from plastic incineration in a waste-to-energy plant using data for the Netherlands. Both options have specific benefits and costs. The benefits of recycling are the avoidance of both CO2 that otherwise would be emitted during incineration and the production of virgin (new) material. There are significant costs, such as collection costs and recycling costs involved for plastic recycling by municipalities. The benefits ...

  2. Closed Loop Recycling of Plastic Housing for Flat Screen TVs

    OpenAIRE

    2012-01-01

    The treatment of the rapidly increasing number of End-of-Life (EoL) Flat screen Televisions (FTVs) presents major challenges and opportunities. Closing loops in plastic housing material flows remains a particular technical challenge because of the presence of additives, such as Flame Retardants (FR) in recovered housings. In the framework of a collaborative project PRIME with TP Vision the TV development site for Philips TVs and a Van Gansewinkel first level recycling plant, series of experim...

  3. Flammability Properties of Composites of Wood Fiber and Recycled Plastic

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flammability properties of composites of wood fiber and recycled plastic were evaluated by the cone calorimeter and oxygen index chamber. Results were shown as follows: 1) Wood-PVC composite showed worse thermal stability on time to ignition (TTI) and mean heat release rate (MHRR), but better performance on heat release rate (HRR) and mean efficient heat of combustion (MEHC); wood-PP composite had better thermal stability properties, but was worse on other fire performance; 2) Compared with wood-PVC composi...

  4. Closed Loop Recycling of Plastic Housing for Flat Screen TVs

    OpenAIRE

    Peeters, Jef; VANEGAS Paul; Devoldere, Tom; Dewulf, Wim; Duflou, Joost

    2012-01-01

    The treatment of the rapidly increasing number of End-of-Life (EoL) Flat screen Televisions (FTVs) presents major challenges and opportunities. Closing loops in plastic housing material flows remains a particular technical challenge because of the presence of additives, such as Flame Retardants (FR) in recovered housings. In the framework of a collaborative project PRIME with TP Vision the TV development site for Philips TVs and a Van Gansewinkel first level recycling plant, series of experim...

  5. Mechanical and thermal recycling of waste from electric and electrical equipment

    Energy Technology Data Exchange (ETDEWEB)

    Tohka, A.; Lehto, H.

    2006-07-01

    Consumption of electric and electrical equipment in Europe has risen from 5.8 million tons per year in 1980 to 13.6 tons in 2000. It is estimated that over 6 million tons of waste from electrical and electronic equipment is produced annually and a part of that is considered to be hazardous waste. Amounts of waste from electric and electrical equipment are also increasing significantly faster than average municipal waste. The amounts of hazardous substances per appliance are not large. but the total sum is significant and cannot be neglected. In addition. these equipment contain various precious metals such as silver. gold and platinum. Material streams of copper and aluminium containing waste from electric and electrical waste are also considerable and give a possibility to cost efficient recycling. The handling of this waste fraction will and already has become an important issue to manage and process. WEEE is very interesting and challenging substance as a raw material group and its processing point of view. It is quite easy and obvious to mention that it is very unhomogenious and complex, but its challenging issue is that it contains many valuable material components still not properly recycled today. New EU directives on waste from electric and electronic equipment (WEEE) are setting certain demands for recycling of WEEE and restrictions on handling of hazardous substances. There are similar requirements also outside the EU for example Japan's law on Electrical Household Appliance Recycling (EHAR). These new regulations are giving very challenging tasks to both product manufacturers and people who are responsible for recycling end of life products. There are still many fractions of WEEE waste that are land filled after mechanical recycling. These residues still consist valuable metals that are difficult to extract from treated scrap. Some of the WEEE fractions that have organic parts, such as plastic, have been incinerated in order to get energy and

  6. Facile characterization of polymer fractions from waste electrical and electronic equipment (WEEE) for mechanical recycling.

    Science.gov (United States)

    Taurino, Rosa; Pozzi, Paolo; Zanasi, Tania

    2010-12-01

    In view of the environmental problem involved in the management of WEEE, and then in the recycling of post-consumer plastic of WEEE there is a pressing need for rapid measurement technologies for simple identification of the various commercial plastic materials and of the several contaminants, to improve the recycling of such wastes. This research is focused on the characterization and recycling of two types of plastics, namely plastic from personal computer (grey plastic) and plastic from television (black plastic). Various analytical techniques were used to monitor the compositions of WEEE. Initially, the chemical structure of each plastic material was identified by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Polymeric contaminants of these plastics, in particular brominated flame retardants (BFRs) were detected in grey plastics only using different techniques. These techniques are useful for a rapid, correct and economics identification of a large volumes of WEEE plastics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Development of recycled plastic composites for structural applications from CEA plastics

    Science.gov (United States)

    Bhalla, Agrim

    Plastic waste from consumer electronic appliances (CEAs) such as computer and printer parts including Polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), Polystyrene (PS) and PC/ABS were collected using handheld FTIR Spectrophotometer. The blends of these plastics with High Density Polyethylene (HDPE) are manufactured under special processing conditions in a single screw compounding injection molding machine. The blends are thermoplastics have high stiffness and strength, which may enhance the mechanical properties of HDPE like tensile modulus, ultimate tensile strength, tensile break and tensile yield. These composites have a potential to be used for the future application of recycled plastic lumber, thus replacing the traditional wood lumber.

  8. Creating Methane from Plastics: Recycling at a Lunar Outpost

    Science.gov (United States)

    Captain, Janine; Santiago, Eddie; Wheeler, Ray; Strayer, RIchard; Garland, Jay; Parrish, Clyde

    2010-01-01

    The high cost of re-supply from Earth demands resources to be utilized to the fullest extent for exploration missions. Recycling is a key technology that maximizes the available resources by converting waste products into useful commodities. One example of this is to convert crew member waste such as plastic packaging, food scraps, and human waste, into fuel. The ability to refuel on the lunar surface would reduce the vehicle mass during launch and provide excess payload capability. The goal of this project is to determine the feasibility of recycling waste into methane on the lunar outpost by performing engineering assessments and lab demonstrations of the technology. The first goal of the project was to determine how recycling could influence lunar exploration. Table I shows an estimation of the typical dried waste stream generated each day for a crew of four. Packaging waste accounts for nearly 86% of the dry waste stream and is a significant source of carbon on the lunar surface. This is important because methane (CH4) can be used as fuel and no other source of carbon is available on the lunar surface. With the initial assessment indicating there is sufficient resources in the waste stream to provide refueling capabilities, the project was designed to examine the conversion of plastics into methane.

  9. The siderulgical process as way of recycling plastic residues

    Directory of Open Access Journals (Sweden)

    M.A. Diez

    2012-06-01

    Full Text Available The development of new recycling ways to allow therecovery of plastics from municipal wastes is of greatinterest in order to keep as many options open,especially when the co-processing with raw materialscan be performed in consolidate industrial processes.In this context, integrated steel plants can beconsidered as an option for those wastes withtechnical limitations for conventional mechanicalrecycling. The combination of the blast furnace routeand coke plant in the steel industry provide a wayto expand feedstock recycling with severalenvironmental benefits such as saving fossil fuels,reducing landfill of the wastes and reducing solidparticles, SO2 and CO2 emissions. This paper is anattempt to compile some relevant advances in theserecycling routes.

  10. Toxicity tests of soil contaminated by recycling of scrap plastics.

    Science.gov (United States)

    Wong, M H; Chui, V W

    1990-03-01

    The present investigation studied the toxicity of soil contaminated by untreated discharge from a factory that recycles used plastics. The nearby agricultural areas and freshwater fish ponds were polluted with high concentrations of Cu, Ni, and Mn. Water extracts from the contaminated soil retarded root growth of Brassica chinensis (Chinese white cabbage) and Cynodon dactylon (Bermuda grass) where their seeds were obtained commercially. The contaminated populations of C. dactylon, Panicum repen (panic grass), and Imperata cylindrica (wooly grass) were able to withstand higher concentrations of Cu, Ni, and Mn, especially C. dactylon, when compared with their uncontaminated counterparts.

  11. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Irena Kania-Surowiec

    2014-10-01

    Full Text Available In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the right concept and a prototype for a particular processing plant, plastic processing plant. It is possible to determine the parameters that will increase the efficiency of sewage treatment while minimizing the financial effort on the part of the Company. Selection methods of wastewater treatment is also associated with the environmental strategy of the country at the enterprise level specified in the Environmental Policy. This is an additional argument for the use of biological methods in the treatment of industrial waste water.

  12. Urban Trash Containers Made of Recycled Plastic Lumber

    Directory of Open Access Journals (Sweden)

    Jose Gilberto Ledur

    2013-12-01

    Full Text Available A low-cost and easy-to-handle manufacturing procedure for urban trash containers, made of recycled plastic lumber, was developed focusing on the following aspects: materials selection, materials compounding, plastic sheet manufacturing and mechanical testing, urban trash container design and assembly, and a pilot test. The material, a composite of polyethylene (PE urban waste, ethylene-vinyl acetate copolymer (EVA industrial waste and calcium carbonate, was prepared in a Drais batch mixer. The mixture was hot compression molded as rectangular-shaped sheets of 900 mm length, 600 mm width and 12 mm or 7 mm thickness. These sheets were characterized with regard to mechanical properties, microstructure and UV resistance. An urban trash container prototype was prepared from the plastic sheets and a hundred trash containers were submitted to a pilot test. All the steps, material compounding, plastic sheet processing, and trash container design and manufacturing were optimized in order to give the required physico-mechanical properties, functional characteristics and finish of the urban trash containers.

  13. A survey of economic indices of plastic wastes recycling industry

    Directory of Open Access Journals (Sweden)

    Malek Hassanpour

    2015-11-01

    Full Text Available Numerous small recycling units of plastic wastes have been currently constructed heedless to study of economic indices in Iran. Pay attention to the prominent performance of the industrial sector for economic development and its priority for fortifying other sectors to implement job opportunities, survey of the economic indices beckon the stakeholders and industries owners. The main objective of this study was a survey of economic indices in small recycling unit of plastic wastes. Therefore, the practice of computing the economic indices was performed using empirical equations, professional experiences and observations in site of the industry in terms of sustainability performance. Current study had shown the indices values such as value-added percent, profit, annual income, breakeven point, value-added, output value, data value, variable cost of good unit and production costs were found 62%, $ 366558, $ 364292.6, $ 100.34, $ 423451.25, $ 255335.75, $ 678787, $ 389.65 and $ 314494.4 respectively. The breakeven point about 15.93%, the time of return on investment about 1.12 (13.7 months were represented that this industry slightly needs long time to afford the employed capital and starts making a profit.

  14. Possibilities and limits of pyrolysis for recycling plastic rich waste streams rejected from phones recycling plants.

    Science.gov (United States)

    Caballero, B M; de Marco, I; Adrados, A; López-Urionabarrenechea, A; Solar, J; Gastelu, N

    2016-11-01

    The possibilities and limits of pyrolysis as a means of recycling plastic rich fractions derived from discarded phones have been studied. Two plastic rich samples (⩾80wt% plastics) derived from landline and mobile phones provided by a Spanish recycling company, have been pyrolysed under N2 in a 3.5dm(3) reactor at 500°C for 30min. The landline and mobile phones yielded 58 and 54.5wt% liquids, 16.7 and 12.6wt% gases and 28.3 and 32.4wt% solids respectively. The liquids were a complex mixture of organic products containing valuable chemicals (toluene, styrene, ethyl-benzene, etc.) and with high HHVs (34-38MJkg(-1)). The solids were composed of metals (mainly Cu, Zn, and Al) and char (≈50wt%). The gases consisted mainly of hydrocarbons and some CO, CO2 and H2. The halogens (Cl, Br) of the original samples were mainly distributed between the gases and solids. The metals and char can be easily separated and the formers may be recycled, but the uses of the char will be restricted due to its Cl/Br content. The gases may provide the energy requirements of the processing plant, but HBr and HCl must be firstly eliminated. The liquids could have a potential use as energy or chemicals source, but the practical implementation of these applications will be no exempt of great problems that may become insurmountable (difficulty of economically recovering pure chemicals, contamination by volatile metals, etc.).

  15. A Cost-Effectiveness Analysis for Incineration or Recycling of Dutch Household Plastics

    NARCIS (Netherlands)

    R.H.J.M. Gradus (Raymond); R. van Koppen (Rick); E. Dijkgraaf (Elbert); P. Nillesen (Paul)

    2016-01-01

    textabstractThe cost-effectiveness of plastic recycling is compared to energy recovery from plastic incineration in a waste-to-energy plant using data for the Netherlands. Both options have specific benefits and costs. The benefits of recycling are the avoidance of both CO2 that otherwise would be e

  16. A Cost-Effectiveness Analysis for Incineration or Recycling of Dutch Household Plastics

    NARCIS (Netherlands)

    R.H.J.M. Gradus (Raymond); R. van Koppen (Rick); E. Dijkgraaf (Elbert); P. Nillesen (Paul)

    2016-01-01

    textabstractThe cost-effectiveness of plastic recycling is compared to energy recovery from plastic incineration in a waste-to-energy plant using data for the Netherlands. Both options have specific benefits and costs. The benefits of recycling are the avoidance of both CO2 that otherwise would be

  17. Effects of Number and Location of Bins on Plastic Recycling at a University

    Science.gov (United States)

    O'Connor, Ryan T.; Lerman, Dorothea C.; Fritz, Jennifer N.; Hodde, Henry B.

    2010-01-01

    The proportion of plastic bottles that consumers placed in appropriate recycling receptacles rather than trash bins was examined across 3 buildings on a university campus. We extended previous research on interventions to increase recycling by controlling the number of recycling receptacles across conditions and by examining receptacle location…

  18. Recycling plastics and polymeric wastes. (Latest citations from the EI compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The bibliography contains citations concerning the recycling and uses of plastic and polymeric scraps and wastes. Topics include communition or grinding of scrap, degradation by heat or chemical reaction, compatibility of various plastics with one another, sorting problems, physical properties of reprocessed materials, economics, public awareness, waste minimization, waste re-use, and foreign experience in plastics recycling. New products made from recycled materials, and products expressly made to be recyclable are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Recycling of plastic wastes from electric and electronic sector new developments; Reciclado de residuos plasticos del sector electrico y electronico. Nuevos desarrollos

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, R.; Larrauri, E.; Cacho, I.

    1999-07-01

    Automated technologies for the identification and sorting of plastic wastes have been developed to get an adequate and cost-effective recycling. When dealing with plastics from end-of-live electric and electronic equipment not only the polymeric matrix but also fillers and/or flame retardant additives and/or pigments, need to be taken in account. At present, several specific projects are being carried out by GAIKER in order to solve the technological challenge of recycling plastics from the electric and electronic sector. (Author)

  20. Investment-Cost Optimization of Plastic Recycling System under Reliability Constraints

    Directory of Open Access Journals (Sweden)

    Abdelkader ZEBLAH

    2008-06-01

    Full Text Available This paper describes and uses an ant colony meta-heuristic optimization method to solve the redundancy optimization problem in plastic recycling industry. This problem is known as total investment-cost minimization of series-parallel plastic recycling system. Redundant components are included to achieve a desired level of availability. System availability is represented by a multi-state availability function. The plastic machines are characterized by their capacity, availability and cost. These machines are chosen among a list of products available on the market. The proposed meta-heuristic seeks to find the best minimal cost plastic recycling system configuration with desired availability. To estimate the series-parallel plastic machines availability, a fast method based on universal moment generating function (UMGF is suggested. The ant colony approach is used as an optimization technique. An example of plastic recycling system is presented.

  1. The potential environmental gains from recycling waste plastics: simulation of transferring recycling and recovery technologies to Shenyang, China.

    Science.gov (United States)

    Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi

    2011-01-01

    With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

  2. Integrated Index in Consideration of Appropriate Plastic Recycling System in Waste Bank Operation

    OpenAIRE

    Firdaus Pambudi Noorhan; Dowaki Kiyoshi; Adhiutama Akbar

    2016-01-01

    Several appropriate technology had been developed to maintain plastic waste in society according to minimize environmental impact. Landfill is no longer appropriate to maintain plastic waste based on the environmental impact that might be occurred for instance. However in developing countries such as Indonesia, although plastic recycling technology have been promoted by maintain waste bank policy for support community willingness to exchange their recyclable waste with certain monetary values...

  3. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  4. Preparing Attitude Scale to Define Students‟ Attitudes about Environment, Recycling, Plastic andPlastic Waste

    Directory of Open Access Journals (Sweden)

    Cagri AVAN

    2011-01-01

    Full Text Available The aim of this study is to introduce an attitude scale in order to define students‟ attitudes about environment, recycling, plastics, plastic waste. In this study, 80 attitude sentences according to 5-point Likert-type scale were prepared and applied to 492 students of 6th grade in the Kastamonu city center of Turkey. The scale consists of cognitive, affective, and psychomotor skills domains. After the factor analysis it was found that they have 3, 4 and 5 factors accordingly. After the reliability analysis the alpha values for cognitive, affective and psychomotor scales are .854, .871 and .826 respectively. As a result, it is found that the scale can be used to define cognitive, affective and psychomotor attitudes.

  5. Sustainable Materials Management (SMM) Web Academy Webinar: Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  6. Particulate Filled Composite Plastic Materials from Recycled Glass Fibre Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Aare ARUNIIT

    2011-09-01

    Full Text Available Glass fibre reinforced plastic (GFRP scrap consisted of acrylic plastic with glass fibre reinforcement in polyester resin matrix was used in our experiments. The multi-functional DS-series disintegrator mills were used for mechanical processing of GFRP scrap. Preceding from the results characterization of the milled powder particles size, shape and other properties the numerical algorithm for modelling of the density of the new filler material was developed. The main goal of the current study is to develop new particulate filled composite plastic material from recycled GFRP scrap. With recovered plastic powder material the higher filler content in polyester resin matrix can be achieved. The new composite is modelled on basis of the properties of new material. Such an approach requires tests of the new material. The considered target characteristics of the new material are the tensile strength, elongation at break and the cost. The multicriteria optimization problem has been formulated and solved by use of physical programming techniques and Pareto optimality concept. The designed new composites were manufactured in different mixing ratios of powder and binder agent. The strength and stiffness properties of new composite material were tested. http://dx.doi.org/10.5755/j01.ms.17.3.593

  7. Integrated Index in Consideration of Appropriate Plastic Recycling System in Waste Bank Operation

    Directory of Open Access Journals (Sweden)

    Firdaus Pambudi Noorhan

    2016-01-01

    Full Text Available Several appropriate technology had been developed to maintain plastic waste in society according to minimize environmental impact. Landfill is no longer appropriate to maintain plastic waste based on the environmental impact that might be occurred for instance. However in developing countries such as Indonesia, although plastic recycling technology have been promoted by maintain waste bank policy for support community willingness to exchange their recyclable waste with certain monetary values, there is no guarantee that community will fully accept plastic recycling technology. This research aims to assess the performance of plastic recycling in environmental and social aspects as its integrated index. From that assessment, appropriate strategies in plastic recycling will be delivered in this research. Environmental aspects will be assessed by using life cycle assessment (LCA through MiLCA software and selected by using data envelopment analysis (DEA. Social aspects will be analyzed by using qualitative and quantitative methodology such as observation, interview, secondary data, and questionnaires. Simulation and modelling will also developed by using agent-based modelling (ABM to describe social dynamic of community in supporting waste bank policy. The appropriate system of plastic recycling will be promoted as expected results for this research.

  8. Technologies for recycling of plastic wastes; Tecnologias para el reciclado de residuos plasticos

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, R.; Garcia, E.; Larraurim, E.

    1996-12-01

    The present article presents the last technologies to recycle the plastic wastes. the work is developed by Gaiker Center under the umbrella of Brite Euram project. The activities include the minimization, classification, and separation of wastes. (Author)

  9. TRANSPORT PLANNING MODEL FOR WIDE AREA RECYCLING SYSTEM OF INDUSTRIAL WASTE PLASTIC

    Science.gov (United States)

    Arai, Yasuhiro; Kawamura, Hisashi; Koizumi, Akira; Mogi, Satoshi

    To date, the majority of industrial waste plastic generated in an urban city has been processed into landfill. However, it is now necessary to actively utilize that plastic as a useful resource to create a recycling society with a low environment influence. In order to construct a reasonable recycling system, it is necessary to address the "transportation problem," which means determining how much industrial waste plastic is to be transported to what location. With the goal of eliminating landfill processing, this study considers a transport planning model for industrial waste plastic applying linear programming. The results of running optimized calculations under given scenarios clarified not only the possibilities for recycle processing in the Metropolitan area, but also the validity of wide area recycling system.

  10. Recycling of plastic: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas H

    2009-11-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO(2)-eq. tonne( -1) of plastic waste depending on treatment at the MRF and CO(2) emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60- 1600 kg CO(2)-eq. tonne( -1) of plastic waste depending on substitution ratios and CO(2) emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.

  11. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  12. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  13. Recyclable plastics as substrata for settlement and growth of bryozoans Bugula neritina and barnacles Amphibalanus amphitrite.

    Science.gov (United States)

    Li, Heng-Xiang; Orihuela, Beatriz; Zhu, Mei; Rittschof, Daniel

    2016-11-01

    Plastics are common and pervasive anthropogenic debris in marine environments. Floating plastics provide opportunities to alter the abundance, distribution and invasion potential of sessile organisms that colonize them. We selected plastics from seven recycle categories and quantified settlement of (i) bryozoans Bugula neritina (Linnaeus, 1758) in the lab and in the field, and of (ii) barnacles Amphibalanus (= Balanus) amphitrite (Darwin, 1854) in the field. In the laboratory we cultured barnacles on the plastics for 8 weeks and quantified growth, mortality, and breaking strength of the side plates. In the field all recyclable plastics were settlement substrata for bryozoans and barnacles. Settlement depended on the type of plastic. Fewer barnacles settled on plastic surfaces compared to glass. In the lab and in the field, bryozoan settlement was higher on plastics than on glass. In static laboratory rearing, barnacles growing on plastics were initially significantly smaller than on glass. This suggested juvenile barnacles were adversely impacted by materials leaching from the plastics. Barnacle mortality was not significantly different between plastic and glass surfaces, but breaking strength of side plates of barnacles on polyvinyl chloride (PVC) and polycarbonate (PC) were significantly lower than breakage strength on glass. Plastics impact marine ecosystems directly by providing new surfaces for colonization with fouling organisms and by contaminants shown previously to leach out of plastics and impact biological processes.

  14. Super plastic forming technology applied to aeroengine and space equipment

    Science.gov (United States)

    Mandai, Katsumi

    1992-03-01

    Titanium alloys, especially Ti-6Al-4V, are widely used for the aeroengine and space equipment because of their high strength ratio and excellent resistance to heat and corrosion. But this material is difficult to manufacture by conventional plastic forming technology. It has been reported that Ti-6Al-4V shows extensive ductility (superplasticity), more than 1000 percent under the condition of both low straining rate and high temperature ranges. Superplastic forming technology applying this characteristic is widely known as one of the most cost-effective methods to save material. At the plant, gas argon blowing equipment for the superplastic forming technology has been developed and 'V2500 nose fairing' and 'fuel tank of the H-II rocket second stage reaction control system' have been manufactured. This paper describes the superplastic forming equipment and the two products above.

  15. Upgrading of recycled plastics obtained from flexible packaging waste by adding nanosilicates

    Science.gov (United States)

    Garofalo, E.; Claro, M.; Scarfato, P.; Di Maio, L.; Incarnato, L.

    2015-12-01

    Currently, the growing consumption of polymer products creates large quantities of waste materials resulting in public concern in the environment and people life. The efficient treatment of polymer wastes is still a difficult challenge and the recycling process represents the best way to manage them. Recently, many researchers have tried to develop nanotechnology for polymer recycling. The products prepared through the addition of nanoparticles to post-used plastics could offer the combination of improved properties, low weight, easy of processing and low cost which is not easily and concurrently found by other methods of plastic recycling. In this study materials, obtained by the separation and mechanical recycling of post-consumer packaging films of small size (organic modifier, were melt compounded with the recycled materials in a twin-screw extruder. The morphological, thermal, rheological and mechanical properties of the prepared nanocomposites were extensively discussed.

  16. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry.

    Science.gov (United States)

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chong-Qing; Wang, Hui, E-mail: huiwang1968@163.com; Liu, You-Nian

    2015-01-15

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L{sub 9} (3{sup 4}) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics.

  18. 40 CFR Appendix B2 to Subpart F of... - Performance of Refrigerant Recovery, Recycling, and/or Reclaim Equipment

    Science.gov (United States)

    2010-07-01

    ... interruptions shall not be included in the time T. 9.3.2If no separate recycling sequence is used, the recycle... designation, type of equipment, designated refrigerants, capacities and electrical characteristics where...

  19. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres.

    Science.gov (United States)

    Arends, Dagmar; Schlummer, Martin; Mäurer, Andreas; Markowski, Jens; Wagenknecht, Udo

    2015-09-01

    Waste electrical and electronic equipment is a complex waste stream and treatment options that work for one waste category or product may not be appropriate for others. A comprehensive case study has been performed for plastic-rich fractions that are treated in German dismantling centres. Plastics from TVs, monitors and printers and small household appliances have been characterised extensively. Based on the characterisation results, state-of-the-art treatment technologies have been combined to design an optimised recycling and upgrade process for each input fraction. High-impact polystyrene from TV casings that complies with the European directive on the restriction of hazardous substances (RoHS) was produced by applying continuous density separation with yields of about 60%. Valuable acrylonitrile butadiene styrene/polycarbonate can be extracted from monitor and printer casings by near-infrared-based sorting. Polyolefins and/or a halogen-free fraction of mixed styrenics can be sorted out by density separation from monitors and printers and small household appliances. Emerging separation technologies are discussed to improve recycling results. © The Author(s) 2015.

  20. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    Science.gov (United States)

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry.

  1. Field evaluation of recycled plastic lumber (RPL) pallets. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswamy, P.; Miele, C.R.; Francini, R.B. [Battelle, Columbus, OH (United States); Yuracko, K. [Oak Ridge National Lab., TN (United States); Yerace, P. [Dept. of Energy, Fernald, OH (United States)

    1997-10-01

    One significant component of the waste stream, discarded plastic products and packaging, continues to be a growing portion of the municipal solid waste (MSW). There has been considerable work done in characterizing the quantity and types of plastics in different waste streams, collection methods, separation, sorting as well as technologies for processing post-consumer mixed plastics. The focus in recent years has been the development of markets for recycled plastic products, which constitutes the second half of the material flow diagram cycle shown in Figure 1. One key product that holds significant promise for plastics recycling to be both technically feasible and economically viable is Recycled Plastic Lumber (RPL). The contents of this report forms the second phase of a two-phase pilot project on developing specifications and standards for a product fabricated from RPL. Such standards and specifications are needed to prepare procurement guidelines for state and federal agencies interested in purchasing products made from recycled materials. The first phase focused on establishing a procedure to evaluate RPL product,s such as pallets, in a laboratory setting while this phase focuses on field evaluation of RPL pallets in service. This effort is critical in the development of new markets for RPL products. A brief summary of the findings from Phase 1 of this effort is presented next.

  2. Process Window for Direct Recycling of Acrylonitrile-Butadiene-Styrene and High-Impact Polystyrene from Electrical and Electronic Equipment Waste.

    Science.gov (United States)

    Vazquez, Yamila V; Barbosa, Silvia E

    2017-01-01

    The aim of this paper is to assess recycling process window of ABS (Acrylonitrile-Butadiene-Styrene) and HIPS (High impact Polystyrene) from WEEE (waste from electrical and electronic equipment) through a final properties/structure screening study on their blends. Main motivation is to evaluate which amount of one plastic WEEE can be included into the other at least keeping their properties. In this sense, a wider margin of error during sorting could be admitted to obtain recycling materials with similar technological application of recycled ABS and HIPS by themselves. Results are discussed in terms of final blend structure, focusing in the interaction, within blends, of copolymers phases and fillers presents in WEEE. The comparative analysis of mechanical performance and morphology of HIPS/ABS blends indicates that the addition of 50wt% HIPS to ABS even improves 50% the elongation at break maintaining the strength. On the opposite, HIPS maintains its properties with 20wt% of ABS added. This study allows enlarging composition process window of recycling plastic WEEE for similar applications. This could be a sustainable way to improve benefit of e-scrap with low costs and easy processability. In consequence, social interest in the recycling of this kind of plastic scrap could be encourage from either ecological or economical points of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Car plastic fuel tanks: closed loop recycling process, design and lifecycle assessment (RECAFUTA)

    Energy Technology Data Exchange (ETDEWEB)

    Yernaux, J-M. [SOLVAY SA, Research and Technology, Brussels (Belgium)

    2001-07-01

    A cooperative European Union-sponsored project to recycle high density plastic material from used automobile fuel tanks back into the original application is discussed. The goal of the project was to introduce 40 per cent of regenerate into new plastic fuel tanks. The project involved the development of design-for-recycling guidelines, development of a process for efficient recovery of the material by using super-critical carbon dioxide directly in the extruder, development of a process for upgrading the recycled material, and life cycle assessment to determine the reliability of the recycling process by comparing it to other alternatives such as landfilling or energy recovery. The project was recently completed and international validation tests are currently underway. The feasibility of upgrading the laboratory extrusion facility to industrial scale is in the process of being evaluated, concurrently with the development of an appropriate business plan. 7 figs.

  4. Eco-efficiency in Recycling Systems: Evaluation Methods & Case Studies for Plastic Packaging

    OpenAIRE

    Eik, Arne; Steinmo, Solveig; Solem, Håvard; Brattebø, Helge; Saugen, Bernt

    2002-01-01

    Focus on the so-called waste hierarchy, which claims that the prevention of waste is the most environmental friendly option, followed by reuse, remanufacturing, mechanical recycling, feedstock recycling, energy recovery, incineration and landfill, is considered to be an important strategy towards sustainable development. Increased use of plastic packaging for various products and the corresponding increase in waste generated are important challenges that must be dealt with from a waste-hierar...

  5. Recycling-oriented characterization of small waste electrical and electronic equipment.

    Science.gov (United States)

    Chancerel, Perrine; Rotter, Susanne

    2009-08-01

    As a result of the continuous change in the design and function of consumer electrical and electronic products, the mechanical and material properties of the obsolete products, called waste electric and electronic equipment (WEEE), are highly variable. The variability within WEEE is explained by the number of different appliances, and the heterogeneity in composition of any given appliance. This paper reports on an extended investigation of the properties of WEEE, in particular small appliances. The investigation focuses on the analysis of the composition of about 700 single appliances. Firstly, analytical methods to characterize the waste equipment are described. The results of the experimental analyses show that the mechanical properties, the material composition, the polymer composition and the chemical composition of WEEE vary not only between equipment types with different functions, but also between single appliances within one equipment type. Data on hazardous and valuable substances in selected equipment types are presented. Using detailed data on the composition of individual appliances to calculate rates of recovery for assumed recycling processes demonstrates that the performance of recycling processes depends strongly on the composition of WEEE. Recycling-oriented characterization is, therefore, a systematic approach to support the design and the operation of recycling processes.

  6. Recycling and Utilization of Waste Glass Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Feng Yan-chao

    2016-01-01

    Full Text Available This paper mainly introduced the recovery method, classification and comprehensive utilization process of waste glass fiber reinforced plastics (GFRP. Among the current methods of utilization, the physical method is most promising. After pre-processing of waste GFRP, the short glass fiber can be used in gypsum block to improve the anti-cracking and operation performance of the material; waste GFRP powder can be used in plastic fiber reinforced manhole covers to increase the mechanical strength, and the products conformed to JC 1009-2006. Based on these studies, we also point out some problems concerning the utilization of waste glass fiber reinforced plastics.

  7. Determinants of recycling common types of plastic product waste in environmental horticulture industry: The case of Georgia.

    Science.gov (United States)

    Meng, Ting; Klepacka, Anna M; Florkowski, Wojciech J; Braman, Kristine

    2016-02-01

    Environmental horticulture firms provide a variety of commercial/residential landscape products and services encompassing ornamental plant production, design, installation, and maintenance. The companies generate tons of waste including plastic containers, trays, and greenhouse/field covers, creating the need to reduce and utilize plastic waste. Based on survey data collected in Georgia in 2013, this paper investigates determinants of the environmental horticulture firms' recycling decision (plastic containers, flats, and greenhouse poly). Our findings indicate that the decision to discard vs. recycle plastic containers, flats, and greenhouse poly is significantly influenced by firm scope, size, location, and partnership with recycling providers, as well as whether recycling providers offer additional waste pickup services. Insights from this study are of use to local governments and environmental organizations interested in increasing horticultural firm participation in recycling programs and lowering the volume of plastic destined for landfills.

  8. The application of recycled aluminum and plastics in environmental protection

    OpenAIRE

    G. Tepić; T. Pejakov; Lalić, B.; V. Vukadinović; Milisavljević, S.

    2013-01-01

    Environmental protection is a serious problem facing the modern world. Precisely for this reason, in this work, the authors explore its different aspects. From the perspective of conservation of natural resources and energy savings, the replacement of primary materials through recycling is explored as a potential solution in the elementary processes related to the parasol production. Such parasols would be used in designing “urban forest” solutions, which significantly contribute to the prote...

  9. Characterisation of plastic packaging waste for recycling: problems related to current approaches

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    2013-01-01

    criteria of recycling processes. A lack of information in current waste characterisation practise on polymer resin composition, black coloured material content and the influence of surface adherent material on physico-chemical characteristics of plastic packaging waste were identified. These shortcomings...

  10. Mechanics recycling of plastics in Spain; El reciclado mecanico de materiales plasticos en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Alegre, J. M.

    2002-07-01

    In Spain, the mechanic recycling of plastics has been made from 1960. At the moment, 130 companies compose the industrial sector where the legislation on waste forces to change the policies to companies of free market in order to behave like companies of services for the waste management. A greater growth of this sector requires the development of new markets of applications. (Author)

  11. A Research Needs Assessment for waste plastics recycling: Volume 1, Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This first volume provides a summary of the entire project. The study utilized the talents of a large number of participants, including a significant number of peer reviewers from industrial companies, government agencies, and research institutes. in addition, an extensive analysis of relevant literature was carried out. In considering the attractiveness of recycling technologies that are alternatives to waste-to-energy combustion units, a systems approach was utilized. Collection of waste streams containing plastics, sortation, and reclamation of plastics and plastic mixtures, reprocessing or chemical conversion of the reclaimed polymers, and the applicability of the products to specific market segments have been analyzed in the study.

  12. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.

  13. Optimized Time-Gated Fluorescence Spectroscopy for the Classification and Recycling of Fluorescently Labeled Plastics.

    Science.gov (United States)

    Fomin, Petr; Zhelondz, Dmitry; Kargel, Christian

    2016-08-29

    For the production of high-quality parts from recycled plastics, a very high purity of the plastic waste to be recycled is mandatory. The incorporation of fluorescent tracers ("markers") into plastics during the manufacturing process helps overcome typical problems of non-tracer based optical classification methods. Despite the unique emission spectra of fluorescent markers, the classification becomes difficult when the host plastics exhibit (strong) autofluorescence that spectrally overlaps the marker fluorescence. Increasing the marker concentration is not an option from an economic perspective and might also adversely affect the properties of the plastics. A measurement approach that suppresses the autofluorescence in the acquired signal is time-gated fluorescence spectroscopy (TGFS). Unfortunately, TGFS is associated with a lower signal-to-noise (S/N) ratio, which results in larger classification errors. In order to optimize the S/N ratio we investigate and validate the best TGFS parameters-derived from a model for the fluorescence signal-for plastics labeled with four specifically designed fluorescent markers. In this study we also demonstrate the implementation of TGFS on a measurement and classification prototype system and determine its performance. Mean values for a sensitivity of [Formula: see text] = 99.93% and precision [Formula: see text] = 99.80% were achieved, proving that a highly reliable classification of plastics can be achieved in practice.

  14. Assessing the benefits of design for recycling for plastics inelectronics: A case study of computer enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric; Horvath, Arpad

    2007-12-31

    With the emergence of extended producer responsibilityregulations for electronic devices, it is becoming increasingly importantfor electronics manufacturers to apply design for recycling (DFR) methodsin the design of plastic enclosures. This paper presents an analyticalframework for quantifying the environmental and economic benefits of DFRfor plastic computer enclosures during the design process, usingstraightforward metrics that can be aligned with corporate environmentaland financial performance goals. The analytical framework is demonstratedvia a case study of a generic desktop computer enclosure design, which isrecycled using a typical US "take-back" system for plastics from wasteelectronics. The case study illustrates how the analytical framework canbe used by the enclosure designer to quantify the environmental andeconomic benefits of two important DFR strategies: choosing high-valueresins and minimizing enclosure disassembly time. Uncertainty analysis isperformed to quantify the uncertainty surrounding economic conditions inthe future when the enclosure is ultimately recycled.

  15. The application of recycled aluminum and plastics in environmental protection

    Directory of Open Access Journals (Sweden)

    G. Tepić

    2013-07-01

    Full Text Available Environmental protection is a serious problem facing the modern world. Precisely for this reason, in this work, the authors explore its different aspects. From the perspective of conservation of natural resources and energy savings, the replacement of primary materials through recycling is explored as a potential solution in the elementary processes related to the parasol production. Such parasols would be used in designing “urban forest” solutions, which significantly contribute to the protection of the planet from global warming, as well as the preservation of life and survival.

  16. Performance Analysis of a Solar Dryer Equipped with a Recycling Air System and Desiccant Chamber

    Directory of Open Access Journals (Sweden)

    M.H Aghkhani

    2013-09-01

    Full Text Available Drying is a high energy consuming process. Solar drying is one of the most popular methods for dehydration of agricultural products. In the present study, the performance of a forced convection solar dryer equipped with recycling air system and desiccant chamber was investigated. The solar dryer is comprised of solar collector, drying chamber, silica jell desiccant chamber, air ducts, fan and measuring and controlling system. Drying rate and energy consumption in three levels of air temperature (40, 45 and 50 oC and two modes of drying (with recycling air and no-recycling with open duct system were measured and compared. The results showed that increasing the drying air temperature decreased the drying time and increased the energy consumption in the mode of non-recycling air system. The dryer efficiency and drying rate were better in the mode of recycling air system than open duct system. The highest dryer efficiency was obtained from drying air temperature of 50 oC and the mode of recycling air system. In general, the efficiency of solar collector and the highest efficiency of the dryer were 0.34 and 0.41, respectively.

  17. Plastic Solid Waste Assessment in the State of Kuwait and Proposed Methods of Recycling

    Directory of Open Access Journals (Sweden)

    S. Al-Salem

    2007-01-01

    Full Text Available A proper assessment of Solid Plastic Waste (SPW in Kuwait will provide a greater understanding to the industry of plastic manufacturing and manufacturers as well as direct the strategic future plans proposed into execution. This research show the results obtained after a years survey and study of plastic solid waste in the state of Kuwait and the surrounding region in order to create a database that can be used in future plans and research projects. Major manufacturers in the area were asked to complete a questionnaire to create a complete database. Recycling methods were studied and tested in order to evaluate the best solutions and schemes available to overcome the increasing rate of municipal plastic waste. From the current study it, Kuwait ranked in second behind Qatar in plastic waste but land filling rates in Kuwait are almost double than any other oil dependant country in the west Asia region.

  18. Composite Fibers from Recycled Plastics Using Melt Centrifugal Spinning.

    Science.gov (United States)

    Zander, Nicole E; Gillan, Margaret; Sweetser, Daniel

    2017-09-06

    New methods are being developed to enable the production of value-added materials from high-volume, low-cost feedstocks arising from domestic recycling streams. In this work, recycled bottle-grade polyethylene terephthalate, polystyrene, and polypropylene were spun into fibers from the melt using a centrifugal spinning technique. Mono-component fibers and 50/50 blends of each polymer and a 33/33/33 blend of all three polymers were evaluated. Fiber morphology, chemistry, thermal, and mechanical properties were probed. Fiber diameters ranged from ca. 1 to over 12 µm, with polypropylene fibers having the smallest fiber diameters. Mono-component fibers were generally defect-free, while composite fibers containing polypropylene were beady. Fibers made from polyethylene terephthalate had the highest tensile strength, and the addition of polyethylene terephthalate to the other polymers improved the mechanical properties of the blends. Nano- and micro-fibers from both pure and mixed waste streams are expected to have applications in myriad areas such as ultra/micro-filtration, composites, and insulation.

  19. "New" Compounds from Old Plastics: Recycling PET Plastics via Depolymerization. An Activity for the Undergraduate Organic Lab

    Science.gov (United States)

    Kaufman, Don; Wright, Geoff; Kroemer, Ryan; Engel, Josh

    1999-11-01

    This paper describes work done to develop a meaningful undergraduate organic lab activity that illustrates chemistry of the real world while utilizing reactions typically included in the organic lecture and lab. We show how a common plastic can be converted into several compounds using ester hydrolysis and SN2 reactions. Contributing to the critical shortage of landfill space faced by many communities is the large quantity of plastic refuse. Thus, there is a real need to recycle plastic products. One way to recycle plastics such as polyethyleneterephthalate (PET), the polyester from which numerous consumer products such as 2-liter soda bottles are made, is to depolymerize them and then to use the resulting monomers to produce new products. PET is industrially depolymerized via an acid-catalyzed transesterification reaction conducted under conditions of high temperature and pressure that are not feasible in the undergraduate lab. Despite literature reports that PET is remarkably resistant to hydrolysis, we found that PET can be readily hydrolyzed by refluxing with potassium hydroxide or potassium tert-butoxide in amyl alcohol to give terephthalic acid in high yield. It is then possible to readily synthesize terephthalate diesters via SN2 reactions of ammonium terephthalate salts with alkyl halides. Fischer esterification can also be used to prepare the diesters, but yields are significantly lower.

  20. Oxidative status in workers engaged in recycling of plastic: occupational hazard.

    Science.gov (United States)

    Sati, Prakash Chandra; Kaushik, Ravi; Kumar, Vinod; Khaliq, Farah; Vaney, Neelam

    2012-01-01

    Recycling plastic industry is on rise. Plastic waste in environment is a pollutant so recycling of it can save environment and is economical too. However its recycling is associated with harmful effects on workers engaged in it. The present study was designed to elucidate the role of free radicals and cytochrome c in pathogenesis of polypropylene associated diseases. Thirty workers from plastic recycling factory occupationally exposed to polypropylene between the age of 18-40 years and working for atleast 8 hours a day for more than a year but less than 10 years were selected for the study. A trend in increase of FRAP and decrease of MDA was observed but they could not reach the level of significance. The level of serum cytochrome c, which is an indirect marker of oxidative stress, was also detectable in only two subjects. Since the number of subjects in the study was less, the result needs to be confirmed on larger number. More over cause of pulmonary dysfunction and carcinomas in these workers needs to be investigated.

  1. Recycling and recovery of post-consumer plastic solid waste in a European context

    Directory of Open Access Journals (Sweden)

    Dewil Raf

    2012-01-01

    Full Text Available The disposal of waste plastics has become a major worldwide environmental problem. The USA, Europe and Japan generate annually about 50 million tons of post-consumer plastic waste, previously landfilled, generally considered as a non-sustainable and environmentally questionable option. Landfill sites and their capacity are, moreover, decreasing rapidly, and legislation is stringent. Several European Directives and US legislation concern plastic wastes and the required management. They are briefly discussed in this paper. New processes have emerged, i.e., advanced mechanical recycling of plastic waste as virgin or second grade plastic feedstock, and thermal treatments to recycle the waste as virgin monomer, as synthetic fuel gas, or as heat source (incineration with energy recovery. These processes avoid land filling, where the non-biodegradable plastics remain a lasting environmental burden. The paper reviews these alternative options through mostly thermal processing (pyrolysis, gasification and waste-to-energy. Additional research is, however, still needed to confirm the potential on pilot and commercial scale. [Acknowledgments. The research was partly funded by the Fundamental Research Funds for the Central Universities RC1101 (PR China and partly funded by Project KP/09/005 (SCORES4CHEM Knowledge Platform of the Industrial Research Council of the KU Leuven (Belgium.

  2. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?

    Science.gov (United States)

    Wei, Ren; Zimmermann, Wolfgang

    2017-03-28

    Petroleum-based plastics have replaced many natural materials in their former applications. With their excellent properties, they have found widespread uses in almost every area of human life. However, the high recalcitrance of many synthetic plastics results in their long persistence in the environment, and the growing amount of plastic waste ending up in landfills and in the oceans has become a global concern. In recent years, a number of microbial enzymes capable of modifying or degrading recalcitrant synthetic polymers have been identified. They are emerging as candidates for the development of biocatalytic plastic recycling processes, by which valuable raw materials can be recovered in an environmentally sustainable way. This review is focused on microbial biocatalysts involved in the degradation of the synthetic plastics polyethylene, polystyrene, polyurethane and polyethylene terephthalate (PET). Recent progress in the application of polyester hydrolases for the recovery of PET building blocks and challenges for the application of these enzymes in alternative plastic waste recycling processes will be discussed. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Histogram of Intensity Feature Extraction for Automatic Plastic Bottle Recycling System Using Machine Vision

    Directory of Open Access Journals (Sweden)

    Suzaimah Ramli

    2008-01-01

    Full Text Available Currently, many recycling activities adopt manual sorting for plastic recycling that relies on plant personnel who visually identify and pick plastic bottles as they travel along the conveyor belt. These bottles are then sorted into the respective containers. Manual sorting may not be a suitable option for recycling facilities of high throughput. It has also been noted that the high turnover among sorting line workers had caused difficulties in achieving consistency in the plastic separation process. As a result, an intelligent system for automated sorting is greatly needed to replace manual sorting system. The core components of machine vision for this intelligent sorting system is the image recognition and classification. In this research, the overall plastic bottle sorting system is described. Additionally, the feature extraction algorithm used is discussed in detail since it is the core component of the overall system that determines the success rate. The performance of the proposed feature extractions were evaluated in terms of classification accuracy and result obtained showed an accuracy of more than 80%.

  4. An efficient and fast analytical procedure for the bromine determination in waste electrical and electronic equipment plastics.

    Science.gov (United States)

    Taurino, R; Cannio, M; Mafredini, T; Pozzi, P

    2014-01-01

    In this study, X-ray fluorescence (XRF) spectroscopy was used, in combination with micro-Raman spectroscopy, for a fast determination of bromine concentration and then of brominated flame retardants (BFRs) compounds in waste electrical and electronic equipments. Different samples from different recycling industries were characterized to evaluate the sorting performances of treatment companies. This investigation must be considered of prime research interest since the impact of BFRs on the environment and their potential risk on human health is an actual concern. Indeed, the new European Restriction of Hazardous Substances Directive (RoHS 2011/65/EU) demands that plastics with BFRs concentration above 0.1%, being potential health hazards, are identified and eliminated from the recycling process. Our results show the capability and the potential of Raman spectroscopy, together with XRF analysis, as effective tools for the rapid detection of BFRs in plastic materials. In particular, the use of these two techniques in combination can be considered as a promising method suitable for quality control applications in the recycling industry.

  5. Influence of impurities on the performances of HIPS recycled from Waste Electric and Electronic Equipment (WEEE).

    Science.gov (United States)

    Perrin, Didier; Mantaux, Olivier; Ienny, Patrick; Léger, Romain; Dumon, Michel; Lopez-Cuesta, José-Marie

    2016-10-01

    In order to produce a high quality recycled material from real deposits of electric and electronic equipment, the rate of impurities in different blended grades of reclaimed materials has to be reduced. Setting up industrial recycling procedures requires to deal with the main types of polymers presents in WEEE (Waste Electric and Electronic Equipment), particularly High Impact Polystyrene (HIPS) as well as other styrenic polymers such as Acrylonitrile-Butadiene-Styrene (ABS), Polystyrene (PS) but also polyolefin which are present into WEEE deposit as Polypropylene (PP). The production of a substantial quantity of recycled materials implies to improve and master the compatibility of different HIPS grades. The influence of polymeric impurities has to be studied since automatic sorting techniques are not able to remove completely these fractions. Investigation of the influence of minor ABS, PS and PP polymer fractions as impurities has been done on microstructure and mechanical properties of HIPS using environmental scanning electron microscopy (ESEM) in order to determine the maximum tolerated rate for each of them into HIPS after sorting and recycling operations.

  6. Chemical recycling of mixed waste plastics by selective pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tatsumoto, K.; Meglen, R.; Evans, R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The goal of this work is to use selective pyrolysis to produce high-value chemicals from waste plastics mixtures. Selectivity is achieved by exploiting differences in reaction rates, catalysis, and coreactants. Target wastes are molecular mixtures such as; blends or composites, or mixtures from manufactured products such as; carpets and post-consumer mixed-plastic wastes. The experimental approach has been to use small-scale experiments using molecular beam mass spectrometry (MBMS), which provides rapid analysis of reaction products and permits rapid screening of process parameters. Rapid screening experiments permit exploration of many potential waste stream applications for the selective pyrolysis process. After initial screening, small-scale, fixed-bed and fluidized-bed reactors are used to provide products for conventional chemical analysis, to determine material balances, and to test the concept under conditions that will be used at a larger scale. Computer assisted data interpretation and intelligent chemical processing are used to extract process-relevant information from these experiments. An important element of this project employs technoeconomic assessments and market analyses of durables, the availability of other wastes, and end-product uses to identify target applications that have the potential for economic success.

  7. Multicomponent recycled plastics: considerations about their use in food contact applications.

    Science.gov (United States)

    Nerín, C; Salafranca, J; Rubio, C; Cacho, J

    1998-10-01

    Two multicomponent post-use recycled plastics named as NPP40A3 (formulated with 85% HDPE and 15% of a PP-PS-PVC mixture) and NPP40A6 (formulated with 80% NPP40A3, 10% ABS and 10% HIPS), both of them with 3.1% of plasticizer and 0.6% of stabilizer to obtain a better final product, have been analysed. Plastics were extracted both with dichloromethane and methylbenzene, and analysed by HPLC and GC-MS to identify the maximum possible number of compounds. Major additives quantified were di(ethylhexyl)phthalate (3.262% and 2.955% respectively) and Irganox 1010 (0.473% and 0.498% respectively). Several degradation compounds have been detected. In order to check if these plastics could be used in food contact applications, global and specific migration tests have been applied. The results obtained are discussed.

  8. Characterisation of plastic packaging waste for recycling: problems related to current approaches

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    2013-01-01

    were addressed by a resin type-based sorting analysis and a washing test for plastic packaging material from Danish household waste. Preliminary results show that, for a quarter of the hand sorted material, no resin type could be identified and that Polypropylene and Polyethylene terephthalate were...... criteria of recycling processes. A lack of information in current waste characterisation practise on polymer resin composition, black coloured material content and the influence of surface adherent material on physico-chemical characteristics of plastic packaging waste were identified. These shortcomings...... the dominating resin types in plastic packaging. The suggested washing procedure caused a decrease of 70% of the ash content of the plastic material. The analysed metals and nutrients were reduced by up to 24%...

  9. The use of plasticizing additives based on recycled raw materials in the petrochemical rubber mixtures

    Directory of Open Access Journals (Sweden)

    Z. S. Shashok

    2016-01-01

    Full Text Available At present, the development of alternative products for elastomers based on recycling petrochemical raw materials is a new trend of the rubber industry progress. Petrochemical raw materials include spent lubricants and motor oils are among such recycling products. In this context, the influence of the products of recycling waste engine oil (DVCH and RA in comparison with industrial oil (I-20 on the technological properties of filled elastomeric compositions was investigated. The elastomeric compositions were based on poly isoprene and divinyl rubbers. The plasticizing components were manufactured by IOOO “DVCH-Menedzhment”. They are mixture of hydro-carbons, C16–C20 and differ from each other in the content of linear and branched paraffin. Plastic-elastic properties of rubber compounds on the shear disk viscometer MV2000 in accordance with GOST 10722–76 was carried out. Kinetics of vulcanization on the rheometer ODR2000 according to GOST 12535–84 was defined. It is shown that the introduction of RA test plasticizing component provides a significant effect on Mooney viscosity, as compared to elastomeric compositions containing a plasticizer and I-20 and plasticizing additive DVCH. It revealed that the administration of all components in the studied plasticizing elastomer compositions based on a combination poly isoprene and divinyl rubbers has no significant effect on the rate of relaxation of stress of rubber compounds. It is found that elastomeric compositions containing as additives investigated processing waste oil products (DVCH and RA are characterized by a slightly smaller value of time to reach an optimal degree of vulcanization.

  10. Effects of Mixing Temperature and Wood Powder Size on Mechanical Properties of Wood Plastic Recycled Composite

    Science.gov (United States)

    Miki, Tsunehisa; Sugimoto, Hiroyuki; Kojiro, Keisuke; Kanayama, Kozo; Yamamoto, Ken

    In this study, wood (cedar) powder ranging from 53 µm to 1 mm sizes, recycled polypropylene (PP) / polyethylene (PE) and acid-modified PP as a compatibilization agent were used to produce a wood-plastic recycled composite (WPRC). For discussing the effects of the wood powder sizes on the mechanical properties of the WPRC, a mixing process of the wood powder and the plastics in a constant wood content of 50% weight was firstly performed by a mixing machine controlled temperature and rotation of mixing blade. And then, to obtain WPRC panels the wood and plastics mixtures were compressed in a mould under a constant pressure and a temperature for a certain holding time. WPRC specimens for mechanical tests were cut from the WPRC panels, and a tensile strength and a size-stability were acquired. The results show that the successful mixing process runs above 180°C, where the mixing torque required compounding keeps constant or slightly increases. The tensile strength of the WPRC increases when the smaller size of wood powder is used for wood/plastic compound under successful mixing conditions. It is shown from thickness change rate of specimens that mixing temperature of wood/plastic compound affects a size stability of the WPRC.

  11. Characteristics of wood-fiber plastic composites made of recycled materials.

    Science.gov (United States)

    Ashori, Alireza; Nourbakhsh, Amir

    2009-04-01

    This study investigates the feasibility of using recycled high density polyethylene (rHDPE), polypropylene (rPP) and old newspaper (rONP) fiber to manufacture experimental composite panels. The panels were made through air-forming and hot press. The effects of the fiber and coupling agent concentration on tensile, flexural, internal bond properties and water absorption and thickness swelling of wood-fiber plastic composites were studied. The use of maleated polypropylene as coupling agent improved the compatibility between the fiber and both plastic matrices and mechanical properties of the resultant composites compared well with those of non-coupled ones. Based on the findings in this work, it appears that recycled materials can be used to manufacture value-added panels without having any significant adverse influence on board properties. It was also found that composites with rHDPE provided moderately superior properties, compared with rPP samples.

  12. Identification of brominated flames retardants used in plastics from end of life electric-electronic equipment; Identificacion de retardadores a la llama bromados en plasticos de equipos electricos y electronicos al final de su vida util

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, R.; Laboa, G.; Pinedo, C.

    2001-07-01

    The main objective of the present work is the qualitative and semi-quantitative identification of the most common brominated flame retardants used in some relevant plastics from End of life Electric-Electronic Equipment, in order to obtain a reliable recycled materials regarding the tendencies of the Draft WEEE (Wastes from Electric and Electronic Equipment) and the Draft RoHS (Restriction of certain hazardous substances in Electrical and Electronic Equipment) Directives. (Author) 6 refs.

  13. Assessing the suitability of recycled plastics used as agricultural soil covers: migration study and experimental harvest.

    Science.gov (United States)

    Nerín, C; Batlle, R

    1999-01-01

    The present work is focused on evaluating the suitability of recycling postconsumer agricultural plastic films again for the same use. The criteria to assess the suitability was based on migration study. Both overall and specific migration tests were performed, and the results obtained (ranging from 0.14 to 1.27 mg/dm(2) for overall migration and from not detectable to 6.98 microg/dm(2) for specific migration) show how, from this point of view, the recycled material can be safely proposed to be used again as agricultural soil covers. A theoretical discussion about the migration process is also presented and a simple mathematical model was applied to the data obtained, showing how total migration which is experimentally detected is theoretically predictable. These conclusions found were used to design and develop a controlled crop of tomato by using this recycled film. The use of the recycled plastic in the whole process and the behavior and properties of the pesticides absorbed in the postconsumer film are discussed.

  14. A new classification scheme of plastic wastes based upon recycling labels

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Kemal, E-mail: kozkan@ogu.edu.tr [Computer Engineering Dept., Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Ergin, Semih, E-mail: sergin@ogu.edu.tr [Electrical Electronics Engineering Dept., Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Işık, Şahin, E-mail: sahini@ogu.edu.tr [Computer Engineering Dept., Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Işıklı, İdil, E-mail: idil.isikli@bilecik.edu.tr [Electrical Electronics Engineering Dept., Bilecik University, 11210 Bilecik (Turkey)

    2015-01-15

    Highlights: • PET, HPDE or PP types of plastics are considered. • An automated classification of plastic bottles based on the feature extraction and classification methods is performed. • The decision mechanism consists of PCA, Kernel PCA, FLDA, SVD and Laplacian Eigenmaps methods. • SVM is selected to achieve the classification task and majority voting technique is used. - Abstract: Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher’s Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple

  15. Theoretical Analysis and Experimental Study on the Coating Removal from Passenger-Vehicle Plastics for Recycling by Using Water Jet Technology

    Science.gov (United States)

    Zhang, Hongshen; Chen, Ming

    2015-11-01

    The recovery and utilization of automotive plastics are a global concern because of the increasing number of end-of-life vehicles. In-depth studies on technologies for the removal of coatings from automotive plastics can contribute to the high value-added levels of the recycling and utilization of automotive plastic. The liquid waste generated by removing chemical paint by using traditional methods is difficult to handle and readily produces secondary pollution. Therefore, new, clean, and highly efficient techniques of paint removal must be developed. In this article, a method of coating removal from passenger-vehicle plastics was generated based on high-pressure water jet technology to facilitate the recycling of these plastics. The established technology was theoretically analyzed, numerically simulated, and experimentally studied. The high-pressure water jet equipment for the removal of automotive-plastic coatings was constructed through research and testing, and the detailed experiments on coating removal rate were performed by using this equipment. The results showed that high-pressure water jet technology can effectively remove coatings on the surfaces of passenger-vehicle plastics. The research also revealed that the coating removal rate increased as jet pressure ( P) increased and then decreased when jet moving speed ( Vn) increased. The rate decreased as the distance from nozzle to work piece ( S nw ) and the nozzle angle ( Φ) increased. The mathematical model for the rate of removal of coatings from bumper surfaces by water jet was derived based on the experiment data and can effectively predict coating removal rate under different operating conditions.

  16. Resrad-recycle: a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing radioactively surface-contaminated materials and equipment.

    Science.gov (United States)

    Cheng, Jing-Jy; Kassas, Bassel; Yu, Charley; Amish, John; LePoire, Dave; Chen, Shih-Yew; Williams, W A; Wallo, A; Peterson, H

    2004-11-01

    RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data.

  17. Electronics equipments recycling; El reciclado de los equipos electricos y electronicos

    Energy Technology Data Exchange (ETDEWEB)

    Irasarri Arregui, L. M.

    2001-07-01

    The 13th of june of 2000, the European Commission made public the Proposal for a Directive on Waste Electrical and Electronic Equipment (WEEE Directive) that has like aim the management of the WEEE that is generated in the homes, the industry, the professionals or the institutions. From 1992 they have been making experiences of collection and processing of WEEE that, in some countries, have been materialized in legislative pieces into effect: Switzerland, Sweden, Norway, Holland etc. The WEEE Directive has four actors: the Manufacturers, the Administration, the Consumer and the Recycler. This article comments the experiences of one of these actors, the recycle, and summarizes in 12 points his preoccupations with respect to the Proposal for a WEEE Directive. (Author) 17 refs.

  18. A new classification scheme of plastic wastes based upon recycling labels.

    Science.gov (United States)

    Özkan, Kemal; Ergin, Semih; Işık, Şahin; Işıklı, Idil

    2015-01-01

    Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher's Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification

  19. Biological treatment: potential reusing of recycled plastics from grenhouses; La depuracin biolgica: posible reutilizacin de plsticos reciclados procedentes de invernaderos

    Energy Technology Data Exchange (ETDEWEB)

    Zamorano, M.; Hontaria, E. [Universidad de Granada (Spain)

    1997-12-31

    The purpose of this study was to investigate recycled plastic used to cover crops as support beds in submerged biofilters for the purification of residual water, which also permit the re-used of recycled or waste products and the clarification and improvement of the effluent flow from the filter. The recycled plastic shows that the efficiency was 88% COD-removal and 84% SS-removal, without secondary clarification. The functioning of the system with this material has not improved 100%, this study has opened up a new field of investigation that will perfect the system and materials. (Author) 10 refs.

  20. Assessment of plastic waste generation and its potential recycling of household solid waste in Can Tho City, Vietnam.

    Science.gov (United States)

    Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi

    2011-04-01

    Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.

  1. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    Science.gov (United States)

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  2. APPLICATION OF PROFITABILITY CONCEPT: A CASE IN THE PLASTIC RECYCLING INDUSTRY

    Directory of Open Access Journals (Sweden)

    S.A. Oke

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT:In this article the principles of industrial engineering are applied to maximize the profitability of the recycling industry. A case in the plastic recycling industry is presented to demonstrate the practical application of the financial calculation functions developed in the paper. In particular, the profitability maximization concept for the plastic recycling industry was examined, based on the theory of demand and supply. By estimating the profit realizable on regular as well as high product demand, part of the objective of the paper was achieved. Inventory principles were further applied to determine optimum inventory levels.

    AFRIKAANSE OPSOMMING: Die beginsels van bedryfsingenieurswese word in die artikel toegepas om die maksimisering van winsgewendheid by herwinbaarheidsvraagstukke te bewerkstellig. 'n Voorbeeld wat voorkom by die herwinbaarheid van plastiek word voorgehou om te toon hoedat finansiële modellering aangewend kan word. Voorraadhouding onder toestande van stabiele en toenemende vraag word behandel en in besonderheid ondersoek.

  3. Effects of mechanical tensile properties of plastic film on plastic recycling method%农田地膜拉伸性能变化对缠绕式回收的影响

    Institute of Scientific and Technical Information of China (English)

    张佳喜; 王学农; 张丽; 喻晨; 蒋永新; 张海春; 刘旋峰; 乔园园; 王祥金

    2015-01-01

    农田长期覆膜种植产生的大量地膜对农田土壤质量、作物生长及环境造成严重的影响,为解决这一问题,于 2014年3月至2014年10月在新疆库尔勒尉犁县达西村开展大田试验,对比不同厚度、不同时间及不同位置地膜拉伸性能的变化规律,并针对0.01 mm地膜进行缠绕式回收试验.结果表明:地膜铺放后的30~60 d期间,由于受到风和紫外线照射等因素,拉伸强度有明显的下降,下降幅度较大;当地膜回收的时候,0.01 mm地膜最大拉伸力在近株端和远株端分别为1.52 N和1.305 N,是0.008 mm地膜的1.4倍和1.22倍.显然0.01 mm地膜的拉伸性能较0.008 mm拉伸性能有了一定的提升,这对地膜回收有一定的积极作用,但是经过理论计算及田间试验0.01 mm地膜的拉伸性能还是不足以采用简单缠绕的方式进行回收.本研究揭示了地膜拉伸性能在不同时间、不同厚度及不同位置受到紫外线等影响的变化规律,为地膜回收机的研制提供了理论依据.%Plastic mulching technology has brought huge economic benefits, while the residual plastic film produced series of serious problems such as pollution on land. A large number of plastic recycling is becoming urgent and important task in our country. A large amount and long term of used plastic film on soil has caused great serious influence on the high quality of farmland planting, crop growth, the rural ecological environment and new rural construction, which has attracted more and more attention. Now, the research on the recovery mechanism is limited to equipment of plastic film enwinding recycling, and there are few studies on the variation rule of the tensile properties of used plastic film and the impact. During our practical research work, performance such as unstable recycling capability, low film recovery rate and work parts deformation often appears in the used plastic film recycling. To address these problems, we carried out some

  4. Recycling and recovery routes of plastic solid waste (PSW): a review.

    Science.gov (United States)

    Al-Salem, S M; Lettieri, P; Baeyens, J

    2009-10-01

    Plastic solid waste (PSW) presents challenges and opportunities to societies regardless of their sustainability awareness and technological advances. In this paper, recent progress in the recycling and recovery of PSW is reviewed. A special emphasis is paid on waste generated from polyolefinic sources, which makes up a great percentage of our daily single-life cycle plastic products. The four routes of PSW treatment are detailed and discussed covering primary (re-extrusion), secondary (mechanical), tertiary (chemical) and quaternary (energy recovery) schemes and technologies. Primary recycling, which involves the re-introduction of clean scrap of single polymer to the extrusion cycle in order to produce products of the similar material, is commonly applied in the processing line itself but rarely applied among recyclers, as recycling materials rarely possess the required quality. The various waste products, consisting of either end-of-life or production (scrap) waste, are the feedstock of secondary techniques, thereby generally reduced in size to a more desirable shape and form, such as pellets, flakes or powders, depending on the source, shape and usability. Tertiary treatment schemes have contributed greatly to the recycling status of PSW in recent years. Advanced thermo-chemical treatment methods cover a wide range of technologies and produce either fuels or petrochemical feedstock. Nowadays, non-catalytic thermal cracking (thermolysis) is receiving renewed attention, due to the fact of added value on a crude oil barrel and its very valuable yielded products. But a fact remains that advanced thermo-chemical recycling of PSW (namely polyolefins) still lacks the proper design and kinetic background to target certain desired products and/or chemicals. Energy recovery was found to be an attainable solution to PSW in general and municipal solid waste (MSW) in particular. The amount of energy produced in kilns and reactors applied in this route is sufficiently

  5. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    Energy Technology Data Exchange (ETDEWEB)

    Gug, JeongIn, E-mail: Jeongin_gug@student.uml.edu; Cacciola, David, E-mail: david_cacciola@student.uml.edu; Sobkowicz, Margaret J., E-mail: Margaret_sobkowiczkline@uml.edu

    2015-01-15

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  6. Screening adulteration of polypropylene bottles with postconsumer recycled plastics for oral drug package by near-infrared spectroscopy.

    Science.gov (United States)

    Xie, Lan-Gui; Sun, Hui-Min; Jin, Shao-Hong

    2011-11-14

    Adulteration of pharmaceutical packaging containers with postconsumer recycled plastic materials was considerably difficult to identify due to the similar chemical compositions of virgin and recycled plastics. In the present study, near-infrared (NIR) spectroscopy coupled with conformity test was proposed to screen the adulteration of pharmaceutical packaging containers. Two kinds of representative screening models were investigated on polypropylene (PP) bottles for oral drug package. The reliability of the screening models was validated through studying the identification reliability, specificity, and robustness of the methods. The minimum spiking level of two modeled adulterants at the proportion of 20% could be detected, and the unqualified sample from a domestic manufacturer was rejected by this developed method. This strategy represents a rapid and promising analytical method for screening the adulteration of pharmaceutical plastic packaging containers with postconsumer recycled plastics.

  7. Recycling of polyethylene terephthalate (PET plastic bottle wastes in bituminous asphaltic concrete

    Directory of Open Access Journals (Sweden)

    Adebayo Olatunbosun Sojobi

    2016-12-01

    Full Text Available This research sheds light on the concept of eco-friendly road construction which comprises eco-design, eco-extraction, eco-manufacturing, eco-construction, eco-rehabilitation, eco-maintenance, eco-demolition, and socioeconomic empowerment. It also revealed the challenges being faced in its adoption and the benefits derivable from its application. Furthermore, the effects of recycling PET plastic bottle wastes produced in North Central Nigeria in bituminous asphaltic concrete (BAC used in flexible pavement construction were also evaluated. The mix design consists of 60/70 penetration-grade asphaltic concrete (5%, 68% coarse aggregate, 6% fine aggregate, and 21% filler using the dry process at 170°C. The optimum bitumen content (OBC for conventional BAC was obtained as 4% by weight of total aggregates and filler. Polymer-coated aggregate (PCA-modified BAC seems preferable because it has the potential to utilize more plastic wastes with a higher optimum plastic content (OPC of 16.7% by weight of total aggregates and filler compared to that of 9% by weight of OBC achieved by PMB-BAC. For both PMB- and PCA-modified BAC, an increase in air void, void in mineral aggregate, and Marshall stability were observed. Eco-friendly road construction which recycles PET wastes should be encouraged by government considering its potential environmental and economic benefits.

  8. Production of recyclates – compared with virgin Plastics – a LCA Study

    Directory of Open Access Journals (Sweden)

    Storm Birgit Kjærside

    2017-01-01

    Full Text Available Plastix A/S is a Danish cleantech company transforming discarded fishing trawls and nets into valuable green raw materials. Plastix– technology and processes solve a maritime waste problem and contribute to a more circular green economy and reduce landfilling, marine pollution, CO2 emissions and especially loss of valuable resources. Plastix– recycling technology enables recovery of discarded fishing trawls and nets via mechanical and thermal processes transforming the waste into valuable recycles which can be converted into plastic products replacing virgin raw materials. The performance has been proved through a Life Cycle Assessment (LCA study. The results from the LCA study are compared with the production of virgin materials. The results of the LCA show that especially the carbon footprint is remarkable better for Oceanix than for virgin plastics. Oceanix HDPE is 5 times better than virgin HDPE, when talking about the carbon foot print, and the results for Oceanix PP and Oceanix PA6 are 5 times and 20 times better compared with virgin PP and PA6. Also other environmental indicators are better for Oceanix compared with virgin plastics.

  9. Brominated flame retardants in waste electrical and electronic equipment: substance flows in a recycling plant.

    Science.gov (United States)

    Morf, Leo S; Tremp, Josef; Gloor, Rolf; Huber, Yvonne; Stengele, Markus; Zennegg, Markus

    2005-11-15

    Brominated flame retardants (BFRs) are synthetic additives mainly used in electrical and electronic appliances and in construction materials. The properties of some BFRs are typical for persistent organic pollutants, and certain BFRs, in particular some polybrominated diphenyl ether (PBDE) congeners and hexabromocyclododecane (HBCD), are suspected to cause adverse health effects. Global consumption of the most demanded BFRs, i.e., penta-, octa-, and decaBDE, tetrabromobisphenol A (TBBPA), and HBCD, has doubled in the 1990s. Only limited and rather uncertain data are available regarding the occurrence of BFRs in consumer goods and waste fractions as well as regarding emissions during use and disposal. The knowledge of anthropogenic substance flows and stocks is essential for early recognition of environmental impacts and effective chemicals management. In this paper, actual levels of penta-, octa-, and decaBDE, TBBPA, and HBCD in waste electrical and electronic equipment (WEEE) as a major carrier of BFRs are presented. These BFRs have been determined in products of a modern Swiss recycling plant applying gas chromatography/electron capture detection and gas chromatography/mass spectrometry analysis. A substance flow analysis (SFA) technique has been used to characterize the flows of target substances in the recycling process from the bulk WEEE input into the output products. Average concentrations in small size WEEE, representing the relevant electric and electronic appliances in WEEE, sampled in 2003 amounted to 34 mg/kg for pentaBDE, 530 mg/kg for octaBDE, 510 mg/kg for decaBDE, 1420 mg/kg for TBBPA (as an additive), 17 mg/kg for HBCD, 5500 mg/kg for bromine, and 1700 mg/kg for antimony. In comparison to data that have been calculated by SFA for Switzerland from literature for the 1990s, these measured concentrations in small size WEEE were 7 times higher for pentaBDE, unexpectedly about 50% lower for decaBDE, and agreed fairly well for TBBPA (as an additive) and

  10. Evaluation Of Gas Diffusion Through Plastic Materials Used In Experimental And Sampling Equipment

    DEFF Research Database (Denmark)

    Kjeldsen, Peter

    1993-01-01

    Plastic materials are often used in experimental and sampling equipment. Plastics are not gas tight, since gases are able to diffuse through the walls of tubing and containers made of plastic. Methods for calculating the significance of gas diffusion through the walls of containers and the walls....... Calculations show that diffusion of oxygen through plastic tubing and reactors into anoxic water can be a serious problem for a series of plastic materials. Comparison of the method for turbulent and laminar flow in tubings shows that the difference is insignificant for most cases. Calculations show also...... that the use of silicone rubber in experimental and sampling equipment to be used for anoxic water is, for most cases, prohibited by oxygen diffusion....

  11. Plastic cup traps equipped with light-emitting diodes for monitoring adult Bemisia tabaci (Homoptera: Aleyrodidae).

    Science.gov (United States)

    Chu, Chang-Chi; Jackson, Charles G; Alexander, Patrick J; Karut, Kamil; Henneberry, Thomas J

    2003-06-01

    Equipping the standard plastic cup trap, also known as the CC trap, with lime-green light-emitting diodes (LED-plastic cup trap) increased its efficacy for catching Bemisia tabaci by 100%. Few Eretmocerus eremicus Rose and Zolnerowich and Encarsia formosa Gahan were caught in LED-plastic cup traps. The LED-plastic cup traps are less expensive than yellow sticky card traps for monitoring adult whiteflies in greenhouse crop production systems and are more compatible with whitefly parasitoids releases for Bemisia nymph control.

  12. Using sieving and pretreatment to separate plastics during end-of-life vehicle recycling.

    Science.gov (United States)

    Stagner, Jacqueline A; Sagan, Barsha; Tam, Edwin Kl

    2013-09-01

    Plastics continue to be a challenge for recovering materials at the end-of-life for vehicles. However, it may be possible to improve the recovery of plastics by exploiting material characteristics, such as shape, or by altering their behavior, such as through temperature changes, in relation to recovery processes and handling. Samples of a 2009 Dodge Challenger front fascia were shredded in a laboratory-scale hammer mill shredder. A 2 × 2 factorial design study was performed to determine the effect of sample shape (flat versus curved) and sample temperature (room temperature versus cryogenic temperature) on the size of the particles exiting from the shredder. It was determined that sample shape does not affect the particle size; however, sample temperature does affect the particle size. At cryogenic temperatures, the distribution of particle sizes is much narrower than at room temperature. Having a more uniform particle size could make recovery of plastic particles, such as these more efficient during the recycling of end-of-life vehicles. Samples of Chrysler minivan headlights were also shredded at room temperature and at cryogenic temperatures. The size of the particles of the two different plastics in the headlights is statistically different both at room temperature and at cryogenic temperature, and the particles are distributed narrowly. The research suggests that incremental changes in end-of-life vehicle processing could be effective in aiding materials recovery.

  13. DMS cyclone separation processes for optimization of plastic wastes recycling and their implications.

    Science.gov (United States)

    Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Torno, Susana

    2011-06-01

    It is demonstrated that substantial reductions in plastics presently disposed of in landfills can be achieved by cyclone density media separation (DMS). In comparison with the size fraction of plastics presently processed by industrial density separations (generally 6.4 to 9.5 mm), cyclone DMS methods are demonstrated to effectively process a substantially greater range of particle sizes (from 0.5 up to 120 mm). The purities of plastic products and recoveries obtained with a single stage separation using a cylindrical cyclone are shown to attain virtually 100% purity and recoveries >99% for high-density fractions and >98% purity and recoveries were obtained for low-density products. Four alternative schemas of multi-stage separations are presented and analyzed as proposed methods to obtain total low- and high-density plastics fraction recoveries while maintaining near 100% purities. The results of preliminary tests of two of these show that the potential for processing product purities and recoveries >99.98% of both density fractions are indicated. A preliminary economic comparison of capital costs of DMS systems suggests cyclone DMS methods to be comparable with other DMS processes even if the high volume capacity for recycling operations of these is not optimized.

  14. Application of automated image analysis to the identification and extraction of recyclable plastic bottles

    Institute of Scientific and Technical Information of China (English)

    Edgar SCAVINO; Dzuraidah Abdul WAHAB; Aini HUSSAIN; Hassan BASRI; Mohd Marzuki MUSTAFA

    2009-01-01

    An experimental machine vision apparatus was used to identify and extract recyclable plastic bottles out of a conveyor belt. Color images were taken with a commercially available Webcam, and the recognition was performed by our homemade software, based on the shape and dimensions of object images. The software was able to manage multiple bottles in a single image and was additionally extended to cases involving touching bottles. The identification was fulfilled by comparing the set of measured features with an existing database and meanwhile integrating various recognition techniques such as minimum distance in the feature space, self-organized maps, and neural networks. The recognition system was tested on a set of 50 different bottles and provided so far an accuracy of about 97% on bottle identification. The extraction of the bottles was performed by means of a pneumatic arm, which was activated according to the plastic type; polyethylene-terephthalate (PET) bottles were left on the conveyor belt, while non-PET boules were extracted. The software was designed to provide the best compromise between reliability and speed for real-time applications in view of the commercialization of the system at existing recycling plants.

  15. Characterisation of recycled mixed plastic solid wastes: Coupon and full-scale investigation.

    Science.gov (United States)

    Bajracharya, Rohan Muni; Manalo, Allan C; Karunasena, Warna; Lau, Kin-Tak

    2016-02-01

    In Australia, the plastic solid waste (PSW) comprises 16% by weight of municipal solid waste but only about one-fourth are recycled. One of the best options to increase the recycling rate of mixed PSW is to convert them into products suitable for construction. However, a comprehensive understanding on the mechanical behaviour of mixed PSW under different loading conditions is important for their widespread use as a construction material. This study focuses on investigating the mechanical behaviour of recycled mixed PSW containing HDPE, LDPE and PP using coupon and full-scale specimens. From coupon test, the strength values were found to be 14.8, 19.8, 20, 5.6MPa in tension, compression, flexure and shear respectively, while the modulus of elasticity are 0.91, 1.03, 0.72GPa in tension, compression and flexure respectively. The coefficient of variance of the measured properties for coupon and fullscale specimens was less than 10% indicating that consistent material properties can be obtained for mixed PSW. More importantly, the strength properties of mixed PSW are comparable to softwood structural timber. The flexural behaviour of full-scale specimens was also predicted using fibre model analysis and finite element modelling. Comparison showed that using coupon specimen's properties, the flexural behaviour of the full-scale specimens can be predicted reliably which can eliminate the costly and time consuming arrangements for full-scale experimental tests.

  16. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP).

    Science.gov (United States)

    Achilias, D S; Roupakias, C; Megalokonomos, P; Lappas, A A; Antonakou, Epsilon V

    2007-11-19

    The recycling of either model polymers or waste products based on low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP) is examined using the dissolution/reprecipitation method, as well as pyrolysis. In the first technique, different solvents/non-solvents were examined at different weight percent amounts and temperatures using as raw material both model polymers and commercial products (packaging film, bags, pipes, food-retail outlets). The recovery of polymer in every case was greater than 90%. FT-IR spectra and tensile mechanical properties of the samples before and after recycling were measured. Furthermore, catalytic pyrolysis was carried out in a laboratory fixed bed reactor with an FCC catalyst using again model polymers and waste products as raw materials. Analysis of the derived gases and oils showed that pyrolysis gave a mainly aliphatic composition consisting of a series of hydrocarbons (alkanes and alkenes), with a great potential to be recycled back into the petrochemical industry as a feedstock for the production of new plastics or refined fuels.

  17. RoHS regulated substances in mixed plastics from waste electrical and electronic equipment.

    Science.gov (United States)

    Wäger, Patrick A; Schluep, Mathias; Müller, Esther; Gloor, Rolf

    2012-01-17

    The disposal and recovery of plastics from waste electrical and electronic equipment (WEEE) are of considerable importance, both from an environmental and an economic perspective. This paper presents the results of a study investigating current concentrations of hazardous substances in mixed plastics from WEEE and their implications for an environmentally sound recovery. The study included 53 sampling campaigns for mixed plastics from WEEE. The samples were analyzed with regard to heavy metals (cadmium, chromium, mercury, and lead) and flame retardants (PentaBDE, OctaBDE, DecaBDE, DecaBB) regulated in the RoHS Directive. Besides these substances, other brominated flame retardants known to occur in electronics (HBCD, TBBPA) as well as the total bromine and phosphorus contents were considered. Results show that no mixed plastics fraction from WEEE is completely free from substances regulated in the RoHS Directive. The lowest number and average concentrations were found in flat screen monitors. The highest concentrations were found in mixed plastics from CRT monitors and TVs. Mixed plastics fractions with high average concentrations of heavy metals originate from the treatment of small household appliances (cadmium), ICT equipment (lead), and consumer equipment (lead). Mixed plastics fractions with high average concentrations of brominated flame retardants mainly originate from the treatment of small household appliances for high temperature applications (DecaBDE), CRT monitors (OctaBDE and DecaBDE) and consumer equipment (DecaBDE), in particular CRT TVs (DecaBDE). To avoid a dissipation of hazardous substances into plastics and the environment, it is recommended that mixed plastics from WEEE are subject to a strict quality management.

  18. Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil.

    Science.gov (United States)

    Hirayama, Denise; Saron, Clodoaldo

    2015-06-01

    Polymeric materials constitute a considerable fraction of waste computer equipment and polymers acrylonitrile-butadiene-styrene and high-impact polystyrene are the main thermoplastic polymeric components found in waste computer equipment. Identification, separation and characterisation of additives present in acrylonitrile-butadiene-styrene and high-impact polystyrene are fundamental procedures to mechanical recycling of these polymers. The aim of this study was to evaluate the methods for identification of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil, as well as their potential for mechanical recycling. The imprecise utilisation of symbols for identification of the polymers and the presence of additives containing toxic elements in determinate computer devices are some of the difficulties found for recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. However, the considerable performance of mechanical properties of the recycled acrylonitrile-butadiene-styrene and high-impact polystyrene when compared with the virgin materials confirms the potential for mechanical recycling of these polymers.

  19. Solid-shape energy fuels from recyclable municipal solid waste and plastics

    Science.gov (United States)

    Gug, Jeongin

    Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have

  20. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China.

    Science.gov (United States)

    Tang, Zhenwu; Zhang, Lianzhen; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2015-12-01

    Plastic wastes are increasingly being recycled in many countries. However, available information on the metals released into the environment during recycling processes is rare. In this study, the contamination features and risks of eight heavy metals in soils and sediments were investigated in Wen'an, a typical plastic recycling area in North China. The surface soils and sediments have suffered from moderate to high metal pollution and in particular, high Cd and Hg pollution. The mean concentrations of Cd and Hg were 0.355 and 0.408 mg kg(-1), respectively, in the soils and 1.53 and 2.10 mg kg(-1), respectively, in the sediments. The findings suggested that there is considerable to high potential ecological risks in more than half of the soils and high potential ecological risk in almost all sediments. Although the health risk levels from exposure to soil metals were acceptable for adults, the non-carcinogenic risks to local children exceeded the acceptable level. Source assessment indicated that heavy metals in soils and sediments were mainly derived from inputs from poorly controlled plastic waste recycling operations in this area. The results suggested that the risks associated with heavy metal pollution from plastic waste recycling should be of great concern.

  1. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops.

    Science.gov (United States)

    He, Zhigui; Li, Guiying; Chen, Jiangyao; Huang, Yong; An, Taicheng; Zhang, Chaosheng

    2015-04-01

    The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were <1.0, whereas the total HI in the PS recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops.

  2. Bromine in plastic consumer products - Evidence for the widespread recycling of electronic waste.

    Science.gov (United States)

    Turner, Andrew; Filella, Montserrat

    2017-12-01

    A range of plastic consumer products and components thereof have been analysed by x-ray fluorescence (XRF) spectrometry in a low density mode for Br as a surrogate for brominated flame retardant (BFR) content. Bromine was detected in about 42% of 267 analyses performed on electronic (and electrical) samples and 18% of 789 analyses performed on non-electronic samples, with respective concentrations ranging from 1.8 to 171,000μgg(-1) and 2.6 to 28,500μgg(-1). Amongst the electronic items, the highest concentrations of Br were encountered in relatively small appliances, many of which predated 2005 (e.g. a fan heater, boiler thermostat and smoke detector, and various rechargers, light bulb collars and printed circuit boards), and usually in association with Sb, a component of antimony oxide flame retardant synergists, and Pb, a heavy metal additive and contaminant. Amongst the non-electronic samples, Br concentrations were highest in items of jewellery, a coffee stirrer, a child's puzzle, a picture frame, and various clothes hangers, Christmas decorations and thermos cup lids, and were often associated with the presence of Sb and Pb. These observations, coupled with the presence of Br at concentrations below those required for flame-retardancy in a wider range of electronic and non-electronic items, are consistent with the widespread recycling of electronic plastic waste. That most Br-contaminated items were black suggests the current and recent demand for black plastics in particular is met, at least partially, through this route. Given many Br-contaminated items would evade the attention of the end-user and recycler, their disposal by conventional municipal means affords a course of BFR entry into the environment and, for food-contact items, a means of exposure to humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Application of electrostatic separation to the recycling of plastic wastes: separation of PVC, PET, and ABS.

    Science.gov (United States)

    Park, Chul-Hyun; Jeon, Ho-Seok; Yu, Hyo-Shin; Han, Oh-Hyung; Park, Jai-Koo

    2008-01-01

    Plastics are widely used in everyday life as a useful material, and thus their consumption is growing at a rate of about 5% per year in Korea. However, the constant generation of plastic wastes and their disposal generates environmental problems along with economic loss. In particular, mixed waste plastics are difficult to recycle because of their inferior characteristics. A laboratory-scale triboelectrostatic separator unit has been designed and assembled for this study. On the basis of the control of electrostatic charge, the separation of three kinds of mixed plastics, polyvinyl chloride (PVC), poly(ethylene terephthalate) (PET), and acrylonitrile-butadiene-styrene (ABS), in a range of similar gravities has been performed through a two-stage separation process. Polypropylene (PP) and high-impact polystyrene (HIPS) were found to be the most effective materials for a tribo-charger in the separation of PVC, PET, and ABS. The charge-to-mass ratio (nC/g) of plastics increased with increasing air velocity in the tribo charger. In the first stage, using the PP cyclone charger, the separation efficiency of particles considerably depended on the air velocity (10 m/s), the relative humidity ( 20 kV), and the splitter position (+2 cm from the center) in the triboelelctrostatic separator unit. At this time, a PVC grade of 99.40% and a recovery of 98.10% have successfully been achieved. In the second stage, using the HIPS cyclone charger, a PET grade of 97.80% and a recovery of 95.12% could be obtained under conditions of 10 m/s, over 25 kV, a central splitter position, and less than 40% relative humidity. In order to obtain 99.9% PVC grade and 99.3% PET grade, their recoveries should be sacrificed by 20.9% and 27%, respectively, with moving the splitter from the center to a (+)6 cm position.

  4. Uranium Recycle by Ion Exchange and Calcination - Summary of Design Development and Equipment Design

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, D.J.; A.J. Duncan

    2005-10-31

    Technical information for the process of recovery of uranium from uranyl nitrate hexahydrate solutions that was developed as part of the Onsite Uranium Recycle (OSUR) project conducted at the Savannah River Site in the 1980's is summarized. The process involves an ion-exchange process to load the uranyl species from solution onto a cation resin that is subsequently dried using a microwave oven, and then calcined using a rotary calciner to produce U{sub 3}O{sub 8} powder. The information in this report was compiled to support critical decisions for new facilities and processes at the Y-12 National Security Complex. The information includes a detailed description of the process and process equipment that were developed for the OSUR project including the technical bases for the materials selection and process conditions. Additional process considerations and recommendations to for a new-design facility are also provided.

  5. Energetic reuse: the use of energy from organic material from urban waste for plastics recycling; Reaproveitamento energetico: uso de energia proveniente de material organico dos residuos urbanos para reciclar plasticos

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Priscila Alves; Rocha, Carlos Roberto [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2008-07-01

    The population growth and the elevation of the purchasing status due to economic development impel the gradual increase of residues produced a year. The discarding of these residues represents a great economic and environmental challenge, mainly because of discarded plastic concentration with no energetic and economic use, a also because of the organic material that, after decomposing, produces methane, one of the most responsible for global heating when in contact with atmosphere with no control. The recycling of plastic residues is a solution to minimize its discard and to guarantee an environmental improvement for saving raw matter, however the high consumption of energy endears the process, making it difficult its economic viability. This takes the search of new alternatives for attainment of low cost energy. In the problem of discard of the organic matter it can be the solution for the recycling of these residues. The decomposition of the organic matter produces fuel (biogas) useful as power plant for the generation of necessary electricity to the recycling process. The present study analyses an alternative to recycle plastic residues, after being consumed, in some places for discarding and using energy from biogas produced in landfills or biodigestors. Initially it was carried through a data-collecting and analysis of the physical composition of the residues, indispensable to the development of the study, which allowed to daily find the average percentage of plastics (12,9%) and organic matter (41,9%) made use by the involved population. On the basis of the data of organic matter the determination in such a way of the potential of generation of the biogas as of the electric power 'recycled' was possible to leave of that they would be discarded without any use. Data-collecting on equipment used in the plastic recycling had been essential for attainment of the necessary average energy demand to the process in such a way not only for soft plastic and

  6. Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling.

    Science.gov (United States)

    Wang, Chongqing; Wang, Hui; Fu, Jiangang; Zhang, Lingling; Luo, Chengcheng; Liu, Younian

    2015-11-01

    Surface modification with potassium permanganate (KMnO4) solution was developed for separation of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) waste plastics. The floatability of PVC decreases with increasing of KMnO4 concentration, treatment time, temperature and stirring rate, while that of PET is unaffected. Fourier transform infrared (FT-IR) analysis confirms that mechanism of surface modification may be due to oxidization reactions occurred on PVC surface. The optimum conditions are KMnO4 concentration 1.25 mM/L, treatment time 50 min, temperature 60°C, stirring rate 300 r/min, frother concentration 17.5 g/L and flotation time 1 min. PVC and PET with different particle sizes were separated efficiently through two-stage flotation. Additionally, after ultrasonic assisted surface modification, separation of PVC and PET with different mass ratios was obtained efficiently through one-stage flotation. The purity and the recovery of the obtained products after flotation separation are up to 99.30% and 99.73%, respectively. A flotation process was designed for flotation separation of PVC and PET plastics combined with surface modification. This study provides technical insights into physical separation of plastic wastes for recycling industry.

  7. The pollution characteristics of odor, volatile organochlorinated compounds and polycyclic aromatic hydrocarbons emitted from plastic waste recycling plants.

    Science.gov (United States)

    Tsai, Chung-Jung; Chen, Mei-Lien; Chang, Keng-Fu; Chang, Fu-Kuei; Mao, I-Fang

    2009-02-01

    Plastic waste treatment trends toward recycling in many countries; however, the melting process in the facilities which adopt material recycling method for treating plastic waste may emit toxicants and cause sensory annoyance. The objectives of this study were to analyze the pollution characteristics of the emissions from the plastic waste recycling plants, particularly in harmful volatile organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs), odor levels and critical odorants. Ten large recycling plants were selected for analysis of odor concentration (OC), volatile organic compounds (VOCs) and PAHs inside and outside the plants using olfactometry, gas chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detector, respectively. The olfactometric results showed that the melting processes used for treating polyethylene/polypropylene (PE/PP) and polyvinyl chloride (PVC) plastic waste significantly produced malodor, and the odor levels at downwind boundaries were 100-229 OC, which all exceeded Taiwan's EPA standard of 50 OC. Toluene, ethylbenzene, 4-methyl-2-pentanone, methyl methacrylate and acrolein accounted for most odors compared to numerous VOCs. Sixteen organochlorinated compounds were measured in the ambient air emitted from the PVC plastic waste recycling plant and total concentrations were 245-553 microg m(-3); most were vinyl chloride, chloroform and trichloroethylene. Concentrations of PAHs inside the PE/PP plant were 8.97-252.16 ng m(-3), in which the maximum level were 20-fold higher than the levels detected from boundaries. Most of these recycling plants simply used filter to treat the melting fumes, and this could not efficiently eliminate the gaseous compounds and malodor. Improved exhaust air pollution control were strongly recommended in these industries.

  8. STUDY ON THE RECYCLING SYSTEM OF WASTE PLASTICS AND MIXED PAPER FROM A LONG-TERM PERSPECTIVE

    Science.gov (United States)

    Fujii, Minoru; Fujita, Tsuyoshi; Chen, Xudong; Ohnishi, Satoshi; Osako, Masahiro; Moriguchi, Yuichi; Yamaguchi, Naohisa

    Plastics and mixed paper in municipal solid waste are valuable resources with high calorific value. However, the recycling cost to utilize them tends to be expensive. In addition, recycling system has to be consistent with the reduce of wastes on which should be put higher-priority to lower carbon emission and save resources in the long term. In this paper, we proposed a recycling system (smart recycling system) which consists of a local center an d existing facilities in arterial industries. In the local center, collected waste plastics and mixed paper from household are processed on the same line into a form suitable for transportation and handling in a facility of arterial in dustry which can utilize those wastes effectively. At the same time, a part of plastics with high quality is processed into a recycled resin in the center. It was suggested that, by utilizing existing facilities in arterial industries which have enough and flexible capacity to accept those wastes, the system can be a robust system even if the amount of wastes generation fluctuates widely. The effect of CO2 reduction and cost by installing the system were calculated and it was estimated that 3.5 million ton of additional annual CO2 reduction could be brought in Tokyo and surrounding three prefectures without co nsiderable increase in cost.

  9. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    waste management organisations and disposal sites were conducted in various cities in the three case study countries. A resource-oriented manual sorting using the resource-recovery scavenging approach (RESA) simulating integration of scavenger's activities in waste sorting was conducted at BTU and Lagos. Major results obtained include: Characterization, quantification and classification of a dry sample of commingled MSW at Cottbus gave major waste fractions in order of decreasing abundance as 23.15% of residue waste, 19.75% of paper and cardboards, 17.80% of plastics, 14.63% of textiles and diapers, 10.06% of food waste and 9.55% of glass. An overall 33.21% of waste sample is compostable for manure, 52.2% usable as feedstock in the PG technology and 99.81% of total sample having a material or energy recovery potential. In Lagos, Nigeria main fractions were 29% of plastics, 36% of residue waste, 17% of soil/sand, 7% of paper with overall 41% usable as feedstock in PG technology, 39% compostable, 3% of recyclable (metal and glass). Sand can be recovered from the soil/sand fraction for construction. Excluding the sand/soil mixture, 83% of the total waste sample has potential for material and energy value. An appropriate technology that applies principles of pyrolysis and gasification to convert non-PVC plastic waste to energy was designed, constructed, tested and optimized with respect to: (i) Successful functioning with conversion of averagely 98.51% of input constituting of 82.78-98.21% of charcoal and 96.72-99.27% of plastic to heat energy (ii) Evaluation of socioeconomic and environmental impacts based on pyrolysis and exhaust gas and ash residue analysis showed absence of VOCs, heavy metals and pollutant organic and inorganic compounds; (iii) Safety and risk assessment to indoor pollution is very low; (iv) Assessment of the WTA and WTP indicated that 94% of respondents in Lagos, Nigeria and Porto Novo, Benin were willing to accept and pay for this technology

  10. Synthesis of readily recyclable biobased plastics by Diels-Alder reaction.

    Science.gov (United States)

    Ishida, Kazuki; Yoshie, Naoko

    2008-10-08

    Readily recyclable biobased plastics were designed and synthesized utilizing the thermally reversible DA reaction. Furyl-telechelic poly(butylene succinate) prepolymers (PBSF(2)) were extended with bis- and tris-maleimide linkers (M(2) and M(3)) by the DA reaction in the bulk state to produce linear and network polymers, respectively. The DA reaction was able to proceed at 25-80 degrees C, at which crystalline domains of PBSF(2) were present. In the linear polymer system, the molecular weight in the reaction equilibrium was dependent on the chain length of the prepolymer, but almost independent of the reaction temperature. The cycle of DA and retro-DA reactions was repeatable with no prepolymer deterioration.

  11. Influence of lubricant oil residual fraction on recycled high density polyethylene properties and plastic packaging reverse logistics proposal

    Directory of Open Access Journals (Sweden)

    Harley Moraes Martins

    2015-10-01

    Full Text Available Abstract To recycle post-consumer HDPE contaminated with waste lubricating oils, companies include prior washing and drying in the process. This consumes large amounts of water and energy, generates significant effluent requiring treatment. This study assesses lubricating oil influence on HDPE properties to evaluate the feasibility of its direct mechanical recycling without washing. The current lubricating oil packaging reverse logistics in Rio de Janeiro municipality is also analyzed. HDPE bottle samples were processed with seven oil contents ranging from 1.6-29.4 (wt%. The results indicated the possibility to reprocess the polymer with oily residue not exceeding 3.2%. At higher levels, the external oil lubricating action affects the plastic matrix processing in the extruder and injection, and the recycled material has a burnt oil odor and free oil on the surface. Small residual oil amounts retain the plastic properties comparable to the washed recycled polymer and exhibited benefits associated with the oil plasticizer action. However, oil presence above 7.7% significantly changes the properties and reduces the elasticity and flexural modulus and the plastic matrix crystallinity.

  12. Prospect of Technology of Recycling Waste Plastics%废旧塑料回收利用技术展望

    Institute of Scientific and Technical Information of China (English)

    董莲枝; 郭健; 靳新慧

    2012-01-01

    In this paper, the authors introduced progress technologies of recycling common waste plastics, and put forward ex- isting problems of waste plastics and cross-linking agent in chemical modification of waste plastics.%介绍了常见的废旧塑料回收利用和回收方式的技术进展,提出在废旧塑料的化学改性中存在的问题及交联剂的选择。

  13. Sustainable Product: Personal Protective Equipment Manufactured with Green Plastic

    Directory of Open Access Journals (Sweden)

    Hamilton Aparecido Boa Vista

    2015-04-01

    Full Text Available This study analyzed the case of manufacturing of Personal Protective Equipment (PPE using as raw material biopolymers produced from ethanol from sugar cane, known as green polypropylene, produced since 2008 by BRASKEM. This article studied the PPE for the employee’s head protection, named helmet by NR 6, which is used in situations of exposure to weather and work scenarios in places where there is risk of impact from falling or projecting objects, burns, electric shock, and solar radiation. The MSA, green helmet manufacturer, made an inventory of greenhouse gas emissions into the atmosphere by comparing the two manufacturing processes of the helmet shell, covering the January 1 to December 31, 2011 period. It concluded that the sustainable helmet (green polyethylene and pigments robs 231g of CO2 from the atmosphere per produced unit, while the helmet’s production with traditional raw materials (polyethylene and petrochemical pigments found that, for each unit produced, 1029g of CO2 are emitted into the atmosphere. The study showed that substitution of raw materials has led to reduction in the impact generated in the helmets’ production.

  14. Auditing an intensive care unit recycling program.

    Science.gov (United States)

    Kubicki, Mark A; McGain, Forbes; O'Shea, Catherine J; Bates, Samantha

    2015-06-01

    The provision of health care has significant direct environmental effects such as energy and water use and waste production, and indirect effects, including manufacturing and transport of drugs and equipment. Recycling of hospital waste is one strategy to reduce waste disposed of as landfill, preserve resources, reduce greenhouse gas emissions, and potentially remain fiscally responsible. We began an intensive care unit recycling program, because a significant proportion of ICU waste was known to be recyclable. To determine the weight and proportion of ICU waste recycled, the proportion of incorrect waste disposal (including infectious waste contamination), the opportunity for further recycling and the financial effects of the recycling program. We weighed all waste and recyclables from an 11-bed ICU in an Australian metropolitan hospital for 7 non-consecutive days. As part of routine care, ICU waste was separated into general, infectious and recycling streams. Recycling streams were paper and cardboard, three plastics streams (polypropylene, mixed plastics and polyvinylchloride [PVC]) and commingled waste (steel, aluminium and some plastics). ICU waste from the waste and recycling bins was sorted into those five recycling streams, general waste and infectious waste. After sorting, the waste was weighed and examined. Recycling was classified as achieved (actual), potential and total. Potential recycling was defined as being acceptable to hospital protocol and local recycling programs. Direct and indirect financial costs, excluding labour, were examined. During the 7-day period, the total ICU waste was 505 kg: general waste, 222 kg (44%); infectious waste, 138 kg (27%); potentially recyclable waste, 145 kg (28%). Of the potentially recyclable waste, 70 kg (49%) was actually recycled (14% of the total ICU waste). In the infectious waste bins, 82% was truly infectious. There was no infectious contamination of the recycling streams. The PVC waste was 37% contaminated

  15. [Investigation and analysis of factors that affect the health of children in the plastic recycling and regeneration processing region].

    Science.gov (United States)

    Wang, Juanli; Li, Liping; Lu, Yaogui

    2014-09-01

    To investigate the main influential factors for the health of children in the plastic waste recovery and recycling area. A cross-sectional survey was performed among children aged 9∼17 years from three natural villages engaged in plastic waste recovery and recycling and four control villages engaged in planting. The health status of children was investigated by random household survey using a face-to-face questionnaire, and the main influential factors were analyzed accordingly. The incidence rates of respiratory symptoms (cough and expectoration, nasal congestion, and sore throat) (78.4%, 69/88) and digestive diseases (gastrointestinal disease and liver disease) (14.8%, 13/88) in the waste processing area were significantly higher than those in the control area (64.0%, 71/111; 6.3%, 7/111) (P plastic can be smelt around the residential area.

  16. Solar detoxification plant for a hazardous plastic bottle recycling plant in El Ejido: feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S. [CIEMAT, Plataforma Solar de Almeria (PSA), Tabernas (Spain); Richter, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)

    1997-12-31

    The removal of persistent organic chemicals from water is a pressing ecological problem. Persistent contaminants, such as pesticides, solvents, detergents and a variety of industrial chemicals, are capable of deep penetration into the soil and reach groundwater due to combination of chemical stability, resistance to biodegradation and sufficient water solubility. The Spanish province of Almeria has experienced an important economical growth during the last 20 years due to the installation of a large number of greenhouses, which benefit from the extremely sunny climate for production of vegetables and fruits. Unfortunately, this development is accompanied by an intensive use of a wide variety of pesticides with the subsequent problem of empty plastic bottles. Unitl now these plaguicide containers have usually been burnt or buried. Since the problem has been growing in the last years, a parallel environmental consciousness has been rising in the region concerning the recycling of these pesticide bottles; this process includes washing of the shredded plastic containers, which gives rise to relatively small quantities of water contaminated with toxic and persistent compounds at a concentration level of some hundred mg/l of total organic carbon content. This appears to be a very promising application for TiO{sub 2} - Solar Photocatalytic Detoxification, which provides an adequate solution as there is no clear alternative way to solve the problem. (orig.)

  17. Recycling of Phenolic Plastics%酚醛塑料的再生利用

    Institute of Scientific and Technical Information of China (English)

    贾有青

    2012-01-01

    Phenolic plastics is a three-dimensional mesh of insoluble cross-linked molecules, with rigidity, hardness, flame retardant, electrical insulation, heat resistance, solvent resistance, creep resistance, and many other advantages, and it has been used in electric apparatus, building materials, sealing ele- ments, tableware, etc. The recycling methods for commonly used waste phenolic plastics are presented, and the existing problems and developing prospect are discussed.%酚醛塑料是一种网状立体交联的分子,具有良好的耐酸性能、力学性能,硬度大,阻燃性、电绝缘性好,耐热、耐溶剂,抗蠕变等优点,应用在电器、建筑材料、密封元件、餐具等。介绍了废酚醛塑料常用再生方法,并对现存的问题和发展前景进行分析。

  18. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.

    Science.gov (United States)

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2012-03-06

    Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally.

  19. CARBON DIOXIDE EMISSION ASSOCIATED WITH THE PRODUCTION OF PLASTICS - A COMPARISON OF PRODUCTION FROM CRUDE OIL AND RECYCLING FOR THE DUTCH CASE

    DEFF Research Database (Denmark)

    Rem, Peter C.; Olsen, Stig Irving; Welink, Jan-Henk

    2009-01-01

    Literature data show that in general, plastics produced through the mechanical recycling route involve less carbon dioxide emission than when produced from crude oil. A review of readily available data shows that road transport of untreated waste plastics account for a significant portion...... of the carbon dioxide emission generated during recycling. Therefore, much carbon dioxide emission can be saved by optimizing the logistics in the recycling of plastics. On the example of polyolefins originating from household packaging waste, this paper attempts to compare two different scenarios of mechanical...... recycling to the production of plastics from crude oil as a reference. The first scenario deals with packaging waste from selective collection, in which data from the current practice of the German DSD system were translated for the Dutch situation. In the second scenario, plastic packaging recovered from...

  20. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1995-07-01

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

  1. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment

    Directory of Open Access Journals (Sweden)

    Kerr Kevin G

    2010-04-01

    Full Text Available Abstract Background In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. Methods A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. Results The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene

  2. Tendências e desafios da reciclagem de embalagens plásticas Trends and challenges in recycling plastic packages

    Directory of Open Access Journals (Sweden)

    Amélia S. F. Santos

    2004-12-01

    Full Text Available No gerenciamento do resíduo sólido urbano (RSU, a reciclagem surge como uma das vias para reduzir os resíduos sólidos aterrados em solo. Os plásticos constituem uma das classes de materiais com menor índice de reciclagem. Neste trabalho, as principais dificuldades encontradas em diversos países para aumentar os índices de reciclagem dos plásticos e as propostas que estão sendo utilizadas para mudar este cenário foram apresentadas. Por último, também foi apresentado um panorama geral sobre as exigências e limitações do retorno do plástico reciclado para alimentos. Este segmento representa todo um nicho de mercado que pode agregar valor e, principalmente, aumentar os índices de reciclagem de modo sustentável desde que haja investimentos em tecnologias inovadoras e economicamente viáveis.In the management of municipal solid waste (MSW, recycling emerges as one of the ways to reduce the solid wastes deposited in landfills. Plastics are one of the classes of materials with the lowest recycling index. The present study deals with the main difficulties encountered in different countries to increase plastics recycling and the procedures adopted to change this scenario. Additionally, the general requirements and the restrictions about the use of recycled plastic for food contact are presented. This application represents a whole market share to be explored, which could add value and increase the recycling indexes in a sustainable way, provided that investments in innovative technologies are made.

  3. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    waste management organisations and disposal sites were conducted in various cities in the three case study countries. A resource-oriented manual sorting using the resource-recovery scavenging approach (RESA) simulating integration of scavenger's activities in waste sorting was conducted at BTU and Lagos. Major results obtained include: Characterization, quantification and classification of a dry sample of commingled MSW at Cottbus gave major waste fractions in order of decreasing abundance as 23.15% of residue waste, 19.75% of paper and cardboards, 17.80% of plastics, 14.63% of textiles and diapers, 10.06% of food waste and 9.55% of glass. An overall 33.21% of waste sample is compostable for manure, 52.2% usable as feedstock in the PG technology and 99.81% of total sample having a material or energy recovery potential. In Lagos, Nigeria main fractions were 29% of plastics, 36% of residue waste, 17% of soil/sand, 7% of paper with overall 41% usable as feedstock in PG technology, 39% compostable, 3% of recyclable (metal and glass). Sand can be recovered from the soil/sand fraction for construction. Excluding the sand/soil mixture, 83% of the total waste sample has potential for material and energy value. An appropriate technology that applies principles of pyrolysis and gasification to convert non-PVC plastic waste to energy was designed, constructed, tested and optimized with respect to: (i) Successful functioning with conversion of averagely 98.51% of input constituting of 82.78-98.21% of charcoal and 96.72-99.27% of plastic to heat energy (ii) Evaluation of socioeconomic and environmental impacts based on pyrolysis and exhaust gas and ash residue analysis showed absence of VOCs, heavy metals and pollutant organic and inorganic compounds; (iii) Safety and risk assessment to indoor pollution is very low; (iv) Assessment of the WTA and WTP indicated that 94% of respondents in Lagos, Nigeria and Porto Novo, Benin were willing to accept and pay for this technology

  4. Chemical Recycling of Pop Bottles: The Synthesis of Dibenzyl Terephthalate from the Plastic Polyethylene Terephthalate

    Science.gov (United States)

    Donahue, Craig J.; Exline, Jennifer A.; Warner, Cynthia

    2003-01-01

    A laboratory procedure involving the chemical recycling of the plastic polyethylene terephthalate (PET or PETE) from 2-L pop bottles is described. A transesterification reaction is employed to depolymerize PET. At atmospheric pressure in refluxing benzyl alcohol in the presence of a catalyst, PET is converted to dibenzyl terephthalate in moderate yields. This procedure models an industrial process that involves the transesterification reaction of PET with methanol at high temperature and pressure, conditions not normally accessible in an undergraduate laboratory, to yield dimethyl terephthalate and ethylene glycol. A second method of preparing dibenzyl terephthalate starting with terephthaloyl chloride is also described. The diester from these two approaches is characterized using melting points, TLC, and IR and NMR spectroscopy. This experiment has been used in a general chemistry sequence that has sections on organic chemistry and polymer chemistry, but is also well suited for an introductory organic chemistry laboratory course or a polymer chemistry laboratory course. This lab experiment is part of a larger effort to develop a general chemistry sequence for engineering students using the theme of chemistry and the automobile. Student results are presented.

  5. Application of a recyclable plastic bulking agent for sewage sludge composting.

    Science.gov (United States)

    Zhou, Hai-Bin; Ma, Chuang; Gao, Ding; Chen, Tong-Bin; Zheng, Guo-Di; Chen, Jun; Pan, Tian-Hao

    2014-01-01

    A recyclable plastic bulking agent (RPBA) that can be screened and reused was developed to improve sludge composting and to reduce costs. Two RPBAs were developed: RPBA35 (35 mm in diameter) and RPBA50 (50mm in diameter). The objective was to study the influence of size and quantity of RPBA on temperature, oxygen content, water removal during sludge composting, and phytotoxicity of the compost. RPBAs of both sizes improved the temperature, oxygen supply, and water removal compared with the treatment with no RPBA, and obtained phytotoxic-free compost. RPBA50 more effectively removed water than RPBA35. Oxygen diffusion rate in the composting pile containing RPBA50 was higher than in the treatment with no RPBA. When the RPBA50: sludge mixture ratio was above 1:1.5, the period over which the temperature exceeded 55 °C was insufficient to meet the harmless treatment requirement. The water evaporation rate was highest at a ratio of 1:2.

  6. Recycling of plastics from stockpiles performed by means of low-pressure injection

    Directory of Open Access Journals (Sweden)

    J. Gintowt

    2010-07-01

    Full Text Available A viability analysis of manufacturing goods out of plastics, from stockpiles and municipal residues, has been carried out. The analysispertains goods in the form of inserts manufactured in light molds of big-sizes, by means of low-pressure injection. The cost analysis of the investment and manufacturing suggests that those goods are not price-competitive, as compared to other ones used in similar situations. Exploitation analysis proves that the goods, used outdoors are easily damaged on the surface by UV exposure, temperature differences of 24-hour cycle, as well as by water and plants. Re-recycling, and especially, the grinding of the product poses another challenge in the future. An analysis of the environmental impact of energy acquisition during the manufacturing of those goods was also carried out. The analysis also pertains the method of identifying the type of raw-material, in the process of segregation that stems from the necessity of a complex content training of staff running waste segregation posts.

  7. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE).

    Science.gov (United States)

    Santella, Chiara; Cafiero, Lorenzo; De Angelis, Doina; La Marca, Floriana; Tuffi, Riccardo; Vecchio Ciprioti, Stefano

    2016-08-01

    Pyrolysis seems a promising route for recycling of heterogeneous, contaminated and additives containing plastics from waste electrical and electronic equipment (WEEE). This study deals with the thermal and catalytic pyrolysis of a synthetic mixture containing real waste plastics, representative of polymers contained in small WEEE. Two zeolite-based catalysts were used at 400°C: HUSY and HZSM-5 with a high silica content, while three different temperatures were adopted for the thermal cracking: 400, 600 and 800°C. The mass balance showed that the oil produced by pyrolysis is always the main product regardless the process conditions selected, with yields ranging from 83% to 93%. A higher yield was obtained when pyrolysis was carried out with HZSM-5 at 400°C and without catalysts, but at 600 and 800°C. Formation of a significant amount of solid residue (about 13%) is observed using HUSY. The oily liquid product of pyrolysis, analysed by GC-MS and GC-FID, as well as by elemental analysis and for energy content, appeared lighter, less viscous and with a higher concentration of monoaromatics under catalytic condition, if compared to the liquid product derived from thermal degradation at the same temperature. HZSM-5 led to the production of a high yield of styrene (17.5%), while HUSY favoured the formation of ethylbenzene (15%). Energy released by combustion of the oil was around 39MJ/kg, thus suggesting the possibility to exploit it as a fuel, if the recovery of chemical compounds could not be realised. Elemental and proximate analysis of char and GC-TCD analysis of the gas were also performed. Finally, it was estimated to what extent these two products, showing a relevant ability to release energy, could fulfil the energy demand requested in pyrolysis.

  8. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    Science.gov (United States)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2017-08-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  9. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities

    Directory of Open Access Journals (Sweden)

    Kristýna Černá

    2017-02-01

    Full Text Available Background: In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Material and Methods: Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Results: Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103–9.0×105 colony-forming units (CFU/m3, while the lowest ones in winter (2.7×103–2.9×105 CFU/m3. The concentration increased from the beginning of the work shift and reached a plateau after 6–7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Conclusions: Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1:1–9

  10. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities.

    Science.gov (United States)

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2017-02-28

    In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103-9.0×105 colony-forming units (CFU)/m3), while the lowest ones in winter (2.7×103-2.9×105 CFU/m3). The concentration increased from the beginning of the work shift and reached a plateau after 6-7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1):1-9.

  11. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential.

    Science.gov (United States)

    Briassoulis, D; Hiskakis, M; Babou, E; Antiohos, S K; Papadi, C

    2012-06-01

    A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European research project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a "very good quality" for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries.

  12. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites.

    Science.gov (United States)

    Sommerhuber, Philipp F; Welling, Johannes; Krause, Andreas

    2015-12-01

    The market share of Wood-Plastic Composites (WPC) is small but expected to grow sharply in Europe. This raises some concerns about suitable wood particles needed in the wood-based panels industry in Europe. Concerns are stimulated by the competition between the promotion of wooden products through the European Bioeconomy Strategy and wood as an energy carrier through the Renewable Energy Directive. Cascade use of resources and valorisation of waste are potential strategies to overcome resource scarcity. Under experimental design conditions, WPC made from post-consumer recycled wood and plastic (HDPE) were compared to WPC made from virgin resources. Wood content in the polymer matrix was raised in two steps from 0% to 30% and 60%. Mechanical and physical properties and colour differences were characterized. The feasibility of using cascaded resources for WPC is discussed. Results indicate the technical and economic feasibility of using recycled HDPE from packaging waste for WPC. Based on technical properties, 30% recycled wood content for WPC is feasible, but economic and political barriers of efficient cascading of biomass need to be overcome.

  13. Separating and Recycling Plastic, Glass, and Gallium from Waste Solar Cell Modules by Nitrogen Pyrolysis and Vacuum Decomposition.

    Science.gov (United States)

    Zhang, Lingen; Xu, Zhenming

    2016-09-06

    Many countries have gained benefits through the solar cells industry due to its high efficiency and nonpolluting power generation associated with solar energy. Accordingly, the market of solar cell modules is expanding rapidly in recent decade. However, how to environmentally friendly and effectively recycle waste solar cell modules is seldom concerned. Based on nitrogen pyrolysis and vacuum decomposition, this work can successfully recycle useful organic components, glass, and gallium from solar cell modules. The results were summarized as follows: (i) nitrogen pyrolysis process can effectively decompose plastic. Organic conversion rate approached 100% in the condition of 773 K, 30 min, and 0.5 L/min N2 flow rate. But, it should be noted that pyrolysis temperature should not exceed 773 K, and harmful products would be increased with the increasing of temperature, such as benzene and its derivatives by GC-MS measurement; (ii) separation principle, products analysis, and optimization of vacuum decomposition were discussed. Gallium can be well recycled under temperature of 1123 K, system pressure of 1 Pa and reaction time of 40 min. This technology is quite significant in accordance with the "Reduce, Reuse, and Recycle Principle" for solid waste, and provides an opportunity for sustainable development of photovoltaic industry.

  14. A Study of Recycling and Reuse of Residual Agricultural Plastic Film in Ningxia%宁夏农田残膜回收与再利用研究

    Institute of Scientific and Technical Information of China (English)

    荣标

    2014-01-01

    In recent years, the residual plastic films in the farmlands are increasing continuously with the increase of film-mulching planting area and resulting in "white pollution" in the farmlands. Research on the recycling and reuse of the farmland plastic films is an effective way to solve the "white pollution" problem. Based on the field research and literature study the basic situation of the farmland plastic film recycling and reuse is better known and the problems currently existing in the work of the plastic film recycling and reuse in Ningxia are summarized. Learning from the advanced experiences from both domestic and abroad, it is suggested that the following measures should be adopted: publicity should be strengthened to create an atmosphere; production should be carried out according to the quality standards; researches and selection should be conducted actively to identify the machine models which are suitable for local area; financial subsidy policy should be strengthened; a scheduling and an examination should be conducted for the work and so on. An long-term effectively oper-ating mechanism and a set of mechanized residual plastic film recycling and re-use equipment and processing technology which would be appropriate for application in Ningxia are made out.%近年来,覆膜种植面积不断增大,农田里残留的各种地膜数量不断增加,造成了农田的“白色污染”。研究农田残膜的回收和再利用是解决“白色污染”问题的有效途径。通过实地调研和文献研究,了解宁夏地区农田残膜回收和再利用工作的基本情况,总结出宁夏农田残膜回收和再利工作中存在的问题。借鉴国内外先进经验,提出:加强宣传,营造氛围;以质量标准规范生产;积极进行研发和选型工作,确定适宜机型;强化财政补贴政策;制定规划、纳入考核项目等农田残膜回收与再利用的方法。并探索确定适宜宁夏应用的残膜机

  15. Efficient conversion of polyamides to ω-hydroxyalkanoic acids: a new method for chemical recycling of waste plastics.

    Science.gov (United States)

    Kamimura, Akio; Ikeda, Kosuke; Suzuki, Shuzo; Kato, Kazunari; Akinari, Yugo; Sugimoto, Tsunemi; Kashiwagi, Kohichi; Kaiso, Kouji; Matsumoto, Hiroshi; Yoshimoto, Makoto

    2014-09-01

    An efficient transformation of polyamides to ω-hydroxy alkanoic acids was achieved. Treatment of nylon-12 with supercritical MeOH in the presence of glycolic acid gave methyl ω-hydroxydodecanoate in 85% yield and the alcohol/alkene selectivity in the product was enhanced to up to 9.5:1. The use of (18)O-enriched acetic acid for the reaction successfully introduced an (18)O atom at the alcoholic OH group in the product. This strategy may provide a new and economical solution for the chemical recycling of waste plastics.

  16. INFLUENCE OF IMPACT MODIFIER AND COUPLING AGENT ON IMPACT STRENGTH OF WOOD FLOUR / RECYCLED PLASTIC COMPOSITES

    OpenAIRE

    Saman GHAHRI; Saeed KAZEMI NAJAFI; Mohebby, Behbood

    2014-01-01

    In this research, the improvement of impact strength of wood flour/recycled polypropylene (PP) composites was investigated. The PP (virgin and recycled polypropylene) and wood flour (WF) were compounded at 50% by weight wood flour loading in a counter-rotating twin-screw extruder in the presence MAPP and two types of impact modifiers (ethylene vinyl acetate (EVA) and ethylene/propylene/diene terpolymer (EPDM)), to produce wood flour-PP composites specimen. The results showed t...

  17. INFLUENCE OF IMPACT MODIFIER AND COUPLING AGENT ON IMPACT STRENGTH OF WOOD FLOUR / RECYCLED PLASTIC COMPOSITES

    Directory of Open Access Journals (Sweden)

    Saman GHAHRI

    2014-03-01

    Full Text Available In this research, the improvement of impact strength of wood flour/recycled polypropylene (PP composites was investigated. The PP (virgin and recycled polypropylene and wood flour (WF were compounded at 50% by weight wood flour loading in a counter-rotating twin-screw extruder in the presence MAPP and two types of impact modifiers (ethylene vinyl acetate (EVA and ethylene/propylene/diene terpolymer (EPDM, to produce wood flour-PP composites specimen. The results showed that the composites containing recycled PP exhibited significantly lower impact strength values than those of containing virgin PP. The addition of MAPP, EVA and EPDM in the specimens increased their impact strength. In the presence of MAPP, higher increase in impact strength of the recycled PP/WF composites was observed due to impact modifiers. Both impact modifiers increased the impact strength of the PP/WF composites but the addition of EVA gave the greatest improvements in impact strength. Although the addition of impact modifiers and MAPP increased the impact strength of composites containing recycled PP, such values were still significantly lower than those of containing virgin PP (not modified with MAPP or impact modifier. The use of impact modifiers decreased the flexural properties of the recycled PP/WF composites

  18. 我国废塑料回收和进口现状浅析%Discussion on recycling and import of waste plastic in China

    Institute of Scientific and Technical Information of China (English)

    胡守仁

    2012-01-01

    Waste plastic is one of the main recyclable resources in China, with a large amount and variety from recycling and import. This paper demonstrated the kinds, quantity and location of waste plastics from recycling and import, as well as the recycling sources and methods.%废塑料是我国四大再生资源品种之一.废塑料国内回收和进口数量大、种类多。对我国废塑料国内产生和进口的种类、数量和地域,以及国内废塑料的回收渠道和方式进行了阐述。

  19. Recycling and recovery of post-consumer plastic solid waste in a European context

    OpenAIRE

    Dewil Raf; Baeyens Jan; Brems Anke

    2012-01-01

    The disposal of waste plastics has become a major worldwide environmental problem. The USA, Europe and Japan generate annually about 50 million tons of post-consumer plastic waste, previously landfilled, generally considered as a non-sustainable and environmentally questionable option. Landfill sites and their capacity are, moreover, decreasing rapidly, and legislation is stringent. Several European Directives and US legislation concern plastic wastes and the required management. They a...

  20. The impact of policy interactions on the recycling of plastic packaging waste in Germany

    OpenAIRE

    Gandenberger, Carsten; Orzanna, Robert; Klingenfuß, Sara; Sartorius, Christian

    2014-01-01

    Due to the environmental challenges associated with the strong growth of plastic waste worldwide, the EU Commission recently published a green paper on a European Strategy on Plastic Waste in the Environment (COM (2013), 123 final), which highlights the challenges and opportunities that arise from improving the management of plastic waste in the EU. The European Waste Directive (2008/98/EC) which was transposed into German law through the Kreislaufwirtschaftsgesetz (KrWG) established the so-c...

  1. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.

    Science.gov (United States)

    Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M

    2015-05-01

    Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.

  2. 废旧酚醛塑料回收和再利用方法研究%Study on Recycling Method of Waste Phenolic Plastics

    Institute of Scientific and Technical Information of China (English)

    何平; 吴仲伟; 潘绍波; 陈从升; 李辉

    2013-01-01

    介绍目前废旧塑料回收再利用技术的主要方法和不足之处,提出基于机械物理法的热固性塑料回收再利用方法,确定热固性塑料回收再利用的工艺流程。通过对热固性酚醛塑料回收再生试验,验证了机械物理法回收再生的可行性,最后对再生试样进行力学性能测试。结果表明,回收再生酚醛/聚丙烯共混料的拉伸强度与弯曲强度分别达到6 MPa和13 MPa以上,能满足回收再利用的要求。%Main methods and shortcomings about recycling technology of waste plastics were introduced,and the recycling mechanism of the waste thermosetting plastics based on mechanical and physical method was presented. Accordingly,the recycling process of waste thermosetting plastics was determined. By means of recycling and regeneration experiment on thermosetting phenolic plastics,the feasibility of recycling and regeneration based on mechanical and physical method was verified.At last,the mechanical properties of regeneration specimens were tested. The results show that tensile strength and bending strength of recycling phenolic/polypropylene plastics can reach 6 MPa and 13 MPa respectively,and it meets the recycling requirements.

  3. Managing plastic waste in urban Kenya: niche innovations in production and recycling

    NARCIS (Netherlands)

    Ombis, L.O.

    2012-01-01

    The problems with plastic waste in Kenyan cities are increasing to alarming levels. Especially disposable packaging made of very light plastic materials continues to burden the environment as well as compromise management capacities for waste by city authorities. In light of this, major cities of

  4. Managing plastic waste in urban Kenya: niche innovations in production and recycling

    NARCIS (Netherlands)

    Ombis, L.O.

    2012-01-01

    The problems with plastic waste in Kenyan cities are increasing to alarming levels. Especially disposable packaging made of very light plastic materials continues to burden the environment as well as compromise management capacities for waste by city authorities. In light of this, major cities of Ke

  5. Potential environmental benefits of improving recycling of polyolefines – LCA of Magnetic density separation (MDS) developed in the EU FP7 funded project W2Plastic

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Bonou, Alexandra

    2012-01-01

    The core of the EU FP7 funded project W2Plastic is development of a magnetic density separation (MDS) of polyolefines in order to improve the sorting efficiency of these polymer types in different waste fractions. As part of the project a life cycle assessment is performed in order to firstly...... identify eco-design criteria for the development and secondly to document the potential environmental improvement of polyolefin recycling using the MDS technology. A preliminary study focusing solely on the carbon footprint benefits of recycling plastic waste compared to virgin production of polymers...

  6. Electrostatic separator for micronized mixtures of metals and plastics originating from waste electric and electronic equipment

    Science.gov (United States)

    Messal, Sara; Corondan, Razvan; Chetan, Ionut; Ouiddir, Rabah; Medles, Karim; Dascalescu, Lucian

    2015-10-01

    In spite of their extensive use for processing mixtures of granules exceeding 1 mm in size, very few industrial electrostatic separators are capable of handling micronized metals and plastics originating from waste electric and electronic equipment. The aim of the present work is to validate the possibility of using a novel belt-type electrostatic separator for the selective sorting of such particulate mixtures, the dimensions of which are in the order of 0.1 mm. In this type of separator, the metal particles get charged by electrostatic induction in contact with the grounded metal belt electrode, while the plastics remain uncharged in the electric field and are collected separately. The experiments are performed with 2-g samples of a mixture composed in equal proportions (50% - 50%) of Aluminium and Acrylonitrile Butadiene Styrene (ABS) particles of average diameter ranging between 125 μm and 250 μm. They enabled the evaluation of the effects and the interaction of two control variables of the process: the angle of inclination of the roll-type electrode and the high voltage applied to it.

  7. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stenvall, Erik, E-mail: erik.stenvall@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, 41296 Göteborg (Sweden); Tostar, Sandra [Department of Industrial Materials Recycling, Chalmers University of Technology, 41296 Göteborg (Sweden); Boldizar, Antal [Department of Materials and Manufacturing Technology, Chalmers University of Technology, 41296 Göteborg (Sweden); Foreman, Mark R.StJ. [Department of Industrial Materials Recycling, Chalmers University of Technology, 41296 Göteborg (Sweden); Möller, Kenneth [Chemistry and Materials Technology, SP, 50115 Borås (Sweden)

    2013-04-15

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile–butadiene–styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.

  8. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE).

    Science.gov (United States)

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R StJ; Möller, Kenneth

    2013-04-01

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile-butadiene-styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Polybrominated diphenyl ethers in plastic products, indoor dust, sediment and fish from informal e-waste recycling sites in Vietnam: a comprehensive assessment of contamination, accumulation pattern, emissions, and human exposure.

    Science.gov (United States)

    Anh, Hoang Quoc; Nam, Vu Duc; Tri, Tran Manh; Ha, Nguyen Manh; Ngoc, Nguyen Thuy; Mai, Pham Thi Ngoc; Anh, Duong Hong; Minh, Nguyen Hung; Tuan, Nguyen Anh; Minh, Tu Binh

    2016-08-19

    Residue concentrations of polybrominated diphenyl ethers (PBDEs) in different kinds of samples including consumer products, indoor dust, sediment and fish collected from two e-waste recycling sites, and some industrial, urban and suburban areas in Vietnam were determined to provide a comprehensive assessment of the contamination levels, accumulation pattern, emission potential and human exposure through dust ingestion and fish consumption. There was a large variation of PBDE levels in plastic parts of obsolete electronic equipment (from 1730 to 97,300 ng/g), which is a common result observed in consumer plastic products reported elsewhere. PBDE levels in indoor dust samples collected from e-waste recycling sites ranged from 250 to 8740 ng/g, which were markedly higher than those in industrial areas and household offices. Emission rate of PBDEs from plastic parts of disposed electronic equipment to dust was estimated to be in a range from 3.4 × 10(-7) to 1.2 × 10(-5) (year(-1)) for total PBDEs and from 2.9 × 10(-7) to 7.2 × 10(-6) (year(-1)) for BDE-209. Some fish species collected from ponds in e-waste recycling villages contained elevated levels of PBDEs, especially BDE-209, which were markedly higher than those in fish previously reported. Overall, levels and patterns of PBDE accumulation in different kinds of samples suggest significant emission from e-waste sites and that these areas are potential sources of PBDE contamination. Intakes of PBDEs via fish consumption were generally higher than those estimated through dust ingestion. Intake of BDE-99 and BDE-209 through dust ingestion contributes a large proportion due to higher concentrations in dust and fish. Body weight normalized daily intake through dust ingestion estimated for the e-waste recycling sites (0.10-3.46 ng/day/kg body wt.) were in a high range as compared to those reported in other countries. Our results highlight the potential releases of PBDEs from informal recycling activities

  10. Effect of Recycled Plastics on Cotton Stalk/Plastic Composite Properties%废弃塑料对棉秆/塑料复合板材性能的影响

    Institute of Scientific and Technical Information of China (English)

    蔺焘; 郭文静; 常亮; 高黎; 王正

    2011-01-01

    Recycled plastic with different particle size and impurity content were compounded with cotton stalk particles, after which the mixture was used to make cotton stalk/plastic composites through hot pressing. The effects of size and impurity of the recycled plastic on the composite properties were evaluated. The results show that; 1) the physical and mechanical properties of composites made with smaller plastic sizes perform better than those made with larger plastic sizes; 2) cleaning the recycled plastic with water is more effective for improving the composite properties than increasing the waste plastic content.%采用不同塑料纯度和形态的废弃聚乙烯塑料与棉秆刨花复合,制备棉秆/塑料复合板材,研究废弃塑料的形态和塑料纯度对复合板材性能的影响.结果表明:1)采用重均粒径较小的废弃塑料与棉秆复合时,板材的性能较优;2)相对于增加复合板材中废弃塑料的比例,对废弃塑料进行彻底的清洗,是提高复合板材性能的有效手段.

  11. Investigation on end-of-life electric and electronic equipment recycling and disposal system in China: legislation, education and dissemination

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming

    2005-01-01

    The Chinese obsolete electric and electronic equipments (EEE) recycling and disposal system on the point of view of legislation, education and dissemination were discussed, because of the highly increasing volume of electric and electronic products and that of its obsoletes today in China. The legislations and responsibilities of go vernment, industry and consumer were discussed based on the balance of benefit and responsibility depending on the realization of their benefits in the whole life cycle of products and its status in the whole value chain. Not only the legislation and establishment of the so called "compulsory discarding system" will be a possible and effective solution to the difficulty of the obsolete collection and recycling for obsolete electric and electronic reclaiming industry, but also the education and dissemination. Education and dissemination were discussed as an important role which will emphasize the adjusting of policy and law on the development of electric and electronic industry production and its reclaiming. The education of stockholders' environmental responsibility and the advocating of responsibility sharing should be implement for industry and consumer. Chinese EEE industry should emphasize the control of natural source, and should implement the environmental benign design in their production, such as design for dismantling, no dismantling, thermal treatment and green design. The perspectives for the way to advocate a harmonic society for Chinese people were described.

  12. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    OpenAIRE

    L. Shen

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable plastics waste, and (iii) greenhouse gas emissions caused by combusting fossil fuels. To tackle these sustainability challenges, two strategies have been proposed. First, use bio-based polymers to repl...

  13. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    OpenAIRE

    Shen, L.

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable plastics waste, and (iii) greenhouse gas emissions caused by combusting fossil fuels. To tackle these sustainability challenges, two strategies have been proposed. First, use bio-based polymers to repl...

  14. 食品用塑料制品掺杂回收塑料鉴别方法的研究%Research on the Identification Methods Adopting Recycled Plastics in Food-related Plastic Products

    Institute of Scientific and Technical Information of China (English)

    刘洪斌; 王磊

    2012-01-01

    To demonstrate the feasibility of the identification methods adopting recycled plastics in food-related plastic products.To adopt the test methods of IR、NMR、TG、DSC to identify whether the food-related plastic products adopt recycled plastics and provide technical support to the risk assessment of public food safety.%论证了鉴别食品用塑料制品掺杂回收塑料方法的可行性。采用IR、NMR、TG、DSC等手段进行检测,用于鉴别食品用塑料制品是否掺杂回收塑料,从而为食品公共安全风险评估提供技术支撑。

  15. The effect of recycled plastics and cooking oil on coke quality.

    Science.gov (United States)

    Lange, Liséte Celina; Ferreira, Alison Frederico Medeiros

    2017-03-01

    This study assessed the effects of adding plastics and waste vegetable oil on the quality of coke in the coking process, on a pilot scale. A typical composition of the main plastics found in municipal solid waste was prepared using 33% HDPE, 5% LDPE, 10% PP, 21% PET, 24.8% PS, 5.2% PVC, 1% cellulose and also a 0.5% waste vegetable oil was added. The wastes were added to the coal blends in the proportions of 1%, 2% and 3% for plastics and 0.5% for vegetable oil. Two types of experiments were performed. The first was carried out in a hearth heating furnace (HHF) at temperatures of up to 900°C for a 7 h period. The second was a box test, which consists of heating coal blends in 18L cans using a pilot coking oven, for approximately 20 h at temperatures between 1050 and 1100°C. The quality parameters used for the assessment were the CSR (coke strength after reaction), CRI (coke reactivity index), ash, volatile matter and sulfur in order to identify the effect of plastic and vegetable oil on coke quality. Results for CSR in the HHF averaged 52.3%, and 56.63% in box test trials. The CRI results ranged from 26.6% to 35.7%. Among the different percentages of plastics used, 3% plastic blends provided the most stable CSR results. The industrial furnaces work at temperatures between 1100 and 1350°C and time coking 21-24h, compared to the test conditions achieved in the HHF and pilot furnace with box test. It was concluded that the results of CSR and CRI are consistent with the tests confirming the feasibility of using plastic in the steelmaking process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The environment and product development: a study of the plastic recycling

    Directory of Open Access Journals (Sweden)

    Leandro José Morilhas

    2008-09-01

    Full Text Available In this work, it is aimed to identify how the companies have been developing products through the use of recycled materials. It was veriied which challenges the manufacturers face in their productive chain and how the organizations use such products as a strategic tool. The information presented in this article was obtained through a ield research that made use of a questionnaire sent to companies located in the metropolitan area of São Paulo city and through websites of companies of the area. The results of this study show that the process of product development should improve in an accelerated way in order to assist the desires and needs of the market. In this context, it is up to the companies of the area to update themselves by recycling their products, as well as their processes and management.

  17. A new technology for automatic identification and sorting of plastics for recycling.

    Science.gov (United States)

    Ahmad, S R

    2004-10-01

    A new technology for automatic sorting of plastics, based upon optical identification of fluorescence signatures of dyes, incorporated in such materials in trace concentrations prior to product manufacturing, is described. Three commercial tracers were selected primarily on the basis of their good absorbency in the 310-370 nm spectral band and their identifiable narrow-band fluorescence signatures in the visible band of the spectrum when present in binary combinations. This absorption band was selected because of the availability of strong emission lines in this band from a commercial Hg-arc lamp and high fluorescence quantum yields of the tracers at this excitation wavelength band. The plastics chosen for tracing and identification are HDPE, LDPE, PP, EVA, PVC and PET and the tracers were compatible and chemically non-reactive with the host matrices and did not affect the transparency of the plastics. The design of a monochromatic and collimated excitation source, the sensor system are described and their performances in identifying and sorting plastics doped with tracers at a few parts per million concentration levels are evaluated. In an industrial sorting system, the sensor was able to sort 300 mm long plastic bottles at a conveyor belt speed of 3.5 m.sec(-1) with a sorting purity of -95%. The limitation was imposed due to mechanical singulation irregularities at high speed and the limited processing speed of the computer used.

  18. Increased urinary 8-hydroxy-2'-deoxyguanosine levels in workers exposed to di-(2-ethylhexyl) phthalate in a waste plastic recycling site in China.

    Science.gov (United States)

    Wang, Qian; Wang, Li; Chen, Xi; Rao, Kai Min; Lu, Shao You; Ma, Sheng Tao; Jiang, Pu; Zheng, Dan; Xu, Shun Qing; Zheng, Hong Yan; Wang, Jian Shu; Yu, Zhi Qiang; Zhang, Rong; Tao, Yong; Yuan, Jing

    2011-07-01

    Di-(2-ethylhexyl) phthalate (DEHP) is a common plasticizer used in industrial and diverse consumer products. Animal studies indicate DEHP caused developmental, reproductive, and hepatic toxicities. However, human studies of the potential effects of DEHP are limited. The exposed site with a history of over 20 years of waste plastic recycling was located in Hunan Province, China. The reference site without known DEHP pollution source was about 50 km far away from the exposed site. In this study, 181 workers working in plastic waste recycling and 160 gender-age matched farmers were recruited. DEHP concentrations in water and cultivated soil samples, serum thyroid-stimulating hormone, malondialdehyde (MDA), superoxide dismutase (SOD), urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and micronuclei frequency in human capillary blood lymphocytes were analyzed. Mean levels of DEHP were greater in environment at the recycling site than at reference site (industry wastewater for the exposed: 42.43 μg/l; well water: 14.20 vs. 0.79 μg/l, pond water: 135.68 vs. 0.37 μg/l, cultivated soil: 13.07 vs. 0.81 mg/kg, p waste plastic recycling was an independent risk factor for the increased urinary 8-OHdG levels in the male workers (p < 0.01). The occupational DEHP exposure might contribute to oxidative deoxyribonucleic acid damage in the male workers.

  19. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2014-11-15

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  20. Recycling of Plastic Packaging Wastes%塑料包装废弃物的再生利用

    Institute of Scientific and Technical Information of China (English)

    贺全国; 聂立波

    2011-01-01

    塑料包装在整个包装产业中占有极大比例,其废弃物的处理给国际社会减碳减排发展带来了巨大挑战。结合国内外对塑料包装废弃物的管理现状,分析了塑料包装废弃物的来源、分类和化学组成,阐述了国外塑料包装废弃物的回收分离技术和设备及国内相应研究现状;对塑料包装废弃物的再生利用途径进行深入解析,较全面地阐述了塑料包装废弃物再生利用的原理与研究现状;提出了塑料包装废弃物再生利用的基本策略建议。%The plastic packaging accounts for a very great proportion in the packaging industry,and the plastic packaging wastes(PPW) disposal brings great confrontation and challenge for global carbon emission reduction development.Based on the international practical PPW management,analyzes the source,classification and chemical composition for PPW and expounds the recycling separation technology and apparatus at aboard and the domestic research status;Resolves various PPW disposal approaches and elaborates comprehensively PPW regeneration principles and practices;Presents strategic suggestions on recycling and utilization of PPW.

  1. 废旧蜜胺塑料对聚丙烯的改性作用%Effects of Recycled Melamine-formaldehyde Plastic on Properties of Polypropylene

    Institute of Scientific and Technical Information of China (English)

    杨明; 李林楷; 罗海平

    2012-01-01

    The modification process of recycled melamine-formaldehyde(MF) plastic on polypropylene(PP) has been studied,and the optimal compounding parameters were obtained by twin extruding system in the paper.The results showed that with increasing of recycled MF plastic in PP,the tensile strength,elongation at break,molding shrinkage and impact strength decreased,the modulus,heat distortion temperature and melt flow rate increased,which indicates that the addition of recycled MF plastic can improve rigidity,heat resistance and flowability of PP.More importantly,the oxygen index of PP was increased with the addition of recycled MF plastic,which indicates that recycled MF plastic can improve the flame-retardant property of PP.%文章研究了废旧蜜胺塑料对聚丙烯的改性作用及效果,获得了较佳的制备配方和工艺,结果表明,随着废旧蜜胺塑料在体系中的含量增大,材料的拉伸强度、断裂伸长率、成型收缩率、冲击强度下降,但材料的刚性、热变形温度增大,熔体流动速率在废旧蜜胺含量20 wt%之前增大。重要的是,随着废旧密胺塑料添加量的增大,材料的氧指数增加,说明废旧密胺塑料的加入可以提高聚丙烯的刚性、尺寸稳定性、加工流动性和阻燃性。

  2. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    NARCIS (Netherlands)

    Shen, L.|info:eu-repo/dai/nl/310872022

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable

  3. Energy and raw material saving through recycling of plastics materials extracted from urban waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Michaux, J.

    The study is divided into 3 parts: Technical feasibility study, economic feasibility study, study of a factory handling 2,400 tons/year of plastics waste, and technico-economic feasibility study and market research, with an analysis of energy savings.

  4. Bio-based and recycled polymers for cleaner production : an assessment of plastics and fibres

    NARCIS (Netherlands)

    Shen, L.

    2011-01-01

    Today, almost all man-made plastics and fibres are produced from synthetic polymers. Synthetic polymers, made from petroleum which took millions of years to form, have three sustainability challenges: (i) the limited fossil fuel resources, (ii) the environmental impacts caused by non-degradable plas

  5. Discussion on the Harm of Plastic Film and Its Recycling Measures%地膜危害及其回收利用措施探讨

    Institute of Scientific and Technical Information of China (English)

    马永波

    2015-01-01

    介绍台安县的地膜使用及回收现状,探讨残留地膜对土壤理化性质、作物生长发育及环境的不利影响,根据台安县的生产实际,论述促进残膜回收的主要措施,为确保农业高产稳产提供有益借鉴。%The article introduces the application of plastic film and its recycling status in Tai'an county, discusses the harmful influence of residual plastic film to soil properties, crops growth and environment, and expounds main measures of promoting the recycling of residual plastic film based on the practice in Tai’an county, provides a beneficial reference for assuring stable and high yield for agri-culture.

  6. Improving the quality of polymer-coated urea with recycled plastic, proper additives, and large tablets.

    Science.gov (United States)

    Yang, Yue-Chao; Zhang, Min; Li, Yuncong; Fan, Xiao-Hui; Geng, Yu-Qing

    2012-11-14

    Polymer-coated urea (PCU) has great potential for increasing crop production and enhancing nitrogen (N) fertilizer use efficiency, benefiting the ecosystem. However, current PCUs are used only in a limited market, and the main obstacle to the wider use of PCUs is high cost compared to that of conventional N fertilizers. In this study, the low cost PCU and large tablet polymer-coated urea (LTPCU) were prepared by using recycling polystyrene foam and various sealants as the coating materials. The structural and chemical characteristics of the coating shells of the coated fertilizers were examined. The N release characteristics of coated fertilizers were determined in 25 °C water under laboratory conditions. The relationship between the N release longevity and the amount of coating material and the percentage of different sealants were evaluated. The results indicated that recycling polystyrene foam was the ideal coating material of the controlled release fertilizer. The polyurethane that was synthesized by the reaction of castor oil and isocyanate was better than the wax as the additive to delay the N release rate of coated urea. The coating material used for LTPCU was 70-80% less than those used for commercial PCUs under the same N release longevity. The cost of the recycling polystyrene foam used for coating one ton of pure N of the LTPCU was about one-seventh to one-eighth of the cost of the traditional polymer used for the commercial PCU. The experimental data showed that the LTPCU with good controlled-release capacities, being economical and eco-friendly, could be promising for wide use in agriculture and horticulture.

  7. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    DOE recycling contract at the Hanford site and a central group to control the contract. 0 Using a BOA or MTS contract as a way to get proceeds from recycling back to site facilities to provide incentives for recycling. . Upgrading tracking mechanisms to track and recycle construction waste which is presently buried in onsite pits. . Establishing contract performance measures which hold each project accountable for specific waste reduction goals. * Recycling and reusing any material or equipment possible as buildings are dismantled.

  8. A new technology proposed to recycle waste plastics into hydrocarbon fuel in USA

    Directory of Open Access Journals (Sweden)

    Moinuddin Sarker, Mohammad Mamunor Rashid, Mohammed Molla, Muhammad Sadikur Rahman

    2012-01-01

    Full Text Available Energy crisis and environmental degradation by polymer wastes have been imperative to find and propose technologies for recovery of raw materials and energy from non-conventional sources like plastic wastes. A variety of methods and processes connected with global or national policies have been proposed worldwide. A new type of steel reactor is proposed for conversion of waste plastics to fuel like mixture of hydrocarbons. The results of the thermal degradation of waste plastics in the laboratory scale set-up based on this process in the paper. The melting and thermal cracking processes were carried out in a single batch process at the temperature range is 200–420 ºC. The final product consisted of light gas 6.3 % and liquid product 90%. 3.7% solid black products were produced. The light, ‘‘gas” fraction of the hydrocarbons mixture (C1–C4 and rest of liquid fuel made over 90% of the liquid product. It may be used for fuel production refinery or electricity generation.

  9. Research on Manufacturing the 1 MSF-2 Plastic Flim Recycling Machine%1 MSF-2型立秆式地膜回收机的研制

    Institute of Scientific and Technical Information of China (English)

    任萍; 胡斌; 罗昕

    2016-01-01

    针对秋后棉田的地膜回收率低、适应性差、人工卸膜效率低及强度大等技术问题,在整体仿形搂膜机基础上,设计研制了一种具有单体动态仿形搂膜、自动卸膜、起边膜和株间断膜等功能的1 MSF-2立秆式地膜回收机。介绍了其总体结构和工作原理,分析确定了该机悬挂机架、双立轴四杆仿形机构、双排弹齿搂膜机构、液力式转轴卸膜机构、仿形护禾板,以及起膜边机构等关键部件的结构及参数,并进行了田间性能试验。试验结果表明:该机在平均作业速度为7.4km/h的情况下,平均地膜回收率为88.1%,平均生产效率可达到5hm2/h,各指标均达到设计要求。该机能实现单行独立仿形残膜回收作业,适应机采棉种植模式下秋后棉田立秆回收残膜的农艺技术要求。%To solve the technical problem of low plastic film recycling rate, poor adaptability, low efficiency and big in-tensity artificial unloading residual plastic film on residual plastic film in cotton field after the autumn harvest, a 1MSF-2 vertical stem type of plastic film recycling machine with the functions of separate individual imitation hugging up the plastic film, automatic unloading the plastic film, stirring up the edge of plastic film and cutting off between plants has been developed.Introducing the overall structure and working principle, analysis to determine the structure and parame-ters of key components of the suspension frame, the double vertical shaft four-link imitation institutions, the double elas-tic tooth recycling institutions, the hydraulic type turned shaft unloading plastic film institutions, imitation protected plants plates, the recycling edge of plastic film institutions.The field experiment was carried out, the results show that the when the machine with the average operating speed is 7.4 km/h.the plastic film recycling rate was 88.1%, the produc-tion efficiency could

  10. 废旧聚苯乙烯塑料再生再利用技术现状%Research on Techniques of Waste Polystyrene Plastics Recycling and Reusing

    Institute of Scientific and Technical Information of China (English)

    邓亮; 徐海萍; 谢华清; 李志杰

    2014-01-01

    主要介绍了废旧聚苯乙烯塑料的回收再生、再利用技术现状,涵盖了在涂料、胶黏剂、化工产品、建筑材料等领域的再生应用,重点讨论了熔融法再生和用于生产仿木建材的关键技术。通过分析和比较不同的再生再利用工艺技术,期望对未来废旧聚苯乙烯塑料资源化的发展方向有一定的指导意义。%The recycling and reusing techniques of waste polystyrene plastic, including the polystyrene foamed plastics, were intro-duced in this paper. It included the current situation of making coating, adhesive, chemistry products, building materials and pyrolytic technique, and mainly discussed the key techniques of melt extrusion and making wood-like plastics. Especially, the performance of different techniques of recycling and reusing process were also analyzed and compared. And the future development direction of waste polystyrene plastics recycling had been looked to.

  11. Research on the recycling industry development model for typical exterior plastic components of end-of-life passenger vehicle based on the SWOT method.

    Science.gov (United States)

    Zhang, Hongshen; Chen, Ming

    2013-11-01

    In-depth studies on the recycling of typical automotive exterior plastic parts are significant and beneficial for environmental protection, energy conservation, and sustainable development of China. In the current study, several methods were used to analyze the recycling industry model for typical exterior parts of passenger vehicles in China. The strengths, weaknesses, opportunities, and challenges of the current recycling industry for typical exterior parts of passenger vehicles were analyzed comprehensively based on the SWOT method. The internal factor evaluation matrix and external factor evaluation matrix were used to evaluate the internal and external factors of the recycling industry. The recycling industry was found to respond well to all the factors and it was found to face good developing opportunities. Then, the cross-link strategies analysis for the typical exterior parts of the passenger car industry of China was conducted based on the SWOT analysis strategies and established SWOT matrix. Finally, based on the aforementioned research, the recycling industry model led by automobile manufacturers was promoted.

  12. Smart Natural Fiber Reinforced Plastic (NFRP) Composites Based On Recycled Polypropylene in The Presence Kaolin

    Science.gov (United States)

    Suharty, N. S.; Ismail, H.; Diharjo, K.; Handayani, D. S.; Lestari, W. A.

    2017-07-01

    Composites contain double filler material which act as reinforcement and flame retardants of recycled polypropylene (rPP)/kaolin(Kao)/palm oil empty bunch fiber (PEBF) have been succesfully prepared. The composites were synthesized through reactively solution method, using coupling agent PP-g-AA and compatibilizer DVB. The effect of double filler [Kao/PEBF] were investigated flexural strength (FS), inflammability, and morphology. Mechanical testing result in accordance to ASTM D790, the FS of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was 48% higher than that of rPP matrix. Moreover, flexural modulus (FM) was significantly improved by 56% as compared to that of rPP matrix. The scanning electron images (SEM) shown good dispersion of [Ka/PEBF] and good filler-matrix interaction. The inflammability testing result which is tested using ASTM D635, showed that the flame resistance of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was improve by increasing of time to ignition (TTI) about 857% and burning rate (BR) decreasing to 66% compared to the raw material rPP matrix. In the same time, the addition of 20% (w/w) PEBF as a second filler to form rPP/DVB/PP-g-AA/Kao+ZB/PEBF composites (F5) is able to increase: the FS by 17.5%, the FM by 19%, the TTI by 7.6% and the BR by 3.7% compared to the composite without PEBF (F2).

  13. Does open-air exposure to volatile organic compounds near a plastic recycling factory cause health effects?

    Science.gov (United States)

    Yorifuji, Takashi; Noguchi, Miyuki; Tsuda, Toshihide; Suzuki, Etsuji; Takao, Soshi; Kashima, Saori; Yanagisawa, Yukio

    2012-01-01

    After a plastic reprocessing factory began to operate in August 2004, the residents around the factory in Neyagawa, Osaka, Japan, began to complain of symptoms. Therefore, we conducted an exposure assessment and a population-based epidemiological study in 2006. To assess exposure, volatile organic compounds (VOCs) and total VOCs were measured at two locations in the vicinity of the factory. In the population-based study, a total of 3,950 residents were targeted. A self-administered questionnaire was used to collect information about subjects' mucocutaneous or respiratory symptoms. Using logistic regression models, we compared the prevalence of symptoms in July 2006 by employing the farthest area from the factory as a reference, and prevalence odds ratios (PORs) and their 95% confidence intervals (CIs) were estimated. The concentration of total VOCs was higher in the vicinity of the factory. The prevalence of mucocutaneous and respiratory symptoms was the highest among the residents in the closest area to the factory. Some symptoms were significantly increased among the residents within 500 m of the factory compared with residents of an area 2800 m from the factory: e.g., sore throat (POR=3.2, 95% CI: 1.3-8.0), eye itch (POR=3.0, 95% CI: 1.5-6.0), eye discharge (POR=6.0, 95% CI: 2.3-15.9), eczema (POR=3.0, 95% CI: 1.1-7.9) and sputum (POR=2.4, 95% CI: 1.1-5.1). Despite of the limitations of this study, these results imply a possible association of open-air VOCs with mucocutaneous and respiratory symptoms. Because this kind of plasticre cycling factory only recently came into operation, more attention should be paid to the operation of plastic recycling factories in the environment.

  14. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull. 2007; 6(4: 307-312

  15. 基于多跳路由算法的地膜回收机械装置优化%Optimization of Plastic Film Recycling Mechanism Based on Multi Hop Routing Algorithm

    Institute of Scientific and Technical Information of China (English)

    吴东林; 张玉华

    2016-01-01

    为了增强地膜回收机的通信能力,使其适应不同地膜密度的地块,提高地膜回收机的工作效率,实现多地膜回收机的协同控制,设计了一种新的基于多跳无线网络的地膜回收机和多回收机协同控制系统. 改进后的地膜回收机在起膜铲的轴上装有起膜阻力传感器,可以实时测试起膜阻力,调整起膜机的速度,实现速度的自适应调节. 为了适应不同的起膜机速度,在卷膜机上装有速度传感器,可以对卷膜速度进行控制,提高了起膜和卷膜的作业精度. 同时,设计了5 点的多跳通信网络,利用无线局域网络,实现了地膜机的协同控制. 最后对地膜回收机的性能进行了测试,通过测试发现:残膜机作业的回收率达到了90%以上,其作业时间较短,满足高效残膜回收机的设计需求,可以在其他农业现代化机械控制系统的设计过程中进行推广%In order to enhance the communication capacity of plastic recycling machine the adapt to different plastic film density plots , improve the work efficiency of the mulching film recovery machine , realize the coordinated control of multi-ple plastic film recycling machine , it designed a new multi hop wireless network of plastic recycling machine and re-cy cling machine based on coordination control system .The modified film recycling machine is equipped with a film re-sistance sensor on the shaft of the film ,which can be tested in real time .In order to be adaptive to the speed of the film , the film is equipped with a speed sensor , which can control the film speed and improve the operation accuracy of the film and film .A multi hop communication network with five points was designed , and the cooperative control of plastic film was realized by using wireless local area network .Finally the mulching film recovery machine performance was tested to find that plastic film machine operation recovery rate reached more than 90%, the operating time is

  16. Research Progress of Recycling Technology for Waste Electrical and Electronic Equipments%我国电子废弃物回收工艺研究进展

    Institute of Scientific and Technical Information of China (English)

    周蕾; 许振明

    2012-01-01

    The recycling technology for waste electrical and electronic equipments attracts domestic and international attentions. The basic recycling methods and their characteristics are summaizedi and the new recycling processes for waste electrical and electronic equipments are reviewed, especially the integrated recycling processes for waste domestic appliances, waste batteries and waste PCBs. Some new trends and potential problems are also discussed.%总结了处理电子废弃物的传统基本技术及其特点.针对传统工艺的缺陷综述了我国具有处理流程简单、成本低、资源利用率较高等优点的电子废弃物回收新工艺的研究进展,重点介绍了机械物理复合工艺处理废旧家电、废旧电池及废旧PCB板.同时提出了我国电子废弃物资源化方面的一些新动向和潜在的问题.

  17. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging.

    Science.gov (United States)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-11-01

    This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further "sustainable" recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both "traditional" (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  18. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties.

    Science.gov (United States)

    Rahman, Khandkar-Siddikur; Islam, Md Nazrul; Rahman, Md Mushfiqur; Hannan, Md Obaidullah; Dungani, Rudi; Khalil, Hps Abdul

    2013-01-01

    This study deals with the fabrication of composite matrix from saw dust (SD) and recycled polyethylene terephthalate (PET) at different ratio (w/w) by flat-pressed method. The wood plastic composites (WPCs) were made with a thickness of 6 mm after mixing the saw dust and PET in a rotary type blender followed by flat press process. Physical i.e., density, moisture content (MC), water absorption (WA) and thickness swelling (TS), and mechanical properties i.e., Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) were assessed as a function of mixing ratios according to the ASTM D-1037 standard. WA and TS were measured after 24 hours of immersion in water at 25, 50 and 75°C temperature. It was found that density decreased 18.3% when SD content increased from 40% to 70% into the matix. WA and TS increased when the PET content decreased in the matrix and the testing water temperature increased. MOE and MOR were reached to maximum for the fabricated composites (2008.34 and 27.08 N/mm(2), respectively) when the SD content were only 40%. The results indicated that the fabrication of WPCs from sawdust and PET would technically feasible; however, the use of additives like coupling agents could further enhance the properties of WPCs.

  19. 国内外塑料包装材料回收法律体系概况%The Overview of Legal System about Recycling Plastic Packaging Material at Home and Abroad

    Institute of Scientific and Technical Information of China (English)

    张玉霞; 张岩; 李东萱; 俞婧; 王洪涛

    2011-01-01

    介绍了中国和欧、美、日等发达国家塑料包装材料同收立法现状,其中包括同收塑料用于食品包装的概况.塑料包装T业要实现可持续发展,当务之急是加快包装材料回收立法,尤其是食品塑料包装回收立法工作.%This article described the legislative status of recycling of plastic packaging materials in China, Europe, America and Japan, including recycled plastics for food packaging profiles. To achieve sustainable development of plastic packaging industry, it is imperative to speed up packaging recycling legislation, in particular for food plastic packaging recycling legislation.

  20. Development of a new approach based on midwave infrared spectroscopy for post-consumer black plastic waste sorting in the recycling industry.

    Science.gov (United States)

    Rozenstein, Offer; Puckrin, Eldon; Adamowski, Jan

    2017-10-01

    Waste sorting is key to the process of waste recycling. Exact identification of plastic resin and wood products using Near Infrared (NIR, 1-1.7µm) sensing is currently in use. Yet, dark targets characterized by low reflectance, such as black plastics, are hard to identify by this method. Following the recent success of Midwave Infrared (MWIR, 3-12µm) measurements to identify coloured plastic polymers, the aim of this study was to assess whether this technique is applicable to sorting black plastic polymers and wood products. We performed infrared reflectance contact measurements of 234 plastic samples and 29 samples of wood and paper products. Plastic samples included black, coloured and transparent Polyethylene Terephthalate (PET), Polyethylene (PE), Polyvinyl Chloride (PVC), Polypropylene (PP), Polylactic acid (PLA) and Polystyrene (PS). The spectral signatures of the black and coloured plastic samples were compared with clear plastic samples and signatures documented in the literature to identify the polymer spectral features in the presence of coloured material. This information was used to determine the spectral bands that best suit the sorting of black plastic polymers. The main NIR-MWIR absorption features of wood, cardboard and paper were identified as well according to the spectral measurements. Good agreement was found between our measurements and the absorption features documented in the literature. The new approach using MWIR spectral features appears to be useful for black plastics as it overcomes some of the limitations in the NIR region to identify them. The main limitation of this technique for industrial applications is the trade-off between the signal-to-noise ratio of the sensor operating in standoff mode and the speed at which waste is moved under the sensor. This limitation can be resolved by reducing the system's spectral resolution to 16cm(-1), which allows for faster spectra acquisition while maintaining a reasonable signal-to-noise ratio

  1. Rethink, Rework, Recycle.

    Science.gov (United States)

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  2. The recycling is moving

    CERN Multimedia

    GS Department

    2011-01-01

    The recycling site currently situated near building 133 has been transferred to the car park of building 156. The site is identified by the sign “RECYCLING” and the above logo. In this new, more accessible site, you will find recycling bins for the following waste: PET (recyclable plastic bottles); Aluminium cans; Nespresso coffee capsules.  

  3. 新疆兵团残膜回收政策机制的探讨与分析%Discussion and Analysis On Plastic Film Residue Recycling Policy Mechanisms in Xinjiang Crops

    Institute of Scientific and Technical Information of China (English)

    李华; 王鹏; 赵永满

    2014-01-01

    文章通过与新疆地方上残膜回收政策、措施对比分析,找出兵团地区残膜回收存在的问题,提出了关于扶持、激励及补贴等政策的建议,通过技术创新、回收再利用、监督及残膜回收考核等机制的建立,为残膜污染治理提供参考。%the paper found out the existing recycling problems through the recycling policies, measures and comparative analysis on plastic film residue recycling in Xinjiang Corps and raised the suggestions such as support, incentives and subsidies, as well as provide reference for plastic fill treatment after technical innovation, recycling and reusing, supervision and establishment of recycling check.

  4. Waste Plastics Recycling and Reuse Technology Situation and Development Trend in China%我国废旧塑料的资源再利用现状与发展趋势

    Institute of Scientific and Technical Information of China (English)

    张雪; 张承龙

    2014-01-01

    通过对当前我国废旧塑料资源再利用现状的研究,分析和对比了不同废旧塑料资源再利用方法的工艺和特点,并且对废旧塑料处理的发展趋势做出了预测。%Through the study of the current status of waste plastic recycling, the processes and characteristics of different methods of recycling waste plastics are analyzed and compared, and the development trend of waste plastics processing is forecast.

  5. An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D&D decisions for Building 865, as well as for similar D&D tasks at RFP and at other sites.

  6. Pollution characteristics of volatile organic compounds, polycyclic aromatic hydrocarbons and phthalate esters emitted from plastic wastes recycling granulation plants in Xingtan Town, South China

    Science.gov (United States)

    Huang, De-Yin; Zhou, Shun-Gui; Hong, Wei; Feng, Wei-Feng; Tao, Liang

    2013-06-01

    With the aim to investigate the main pollution characteristics of exhaust gases emitted from plastic waste recycling granulation plants, mainly volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) were analyzed in Xingtan Town, the largest distribution center of plastic waste recycling in China. Both inside and outside the plants, the total concentrations of volatile monocyclic aromatic hydrocarbons (MAHs), PAHs and PAEs ranged from 2000 to 3000 μg m-3, 450 to 1200 ng m-3, and 200 to 1200 ng m-3, respectively. Their concentration levels inside the plants were higher than those outside the plants, and PAHs and PAEs were mainly distributed in the gas-phase. Notably, highly toxic benzo[a]pyrene (BaP) could be detected inside the plants, and harmful PAEs could be detected not only inside but also outside the plants, although PAEs are non-volatile. The exhaust gas composition and concentration were related to the plastic feedstock and granulation temperature.

  7. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hooseok, E-mail: hooseok.lee@gmail.com; Ohsawa, Isamu; Takahashi, Jun

    2015-02-15

    Highlights: • Plasma treatment was used to improve the adhesion property between the recycled CF and polymer matrix. • In order to evaluate the adhesion between plasma treated recycled CF and polymer, micro droplet test was conducted. • The interfacial shear strength and the interfacial adhesion of recycled carbon fiber increased. - Abstract: We studied the effects of plasma surface treatment of recycled carbon fiber on adhesion of the fiber to polymers after various treatment times. Conventional surface treatment methods have been attempted for recycled carbon fiber, but most require very long processing times, which may increase cost. Hence, in this study, plasma processing was performed for 0.5 s or less. Surface functionalization was quantified by X-ray photoelectron spectroscopy. O/C increased from approximately 11% to 25%. The micro-droplet test of adhesion properties and the mechanical properties of CFRP were also investigated.

  8. Material recycling of post-consumer polyolefin bulk plastics: Influences on waste sorting and treatment processes in consideration of product qualities achievable.

    Science.gov (United States)

    Pfeisinger, Christian

    2017-02-01

    Material recycling of post-consumer bulk plastics made up of polyolefins is well developed. In this article, it is examined which effects on waste sorting and treatment processes influence the qualities of polyolefin-recyclats. It is shown that the properties and their changes during the product life-cycle of a polyolefin are defined by its way of polymerisation, its nature as a thermoplast, additives, other compound and composite materials, but also by the mechanical treatments during the production, its use where contact to foreign materials is possible and the waste sorting and treatment processes. Because of the sum of the effects influencing the quality of polyolefin-recyclats, conclusions are drawn for the material recycling of polyolefins to reach high qualities of their recyclats. Also, legal requirements like the EU regulation 1907/2006 concerning the registration, evaluation, authorisation and restrictions on chemicals are considered.

  9. High density polyethylene (HDPE)/poly(ethylene terephthalate) (PET) polymer blend studies related to recycling co-mingled plastics

    Science.gov (United States)

    Tsai, Pang-Yen

    responsible for the poor performance. Therefore, careful selection of processing conditions to minimize degradation and compatibilization of the PCRs would be recommended for improving the mechanical properties of the recycled plastics where this can be advantageous and cost effective.

  10. Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment.

    Science.gov (United States)

    Chancerel, Perrine; Rotter, Vera Susanne; Ueberschaar, Maximilian; Marwede, Max; Nissen, Nils F; Lang, Klaus-Dieter

    2013-10-01

    The supply of critical metals like gallium, germanium, indium and rare earths elements (REE) is of technological, economic and strategic relevance in the manufacturing of electrical and electronic equipment (EEE). Recycling is one of the key strategies to secure the long-term supply of these metals. The dissipation of the metals related to the low concentrations in the products and to the configuration of the life cycle (short use time, insufficient collection, treatment focusing on the recovery of other materials) creates challenges to achieve efficient recycling. This article assesses the available data and sets priorities for further research aimed at developing solutions to improve the recycling of seven critical metals or metal families (antimony, cobalt, gallium, germanium, indium, REE and tantalum). Twenty-six metal applications were identified for those six metals and the REE family. The criteria used for the assessment are (i) the metal criticality related to strategic and economic issues; (ii) the share of the worldwide mine or refinery production going to EEE manufacturing; (iii) rough estimates of the concentration and the content of the metals in the products; (iv) the accuracy of the data already available; and (v) the occurrence of the application in specific WEEE groups. Eight applications were classified as relevant for further research, including the use of antimony as a flame retardant, gallium and germanium in integrated circuits, rare earths in phosphors and permanent magnets, cobalt in batteries, tantalum capacitors and indium as an indium-tin-oxide transparent conductive layer in flat displays.

  11. R3DO: A Plastic Recycling System For Creating 3D Printer Feedstock On-Orbit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An automated in-space recycling system for 3D printer feedstock will provide game-changing resupply benefits including but not limited to launch mass reduction,...

  12. Establishing the Recycled Supply Chain Network of Waste Electrical and Electronic Equipment%废旧电器回收再循环体系的构建

    Institute of Scientific and Technical Information of China (English)

    马辉; 郭汉丁

    2012-01-01

    Based on the study of successful experiment of some countries of Europe, this paper analyzes the status of recycled supply chain network of waste electrical and electronic equipment of China. Combining the situation of our county, it establishes the recycled supply chain network of waste electrical and electronic equipment according the situation, and advances the countermeasure to guarantee the network working effectively.%在研究发达国家废旧电器回收再生利用成功经验的基础上,分析了中国废旧电器回收处理的现状与问题,结合中国生产企业的具体情况,建立了符合中国国情的废旧电器回收再循环体系,并制定了保障回收体系健康运转的对策,旨在对中国废旧电器回收再循环工作起到一定的指导作用,促进该领域的不断健全与发展.

  13. Influence of Impact Modifier and Coupling Agent on Impact Strength of Wood Flour/Recycled Plastic Composites

    Directory of Open Access Journals (Sweden)

    Saman GHAHRI

    2014-03-01

    Full Text Available In this research, the improvement of impact strength of wood flour/recycled polypropylene (PP composites was investigated. The PP (virgin and recycled polypropylene and wood flour (WF were compounded at 50% by weight wood flour loading in a counter-rotating twin-screw extruder in the presence MAPP and two types of impact modifiers (ethylene vinyl acetate (EVA and ethylene/propylene/diene terpolymer (EPDM, to produce wood flour-PP composites specimen. The results showed that the composites containing recycled PP exhibited significantly lower impact strength values than those of containing virgin PP. The addition of MAPP, EVA and EPDM in the specimens increased their impact strength. In the presence of MAPP, higher increase in impact strength of the recycled PP/WF composites was observed due to impact modifiers. Both impact modifiers increased the impact strength of the PP/WF composites but the addition of EVA gave the greatest improvements in impact strength. Although the addition of impact modifiers and MAPP increased the impact strength of composites containing recycled PP, such values were still significantly lower than those of containing virgin PP (not modified with MAPP or impact modifier. The use of impact modifiers decreased the flexural properties of the recycled PP/WF composites.

  14. Design and test of clamping finger-chain type device for recycling agricultural plastic film%夹指链式残膜回收装置的设计及试验

    Institute of Scientific and Technical Information of China (English)

    段文献; 王吉奎; 李阳; 龚贺贺; 牛海龙; 罗威; 毕新胜

    2016-01-01

    The domestic equipment for recycling agricultural plastic film has the problems of low recovery rate of plastic film, wrapping the film collecting parts by plastics, or difficulty of separating the straw and soil from the film. In addition, film removing for the current methods is poor and high impurity content of recovered plastic film can’t be recycled. In order to solve these problems, the clamping finger-chain type device for recycling agricultural plastic film was designed. The designed device mainly consisted of film collecting device, film removing device, transmission system, side film shoveling, tie rod, transverse beam, residual film box, etc. The film collecting device mainly included film collecting frame, upper film collecting sprocket, under film collecting sprocket, film collecting chain, clamping finger, film cutting saw disk, supporting chain roller, tightening devices, etc. The film removing device mainly included film removing rotation shaft, film removing blade, driving sprocket, film removing bracket, bearing chock, etc. The film collecting device was driven by the ground wheel through the film collecting transmission system and the film removing device was driven by the tractor power output shaft through the film removing transmission. Through the design and mechanical analysis of the clamping finger-chain, the structure size parameters of it were determined, which contained the spacing between two clamping finger-chains was 220 mm, and its working angle was 40°, the effective length of clamping fingerL was 135 mm, and the angle between clamping finger and outer link was 20°. The tension mechanism could make the clamping finger-chain be always in a state of tension in the process of operation. The specification parameters of the selected spring were determined by analysis of the tensioning mechanism. Through the structure size design and motion analysis of film removing device, the film removing blade size was determined, and the length

  15. PROSPECTS OF MANUFACTURING TUNNELING AND DRILLING EQUIPMENT TOOLING IN THE RECYCLING OF HIGH-ALLOY STEELS WASTES

    Directory of Open Access Journals (Sweden)

    D. M. Kukui

    2012-01-01

    Full Text Available The technological aspects of processing and remelting of dispersed metal scrap, generated during polishing and grinding of tools made from high speed steel and carbide and lump scrap for the manufacture of drilling equipment and mining equipment are investigated.

  16. CFC and HFC recycling equipments: Test performances; Qualificazione di dispositivi per il riciclaggio dei CFC e degli HFC

    Energy Technology Data Exchange (ETDEWEB)

    Picini, P.; Caropreso, G.; Cicoli, G.; Posarelli, M. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente; Pallotti, P. [ICF, Industria Componenti Frigoriferi Srl, Bologna (Italy)

    1996-12-01

    Actual regulatory conditions about ozone layer depleting chemicals set problems on their disposal and on the management of plants still using illegal CFCs. Anyway fluids that will replace CFCs (i.e. HFCs) will not be allowed to be spread into the atmosphere, due to their high costs and to the greenhouse effect. A viable solution would be the recovery, purification and recycle of contaminated fluids. ENEA (National Agency for New Technology, Energy and the Environment), in cooperation with ICF (Industria Componenti Frigoriferi) Company leader in the field of air refrigerating and conditioning, patented a device able to extract, to clean and to recycle CFC 12 and HFC 134a in the refrigerating systems. This paper presents experimental data from the qualification tests on a device performing the above mentioned operations regarding systems that use HFC 134a as process fluid.

  17. 废旧线路板中塑料的回收及利用%Recycling and Reusing of Plastic in Waste Printed Circuit Board

    Institute of Scientific and Technical Information of China (English)

    李启胜

    2012-01-01

    总结了废旧线路板中塑料的回收处置方法和废旧线路板中塑料的回收利用现状.重点介绍了废旧线路板中塑料的物理回收法、热解回收法和溶液回收法,在综合比较废旧线路板中塑料回收利用的各种方法的基础上展望了废旧线路板中塑料回收利用的发展趋势.%The recycling technology and comprehensive application-situation of plastic in waste printed circuit board were summarized, and the physical recovery method, pyrolysis recovery method and solution recovery method were mainly introduced. On the basis of comprehensive comparing of the recycling methods, the recyling trends of plastic in waste printed circuit board was prospected.

  18. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2015-01-01

    This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem.

  19. Usage of Recycled Pet

    Directory of Open Access Journals (Sweden)

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  20. 高炉喷吹废塑料的先进技术%Establishment of Advanced Recycling Technology for Waste Plastics in Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    王颖

    2012-01-01

    废塑料循环利用技术对于全球环境保护和社会发展都是一个非常重要的课题。JFE制钢公司为了将废塑料作为高炉的还原剂,通过热模燃烧实验;研究了废塑料的燃烧气化率。经过研究,为了改善粗粒废塑料的燃烧性,开发了同时喷吹煤粉或/和天然气的技术,为了提高废塑料的燃烧和气化率及炉内透气性,JFE开发出将废塑料与碳酸钙(CaC03)复合造粒技术。另外,JFE还研究了废塑料精细粉碎技术。此技术已经应用在实际生产中。%The establishment of technology for recycling waste plastics is a highly important issue for global environmental conservation and the society. JFE Steel has pursued the effective use of waste plastics as a reducing agent for injection into blast furnaces, and conducted hot model experiments to study the combustion and gasification behaviour of waste plastics. On the basis of this basic investigation, advanced technologies that can further improve the combustion and gasification efficiency of waste plastics even with low strength has been developed; i.e. in order to improve combustibility of fine waste plastics, technology for simultaneous injection of such plastics with pulverized coal and/or natural gas has been developed. For improved the strength of plastics, technology for combined agglomeration of waste plastics with CaC03 has been developed. In addition, technology for fine crushing of waste plastics has been studied on the basis of new ideas, and this technology has been applied in actual plant operation. These technologies have been successfully applied in actual blast furnaces, contributing to lowering the reducing agent rate.

  1. Sustainable reverse logistics for household plastic waste

    OpenAIRE

    Bing, X

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than that of virgin plastics. Therefore, it is environmentally and economically beneficial to improve the plastic recycling system to ensure more plastic waste from households is properly collected and pr...

  2. Reciclagem de materiais plásticos: a importância da identificação correta Plastic materials recycling: the importance of the correct identification

    Directory of Open Access Journals (Sweden)

    Leda Coltro

    2008-06-01

    Full Text Available Muitos produtos de material plástico apresentam código de identificação (normalmente um número de 1 a 7 dentro de um triângulo de três setas e sob o mesmo uma abreviatura indicando o tipo de plástico do qual o produto é feito para auxiliar sua separação e posterior reciclagem e revalorização, contribuindo com a recuperação dos materiais plásticos descartados com o resíduo sólido urbano. Como as embalagens têm rotatividade alta, é importante que as mesmas apresentem o símbolo de identificação da resina a fim de facilitar a cadeia de reciclagem do plástico. Neste trabalho, foi feito um levantamento de dados sobre os símbolos de identificação dos materiais plásticos em um total de 177 embalagens plásticas rígidas para o acondicionamento de diversos produtos alimentícios e não alimentícios disponíveis no mercado brasileiro. Apesar da norma brasileira ABNT NBR 13230 já ter 14 anos, há ainda heterogeneidade na identificação das embalagens plásticas. Somente cerca de 80% das embalagens avaliadas apresentaram o símbolo de identificação da resina. Além disso, em alguns casos até 40% das embalagens apresentaram a identificação do material de forma incorreta. Portanto, ainda existe informação errônea no mercado brasileiro sobre o tipo de material da embalagem plástica (incluindo ausência do símbolo de identificação, bem como falta de informação sobre o símbolo correto de identificação da resina, sendo que ambos os fatores prejudicam a cadeia de reciclagem do plástico.Many plastic-based products show a resin identification code - usually a number from 1 to 7 inside a three-arrow triangle above a monogram - to identify the type of plastic used to make the product, for assisting in its separation and later recycling. In other words, to facilitate the recovery of plastics discarded with the municipal solid waste. Since packages have a high rotation, the presence of the resin identification code is

  3. Development of Regeneration Technology and Recycling Technology of Appliances Plastics%家电塑料再生技术和再生利用技术的研究进展

    Institute of Scientific and Technical Information of China (English)

    黄军左; 刘熠纯

    2011-01-01

    家电塑料的再生利用技术与一般塑料再生利用技术并无本质上的区别,其特点在于回收家电塑料需要进行拆卸、分类等前处理.因此,家电再生利用技术是家电塑料回收技术的重要组成部分.本文介绍了当前一些先进的科学研究与回收再生手段,阐述了废旧家电再生技术和再生利用技术.%Recycling technology of appliances plastics and it of general there is no essential difference, Its characteristics is the need of pre - treatment of disassembly and dlassification etc. For plastic appliance recycling. Therefore, the recycling technology of appliances plastics is an important part for recovery technology of appliances plastics. This article describes some of the advanced scientific research and the current recycling methods, described regeneration technology and recycling technology of the waste home appliances.

  4. Emission of polybrominated diphenyl ethers (PBDEs) in use of electric/electronic equipment and recycling of e-waste in Korea.

    Science.gov (United States)

    Park, Jong-Eun; Kang, Young-Yeul; Kim, Woo-Il; Jeon, Tae-Wan; Shin, Sun-Kyoung; Jeong, Mi-Jeong; Kim, Jong-Guk

    2014-02-01

    The emission rates of polybrominated diphenyl ethers (PBDEs) from electric/electronic products during their use and disposal were estimated. E-wastes, including televisions and refrigerators, gathered at recycling centers were also analyzed to estimate their emissions. The average concentrations of PBDEs in TV rear covers produced before and after the year 2000 were 145,027 mg/kg and 14,049 mg/kg, respectively. The PBDEs concentration in TV front covers was lower than the concentration in TV rear covers. The concentration in the components of the refrigerator samples ranged from ND to 445 mg/kg. We estimated the atmospheric emissions of PBDEs based on the concentrations. The annual emissions from TV rear covers produced before 2000 were calculated to be approximately 162.1 kg and after 2000, the annual emissions were 18.7 kg. Refrigerators showed the lowest annual emissions of PBDEs (0.7 kg). The atmospheric concentrations were also measured to calculate emissions generated during the recycling process. The highest concentration was 16.86 ng/m(3) emitted from the TV sets during the dismantling process. The concentrations of PBDEs generated in the plastic processing field ranged from 2.05 to 5.43 ng/m(3) depending on the products, and ambient air in open-air yards showed concentrations in the range of 0.32 to 5.55 ng/m(3). Emission factors for the recycling process were calculated using the observed concentrations. The estimated emissions according to the emission factors ranged from 0.3×10(-1) to 90.3 kg/year for open-air yards and from 0.1×10(-1) to 292.7 kg/year for the dismantling and crushing processes of TV set, depending on the production year.

  5. Recycled poly(ethylene terephthalate) for direct food contact applications: challenge test of an inline recycling process.

    Science.gov (United States)

    Franz, R; Welle, F

    2002-05-01

    Of all the plastics used for packaging, due to its low diffusivity and chemical inertness, poly(ethylene terephthalate) (PET) is one of the favoured candidate plastics for closed-loop recycling for new packaging applications. In the work reported here, a PET-recycling process was investigated with respect to its cleaning efficiency and compliance of the PET recyclate with food law. The key technology of the investigated PET-recycling process to remove contaminants consists of a predecontamination-extruder combination. At the end of the recycling process, there is either a pelletizing system or downstream equipment to produce preforms or flat sheets. Therefore, the process has two process options, an inline production of PET preforms and a batch option producing PET pellets. In the case of possible misuse of PET bottles by the consumer, the inline process produces higher concentrations in the bottle wall of the recyclate containing preforms. Owing to the dilution of the PET output material by large amounts of uncontaminated PET, the batch option is the less critical process in terms of consumer protection. Regarding an appropriate testing procedure for the evaluation of a bottle-to-bottle recycling process, both process options have their own specific requirements with respect to the design of a challenge test. A novel challenge test approach to the inline mode of a recycling process is presented here.

  6. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties

    Science.gov (United States)

    Lee, Hooseok; Ohsawa, Isamu; Takahashi, Jun

    2015-02-01

    We studied the effects of plasma surface treatment of recycled carbon fiber on adhesion of the fiber to polymers after various treatment times. Conventional surface treatment methods have been attempted for recycled carbon fiber, but most require very long processing times, which may increase cost. Hence, in this study, plasma processing was performed for 0.5 s or less. Surface functionalization was quantified by X-ray photoelectron spectroscopy. O/C increased from approximately 11% to 25%. The micro-droplet test of adhesion properties and the mechanical properties of CFRP were also investigated.

  7. Effective solutions for monitoring the electrostatic separation of metal and plastic granular waste from electric and electronic equipment.

    Science.gov (United States)

    Senouci, Khouira; Medles, Karim; Dascalescu, Lucian

    2013-02-01

    The variability of the quantity and purity of the recovered materials is a serious drawback for the application of electrostatic separation technologies to the recycling of granular wastes. In a series of previous articles we have pointed out how capability and classic control chart concepts could be employed for better mastering the outcome of such processes. In the present work, the multiple exponentially weighted moving average (MEWMA) control chart is introduced and shown to be more effective than the Hotelling T2 chart for monitoring slow varying changes in the electrostatic separation of granular mixtures originating from electric and electronic equipment waste. The operation of the industrial process was simulated by using a laboratory roll-type electrostatic separator and granular samples resulting from shredded electric cable wastes. The 25 tests carried out during the observation phase enabled the calculation of the upper and lower control limits for the two control charts considered in the present study. The 11 additional tests that simulated the monitoring phase pointed out that the MEWMA chart is more effective than Hotelling's T(2) chart in detecting slow varying changes in the outcome of a process. As the reverse is true in the case of abrupt alterations of monitored process performances, simultaneous usage of the two control charts is strongly recommended. While this study focused on a specific electrostatic separation process, using the MEWMA chart together with the well known Hotelling's T(2) chart should be applicable to the statistical control of other complex processes in the field of waste processing.

  8. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example...

  9. Use of plastics in blast furnace processes: A contribution to ecologically and economically acceptable recycling of plastic waste; Kunststoffverwertung im Hochofen - ein Beitrag zum oekologischen und oekonomischen Recycling von Altkunststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Janz, J. [Stahlwerke Bremen GmbH (Germany)

    1996-12-31

    The use of plastics in blast furnace processes has a number of advantages. For one thing, existing facilities can be used with only slight reconstruction measures. Next, the blast furnace process does not necessarily require plastics and therefore is independent of the available plastics volume. Further, it has a high utilisation potential. For example, the Bremen blast furnace No. II has only 8 nozzles out of 32 which are suited for plastics, but it can utilize 70,000 t/a, which is more than 13 percent of the total plastics volume collected by DSD. Indepenent eco-balances have shown that there is no better technology on the market at the moment. (orig) [Deutsch] Mit der Kunststoffverwertung im Hochofen steht ein Verfahren zur Verfuegung, das sich gleich in mehrfacher Hinsicht vor der Konkurrenz auszeichnet. Im Gegensatz zu anderen Verwertungen wird eine bereits vorhandene Anlage genutzt, an der lediglich zusatzeinrichtungen benoetigt werden. Gleichzeitig wird abfallpolitische Flexibilitaet dadurch erreicht, dass der Hochofen nicht auf das Reduktionsmittel Kunststoff angewiesen ist. Von wesentlicher Bedeutung ist auch die hohe Verwertungskapazitaet eines Hochofens. Unabhaengige Oekobilanzen und eigene Messungen haben zweifelsfrei gezeigt, dass ein besseres Verfahren zur Zeit nicht auf dem Markt ist. (orig)

  10. Tire Recycling

    Science.gov (United States)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  11. Reúso de água em indústria de reciclagem de plástico tipo PEAD Water reuse on HDPE plastics recycling pack industry

    Directory of Open Access Journals (Sweden)

    Angela Cristina Orsi Bordonalli

    2009-06-01

    Full Text Available A discussão acerca da viabilidade técnica, econômica e ambiental do reúso da água em processos industriais tem sido uma preocupação constante. Neste trabalho propõe-se uma alternativa simplificada para o tratamento de efluentes com vistas ao seu reúso em uma indústria de reciclagem de plásticos. A água, no presente caso, é componente fundamental para o processo, já que participa como elemento de remoção de detritos e impurezas que contaminam a matriz da matéria-prima utilizada, proveniente, principalmente, de aterros sanitários e lixões. As embalagens plásticas recicladas pela indústria em questão são, em sua grande maioria, de uso doméstico e, em menor escala, frascos contaminados com óleos lubrificantes. Os resultados demonstraram a viabilidade do tratamento através de processo físico-químico por coagulação, floculação, decantação e filtração em manta geotêxtil, com o uso do hidroxicloreto de alumínio (PAC como coagulante, soda cáustica (50% como alcalinizante e polieletrólito como auxiliar de floculação e desidratação do lodo, bem como a exequibilidade do reúso dos efluentes em circuito fechado.The discussion about technical, economical and environmental feasibility of water reuse in industrial process has been a constant concern. This paper purposes a simplified choice for waste water treatment seeking reuse in a plastic recycle industry. The water, in this case, is a prime component because it is the main element for the debris and impurities removal that contaminates the matrix of plastic raw material, which comes, mostly, from landfill and waste disposals. The recycled plastic packages, from the company that had been used for this research, come mostly from domestic use and, in a minor scale, the plastic package contaminated by lubricant oil. The final results show feasible for the treatment through physical-chemical process by coagulation, flocculation, decantation and filtration on geotextile

  12. The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions

    OpenAIRE

    Carné Sánchez , Arnau; Collinson, Simon R.

    2011-01-01

    The glycolysis of postconsumer polyethylene terephthalate (PET) waste was evaluated with catalysts of zinc acetate, zinc stearate and zinc sulfate, showing that zinc acetate was the most soluble and effective. The chemical recycling by solvolysis of polylactic acid (PLA) and PET waste in either methanol or ethanol was investigated. Zinc acetate as a catalyst was found to be necessary to yield an effective depolymerization of waste PLA giving lactate esters, while with the same reaction condit...

  13. Polybrominated diphenyl ethers (PBDEs) and heavy metals in road dusts from a plastic waste recycling area in north China: implications for human health.

    Science.gov (United States)

    Tang, Zhenwu; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2016-01-01

    Road dusts were collected from an area where intense mechanical recycling of plastic wastes occurs in Wen'an, north China. These dusts were investigated for polybrominated diphenyl ethers (PBDEs) and heavy metals contamination to assess the health risk related to these components. Decabromodiphenyl ether (BDE-209) and Σ21PBDE concentrations in these dusts ranged from 2.67 to 10,424 ng g(-1) and from 3.23 to 10,640 ng g(-1), respectively. These PBDE concentrations were comparable to those observed in road dust from e-waste recycling areas but were 1-2 orders of magnitude higher than concentrations in outdoor or road dusts from other areas. This indicates that road dusts in the study area have high levels of PBDE pollution. BDE-209 was the predominant congener, accounting for 86.3% of the total PBDE content in dusts. Thus, commercial deca-BDE products were the dominant source. The average concentrations of As, Cd, Cr, Cu, Hg, Pb, Sb, and Zn in these same dust samples were 10.1, 0.495, 112, 54.7, 0.150, 71.8, 10.6, and 186 mg kg(-1), respectively. The geoaccumulation index suggests that road dusts in this area are moderately to heavily polluted with Cd, Hg, and Sb. This study shows that plastic waste processing is a major source of toxic pollutants in road dusts in this area. Although the health risk from exposure to dust PBDEs was low, levels of some heavy metals in this dust exceeded acceptable risk levels for children and are of great concern.

  14. Effectiveness of organoclays as compatibilizers for multiphase polymer blends - A sustainable route for the mechanical recycling of co-mingled plastics

    Science.gov (United States)

    Causa, Andrea; Mistretta, Maria Chiara; Acierno, Domenico; Filippone, Giovanni

    2014-05-01

    We prepare and characterize multiphase systems in which small amounts of recycled polymer, namely polyethylene terephtalate (PET) ground from waste bottles, are dispersed in a co-continuous blend of high-density polyethylene (HDPE) and polypropylene (PP). Some of such ternary systems are also filled with plate-like clay nanoparticles with different polarities, in order to assess their influence on the morphology and mechanical behaviour of the blends. On the basis of preliminary wettability considerations and inspections by means of scanning electron microscopy (SEM), the PET is found to preferentially locate within the PP phase. Such a positioning is desirable in order to minimize the presence of multiple interfaces, which is one of the major issues in the recycling process of co-mingles plastics. By means of SEM, dynamic-mechanical analysis and tensile tests we show that the addition of a filler with low polarity, which locates at the PET-matrix interface, has relevant implications on the structure and properties of the ternary systems, refining their morphology at the micro-scale and enhancing their high-temperature mechanical behaviour.

  15. Effectiveness of organoclays as compatibilizers for multiphase polymer blends – A sustainable route for the mechanical recycling of co-mingled plastics

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Andrea; Acierno, Domenico; Filippone, Giovanni [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale V. Tecchio, 80, 80125 Napoli (Italy); Mistretta, Maria Chiara [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, ed. 6, 90128 Palermo (Italy)

    2014-05-15

    We prepare and characterize multiphase systems in which small amounts of recycled polymer, namely polyethylene terephtalate (PET) ground from waste bottles, are dispersed in a co-continuous blend of high-density polyethylene (HDPE) and polypropylene (PP). Some of such ternary systems are also filled with plate-like clay nanoparticles with different polarities, in order to assess their influence on the morphology and mechanical behaviour of the blends. On the basis of preliminary wettability considerations and inspections by means of scanning electron microscopy (SEM), the PET is found to preferentially locate within the PP phase. Such a positioning is desirable in order to minimize the presence of multiple interfaces, which is one of the major issues in the recycling process of co-mingles plastics. By means of SEM, dynamic-mechanical analysis and tensile tests we show that the addition of a filler with low polarity, which locates at the PET-matrix interface, has relevant implications on the structure and properties of the ternary systems, refining their morphology at the micro-scale and enhancing their high-temperature mechanical behaviour.

  16. The Hacker of International Waste Electron Equipment & Electrical Equipment (WEEE) and WEEE Recycling%国际WEEE"黑客"与WEEE再生

    Institute of Scientific and Technical Information of China (English)

    高冬华

    2001-01-01

    @@ WEEE是国际上废弃电子设备和电动产品英文名称:WASTE ELECTRON EQUIPMENT&ELECTRICAL EQUIPMENT的简称.随着信息时代的到来,电脑、手机、电视等含有剧毒材料、制造复杂、难以处置的废弃垃圾正在成为人类生存环境的潜在危害.一些发达国家为了躲避昂贵的废物销毁费用和回避国内严格的公众监督,找到一条"绝好"的途径,即把这些废弃电器垃圾倾销往第三世界国家.中国时值电脑、手机一类电器普及初期,市场需求量极大,而相对廉价的二手货亦具有价格竞争优势.加之国内一些不法之徒总在伺机寻找制造假冒伪劣产品的条件,这些都为WEEE"黑客"入侵创造了市场.

  17. Design and Prototype Test of Hot Air Circulation Molten Plastic Recycling Granulator%热风循环熔融塑料回收造粒机的设计和样机试验

    Institute of Scientific and Technical Information of China (English)

    袁文清; 黄兴元; 王都阳

    2016-01-01

    在分析国内废旧塑料回收现状以及传统塑料回收工艺的基础上,遵循机械设计原理,设计出热风循环熔融废旧塑料回收造粒机,将废旧塑料经热风加热熔融后,再由单螺杆将熔融塑料挤出造粒。其中重点介绍了热风循环熔融塑料系统以及螺杆的几何参数设计。遵循结构设计方案,制造出热风循环熔融塑料回收造粒机的物理样机,并用该样机进行塑料回收试验,试验验证了热风熔融塑料回收的可行性和研究价值,同时针对试验过程中发现的问题提出了一系列解决方法,为后续的改进和进一步研究工作提供了可靠依据。%Based on the analysis of the domestic current situation of the waste plastics recycling and on the basis of traditional plastic recycling technology,following the principleof mechanical design,a molten waste plastic recycling granulator with hot air circulation was designed. The waste plastic was heated and melted by the hot air,and then the molten plastic was extruded and granulated by a single screw. The hot air circulation system and geometric parameters design of the screw were focused on. Follow-ing the structure design project,the physical prototype of hot air circulation molten plastic recycling granulator was produced,and a test of plastic recycling with the prototype was conducted. The test verified the feasibility and research value of hot air molten plastic recycling. At the same time,a series of solutions to the problems found in the test were put forward,which provides the reliable basis for the subsequent improvement work and further research.

  18. 我国进口可再生利用废塑料的现状与发展%Current status and development of import recyclable plastics scrap in China

    Institute of Scientific and Technical Information of China (English)

    李丛志

    2012-01-01

    论述了进口可再生利用废塑料在环保、节能减排等国民经济领域中的重要意义。通过分析统计数据。阐明了我国由于资源匮乏,进口可再生利用废塑料的必要性和迫切性,并简述了我国政府对废塑料进口的监管措施。%The significance of importing recyclable plastic scrap in environment protection, energy-saving and emission-reducing was introduced. The necessity and urgency of importing recyclable plastic scrap for resource deficiency were demonstrated. The supervision measures of plastic scrap were also introduced.

  19. Experimental and Numerical Analysis of Thermal and Hygrometric Characteristics of Building Structures Employing Recycled Plastic Aggregates and Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Francesco Colangelo

    2013-11-01

    Full Text Available The correct estimation of building energy consumptions is assuming an always increasing importance, and a detailed reproduction of building structures, with all the single components involved, is necessary to achieve this aim. In addition, the current ecological development tries to limit the use of natural raw materials as building components, in favor of alternative (waste materials, which ensure significant advantages from the economic, energetic and environmental point of views. In this work, dynamic heat and vapor transport in a typical three-dimensional (3D building structure, involving different types of environmental-friendly concrete mixtures, have been simulated by using finite elements. In particular, the authors propose to substitute part of the aggregates with plastic waste and to use a fly ash based geopolymeric binder for the production of low conductivity concrete, to be employed in eco-efficient buildings. Concrete produced with natural limestone aggregates has been considered as the reference benchmark. The whole characterization of the different types of concrete tested in the present work has been obtained through laboratory experiments. The structure taken into account in the simulations is a 3D thermal bridge, typical of building envelopes. The thermal and hygrometric transient behavior of this structure, employing plastic waste in different percentages and geopolymer concrete, has been analyzed by the authors.

  20. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than th

  1. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than

  2. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than th

  3. New Life for Old Plastics

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Recycling joint venture utilizes innovative technology to reuse plastics Recycling,despite its green connotations,can be a messy business.In China,more than 400,000 companies are engaged in plastic recycling,but 70 percent of them are family enterprises,

  4. 我国塑料废弃物回收和再循环及其标准化的现状%Actuality of Recovery and Recycling of Plastics Waste and Standardization of China

    Institute of Scientific and Technical Information of China (English)

    赵平; 张鼎晟子; 刘力荣; 陈敏剑

    2011-01-01

    This article described the overview of recovery and recycling of plastics waste, and the system of the legislative statute and standardization of China. Additionally discussed the problems of recovery and recycling of plastics waste in China by comparing them with oversea.%介绍了我国塑料废弃物回收和再循环的基本情况以及相关法规和标准化体系,并通过对比国外塑料废弃物回收和再循环的基本情况和标准化体系,探讨了我国塑料废弃物回收和再循环目前存在的问题.

  5. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation.

    Science.gov (United States)

    Li, Jia; Wu, Guiqing; Xu, Zhenming

    2015-01-01

    Plastic products can be found everywhere in people's daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recycling plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (-)-PE-PS-PC-PVC-ABS-PP-(+), while the triboelectric series obtained by cyclone was (-)-PE-PS-PC-PVC-ABS-PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator.

  6. Research on Green Coating Removal Method of Passenger Car Plastics in Recycling Process of High-pressure Water Jet Technology%乘用车塑料饰件回收过程高压水射流除涂层技术研究*

    Institute of Scientific and Technical Information of China (English)

    张洪申; 陈铭

    2013-01-01

    Based on a high-pressure water jet technology,the technology on coating removal for passenger car plastics recycling was developed.The theoretical analysis,numerical simulation and experimental study about the developed technology were carried out.The results show that high-pressure water jet technology can effectively remove the coatings on the surface of passenger car plastics.Moreover,high-pressure water jets equipment for automotive plastic coating removing is developed under the research and testing.There is no polluting emission and the water can be completely recycled in working process,which meet the requirements of clean production and sustainable development.%以高压水射流技术为基础,从理论、数值模拟及试验验证三方面开展了乘用车塑料饰件回收过程涂层去除技术研究,三方面的研究结果均证实了高压水射流技术可有效去除乘用车塑料饰件上的涂层。基于研究和试验的结果开发了汽车塑料饰件高压水射流除涂层专用设备,初步试用结果表明,采用该设备可有效去除汽车塑料饰件表面的涂层。此外,该设备工作过程中无污染排放,水可完全循环利用,满足清洁生产和节能减排的要求。

  7. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M.; Fink, J.K. [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  8. RECYCLING BLENDS OF WASTE PLASTICS AND BIOMASS AS REDUCING AGENT FOR THE PRODUCTION OF METALLIC IRON FROM IRON OXIDE

    Directory of Open Access Journals (Sweden)

    JAMES RANSFORD DANKWAH

    2013-12-01

    Full Text Available Laboratory studies on the production of metallic iron from iron oxide using blends of palm nut shells (Elaes Guineanses and waste plastics as reducing agent have been performed through experiments conducted in a horizontal tube furnace. Composite pellets were formed from mixtures of iron oxide and carbonaceous materials consisting of chars of palm nut shells (PNS, high density polyethylene (HDPE and two blends of PNS with HDPE. Two sources of iron oxide were utilised in this investigation; reagent grade iron oxide (96.89 % Fe2O3 and EAF slag (47.1 % FeO. The iron oxide-carbonaceous material composites were heated rapidly at 1500°C in a continuous stream of argon and the off gas was analysed continuously using an infrared (IR gas analyser and a gas chromatographic (GC analyser. Elemental analyses of samples of the reduced metal were performed chemically for its carbon and oxygen contents using a LECO carbon/sulphur and oxygen/nitrogen analysers, respectively. The extent of reduction (after ten and fifteen minutes for reagent grade iron oxide and EAF slag, respectively and the level of carburisation were determined for each carbonaceous reductant. The results indicate that carburised metallic iron can be produced effectively from iron oxide using PNS, HDPE and blends of these carbonaceous materials as reductants. The extent of reduction improved significantly when PNS was blended with HDPE.

  9. 废旧塑料在复合材料领域中回用技术的研究进展%Research Advances in the Recycling Technologies of Waste Plastics in Composites Field

    Institute of Scientific and Technical Information of China (English)

    张效林; 王汝敏; 王志彤; 冯冰; 付钰

    2011-01-01

    介绍了国内外废旧塑料现状以及废旧塑料在复合材料领域利用新进展,综述了废旧塑料在植物纤维/废旧塑料复合材料、废纸/废塑料复合材料、木塑复合发泡材料、可生物降解塑料复合材料及其他复合材料领域的再利用技术新进展,并分析了废旧塑料在复合材料领域回收再利用技术的发展趋势,提出应进一步探讨不同种类废旧塑料对复合材料力学性能及植物纤维/废旧塑料界面相容性的影响.%The present research status and category of printing and packaging waste plastic are introduced,and research advances in the recycling technology of different kind of waste plastic in composite material field such as plant fibre/recycled thermoplastic composites, wastepaper/thermoplastic polymer composites, wood-plastic foaming composites, eco-friendly biodegradable composites and other composites are discussed. Development trend of the recycling technology of waste plastic in composite material field is pointed out. And further more, research area such as the effect of different waste plastics on the composites interface compatibility is proposed.

  10. 回收塑料/稻壳粉木塑复合材料的制备及性能研究%Study on the Preparation and Properties of Recycled Plastic/Rice Husk Powder Composites

    Institute of Scientific and Technical Information of China (English)

    王春红; 任子龙; 刘胜凯; 徐贵海; 王瑞

    2015-01-01

    Recycled plastic/recycled plastic rice husk powder composites were made by extrusion and injection molding process with rice husk powder and nonmedical recycled plastic. The influence of size,content of rice husk powder and surface treatment on the mechanical properties of the composite were investigated. The morphology of the composite was observed by SEM. The results show that the mechanical properties of the recycled plastic/rice husk powder composites first increase and then decrease with increase of the size of rice husk powder,and increase with increase of the content of rice husk powder. Mechanical properties of the composites are best when the content of the rice husk powder with 425 μm is 50%. Compared with recycled plastic,tensile strength,tensile modulus,flexural strength and flexural modulus of the composites reinforced by glass fibre increased by 82.01%, 414.66%,152.62%,436.99%.%以稻壳粉和非医疗废弃物作为原料,采用挤出–注塑工艺制备回收塑料/稻壳粉木塑复合材料,研究了稻壳粉的粒径、含量以及玻璃纤维对复合材料力学性能的影响,用扫描电子显微镜对复合材料的断面进行了观察。结果表明,回收塑料/稻壳粉木塑复合材料的力学性能随稻壳粉粒径的增加先上升后下降,随稻壳粉含量的增加而提高。当稻壳粉质量分数为50%,粒径为425μm时,回收塑料/稻壳粉木塑复合材料综合力学性能最好。当用偶联剂处理稻壳粉和玻璃纤维后,相对于纯回收塑料,复合材料的拉伸强度提高了82.01%,拉伸弹性模量提高了414.66%,弯曲强度提高了152.62%,弯曲弹性模量提高了436.99%。

  11. Characterization of ecofriendly polyethylene fiber from plastic bag waste

    Science.gov (United States)

    Soekoco, Asril S.; Noerati, Komalasari, Maya; Kurniawan, Hananto, Agus

    2017-08-01

    This paper presents the characterization of fiber morphology, fiber count and tenacity of polyethylene fiber which is made from plastic bag waste. Recycling plastic bag waste into textile fiber has not developed yet. Plastic bag waste was recycled into fiber by melt spinning using laboratory scale melt spinning equipment with single orifice nozzle and plunger system. The basic principle of melt spinning is by melting materials and then extruding it through small orifice of a spinning nozzle to form fibers. Diameter and cross section shape of Recycled polyethylene fiber were obtained by using scanning electron microscope (SEM) instrumentation. Linear density of the recycled fiber were analyzed by calculation using denier and dTex formulation and The mechanical strength of the fibers was measured in accordance with the ASTM D 3379-75 standard. The cross section of recycled fiber is circular taking the shape of orifice. Fiber count of 303.75 denier has 1.84 g/denier tenacity and fiber count of 32.52 has 3.44 g/denier tenacity. This conditions is affected by the growth of polymer chain alignment when take-up axial velocity become faster. Recycled polyethylene fiber has a great potential application in non-apparel textile.

  12. Separation by electrostatic equipments; Separacion por medios electrostaticos

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, R.; Larrauri, E.; Arnaiz, S.; Cacho, S.; Robertson, C.; Smallwood, J.; Coilt, J.; Ufer, R.; Kohnlecher, R.

    2000-07-01

    Development of automated separation technologies is essential in increasing recovery rates, particularly from highly mixed sources such municipal solid wastes and wastes from electric and electronic equipment, and in reducing recycling costs. This frame moved GAIKER Technological Centre to look for new technologies that allow to recover materials such metals, plastics, papers from those waste sources. Electrostatic separation technology has been successfully applied to separate these materials collaborating to get the targets specified by legislation. (Author)

  13. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  14. Research on Construction of Industrialization Policy System about Recycling the Waste Electrical and Electronic Equipment%废旧电器回收处理产业化政策体系构建

    Institute of Scientific and Technical Information of China (English)

    郭汉丁; 张印贤; 马辉; 李芬芳

    2012-01-01

    The waste electrical and electronic equipment (WEEE) possess rubbish attributes and commodity attributes, and also environmental pollution characteristic and renewable resource characteristic. Hence, it decides recycling WEEE to go the way of industrialization development. The industrialization of recycling WEEE is the demands of the new age to promote economic and social sustainable development, for improving the comprehensive benefits of quantitative business, protecting the environment and ensuring the human health. Recycling Management Regulations on Recycling Waste Electrical and Electronic Equipment constructs the legal platform for industrialized development. It also explicates the bottlenecks, the law, the legal system and the industry chain price of the industry development of recycling WEEE. It will promote the industrial chain of recycling WEEE collaborative operation and promote the industry healthy and orderly developing by establishing technical policy, social policy, economic policy and industrial policy of industrial development of the recycling WEEE.%废旧电器具有垃圾和商品的二重属性,环境污染和可再生资源性的双重特性,这决定了废旧电器回收处理必须走产业化发展之路,废旧电器回收处理业务产业化是经济社会可持续发展,提高规模化经营的综合效益,保护环境和保障人体健康的时代要求.《废旧电器电子产品回收处理管理条例》为产业化发展构建了法律平台,明确了我国废旧电器回收再生利用产业发展的瓶颈、法律法规体系和产业链价格政策,构建废旧电器回收再生利用产业化发展的技术政策、社会政策、经济政策和产业政策,将促进废旧电器回收再生利用产业链的协同运行,推动其产业健康有序发展.

  15. Recycling Paper Recycling

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2014-02-01

    Full Text Available What do you do after a product has served its function and is no longer needed? Ideally, you recycle it. What do you do if people have neglected or forgotten so much of what has been learned in recent years about paper recycling? Well, one of the things that someone can do is to write a book. Very little of the contents of such a book may be new. But the book itself can be highly valuable, representing a lot of effort to select and organized material that will be helpful for the current and upcoming generations of papermaking technologists. This editorial describes a new book by Dr. Pratima Bajpai entitled Recycling and Deinking of Recovered Paper. Readers who deal with the recycling of paper will probably want to have a copy of it on a handy shelf.

  16. Recycling Pressure-Sensitive Products

    Science.gov (United States)

    Jihui Guo; Larry Gwin; Carl Houtman; Mark Kroll; Steven J. Severtson

    2012-01-01

    The efficient control of contaminants such as metals, plastics, inks and adhesives during the processing of recovered paper products determines the profitability of recycling mills. In fact, it is arguably the most important technical obstacle in expanding the use of recycled paper.1-4 An especially challenging category of contaminants to manage...

  17. 弹齿链耙式播前残膜回收机的设计研究%Research on the Spring-tooth-chain-rake Incomplete Plastic Film Recycling Machine

    Institute of Scientific and Technical Information of China (English)

    闫盼盼; 曹肆林; 罗昕; 胡斌; 李俊江; 营雨琨; 卢勇涛; 王敏

    2016-01-01

    With the popularization and application of mulching technology ,white pollution caused by plastic film is getting worse .In order to reduce pollution , does not affect seeding , emergence , design a new type of spring-tooth-chain-rake incomplete plastic film recycling machine before planting machine .It highlights the aircraft's overall structure , working principle, key components such as pick-up chain harrow , spring-tooth, taking off the membrane mechanism for design analysis.Field test showed that the aircraft pure-hour production rate is 0.85hm2/h,recovery of plastic film is 81%.The plastic film recycling can meet the technical requirements and the study results may help solve the problem of plastic film pollution .%随着地膜覆盖技术的推广应用,残膜带来的白色污染越来越严重. 为了减轻污染,不影响播种、出苗,研究设计了新型弹齿链耙式播前残膜回收机. 重点介绍了该机的总体结构、工作原理,以及捡拾链耙、弹齿、脱膜机构等关键部件的设计分析. 田间试验表明:该机生产率为0.85hm2/h,残膜回收率为81%,满足残膜回收的技术要求,研究成果有利于解决残膜污染问题.

  18. Recycled Insect Models

    Science.gov (United States)

    Rule, Audrey C.; Meyer, Mary Ann

    2007-01-01

    This article presents an engaging activity in which high school students use a dichotomous key to guide the creation and classification of model insects from recycled plastic lids and containers. Besides teaching the use of a dichotomous key and the effect of evolutionary descent upon groupings of organisms, this activity focuses on an…

  19. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    systematically investigated. This PhD project provided detailed quantitative data following a consistent approach to assess potential limitations for the presence of chemicals in relation to material recycling. Paper and plastics were used as illustrative examples of materials with well-established recycling...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern...... recycling has been recognised as a backbone of circular economy, with constant measures and initiatives being proposed in order to increase the recycling rates of materials being consumed. Material cycles are complex and dynamic systems where chemicals are added and removed in production, manufacturing...

  20. 废弃塑料的回收物流与再利用研究——以中山市为例%Study on Recovery Logistics and Recycling of Waste Plastics: A Case Study of Zhongshan City

    Institute of Scientific and Technical Information of China (English)

    郑平; 何雪君; 王冬良

    2012-01-01

    On the one hand, plastic is convenient to life, on the other hand, it also brings environmental pollution. The biggest problem is the treatment of waste plastics. To achieve sustainable development, we should take the principle of not buried, not bum and without abandoning to avoid secondary pollution. The best method is recycling which not only can solve the pollution problem of abandoned plastic, also can bring new profit growth for enterprise. To reach this purpose, this paper took the analysis on the recycling status of abandoned plastic in Zhongshan as the starting point. After investigation, the paper understood the status and the problems, and made recommendations by referring the abroad success experience.%塑料一方面方便了生活,另一方面也带来了环境污染.最大的问题是废弃塑料的处理,为了可持续发展,应采取不埋、不焚、不丢的原则,避免二次污染.最好的方法是回收再利用,不仅可以解决废弃塑料的污染问题,还为企业带来新的利润增长点,为了达到这一目的,从分析中山市废弃塑料的回收利用现状为切入点,经过调查研究,了解废弃塑料回收物流与再利用的现状,掌握存在的问题,借鉴国外成功经验,提出废弃塑料回收再利用建议.

  1. Minimization and recycling of electronic equipments; La minimizacion y reciclado de los equipos electricos y electronicos en su fin de vida

    Energy Technology Data Exchange (ETDEWEB)

    Irasarri, L.M.

    1996-10-01

    The get a satisfactory treatment of electronic waste it should be known which hazardous and toxic substances are contained. Since 1987 Indumetal Recycling company has been developing a taking to pieces process to recover materials from electronic, communication... industry. This paper reviews how the state of art is wind energy. 11 refs.

  2. Review on Recycling Precious Metals from Waste Electrical and Electronic Equipment by Microorganism%微生物法回收电子废弃物中贵金属的研究进展

    Institute of Scientific and Technical Information of China (English)

    费彦肖; 白建峰; 邓明强; 张承龙; 王鹏程

    2014-01-01

    In today’s society, it is important to deal with waste electrical and electronic equipment properly. The mechanism of recycling precious metals by microorganisms was outlined. The research status of recycling precious metals from electronic waste by microor-ganisms was described. The existing bacteria research and the current situation was analyzed. The prospect for this technology was made. At this stage, the main task is to screen and culture other microorganisms which can recycle precious metals from electronic waste, optimize their culture conditions and put forward conditions and ways to shorten the leaching time and improve recovery rates on recycling precious metals from electronic waste.%电子废弃物的资源化处理是当今社会的一项重要内容。概述了微生物法回收贵金属的作用机理,阐述了利用微生物回收电子废弃物中贵金属的研究现状,并对现有的菌体研究现状进行了分析,对微生物法回收贵金属的发展前景进行了展望。提出现阶段主要任务是筛选和培养出可以回收电子废弃物中贵金属的其他微生物,并对培养条件进行优化,以缩短浸取时间,提高贵金属的回收率。

  3. 居民电子废物回收行为影响因素的实证研究%An empirical research on recycling behavior of waste electrical and electronic equipment and its influence factor.

    Institute of Scientific and Technical Information of China (English)

    余福茂; 段显明; 梁慧娟

    2011-01-01

    Based on the results of questionnaire investigation to 350 urban residents, an empirical research was done on the recycling of waste electrical and electronic equipment (WEEE), aiming to the recycling behavior, the behavior intention and the influence factors. The results of confirmatory factor analysis indicated that the structure equal model based on the theory of planned behavior (TPB) could be used to interpret the related hypotheses effectively, and some situational factors, such as environmental knowledge, public preach and trash separation of home wastes, played regulating roles on the recycling behavior. Perceived behavioral control played a vital role on promoting the conversion of behavior intention into behavior. While the convenience situation of recycling behavior was an important factor impacting perceived behavioral control.%基于对350名城市居民的问卷调查结果,运用验证性因子分析方法对居民的电子废物回收行为、行为意向及其影响因素进行了实证研究.结果表明,基于计划行为理论所建立的结构方程模型可以较为有效地诠释有关研究假设,环境知识、舆论宣传和垃圾分类等情境因素对电子废物回收行为具有调节作用.知觉行为控制对于行为意向转化为行为具有非常重要地促进作用,而便利状况则是影响知觉行为控制的重要因素.

  4. New characterisation method of electrical and electronic equipment wastes (WEEE).

    Science.gov (United States)

    Menad, N; Guignot, S; van Houwelingen, J A

    2013-03-01

    Innovative separation and beneficiation techniques of various materials encountered in electrical and electronic equipment wastes (WEEE) is a major improvement for its recycling. Mechanical separation-oriented characterisation of WEEE was conducted in an attempt to evaluate the amenability of mechanical separation processes. Properties such as liberation degree of fractions (plastics, metals ferrous and non-ferrous), which are essential for mechanical separation, are analysed by means of a grain counting approach. Two different samples from different recycling industries were characterised in this work. The first sample is a heterogeneous material containing different types of plastics, metals (ferrous and non-ferrous), printed circuit board (PCB), rubber and wood. The second sample contains a mixture of mainly plastics. It is found for the first sample that all aluminium particles are free (100%) in all investigated size fractions. Between 92% and 95% of plastics are present as free particles; however, 67% in average of ferromagnetic particles are liberated. It can be observed that only 42% of ferromagnetic particles are free in the size fraction larger than 20mm. Particle shapes were also quantified manually particle by particle. The results show that the particle shapes as a result of shredding, turn out to be heterogeneous, thereby complicating mechanical separation processes. In addition, the separability of various materials was ascertained by a sink-float analysis and eddy current separation. The second sample was separated by automatic sensor sorting in four different products: ABS, PC-ABS, PS and rest product. The fractions were characterised by using the methodology described in this paper. The results show that the grade and liberation degree of the plastic products ABS, PC-ABS and PS are close to 100%. Sink-float separation and infrared plastic identification equipment confirms the high plastic quality. On the basis of these findings, a global

  5. Analysis of the treatment of plastic from electrical and electronic waste in the Republic of Serbia and the testing of the recycling potential of non-metallic fractions of printed circuit boards

    Directory of Open Access Journals (Sweden)

    Vučinić Aleksandra S.

    2017-01-01

    Full Text Available This paper presents the analysis of the quantity of plastic and waste printed circuit boards obtained after the mechanical treatment of electrical and electronic waste (E-waste in the Republic of Serbia, as well as the recycling of non-metallic fractions of waste printed circuit boards. The aim is to analyze the obtained recycled material and recommendation for possible application of recyclables. The data on the quantities and treatment of plastics and printed circuit boards obtained after the mechanical treatment of WEEE, were gained through questionnaires sent to the operators who treat this type of waste. The results of the questionnaire analysis showed that in 2014 the dismantling of E-waste isolated 1,870.95 t of plastic and 499.85 t of printed circuit boards. In the Republic of Serbia, E-waste recycling is performed exclusively by using mechanical methods. Mechanical methods consist of primary crushing and separation of the materials which have a utility value as secondary raw materials, from the components and materials that have hazardous properties. Respect to that, the recycling of printed circuit boards using some of the metallurgical processes with the aim of extracting copper, precious metals and non-metallic fraction is completely absent, and the circuit boards are exported as a whole. Given the number of printed circuit boards obtained by E-waste dismantling, and the fact that from an economic point of view, hydrometallurgical methods are very suitable technological solutions in the case of a smaller capacity, there is a possibility for establishing the facilities in the Republic of Serbia for the hydrometallurgical treatment that could be used for metals extraction, and non-metallic fractions, which also have their own value. Printed circuit boards granulate obtained after the mechanical pretreatment and the selective removal of metals by hydrometallurgical processes was used for the testing of the recycling potential

  6. Design and analysis of sodium carbonate recycling drying equipment for cyclohexanone production%环己酮生产中碳酸钠回收干燥装置的设计与分析

    Institute of Scientific and Technical Information of China (English)

    黎树根

    2012-01-01

    A new type of drying equipment was designed according to the characteristics of the recycling and utilization of waste sodium carbonate as the by-product of alkali waste burning in cyclohexanone process. The drying process, structure and working principle of the drying equipment were analyzed and calculated. The results showed that the automatic recycling drying equipment for sodium carbonate was consist of drying box, heating air system, dehumidifying system, scattering system and packaging system. The drying curves of sodium carbonate drying equipment were obtained through the drying experiment using a temperature-control electric oven. The drying capacity of this system reached 1 -2 t/h and the moisture content of sodium carbonate was below 2% after drying. The system saved the drying cost without environment pollution by using process gas waste as the heat re-souce. This equipment had the advantages of high drying capacity, high thermal efficiency, low energy consumption and good regulation performance, which successfully resolved the problem of alkali waste treatment in cyclohexanone industry.%针对环己酮生产过程中废碱碳酸钠回收利用的工艺特点,设计了一种新型干燥装置,对干燥器的干燥流程、干燥器的结构和工作原理进行了分析及计算.结果表明:循环自动干燥碳酸钠设备主要由干燥箱、供热风系统、抽湿系统、扩散系统和包装系统组成;通过温控由电烘箱进行碳酸钠干燥实验,得到了碳酸钠干燥设备的干燥曲线,该系统干燥能力达1 ~2 t/h,干燥后碳酸钠含水率小于2%;该系统利用工厂废烟气作热源,节省干燥成本,且无环境污染.该设备干燥能力大,热效率高,能耗低,调控性能好,很好的解决了环己酮工业中废碱处理的难题.

  7. Exhaust Gas Pollution and Control of Import Waste Plastics Recycling Industry%进口废塑料再生加工行业废气污染及防治对策

    Institute of Scientific and Technical Information of China (English)

    陈瑜; 赵艳

    2015-01-01

    With large quantities of China’s import waste plastics, exhaust gas could be produced in the recycling process of waste plastics. Without effective treatment, the production will bring great harm to the environment. Typical regeneration of waste plastics process and the production process were analyzed. The main sources and types of waste gas were identified. Effective treatments and countermeasures of organic waste gas, dust and odor pollution produced in the process of hot-melt granulation, crushing were presented.%我国进口废塑料数量大,废塑料再生加工生产过程中伴随着工艺废气的产生,若不进行处理将对环境带来较大的危害。通过分析典型的废塑料再生加工工艺及产污环节,识别主要工艺废气来源及种类,提出了有效处理热熔造粒、破碎等加工过程产生的有机废气、粉尘及恶臭等废气污染物的防治对策与措施。

  8. Determination of Cd, Cr, Hg and Pb in plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision-reaction interface technology.

    Science.gov (United States)

    Santos, Mirian C; Nóbrega, Joaquim A; Cadore, Solange

    2011-06-15

    A procedure based on the use of a quadrupole inductively coupled plasma-mass spectrometer equipped with a collision-reaction interface (CRI) for control of spectral overlap interferences was developed for simultaneous determination of Cd, Cr, Hg, and Pb in plastics from waste electrical and electronic equipment (WEEE). The injection of H(2) and He (80 and 60 mL min(-1), respectively) into the sampled plasma, colliding and reacting with potentially interfering polyatomic ions, allows interference-free determination of chromium via its isotopes (52)Cr and (53)Cr that are freed from overlap due to the occurrence of (40)Ar(12)C(+), (40)Ar(12)C(1)H(+), (36)S(16)O(+) or (1)H(36)S(16)O(+). Cadmium, Hg and Pb were directly determined via their isotopes (110)Cd, (111)Cd, (112)Cd, (199)Hg, (200)Hg, (201)Hg, (202)Hg, (206)Pb, (207)Pb, and (208)Pb, without using CRI. The CRI can be quickly activated or deactivated before each analyte measurement. Limits of detection for (52)Cr were 0.04 or 0.14 μg L(-1) with He or H(2) injected in CRI. Cadmium and Pb have LODs between 0.02 and 0.08 μg L(-1) and Hg had 0.93-0.98 μg L(-1), without using CRI. Analyte concentrations for samples varied from 16 to 43, 1 to 11, 4 to 12, and 5 to 13 mg kg(-1) for Cr, Cd, Hg and Pb, respectively.

  9. Reciclagem de embalagens plásticas flexíveis: contribuição da identificação correta Flexible plastic packaging recycling: the contribution of the correct identification

    Directory of Open Access Journals (Sweden)

    Leda Coltro

    2013-01-01

    , folha de alumínio, é proposta a inclusão da identificação destes materiais na embalagem.Packages have high rotation as they become municipal solid waste just after the consumption of the product. Therefore, packages should be labeled with identification of the material they are made of in order to help the recycling chain. Many products made from plastics show a resin identification code - usually from 1 to 7 inside a three-arrow triangle above a monogram - aimed at identifying the type of plastic the product is made of, and help its separation and later recycling. In other words, one aims to facilitate recovery of plastics discarded with the municipal solid waste. In this study we collected data on the resin identification code in flexible plastic packages to assess whether the guidelines for material identification are being followed. The data collection was performed in a total of 509 flexible plastic packages used for packing food and non-food products available in the Brazilian market. Even though the NBR 13230 Brazilian standard is already in its second revision, the resin identification code in plastic packages is still used in a very heterogeneous fashion. Approximately 50% of the packages had the resin identification code. Up to 30% of some packages showed incorrect material identification code. Therefore, misinformation still occurs in the Brazilian market concerning the type of material for plastic packaging - including lack of the resin identification code and incorrect form of identification code in the plastic packaging. Both of these problems have negative effects on the plastic recycling chain. We propose that other materials used in flexible plastic packages, e.g. aluminum foil, should also be identified, in order to make the separation and recycling easier.

  10. Recycling liquid effluents in a ceramic industry

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Almeida, B.; Almeida, M.; Martins, S.; Alexandra Macarico, V.; Tomas da Fonseca, A.

    2016-08-01

    In this work is presented a study on the recycling of liquid effluents in a ceramic installation for sanitary industry. The effluents were characterized by X-ray diffraction and inductively coupled plasma to evaluate their compositions. It was also assessed the daily production rate. Several glaze-slurry mixtures were prepared and characterized according to procedures and equipment of the company's quality laboratory. The results show that for most of the properties, the tested mixtures exhibited acceptable performance. However, the pyro plasticity parameter is highly influenced by the glaze content and imposes the separation of glaze and slurry liquid effluents. In addition, it is necessary to invest on a storage plant, including tanks with constant stirring and a new pipeline structure to implement the reincorporation method on the slurry processing. (Author)

  11. Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management.

    Science.gov (United States)

    Schlummer, Martin; Gruber, Ludwig; Mäurer, Andreas; Wolz, Gerd; van Eldik, Rudi

    2007-04-01

    There is an increasing interest in the end-of-life management of polymers present in waste electrical and electronic equipment (WEEE). This is mainly due to high recycling and recovery quotas set by the European WEEE directive, which can only be fulfilled by including the plastic fraction in recycling and recovery approaches. Previous studies identified a high material diversity and various contaminants in WEEE plastics, including heavy metals, polybrominated biphenyls (PBB), diphenyl ethers (PBDE), as well as polybrominated dibenzodioxins and dibenzofurans (PBDD/F). These substances are regulated by European directives that limit their levels in marketable products. Consequently, both material diversity and contaminants are strong arguments against material recycling and point to hazardous waste treatment. However, recent developments in the production of flame retardants and electrical and electronic goods aimed to reduce contaminants and material diversity. Thus, the present study summarises updated contaminant levels of plastic fractions of European WEEE, as well as data on materials in waste housing polymers. Material characterisation revealed housing fractions to be interesting sources for polymer recycling, which however has to implement potent material separation and/or bromine elimination techniques. With respect to contaminants, our data indicate an effective phase-out of PBB, but still high levels of PBDE and PBDD/F are found. Sources and implications for the material recycling and thermal recovery approaches are discussed in detail.

  12. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational...... and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed...... and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought. (C) 2009 Elsevier Ltd. All rights reserved....

  13. Potential environmental benefits of improving recycling of polyolefines – LCA of Magnetic density separation (MDS) developed in the EU FP7 funded project W2Plastic

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Bonou, Alexandra

    2012-01-01

    The core of the EU FP7 funded project W2Plastic is development of a magnetic density separation (MDS) of polyolefines in order to improve the sorting efficiency of these polymer types in different waste fractions. As part of the project a life cycle assessment is performed in order to firstly...

  14. Comparison of recycling outcomes in three types of recycling collection units.

    Science.gov (United States)

    Andrews, Ashley; Gregoire, Mary; Rasmussen, Heather; Witowich, Gretchen

    2013-03-01

    Commercial institutions have many factors to consider when implementing an effective recycling program. This study examined the effectiveness of three different types of recycling bins on recycling accuracy by determining the percent weight of recyclable material placed in the recycling bins, comparing the percent weight of recyclable material by type of container used, and examining whether a change in signage increased recycling accuracy. Data were collected over 6 weeks totaling 30 days from 3 different recycling bin types at a Midwest University medical center. Five bin locations for each bin type were used. Bags from these bins were collected, sorted into recyclable and non-recyclable material, and weighed. The percent recyclable material was calculated using these weights. Common contaminates found in the bins were napkins and paper towels, plastic food wrapping, plastic bags, and coffee cups. The results showed a significant difference in percent recyclable material between bin types and bin locations. Bin type 2 was found to have one bin location to be statistically different (p=0.048), which may have been due to lack of a trash bin next to the recycling bin in that location. Bin type 3 had significantly lower percent recyclable material (precycling bin and increased contamination due to the combination of commingled and paper into one bag. There was no significant change in percent recyclable material in recycling bins post signage change. These results suggest a signage change may not be an effective way, when used alone, to increase recycling compliance and accuracy. This study showed two or three-compartment bins located next to a trash bin may be the best bin type for recycling accuracy.

  15. 回收醇净化工艺技术在增塑剂酯化工段中的应用%Purification Technology of Recycled Alcohol in the Plasticizer Esterification Section

    Institute of Scientific and Technical Information of China (English)

    周江云; 张磊

    2012-01-01

    Through discussion on the "back flush", extension the reaction time and the impact on product quality which occurred in the process of production of plasticizer, this paper studies the purification technology of recycled alcohol in the plasticizer esterification Section. The application of this technology improves output and production efficiency significantly, but also reduces the consumption of raw materials, product quality be improved and stable.%针对增塑剂生产中回收醇使用时出现的酯化反应“冲料”、延长酯化时间、影响产品质量等现象。研究了回收醇净化工艺技术在增塑剂酯化工段中的应用。该项技术的应用,明显提高了生产产量及生产效率,还降低了原料消耗,产品质量不仅得到提高还能保持稳定。

  16. Recycling Today Makes for a Better Tomorrow.

    Science.gov (United States)

    Raze, Robert E., Jr.

    1992-01-01

    Today's children must be educated about solid waste management and recycling to reduce the amount of waste that goes into landfills. The article describes what can be recycled (newspapers, corrugated cardboard, paper, glass, aluminum, textiles, motor oil, organic wastes, appliances, steel cans, and plastics). It also lists student environment…

  17. Sustainability and the Recycling of Words

    Science.gov (United States)

    Miller, Donna L.; Nilsen, Alleen Pace

    2011-01-01

    With the mention of "sustainability" and "recycling," most people think about reusing paper, plastic, metal, and glass, but what the authors discovered when they embarked on a word-study unit is that the sustainability movement has also brought about the recycling of words. The authors were team-teaching a language awareness class taken by…

  18. Reciclagem de sacolas plásticas de polietileno em termos de inventário de ciclo de vida Recycling of polyethylene plastic bags in terms of life cycle inventory

    Directory of Open Access Journals (Sweden)

    Guilherme de C. Queiroz

    2010-01-01

    Full Text Available O CETEA realizou um estudo de Avaliação de Ciclo de Vida (ACV de sacolas plásticas de polietileno (PE, com ênfase no inventário de ciclo de vida (ICV, coletando dados para o ano 2003. O objetivo deste artigo é apresentar parte deste estudo completo, concentrando-se na influência da taxa de reciclagem de polietileno sobre o ICV das sacolas plásticas de PE no Brasil. Para gerar os dados da média brasileira de eteno, PEAD-APM, PEAD/PELBD e PEBD, os dados foram compilados tendo em conta, respectivamente, 61, 100, 78 e 63% das empresas envolvidas em cada fase do processo de produção. Depois que as empresas concordaram em colaborar com o estudo, questionários apropriados foram preparados e enviados para a coleta de dados. As empresas foram responsáveis tanto pela coleta dos dados como pelo preenchimento dos questionários. O cálculo da média brasileira da reciclagem de polietileno foi realizado considerando os dados fornecidos por sete empresas. O cálculo da média brasileira da produção das sacolas plásticas de PE foi realizado considerando os dados fornecidos por quatro empresas. Levando em conta as categorias de impacto adotadas neste estudo tem-se como resultado a demonstração de que a reciclagem ajuda a melhorar o perfil ambiental das sacolas plásticas de PE medido com dados de ICV.CETEA has conducted a Life Cycle Assessment (LCA study of PE (polyethylene plastic bags with emphasis on the Life Cycle Inventory (LCI, collecting data for the reference year 2003. The goal of this paper is to present part of this complete study, focusing on the influence of polyethylene recycling rate on the LCI of PE plastic bags in Brazil. For generating the Brazilian average data of ethylene, HDPE-HMW, HDPE/LLDPE and LDPE, the data were compiled taking into account, respectively, 61, 100, 78 and 63% of the companies involved in each phase of the production process. After the companies agreed to collaborate with the Project, appropriate

  19. 两种形态棉秆与回收塑料制备复合板材的工艺%Composite Processing Technology from Cotton Stalk Fiber and Particles Combined with Two Types of Recycled Plastics

    Institute of Scientific and Technical Information of China (English)

    蔺焘; 郭文静; 高黎; 常亮; 王正

    2011-01-01

    采用两种形态的棉秆与两种塑料复合,制备棉秆/塑料复合板材,分析棉秆形态、塑料种类及工艺因子对复合板材性能的影响.结果表明:刨花态棉秆复合板材的性能优于搓丝态棉秆,热压温度、聚丙烯比例和板材密度对复合板材的性能有显著影响.优化条件下制成的棉秆搓丝/聚丙烯复合板材性能,超过室外结构用刨花板性能指标要求.%The authors processed cotton stalks into fiber and particles, and combined them with recycled plastics, polypropylene(PP)and polyethylene (PE), to prepare cotton stalk fiber/plastic composites by hot pressing. The composite panel properties were tested to evaluate the effects caused by the cotton stalk shapes and panel processing factors. The results showed that; 1) The composites made from the cotton stalk particles had better properties than those made from cotton stalk fibers; 2) Density, hot-pressing temperature and the cotton stalk/plastic ratio had a great effect on the cotton-stalk-fiber/polypropylene panel properties. Under optimized conditions, the cotton-stalk-fiber /polypropylene panel properties exceeded the specifications of national standard GB/T 4897. 6-2003,GB/T 4897. 7-2003 for structural particleboards.

  20. Recovery of carbon fibres and production of high quality fuel gas from the chemical recycling of carbon fibre reinforced plastic wastes

    OpenAIRE

    Yildirir, E; Onwudili, JA; Williams, PT

    2014-01-01

    A solvolysis process to depolymerize the resin fraction of carbon fibre reinforced plastic waste to recover carbon fibre, followed by hydrothermal gasification of the liquid residual product to produce fuel gas was investigated using batch reactors. The depolymerisation reactions were carried out in ethylene glycol and ethylene glycol/water mixtures at near-critical conditions of the two solvents. With ethylene glycol alone the highest resin removal of 92.1% was achieved at 400 °C. The additi...

  1. Formation of PBDD/F from PBDE in electronic waste in recycling processes and under simulated extruding conditions.

    Science.gov (United States)

    Zennegg, Markus; Schluep, Mathias; Streicher-Porte, Martin; Lienemann, Peter; Haag, Regula; Gerecke, Andreas C

    2014-12-01

    The increasing volumes of waste electrical and electronic equipment (WEEE) in Europe and developing economies demand for efficient disposal solutions. However, WEEE also contains toxic compounds and, therefore, there is a need for recycling technologies for WEEE that creates revenue without causing environmental harm. Among other fast developing economies, South Africa is tempting to make use of recycled plastic. Brominated flame retardants (BFRs) are additives used to protect plastic materials in electrical and electronic equipment (EEE) against ignition. Some BFRs are known persistent organic pollutants (POPs) and some BFRs can be transformed into highly toxic compounds such as polybrominated dibenzofurans and dioxins (PBDD/Fs). In this study, the contents of critical BFRs, i.e. polybrominated diphenyl ethers, and highly toxic PBDD/Fs were measured in WEEE material from Switzerland and South Africa. The formation of PBDD/Fs has been observed in two South African recycling processes and under controlled laboratory conditions. Total PBDE-contents in the South African and Swiss plastic waste varied between 1×10(3) and 7×10(6) μg kg(-1). A few WEEE plastic fractions exceeded the RoHS limit of 1×10(6) μg kg(-1) for PBDEs and thus they could not be used for recycling products without special treatment. The total content of ∑PBDFs was around 1×10(3) μg kg(-1). Such contents in materials do not pose a risk for consumer under normal conditions. Workers at recycling plants might be at risk. The measured formation rates of PBDFs were between 2×10(-5) and 2×10(-4)∑PBDE(-1) min(-1).

  2. Production of Methane and Water from Crew Plastic Waste

    Science.gov (United States)

    Captain, Janine; Santiago, Eddie; Parrish, Clyde; Strayer, Richard F.; Garland, Jay L.

    2008-01-01

    Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.

  3. Propelling plastics into the circular economy - weeding out the toxics first.

    Science.gov (United States)

    Leslie, H A; Leonards, P E G; Brandsma, S H; de Boer, J; Jonkers, N

    2016-09-01

    The Stockholm Convention bans toxic chemicals on its persistent organic pollutants (POPs) list in order to promote cleaner production and prevent POPs accumulation in the global environment. The original 'dirty dozen' set of POPs has been expanded to include some of the brominated diphenyl ether flame retardants (POP-BDEs). In addition to cleaner production, there is an urgent need for increased resource efficiency to address the finite amount of raw materials on Earth. Recycling plastic enhances resource efficiency and is part of the circular economy approach, but how clean are the materials we are recycling? With the help of a new screening method and detailed analyses, we set out to investigate where these largely obsolete BDEs were showing up in Dutch automotive and electronics waste streams, calculate mass flows and determine to what extent they are entering the new product chains. Our study revealed that banned BDEs and other toxic flame retardants are found at high concentrations in certain plastic materials destined for recycling markets. They were also found in a variety of new consumer products, including children's toys. A mass flow analysis showed that 22% of all the POP-BDE in waste electrical and electronic equipment (WEEE) is expected to end up in recycled plastics because these toxic, bioaccumulative and persistent substances are currently not effectively separated out of plastic waste streams. In the automotive sector, this is 14%, while an additional 19% is expected to end up in second-hand parts (reuse). These results raise the issue of delicate trade-offs between consumer safety/cleaner production and resource efficiency. As petroleum intensive materials, plastic products ought to be repaired, reused, remanufactured and recycled, making good use of the 'inner circles' of the circular economy. Keeping hazardous substances - whether they are well known POPs or emerging contaminants - out of products and plastic waste streams could make these

  4. Application of plastic trash sorting technology in separating waste plastic mulch films from impurities%塑料垃圾分选技术在废旧地膜与杂质分离中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    石鑫; 牛长河; 乔园园; 张海春; 王学农

    2016-01-01

    Plastic film mulching technique has been using widely in China because of it’s notable features such as raising temperature,inhibiting weed growth,promoting crop maturity and increasing production. A large number of used plastic mulch films which have not be recycled and accumulated in the soil year after year and results serious waste plastic mulch film pollution. Recycled waste plastic mulch films twined each other with other impurities and makes the mulch film utilization becomes difficult. Some recycled waste plastic mulch films has been stacked or burned on field ridge freely which leads secondary pollution.Thus, the waste plastic mulch film pollution problems should be cracked from it’s beginning.Agricultural waste plastic mulch film and impurities separation technology is key links during mechanized mulch films recycling and reusing. Waste plastic mulch film as a valuable renewable resource and be important part of plastic production which comes from waste plastic mulch film by separation process. Effective recycling and reusing of waste plastic mulch film can improve economic benefits and even what’s more is that it can decrease the secondary pollution probability which caused by improper waste plastic mulch film handling. Some documents shows that the thickness of plastic mulch film used in foreign countries is generally above 0.12mm which keep the tensile strength of plastic mulch film be good enough and promote the rolling recycling machine development.Waste plastic mulch film is clean and complete which recycled by rolling recycling machine and it can be reused directly.At present, there is no relevant report about technology and equipment for waste plastic mulch film separation at abroad.The thickness of the plastic mulch film used generally in China between 0.004-0.008mm which leads the tensile strength not good enough after harvesting season and can not be recycled by rolling way. The only way which can recycling waste plastic mulch film by

  5. Complete equipments and technology for polyester industrial yarn directly spun from recycled polyester%再生聚酯直纺涤纶工业丝成套设备技术探讨

    Institute of Scientific and Technical Information of China (English)

    许海军

    2013-01-01

    采用回收聚酯(PET)瓶片,通过液相增黏直接纺丝生产涤纶工业丝,探讨了再生聚酯直纺涤纶工业丝的成套设备和工艺技术.结果表明:对干燥设备和螺杆挤压机进行改造,利用双级熔体预过滤器和液相增黏系统,聚酯瓶片再生增黏后特性黏数可达(0.85±0.01) dL/g;该成套设备的关键是采用单轴式液相增黏反应器;调整纺丝和拉伸工艺,直接纺丝生产的涤纶工业丝线密度为1 189 dtex,断裂强度为7.98 cN/dtex,断裂伸长率为14.66%,达到了常规固相增黏法生产的涤纶工业丝的性能指标.%Polyester (PET) industrial yam was prepared from recycled PET bottle flake via liquid-state polycondensation and directly spinning process.The complete equipment and process technology for directly spinning recycled PET industrial yarn were discussed.The results showed that the PET bottle flake can be regenerated with the intrinsic viscosity up to (0.85 ±0.01) dL/g after regeneration and polycondensation as the drying unit and screw extruder were reformed and a two-stage melt prefilter and liquid-state polycondensation system were applied; the key to the complete equipment was to introduce an uniaxial liquid-state polycondensation reactor; the directly-spun PET industrial yarn had the linear density of 1 189 dtex,breaking tenacity 7.98 cN/dtex and elongation at break 14.66% after adjusting the spinning and drawing processes,which were equal to the physical index of PET industrial yarn prepared by solid-state polycondensation.

  6. Research on Synergy Mechanism of Prices of Industry Chain on Recycling the Waste Electrical and Electronic Equipment%废旧电器回收再生利用产业链价格协同机理研究

    Institute of Scientific and Technical Information of China (English)

    郭汉丁; 张印贤; 郭伟; 马辉

    2013-01-01

    Industry of recycling the waste electrical and electronic equipment exist many problems, such as development block, inferiority given priority, condition by the behind, and fixed low technique. That reflects the bottleneck of the industry development lying in price coordination of the industry chain. The study on the question is short in domestic and abroad. The nature of form process of the industry chain on recycling the waste electrical and electronic equipment is the course of the value circulation. Based on the value circulation, the prices of industry chain are taken shape. And the prices are affected by macroscopic factors, environment support elements, business growing factors, and characteristic factors of the industry chain, but key factors are government subsidy, adjusting taxes and dues, and capital of nature resources. The capital of nature resources is the order parameter. It will promote movement in coordination with industry chain prices and the industry development by efficient policies and scientific capital of nature resources.%废旧电器回收再生利用产业发展受阻、“劣币驱逐良币”、下游纵向制约、技术低端锁定等问题,集中反映了产业发展的瓶颈在于产业链价格协同.国内外废旧电器回收再生利用产业链价格协同机理研究尚属鲜见.废旧电器产业链形成过程的本质是价值循环的过程,基于价值循环内在地构成了产业链各环节的价格,这些价格受到宏观因素、环境支撑因素、企业成长因素及产业特征因素的综合影响,政府补贴与税费调节、自然资源资本是影响产业链价格的关键因素,废旧电器回收再生利用产业链价格协同运行的序参量是自然资源资本,有效的政策调控和科学的自然资源资本度量,将促进其产业链价格协同运行和产业健康发展.

  7. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  8. Sorting Plastic Waste in Hydrocyclone

    Directory of Open Access Journals (Sweden)

    Ernestas Šutinys

    2011-02-01

    Full Text Available The article presents material about sorting plastic waste in hydrocyclone. The tests on sorting plastic waste were carried out. Also, the findings received from the performed experiment on the technology of sorting plastic waste are interpreted applying an experimental model of the equipment used for sorting plastics of different density.Article in Lithuanian

  9. Pollution Characteristics of Polybrominated Diphenyl Ethers in Soils from Waste Plastic Recycling Region in China%典型废旧塑料处置地土壤中多溴联苯醚污染特征

    Institute of Scientific and Technical Information of China (English)

    曾甯; 姚建; 唐阵武; 黄启飞; 金璐; 何洁

    2013-01-01

    Levels, composition and distribution characteristics of 21 polybrominated diphenyl ethers (PBDEs) were investigated in surface soils from a typical waste plastic recycling region in North China. The result showed that the concentrations of total PBDEs ranged from 1. 25 to 3673. 41 ng/g with a mean value of 749. 29 ng/g. BDE209 was the most dominant congener ( > 92% ) of PBDEs in soils. The PBDE levels in the workshop soils were higher than those in the road soils and surrounding soils. The industrial decabromodiphenyl added in plastic was the main source of PBDEs in the soils of the region. Compared with previous studies, the results showed that the PBDE levels in soils in this study were similar to those in some e-waste recycling regions of China. Moreover, the concentrations of PBDEs in this study were 1 to 3 orders of magnitude higher than those reported in other urban soils in China, which should be paid more attention regarding to the potential higher environmental risks of PBDE in these soils.%选择我国北方典型废旧塑料处置地为研究区域,对土壤中21种PBDEs(多溴联苯醚)的含量、同系物组成和分布特征进行了研究.结果表明,该区域土壤中w(∑PBDEs)为1.25 ~3 673.41 ng/g,平均值为749.29 ng/g,其中w(BDE209)占w(∑PBDEs)的92%以上.整体上,处置作坊内土壤中w(∑PBDEs)明显高于作坊间道路土壤和处置地周边土壤.塑料中添加的十溴联苯醚工业品是该区域土壤中PBDEs的主要来源.该区域土壤PBDEs污染水平与我国电子废物集中处置场地相当,高出我国一般城市及工业城市土壤1~3个数量级,是我国另一类PBDEs高污染区,其环境风险性应引起足够的重视.

  10. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Quarry Equipment Yearbook 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This issue of the journal is devoted to an annual review of developments in the equipment used for minerals extraction and recycling. For each of 12 types of equipment, an editorial review is presented of developments and a tabular presentation of suppliers' ranges and contact information, including e-mail addresses and websites. The sections are: asphalt plants, conveyors, crushers and screens, drill rigs, dump trucks, excavators, hammers, pumps, tyres, weighbridges, wheel loaders and wheel washers.

  12. Mechanochemical treatment of polymeric materials. A low environmental impact solution for mixed plastic waste recycling; Il trattamento meccanochimico di materiali polimerici: una soluzione a basso impatto ambientale per il riciclaggio di plastiche eterogenee

    Energy Technology Data Exchange (ETDEWEB)

    Padella, F.; Magini, M.; Masci, A. [ENEA Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1999-07-01

    Standard polymeric materials as well as mixtures of them coming from urban wastes, were milled at near room temperature in suitable milling conditions. All the experiments carried out gave a material having a homogeneous fibrous aspect. Structural and thermal analysis of the resulting material clearly shows that the mechanochemical action is able to promote a deep destructuring of the starting networks with a very high energy storage in the milled materials. Further, the fibrous material can be easily consolidated whatever the starting composition of the mixture. preliminary results, coming from mechanical tests on compacted materials, lead to an optimistic conclusion as far as plastic recycling by ball milling is concerned. [Italian] Materiali polimerici standard, cosi' come miscele di materiali plastici provenienti da rifiuti solidi urbani, sono stati macinati a temperatura pressoche' ambiente in opportune condizioni operative. Tutti gli esperimenti hanno prodotto un materiale morfologicamente omogeneo di aspetto fibroso. Le analisi termiche e strutturali condotte sui prodotti mostrano chiaramente come l'azione meccanochimica sia in grado di promuovere una forte destrutturazione del materiale di partenza, accompagnata da un evidente accumulo di energia nel prodotto macinato. In aggiunta, il materiale fibroso puo' essere facilmente consolidato in forme finite, indipendemente dalla composizione di partenza. I risultati preliminari delle prove meccaniche eseguite sui materiali consolidati inducono a conclusioni ottimistiche relativamente all'utilizzo di tecniche di macinazione ad alta energia per il riciclaggio di materiali plastici.

  13. Chemical recycling of scrap composites

    Science.gov (United States)

    Allred, Ronald E.; Salas, Richard M.

    1994-01-01

    There are no well-developed technologies for recycling composite materials other than grinding to produce fillers. New approaches are needed to reclaim these valuable resources. Chemical or tertiary recycling, conversion of polymers into low molecular weight hydrocarbons for reuse as chemicals or fuels, is emerging as the most practical means for obtaining value from waste plastics and composites. Adherent Technologies is exploring a low-temperature catalytic process for recycling plastics and composites. Laboratory results show that all types of plastics, thermosets as well as thermoplastics, can be converted in high yields to valuable hydrocarbon products. This novel catalytic process runs at 200 C, conversion times are rapid, the process is closed and, thus, nonpolluting, and no highly toxic gas or liquid products have been observed so no negative environmental impact will result from its implementation. Tests on reclamation of composite materials show that epoxy, imide, and engineering thermoplastic matrices can be converted to low molecular weight hydrocarbons leaving behind the reinforcing fibers for reuse as composite reinforcements in secondary, lower-performance applications. Chemical recycling is also a means to dispose of sensitive or classified organic materials without incineration and provides a means to eliminate or reduce mixed hazardous wastes containing organic materials.

  14. ELETROCOAGULATION-FLOTATION APPLIED TO THE TREATMENT OF WASTEWATER GERATED IN PLASTIC RECYCLING INDUSTRY = ELETROCOAGULAÇÃO-FLOTAÇÃO APLICADA AO TRATAMENTO DE EFLUENTES GERADOS NA INDÚSTRIA DE RECICLAGEM DE PLÁSTICOS

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cuba Teran

    2009-01-01

    Full Text Available An alternative for final disposal of the growing amount of plastic residues produced by the population has been their mechanical recycling witch demands washing plastic foils prior to industrial process. The produced wastewater is reused in the same industrial process. The present study presents Eletro-coagulation-Flotação (ECF as a form of treatment of effluents of recycling of plastics, the treatment is based on the electrolysis, coagulation and flotation with coagulant production in situ. This study used a pilot scale system in which chemical coagulation take place, starting from the passage of electric current for aluminum electrodes followed by sludge flakes formation. These solids were separated from the liquid phase by flotation due to the formation of micro bubbles of hydrogen, generated in the electrolysis of the water. The efficiency of the treatment was verified in terms of removal of Chemical Oxygen Demand (COD, ammonia nitrogen and turbidity, values obtained were of 80%, 80% and 90% respectively. There was also disinfection, being this an additional favorable characteristic of the process. The responsible factors for the efficiency were related to under current effluent hydraulic detention time, distance between the electrodes, pH and intensity of the electric current. = Uma alternativa para disposição da crescente quantidade de resíduos plásticos produzida pela população tem sido a reciclagem mecânica dos mesmos exigindo lavagem das embalagens a serem recicladas. O efluente produzido é reutilizado no próprio processo industrial. O presente estudo traz a Eletro-Coagulação-Flotação (ECF como forma de tratamento de efluente de reciclagem de plásticos. O tratamento é baseado na eletrólise, coagulação e flotação com produção in situ de coagulante. Neste estudo foi utilizado um sistema em escala piloto, no qual ocorreu a coagulação química, a partir da passagem de corrente elétrica por eletrodos de alum

  15. Characterization of plastic blends made from mixed plastics waste of different sources.

    Science.gov (United States)

    Turku, Irina; Kärki, Timo; Rinne, Kimmo; Puurtinen, Ari

    2017-02-01

    This paper studies the recyclability of construction and household plastic waste collected from local landfills. Samples were processed from mixed plastic waste by injection moulding. In addition, blends of pure plastics, polypropylene and polyethylene were processed as a reference set. Reference samples with known plastic ratio were used as the calibration set for quantitative analysis of plastic fractions in recycled blends. The samples were tested for the tensile properties; scanning electron microscope-energy-dispersive X-ray spectroscopy was used for elemental analysis of the blend surfaces and Fourier transform infrared (FTIR) analysis was used for the quantification of plastics contents.

  16. Energetic reuse: use of biogas from the organic matter as an alternative source to recycle plastics and supply cycle diesel engines; Reaproveitamento energetico: uso do biogas proveniente da materia organica como fonte alternativa para reciclar plasticos e alimentar motores do ciclo Diesel

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Priscila Alves; Santos, Rodolfo Esmarady Rocha dos [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2008-07-01

    Population growth and rising purchasing power due to the economic development driving the increased production of waste generated each year. Disposal these wastes is a major economic and environmental challenge, mainly by the concentration of plastics discarded without being used, and organic matter that decompose to produce methane, a major cause of global warming. Recycling waste plastics is a solution to minimize their disposal, but high energy consumption in this process becomes expensive, losing its economically. This leads to search for new alternatives for low cost energy. In the problem of disposal of organic matter may be the solution for recycling these wastes. The decomposition of organic matter produces a fuel (biogas) as a useful source energy to generate electricity required for the recycling process, as well as its use in flex-fuel engines. This system, double-cycle diesel fuel, has advantages not require technical changes in engine design and even the compression ratio. In the condition of dual-fuel, replacement of diesel can be up to 70% due to the use of biogas, but nothing prevents the engine to fire 100% diesel. The implementation of the recycling through the use of energy of urban wastes in Itajuba and the use of biogas on fleets, will bring socio-environmental benefits to the city and consequently the region around. Among these benefits may be pointed generating direct and indirect jobs primarily in the recycling process, reduction of odors at the landfill, mitigation of greenhouse gases, reducing diesel consumption among others. Among these benefits they can be mainly pointed the generation of direct and indirect employments in the recycling process, reduction of scents in the embankment, mitigation of effect gases stews, reduction of the diesel consumption among others. The study contributes to the solution of problems related to the final destination of the residues, for the use of the electric power generated starting from the biogas

  17. Recycling behaviour in healthcare: waste handling at work.

    Science.gov (United States)

    Vogt, Joachim; Nunes, Katia R A

    2014-01-01

    This article reviews the motivational factors for environmental behaviour in general, presenting a case study on recycling disposable plastics in hospitals. Results show that 90% of over 600 employees from six analysed hospitals in Germany reported that the recycling of disposable plastics on the wards makes sense from an environmental and economic point of view. The case study reports an assessment of recycling attitudes and problems of hospital staff, mainly nurses. Employees in eco-certified hospitals were much more satisfied and reported fewer problems with the recycling system. The gender effect was significant only for saving energy, while age correlated with nearly all reported pro-environmental behaviour at home. At work, the mere introduction of a recycling system was insufficient to achieve good recycling results. Based on the study findings, recommendations are given aimed at improving the safety and sustainability of the recycling system.

  18. Structural Engineering Properties of Fibre Reinforced Concrete Based On Recycled Glass Fibre Polymer (GFRP)

    OpenAIRE

    Adetiloye A; Ephraim M. E

    2015-01-01

    Glass fibre reinforced plastics (GFRP) based on resin recovered from recycling plastic waste has been shown to possess mechanical properties satisfying normative requirements. This paper investigates the flexural behavior of concrete beams reinforced with GFRP produced from resin recovered from recycled plastic wastes. A total of twelve of beams of sizes 150 ×150 ×900mm and 100 × 100 × 500mm reinforced with GFRP made from recycled glass fibre reinforced polymer was tested. The fle...

  19. Polybrominated diphenyl ethersin in plants from a plastic waste recycling area in China%废弃塑料处置地典型植物多溴二苯醚污染特征

    Institute of Scientific and Technical Information of China (English)

    金璐; 唐阵武; 张连振; 何洁; 陶义

    2014-01-01

    Levels and profiles of polybrominated diphenyl ethers ( PBDEs) were investigated in 13 plants from a typical plastic waste recycling site in north China, in order to understand the plant accumulation in the heavily polluted soils. The investigated results showed that the concentrations of 21 congeners of PBDEs ranged from 11.3 to 122 ng·g-1 dry weight (dw), with a mean value of 51.2 ng·g-1 dw. Compared with some previous studies, the results showed that PBDE levels in plants in this study were similar to those in some e-waste recycling areas, but much higher than those in other general areas. There was obvious difference among the plants. The highest concentration of PBDEs was detected in Pharbitis nil ( Linn.) Choisy. BDE 209 was the dominant congener ( mean 96.9%) in all samples, which ranged from 10.8 to 116 ng·g-1 . Among the other congeners, BDE 47 and BDE 208 were relatively higher but accounted for less than 1% of the total concentrations of 21 congeners. The PBDE congener profiles in these plant samples from our studied area exhibited more distinguishable sources from deca-BDE products than those in e-waste recycling areas and other areas.%为了解土壤高污染的废弃塑料处置地植物体多溴二苯醚( PBDEs)累积水平,对废弃塑料处置地13种典型植物中21种多溴二苯醚的浓度水平、组成和污染特征进行了研究.结果表明,该区域植物中∑PBDEs含量为11.3-122 ng·g-1,平均为51.2 ng·g-1,与我国电子废物处置地植物体污染水平相似,远高于一般区域植物体PBDEs污染水平.不同植物体内PBDEs的含量差异较大,其中牵牛花中PBDEs的含量最高,牛筋草中PBDEs含量最低.废弃塑料处置地植物体中BDE 209的含量为10.8-116 ng·g-1,为最主要的PBDEs同系物单体,平均占∑PBDEs的96.9%以上.其余单体中,以 BDE 47和 BDE 208等含量相对较高,但占总PBDEs总含量均不到1%.废弃塑料处置地植物体

  20. Research on the copper recycling process for the stripping solution of waste ABS plastic electro-plating%废ABS电镀件退镀液中铜的回收工艺研究

    Institute of Scientific and Technical Information of China (English)

    饶荣; 宋明; 成昊; 邱祖民

    2015-01-01

    ×aste ABS plastics were stripped with the solution mixed of hydrochloric acid and hydrogen perox-ide,and electrolytic process was employed to recycle copper aften stripping. Effects of process conditions on current efficiency and copper recovery rate,such as ampere density,electrolyte circulation flow,electrode spacing and elec-trolytic duration,were further studied through single factor and orthogonal test methods to determine the optimum pa-rameters of copper recovery processing. Finally,the optimal process conditions were carried out:Current density, 416. 0 A/m2;Electrode spacing,1. 4 cm;Solution circulation flow,3. 0 L/h;Electrolytic duration,40 min.%采用盐酸和双氧水构建的溶液对废ABS塑料电镀件进行退镀,退镀液中含铜、镍等金属,采用电解法回收退镀液中的铜。通过单因素及正交试验法,考察了电流密度、电解液循环流量、电极距、电解时间等工艺条件对电流效率及铜回收率的影响,确定了铜回收过程的最佳工艺参数:电流密度416.0 A/m2、电极距1.4 cm、溶液循环流量3.0 L/h、电解时间40 min。

  1. Research on Performance of Asphalt Modified by Polyethylene Made from Recycled Plastics%废旧塑料合成MPE颗粒对沥青改性效果的试验研究

    Institute of Scientific and Technical Information of China (English)

    王家主

    2011-01-01

    Granular modified polyethylene made from recycled plastics and tackifier can be added to asphalt mix plant to modify asphalt, which avoids the process of modifying asphalt in the factory. Two virgin asphalts, with their four components content tested, are chosen to study the MPE modified asphalt. Asphalts with different quantities of MPE are prepared by high speed shearing machine. And asphalt performance of every sample is tested, which varied with different MPE content, meanwhile, curves of performance versus MPE content are drawn. Last, all the test results and analysis indicate that MPE can obviously improve asphalt performances such as high temperature performance, aging resistance and anti-stripping. However, there is an optimal MPE content which is 6% of asphalt mass.%采用废旧塑料和增黏剂合成的MPE颗粒,可在道路沥青混合料拌和时直接投入,起到对道路沥青改性的作用,省去了在加工厂制备生产改性沥青的过程.为研究MPE对沥青的改性作用,选取两种基质沥青,测定其四组分含量,通过高速剪切设备制备不同MPE掺量的改性沥青,分别对其进行沥青性能的检测,绘制各项沥青性能随MPE掺量的变化曲线.试验结果表明,MPE对沥青的高温、老化和水稳定性能具有明显的改善作用,同时MPE存在一个最佳掺量,约为沥青质量的6%.

  2. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  3. Recycling of polymers: a review.

    Science.gov (United States)

    Ignatyev, Igor A; Thielemans, Wim; Vander Beke, Bob

    2014-06-01

    Plastics are inexpensive, easy to mold, and lightweight. These and many other advantages make them very promising candidates for commercial applications. In many areas, they have substantially suppressed traditional materials. However, the problem of recycling still is a major challenge. There are both technological and economic issues that restrain the progress in this field. Herein, a state-of-art overview of recycling is provided together with an outlook for the future by using popular polymers such as polyolefins, poly(vinyl chloride), polyurethane, and poly(ethylene terephthalate) as examples. Different types of recycling, primary, secondary, tertiary, quaternary, and biological recycling, are discussed together with related issues, such as compatibilization and cross-linking. There are various projects in the European Union on research and application of these recycling approaches; selected examples are provided in this article. Their progress is mirrored by granted patents, most of which have a very limited scope and narrowly cover certain technologies. Global introduction of waste utilization techniques to the polymer market is currently not fully developed, but has an enormous potential.

  4. Solid waste recycling in Rajshahi city of Bangladesh.

    Science.gov (United States)

    Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul

    2012-11-01

    Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Dual-channel Recycling Model of Waste Electrical and Electronic Equipment and Research on Effects of Government Subsidy%废旧电器电子产品双渠道回收模型及政府补贴作用研究

    Institute of Scientific and Technical Information of China (English)

    刘慧慧; 黄涛; 雷明

    2013-01-01

    目前我国的大部分废旧电器电子产品没有得到环保回收,回收市场上存在以有拆解资质的回收处理商为主导的正规渠道和无拆解资质的回收处理商主导的非正规渠道.鉴于此,本文建立了双渠道回收竞争模型,刻画了两种渠道各自的回收处理途径和盈利模式,给出了均衡时的回收价格和翻修比例,讨论了不同竞争情景下政府补贴的影响.结果发现当补贴额度较低时,政府补贴可以有效刺激回收量的增长、扶持正规企业的发展,但随着补贴的提升,补贴对回收总量的刺激作用减弱.研究还发现当翻修品价格较高时,旧货市场的存在可以帮助正规企业牵制非正规拆解商的发展,同时提高翻修质量门槛可以限制废旧品流向非正规处理渠道.%Most of waste electrical and electronic equipments have not been recycled and reused in an environment-friendly manner in China mainland where there exist two kinds of recycling channels: a regular channel with official qualification for disassembling e-waste products and an irregular channel without qualification. A dual-channel recycling model is built in this paper to describe price competition between qualified and unqualified recyclers in two channels which have different e-waste disposal approaches, and shows equilibrium recycling price and reusing ratio. Five competing scenarios and single-channel structure are discussed to explore the effects of government subsidy in two channels. Finally sensitivity analysis of parameters and numerical simulation are provided. It is found that when government subsidy is low, it can motivate the acquisition amount of e-waste products to increase greatly and help qualified recyclers win greater market share, however as subsidy increases, its role in promoting recycling reduces. To render the irregular channel absent from recycling market, the government needs to pay an extremely high subsidy fee. It is also found when the

  6. Sustainable reverse logistics network design for household plastic waste

    NARCIS (Netherlands)

    Bing, X.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2014-01-01

    Plastic recycling is a legal requirement and can yield environmental benefits. In the Netherlands, there is a complex network of various collection methods, separation centers, sorting centers and reprocessors. The first step of the recycling system, separating plastics from other waste, can occur w

  7. Sustainable reverse logistics network design for household plastic waste

    NARCIS (Netherlands)

    Bing, X.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2014-01-01

    Plastic recycling is a legal requirement and can yield environmental benefits. In the Netherlands, there is a complex network of various collection methods, separation centers, sorting centers and reprocessors. The first step of the recycling system, separating plastics from other waste, can occur

  8. Effect of cotton stalk pattern and screening size on properties of cotton stalk/recycled plastic composite panels%棉秆形态对棉秆/回收塑料复合板性能的影响

    Institute of Scientific and Technical Information of China (English)

    蔺焘; 郭文静; 高黎; 常亮; 王正

    2011-01-01

    Cotton stalk particles and cotton stalk fibers were compounded with recycled polyethylene separately and 2 kinds of cotton stalk/plastic composite panels were formed using hot pressing. The effects of different cotton stalk shapes and screening of cotton stalk on the properties of the composite panels were evaluated. The results showed that: (1) The physical and mechanical properties of the composite panels made of screened fibers or particles were better than those of the unscreened fibers or particles. (2) The physical and mechanical properties of the composite panels made of cotton stalk particles were better than those of cotton stalk fibers. (3) The properties of the composite panels covered with poplar veneers on the surface, such as MOR was 42.2 Mpa, MOE was 6 010 Mpa, 24 h TS was 8.11% , IB was 1.19 Mpa, could meet the demanded Values of the particleboard for load-bearing boards for use in humid conditions according to National Standards GB/T 4897.7 -2003.%采用2种不同工艺形态(搓丝纤维态和刨花态)的棉秆与聚乙烯塑料复合,制备棉秆/回收塑料复合板材,研究了棉秆形态和筛分值对复合板材物理力学性能的影响.结果表明:(1)筛分过的棉秆搓丝和刨花制备复合板材的各项物理力学性能均优于未筛分的棉秆搓丝与刨花制备出的复合板材;(2)棉秆刨花制备复合板材的各项物理力学性能均优于棉秆搓丝制备出的复合板材;(3)基材表面覆单板之后复合板材的MOR达到42.2 MPa,MOE达到6 010 MPa,24hTS为8.11%,IB为1.19 MPa,均满足刨花板国家标准GB/T 4897.7 - 2003——在潮湿状态下使用的增强结构用板的性能指标.

  9. Sustainable Materials Management (SMM) Web Academy Webinar: Recycling Right: Tactics and Tools for Effective Residential Outreach (Part 1)

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  10. Sustainable Materials Management (SMM) Web Academy Webinar: Recycling Right: Tactics and Tools for Effective Residential Outreach (Part 2)

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  11. Plastic Surgery

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A A ... forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word "plastic" ...

  12. Preconceptual Design Description for Caustic Recycle Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

    2008-04-12

    The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

  13. Waste Printed Circuit Board (PCB) Recycling Techniques.

    Science.gov (United States)

    Ning, Chao; Lin, Carol Sze Ki; Hui, David Chi Wai; McKay, Gordon

    2017-04-01

    With the development of technologies and the change of consumer attitudes, the amount of waste electrical and electronic equipment (WEEE) is increasing annually. As the core part of WEEE, the waste printed circuit board (WPCB) is a dangerous waste but at the same time a rich resource for various kinds of materials. In this work, various WPCB treatment methods as well as WPCB recycling techniques divided into direct treatment (landfill and incineration), primitive recycling technology (pyrometallurgy, hydrometallurgy, biometallurgy and primitive full recovery of NMF-non metallic fraction), and advanced recycling technology (mechanical separation, direct use and modification of NMF) are reviewed and analyzed based on their advantages and disadvantages. Also, the evaluation criteria are discussed including economic, environmental, and gate-to-market ability. This review indicates the future research direction of WPCB recycling should focus on a combination of several techniques or in series recycling to maximize the benefits of process.

  14. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  15. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  16. Household waste recycling behaviour in South Africa - has there been progress in the last 5 years?

    CSIR Research Space (South Africa)

    Strydom, Wilma F

    2016-10-01

    Full Text Available towns and rural areas lag even further behind in terms of dedicated recycling households, at only 2.6%. Of the four paper and packaging recyclables surveyed (plastic, paper, glass, metal), plastic showed the largest increase in percentage of households...

  17. Chemical or feedstock recycling of WEEE products

    NARCIS (Netherlands)

    Tukker, A.

    2012-01-01

    This chapter reviews initiatives with regard to chemical or feedstock recycling of plastics waste from electrical and electronic products. eurostat estimates the amount of waste from electrical and electronic products that is collected is 2.2 million tonnes. Roughly 20% of this waste consists of pla

  18. Design by recycling

    Energy Technology Data Exchange (ETDEWEB)

    Catalli, V. [By Design Consultants, Ottawa, ON (Canada)

    2001-07-01

    A 'cradle to cradle' concept of building materials' lifecycle is presented in an effort to highlight the advantages of designing buildings in such a way as to ensure sound waste management strategies and practices, facilitate future renovation and demolition by reducing the generation of wastes, and allow for individual materials to be reused and recycled for use in new projects or products, continuing their lifecycle by diverting them from landfill. Some techniques to achieve these objectives include (1) avoidance of concealed, fixed connections, (2) use of reversible type connections, (3) use of materials that have an inherent finish, (4) use of simplified assemblies and modular materials. Examples of 'design for recycling' are cited, including Ottawa's Grace Hospital for the waste management program developed for use during its demolition, and the Mountain Equipment Co-Op for various features such as exposed timber posts with bolted connections, removable interior partitions with inherent finishes and exposed removable light and electrical fixtures. tabs., figs.

  19. Green Science: Revisiting Recycling

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  20. Prediction and analysis model of temperature and its application to a natural ventilation multi-span plastic greenhouse equipped with insect-proof screen

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-zhen; HE Yong; ZHANG Yu-bao; MIAO Xiang-wen

    2005-01-01

    The natural ventilation widely used in greenhouses has advantages of saving energy and reducing expense. In order to provide information for climate control of greenhouse, a model was developed to predict the variation of air temperature in the naturally ventilated greenhouse equipped with insect-proof screen. Roof ventilation and combined roof and sidewall ventilation were considered in the model. This model was validated against the results of experiments conducted in the greenhouse when the wind was parallel to the gutters. The model parameters were determined by the least squares method. In the used model, effects of wind speed and window opening height on the air temperature variation were analyzed. Comparison between two types of ventilation showed that there existed a necessary ventilation rate which results in air temperature decrease in natural ventilation under special climatic conditions. In our experiments when wind speed was less than 3.2ms-1, wind had a more gradual effect on greenhouse temperature for roof ventilation, compared with combined roof and sidewall ventilation, which had greater air temperature decrease than roof ventilation only.

  1. Quality control by HyperSpectral Imaging (HSI) in solid waste recycling: logics, algorithms and procedures

    Science.gov (United States)

    Bonifazi, Giuseppe; Serranti, Silvia

    2014-03-01

    In secondary raw materials and recycling sectors, the products quality represents, more and more, the key issue to pursuit in order to be competitive in a more and more demanding market, where quality standards and products certification play a preheminent role. These goals assume particular importance when recycling actions are applied. Recovered products, resulting from waste materials, and/or dismissed products processing, are, in fact, always seen with a certain suspect. An adequate response of the industry to the market can only be given through the utilization of equipment and procedures ensuring pure, high-quality production, and efficient work and cost. All these goals can be reached adopting not only more efficient equipment and layouts, but also introducing new processing logics able to realize a full control of the handled material flow streams fulfilling, at the same time, i) an easy management of the procedures, ii) an efficient use of the energy, iii) the definition and set up of reliable and robust procedures, iv) the possibility to implement network connectivity capabilities finalized to a remote monitoring and control of the processes and v) a full data storage, analysis and retrieving. Furthermore the ongoing legislation and regulation require the implementation of recycling infrastructure characterised by high resources efficiency and low environmental impacts, both aspects being strongly linked to the waste materials and/or dismissed products original characteristics. For these reasons an optimal recycling infrastructure design primarily requires a full knowledge of the characteristics of the input waste. What previously outlined requires the introduction of a new important concept to apply in solid waste recycling, the recycling-oriented characterization, that is the set of actions addressed to strategically determine selected attributes, in order to get goaloriented data on waste for the development, implementation or improvement of recycling

  2. Design and Application of Online Recycling Equipment of Cut Tobacco in Rejects from Cigarette Maker%卷烟机剔除梗签物中烟丝在线分离回用装置的设计与应用

    Institute of Scientific and Technical Information of China (English)

    许建勇; 陶智麟; 杨志雄; 苏朝龙

    2015-01-01

    In order to effectively recycle and rationally u‐tilize the cut tobacco in rejects from cigarette maker ,and a‐void the degrade problems by centralized recovery ,the online recycling equipment of cut tobacco in rejects from cigarette maker was designed .The equipment first utilizes tower sep‐arator to separate cut tobacco from rejects ,then use cyclone separator to separate cut tobacco and tobacco waste ,finally the recovered tobacco was added to the tobacco vibrating slot of cigarette maker .The moisture and aroma loss amount of recovered cut tobacco is small . Therefore , this equipment can reduce the consumption of cut tobacco and enhance the e‐conomic benefits of tobacco enterprises . Practical effect of application shows that more than 85% of the cut tobacco in rejects from cigarette maker can be recycled .This equipment has large scope of application and simple structure ,thus can be used by all kinds of cigarette makers .%为解决现有卷烟机剔除梗签物中烟丝集中收集方式存在的烟丝降级使用问题,设计了烟丝连续在线回用装置。烟丝在线分离回用装置设在卷烟机剔梗装置后身,通过塔式分离器实现烟梗、烟丝的一次分离,再利用旋风分离器实现烟丝、烟末的二次分离。分离出的烟丝直接落入卷烟机的回烟丝振槽内,烟丝水分和香气散失少。应用表明,该装置安装方便,适用范围广,可用于各种机型的卷烟机,能够在线回收和利用卷烟机剔除梗签物中85%以上的烟丝,显著降低卷烟机的烟丝消耗,提高企业经济效益。

  3. DWPF Recycle Evaporator Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted

  4. icious circle of table tennis rule and equipment reform-Written after plastic ball reform%乒乓球规则、器材改革的怪圈--写在塑料球改革之后

    Institute of Scientific and Technical Information of China (English)

    董声

    2015-01-01

    采用文献资料法、调查法等,对乒乓球规则和器材的不断改革提出异议,特别是最近一次国际乒联推出的塑料球改革。用事实证明其改革的荒谬并提出改变这种改革方式的设想:1)深刻理解体育强国之“强”,用我们的乒乓实力主导世界乒乓球发展方向。2)无论是国际乒联还是中国乒协必须改变以器材和规则改革推动乒乓球运动发展的惯性思维。3)我国乒乓球运动必须走真正职业化发展之路才能真正影响世界乒乓球运动。%With the methods of literature review and investigation,an objection was raised on table tennis rule and equipment reform,especially the lately plastic ball reform introduced by ITTF.This article has proven the absurdness of the reform and proposed ways to change it:1)To have a deep understanding on the "powerfulness"of sports power and orientate the development direction of world table tennis with our strength in table tennis.2)ITTF and Chinese Table Tennis Association must change the habitual thinking of promoting the development of table tennis only by equipment and rule reform.3)Only by developing professional table tennis can we really affect the world table tennis.

  5. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    hill, amanda; Leinikka Dall, Ole; Andersen, Frits Møller

    2014-01-01

    Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22......% for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...... the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish municipalities...

  6. Interfacial interactions between plastic particles in plastics flotation.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation.

  7. 废旧电器回收再生利用产业链主体责任体系构建%Research on Responsibility System Architecture of the Principal Parts in Industrial Chain on Recycling the Waste Electrical and Electronic Equipment

    Institute of Scientific and Technical Information of China (English)

    张印贤; 郭汉丁; 王磊; 踪程

    2013-01-01

    To development industry of recycling the waste electrical and electronic equipment (WEEE) is the demands of national sustainable development strategy. To probe into comprehensive mechanism for social responsibility of parts in the industry chain is a main condition. The paper analyses the relation between "EU environmental directives" and the part responsibility. And it also inquires into connection between the "recycling management regulations on waste electrical electronic product" and the part responsibility. It puts forward priority principle for material circulation in the industry chain from circulation mechanism of the recycling WEEE industry chain and the perspective of promoting material circulation. Finally, it expounds material circulation responsibility of producer, marketer, and consumer, recycling, and so on for promoting the recycling WEEE industry chain orderly and healthy development.%废旧电器回收再生利用静脉产业发展是可持续战略的内在要求,探究其产业链主体社会责任集成机理是促进发展的运行条件.分析欧盟环保指令和主体责任,探讨《废旧电器电子产品回收处理管理条例》规定的产业链主体各方相应责任;从废旧电器回收再生利用产业链循环机理和促进物质循环视角,提出产业链物质循环的优先原则;剖析产业链运行过程中的生产者、销售者、消费者、回收企业、处理企业以及政府主管部门的物质循环责任.以期促进废旧电器回收再生利用产业链高效健康有序运行.

  8. The value of recycling on water conservation.

    Energy Technology Data Exchange (ETDEWEB)

    Ludi-Herrera, Katlyn D.

    2013-07-01

    Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, ceiling tiles, compost, and plastic. It will be discussed the use of water in the process of manufacturing these materials and the amount of water that is used. The way that water is conserved will be reviewed. From the stand point of SNL it will be discussed the amount of material that has been accumulated from 2010 to the first two quarters of 2013 and how much water this material has saved.

  9. Sustainable Materials Management (SMM) Web Academy Webinar: Advancing Sustainable Materials Management: Facts and Figures 2013 - Assessing Trends in Materials Generation, Recycling and Disposal in the United States

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  10. Certified Electronics Recyclers

    Science.gov (United States)

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  11. Improving the circular economy via hydrothermal processing of highdensity waste plastics

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Conti, Federica

    2017-01-01

    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies....... This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical...... processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy....

  12. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  13. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    Hill, Amanda Louise; Leinikka Dall, Ole; Andersen, Frits M.

    2014-01-01

    % for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...

  14. 高分子材料微型制品微分注射成型方法及设备%Differential Injection Molding Method and Equipment for Micro-Plastic Products

    Institute of Scientific and Technical Information of China (English)

    王建; 杨卫民

    2012-01-01

    为了保证微量聚合物熔体的计量和均匀性,结合常规注射成型技术和微注射成型技术的优势,论文提出了一种新的批量成型加工高分子材料微型制品的方法——微分注射成型。在常规注射成型设备中加入微分系统,通过行星齿轮泵作为微分泵实现熔体的分流、输送、增压和计量,在保证成型制品精度的同时,具有塑化效果好、生产效率高的优点。论文介绍了微分注射成型方法的原理和设备构成,并利用CAD/CAE/CAM(计算机辅助设计/工程/制造)技术进行了研究,最终利用加工完成的设备初步实验验证了新方法及设备的可行性。%In order to control metering accuracy and homogeneity of the very small quantities of polymer melt in micro-injection molding (IM) process, and combine the advantages of micro-IM with conventional injection molding, differential injection molding (DIM) method that combines conventional injection molding systems with a separate differential unit has been developed. A planetary gear pump was employed as the differential unit that has functions of melt diffluence, transmission, pressurization and metering in multi-micro molding, then high metering accuracy could be achieved. By using conventional injection molding with reciprocating screw injection systems, better plastication effect and mixing performance can be achieved. The principle and equipment structure have been introduced, computer-aided-design/eomputer-aided-engineering/computer-aided-manufacturing (CAD/CAE/CAM) technique has been used, and previous experiment proves the feasibility of this method and equipment.

  15. Recycling of demolished concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nagataki, S. [Niigata Univ., Niigata (Japan). Dept. of Civil Engineering; Iida, K. [Technology Centre of Taisei Corp., Yokohama (Japan)

    2001-07-01

    There is a significant amount of research being conducted in Japan on ways to recycle demolished concrete. The material is already being used for road bases and foundations, but in the future, the concrete will have to be recycled as concrete aggregate. Recycling may also include the cement in the concrete in order to address the issue of global warming and carbon dioxide reductions. This initiative is in response to predictions that in the future there will be tremendous quantities of demolished concrete to deal with. Recycling of cement is also necessary in terms of resolving environmental problems and promoting sustainable development. The properties of concrete made with recycled aggregates were described and were compared with original concrete made of known materials. The paper also proposed an approach that should be taken to recycling concrete in the twenty-first century in which reduced limestone was used to reclaim cement. Recycled concrete with cement requires more energy, but uses less resources and discharges less carbon dioxide. Currently, recycled aggregate does not meet the Japanese Industrial Standard for concrete aggregate. The resistance to freeze/thaw cycles was not adequate. The amount of mortar adhered to the recycled aggregate had little affect on the strength and durability of recycled concrete. It was concluded that the quality of recycled concrete aggregate depends on the quality of original concrete. 11 refs., 12 tabs., 11 figs.

  16. In-Space Recycler Technology Demonstration

    Science.gov (United States)

    Hoyt, Rob; Werkheiser, NIKI; Kim, Tony

    2016-01-01

    In 2014, a 3D printer was installed and used successfully on the International Space Station (ISS), creating the first additively manufactured part in space. While additive manufacturing is a game changing technology for exploration missions, the process still requires raw feedstock material to fabricate parts. Without a recycling capability, a large supply of feedstock would need to be stored onboard, which negates the logistical benefits of these capabilities. Tethers Unlimited, Inc. (TUI), received a Small Business Innovation Research (SBIR) award to design and build the first In-space Recycler for demonstration aboard the ISS in 2017. To fully test this technology in microgravity, parts will be 3D printed, recycled into reusable filament, and then reprinted into new parts. Recycling scrap into printer filament is quite challenging in that a recycler must be able to handle a large variety of possible scrap configurations and densities. New challenges include: dealing with inevitable contamination of the scrap material, minimizing damage to the molecular structure of the plastic during reprocessing, managing a larger volume of hot liquid plastic, and exercising greater control over the cooling/resolidification of the material. TUI has developed an architecture that addresses these challenges by combining standard, proven technologies with novel, patented processes developed through this effort. Results show that the filament diameter achieved is more consistent than commercial filament, with only minimal degradation of material properties over recycling steps. In May 2016, TUI completed fabrication of a flight prototype, which will ultimately progress to the demonstration unit for the ISS as a testbed for future exploration missions. This capability will provide significant cost savings by reducing the launch mass and volume required for printer feedstock as well as reduce waste that must be stored or disposed.

  17. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain

    OpenAIRE

    Sevigné Itoiz, Eva; Martínez Gasol, Carles; Rieradevall, Joan; Gabarrell Durany, Xavier

    2015-01-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations t...

  18. Household waste recycling: National survey evidence from Italy

    OpenAIRE

    Fiorillo, Damiano

    2011-01-01

    The paper analyses the determinants of household recycling in Italy with particular emphasis on social behaviour. The econometric analysis is based on two waves - 1998 and 2000 - of the Multipurpose Household Survey conducted annually by the Italian Central Statistics Office. In Italy household recycling was substantially voluntary in the years from 1998 to 2000 with no monetary incentives or pecuniary sanctions. Five different materials are investigated: paper, glass, plastic, aluminium and ...

  19. Continental moisture recycling as a Poisson process

    Directory of Open Access Journals (Sweden)

    H. F. Goessling

    2013-04-01

    Full Text Available On their journey across large land masses, water molecules experience a number of precipitation-evaporation cycles (recycling events. We derive analytically the frequency distributions of recycling events for the water molecules contained in a given air parcel. Given the validity of certain simplifying assumptions, continental moisture recycling is shown to develop either into a Poisson distribution or a geometric distribution. We distinguish two cases: in case (A recycling events are counted since the water molecules were last advected across the ocean-land boundary. In case (B recycling events are counted since the water molecules were last evaporated from the ocean. For case B we show by means of a simple scale analysis that, given the conditions on Earth, realistic frequency distributions may be regarded as a mixture of a Poisson distribution and a geometric distribution. By contrast, in case A the Poisson distribution generally appears as a reasonable approximation. This conclusion is consistent with the simulation results of an earlier study where an atmospheric general circulation model equipped with water vapor tracers was used. Our results demonstrate that continental moisture recycling can be interpreted as a Poisson process.

  20. Compression Molding of Composite of Recycled HDPE and Recycled Tire Particles

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.; Chen, Zhengyu; Li, Yanze; Peng, Linda

    1996-01-01

    Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.

  1. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  2. Effect of Reprocessing and Accelerated Weathering on Impact-Modified Recycled Blend

    Science.gov (United States)

    Ramesh, V.; Mohanty, Smita; Biswal, Manoranjan; Nayak, Sanjay K.

    2015-12-01

    Recovery of recycled polycarbonate, acrylonitrile butadiene styrene, high-impact polystyrene, and its blends from waste electrical and electronic equipment plastics products properties were enhanced by the addition of virgin polycarbonate and impact modifier. The optimized blend formulation was processed through five cycles, at processing temperature, 220-240 °C and accelerated weathering up to 700 h. Moreover, the effect of reprocessing and accelerated weathering in the physical properties of the modified blends was investigated by mechanical, thermal, rheological, and morphological studies. The results show that in each reprocessing cycle, the tensile strength and impact strength decreased significantly and the similar behavior has been observed from accelerated weathering. Subsequently, the viscosity decreases and this decrease becomes the effect of thermal and photo-oxidative degradation. This can be correlated with FTIR analysis.

  3. Applications and societal benefits of plastics.

    Science.gov (United States)

    Andrady, Anthony L; Neal, Mike A

    2009-07-27

    This article explains the history, from 1600 BC to 2008, of materials that are today termed 'plastics'. It includes production volumes and current consumption patterns of five main commodity plastics: polypropylene, polyethylene, polyvinyl chloride, polystyrene and polyethylene terephthalate. The use of additives to modify the properties of these plastics and any associated safety, in use, issues for the resulting polymeric materials are described. A comparison is made with the thermal and barrier properties of other materials to demonstrate the versatility of plastics. Societal benefits for health, safety, energy saving and material conservation are described, and the particular advantages of plastics in society are outlined. Concerns relating to littering and trends in recycling of plastics are also described. Finally, we give predictions for some of the potential applications of plastic over the next 20 years.

  4. How much do South African households in towns & rural areas recycle?

    CSIR Research Space (South Africa)

    Strydom, Wilma

    2016-10-01

    Full Text Available . For individual waste streams, the highest percentage of households recycling some (not “nothing”, i.e. any quantity from “very little” to “everything”) is obtained for plastic (13.7%), followed by glass (12.3%) and paper (10.0%). Nine percent (9.4%) of households... in large urban areas recycle metal and 6.4% WEEE (percentages not shown on graph; sum of percentages of not “nothing”). When considering only those households recycling more than half of their recyclables (“Top 3” i.e. households recycling “everything...

  5. Plastic Jellyfish.

    Science.gov (United States)

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  6. Application Prospect of Waste Plastics%废塑料利用前景

    Institute of Scientific and Technical Information of China (English)

    杨忠敏

    2012-01-01

    详细介绍了废旧塑料的处理和再生利用技术.并指出了废弃塑料再生利用的市场前景。%To introduce the processing and recycling technology of waste plastics. To point out the recycling market prospect of waste plastics.

  7. Post Separation of Plastic Waste: Better for the Environment and Lower Collection Costs

    NARCIS (Netherlands)

    E. Dijkgraaf (Elbert); R.H.J.M. Gradus (Raymond)

    2016-01-01

    textabstractThe European Union (EU) advocates a plastic waste recycling rate of more than 55% through home separation by households. Even for the Netherlands, which has already invested heavily in plastic recycling policies, there is still a challenge to meet this target. We show that post

  8. Post Separation of Plastic Waste: Better for the Environment and Lower Collection Costs

    NARCIS (Netherlands)

    E. Dijkgraaf (Elbert); R.H.J.M. Gradus (Raymond)

    2016-01-01

    textabstractThe European Union (EU) advocates a plastic waste recycling rate of more than 55% through home separation by households. Even for the Netherlands, which has already invested heavily in plastic recycling policies, there is still a challenge to meet this target. We show that post separatio

  9. Investigation and analysis of factors that affect the health of children in the plastic recycling and regeneration processing region%塑料废品回收与再生加工地区儿童健康的影响因素

    Institute of Scientific and Technical Information of China (English)

    王娟丽; 李丽萍; 卢耀贵

    2014-01-01

    Objective To investigate the main influential factors for the health of children in the plastic waste recovery and recycling area.Methods A cross-sectional survey was performed among children aged 9~17 years from three natural villages engaged in plastic waste recovery and recycling and four control villages engaged in planting.The health status of children was investigated by random household survey using a face-toface questionnaire,and the main influential factors were analyzed accordingly.Results The incidence rates of respiratory symptoms (cough and expectoration,nasal congestion,and sore throat) (78.4%,69/88) and digestive diseases (gastrointestinal disease and liver disease) (14.8%,13/88) in the waste processing area were significantly higher than those in the control area (64.0%,71/111; 6.3%,7/111) (P<0.05).Conclusion Muhivariate logistic regression analysis indicated that skin diseases are related to whether plastic can be smelt around the residential area.%目的 筛选塑料废品回收与再生加工地区儿童健康的主要影响因素.方法 应用横断面调查,对加工区(从事塑料废品回收与再生加工的3个自然村)和对照区(从事种植业的4个自然村)9~17岁的儿童采用随机人户抽样方法,以面询式问卷进行健康状况调查,并对其影响因素进行分析.结果 2011年上半年,加工区儿童呼吸系统症状(咳嗽与咳痰、鼻塞、咽痛)发生率(78.4%,69/88)、消化系统疾病(胃肠疾病、肝病)患病率(14.8%,12/88)高于对照区(64.0%,71/111;6.3%,7/111),差异均有统计学意义(P<0.05).结论 多因素logistic回归分析表明,皮肤疾病与住宅附近是否经常闻到塑料味有关.

  10. The importance of recycling in a climate perspective

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2009-01-01

    An overview of the greenhouse gas implications of material recovery and recycling is presented for a variety of materials, i.e. steel, aluminium, glass, plastics, wood, paper and cardboard, aggregates and wood. The benefits of recycling in terms of greenhouse gas reductions are quantified and set...... in perspective to other measures. It is shown that the present aluminium recycling alone in a country like Denmark saves greenhouse gas emission equivalent to heating of over half a million family houses. Assumptions and system boundaries are often discussed in the quantification of the benefits of recycling...... recycling. It is argued that biomass should be considered a constrained resource in a long term perspective, and that the marginal for the use of biomass is either a fossil resource or an arable land resource. In both cases, use of biomass draws on a marginal with high greenhouse gas implications...

  11. Reviews Book: Sustainable Energy—Without the Hot Air Equipment: Doppler Effect Unit Book: The Physics of Rugby Book: Plastic Fantastic: How the Biggest Fraud in Physics Shook the Scientific World Equipment: Brunel Eyecam Equipment: 200x Digital Microscope Book: The Atom and the Apple: Twelve Tales from Contemporary Physics Book: Physics 2 for OCR Web Watch

    Science.gov (United States)

    2009-09-01

    WE RECOMMEND Sustainable Energy—Without the Hot Air This excellent book makes sense of energy facts and figures Doppler Effect Unit Another simple, effective piece of kit from SEP Plastic Fantastic: How the Biggest Fraud in Physics Shook the Scientific World Intriguing and unique write-up of an intellectual fraud case Brunel Eyecam An affordable digital eyepiece for your microscope 200x Digital Microscope An adjustable digital flexcam for classroom use The Atom and the Apple: Twelve Tales from Contemporary Physics A fascinating round-up of the recent history of physics WORTH A LOOK The Physics of Rugby Book uses sport analogy and context to teach physics concepts Physics 2 for OCR Essential textbook for the course but otherwise pointless WEB WATCH Some free teaching materials are better than those you'd pay for

  12. Benchmarking survey for recycling.

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  13. Recycling as moral behaviour

    DEFF Research Database (Denmark)

    Thøgersen, John

    of Reasoned Action (TRA) with regard to understanding recycling behaviour. Further, examples of misleading policy conclusions are discussed suggested that within the framework of cognitive psychology, Schwartz's model of altruistic behaviour offers a more satisfying starting point for understanding recycling......It is argued in this paper that in the affluent, industrial societies, environmental behaviours like recycling are typically classified within ""the domain of morality"" in people's minds. Intentions regarding these types of behaviours are not ba a thorough - conscious or unconscious - calculation...

  14. Efficient paper recycling

    OpenAIRE

    Gregor-Svetec, Diana; Možina, Klemen; Blaznik, Barbara; Urbas, Raša; Vrabič Brodnjak, Urška; Golob, Gorazd

    2013-01-01

    Used paper and paper products are important raw material for paper and board industry. Paper recycling increases the material lifespan and is a key strategy that contributes to savings of primary raw material, reduction of energy and chemicals consumption, reduction of the impact on fresh water and improvement of waste management strategies. The paper recycling rate is still highly inhomogeneous among the countries of Central Europe. Since recovered paper is not only recycled in the country w...

  15. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...... in the metals producing industry is presented and tested on two printed circuit board scrap cases. The underlying idea for the method is that complex scrap should be introduced in the matrix of man-made material flows at recipient points where the scrap constitutes the least environmental problem and where...

  16. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  17. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  18. Energy efficiency of material and energy recycling, sustainability of different recycling methods; Energieeffizienz der stofflichen und energetischen Verwertung ausgewaehlter Abfallfraktionen

    Energy Technology Data Exchange (ETDEWEB)

    Friecke, Klaus; Bahr, Tobias [Technische Univ. Braunschweig (Germany). Lehrstuhl Abfall- und Ressourcenwirtschaft; Bidlingmaier, Werner [Bauhaus-Universitaet Weimar (Germany). Professur Abfallwirtschaft; Turk, Thomas [Poeyry Environment GmbH, Witzenhausen (Germany). Abt. IGW

    2010-02-15

    The approach for the sustainable usage of natural resources should lead to improved resource efficiency at the same time as a decrease of the negative ecological consequences of resource usage. Following this approach, the instruments of waste management particularly the material recycling and the energy recycling are also to be subject to a critical examination. The material recycling of paper and cardboard as well as plastics and biowaste has clear advantages over energy recycling processes in the aspect of energy efficiency. From the view of resource resp. energy efficiency also the recovering rate of metals is higher when they are collected from raw waste than when they are recovered from slag. This applies particularly for the nonferrous. This applies particularly for the nonferrous metals. Coupled with this as a rule, the climate change effects are also to be classified as lower. Which consequences can be drawn from these facts? Material recycling must be intensified. For paper/cardboard, plastics, biowaste and metals its is apparent that material recycling can be massively increased through intensifying the separate collecting systems and making them more flexible, in conjunction with an intensive use of sorting technologies. Collection and sorting systems are to be coordinated with each other. The goal of the whole system must be the reaching of an optimum between covering rate which is as high as possible and a high quality of recyclable material. (orig.)

  19. A questão da responsabilidade socioambiental na reciclagem de plástico no Rio de Janeiro The question of socio-environmental accountability in recycling of plastics in Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Marco Antonio Gaya de Figueiredo

    2011-03-01

    Full Text Available Este trabalho objetivou verificar como as atividades de reciclagem impactam nas áreas de saúde, segurança e meio ambiente, levantando também algumas questões relacionadas com a responsabilidade social, com destaque para o atendimento às normas regulamentadoras, legislação de saúde, segurança e meio ambiente aplicáveis. O questionário elaborado foi aplicado diretamente a um grupo de recicladoras, todas situadas no estado do Rio de Janeiro, sendo três do segmento de polietileno e uma de politereftalato de etileno. Verificou-se que apenas 24% dos itens avaliados foram atendidos na sua íntegra, demonstrando um baixo índice de atendimento às questões relativas à saúde, segurança, meio ambiente e responsabilidade social. Enfim, o presente estudo mostra que há necessidade de maior atenção por parte do poder público quanto à criação de uma infraestrutura de capacitação de forma a permear essas informações para os profissionais que atuam nesse segmento.This study aimed to determine how recycling activities impact on health, safety and the environment while also raising some questions related to social responsibility, especially in terms of meeting legislated health, safety and environmental regulatory standards. A questionnaire was developed that was applied directly to a group of recyclers, all located in Rio de Janeiro, three from the Polyethylene and Polyethylene Terephthalate sector. It was found that only 24% of the items assessed were seen in their entirety, demonstrating a low rate of service issues relating to health, safety and environment and social responsibility. Finally, this study shows that greater attention is needed from the government to create an infrastructure for training in order for information on health, safety, environment and social responsibility to permeate to the professionals who operate in recycling.

  20. Chukai Smelting Co.,Ltd.of Hubei Province Launched the Lead Recycling Project

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Chukai Smelting Co.,Ltd.of Hubei Province launched its recycling project of lead-acid stor- age battery in Laohekou City in July.With an annual dealing capacity of 100,000 tons of waste lead-acid storage battery,this project is expected to contribute 60,000 tons of recycled lead,5,000 tons of recycled plastic particulates, 6,000 tons of vitriol electrolyte and 9,000 tons of sodium sulfate crystal.

  1. Progress in Recycle Treatment of Waste of Electronic/Electric Equipment%废旧电子电气设备回收处理的研究进展

    Institute of Scientific and Technical Information of China (English)

    甘舸; 陈烈强; 彭绍洪; 蔡明招; 吴耀森

    2005-01-01

    概述了目前全球对废旧电子电气设备(Waste of Electronic Electric Equipment,简称WEEE )回收处理的基本情况, 并根据废旧电子电气设备处理的特点,从机械物理处理方法、热化学处理方法以及处理过程中产生有毒有害物质的分离技术三方面,介绍近年来废旧电子电气设备回收处理的研究进展,最后指出了真空热解的使用将作为未来废旧电子电气设备处理的发展方向.

  2. Recycling Wood Composite Panels: Characterizing Recycled Materials

    Directory of Open Access Journals (Sweden)

    Hui Wan

    2014-10-01

    Full Text Available Downgraded medium density fiberboard (MDF, particleboard (PB, and oriented strandboard (OSB panels were individually subjected to steam explosion treatment. Downgraded MDF and PB panels were separately treated with thermal chemical impregnation using 0.5% butanetetracarboxylic acid (BTCA. And downgraded PB panels were processed with mechanical hammermilling. The pH, buffer capacity, fiber length, and particle size of these recycled materials were evaluated. After the steam explosion and thermal chemical impregnation treatments, the pH and buffer capacity of recycled urea formaldehyde resin (UF-bonded MDF and PB furnishes increased and the fiber length decreased. The hammermilling of recycled PB was less likely to break particles down into sizes less than 1 mm2.

  3. Plate tectonics: Crustal recycling evolution

    Science.gov (United States)

    Magni, Valentina

    2017-09-01

    The processes that form and recycle continental crust have changed through time. Numerical models reveal an evolution from extensive recycling on early Earth as the lower crust peeled away, to limited recycling via slab break-off today.

  4. Water Recycling in Australia

    Directory of Open Access Journals (Sweden)

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  5. The Fermilab recycler ring

    Energy Technology Data Exchange (ETDEWEB)

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  6. Microwave Study of Recycled ABS Resins

    Institute of Scientific and Technical Information of China (English)

    A; M; Hasna

    2002-01-01

    This article provides a review of the research unde rt aken in order to determine the suitability of utilizing microwave technology in the production of Recycled ABS Acrylonitrile Butadiene Styrene resin for mouldin gs. The experimental investigation determined the suitability of the existing re cycled ABS material, the mould material used with respect to performance and lon gevity, potential commercial plant and equipment, end mould compression. Introduction Frequency Characterization of ABS The first ...

  7. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...... in the metals producing industry is presented and tested on two printed circuit board scrap cases. The underlying idea for the method is that complex scrap should be introduced in the matrix of man-made material flows at recipient points where the scrap constitutes the least environmental problem and where...... resource recovery is largest. It is clearly shown with the two printed circuit board scrap cases that the currently used copper recycling scenario is environmentally inferior to the tin and lead primary production scenarios. The method is a novelty, since no-one has previously put forward a method...

  8. Environmental evaluation of plastic waste management scenarios

    DEFF Research Database (Denmark)

    Rigamonti, L.; Grosso, M.; Møller, Jacob

    2014-01-01

    The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper...... is to contribute to the debate, based on the analysis of different plastic waste recovery routes. Five scenarios were defined and modelled with a life cycle assessment approach using the EASEWASTE model. In the baseline scenario (P0) the plastic is treated as residual waste and routed partly to incineration...... with energy recovery and partly to mechanical biological treatment. A range of potential improvements in plastic management is introduced in the other four scenarios (P1–P4). P1 includes a source separation of clean plastic fractions for material recycling, whereas P2 a source separation of mixed plastic...

  9. Flows of engineered nanomaterials through the recycling process in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Guzman, Alejandro; Sun, Tianyin; Nowack, Bernd, E-mail: nowack@empa.ch

    2015-02-15

    Highlights: • Recycling is one of the likely end-of-life fates of nanoproducts. • We assessed the material flows of four nanomaterials in the Swiss recycling system. • After recycling, most nanomaterials will flow to landfills or incineration plants. • Recycled construction waste, plastics and textiles may contain nanomaterials. - Abstract: The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, for example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO{sub 2}, nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled inputs.

  10. Integrated Recycling Test Fuel Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  11. Export of electronics equipment waste.

    Science.gov (United States)

    LaDou, Joseph; Lovegrove, Sandra

    2008-01-01

    Electronics equipment waste ("e-waste") includes discarded computers, computer monitors, television sets, and cell phones. Less than 10% of e-waste is currently recycled. The United States and other developed countries export e-waste primarily to Asia, knowing it carries a real harm to the poor communities where it will be discarded. A 2006 directive bans the use of lead, mercury, cadmium, hexavalent chromium, and certain brominated flame retardants in most electronics products sold in the EU. A similar directive facilitates the development and design of clean electronics products with longer lifespans that are safe and easy to repair, upgrade, and recycle, and will not expose workers and the environment to hazardous chemicals. These useful approaches apply only regionally and cover only a fraction of the hazardous substances used in electronics manufacture, however. There is an urgent need for manufacturers of electronics products to take responsibility for their products from production to end-of-life, and for much tighter controls both on the transboundary movement of e-waste and on the manner in which it is recycled. Manufacturers must develop clean products with longer lifespans that are safe and easy to repair, upgrade, and recycle and will not expose workers and the environment to hazardous chemicals.

  12. Plastics Technology.

    Science.gov (United States)

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  13. Functional nanostructures on injection molded plastic

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during...... the molding process. The main advantage with this method is that surface treatments and chemical additives are avoided, which minimizes health risks and simplifies recycling. Another advantage is that the unique technology enables nanostructuring of free form molded parts. The functional surfaces can have...

  14. Recycling of solid wastes at kindergartens centers

    Directory of Open Access Journals (Sweden)

    Mohamed R.M.S.R.

    2017-02-01

    Full Text Available The present study aimed to conduct an activity on environmental awareness campaign at a kindergarten center, with the children age 4-6 years old. The activity included identify the various types of waste generated at the kindergarten and to realize the conservation practice by participating in simple waste management strategies and an explanation about recycling, reusing and reducing waste (3R. The activity provided the children more awareness about the importance of minimizing the plastic wastes. The activity had created an interesting experience to the young generation through practice activity and has given a light on the nature conservation along their growing years. It can be concluded that the awareness of environmental issues among children have risen up as noted by looking at students physical expression. Children have understood the potential to conserve nature from a simple action which is recycling. After the activity, children’s were able to identify and divide the rubbish.

  15. Recycling of waste lead storage battery by vacuum methods.

    Science.gov (United States)

    Lin, Deqiang; Qiu, Keqiang

    2011-07-01

    Waste lead storage battery is the most important recyclable lead material not only in various European and other OECD countries but also in China. Pollution control of lead has become the focus of people's attention in the world. A vacuum process for recycling waste lead storage battery was developed in this work. The experimental results showed that all the valuable materials in waste lead storage battery could be satisfactorily recycled by vacuum technologies. The vacuum melting of lead grids and the vacuum reduction of lead pastes produce the lead bullion with the direct recovery ratio of 96.29% and 98.98%, respectively. The vacuum pyrolysis of plastics can produce pyrolysis oil with yield of more than 93 wt.%. These vacuum recycling technologies offer improvements in metallurgical and environmental performance.

  16. Plastics - the sustainable way to use Oil and Gas

    Energy Technology Data Exchange (ETDEWEB)

    Siebourg, Wolfgang

    2009-07-01

    Conclusions (drawn by the author): Plastics are a sustainable use of oil and gas - Plastic products enable significant savings of energy and GHG emissions particularly in the use phase; - Plastic products help use resources in the most efficient way. Restricting plastics relative growth would result in increased energy consumption. Diversion from landfill would increase resource efficiency. Waste-to-Energy is an additional resource and is complementary to mechanical recycling. Plastics producers and the Oil and Gas industry should cooperate to produce reliable consumption data. Oil and Gas industry should develop and maintain European (world) eco-profiles (cradle to gate) for their respective industry. (author)

  17. Consumption of Plastic bags and its Impact on Environment

    OpenAIRE

    2012-01-01

    The research was done on the consumption of plastic bags and its possible impact on environment. We considered the consumption of plastic bags as recycling, alternatives and disposal, and to be specific we defined environment impact on drainage and street waste. The respondents’ were the 20 years of age and older without any gender discrimination, and assumed to be users of plastic bags. The data was collected from the crowded shopping centers of city. Correlation and regression techniques we...

  18. The prospects and challenges of plastic industries in Bangladesh

    OpenAIRE

    Pintu, MD. Nazmul Hossain

    2016-01-01

    Plastic is one of the most used engineered material in Bangladesh that has come out as im-portant industrial sector during the last few decades. The size of Domestic market is more than thousands of billions euros. The available cheap labor, vast population and fast development of plastics wastes recycling industries have given Bangladesh a huge potential advantages to compete in the global market. Although, plastics sector is one of the most growing markets in Bangladesh, but still it is fac...

  19. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  20. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production......Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  1. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  2. Reduce, reuse and recycle

    CSIR Research Space (South Africa)

    Afrika, M

    2010-10-01

    Full Text Available The adoption of the internationally accepted waste management hierarchy (Sakai et al, 1996) into South African policy has changed the focus from “end of pipe” waste management towards waste minimisation (reuse, recycling and cleaner production...

  3. Recycle or pollute?

    NARCIS (Netherlands)

    Guiking, F.C.T.

    1994-01-01

    When growing oil palms, quantities of crop residues are high, which means that recycling is laborious and options to absorb these byproducts are easily saturated. Burning or composting may have harmful environmental effects

  4. The Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-19

    The Recycler Electron cooler was the first (and so far, the only) cooler working at a relativistic energy (γ = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. This paper describes the cooler, difficulties in achieving the required electron beam parameters and the ways to overcome them, cooling measurements, and details of operation.

  5. Recycling of nonmetallics

    Science.gov (United States)

    Amey, E.B.; Kelly, T.D.

    1996-01-01

    The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.

  6. Approaching Moisture Recycling Governance

    Science.gov (United States)

    Keys, Patrick; Wang-Erlandsson, Lan; Gordon, Line; Galaz, Victor; Ebbesson, Jonas

    2017-04-01

    The spatial and temporal dynamics of water resources are a continuous challenge for effective and sustainable national and international governance. Despite the surface watershed being the typical unit of water management, recent advances in hydrology have revealed 'atmospheric watersheds' - otherwise known as precipitationsheds. Also, recent research has demonstrated that water flowing within a precipitationshed may be modified by land-use change in one location, while the effect of this modification could be felt in a different province, nation, or continent. Notwithstanding these insights, the major legal and institutional implications of modifying moisture recycling have remained unexplored. In this presentation, we examine potential approaches to moisture recycling governance. We first identify a set of international study regions, and then develop a typology of moisture recycling relationships within these regions ranging from bilateral moisture exchange to more complex networks. This enables us to classify different types of legal and institutional governance principles. Likewise, we relate the moisture recycling types to existing land and water governance frameworks and management practices. The complexity of moisture recycling means institutional fit will be difficult to generalize for all moisture recycling relationships, but our typology allows the identification of characteristics that make effective governance of these normally ignored water flows more tenable.

  7. The Value of Recycling on Water Conservation 2nd Edition.

    Energy Technology Data Exchange (ETDEWEB)

    Bales, Shannon Nicole [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ludi-Herrera, Katlyn D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, aluminum, copper, plastic, compost, and ceiling tiles. It will discuss the use of water in the process of harvesting, manufacturing, and recycling these materials. The way that water is conserved will be reviewed. From the stand point of SNL, it will discuss the amount of material that has been accumulated from 2012 through 2013 and how much water has been saved by recycling .

  8. A tecnologia da reciclagem de polímeros The technology of polymer recycling

    Directory of Open Access Journals (Sweden)

    Márcia Aparecida da Silva Spinacé

    2005-02-01

    Full Text Available Solid municipal waste contains a large volume of polymers and its final disposal is a serious environmental problem. Consequently, the recycling of the principal polymers present in the solid waste is an alternative. In this review we describe the mechanical and chemical recycling of polymers and the energy recovery from plastic wastes. Polymer recycling involves not only the development of processing technologies, but also the solution of many chemical and analytical problems. The technological, economical and social aspects of polymer recycling are also considered.

  9. Solid waste reclamation and recycling: Papers. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The bibliography contains citations concerning the reclamation and recycling of waste papers from municipal, domestic, and industrial solid wastes. References cover recycling techniques and equipment, economic analyses, biofuel production, environmental issues, and feasibility studies. The use of recycled papers in construction materials and papermaking is also covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Recycling metal scrap. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The bibliography contains citations concerning the methods and equipment for recycling metal and steel scrap. Citations discuss automatic scrap recycling, scrap metal reprocessing, contaminated metal scrap, and mass-produced building materials from scrap. The design and evaluation of recycling processes in automotive, aircraft, beverage, electronics, and milling industries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF

    Energy Technology Data Exchange (ETDEWEB)

    Aldrian, Alexia, E-mail: alexia.aldrian@unileoben.ac.at [Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Ledersteger, Alfred, E-mail: a.ledersteger@saubermacher.at [Saubermacher Dienstleistungs AG, Hans-Roth-Straße 1, 8073 Feldkirchen bei Graz (Austria); Pomberger, Roland, E-mail: roland.pomberger@unileoben.ac.at [Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2015-02-15

    Highlights: • Specification of an empirical factor for conversion from bromine to PBB and PBDE. • The handheld XRF device was validated for this particular application. • A very large number of over 4600 pieces of monitor housings was analysed. • The recyclable fraction mounts up to 85% for TV but only 53% of PC waste plastics. • A high percentage of pieces with bromine contents of over 50,000 ppm was obtained. - Abstract: This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television sets (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000 ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC–MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements.

  12. Economic analysis of electronic waste recycling: modeling the cost and revenue of a materials recovery facility in California.

    Science.gov (United States)

    Kang, Hai-Yong; Schoenung, Julie M

    2006-03-01

    The objectives of this study are to identify the various techniques used for treating electronic waste (e-waste) at material recovery facilities (MRFs) in the state of California and to investigate the costs and revenue drivers for these techniques. The economics of a representative e-waste MRF are evaluated by using technical cost modeling (TCM). MRFs are a critical element in the infrastructure being developed within the e-waste recycling industry. At an MRF, collected e-waste can become marketable output products including resalable systems/components and recyclable materials such as plastics, metals, and glass. TCM has two main constituents, inputs and outputs. Inputs are process-related and economic variables, which are directly specified in each model. Inputs can be divided into two parts: inputs for cost estimation and for revenue estimation. Outputs are the results of modeling and consist of costs and revenues, distributed by unit operation, cost element, and revenue source. The results of the present analysis indicate that the largest cost driver for the operation of the defined California e-waste MRF is the materials cost (37% of total cost), which includes the cost to outsource the recycling of the cathode ray tubes (CRTs) (dollar 0.33/kg); the second largest cost driver is labor cost (28% of total cost without accounting for overhead). The other cost drivers are transportation, building, and equipment costs. The most costly unit operation is cathode ray tube glass recycling, and the next are sorting, collecting, and dismantling. The largest revenue source is the fee charged to the customer; metal recovery is the second largest revenue source.

  13. Plastic bronchitis

    National Research Council Canada - National Science Library

    Singhi, Anil Kumar; Vinoth, Bharathi; Kuruvilla, Sarah; Sivakumar, Kothandam

    2015-01-01

    Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics...

  14. The Usage of Recycle Materials for Science Practicum: Is There Any Effect on Science Process Skills?

    Science.gov (United States)

    Prajoko, Setiyo; Amin, Mohamad; Rohman, Fatchur; Gipayana, Muhana

    2017-01-01

    This study aimed at determining the effect of recycle materials usage for science practicum on students' basic science process skills of the Open University, Surakarta. Recycle materials are the term used for the obtained materials and equipment from the students' environment by taking back the garbage or secondhand objects into goods or new…

  15. Case study: apparel industry waste management: a focus on recycling in South Africa.

    Science.gov (United States)

    Larney, M; van Aardt, A M

    2010-01-01

    The need for effective apparel waste management is motivated by the increasing cost and decreasing availability of landfill space and the dwindling of natural resources. The aim of this study was to identify the current solid waste disposal and recycling practices of the apparel industry in South Africa and to determine their attitude and willingness towards recycling, their perception of the feasibility thereof, barriers to recycling and marketing strategies that would be appropriate for products made from recycled materials. A structured questionnaire was mailed to apparel manufacturers in South Africa. The results indicated that most apparel manufacturers use landfills to dispose of their waste, while approximately half recycle some of the waste. They are fairly positive towards recycling, with consideration of economical feasibility. Phi-coefficients show no practically significant relationship between company size and the use of recycled materials. The most important barriers to recycling are lack of equipment and technology, lack of material to recycle and lack of consumer awareness. Marketing strategies for recycled products are recommended. It is concluded that consumer awareness and knowledge regarding recycled apparel products should be developed in order to ensure a market and that apparel manufacturers should be encouraged to recycle more extensively, in order to ensure that resources will not be exhausted unnecessarily and the environment will be preserved optimally.

  16. Polymer recycling: potential application of radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, Guillermina; Clough, Roger L. E-mail: rlcloug@sandia.gov; Czvikovszky, Tibor; Guven, Olgun; Le Moel, Alain; Liu Weiwei; Singh, Ajit; Yang Jingtian; Zaharescu, Traian

    2002-04-01

    Management of solid waste is an important problem, which is becoming progressively worse as a byproduct of continuing economic growth and development. Polymeric materials (plastics and rubbers) comprise a steadily increasing proportion of the municipal and industrial waste going into landfill. Development of technologies for reducing polymeric waste, which are acceptable from the environmental standpoint, and which are cost-effective, has proven to be a difficult challenge due to complexities inherent in the reuse of polymers. Establishing optimal processes for the reuse/recycling of polymeric materials thus remains a worldwide challenge as we enter the new century. Due to the ability of ionizing radiation to alter the structure and properties of bulk polymeric materials, and the fact that it is applicable to essentially all polymer types, irradiation holds promise for impacting the polymer waste problem. The three main possibilities for use of radiation in this application are: (1) enhancing the mechanical properties and performance of recovered materials or material blends, principally through crosslinking, or through surface modification of different phases being combined; (2) treatment causing or enhancing the decomposition of polymers, particularly through chain scission, leading to recovery of either low molecular weight mixtures, or powders, for use as chemical feedstocks or additives; (3) production of advanced polymeric materials designed for environmental compatibility. This paper provides an overview of the polymer recycling problem, describes the major technological obstacles to the implementation of recycling technologies, and outlines some of the approaches being taken. A review of radiation-based recycling research is then provided, followed by a discussion of future directions where irradiation may be relevant to the problems currently inhibiting the widespread recycling of polymeric materials.

  17. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  18. Plastic Bridge

    Institute of Scientific and Technical Information of China (English)

    履之

    1994-01-01

    Already ubiquitous in homes and cars, plastic is now appearing inbridges. An academic-industrial consortium based at the University ofCalifornia in San Diego is launching a three-year research program aimed atdeveloping the world’s first plastic highway bridge, a 450-foot span madeentirely from glass-,carbon,and polymer-fiber-reinforced composite mate-rials, the stuff of military aircraft. It will cross Interstate 5 to connect thetwo sides of the school’s campus.

  19. Recycling/Disposal Alternatives for Depleted Uranium Wastes

    Science.gov (United States)

    1981-01-01

    virgin feedstock. Machining chips are prepared for recycling using a briquetting process. Thu briquetting process removes the aqueous coolant which...diameter and 2 inches thick. The briquettes are added to any given melt. Approximately 300 pounds of chips can be briquetted at one time. The... briquetting equipment is expensive; in the past (and currently), the ase of this equipment has been economical only for those facil- ities pr3cessing costly

  20. Municipal Solid Waste Recycling an Action along with Resistive Economics

    Directory of Open Access Journals (Sweden)

    Aram Tirgar

    2016-08-01

    Full Text Available Background and Objective: In the current situation, it seems that municipal solid waste recycling despite hygienic, economic and environmental aspects is important from sociopolitical aspect. The aim of this study was to determine waste recycling condition and the knowledge of households about resistive economics, as an action along with a policy.Materials and Methods: This descriptive and cross-sectional study was conducted among 330 family of Amirkola city in Mazandaran province during 2013. The samples were collected from 33 regions using cluster sampling method. The data was collected by means of researcher-made data collection sheet and analyzed using descriptive statistical indices and Chi- square test, and p<0.05 was considered as significant.Results: The results showed that the mean (SD of age were 39.1 (10.9 years and 176 (53% female. More than half of households (56.9% were recycling municipal solid waste (plastic, paper, glass, and food residue which the share of plastic, and paper were the highest. Only 59 (29% were familiar with resistive economics, but there was not any significant relation between waste recycling and their awareness of resistive economics.Conclusion: The limitation of knowledge about resistive economics, and their weakness of practice about waste recycling imply that the authorities should have definite programs in order to increase family information and participations in social issues.

  1. A novel brominated triazine-based flame retardant (TTBP-TAZ) in plastic consumer products and indoor dust.

    Science.gov (United States)

    Ballesteros-Gómez, Ana; de Boer, Jacob; Leonards, Pim E G

    2014-04-15

    The presence of a novel brominated flame retardant named 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) is reported for the first time in plastic parts of consumer products and indoor dust samples. TTBP-TAZ was identified by untargeted screening and can be a replacement of the banned polybrominated diphenyl ethers. Analysis techniques based on ambient mass spectrometry and on liquid chromatography with atmospheric pressure chemical ionization combined with high resolution time-of-flight mass spectrometry were developed for the screening, detection and quantification of this low volatility and high molecular weight compound. TTBP-TAZ was present in 8 of 13 plastic parts of consumer products (from mainly electric and electronic equipment acquired in 2012) at estimated concentrations of 0.01-1.9% by weight of the product (%, w/w). It was not present in any of the older 13 plastic samples that were collected in a recycling park (manufacture date before 2006), this suggests a recent use of TTBP-TAZ. It was also found in 9 of 17 house dust samples in the range of 160-22150 ng g(-1), with the highest levels being found in samples collected on electronic and electrical equipment. These preliminary results highlight the need for further research on TTBP-TAZ and the potential of using alternative analysis methods for the identification of new flame retardants.

  2. Development potential of e-waste recycling industry in China.

    Science.gov (United States)

    Li, Jinhui; Yang, Jie; Liu, Lili

    2015-06-01

    Waste electrical and electronic equipment (WEEE or e-waste) recycling industries in China have been through several phases from spontaneous informal family workshops to qualified enterprises with treatment fund. This study attempts to analyse the development potential of the e-waste recycling industry in China from the perspective of both time and scale potential. An estimation and forecast of e-waste quantities in China shows that, the total e-waste amount reached approximately 5.5 million tonnes in 2013, with 83% of air conditioners, refrigerators, washing machines, televisions sand computers. The total quantity is expected to reach ca. 11.7 million tonnes in 2020 and 20 million tonnes in 2040, which indicates a large increase potential. Moreover, the demand for recycling processing facilities, the optimal service radius of e-waste recycling enterprises and estimation of the profitability potential of the e-waste recycling industry were analysed. Results show that, based on the e-waste collection demand, e-waste recycling enterprises therefore have a huge development potential in terms of both quantity and processing capacity, with 144 and 167 e-waste recycling facilities needed, respectively, by 2020 and 2040. In the case that e-waste recycling enterprises set up their own collection points to reduce the collection cost, the optimal collection service radius is estimated to be in the range of 173 km to 239 km. With an e-waste treatment fund subsidy, the e-waste recycling industry has a small economic profit, for example ca. US$2.5/unit for television. The annual profit for the e-waste recycling industry overall was about 90 million dollars in 2013.

  3. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  4. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  5. Recycling as moral behaviour

    DEFF Research Database (Denmark)

    Thøgersen, John

    of Reasoned Action (TRA) with regard to understanding recycling behaviour. Further, examples of misleading policy conclusions are discussed suggested that within the framework of cognitive psychology, Schwartz's model of altruistic behaviour offers a more satisfying starting point for understanding recycling......It is argued in this paper that in the affluent, industrial societies, environmental behaviours like recycling are typically classified within ""the domain of morality"" in people's minds. Intentions regarding these types of behaviours are not ba a thorough - conscious or unconscious - calculation...... of the balance of costs and benefits. Rather, they are a function of the person's moral beliefs, i.e., beliefs in what is the right or wrong thing to do. The paper gives a brief review of the literature with the intention of uncovering problems and shortcomings in the framework of the SEU-model and the Theory...

  6. Recycling of used rotor blades; Der Kreislauf schliesst sich

    Energy Technology Data Exchange (ETDEWEB)

    Schmidl, Erwin; Hinrichs, Stephan [Holcim Deutschlands AG, Hamburg (Germany)

    2010-06-15

    Until recently, used wind rotor blades were shreddered and combusted in waste incinerators. This is problematic because of high fine dust emissions and of sharp-edged fibre composite residues escaping into the environment. It was also a costly and time-consuming procedure. Recycling into other products is impracticable because there are more than enough low-grade recycled plastic materials available. The Holcim AG of the German state of Schleswig-Holstein filed a patent application for a new process in which the rotor blades will be used up completely, without residues, in a cement clinker plant. (orig.)

  7. Mechanical recycling of continuous fiber-reinforced thermoplastic sheets

    Science.gov (United States)

    Moritzer, Elmar; Heiderich, Gilmar

    2016-03-01

    This contribution examines possible material recycling of offcuts generated during the production of continuous-fiber-reinforced composite sheets. These sheets consist of a polyamide 6 matrix and glass fiber fabric. In the initial step, the offcut is shredded to obtain particles; following that, the particles are processed in a twin-screw process to produce fiber-reinforced plastic pellets with varying fiber contents. These pellets are intended for use in injection molding processes as a substitution for new raw materials. This investigation centers on the mechanical properties which can be achieved with the recycled material after both the twin-screw process and injection molding.

  8. Decontamination of process equipment using recyclable chelating solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jevec, J.; Lenore, C.; Ulbricht, S. [Babcock & Wilcox, Co., R& DD, Alliance, OH (United States)

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  9. Business Plan: Paper Recycling Plant

    OpenAIRE

    Ali, Muhammad; Askari, Sana; Salman, Muhammad; Askari, Sheba

    2008-01-01

    This Business Plan was written for Business Plan competition organized by Ministry of Youth Affairs Government of Pakistan. It explains the paper recycling business, its pros and cons, cost of paper recycling, plant options and feasibility.

  10. Determination of heavy metals and halogens in plastics from electric and electronic waste.

    Science.gov (United States)

    Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos

    2009-10-01

    The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n=51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n=161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.

  11. Plastic Bronchitis.

    Science.gov (United States)

    Rubin, Bruce K

    2016-09-01

    Plastic bronchitis is an uncommon and probably underrecognized disorder, diagnosed by the expectoration or bronchoscopic removal of firm, cohesive, branching casts. It should not be confused with purulent mucous plugging of the airway as seen in patients with cystic fibrosis or bronchiectasis. Few medications have been shown to be effective and some are now recognized as potentially harmful. Current research directions in plastic bronchitis research include understanding the genetics of lymphatic development and maldevelopment, determining how abnormal lymphatic malformations contribute to cast formation, and developing new treatments. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Closed loop recycling of lead/acid batteries

    Science.gov (United States)

    Bied-Charreton, B.

    The traditional lead/acid battery is a recycleable product, irrespective whether it is of an automotive, traction or standby design. The product benefits from the traditional lead metallurgy that has been developed for both primary (mines) and secondary (recycling) smelting. Secondary smelting accounts for 60% of total lead production in Europe, and this market lead the most effectively metal. In secondary smelters, scrapped batteries are crushed and smelted. The polypropylene from the boxes is recycled to produce secondary plastic for battery, automotive, or other miscellaneous uses. The lead metal is refined to be re-used in the battery industry. The acid is retreated. Recycling requires a collection network. The lead/acid battery benefits from the traditional collection network that has been established for scrap-iron and non-ferrous metal scrap. In Western Europe, the recycling rate for scrapped batteries is estimated to be 80 to 90%. All participants in the battery recycling loop agree that the process must be a clean cycle for it to be credible. The collection organization is improving the quality of storage and transportation, especially with regard to the acid that can only be neutralized in correctly-controlled facilities, generally located at the smelters. The smelters themselves tend, through local regulations, to run at the optimum level of protection of the environment.

  13. Informal electronic waste recycling: a sector review with special focus on China.

    Science.gov (United States)

    Chi, Xinwen; Streicher-Porte, Martin; Wang, Mark Y L; Reuter, Markus A

    2011-04-01

    Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and health impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China's e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector.

  14. Kualitas Fiber Komposit Plastic Dari Kertas Kertas Kardus Dengan Matriks Polietilena (PE)

    OpenAIRE

    Cibro, Reymon Fernando

    2012-01-01

    The research utilizion use cardboard fiber and polyetilena recycle plastic as raw material for fiber plastic composite. That is useful to decreasing the waste of cardboard ang polyetilena plastic, as well as to accomplishes demand of wood. This research aims to evaluate the physical properties (density, moisture content, water absorbtion, thickness swelling) and mechanical properties (modulus of elasticity, modulus of rupture, internal bond, screw holding power) fiber plastic composite fo...

  15. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  16. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  17. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.

    Science.gov (United States)

    Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier

    2015-12-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting.

  18. Vehicle recycling regulations

    DEFF Research Database (Denmark)

    Smink, Carla

    2007-01-01

    The number of end-of-life vehicles (ELVs) in the EU is increasing continously. Around 75 percent of an ELV are recyclable metals. The forecast growth in the number of ELVs calls for regulation that aims to minimise the environmental impact of a car. Using Denmark as an example, this article...

  19. Establishing sustainable design and development for plastic mold under product service system

    National Research Council Canada - National Science Library

    Huang, Yu-Chen; Tu, Jui-Che; Kuo, Kuo-Pin

    2017-01-01

    Face the energy recovery and environmental concerns and policy, the plastic molds design and develop have to focus on the issues of the lead-free, non-toxic, recyclable, re-manufactured, and integrate...

  20. Municipal solid waste management for total resource recycling: a case study on Haulien County in Taiwan.

    Science.gov (United States)

    Chang, Yu-Min; Liu, Chien-Chung; Dai, Wen-Chien; Hu, Allen; Tseng, Chao-Heng; Chou, Chieh-Mei

    2013-01-01

    This work presents the enforcement performance of recent Haulien County, Taiwan municipal solid waste (MSW) recycling management programs. These programs include: Mandatory Refuse Sorting and Recycling, Diverse Bulk Waste Reuse, Pay-as-you-Discharge, Total Food Waste Recycling, Restricted Use on Plastic Shopping Bags & Plastic Tableware, Recycling Fund Management, and Ash Reuse. These programs provide incentives to reduce the MSW quantity growth rate. It was found that the recycled material fraction of MSW generated in 2001 was from 6.8%, but was 32.4% in 2010 and will increase stably by 2-5% yearly in the near future. Survey data for the last few years show that only 2.68% (based on total MSW generated) of food waste was collected in 2001. However, food waste was up to 9.7% in 2010 after the Total Food Waste Recycling program was implemented. The reutilization rate of bottom ash was 20% in 2005 and up to 65% in 2010 owing to Ash Reuse Program enforcement. A quantified index, the Total Recycle Index, was proposed to evaluate MSW management program performance. The demonstrated county will move toward a zero waste society in 2015 if the Total Recycle Index approaches 1.00. Exact management with available programs can lead to slow-growing waste volume and recovery of all MSW.

  1. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  2. Plastic zonnecellen

    NARCIS (Netherlands)

    Roggen, Marjolein

    1998-01-01

    De zonnecel van de toekomst is in de maak. Onderzoekers van uiteenlopend pluimage werken eendrachtig aan een plastic zonnecel. De basis is technisch gelegd met een optimale, door invallend licht veroorzaakte, vorming van ladingdragers binnen een composiet van polymeren en buckyballs. Nu is het zaak

  3. Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Buekens, A.G.; Huang, H. [Department of Chemical Engineering and Industrial Chemistry - CHIS 2, Free University of Brussels, Pleinlaan 2, Brussels 1050 (Belgium)

    1998-08-01

    This paper reviews recent developments in plastics cracking, a process developed to recycle plastic wastes into useful petrochemical materials. Under thermal cracking conditions, plastic wastes can be decomposed into three fractions: gas, liquid and solid residue. The liquid products are usually composed of higher boiling point hydrocarbons. By adopting customary fluid cracking catalysts and reforming catalysts, more aromatics and naphthenes in the C{sub 6}-C{sub 8} range can be produced, which are valuable gasoline-range hydrocarbons. More tests are, however, needed to verify the pyrolysis process in a pilot scale particularly for treatment of mixtures of bulk plastics. Plastics cracking is only an elementary conversion technology; its application has to be combined with other technologies such as municipal solid waste collection, classification and pretreatment at the front end, as well as hydrocarbon distillation and purification at the back end. Social, environmental and economic factors are also important in industrial implementation of the technology

  4. “This Is Public Health: Recycling Counts!” Description of a Pilot Health Communications Campaign

    Directory of Open Access Journals (Sweden)

    Daniela B. Friedman

    2009-11-01

    Full Text Available This paper describes the development, implementation, and evaluation of a pilot recycling campaign. The goal of the campaign was to increase people’s awareness and knowledge about recycling and the link between a healthy environment and the public’s health. A total of 258 individuals attended campaign week events and completed an initial survey. Results identified inconvenience of recycling facility locations as a key barrier to recycling. Post-campaign survey results revealed increased recycling of paper, plastic, glass, and cans (p < 0.05. The majority of participants “agreed” or “strongly agreed” that as a result of campaign messages they had greater awareness about recycling (88.4% and their recycling efforts increased (61.6%.

  5. Biological degradation of plastics: a comprehensive review.

    Science.gov (United States)

    Shah, Aamer Ali; Hasan, Fariha; Hameed, Abdul; Ahmed, Safia

    2008-01-01

    Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. With the excessive use of plastics and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. The interest in environmental issues is growing and there are increasing demands to develop material which do not burden the environment significantly. Biodegradation is necessary for water-soluble or water-immiscible polymers because they eventually enter streams which can neither be recycled nor incinerated. It is important to consider the microbial degradation of natural and synthetic polymers in order to understand what is necessary for biodegradation and the mechanisms involved. This requires understanding of the interactions between materials and microorganisms and the biochemical changes involved. Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. This paper reviews the current research on the biodegradation of biodegradable and also the conventional synthetic plastics and also use of various techniques for the analysis of degradation in vitro.

  6. A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board.

    Science.gov (United States)

    Jiang, Wu; Jia, Li; Zhen-Ming, Xu

    2009-01-15

    The electrostatic separation is an effective method for recycling waste electrical and electronic equipment (WEEE). The efficiency of electrostatic separation processes depends on the ability of the separator. As a classical one, the roll-type corona-electrostatic separator has some advantages in recycling metals and plastics from waste printed circuit board (PCB). However, its industry application still faces some problems, such as: the further disposal of the middling products of the separation process; the balance of the production capacity and the good separation efficiency; the separation of the fine granular mixture and the stability of the separation process. A new "two-roll-type corona-electrostatic separator" was built to overcome the limitation of the classical one. The experimental data were discussed and the results showed that the outcome of the separation process was improved by using the new separator. Compared with the classical machine, the mass of conductive products increases 8.9% (groups 2 and 3) and10.2% (group 4) while the mass of the middling products decreases 45% (groups 2 and 3) and 31.7% (group 4), respectively. The production capacity of the new machine increases, and the stability of the separation process is enhanced.

  7. Drilling equipment

    Energy Technology Data Exchange (ETDEWEB)

    Voyevodin, Yu.M.; Kholosha, Ye.G.; Leshchenko, A.G.; Timchenko, A.I.

    1979-01-10

    The invention refers to units designed for extracting minerals by mechanical action on the face by a cutting tool. There is a known drills which includes a pulse device which contains a combustion chamber, cylinder, piston-percussion tool and cutting tool. The combustion chamber and the sub-piston cavity of the cylinder are connected by a channel in which there is a distributor. Its shortcoming is the fact that the pulse device does not guarantee the necessary motion of the actuating mechanism for its velocity and frequency of the shocks on the cutting tool. This reduces the efficiency of the operation and limits the area of application. The purpose of the proposed invention is to improve productivity of the device. This is achieved because the head of the drill is equipped with a 2-piston pulse device which contains 2-combustion chambers, 2 working cylinders, 2 piston percussion instruments, a rod with gas-conducting and connecting channels for interconnection of the sub-piston cavities and combustion chambers of both cylinders. The spent gases of one cylinder are used for closing the combustion chamber of the second cylinder.

  8. Efficient microplastics extraction from sand. A cost effective methodology based on sodium iodide recycling.

    Science.gov (United States)

    Kedzierski, Mikaël; Le Tilly, Véronique; César, Guy; Sire, Olivier; Bruzaud, Stéphane

    2017-02-15

    Evaluating the microplastics pollution on the shores requires overcoming the technological and economical challenge of efficient plastic extraction from sand. The recovery of dense microplastics requires the use of NaI solutions, a costly process. The aim of this study is to decrease this cost by recycling the NaI solutions and to determine the impact of NaI storage. For studying the NaI recyclability, the solution density and the salt mass have been monitored during ten life cycles. Density, pH and salt mass have been measured for 40days to assess the storage effect. The results show that NaI solutions are recyclable without any density alterations with a total loss of 35.9% after the 10cycles of use. During storage, chemical reactions may appear but are reversible. Consequently, the use of recycling methods allows for a significant cost reduction. How far the plastic extraction by dense solutions is representative is discussed.

  9. Glioactive ATP controls BDNF recycling in cortical astrocytes

    Science.gov (United States)

    Vignoli, Beatrice; Canossa, Marco

    2017-01-01

    ABSTRACT We have recently reported that long-term memory retention requires synaptic glia for proBDNF uptake and recycling. Through the recycling course, glial cells release endocytic BDNF, a mechanism that is activated in response to glutamate via AMPA and mGluRI/II receptors. Cortical astrocytes express receptors for many different transmitters suggesting for a complex signaling controlling endocytic BDNF secretion. Here, we demonstrated that the extracellular nucleotide ATP, activating P2X and P2Y receptors, regulates endocytic BDNF secretion in cultured astrocytes. Our data indicate that distinct glioactive molecules can participate in BDNF glial recycling and suggest that cortical astrocytes contributing to neuronal plasticity can be influenced by neurotransmitters in tune with synaptic needs.

  10. Solid-state recycling of light metals: A review

    Directory of Open Access Journals (Sweden)

    Shazarel Shamsudin

    2016-08-01

    Full Text Available This article provides an intensive review of the past and current research work on the solid-state recycling of light metals. The review includes an experimental aspect of the relevant works that clearly clarify the effects of several critical factors noted as chip preparation, reinforcing phases, die geometry, process parameter selection and performance of miscellaneous methods over the quality of the extruded profiles. Likewise, reviews of numerical and analytical works on the solid-state recycling were presented to understand the strengthening phenomena of chip-based billet through the plastic deformation. Finally, concluding remarks underline challenges of direct recycling method and subsequently highlight the potential future work on making the method as a promising alternative for sustainable manufacturing agenda.

  11. Plastic Surgery Statistics

    Science.gov (United States)

    ... PSN PSEN GRAFT Contact Us News Plastic Surgery Statistics Plastic surgery procedural statistics from the American Society of Plastic Surgeons. Statistics by Year Print 2016 Plastic Surgery Statistics 2015 ...

  12. Equipment for surgical interventions and childbirth in weightlessness

    Science.gov (United States)

    Mutke, H. G.

    A transparent plastic sack has been devised for surgical interventions in space. Fixed airtight on the patient, containing sterilized medical equipment and comprising long sleeves for the operations, it retains all its contents for the rest of the flight.

  13. Plasmonic Structural Colors for Plastic Consumer Products

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Mortensen, N. Asger; Kristensen, Anders

    2014-01-01

    Today colorants, such as pigments or dyes, are used to color plastic-based consumer products, either as base for solid colored bulk polymer or in inks for surface decoration. After usage, the products must be mechanically sorted by color before recycling, limiting any large-scale efficient...... recycling effort. As an alternative to chemistry-based coloring, nano-scale structural coloring has been proposed to reduce the number of materials needed and to increase pattern resolution. Here colors are created by structural based light-matter interactions in the surface. Thereby, the sorting by color...... can be avoided in the recycling state. Plasmon color technology based on aluminum has recently been firmly established as a route towards structural coloring of polymeric materials. We report on the fabrication of colors by localized surface plasmon resonances (LSPR) using roll-to-roll printing...

  14. The latest progress in research of plastics processing technology

    Institute of Scientific and Technical Information of China (English)

    Qu Jinping

    2012-01-01

    According to the great demand for the" green" plastics processing technology of the low energy consumption, high efficiency and environmental protection in plastics industry, the plastics processing method and technology based on the elongation rheology, with continuing evolution and innovation of the plastics plasticating and conveying method, are presented and researched on the basis of the plastics dynamic processing method arid equipment, and the plastics plasticating and conveying process in the vane extrusion system, the technical characteristics and the applications of vane plasticating and conveying technology are discussed. The research results show that compared with the conventional processing equipment, this new technology and equipment shows many outstanding advantages, such as shortening the thermo-meehanical history of the plastics processing by more than 50 % , reducing the energy consumption by 30 % or so, improving the mixing and blending effects, improving the quality of the products and the adaptability to materials, etc. , and it is found that the new technology and equipment has special superiority in the fields of the processing for material systems, such as the multiphase and multicomponent composite materials, the shear heat sensitive macromolecular materials, etc.

  15. Recycling of AZ31 Mg alloy with high purity Mg deposition layer by hot working (solid recycling)

    Energy Technology Data Exchange (ETDEWEB)

    Chino, Y.; Mabuchi, M. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan); Yamamoto, A.; Iwasaki, H.; Tsubakino, H. [Div. of Materials Science and Engineering, Graduate School of Himeji Inst. of Tech., Himeji (Japan)

    2003-07-01

    Solid recycling of AZ31 Mg alloy with vapor deposition coating layer of high purity Mg was evaluated. In the open die forging experiments, two AZ31 Mg alloy specimens with the pure Mg layer were sufficiently bonded by forging at 673 K. Furthermore, the Al and Zn of the AZ31 substrate diffused up to the center of the pure Mg layer. By the theoretical analysis, it is suggested that the grain boundary diffusion enhanced by grain refinement due to hot forging contributes to the solid state bonding of the specimens. Also, the solid recycled specimen was fabricated from the AZ31 Mg substrate with pure Mg layer by hot extrusion at 673 K. The solid recycled specimen showed almost the same tensile properties as the virgin extruded specimen. This is probably related not only to the grain boundary diffusion but also severe plastic deformation by hot extrusion. (orig.)

  16. Solid waste reclamation and recycling: Glass. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The bibliography contains citations concerning techniques and management of waste glass recycling. The design and evaluation of glass collection and sorting systems are discussed. The use of recycled products in construction materials, glass fiber reinforced plastics, and soil stabilization is examined. References also cover environmental aspects, government programs, and product marketing. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Aquatic Equipment Information.

    Science.gov (United States)

    Sova, Ruth

    Equipment usually used in water exercise programs is designed for variety, intensity, and program necessity. This guide discusses aquatic equipment under the following headings: (1) equipment design; (2) equipment principles; (3) precautions and contraindications; (4) population contraindications; and (5) choosing equipment. Equipment is used…

  18. Plastic bronchitis

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singhi

    2015-01-01

    Full Text Available Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding.

  19. Gold recycling in the United States in 1998

    Science.gov (United States)

    Amey, Earle B.

    2001-01-01

    In 1998, 175 metric tons (t) of refined gold was recovered by U.S. refiners from old and new scrap. The overall recycling rate was 29 percent when scrap consumption was compared with apparent domestic supply. Sources of old scrap includes discarded jewelry, dental materials, plating solutions, and electronic equipment. A very high old scrap recycling efficiency of 96 percent was reached in 1998, the supply of old scrap peaked, gold prices were at an 18-year low, and substantial amounts of old scrap were exported. U.S. net exports of old scrap had a gold content of 28 t.

  20. Thermal and catalytic pyrolysis of plastic waste

    OpenAIRE

    Débora Almeida; Maria de Fátima Marques

    2016-01-01

    Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolit...